1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifndef SQLITE_OMIT_FLOATING_POINT 21 #include <math.h> 22 #endif 23 24 /* 25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 26 ** or to bypass normal error detection during testing in order to let 27 ** execute proceed futher downstream. 28 ** 29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 30 ** sqlite3FaultSim() function only returns non-zero during testing. 31 ** 32 ** During testing, if the test harness has set a fault-sim callback using 33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 34 ** each call to sqlite3FaultSim() is relayed to that application-supplied 35 ** callback and the integer return value form the application-supplied 36 ** callback is returned by sqlite3FaultSim(). 37 ** 38 ** The integer argument to sqlite3FaultSim() is a code to identify which 39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 40 ** should have a unique code. To prevent legacy testing applications from 41 ** breaking, the codes should not be changed or reused. 42 */ 43 #ifndef SQLITE_UNTESTABLE 44 int sqlite3FaultSim(int iTest){ 45 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 46 return xCallback ? xCallback(iTest) : SQLITE_OK; 47 } 48 #endif 49 50 #ifndef SQLITE_OMIT_FLOATING_POINT 51 /* 52 ** Return true if the floating point value is Not a Number (NaN). 53 ** 54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 55 ** Otherwise, we have our own implementation that works on most systems. 56 */ 57 int sqlite3IsNaN(double x){ 58 int rc; /* The value return */ 59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 60 u64 y; 61 memcpy(&y,&x,sizeof(y)); 62 rc = IsNaN(y); 63 #else 64 rc = isnan(x); 65 #endif /* HAVE_ISNAN */ 66 testcase( rc ); 67 return rc; 68 } 69 #endif /* SQLITE_OMIT_FLOATING_POINT */ 70 71 /* 72 ** Compute a string length that is limited to what can be stored in 73 ** lower 30 bits of a 32-bit signed integer. 74 ** 75 ** The value returned will never be negative. Nor will it ever be greater 76 ** than the actual length of the string. For very long strings (greater 77 ** than 1GiB) the value returned might be less than the true string length. 78 */ 79 int sqlite3Strlen30(const char *z){ 80 if( z==0 ) return 0; 81 return 0x3fffffff & (int)strlen(z); 82 } 83 84 /* 85 ** Return the declared type of a column. Or return zDflt if the column 86 ** has no declared type. 87 ** 88 ** The column type is an extra string stored after the zero-terminator on 89 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 90 */ 91 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 92 if( pCol->colFlags & COLFLAG_HASTYPE ){ 93 return pCol->zCnName + strlen(pCol->zCnName) + 1; 94 }else if( pCol->eCType ){ 95 assert( pCol->eCType<=SQLITE_N_STDTYPE ); 96 return (char*)sqlite3StdType[pCol->eCType-1]; 97 }else{ 98 return zDflt; 99 } 100 } 101 102 /* 103 ** Helper function for sqlite3Error() - called rarely. Broken out into 104 ** a separate routine to avoid unnecessary register saves on entry to 105 ** sqlite3Error(). 106 */ 107 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 108 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 109 sqlite3SystemError(db, err_code); 110 } 111 112 /* 113 ** Set the current error code to err_code and clear any prior error message. 114 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 115 ** that would be appropriate. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code){ 118 assert( db!=0 ); 119 db->errCode = err_code; 120 if( err_code || db->pErr ){ 121 sqlite3ErrorFinish(db, err_code); 122 }else{ 123 db->errByteOffset = -1; 124 } 125 } 126 127 /* 128 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state 129 ** and error message. 130 */ 131 void sqlite3ErrorClear(sqlite3 *db){ 132 assert( db!=0 ); 133 db->errCode = SQLITE_OK; 134 db->errByteOffset = -1; 135 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 136 } 137 138 /* 139 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 140 ** to do based on the SQLite error code in rc. 141 */ 142 void sqlite3SystemError(sqlite3 *db, int rc){ 143 if( rc==SQLITE_IOERR_NOMEM ) return; 144 rc &= 0xff; 145 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 146 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 147 } 148 } 149 150 /* 151 ** Set the most recent error code and error string for the sqlite 152 ** handle "db". The error code is set to "err_code". 153 ** 154 ** If it is not NULL, string zFormat specifies the format of the 155 ** error string. zFormat and any string tokens that follow it are 156 ** assumed to be encoded in UTF-8. 157 ** 158 ** To clear the most recent error for sqlite handle "db", sqlite3Error 159 ** should be called with err_code set to SQLITE_OK and zFormat set 160 ** to NULL. 161 */ 162 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 163 assert( db!=0 ); 164 db->errCode = err_code; 165 sqlite3SystemError(db, err_code); 166 if( zFormat==0 ){ 167 sqlite3Error(db, err_code); 168 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 169 char *z; 170 va_list ap; 171 va_start(ap, zFormat); 172 z = sqlite3VMPrintf(db, zFormat, ap); 173 va_end(ap); 174 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 175 } 176 } 177 178 /* 179 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 180 ** 181 ** This function should be used to report any error that occurs while 182 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 183 ** last thing the sqlite3_prepare() function does is copy the error 184 ** stored by this function into the database handle using sqlite3Error(). 185 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 186 ** during statement execution (sqlite3_step() etc.). 187 */ 188 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 189 char *zMsg; 190 va_list ap; 191 sqlite3 *db = pParse->db; 192 assert( db!=0 ); 193 assert( db->pParse==pParse || db->pParse->pToplevel==pParse ); 194 db->errByteOffset = -2; 195 va_start(ap, zFormat); 196 zMsg = sqlite3VMPrintf(db, zFormat, ap); 197 va_end(ap); 198 if( db->errByteOffset<-1 ) db->errByteOffset = -1; 199 if( db->suppressErr ){ 200 sqlite3DbFree(db, zMsg); 201 if( db->mallocFailed ){ 202 pParse->nErr++; 203 pParse->rc = SQLITE_NOMEM; 204 } 205 }else{ 206 pParse->nErr++; 207 sqlite3DbFree(db, pParse->zErrMsg); 208 pParse->zErrMsg = zMsg; 209 pParse->rc = SQLITE_ERROR; 210 pParse->pWith = 0; 211 } 212 } 213 214 /* 215 ** If database connection db is currently parsing SQL, then transfer 216 ** error code errCode to that parser if the parser has not already 217 ** encountered some other kind of error. 218 */ 219 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 220 Parse *pParse; 221 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 222 pParse->rc = errCode; 223 pParse->nErr++; 224 return errCode; 225 } 226 227 /* 228 ** Convert an SQL-style quoted string into a normal string by removing 229 ** the quote characters. The conversion is done in-place. If the 230 ** input does not begin with a quote character, then this routine 231 ** is a no-op. 232 ** 233 ** The input string must be zero-terminated. A new zero-terminator 234 ** is added to the dequoted string. 235 ** 236 ** The return value is -1 if no dequoting occurs or the length of the 237 ** dequoted string, exclusive of the zero terminator, if dequoting does 238 ** occur. 239 ** 240 ** 2002-02-14: This routine is extended to remove MS-Access style 241 ** brackets from around identifiers. For example: "[a-b-c]" becomes 242 ** "a-b-c". 243 */ 244 void sqlite3Dequote(char *z){ 245 char quote; 246 int i, j; 247 if( z==0 ) return; 248 quote = z[0]; 249 if( !sqlite3Isquote(quote) ) return; 250 if( quote=='[' ) quote = ']'; 251 for(i=1, j=0;; i++){ 252 assert( z[i] ); 253 if( z[i]==quote ){ 254 if( z[i+1]==quote ){ 255 z[j++] = quote; 256 i++; 257 }else{ 258 break; 259 } 260 }else{ 261 z[j++] = z[i]; 262 } 263 } 264 z[j] = 0; 265 } 266 void sqlite3DequoteExpr(Expr *p){ 267 assert( !ExprHasProperty(p, EP_IntValue) ); 268 assert( sqlite3Isquote(p->u.zToken[0]) ); 269 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 270 sqlite3Dequote(p->u.zToken); 271 } 272 273 /* 274 ** If the input token p is quoted, try to adjust the token to remove 275 ** the quotes. This is not always possible: 276 ** 277 ** "abc" -> abc 278 ** "ab""cd" -> (not possible because of the interior "") 279 ** 280 ** Remove the quotes if possible. This is a optimization. The overall 281 ** system should still return the correct answer even if this routine 282 ** is always a no-op. 283 */ 284 void sqlite3DequoteToken(Token *p){ 285 unsigned int i; 286 if( p->n<2 ) return; 287 if( !sqlite3Isquote(p->z[0]) ) return; 288 for(i=1; i<p->n-1; i++){ 289 if( sqlite3Isquote(p->z[i]) ) return; 290 } 291 p->n -= 2; 292 p->z++; 293 } 294 295 /* 296 ** Generate a Token object from a string 297 */ 298 void sqlite3TokenInit(Token *p, char *z){ 299 p->z = z; 300 p->n = sqlite3Strlen30(z); 301 } 302 303 /* Convenient short-hand */ 304 #define UpperToLower sqlite3UpperToLower 305 306 /* 307 ** Some systems have stricmp(). Others have strcasecmp(). Because 308 ** there is no consistency, we will define our own. 309 ** 310 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 311 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 312 ** the contents of two buffers containing UTF-8 strings in a 313 ** case-independent fashion, using the same definition of "case 314 ** independence" that SQLite uses internally when comparing identifiers. 315 */ 316 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 317 if( zLeft==0 ){ 318 return zRight ? -1 : 0; 319 }else if( zRight==0 ){ 320 return 1; 321 } 322 return sqlite3StrICmp(zLeft, zRight); 323 } 324 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 325 unsigned char *a, *b; 326 int c, x; 327 a = (unsigned char *)zLeft; 328 b = (unsigned char *)zRight; 329 for(;;){ 330 c = *a; 331 x = *b; 332 if( c==x ){ 333 if( c==0 ) break; 334 }else{ 335 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 336 if( c ) break; 337 } 338 a++; 339 b++; 340 } 341 return c; 342 } 343 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 344 register unsigned char *a, *b; 345 if( zLeft==0 ){ 346 return zRight ? -1 : 0; 347 }else if( zRight==0 ){ 348 return 1; 349 } 350 a = (unsigned char *)zLeft; 351 b = (unsigned char *)zRight; 352 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 353 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 354 } 355 356 /* 357 ** Compute an 8-bit hash on a string that is insensitive to case differences 358 */ 359 u8 sqlite3StrIHash(const char *z){ 360 u8 h = 0; 361 if( z==0 ) return 0; 362 while( z[0] ){ 363 h += UpperToLower[(unsigned char)z[0]]; 364 z++; 365 } 366 return h; 367 } 368 369 /* 370 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 371 ** E==2 results in 100. E==50 results in 1.0e50. 372 ** 373 ** This routine only works for values of E between 1 and 341. 374 */ 375 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 376 #if defined(_MSC_VER) 377 static const LONGDOUBLE_TYPE x[] = { 378 1.0e+001L, 379 1.0e+002L, 380 1.0e+004L, 381 1.0e+008L, 382 1.0e+016L, 383 1.0e+032L, 384 1.0e+064L, 385 1.0e+128L, 386 1.0e+256L 387 }; 388 LONGDOUBLE_TYPE r = 1.0; 389 int i; 390 assert( E>=0 && E<=307 ); 391 for(i=0; E!=0; i++, E >>=1){ 392 if( E & 1 ) r *= x[i]; 393 } 394 return r; 395 #else 396 LONGDOUBLE_TYPE x = 10.0; 397 LONGDOUBLE_TYPE r = 1.0; 398 while(1){ 399 if( E & 1 ) r *= x; 400 E >>= 1; 401 if( E==0 ) break; 402 x *= x; 403 } 404 return r; 405 #endif 406 } 407 408 /* 409 ** The string z[] is an text representation of a real number. 410 ** Convert this string to a double and write it into *pResult. 411 ** 412 ** The string z[] is length bytes in length (bytes, not characters) and 413 ** uses the encoding enc. The string is not necessarily zero-terminated. 414 ** 415 ** Return TRUE if the result is a valid real number (or integer) and FALSE 416 ** if the string is empty or contains extraneous text. More specifically 417 ** return 418 ** 1 => The input string is a pure integer 419 ** 2 or more => The input has a decimal point or eNNN clause 420 ** 0 or less => The input string is not a valid number 421 ** -1 => Not a valid number, but has a valid prefix which 422 ** includes a decimal point and/or an eNNN clause 423 ** 424 ** Valid numbers are in one of these formats: 425 ** 426 ** [+-]digits[E[+-]digits] 427 ** [+-]digits.[digits][E[+-]digits] 428 ** [+-].digits[E[+-]digits] 429 ** 430 ** Leading and trailing whitespace is ignored for the purpose of determining 431 ** validity. 432 ** 433 ** If some prefix of the input string is a valid number, this routine 434 ** returns FALSE but it still converts the prefix and writes the result 435 ** into *pResult. 436 */ 437 #if defined(_MSC_VER) 438 #pragma warning(disable : 4756) 439 #endif 440 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 441 #ifndef SQLITE_OMIT_FLOATING_POINT 442 int incr; 443 const char *zEnd; 444 /* sign * significand * (10 ^ (esign * exponent)) */ 445 int sign = 1; /* sign of significand */ 446 i64 s = 0; /* significand */ 447 int d = 0; /* adjust exponent for shifting decimal point */ 448 int esign = 1; /* sign of exponent */ 449 int e = 0; /* exponent */ 450 int eValid = 1; /* True exponent is either not used or is well-formed */ 451 double result; 452 int nDigit = 0; /* Number of digits processed */ 453 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 454 455 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 456 *pResult = 0.0; /* Default return value, in case of an error */ 457 if( length==0 ) return 0; 458 459 if( enc==SQLITE_UTF8 ){ 460 incr = 1; 461 zEnd = z + length; 462 }else{ 463 int i; 464 incr = 2; 465 length &= ~1; 466 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 467 testcase( enc==SQLITE_UTF16LE ); 468 testcase( enc==SQLITE_UTF16BE ); 469 for(i=3-enc; i<length && z[i]==0; i+=2){} 470 if( i<length ) eType = -100; 471 zEnd = &z[i^1]; 472 z += (enc&1); 473 } 474 475 /* skip leading spaces */ 476 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 477 if( z>=zEnd ) return 0; 478 479 /* get sign of significand */ 480 if( *z=='-' ){ 481 sign = -1; 482 z+=incr; 483 }else if( *z=='+' ){ 484 z+=incr; 485 } 486 487 /* copy max significant digits to significand */ 488 while( z<zEnd && sqlite3Isdigit(*z) ){ 489 s = s*10 + (*z - '0'); 490 z+=incr; nDigit++; 491 if( s>=((LARGEST_INT64-9)/10) ){ 492 /* skip non-significant significand digits 493 ** (increase exponent by d to shift decimal left) */ 494 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 495 } 496 } 497 if( z>=zEnd ) goto do_atof_calc; 498 499 /* if decimal point is present */ 500 if( *z=='.' ){ 501 z+=incr; 502 eType++; 503 /* copy digits from after decimal to significand 504 ** (decrease exponent by d to shift decimal right) */ 505 while( z<zEnd && sqlite3Isdigit(*z) ){ 506 if( s<((LARGEST_INT64-9)/10) ){ 507 s = s*10 + (*z - '0'); 508 d--; 509 nDigit++; 510 } 511 z+=incr; 512 } 513 } 514 if( z>=zEnd ) goto do_atof_calc; 515 516 /* if exponent is present */ 517 if( *z=='e' || *z=='E' ){ 518 z+=incr; 519 eValid = 0; 520 eType++; 521 522 /* This branch is needed to avoid a (harmless) buffer overread. The 523 ** special comment alerts the mutation tester that the correct answer 524 ** is obtained even if the branch is omitted */ 525 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 526 527 /* get sign of exponent */ 528 if( *z=='-' ){ 529 esign = -1; 530 z+=incr; 531 }else if( *z=='+' ){ 532 z+=incr; 533 } 534 /* copy digits to exponent */ 535 while( z<zEnd && sqlite3Isdigit(*z) ){ 536 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 537 z+=incr; 538 eValid = 1; 539 } 540 } 541 542 /* skip trailing spaces */ 543 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 544 545 do_atof_calc: 546 /* adjust exponent by d, and update sign */ 547 e = (e*esign) + d; 548 if( e<0 ) { 549 esign = -1; 550 e *= -1; 551 } else { 552 esign = 1; 553 } 554 555 if( s==0 ) { 556 /* In the IEEE 754 standard, zero is signed. */ 557 result = sign<0 ? -(double)0 : (double)0; 558 } else { 559 /* Attempt to reduce exponent. 560 ** 561 ** Branches that are not required for the correct answer but which only 562 ** help to obtain the correct answer faster are marked with special 563 ** comments, as a hint to the mutation tester. 564 */ 565 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 566 if( esign>0 ){ 567 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 568 s *= 10; 569 }else{ 570 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 571 s /= 10; 572 } 573 e--; 574 } 575 576 /* adjust the sign of significand */ 577 s = sign<0 ? -s : s; 578 579 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 580 result = (double)s; 581 }else{ 582 /* attempt to handle extremely small/large numbers better */ 583 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 584 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 585 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 586 if( esign<0 ){ 587 result = s / scale; 588 result /= 1.0e+308; 589 }else{ 590 result = s * scale; 591 result *= 1.0e+308; 592 } 593 }else{ assert( e>=342 ); 594 if( esign<0 ){ 595 result = 0.0*s; 596 }else{ 597 #ifdef INFINITY 598 result = INFINITY*s; 599 #else 600 result = 1e308*1e308*s; /* Infinity */ 601 #endif 602 } 603 } 604 }else{ 605 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 606 if( esign<0 ){ 607 result = s / scale; 608 }else{ 609 result = s * scale; 610 } 611 } 612 } 613 } 614 615 /* store the result */ 616 *pResult = result; 617 618 /* return true if number and no extra non-whitespace chracters after */ 619 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 620 return eType; 621 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 622 return -1; 623 }else{ 624 return 0; 625 } 626 #else 627 return !sqlite3Atoi64(z, pResult, length, enc); 628 #endif /* SQLITE_OMIT_FLOATING_POINT */ 629 } 630 #if defined(_MSC_VER) 631 #pragma warning(default : 4756) 632 #endif 633 634 /* 635 ** Render an signed 64-bit integer as text. Store the result in zOut[]. 636 ** 637 ** The caller must ensure that zOut[] is at least 21 bytes in size. 638 */ 639 void sqlite3Int64ToText(i64 v, char *zOut){ 640 int i; 641 u64 x; 642 char zTemp[22]; 643 if( v<0 ){ 644 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; 645 }else{ 646 x = v; 647 } 648 i = sizeof(zTemp)-2; 649 zTemp[sizeof(zTemp)-1] = 0; 650 do{ 651 zTemp[i--] = (x%10) + '0'; 652 x = x/10; 653 }while( x ); 654 if( v<0 ) zTemp[i--] = '-'; 655 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i); 656 } 657 658 /* 659 ** Compare the 19-character string zNum against the text representation 660 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 661 ** if zNum is less than, equal to, or greater than the string. 662 ** Note that zNum must contain exactly 19 characters. 663 ** 664 ** Unlike memcmp() this routine is guaranteed to return the difference 665 ** in the values of the last digit if the only difference is in the 666 ** last digit. So, for example, 667 ** 668 ** compare2pow63("9223372036854775800", 1) 669 ** 670 ** will return -8. 671 */ 672 static int compare2pow63(const char *zNum, int incr){ 673 int c = 0; 674 int i; 675 /* 012345678901234567 */ 676 const char *pow63 = "922337203685477580"; 677 for(i=0; c==0 && i<18; i++){ 678 c = (zNum[i*incr]-pow63[i])*10; 679 } 680 if( c==0 ){ 681 c = zNum[18*incr] - '8'; 682 testcase( c==(-1) ); 683 testcase( c==0 ); 684 testcase( c==(+1) ); 685 } 686 return c; 687 } 688 689 /* 690 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 691 ** routine does *not* accept hexadecimal notation. 692 ** 693 ** Returns: 694 ** 695 ** -1 Not even a prefix of the input text looks like an integer 696 ** 0 Successful transformation. Fits in a 64-bit signed integer. 697 ** 1 Excess non-space text after the integer value 698 ** 2 Integer too large for a 64-bit signed integer or is malformed 699 ** 3 Special case of 9223372036854775808 700 ** 701 ** length is the number of bytes in the string (bytes, not characters). 702 ** The string is not necessarily zero-terminated. The encoding is 703 ** given by enc. 704 */ 705 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 706 int incr; 707 u64 u = 0; 708 int neg = 0; /* assume positive */ 709 int i; 710 int c = 0; 711 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 712 int rc; /* Baseline return code */ 713 const char *zStart; 714 const char *zEnd = zNum + length; 715 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 716 if( enc==SQLITE_UTF8 ){ 717 incr = 1; 718 }else{ 719 incr = 2; 720 length &= ~1; 721 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 722 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 723 nonNum = i<length; 724 zEnd = &zNum[i^1]; 725 zNum += (enc&1); 726 } 727 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 728 if( zNum<zEnd ){ 729 if( *zNum=='-' ){ 730 neg = 1; 731 zNum+=incr; 732 }else if( *zNum=='+' ){ 733 zNum+=incr; 734 } 735 } 736 zStart = zNum; 737 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 738 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 739 u = u*10 + c - '0'; 740 } 741 testcase( i==18*incr ); 742 testcase( i==19*incr ); 743 testcase( i==20*incr ); 744 if( u>LARGEST_INT64 ){ 745 /* This test and assignment is needed only to suppress UB warnings 746 ** from clang and -fsanitize=undefined. This test and assignment make 747 ** the code a little larger and slower, and no harm comes from omitting 748 ** them, but we must appaise the undefined-behavior pharisees. */ 749 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 750 }else if( neg ){ 751 *pNum = -(i64)u; 752 }else{ 753 *pNum = (i64)u; 754 } 755 rc = 0; 756 if( i==0 && zStart==zNum ){ /* No digits */ 757 rc = -1; 758 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 759 rc = 1; 760 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 761 int jj = i; 762 do{ 763 if( !sqlite3Isspace(zNum[jj]) ){ 764 rc = 1; /* Extra non-space text after the integer */ 765 break; 766 } 767 jj += incr; 768 }while( &zNum[jj]<zEnd ); 769 } 770 if( i<19*incr ){ 771 /* Less than 19 digits, so we know that it fits in 64 bits */ 772 assert( u<=LARGEST_INT64 ); 773 return rc; 774 }else{ 775 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 776 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 777 if( c<0 ){ 778 /* zNum is less than 9223372036854775808 so it fits */ 779 assert( u<=LARGEST_INT64 ); 780 return rc; 781 }else{ 782 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 783 if( c>0 ){ 784 /* zNum is greater than 9223372036854775808 so it overflows */ 785 return 2; 786 }else{ 787 /* zNum is exactly 9223372036854775808. Fits if negative. The 788 ** special case 2 overflow if positive */ 789 assert( u-1==LARGEST_INT64 ); 790 return neg ? rc : 3; 791 } 792 } 793 } 794 } 795 796 /* 797 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 798 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 799 ** whereas sqlite3Atoi64() does not. 800 ** 801 ** Returns: 802 ** 803 ** 0 Successful transformation. Fits in a 64-bit signed integer. 804 ** 1 Excess text after the integer value 805 ** 2 Integer too large for a 64-bit signed integer or is malformed 806 ** 3 Special case of 9223372036854775808 807 */ 808 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 809 #ifndef SQLITE_OMIT_HEX_INTEGER 810 if( z[0]=='0' 811 && (z[1]=='x' || z[1]=='X') 812 ){ 813 u64 u = 0; 814 int i, k; 815 for(i=2; z[i]=='0'; i++){} 816 for(k=i; sqlite3Isxdigit(z[k]); k++){ 817 u = u*16 + sqlite3HexToInt(z[k]); 818 } 819 memcpy(pOut, &u, 8); 820 return (z[k]==0 && k-i<=16) ? 0 : 2; 821 }else 822 #endif /* SQLITE_OMIT_HEX_INTEGER */ 823 { 824 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 825 } 826 } 827 828 /* 829 ** If zNum represents an integer that will fit in 32-bits, then set 830 ** *pValue to that integer and return true. Otherwise return false. 831 ** 832 ** This routine accepts both decimal and hexadecimal notation for integers. 833 ** 834 ** Any non-numeric characters that following zNum are ignored. 835 ** This is different from sqlite3Atoi64() which requires the 836 ** input number to be zero-terminated. 837 */ 838 int sqlite3GetInt32(const char *zNum, int *pValue){ 839 sqlite_int64 v = 0; 840 int i, c; 841 int neg = 0; 842 if( zNum[0]=='-' ){ 843 neg = 1; 844 zNum++; 845 }else if( zNum[0]=='+' ){ 846 zNum++; 847 } 848 #ifndef SQLITE_OMIT_HEX_INTEGER 849 else if( zNum[0]=='0' 850 && (zNum[1]=='x' || zNum[1]=='X') 851 && sqlite3Isxdigit(zNum[2]) 852 ){ 853 u32 u = 0; 854 zNum += 2; 855 while( zNum[0]=='0' ) zNum++; 856 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 857 u = u*16 + sqlite3HexToInt(zNum[i]); 858 } 859 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 860 memcpy(pValue, &u, 4); 861 return 1; 862 }else{ 863 return 0; 864 } 865 } 866 #endif 867 if( !sqlite3Isdigit(zNum[0]) ) return 0; 868 while( zNum[0]=='0' ) zNum++; 869 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 870 v = v*10 + c; 871 } 872 873 /* The longest decimal representation of a 32 bit integer is 10 digits: 874 ** 875 ** 1234567890 876 ** 2^31 -> 2147483648 877 */ 878 testcase( i==10 ); 879 if( i>10 ){ 880 return 0; 881 } 882 testcase( v-neg==2147483647 ); 883 if( v-neg>2147483647 ){ 884 return 0; 885 } 886 if( neg ){ 887 v = -v; 888 } 889 *pValue = (int)v; 890 return 1; 891 } 892 893 /* 894 ** Return a 32-bit integer value extracted from a string. If the 895 ** string is not an integer, just return 0. 896 */ 897 int sqlite3Atoi(const char *z){ 898 int x = 0; 899 sqlite3GetInt32(z, &x); 900 return x; 901 } 902 903 /* 904 ** Try to convert z into an unsigned 32-bit integer. Return true on 905 ** success and false if there is an error. 906 ** 907 ** Only decimal notation is accepted. 908 */ 909 int sqlite3GetUInt32(const char *z, u32 *pI){ 910 u64 v = 0; 911 int i; 912 for(i=0; sqlite3Isdigit(z[i]); i++){ 913 v = v*10 + z[i] - '0'; 914 if( v>4294967296LL ){ *pI = 0; return 0; } 915 } 916 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } 917 *pI = (u32)v; 918 return 1; 919 } 920 921 /* 922 ** The variable-length integer encoding is as follows: 923 ** 924 ** KEY: 925 ** A = 0xxxxxxx 7 bits of data and one flag bit 926 ** B = 1xxxxxxx 7 bits of data and one flag bit 927 ** C = xxxxxxxx 8 bits of data 928 ** 929 ** 7 bits - A 930 ** 14 bits - BA 931 ** 21 bits - BBA 932 ** 28 bits - BBBA 933 ** 35 bits - BBBBA 934 ** 42 bits - BBBBBA 935 ** 49 bits - BBBBBBA 936 ** 56 bits - BBBBBBBA 937 ** 64 bits - BBBBBBBBC 938 */ 939 940 /* 941 ** Write a 64-bit variable-length integer to memory starting at p[0]. 942 ** The length of data write will be between 1 and 9 bytes. The number 943 ** of bytes written is returned. 944 ** 945 ** A variable-length integer consists of the lower 7 bits of each byte 946 ** for all bytes that have the 8th bit set and one byte with the 8th 947 ** bit clear. Except, if we get to the 9th byte, it stores the full 948 ** 8 bits and is the last byte. 949 */ 950 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 951 int i, j, n; 952 u8 buf[10]; 953 if( v & (((u64)0xff000000)<<32) ){ 954 p[8] = (u8)v; 955 v >>= 8; 956 for(i=7; i>=0; i--){ 957 p[i] = (u8)((v & 0x7f) | 0x80); 958 v >>= 7; 959 } 960 return 9; 961 } 962 n = 0; 963 do{ 964 buf[n++] = (u8)((v & 0x7f) | 0x80); 965 v >>= 7; 966 }while( v!=0 ); 967 buf[0] &= 0x7f; 968 assert( n<=9 ); 969 for(i=0, j=n-1; j>=0; j--, i++){ 970 p[i] = buf[j]; 971 } 972 return n; 973 } 974 int sqlite3PutVarint(unsigned char *p, u64 v){ 975 if( v<=0x7f ){ 976 p[0] = v&0x7f; 977 return 1; 978 } 979 if( v<=0x3fff ){ 980 p[0] = ((v>>7)&0x7f)|0x80; 981 p[1] = v&0x7f; 982 return 2; 983 } 984 return putVarint64(p,v); 985 } 986 987 /* 988 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 989 ** are defined here rather than simply putting the constant expressions 990 ** inline in order to work around bugs in the RVT compiler. 991 ** 992 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 993 ** 994 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 995 */ 996 #define SLOT_2_0 0x001fc07f 997 #define SLOT_4_2_0 0xf01fc07f 998 999 1000 /* 1001 ** Read a 64-bit variable-length integer from memory starting at p[0]. 1002 ** Return the number of bytes read. The value is stored in *v. 1003 */ 1004 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 1005 u32 a,b,s; 1006 1007 if( ((signed char*)p)[0]>=0 ){ 1008 *v = *p; 1009 return 1; 1010 } 1011 if( ((signed char*)p)[1]>=0 ){ 1012 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 1013 return 2; 1014 } 1015 1016 /* Verify that constants are precomputed correctly */ 1017 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 1018 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 1019 1020 a = ((u32)p[0])<<14; 1021 b = p[1]; 1022 p += 2; 1023 a |= *p; 1024 /* a: p0<<14 | p2 (unmasked) */ 1025 if (!(a&0x80)) 1026 { 1027 a &= SLOT_2_0; 1028 b &= 0x7f; 1029 b = b<<7; 1030 a |= b; 1031 *v = a; 1032 return 3; 1033 } 1034 1035 /* CSE1 from below */ 1036 a &= SLOT_2_0; 1037 p++; 1038 b = b<<14; 1039 b |= *p; 1040 /* b: p1<<14 | p3 (unmasked) */ 1041 if (!(b&0x80)) 1042 { 1043 b &= SLOT_2_0; 1044 /* moved CSE1 up */ 1045 /* a &= (0x7f<<14)|(0x7f); */ 1046 a = a<<7; 1047 a |= b; 1048 *v = a; 1049 return 4; 1050 } 1051 1052 /* a: p0<<14 | p2 (masked) */ 1053 /* b: p1<<14 | p3 (unmasked) */ 1054 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1055 /* moved CSE1 up */ 1056 /* a &= (0x7f<<14)|(0x7f); */ 1057 b &= SLOT_2_0; 1058 s = a; 1059 /* s: p0<<14 | p2 (masked) */ 1060 1061 p++; 1062 a = a<<14; 1063 a |= *p; 1064 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1065 if (!(a&0x80)) 1066 { 1067 /* we can skip these cause they were (effectively) done above 1068 ** while calculating s */ 1069 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1070 /* b &= (0x7f<<14)|(0x7f); */ 1071 b = b<<7; 1072 a |= b; 1073 s = s>>18; 1074 *v = ((u64)s)<<32 | a; 1075 return 5; 1076 } 1077 1078 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1079 s = s<<7; 1080 s |= b; 1081 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1082 1083 p++; 1084 b = b<<14; 1085 b |= *p; 1086 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 1087 if (!(b&0x80)) 1088 { 1089 /* we can skip this cause it was (effectively) done above in calc'ing s */ 1090 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1091 a &= SLOT_2_0; 1092 a = a<<7; 1093 a |= b; 1094 s = s>>18; 1095 *v = ((u64)s)<<32 | a; 1096 return 6; 1097 } 1098 1099 p++; 1100 a = a<<14; 1101 a |= *p; 1102 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1103 if (!(a&0x80)) 1104 { 1105 a &= SLOT_4_2_0; 1106 b &= SLOT_2_0; 1107 b = b<<7; 1108 a |= b; 1109 s = s>>11; 1110 *v = ((u64)s)<<32 | a; 1111 return 7; 1112 } 1113 1114 /* CSE2 from below */ 1115 a &= SLOT_2_0; 1116 p++; 1117 b = b<<14; 1118 b |= *p; 1119 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1120 if (!(b&0x80)) 1121 { 1122 b &= SLOT_4_2_0; 1123 /* moved CSE2 up */ 1124 /* a &= (0x7f<<14)|(0x7f); */ 1125 a = a<<7; 1126 a |= b; 1127 s = s>>4; 1128 *v = ((u64)s)<<32 | a; 1129 return 8; 1130 } 1131 1132 p++; 1133 a = a<<15; 1134 a |= *p; 1135 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1136 1137 /* moved CSE2 up */ 1138 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1139 b &= SLOT_2_0; 1140 b = b<<8; 1141 a |= b; 1142 1143 s = s<<4; 1144 b = p[-4]; 1145 b &= 0x7f; 1146 b = b>>3; 1147 s |= b; 1148 1149 *v = ((u64)s)<<32 | a; 1150 1151 return 9; 1152 } 1153 1154 /* 1155 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1156 ** Return the number of bytes read. The value is stored in *v. 1157 ** 1158 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1159 ** integer, then set *v to 0xffffffff. 1160 ** 1161 ** A MACRO version, getVarint32, is provided which inlines the 1162 ** single-byte case. All code should use the MACRO version as 1163 ** this function assumes the single-byte case has already been handled. 1164 */ 1165 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1166 u32 a,b; 1167 1168 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1169 ** by the getVarin32() macro */ 1170 a = *p; 1171 /* a: p0 (unmasked) */ 1172 #ifndef getVarint32 1173 if (!(a&0x80)) 1174 { 1175 /* Values between 0 and 127 */ 1176 *v = a; 1177 return 1; 1178 } 1179 #endif 1180 1181 /* The 2-byte case */ 1182 p++; 1183 b = *p; 1184 /* b: p1 (unmasked) */ 1185 if (!(b&0x80)) 1186 { 1187 /* Values between 128 and 16383 */ 1188 a &= 0x7f; 1189 a = a<<7; 1190 *v = a | b; 1191 return 2; 1192 } 1193 1194 /* The 3-byte case */ 1195 p++; 1196 a = a<<14; 1197 a |= *p; 1198 /* a: p0<<14 | p2 (unmasked) */ 1199 if (!(a&0x80)) 1200 { 1201 /* Values between 16384 and 2097151 */ 1202 a &= (0x7f<<14)|(0x7f); 1203 b &= 0x7f; 1204 b = b<<7; 1205 *v = a | b; 1206 return 3; 1207 } 1208 1209 /* A 32-bit varint is used to store size information in btrees. 1210 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1211 ** A 3-byte varint is sufficient, for example, to record the size 1212 ** of a 1048569-byte BLOB or string. 1213 ** 1214 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1215 ** rare larger cases can be handled by the slower 64-bit varint 1216 ** routine. 1217 */ 1218 #if 1 1219 { 1220 u64 v64; 1221 u8 n; 1222 1223 n = sqlite3GetVarint(p-2, &v64); 1224 assert( n>3 && n<=9 ); 1225 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1226 *v = 0xffffffff; 1227 }else{ 1228 *v = (u32)v64; 1229 } 1230 return n; 1231 } 1232 1233 #else 1234 /* For following code (kept for historical record only) shows an 1235 ** unrolling for the 3- and 4-byte varint cases. This code is 1236 ** slightly faster, but it is also larger and much harder to test. 1237 */ 1238 p++; 1239 b = b<<14; 1240 b |= *p; 1241 /* b: p1<<14 | p3 (unmasked) */ 1242 if (!(b&0x80)) 1243 { 1244 /* Values between 2097152 and 268435455 */ 1245 b &= (0x7f<<14)|(0x7f); 1246 a &= (0x7f<<14)|(0x7f); 1247 a = a<<7; 1248 *v = a | b; 1249 return 4; 1250 } 1251 1252 p++; 1253 a = a<<14; 1254 a |= *p; 1255 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1256 if (!(a&0x80)) 1257 { 1258 /* Values between 268435456 and 34359738367 */ 1259 a &= SLOT_4_2_0; 1260 b &= SLOT_4_2_0; 1261 b = b<<7; 1262 *v = a | b; 1263 return 5; 1264 } 1265 1266 /* We can only reach this point when reading a corrupt database 1267 ** file. In that case we are not in any hurry. Use the (relatively 1268 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1269 ** value. */ 1270 { 1271 u64 v64; 1272 u8 n; 1273 1274 p -= 4; 1275 n = sqlite3GetVarint(p, &v64); 1276 assert( n>5 && n<=9 ); 1277 *v = (u32)v64; 1278 return n; 1279 } 1280 #endif 1281 } 1282 1283 /* 1284 ** Return the number of bytes that will be needed to store the given 1285 ** 64-bit integer. 1286 */ 1287 int sqlite3VarintLen(u64 v){ 1288 int i; 1289 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1290 return i; 1291 } 1292 1293 1294 /* 1295 ** Read or write a four-byte big-endian integer value. 1296 */ 1297 u32 sqlite3Get4byte(const u8 *p){ 1298 #if SQLITE_BYTEORDER==4321 1299 u32 x; 1300 memcpy(&x,p,4); 1301 return x; 1302 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1303 u32 x; 1304 memcpy(&x,p,4); 1305 return __builtin_bswap32(x); 1306 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1307 u32 x; 1308 memcpy(&x,p,4); 1309 return _byteswap_ulong(x); 1310 #else 1311 testcase( p[0]&0x80 ); 1312 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1313 #endif 1314 } 1315 void sqlite3Put4byte(unsigned char *p, u32 v){ 1316 #if SQLITE_BYTEORDER==4321 1317 memcpy(p,&v,4); 1318 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1319 u32 x = __builtin_bswap32(v); 1320 memcpy(p,&x,4); 1321 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1322 u32 x = _byteswap_ulong(v); 1323 memcpy(p,&x,4); 1324 #else 1325 p[0] = (u8)(v>>24); 1326 p[1] = (u8)(v>>16); 1327 p[2] = (u8)(v>>8); 1328 p[3] = (u8)v; 1329 #endif 1330 } 1331 1332 1333 1334 /* 1335 ** Translate a single byte of Hex into an integer. 1336 ** This routine only works if h really is a valid hexadecimal 1337 ** character: 0..9a..fA..F 1338 */ 1339 u8 sqlite3HexToInt(int h){ 1340 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1341 #ifdef SQLITE_ASCII 1342 h += 9*(1&(h>>6)); 1343 #endif 1344 #ifdef SQLITE_EBCDIC 1345 h += 9*(1&~(h>>4)); 1346 #endif 1347 return (u8)(h & 0xf); 1348 } 1349 1350 #if !defined(SQLITE_OMIT_BLOB_LITERAL) 1351 /* 1352 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1353 ** value. Return a pointer to its binary value. Space to hold the 1354 ** binary value has been obtained from malloc and must be freed by 1355 ** the calling routine. 1356 */ 1357 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1358 char *zBlob; 1359 int i; 1360 1361 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1362 n--; 1363 if( zBlob ){ 1364 for(i=0; i<n; i+=2){ 1365 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1366 } 1367 zBlob[i/2] = 0; 1368 } 1369 return zBlob; 1370 } 1371 #endif /* !SQLITE_OMIT_BLOB_LITERAL */ 1372 1373 /* 1374 ** Log an error that is an API call on a connection pointer that should 1375 ** not have been used. The "type" of connection pointer is given as the 1376 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1377 */ 1378 static void logBadConnection(const char *zType){ 1379 sqlite3_log(SQLITE_MISUSE, 1380 "API call with %s database connection pointer", 1381 zType 1382 ); 1383 } 1384 1385 /* 1386 ** Check to make sure we have a valid db pointer. This test is not 1387 ** foolproof but it does provide some measure of protection against 1388 ** misuse of the interface such as passing in db pointers that are 1389 ** NULL or which have been previously closed. If this routine returns 1390 ** 1 it means that the db pointer is valid and 0 if it should not be 1391 ** dereferenced for any reason. The calling function should invoke 1392 ** SQLITE_MISUSE immediately. 1393 ** 1394 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1395 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1396 ** open properly and is not fit for general use but which can be 1397 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1398 */ 1399 int sqlite3SafetyCheckOk(sqlite3 *db){ 1400 u8 eOpenState; 1401 if( db==0 ){ 1402 logBadConnection("NULL"); 1403 return 0; 1404 } 1405 eOpenState = db->eOpenState; 1406 if( eOpenState!=SQLITE_STATE_OPEN ){ 1407 if( sqlite3SafetyCheckSickOrOk(db) ){ 1408 testcase( sqlite3GlobalConfig.xLog!=0 ); 1409 logBadConnection("unopened"); 1410 } 1411 return 0; 1412 }else{ 1413 return 1; 1414 } 1415 } 1416 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1417 u8 eOpenState; 1418 eOpenState = db->eOpenState; 1419 if( eOpenState!=SQLITE_STATE_SICK && 1420 eOpenState!=SQLITE_STATE_OPEN && 1421 eOpenState!=SQLITE_STATE_BUSY ){ 1422 testcase( sqlite3GlobalConfig.xLog!=0 ); 1423 logBadConnection("invalid"); 1424 return 0; 1425 }else{ 1426 return 1; 1427 } 1428 } 1429 1430 /* 1431 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1432 ** the other 64-bit signed integer at *pA and store the result in *pA. 1433 ** Return 0 on success. Or if the operation would have resulted in an 1434 ** overflow, leave *pA unchanged and return 1. 1435 */ 1436 int sqlite3AddInt64(i64 *pA, i64 iB){ 1437 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1438 return __builtin_add_overflow(*pA, iB, pA); 1439 #else 1440 i64 iA = *pA; 1441 testcase( iA==0 ); testcase( iA==1 ); 1442 testcase( iB==-1 ); testcase( iB==0 ); 1443 if( iB>=0 ){ 1444 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1445 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1446 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1447 }else{ 1448 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1449 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1450 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1451 } 1452 *pA += iB; 1453 return 0; 1454 #endif 1455 } 1456 int sqlite3SubInt64(i64 *pA, i64 iB){ 1457 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1458 return __builtin_sub_overflow(*pA, iB, pA); 1459 #else 1460 testcase( iB==SMALLEST_INT64+1 ); 1461 if( iB==SMALLEST_INT64 ){ 1462 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1463 if( (*pA)>=0 ) return 1; 1464 *pA -= iB; 1465 return 0; 1466 }else{ 1467 return sqlite3AddInt64(pA, -iB); 1468 } 1469 #endif 1470 } 1471 int sqlite3MulInt64(i64 *pA, i64 iB){ 1472 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1473 return __builtin_mul_overflow(*pA, iB, pA); 1474 #else 1475 i64 iA = *pA; 1476 if( iB>0 ){ 1477 if( iA>LARGEST_INT64/iB ) return 1; 1478 if( iA<SMALLEST_INT64/iB ) return 1; 1479 }else if( iB<0 ){ 1480 if( iA>0 ){ 1481 if( iB<SMALLEST_INT64/iA ) return 1; 1482 }else if( iA<0 ){ 1483 if( iB==SMALLEST_INT64 ) return 1; 1484 if( iA==SMALLEST_INT64 ) return 1; 1485 if( -iA>LARGEST_INT64/-iB ) return 1; 1486 } 1487 } 1488 *pA = iA*iB; 1489 return 0; 1490 #endif 1491 } 1492 1493 /* 1494 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1495 ** if the integer has a value of -2147483648, return +2147483647 1496 */ 1497 int sqlite3AbsInt32(int x){ 1498 if( x>=0 ) return x; 1499 if( x==(int)0x80000000 ) return 0x7fffffff; 1500 return -x; 1501 } 1502 1503 #ifdef SQLITE_ENABLE_8_3_NAMES 1504 /* 1505 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1506 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1507 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1508 ** three characters, then shorten the suffix on z[] to be the last three 1509 ** characters of the original suffix. 1510 ** 1511 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1512 ** do the suffix shortening regardless of URI parameter. 1513 ** 1514 ** Examples: 1515 ** 1516 ** test.db-journal => test.nal 1517 ** test.db-wal => test.wal 1518 ** test.db-shm => test.shm 1519 ** test.db-mj7f3319fa => test.9fa 1520 */ 1521 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1522 #if SQLITE_ENABLE_8_3_NAMES<2 1523 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1524 #endif 1525 { 1526 int i, sz; 1527 sz = sqlite3Strlen30(z); 1528 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1529 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1530 } 1531 } 1532 #endif 1533 1534 /* 1535 ** Find (an approximate) sum of two LogEst values. This computation is 1536 ** not a simple "+" operator because LogEst is stored as a logarithmic 1537 ** value. 1538 ** 1539 */ 1540 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1541 static const unsigned char x[] = { 1542 10, 10, /* 0,1 */ 1543 9, 9, /* 2,3 */ 1544 8, 8, /* 4,5 */ 1545 7, 7, 7, /* 6,7,8 */ 1546 6, 6, 6, /* 9,10,11 */ 1547 5, 5, 5, /* 12-14 */ 1548 4, 4, 4, 4, /* 15-18 */ 1549 3, 3, 3, 3, 3, 3, /* 19-24 */ 1550 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1551 }; 1552 if( a>=b ){ 1553 if( a>b+49 ) return a; 1554 if( a>b+31 ) return a+1; 1555 return a+x[a-b]; 1556 }else{ 1557 if( b>a+49 ) return b; 1558 if( b>a+31 ) return b+1; 1559 return b+x[b-a]; 1560 } 1561 } 1562 1563 /* 1564 ** Convert an integer into a LogEst. In other words, compute an 1565 ** approximation for 10*log2(x). 1566 */ 1567 LogEst sqlite3LogEst(u64 x){ 1568 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1569 LogEst y = 40; 1570 if( x<8 ){ 1571 if( x<2 ) return 0; 1572 while( x<8 ){ y -= 10; x <<= 1; } 1573 }else{ 1574 #if GCC_VERSION>=5004000 1575 int i = 60 - __builtin_clzll(x); 1576 y += i*10; 1577 x >>= i; 1578 #else 1579 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1580 while( x>15 ){ y += 10; x >>= 1; } 1581 #endif 1582 } 1583 return a[x&7] + y - 10; 1584 } 1585 1586 /* 1587 ** Convert a double into a LogEst 1588 ** In other words, compute an approximation for 10*log2(x). 1589 */ 1590 LogEst sqlite3LogEstFromDouble(double x){ 1591 u64 a; 1592 LogEst e; 1593 assert( sizeof(x)==8 && sizeof(a)==8 ); 1594 if( x<=1 ) return 0; 1595 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1596 memcpy(&a, &x, 8); 1597 e = (a>>52) - 1022; 1598 return e*10; 1599 } 1600 1601 /* 1602 ** Convert a LogEst into an integer. 1603 */ 1604 u64 sqlite3LogEstToInt(LogEst x){ 1605 u64 n; 1606 n = x%10; 1607 x /= 10; 1608 if( n>=5 ) n -= 2; 1609 else if( n>=1 ) n -= 1; 1610 if( x>60 ) return (u64)LARGEST_INT64; 1611 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1612 } 1613 1614 /* 1615 ** Add a new name/number pair to a VList. This might require that the 1616 ** VList object be reallocated, so return the new VList. If an OOM 1617 ** error occurs, the original VList returned and the 1618 ** db->mallocFailed flag is set. 1619 ** 1620 ** A VList is really just an array of integers. To destroy a VList, 1621 ** simply pass it to sqlite3DbFree(). 1622 ** 1623 ** The first integer is the number of integers allocated for the whole 1624 ** VList. The second integer is the number of integers actually used. 1625 ** Each name/number pair is encoded by subsequent groups of 3 or more 1626 ** integers. 1627 ** 1628 ** Each name/number pair starts with two integers which are the numeric 1629 ** value for the pair and the size of the name/number pair, respectively. 1630 ** The text name overlays one or more following integers. The text name 1631 ** is always zero-terminated. 1632 ** 1633 ** Conceptually: 1634 ** 1635 ** struct VList { 1636 ** int nAlloc; // Number of allocated slots 1637 ** int nUsed; // Number of used slots 1638 ** struct VListEntry { 1639 ** int iValue; // Value for this entry 1640 ** int nSlot; // Slots used by this entry 1641 ** // ... variable name goes here 1642 ** } a[0]; 1643 ** } 1644 ** 1645 ** During code generation, pointers to the variable names within the 1646 ** VList are taken. When that happens, nAlloc is set to zero as an 1647 ** indication that the VList may never again be enlarged, since the 1648 ** accompanying realloc() would invalidate the pointers. 1649 */ 1650 VList *sqlite3VListAdd( 1651 sqlite3 *db, /* The database connection used for malloc() */ 1652 VList *pIn, /* The input VList. Might be NULL */ 1653 const char *zName, /* Name of symbol to add */ 1654 int nName, /* Bytes of text in zName */ 1655 int iVal /* Value to associate with zName */ 1656 ){ 1657 int nInt; /* number of sizeof(int) objects needed for zName */ 1658 char *z; /* Pointer to where zName will be stored */ 1659 int i; /* Index in pIn[] where zName is stored */ 1660 1661 nInt = nName/4 + 3; 1662 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1663 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1664 /* Enlarge the allocation */ 1665 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1666 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1667 if( pOut==0 ) return pIn; 1668 if( pIn==0 ) pOut[1] = 2; 1669 pIn = pOut; 1670 pIn[0] = nAlloc; 1671 } 1672 i = pIn[1]; 1673 pIn[i] = iVal; 1674 pIn[i+1] = nInt; 1675 z = (char*)&pIn[i+2]; 1676 pIn[1] = i+nInt; 1677 assert( pIn[1]<=pIn[0] ); 1678 memcpy(z, zName, nName); 1679 z[nName] = 0; 1680 return pIn; 1681 } 1682 1683 /* 1684 ** Return a pointer to the name of a variable in the given VList that 1685 ** has the value iVal. Or return a NULL if there is no such variable in 1686 ** the list 1687 */ 1688 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1689 int i, mx; 1690 if( pIn==0 ) return 0; 1691 mx = pIn[1]; 1692 i = 2; 1693 do{ 1694 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1695 i += pIn[i+1]; 1696 }while( i<mx ); 1697 return 0; 1698 } 1699 1700 /* 1701 ** Return the number of the variable named zName, if it is in VList. 1702 ** or return 0 if there is no such variable. 1703 */ 1704 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1705 int i, mx; 1706 if( pIn==0 ) return 0; 1707 mx = pIn[1]; 1708 i = 2; 1709 do{ 1710 const char *z = (const char*)&pIn[i+2]; 1711 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1712 i += pIn[i+1]; 1713 }while( i<mx ); 1714 return 0; 1715 } 1716