xref: /sqlite-3.40.0/src/util.c (revision 4c8404e5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
23 
24 /*
25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
26 ** or to bypass normal error detection during testing in order to let
27 ** execute proceed futher downstream.
28 **
29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0).  The
30 ** sqlite3FaultSim() function only returns non-zero during testing.
31 **
32 ** During testing, if the test harness has set a fault-sim callback using
33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
34 ** each call to sqlite3FaultSim() is relayed to that application-supplied
35 ** callback and the integer return value form the application-supplied
36 ** callback is returned by sqlite3FaultSim().
37 **
38 ** The integer argument to sqlite3FaultSim() is a code to identify which
39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
40 ** should have a unique code.  To prevent legacy testing applications from
41 ** breaking, the codes should not be changed or reused.
42 */
43 #ifndef SQLITE_UNTESTABLE
44 int sqlite3FaultSim(int iTest){
45   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
46   return xCallback ? xCallback(iTest) : SQLITE_OK;
47 }
48 #endif
49 
50 #ifndef SQLITE_OMIT_FLOATING_POINT
51 /*
52 ** Return true if the floating point value is Not a Number (NaN).
53 **
54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
55 ** Otherwise, we have our own implementation that works on most systems.
56 */
57 int sqlite3IsNaN(double x){
58   int rc;   /* The value return */
59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
60   u64 y;
61   memcpy(&y,&x,sizeof(y));
62   rc = IsNaN(y);
63 #else
64   rc = isnan(x);
65 #endif /* HAVE_ISNAN */
66   testcase( rc );
67   return rc;
68 }
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
70 
71 /*
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
74 **
75 ** The value returned will never be negative.  Nor will it ever be greater
76 ** than the actual length of the string.  For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
78 */
79 int sqlite3Strlen30(const char *z){
80   if( z==0 ) return 0;
81   return 0x3fffffff & (int)strlen(z);
82 }
83 
84 /*
85 ** Return the declared type of a column.  Or return zDflt if the column
86 ** has no declared type.
87 **
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
90 */
91 char *sqlite3ColumnType(Column *pCol, char *zDflt){
92   if( pCol->colFlags & COLFLAG_HASTYPE ){
93     return pCol->zCnName + strlen(pCol->zCnName) + 1;
94   }else if( pCol->eCType ){
95     assert( pCol->eCType<=SQLITE_N_STDTYPE );
96     return (char*)sqlite3StdType[pCol->eCType-1];
97   }else{
98     return zDflt;
99   }
100 }
101 
102 /*
103 ** Helper function for sqlite3Error() - called rarely.  Broken out into
104 ** a separate routine to avoid unnecessary register saves on entry to
105 ** sqlite3Error().
106 */
107 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
108   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
109   sqlite3SystemError(db, err_code);
110 }
111 
112 /*
113 ** Set the current error code to err_code and clear any prior error message.
114 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
115 ** that would be appropriate.
116 */
117 void sqlite3Error(sqlite3 *db, int err_code){
118   assert( db!=0 );
119   db->errCode = err_code;
120   if( err_code || db->pErr ){
121     sqlite3ErrorFinish(db, err_code);
122   }else{
123     db->errByteOffset = -1;
124   }
125 }
126 
127 /*
128 ** The equivalent of sqlite3Error(db, SQLITE_OK).  Clear the error state
129 ** and error message.
130 */
131 void sqlite3ErrorClear(sqlite3 *db){
132   assert( db!=0 );
133   db->errCode = SQLITE_OK;
134   db->errByteOffset = -1;
135   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
136 }
137 
138 /*
139 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
140 ** to do based on the SQLite error code in rc.
141 */
142 void sqlite3SystemError(sqlite3 *db, int rc){
143   if( rc==SQLITE_IOERR_NOMEM ) return;
144   rc &= 0xff;
145   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
146     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
147   }
148 }
149 
150 /*
151 ** Set the most recent error code and error string for the sqlite
152 ** handle "db". The error code is set to "err_code".
153 **
154 ** If it is not NULL, string zFormat specifies the format of the
155 ** error string.  zFormat and any string tokens that follow it are
156 ** assumed to be encoded in UTF-8.
157 **
158 ** To clear the most recent error for sqlite handle "db", sqlite3Error
159 ** should be called with err_code set to SQLITE_OK and zFormat set
160 ** to NULL.
161 */
162 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
163   assert( db!=0 );
164   db->errCode = err_code;
165   sqlite3SystemError(db, err_code);
166   if( zFormat==0 ){
167     sqlite3Error(db, err_code);
168   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
169     char *z;
170     va_list ap;
171     va_start(ap, zFormat);
172     z = sqlite3VMPrintf(db, zFormat, ap);
173     va_end(ap);
174     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
175   }
176 }
177 
178 /*
179 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
180 **
181 ** This function should be used to report any error that occurs while
182 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
183 ** last thing the sqlite3_prepare() function does is copy the error
184 ** stored by this function into the database handle using sqlite3Error().
185 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
186 ** during statement execution (sqlite3_step() etc.).
187 */
188 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
189   char *zMsg;
190   va_list ap;
191   sqlite3 *db = pParse->db;
192   assert( db!=0 );
193   assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
194   db->errByteOffset = -2;
195   va_start(ap, zFormat);
196   zMsg = sqlite3VMPrintf(db, zFormat, ap);
197   va_end(ap);
198   if( db->errByteOffset<-1 ) db->errByteOffset = -1;
199   if( db->suppressErr ){
200     sqlite3DbFree(db, zMsg);
201     if( db->mallocFailed ){
202       pParse->nErr++;
203       pParse->rc = SQLITE_NOMEM;
204     }
205   }else{
206     pParse->nErr++;
207     sqlite3DbFree(db, pParse->zErrMsg);
208     pParse->zErrMsg = zMsg;
209     pParse->rc = SQLITE_ERROR;
210     pParse->pWith = 0;
211   }
212 }
213 
214 /*
215 ** If database connection db is currently parsing SQL, then transfer
216 ** error code errCode to that parser if the parser has not already
217 ** encountered some other kind of error.
218 */
219 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
220   Parse *pParse;
221   if( db==0 || (pParse = db->pParse)==0 ) return errCode;
222   pParse->rc = errCode;
223   pParse->nErr++;
224   return errCode;
225 }
226 
227 /*
228 ** Convert an SQL-style quoted string into a normal string by removing
229 ** the quote characters.  The conversion is done in-place.  If the
230 ** input does not begin with a quote character, then this routine
231 ** is a no-op.
232 **
233 ** The input string must be zero-terminated.  A new zero-terminator
234 ** is added to the dequoted string.
235 **
236 ** The return value is -1 if no dequoting occurs or the length of the
237 ** dequoted string, exclusive of the zero terminator, if dequoting does
238 ** occur.
239 **
240 ** 2002-02-14: This routine is extended to remove MS-Access style
241 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
242 ** "a-b-c".
243 */
244 void sqlite3Dequote(char *z){
245   char quote;
246   int i, j;
247   if( z==0 ) return;
248   quote = z[0];
249   if( !sqlite3Isquote(quote) ) return;
250   if( quote=='[' ) quote = ']';
251   for(i=1, j=0;; i++){
252     assert( z[i] );
253     if( z[i]==quote ){
254       if( z[i+1]==quote ){
255         z[j++] = quote;
256         i++;
257       }else{
258         break;
259       }
260     }else{
261       z[j++] = z[i];
262     }
263   }
264   z[j] = 0;
265 }
266 void sqlite3DequoteExpr(Expr *p){
267   assert( !ExprHasProperty(p, EP_IntValue) );
268   assert( sqlite3Isquote(p->u.zToken[0]) );
269   p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
270   sqlite3Dequote(p->u.zToken);
271 }
272 
273 /*
274 ** If the input token p is quoted, try to adjust the token to remove
275 ** the quotes.  This is not always possible:
276 **
277 **     "abc"     ->   abc
278 **     "ab""cd"  ->   (not possible because of the interior "")
279 **
280 ** Remove the quotes if possible.  This is a optimization.  The overall
281 ** system should still return the correct answer even if this routine
282 ** is always a no-op.
283 */
284 void sqlite3DequoteToken(Token *p){
285   unsigned int i;
286   if( p->n<2 ) return;
287   if( !sqlite3Isquote(p->z[0]) ) return;
288   for(i=1; i<p->n-1; i++){
289     if( sqlite3Isquote(p->z[i]) ) return;
290   }
291   p->n -= 2;
292   p->z++;
293 }
294 
295 /*
296 ** Generate a Token object from a string
297 */
298 void sqlite3TokenInit(Token *p, char *z){
299   p->z = z;
300   p->n = sqlite3Strlen30(z);
301 }
302 
303 /* Convenient short-hand */
304 #define UpperToLower sqlite3UpperToLower
305 
306 /*
307 ** Some systems have stricmp().  Others have strcasecmp().  Because
308 ** there is no consistency, we will define our own.
309 **
310 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
311 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
312 ** the contents of two buffers containing UTF-8 strings in a
313 ** case-independent fashion, using the same definition of "case
314 ** independence" that SQLite uses internally when comparing identifiers.
315 */
316 int sqlite3_stricmp(const char *zLeft, const char *zRight){
317   if( zLeft==0 ){
318     return zRight ? -1 : 0;
319   }else if( zRight==0 ){
320     return 1;
321   }
322   return sqlite3StrICmp(zLeft, zRight);
323 }
324 int sqlite3StrICmp(const char *zLeft, const char *zRight){
325   unsigned char *a, *b;
326   int c, x;
327   a = (unsigned char *)zLeft;
328   b = (unsigned char *)zRight;
329   for(;;){
330     c = *a;
331     x = *b;
332     if( c==x ){
333       if( c==0 ) break;
334     }else{
335       c = (int)UpperToLower[c] - (int)UpperToLower[x];
336       if( c ) break;
337     }
338     a++;
339     b++;
340   }
341   return c;
342 }
343 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
344   register unsigned char *a, *b;
345   if( zLeft==0 ){
346     return zRight ? -1 : 0;
347   }else if( zRight==0 ){
348     return 1;
349   }
350   a = (unsigned char *)zLeft;
351   b = (unsigned char *)zRight;
352   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
353   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
354 }
355 
356 /*
357 ** Compute an 8-bit hash on a string that is insensitive to case differences
358 */
359 u8 sqlite3StrIHash(const char *z){
360   u8 h = 0;
361   if( z==0 ) return 0;
362   while( z[0] ){
363     h += UpperToLower[(unsigned char)z[0]];
364     z++;
365   }
366   return h;
367 }
368 
369 /*
370 ** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
371 ** E==2 results in 100.  E==50 results in 1.0e50.
372 **
373 ** This routine only works for values of E between 1 and 341.
374 */
375 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
376 #if defined(_MSC_VER)
377   static const LONGDOUBLE_TYPE x[] = {
378     1.0e+001L,
379     1.0e+002L,
380     1.0e+004L,
381     1.0e+008L,
382     1.0e+016L,
383     1.0e+032L,
384     1.0e+064L,
385     1.0e+128L,
386     1.0e+256L
387   };
388   LONGDOUBLE_TYPE r = 1.0;
389   int i;
390   assert( E>=0 && E<=307 );
391   for(i=0; E!=0; i++, E >>=1){
392     if( E & 1 ) r *= x[i];
393   }
394   return r;
395 #else
396   LONGDOUBLE_TYPE x = 10.0;
397   LONGDOUBLE_TYPE r = 1.0;
398   while(1){
399     if( E & 1 ) r *= x;
400     E >>= 1;
401     if( E==0 ) break;
402     x *= x;
403   }
404   return r;
405 #endif
406 }
407 
408 /*
409 ** The string z[] is an text representation of a real number.
410 ** Convert this string to a double and write it into *pResult.
411 **
412 ** The string z[] is length bytes in length (bytes, not characters) and
413 ** uses the encoding enc.  The string is not necessarily zero-terminated.
414 **
415 ** Return TRUE if the result is a valid real number (or integer) and FALSE
416 ** if the string is empty or contains extraneous text.  More specifically
417 ** return
418 **      1          =>  The input string is a pure integer
419 **      2 or more  =>  The input has a decimal point or eNNN clause
420 **      0 or less  =>  The input string is not a valid number
421 **     -1          =>  Not a valid number, but has a valid prefix which
422 **                     includes a decimal point and/or an eNNN clause
423 **
424 ** Valid numbers are in one of these formats:
425 **
426 **    [+-]digits[E[+-]digits]
427 **    [+-]digits.[digits][E[+-]digits]
428 **    [+-].digits[E[+-]digits]
429 **
430 ** Leading and trailing whitespace is ignored for the purpose of determining
431 ** validity.
432 **
433 ** If some prefix of the input string is a valid number, this routine
434 ** returns FALSE but it still converts the prefix and writes the result
435 ** into *pResult.
436 */
437 #if defined(_MSC_VER)
438 #pragma warning(disable : 4756)
439 #endif
440 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
441 #ifndef SQLITE_OMIT_FLOATING_POINT
442   int incr;
443   const char *zEnd;
444   /* sign * significand * (10 ^ (esign * exponent)) */
445   int sign = 1;    /* sign of significand */
446   i64 s = 0;       /* significand */
447   int d = 0;       /* adjust exponent for shifting decimal point */
448   int esign = 1;   /* sign of exponent */
449   int e = 0;       /* exponent */
450   int eValid = 1;  /* True exponent is either not used or is well-formed */
451   double result;
452   int nDigit = 0;  /* Number of digits processed */
453   int eType = 1;   /* 1: pure integer,  2+: fractional  -1 or less: bad UTF16 */
454 
455   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
456   *pResult = 0.0;   /* Default return value, in case of an error */
457   if( length==0 ) return 0;
458 
459   if( enc==SQLITE_UTF8 ){
460     incr = 1;
461     zEnd = z + length;
462   }else{
463     int i;
464     incr = 2;
465     length &= ~1;
466     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
467     testcase( enc==SQLITE_UTF16LE );
468     testcase( enc==SQLITE_UTF16BE );
469     for(i=3-enc; i<length && z[i]==0; i+=2){}
470     if( i<length ) eType = -100;
471     zEnd = &z[i^1];
472     z += (enc&1);
473   }
474 
475   /* skip leading spaces */
476   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
477   if( z>=zEnd ) return 0;
478 
479   /* get sign of significand */
480   if( *z=='-' ){
481     sign = -1;
482     z+=incr;
483   }else if( *z=='+' ){
484     z+=incr;
485   }
486 
487   /* copy max significant digits to significand */
488   while( z<zEnd && sqlite3Isdigit(*z) ){
489     s = s*10 + (*z - '0');
490     z+=incr; nDigit++;
491     if( s>=((LARGEST_INT64-9)/10) ){
492       /* skip non-significant significand digits
493       ** (increase exponent by d to shift decimal left) */
494       while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
495     }
496   }
497   if( z>=zEnd ) goto do_atof_calc;
498 
499   /* if decimal point is present */
500   if( *z=='.' ){
501     z+=incr;
502     eType++;
503     /* copy digits from after decimal to significand
504     ** (decrease exponent by d to shift decimal right) */
505     while( z<zEnd && sqlite3Isdigit(*z) ){
506       if( s<((LARGEST_INT64-9)/10) ){
507         s = s*10 + (*z - '0');
508         d--;
509         nDigit++;
510       }
511       z+=incr;
512     }
513   }
514   if( z>=zEnd ) goto do_atof_calc;
515 
516   /* if exponent is present */
517   if( *z=='e' || *z=='E' ){
518     z+=incr;
519     eValid = 0;
520     eType++;
521 
522     /* This branch is needed to avoid a (harmless) buffer overread.  The
523     ** special comment alerts the mutation tester that the correct answer
524     ** is obtained even if the branch is omitted */
525     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
526 
527     /* get sign of exponent */
528     if( *z=='-' ){
529       esign = -1;
530       z+=incr;
531     }else if( *z=='+' ){
532       z+=incr;
533     }
534     /* copy digits to exponent */
535     while( z<zEnd && sqlite3Isdigit(*z) ){
536       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
537       z+=incr;
538       eValid = 1;
539     }
540   }
541 
542   /* skip trailing spaces */
543   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
544 
545 do_atof_calc:
546   /* adjust exponent by d, and update sign */
547   e = (e*esign) + d;
548   if( e<0 ) {
549     esign = -1;
550     e *= -1;
551   } else {
552     esign = 1;
553   }
554 
555   if( s==0 ) {
556     /* In the IEEE 754 standard, zero is signed. */
557     result = sign<0 ? -(double)0 : (double)0;
558   } else {
559     /* Attempt to reduce exponent.
560     **
561     ** Branches that are not required for the correct answer but which only
562     ** help to obtain the correct answer faster are marked with special
563     ** comments, as a hint to the mutation tester.
564     */
565     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
566       if( esign>0 ){
567         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
568         s *= 10;
569       }else{
570         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
571         s /= 10;
572       }
573       e--;
574     }
575 
576     /* adjust the sign of significand */
577     s = sign<0 ? -s : s;
578 
579     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
580       result = (double)s;
581     }else{
582       /* attempt to handle extremely small/large numbers better */
583       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
584         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
585           LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
586           if( esign<0 ){
587             result = s / scale;
588             result /= 1.0e+308;
589           }else{
590             result = s * scale;
591             result *= 1.0e+308;
592           }
593         }else{ assert( e>=342 );
594           if( esign<0 ){
595             result = 0.0*s;
596           }else{
597 #ifdef INFINITY
598             result = INFINITY*s;
599 #else
600             result = 1e308*1e308*s;  /* Infinity */
601 #endif
602           }
603         }
604       }else{
605         LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
606         if( esign<0 ){
607           result = s / scale;
608         }else{
609           result = s * scale;
610         }
611       }
612     }
613   }
614 
615   /* store the result */
616   *pResult = result;
617 
618   /* return true if number and no extra non-whitespace chracters after */
619   if( z==zEnd && nDigit>0 && eValid && eType>0 ){
620     return eType;
621   }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
622     return -1;
623   }else{
624     return 0;
625   }
626 #else
627   return !sqlite3Atoi64(z, pResult, length, enc);
628 #endif /* SQLITE_OMIT_FLOATING_POINT */
629 }
630 #if defined(_MSC_VER)
631 #pragma warning(default : 4756)
632 #endif
633 
634 /*
635 ** Render an signed 64-bit integer as text.  Store the result in zOut[].
636 **
637 ** The caller must ensure that zOut[] is at least 21 bytes in size.
638 */
639 void sqlite3Int64ToText(i64 v, char *zOut){
640   int i;
641   u64 x;
642   char zTemp[22];
643   if( v<0 ){
644     x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
645   }else{
646     x = v;
647   }
648   i = sizeof(zTemp)-2;
649   zTemp[sizeof(zTemp)-1] = 0;
650   do{
651     zTemp[i--] = (x%10) + '0';
652     x = x/10;
653   }while( x );
654   if( v<0 ) zTemp[i--] = '-';
655   memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
656 }
657 
658 /*
659 ** Compare the 19-character string zNum against the text representation
660 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
661 ** if zNum is less than, equal to, or greater than the string.
662 ** Note that zNum must contain exactly 19 characters.
663 **
664 ** Unlike memcmp() this routine is guaranteed to return the difference
665 ** in the values of the last digit if the only difference is in the
666 ** last digit.  So, for example,
667 **
668 **      compare2pow63("9223372036854775800", 1)
669 **
670 ** will return -8.
671 */
672 static int compare2pow63(const char *zNum, int incr){
673   int c = 0;
674   int i;
675                     /* 012345678901234567 */
676   const char *pow63 = "922337203685477580";
677   for(i=0; c==0 && i<18; i++){
678     c = (zNum[i*incr]-pow63[i])*10;
679   }
680   if( c==0 ){
681     c = zNum[18*incr] - '8';
682     testcase( c==(-1) );
683     testcase( c==0 );
684     testcase( c==(+1) );
685   }
686   return c;
687 }
688 
689 /*
690 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
691 ** routine does *not* accept hexadecimal notation.
692 **
693 ** Returns:
694 **
695 **    -1    Not even a prefix of the input text looks like an integer
696 **     0    Successful transformation.  Fits in a 64-bit signed integer.
697 **     1    Excess non-space text after the integer value
698 **     2    Integer too large for a 64-bit signed integer or is malformed
699 **     3    Special case of 9223372036854775808
700 **
701 ** length is the number of bytes in the string (bytes, not characters).
702 ** The string is not necessarily zero-terminated.  The encoding is
703 ** given by enc.
704 */
705 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
706   int incr;
707   u64 u = 0;
708   int neg = 0; /* assume positive */
709   int i;
710   int c = 0;
711   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
712   int rc;          /* Baseline return code */
713   const char *zStart;
714   const char *zEnd = zNum + length;
715   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
716   if( enc==SQLITE_UTF8 ){
717     incr = 1;
718   }else{
719     incr = 2;
720     length &= ~1;
721     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
722     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
723     nonNum = i<length;
724     zEnd = &zNum[i^1];
725     zNum += (enc&1);
726   }
727   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
728   if( zNum<zEnd ){
729     if( *zNum=='-' ){
730       neg = 1;
731       zNum+=incr;
732     }else if( *zNum=='+' ){
733       zNum+=incr;
734     }
735   }
736   zStart = zNum;
737   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
738   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
739     u = u*10 + c - '0';
740   }
741   testcase( i==18*incr );
742   testcase( i==19*incr );
743   testcase( i==20*incr );
744   if( u>LARGEST_INT64 ){
745     /* This test and assignment is needed only to suppress UB warnings
746     ** from clang and -fsanitize=undefined.  This test and assignment make
747     ** the code a little larger and slower, and no harm comes from omitting
748     ** them, but we must appaise the undefined-behavior pharisees. */
749     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
750   }else if( neg ){
751     *pNum = -(i64)u;
752   }else{
753     *pNum = (i64)u;
754   }
755   rc = 0;
756   if( i==0 && zStart==zNum ){    /* No digits */
757     rc = -1;
758   }else if( nonNum ){            /* UTF16 with high-order bytes non-zero */
759     rc = 1;
760   }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
761     int jj = i;
762     do{
763       if( !sqlite3Isspace(zNum[jj]) ){
764         rc = 1;          /* Extra non-space text after the integer */
765         break;
766       }
767       jj += incr;
768     }while( &zNum[jj]<zEnd );
769   }
770   if( i<19*incr ){
771     /* Less than 19 digits, so we know that it fits in 64 bits */
772     assert( u<=LARGEST_INT64 );
773     return rc;
774   }else{
775     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
776     c = i>19*incr ? 1 : compare2pow63(zNum, incr);
777     if( c<0 ){
778       /* zNum is less than 9223372036854775808 so it fits */
779       assert( u<=LARGEST_INT64 );
780       return rc;
781     }else{
782       *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
783       if( c>0 ){
784         /* zNum is greater than 9223372036854775808 so it overflows */
785         return 2;
786       }else{
787         /* zNum is exactly 9223372036854775808.  Fits if negative.  The
788         ** special case 2 overflow if positive */
789         assert( u-1==LARGEST_INT64 );
790         return neg ? rc : 3;
791       }
792     }
793   }
794 }
795 
796 /*
797 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
798 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
799 ** whereas sqlite3Atoi64() does not.
800 **
801 ** Returns:
802 **
803 **     0    Successful transformation.  Fits in a 64-bit signed integer.
804 **     1    Excess text after the integer value
805 **     2    Integer too large for a 64-bit signed integer or is malformed
806 **     3    Special case of 9223372036854775808
807 */
808 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
809 #ifndef SQLITE_OMIT_HEX_INTEGER
810   if( z[0]=='0'
811    && (z[1]=='x' || z[1]=='X')
812   ){
813     u64 u = 0;
814     int i, k;
815     for(i=2; z[i]=='0'; i++){}
816     for(k=i; sqlite3Isxdigit(z[k]); k++){
817       u = u*16 + sqlite3HexToInt(z[k]);
818     }
819     memcpy(pOut, &u, 8);
820     return (z[k]==0 && k-i<=16) ? 0 : 2;
821   }else
822 #endif /* SQLITE_OMIT_HEX_INTEGER */
823   {
824     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
825   }
826 }
827 
828 /*
829 ** If zNum represents an integer that will fit in 32-bits, then set
830 ** *pValue to that integer and return true.  Otherwise return false.
831 **
832 ** This routine accepts both decimal and hexadecimal notation for integers.
833 **
834 ** Any non-numeric characters that following zNum are ignored.
835 ** This is different from sqlite3Atoi64() which requires the
836 ** input number to be zero-terminated.
837 */
838 int sqlite3GetInt32(const char *zNum, int *pValue){
839   sqlite_int64 v = 0;
840   int i, c;
841   int neg = 0;
842   if( zNum[0]=='-' ){
843     neg = 1;
844     zNum++;
845   }else if( zNum[0]=='+' ){
846     zNum++;
847   }
848 #ifndef SQLITE_OMIT_HEX_INTEGER
849   else if( zNum[0]=='0'
850         && (zNum[1]=='x' || zNum[1]=='X')
851         && sqlite3Isxdigit(zNum[2])
852   ){
853     u32 u = 0;
854     zNum += 2;
855     while( zNum[0]=='0' ) zNum++;
856     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
857       u = u*16 + sqlite3HexToInt(zNum[i]);
858     }
859     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
860       memcpy(pValue, &u, 4);
861       return 1;
862     }else{
863       return 0;
864     }
865   }
866 #endif
867   if( !sqlite3Isdigit(zNum[0]) ) return 0;
868   while( zNum[0]=='0' ) zNum++;
869   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
870     v = v*10 + c;
871   }
872 
873   /* The longest decimal representation of a 32 bit integer is 10 digits:
874   **
875   **             1234567890
876   **     2^31 -> 2147483648
877   */
878   testcase( i==10 );
879   if( i>10 ){
880     return 0;
881   }
882   testcase( v-neg==2147483647 );
883   if( v-neg>2147483647 ){
884     return 0;
885   }
886   if( neg ){
887     v = -v;
888   }
889   *pValue = (int)v;
890   return 1;
891 }
892 
893 /*
894 ** Return a 32-bit integer value extracted from a string.  If the
895 ** string is not an integer, just return 0.
896 */
897 int sqlite3Atoi(const char *z){
898   int x = 0;
899   sqlite3GetInt32(z, &x);
900   return x;
901 }
902 
903 /*
904 ** Try to convert z into an unsigned 32-bit integer.  Return true on
905 ** success and false if there is an error.
906 **
907 ** Only decimal notation is accepted.
908 */
909 int sqlite3GetUInt32(const char *z, u32 *pI){
910   u64 v = 0;
911   int i;
912   for(i=0; sqlite3Isdigit(z[i]); i++){
913     v = v*10 + z[i] - '0';
914     if( v>4294967296LL ){ *pI = 0; return 0; }
915   }
916   if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
917   *pI = (u32)v;
918   return 1;
919 }
920 
921 /*
922 ** The variable-length integer encoding is as follows:
923 **
924 ** KEY:
925 **         A = 0xxxxxxx    7 bits of data and one flag bit
926 **         B = 1xxxxxxx    7 bits of data and one flag bit
927 **         C = xxxxxxxx    8 bits of data
928 **
929 **  7 bits - A
930 ** 14 bits - BA
931 ** 21 bits - BBA
932 ** 28 bits - BBBA
933 ** 35 bits - BBBBA
934 ** 42 bits - BBBBBA
935 ** 49 bits - BBBBBBA
936 ** 56 bits - BBBBBBBA
937 ** 64 bits - BBBBBBBBC
938 */
939 
940 /*
941 ** Write a 64-bit variable-length integer to memory starting at p[0].
942 ** The length of data write will be between 1 and 9 bytes.  The number
943 ** of bytes written is returned.
944 **
945 ** A variable-length integer consists of the lower 7 bits of each byte
946 ** for all bytes that have the 8th bit set and one byte with the 8th
947 ** bit clear.  Except, if we get to the 9th byte, it stores the full
948 ** 8 bits and is the last byte.
949 */
950 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
951   int i, j, n;
952   u8 buf[10];
953   if( v & (((u64)0xff000000)<<32) ){
954     p[8] = (u8)v;
955     v >>= 8;
956     for(i=7; i>=0; i--){
957       p[i] = (u8)((v & 0x7f) | 0x80);
958       v >>= 7;
959     }
960     return 9;
961   }
962   n = 0;
963   do{
964     buf[n++] = (u8)((v & 0x7f) | 0x80);
965     v >>= 7;
966   }while( v!=0 );
967   buf[0] &= 0x7f;
968   assert( n<=9 );
969   for(i=0, j=n-1; j>=0; j--, i++){
970     p[i] = buf[j];
971   }
972   return n;
973 }
974 int sqlite3PutVarint(unsigned char *p, u64 v){
975   if( v<=0x7f ){
976     p[0] = v&0x7f;
977     return 1;
978   }
979   if( v<=0x3fff ){
980     p[0] = ((v>>7)&0x7f)|0x80;
981     p[1] = v&0x7f;
982     return 2;
983   }
984   return putVarint64(p,v);
985 }
986 
987 /*
988 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
989 ** are defined here rather than simply putting the constant expressions
990 ** inline in order to work around bugs in the RVT compiler.
991 **
992 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
993 **
994 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
995 */
996 #define SLOT_2_0     0x001fc07f
997 #define SLOT_4_2_0   0xf01fc07f
998 
999 
1000 /*
1001 ** Read a 64-bit variable-length integer from memory starting at p[0].
1002 ** Return the number of bytes read.  The value is stored in *v.
1003 */
1004 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
1005   u32 a,b,s;
1006 
1007   if( ((signed char*)p)[0]>=0 ){
1008     *v = *p;
1009     return 1;
1010   }
1011   if( ((signed char*)p)[1]>=0 ){
1012     *v = ((u32)(p[0]&0x7f)<<7) | p[1];
1013     return 2;
1014   }
1015 
1016   /* Verify that constants are precomputed correctly */
1017   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
1018   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
1019 
1020   a = ((u32)p[0])<<14;
1021   b = p[1];
1022   p += 2;
1023   a |= *p;
1024   /* a: p0<<14 | p2 (unmasked) */
1025   if (!(a&0x80))
1026   {
1027     a &= SLOT_2_0;
1028     b &= 0x7f;
1029     b = b<<7;
1030     a |= b;
1031     *v = a;
1032     return 3;
1033   }
1034 
1035   /* CSE1 from below */
1036   a &= SLOT_2_0;
1037   p++;
1038   b = b<<14;
1039   b |= *p;
1040   /* b: p1<<14 | p3 (unmasked) */
1041   if (!(b&0x80))
1042   {
1043     b &= SLOT_2_0;
1044     /* moved CSE1 up */
1045     /* a &= (0x7f<<14)|(0x7f); */
1046     a = a<<7;
1047     a |= b;
1048     *v = a;
1049     return 4;
1050   }
1051 
1052   /* a: p0<<14 | p2 (masked) */
1053   /* b: p1<<14 | p3 (unmasked) */
1054   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1055   /* moved CSE1 up */
1056   /* a &= (0x7f<<14)|(0x7f); */
1057   b &= SLOT_2_0;
1058   s = a;
1059   /* s: p0<<14 | p2 (masked) */
1060 
1061   p++;
1062   a = a<<14;
1063   a |= *p;
1064   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1065   if (!(a&0x80))
1066   {
1067     /* we can skip these cause they were (effectively) done above
1068     ** while calculating s */
1069     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1070     /* b &= (0x7f<<14)|(0x7f); */
1071     b = b<<7;
1072     a |= b;
1073     s = s>>18;
1074     *v = ((u64)s)<<32 | a;
1075     return 5;
1076   }
1077 
1078   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1079   s = s<<7;
1080   s |= b;
1081   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1082 
1083   p++;
1084   b = b<<14;
1085   b |= *p;
1086   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1087   if (!(b&0x80))
1088   {
1089     /* we can skip this cause it was (effectively) done above in calc'ing s */
1090     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1091     a &= SLOT_2_0;
1092     a = a<<7;
1093     a |= b;
1094     s = s>>18;
1095     *v = ((u64)s)<<32 | a;
1096     return 6;
1097   }
1098 
1099   p++;
1100   a = a<<14;
1101   a |= *p;
1102   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1103   if (!(a&0x80))
1104   {
1105     a &= SLOT_4_2_0;
1106     b &= SLOT_2_0;
1107     b = b<<7;
1108     a |= b;
1109     s = s>>11;
1110     *v = ((u64)s)<<32 | a;
1111     return 7;
1112   }
1113 
1114   /* CSE2 from below */
1115   a &= SLOT_2_0;
1116   p++;
1117   b = b<<14;
1118   b |= *p;
1119   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1120   if (!(b&0x80))
1121   {
1122     b &= SLOT_4_2_0;
1123     /* moved CSE2 up */
1124     /* a &= (0x7f<<14)|(0x7f); */
1125     a = a<<7;
1126     a |= b;
1127     s = s>>4;
1128     *v = ((u64)s)<<32 | a;
1129     return 8;
1130   }
1131 
1132   p++;
1133   a = a<<15;
1134   a |= *p;
1135   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1136 
1137   /* moved CSE2 up */
1138   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1139   b &= SLOT_2_0;
1140   b = b<<8;
1141   a |= b;
1142 
1143   s = s<<4;
1144   b = p[-4];
1145   b &= 0x7f;
1146   b = b>>3;
1147   s |= b;
1148 
1149   *v = ((u64)s)<<32 | a;
1150 
1151   return 9;
1152 }
1153 
1154 /*
1155 ** Read a 32-bit variable-length integer from memory starting at p[0].
1156 ** Return the number of bytes read.  The value is stored in *v.
1157 **
1158 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1159 ** integer, then set *v to 0xffffffff.
1160 **
1161 ** A MACRO version, getVarint32, is provided which inlines the
1162 ** single-byte case.  All code should use the MACRO version as
1163 ** this function assumes the single-byte case has already been handled.
1164 */
1165 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1166   u32 a,b;
1167 
1168   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1169   ** by the getVarin32() macro */
1170   a = *p;
1171   /* a: p0 (unmasked) */
1172 #ifndef getVarint32
1173   if (!(a&0x80))
1174   {
1175     /* Values between 0 and 127 */
1176     *v = a;
1177     return 1;
1178   }
1179 #endif
1180 
1181   /* The 2-byte case */
1182   p++;
1183   b = *p;
1184   /* b: p1 (unmasked) */
1185   if (!(b&0x80))
1186   {
1187     /* Values between 128 and 16383 */
1188     a &= 0x7f;
1189     a = a<<7;
1190     *v = a | b;
1191     return 2;
1192   }
1193 
1194   /* The 3-byte case */
1195   p++;
1196   a = a<<14;
1197   a |= *p;
1198   /* a: p0<<14 | p2 (unmasked) */
1199   if (!(a&0x80))
1200   {
1201     /* Values between 16384 and 2097151 */
1202     a &= (0x7f<<14)|(0x7f);
1203     b &= 0x7f;
1204     b = b<<7;
1205     *v = a | b;
1206     return 3;
1207   }
1208 
1209   /* A 32-bit varint is used to store size information in btrees.
1210   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1211   ** A 3-byte varint is sufficient, for example, to record the size
1212   ** of a 1048569-byte BLOB or string.
1213   **
1214   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1215   ** rare larger cases can be handled by the slower 64-bit varint
1216   ** routine.
1217   */
1218 #if 1
1219   {
1220     u64 v64;
1221     u8 n;
1222 
1223     n = sqlite3GetVarint(p-2, &v64);
1224     assert( n>3 && n<=9 );
1225     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1226       *v = 0xffffffff;
1227     }else{
1228       *v = (u32)v64;
1229     }
1230     return n;
1231   }
1232 
1233 #else
1234   /* For following code (kept for historical record only) shows an
1235   ** unrolling for the 3- and 4-byte varint cases.  This code is
1236   ** slightly faster, but it is also larger and much harder to test.
1237   */
1238   p++;
1239   b = b<<14;
1240   b |= *p;
1241   /* b: p1<<14 | p3 (unmasked) */
1242   if (!(b&0x80))
1243   {
1244     /* Values between 2097152 and 268435455 */
1245     b &= (0x7f<<14)|(0x7f);
1246     a &= (0x7f<<14)|(0x7f);
1247     a = a<<7;
1248     *v = a | b;
1249     return 4;
1250   }
1251 
1252   p++;
1253   a = a<<14;
1254   a |= *p;
1255   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1256   if (!(a&0x80))
1257   {
1258     /* Values  between 268435456 and 34359738367 */
1259     a &= SLOT_4_2_0;
1260     b &= SLOT_4_2_0;
1261     b = b<<7;
1262     *v = a | b;
1263     return 5;
1264   }
1265 
1266   /* We can only reach this point when reading a corrupt database
1267   ** file.  In that case we are not in any hurry.  Use the (relatively
1268   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1269   ** value. */
1270   {
1271     u64 v64;
1272     u8 n;
1273 
1274     p -= 4;
1275     n = sqlite3GetVarint(p, &v64);
1276     assert( n>5 && n<=9 );
1277     *v = (u32)v64;
1278     return n;
1279   }
1280 #endif
1281 }
1282 
1283 /*
1284 ** Return the number of bytes that will be needed to store the given
1285 ** 64-bit integer.
1286 */
1287 int sqlite3VarintLen(u64 v){
1288   int i;
1289   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1290   return i;
1291 }
1292 
1293 
1294 /*
1295 ** Read or write a four-byte big-endian integer value.
1296 */
1297 u32 sqlite3Get4byte(const u8 *p){
1298 #if SQLITE_BYTEORDER==4321
1299   u32 x;
1300   memcpy(&x,p,4);
1301   return x;
1302 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1303   u32 x;
1304   memcpy(&x,p,4);
1305   return __builtin_bswap32(x);
1306 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1307   u32 x;
1308   memcpy(&x,p,4);
1309   return _byteswap_ulong(x);
1310 #else
1311   testcase( p[0]&0x80 );
1312   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1313 #endif
1314 }
1315 void sqlite3Put4byte(unsigned char *p, u32 v){
1316 #if SQLITE_BYTEORDER==4321
1317   memcpy(p,&v,4);
1318 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1319   u32 x = __builtin_bswap32(v);
1320   memcpy(p,&x,4);
1321 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1322   u32 x = _byteswap_ulong(v);
1323   memcpy(p,&x,4);
1324 #else
1325   p[0] = (u8)(v>>24);
1326   p[1] = (u8)(v>>16);
1327   p[2] = (u8)(v>>8);
1328   p[3] = (u8)v;
1329 #endif
1330 }
1331 
1332 
1333 
1334 /*
1335 ** Translate a single byte of Hex into an integer.
1336 ** This routine only works if h really is a valid hexadecimal
1337 ** character:  0..9a..fA..F
1338 */
1339 u8 sqlite3HexToInt(int h){
1340   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1341 #ifdef SQLITE_ASCII
1342   h += 9*(1&(h>>6));
1343 #endif
1344 #ifdef SQLITE_EBCDIC
1345   h += 9*(1&~(h>>4));
1346 #endif
1347   return (u8)(h & 0xf);
1348 }
1349 
1350 #if !defined(SQLITE_OMIT_BLOB_LITERAL)
1351 /*
1352 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1353 ** value.  Return a pointer to its binary value.  Space to hold the
1354 ** binary value has been obtained from malloc and must be freed by
1355 ** the calling routine.
1356 */
1357 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1358   char *zBlob;
1359   int i;
1360 
1361   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1362   n--;
1363   if( zBlob ){
1364     for(i=0; i<n; i+=2){
1365       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1366     }
1367     zBlob[i/2] = 0;
1368   }
1369   return zBlob;
1370 }
1371 #endif /* !SQLITE_OMIT_BLOB_LITERAL */
1372 
1373 /*
1374 ** Log an error that is an API call on a connection pointer that should
1375 ** not have been used.  The "type" of connection pointer is given as the
1376 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1377 */
1378 static void logBadConnection(const char *zType){
1379   sqlite3_log(SQLITE_MISUSE,
1380      "API call with %s database connection pointer",
1381      zType
1382   );
1383 }
1384 
1385 /*
1386 ** Check to make sure we have a valid db pointer.  This test is not
1387 ** foolproof but it does provide some measure of protection against
1388 ** misuse of the interface such as passing in db pointers that are
1389 ** NULL or which have been previously closed.  If this routine returns
1390 ** 1 it means that the db pointer is valid and 0 if it should not be
1391 ** dereferenced for any reason.  The calling function should invoke
1392 ** SQLITE_MISUSE immediately.
1393 **
1394 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1395 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1396 ** open properly and is not fit for general use but which can be
1397 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1398 */
1399 int sqlite3SafetyCheckOk(sqlite3 *db){
1400   u8 eOpenState;
1401   if( db==0 ){
1402     logBadConnection("NULL");
1403     return 0;
1404   }
1405   eOpenState = db->eOpenState;
1406   if( eOpenState!=SQLITE_STATE_OPEN ){
1407     if( sqlite3SafetyCheckSickOrOk(db) ){
1408       testcase( sqlite3GlobalConfig.xLog!=0 );
1409       logBadConnection("unopened");
1410     }
1411     return 0;
1412   }else{
1413     return 1;
1414   }
1415 }
1416 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1417   u8 eOpenState;
1418   eOpenState = db->eOpenState;
1419   if( eOpenState!=SQLITE_STATE_SICK &&
1420       eOpenState!=SQLITE_STATE_OPEN &&
1421       eOpenState!=SQLITE_STATE_BUSY ){
1422     testcase( sqlite3GlobalConfig.xLog!=0 );
1423     logBadConnection("invalid");
1424     return 0;
1425   }else{
1426     return 1;
1427   }
1428 }
1429 
1430 /*
1431 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1432 ** the other 64-bit signed integer at *pA and store the result in *pA.
1433 ** Return 0 on success.  Or if the operation would have resulted in an
1434 ** overflow, leave *pA unchanged and return 1.
1435 */
1436 int sqlite3AddInt64(i64 *pA, i64 iB){
1437 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1438   return __builtin_add_overflow(*pA, iB, pA);
1439 #else
1440   i64 iA = *pA;
1441   testcase( iA==0 ); testcase( iA==1 );
1442   testcase( iB==-1 ); testcase( iB==0 );
1443   if( iB>=0 ){
1444     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1445     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1446     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1447   }else{
1448     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1449     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1450     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1451   }
1452   *pA += iB;
1453   return 0;
1454 #endif
1455 }
1456 int sqlite3SubInt64(i64 *pA, i64 iB){
1457 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1458   return __builtin_sub_overflow(*pA, iB, pA);
1459 #else
1460   testcase( iB==SMALLEST_INT64+1 );
1461   if( iB==SMALLEST_INT64 ){
1462     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1463     if( (*pA)>=0 ) return 1;
1464     *pA -= iB;
1465     return 0;
1466   }else{
1467     return sqlite3AddInt64(pA, -iB);
1468   }
1469 #endif
1470 }
1471 int sqlite3MulInt64(i64 *pA, i64 iB){
1472 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1473   return __builtin_mul_overflow(*pA, iB, pA);
1474 #else
1475   i64 iA = *pA;
1476   if( iB>0 ){
1477     if( iA>LARGEST_INT64/iB ) return 1;
1478     if( iA<SMALLEST_INT64/iB ) return 1;
1479   }else if( iB<0 ){
1480     if( iA>0 ){
1481       if( iB<SMALLEST_INT64/iA ) return 1;
1482     }else if( iA<0 ){
1483       if( iB==SMALLEST_INT64 ) return 1;
1484       if( iA==SMALLEST_INT64 ) return 1;
1485       if( -iA>LARGEST_INT64/-iB ) return 1;
1486     }
1487   }
1488   *pA = iA*iB;
1489   return 0;
1490 #endif
1491 }
1492 
1493 /*
1494 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1495 ** if the integer has a value of -2147483648, return +2147483647
1496 */
1497 int sqlite3AbsInt32(int x){
1498   if( x>=0 ) return x;
1499   if( x==(int)0x80000000 ) return 0x7fffffff;
1500   return -x;
1501 }
1502 
1503 #ifdef SQLITE_ENABLE_8_3_NAMES
1504 /*
1505 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1506 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1507 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1508 ** three characters, then shorten the suffix on z[] to be the last three
1509 ** characters of the original suffix.
1510 **
1511 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1512 ** do the suffix shortening regardless of URI parameter.
1513 **
1514 ** Examples:
1515 **
1516 **     test.db-journal    =>   test.nal
1517 **     test.db-wal        =>   test.wal
1518 **     test.db-shm        =>   test.shm
1519 **     test.db-mj7f3319fa =>   test.9fa
1520 */
1521 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1522 #if SQLITE_ENABLE_8_3_NAMES<2
1523   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1524 #endif
1525   {
1526     int i, sz;
1527     sz = sqlite3Strlen30(z);
1528     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1529     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1530   }
1531 }
1532 #endif
1533 
1534 /*
1535 ** Find (an approximate) sum of two LogEst values.  This computation is
1536 ** not a simple "+" operator because LogEst is stored as a logarithmic
1537 ** value.
1538 **
1539 */
1540 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1541   static const unsigned char x[] = {
1542      10, 10,                         /* 0,1 */
1543       9, 9,                          /* 2,3 */
1544       8, 8,                          /* 4,5 */
1545       7, 7, 7,                       /* 6,7,8 */
1546       6, 6, 6,                       /* 9,10,11 */
1547       5, 5, 5,                       /* 12-14 */
1548       4, 4, 4, 4,                    /* 15-18 */
1549       3, 3, 3, 3, 3, 3,              /* 19-24 */
1550       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1551   };
1552   if( a>=b ){
1553     if( a>b+49 ) return a;
1554     if( a>b+31 ) return a+1;
1555     return a+x[a-b];
1556   }else{
1557     if( b>a+49 ) return b;
1558     if( b>a+31 ) return b+1;
1559     return b+x[b-a];
1560   }
1561 }
1562 
1563 /*
1564 ** Convert an integer into a LogEst.  In other words, compute an
1565 ** approximation for 10*log2(x).
1566 */
1567 LogEst sqlite3LogEst(u64 x){
1568   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1569   LogEst y = 40;
1570   if( x<8 ){
1571     if( x<2 ) return 0;
1572     while( x<8 ){  y -= 10; x <<= 1; }
1573   }else{
1574 #if GCC_VERSION>=5004000
1575     int i = 60 - __builtin_clzll(x);
1576     y += i*10;
1577     x >>= i;
1578 #else
1579     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1580     while( x>15 ){  y += 10; x >>= 1; }
1581 #endif
1582   }
1583   return a[x&7] + y - 10;
1584 }
1585 
1586 /*
1587 ** Convert a double into a LogEst
1588 ** In other words, compute an approximation for 10*log2(x).
1589 */
1590 LogEst sqlite3LogEstFromDouble(double x){
1591   u64 a;
1592   LogEst e;
1593   assert( sizeof(x)==8 && sizeof(a)==8 );
1594   if( x<=1 ) return 0;
1595   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1596   memcpy(&a, &x, 8);
1597   e = (a>>52) - 1022;
1598   return e*10;
1599 }
1600 
1601 /*
1602 ** Convert a LogEst into an integer.
1603 */
1604 u64 sqlite3LogEstToInt(LogEst x){
1605   u64 n;
1606   n = x%10;
1607   x /= 10;
1608   if( n>=5 ) n -= 2;
1609   else if( n>=1 ) n -= 1;
1610   if( x>60 ) return (u64)LARGEST_INT64;
1611   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1612 }
1613 
1614 /*
1615 ** Add a new name/number pair to a VList.  This might require that the
1616 ** VList object be reallocated, so return the new VList.  If an OOM
1617 ** error occurs, the original VList returned and the
1618 ** db->mallocFailed flag is set.
1619 **
1620 ** A VList is really just an array of integers.  To destroy a VList,
1621 ** simply pass it to sqlite3DbFree().
1622 **
1623 ** The first integer is the number of integers allocated for the whole
1624 ** VList.  The second integer is the number of integers actually used.
1625 ** Each name/number pair is encoded by subsequent groups of 3 or more
1626 ** integers.
1627 **
1628 ** Each name/number pair starts with two integers which are the numeric
1629 ** value for the pair and the size of the name/number pair, respectively.
1630 ** The text name overlays one or more following integers.  The text name
1631 ** is always zero-terminated.
1632 **
1633 ** Conceptually:
1634 **
1635 **    struct VList {
1636 **      int nAlloc;   // Number of allocated slots
1637 **      int nUsed;    // Number of used slots
1638 **      struct VListEntry {
1639 **        int iValue;    // Value for this entry
1640 **        int nSlot;     // Slots used by this entry
1641 **        // ... variable name goes here
1642 **      } a[0];
1643 **    }
1644 **
1645 ** During code generation, pointers to the variable names within the
1646 ** VList are taken.  When that happens, nAlloc is set to zero as an
1647 ** indication that the VList may never again be enlarged, since the
1648 ** accompanying realloc() would invalidate the pointers.
1649 */
1650 VList *sqlite3VListAdd(
1651   sqlite3 *db,           /* The database connection used for malloc() */
1652   VList *pIn,            /* The input VList.  Might be NULL */
1653   const char *zName,     /* Name of symbol to add */
1654   int nName,             /* Bytes of text in zName */
1655   int iVal               /* Value to associate with zName */
1656 ){
1657   int nInt;              /* number of sizeof(int) objects needed for zName */
1658   char *z;               /* Pointer to where zName will be stored */
1659   int i;                 /* Index in pIn[] where zName is stored */
1660 
1661   nInt = nName/4 + 3;
1662   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1663   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1664     /* Enlarge the allocation */
1665     sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1666     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1667     if( pOut==0 ) return pIn;
1668     if( pIn==0 ) pOut[1] = 2;
1669     pIn = pOut;
1670     pIn[0] = nAlloc;
1671   }
1672   i = pIn[1];
1673   pIn[i] = iVal;
1674   pIn[i+1] = nInt;
1675   z = (char*)&pIn[i+2];
1676   pIn[1] = i+nInt;
1677   assert( pIn[1]<=pIn[0] );
1678   memcpy(z, zName, nName);
1679   z[nName] = 0;
1680   return pIn;
1681 }
1682 
1683 /*
1684 ** Return a pointer to the name of a variable in the given VList that
1685 ** has the value iVal.  Or return a NULL if there is no such variable in
1686 ** the list
1687 */
1688 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1689   int i, mx;
1690   if( pIn==0 ) return 0;
1691   mx = pIn[1];
1692   i = 2;
1693   do{
1694     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1695     i += pIn[i+1];
1696   }while( i<mx );
1697   return 0;
1698 }
1699 
1700 /*
1701 ** Return the number of the variable named zName, if it is in VList.
1702 ** or return 0 if there is no such variable.
1703 */
1704 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1705   int i, mx;
1706   if( pIn==0 ) return 0;
1707   mx = pIn[1];
1708   i = 2;
1709   do{
1710     const char *z = (const char*)&pIn[i+2];
1711     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1712     i += pIn[i+1];
1713   }while( i<mx );
1714   return 0;
1715 }
1716