1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifndef SQLITE_OMIT_FLOATING_POINT 21 #include <math.h> 22 #endif 23 24 /* 25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 26 ** or to bypass normal error detection during testing in order to let 27 ** execute proceed futher downstream. 28 ** 29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 30 ** sqlite3FaultSim() function only returns non-zero during testing. 31 ** 32 ** During testing, if the test harness has set a fault-sim callback using 33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 34 ** each call to sqlite3FaultSim() is relayed to that application-supplied 35 ** callback and the integer return value form the application-supplied 36 ** callback is returned by sqlite3FaultSim(). 37 ** 38 ** The integer argument to sqlite3FaultSim() is a code to identify which 39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 40 ** should have a unique code. To prevent legacy testing applications from 41 ** breaking, the codes should not be changed or reused. 42 */ 43 #ifndef SQLITE_UNTESTABLE 44 int sqlite3FaultSim(int iTest){ 45 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 46 return xCallback ? xCallback(iTest) : SQLITE_OK; 47 } 48 #endif 49 50 #ifndef SQLITE_OMIT_FLOATING_POINT 51 /* 52 ** Return true if the floating point value is Not a Number (NaN). 53 ** 54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 55 ** Otherwise, we have our own implementation that works on most systems. 56 */ 57 int sqlite3IsNaN(double x){ 58 int rc; /* The value return */ 59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 60 u64 y; 61 memcpy(&y,&x,sizeof(y)); 62 rc = IsNaN(y); 63 #else 64 rc = isnan(x); 65 #endif /* HAVE_ISNAN */ 66 testcase( rc ); 67 return rc; 68 } 69 #endif /* SQLITE_OMIT_FLOATING_POINT */ 70 71 /* 72 ** Compute a string length that is limited to what can be stored in 73 ** lower 30 bits of a 32-bit signed integer. 74 ** 75 ** The value returned will never be negative. Nor will it ever be greater 76 ** than the actual length of the string. For very long strings (greater 77 ** than 1GiB) the value returned might be less than the true string length. 78 */ 79 int sqlite3Strlen30(const char *z){ 80 if( z==0 ) return 0; 81 return 0x3fffffff & (int)strlen(z); 82 } 83 84 /* 85 ** Return the declared type of a column. Or return zDflt if the column 86 ** has no declared type. 87 ** 88 ** The column type is an extra string stored after the zero-terminator on 89 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 90 */ 91 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 92 if( pCol->colFlags & COLFLAG_HASTYPE ){ 93 return pCol->zCnName + strlen(pCol->zCnName) + 1; 94 }else if( pCol->eCType ){ 95 assert( pCol->eCType<=SQLITE_N_STDTYPE ); 96 return (char*)sqlite3StdType[pCol->eCType-1]; 97 }else{ 98 return zDflt; 99 } 100 } 101 102 /* 103 ** Helper function for sqlite3Error() - called rarely. Broken out into 104 ** a separate routine to avoid unnecessary register saves on entry to 105 ** sqlite3Error(). 106 */ 107 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 108 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 109 sqlite3SystemError(db, err_code); 110 } 111 112 /* 113 ** Set the current error code to err_code and clear any prior error message. 114 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 115 ** that would be appropriate. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code){ 118 assert( db!=0 ); 119 db->errCode = err_code; 120 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 121 } 122 123 /* 124 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state 125 ** and error message. 126 */ 127 void sqlite3ErrorClear(sqlite3 *db){ 128 assert( db!=0 ); 129 db->errCode = SQLITE_OK; 130 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 131 } 132 133 /* 134 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 135 ** to do based on the SQLite error code in rc. 136 */ 137 void sqlite3SystemError(sqlite3 *db, int rc){ 138 if( rc==SQLITE_IOERR_NOMEM ) return; 139 rc &= 0xff; 140 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 141 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 142 } 143 } 144 145 /* 146 ** Set the most recent error code and error string for the sqlite 147 ** handle "db". The error code is set to "err_code". 148 ** 149 ** If it is not NULL, string zFormat specifies the format of the 150 ** error string in the style of the printf functions: The following 151 ** format characters are allowed: 152 ** 153 ** %s Insert a string 154 ** %z A string that should be freed after use 155 ** %d Insert an integer 156 ** %T Insert a token 157 ** %S Insert the first element of a SrcList 158 ** 159 ** zFormat and any string tokens that follow it are assumed to be 160 ** encoded in UTF-8. 161 ** 162 ** To clear the most recent error for sqlite handle "db", sqlite3Error 163 ** should be called with err_code set to SQLITE_OK and zFormat set 164 ** to NULL. 165 */ 166 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 167 assert( db!=0 ); 168 db->errCode = err_code; 169 sqlite3SystemError(db, err_code); 170 if( zFormat==0 ){ 171 sqlite3Error(db, err_code); 172 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 173 char *z; 174 va_list ap; 175 va_start(ap, zFormat); 176 z = sqlite3VMPrintf(db, zFormat, ap); 177 va_end(ap); 178 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 179 } 180 } 181 182 /* 183 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 184 ** The following formatting characters are allowed: 185 ** 186 ** %s Insert a string 187 ** %z A string that should be freed after use 188 ** %d Insert an integer 189 ** %T Insert a token 190 ** %S Insert the first element of a SrcList 191 ** 192 ** This function should be used to report any error that occurs while 193 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 194 ** last thing the sqlite3_prepare() function does is copy the error 195 ** stored by this function into the database handle using sqlite3Error(). 196 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 197 ** during statement execution (sqlite3_step() etc.). 198 */ 199 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 200 char *zMsg; 201 va_list ap; 202 sqlite3 *db = pParse->db; 203 va_start(ap, zFormat); 204 zMsg = sqlite3VMPrintf(db, zFormat, ap); 205 va_end(ap); 206 if( db->suppressErr ){ 207 sqlite3DbFree(db, zMsg); 208 }else{ 209 pParse->nErr++; 210 sqlite3DbFree(db, pParse->zErrMsg); 211 pParse->zErrMsg = zMsg; 212 pParse->rc = SQLITE_ERROR; 213 pParse->pWith = 0; 214 } 215 } 216 217 /* 218 ** If database connection db is currently parsing SQL, then transfer 219 ** error code errCode to that parser if the parser has not already 220 ** encountered some other kind of error. 221 */ 222 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 223 Parse *pParse; 224 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 225 pParse->rc = errCode; 226 pParse->nErr++; 227 return errCode; 228 } 229 230 /* 231 ** Convert an SQL-style quoted string into a normal string by removing 232 ** the quote characters. The conversion is done in-place. If the 233 ** input does not begin with a quote character, then this routine 234 ** is a no-op. 235 ** 236 ** The input string must be zero-terminated. A new zero-terminator 237 ** is added to the dequoted string. 238 ** 239 ** The return value is -1 if no dequoting occurs or the length of the 240 ** dequoted string, exclusive of the zero terminator, if dequoting does 241 ** occur. 242 ** 243 ** 2002-02-14: This routine is extended to remove MS-Access style 244 ** brackets from around identifiers. For example: "[a-b-c]" becomes 245 ** "a-b-c". 246 */ 247 void sqlite3Dequote(char *z){ 248 char quote; 249 int i, j; 250 if( z==0 ) return; 251 quote = z[0]; 252 if( !sqlite3Isquote(quote) ) return; 253 if( quote=='[' ) quote = ']'; 254 for(i=1, j=0;; i++){ 255 assert( z[i] ); 256 if( z[i]==quote ){ 257 if( z[i+1]==quote ){ 258 z[j++] = quote; 259 i++; 260 }else{ 261 break; 262 } 263 }else{ 264 z[j++] = z[i]; 265 } 266 } 267 z[j] = 0; 268 } 269 void sqlite3DequoteExpr(Expr *p){ 270 assert( !ExprHasProperty(p, EP_IntValue) ); 271 assert( sqlite3Isquote(p->u.zToken[0]) ); 272 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 273 sqlite3Dequote(p->u.zToken); 274 } 275 276 /* 277 ** If the input token p is quoted, try to adjust the token to remove 278 ** the quotes. This is not always possible: 279 ** 280 ** "abc" -> abc 281 ** "ab""cd" -> (not possible because of the interior "") 282 ** 283 ** Remove the quotes if possible. This is a optimization. The overall 284 ** system should still return the correct answer even if this routine 285 ** is always a no-op. 286 */ 287 void sqlite3DequoteToken(Token *p){ 288 unsigned int i; 289 if( p->n<2 ) return; 290 if( !sqlite3Isquote(p->z[0]) ) return; 291 for(i=1; i<p->n-1; i++){ 292 if( sqlite3Isquote(p->z[i]) ) return; 293 } 294 p->n -= 2; 295 p->z++; 296 } 297 298 /* 299 ** Generate a Token object from a string 300 */ 301 void sqlite3TokenInit(Token *p, char *z){ 302 p->z = z; 303 p->n = sqlite3Strlen30(z); 304 } 305 306 /* Convenient short-hand */ 307 #define UpperToLower sqlite3UpperToLower 308 309 /* 310 ** Some systems have stricmp(). Others have strcasecmp(). Because 311 ** there is no consistency, we will define our own. 312 ** 313 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 314 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 315 ** the contents of two buffers containing UTF-8 strings in a 316 ** case-independent fashion, using the same definition of "case 317 ** independence" that SQLite uses internally when comparing identifiers. 318 */ 319 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 320 if( zLeft==0 ){ 321 return zRight ? -1 : 0; 322 }else if( zRight==0 ){ 323 return 1; 324 } 325 return sqlite3StrICmp(zLeft, zRight); 326 } 327 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 328 unsigned char *a, *b; 329 int c, x; 330 a = (unsigned char *)zLeft; 331 b = (unsigned char *)zRight; 332 for(;;){ 333 c = *a; 334 x = *b; 335 if( c==x ){ 336 if( c==0 ) break; 337 }else{ 338 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 339 if( c ) break; 340 } 341 a++; 342 b++; 343 } 344 return c; 345 } 346 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 347 register unsigned char *a, *b; 348 if( zLeft==0 ){ 349 return zRight ? -1 : 0; 350 }else if( zRight==0 ){ 351 return 1; 352 } 353 a = (unsigned char *)zLeft; 354 b = (unsigned char *)zRight; 355 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 356 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 357 } 358 359 /* 360 ** Compute an 8-bit hash on a string that is insensitive to case differences 361 */ 362 u8 sqlite3StrIHash(const char *z){ 363 u8 h = 0; 364 if( z==0 ) return 0; 365 while( z[0] ){ 366 h += UpperToLower[(unsigned char)z[0]]; 367 z++; 368 } 369 return h; 370 } 371 372 /* 373 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 374 ** E==2 results in 100. E==50 results in 1.0e50. 375 ** 376 ** This routine only works for values of E between 1 and 341. 377 */ 378 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 379 #if defined(_MSC_VER) 380 static const LONGDOUBLE_TYPE x[] = { 381 1.0e+001L, 382 1.0e+002L, 383 1.0e+004L, 384 1.0e+008L, 385 1.0e+016L, 386 1.0e+032L, 387 1.0e+064L, 388 1.0e+128L, 389 1.0e+256L 390 }; 391 LONGDOUBLE_TYPE r = 1.0; 392 int i; 393 assert( E>=0 && E<=307 ); 394 for(i=0; E!=0; i++, E >>=1){ 395 if( E & 1 ) r *= x[i]; 396 } 397 return r; 398 #else 399 LONGDOUBLE_TYPE x = 10.0; 400 LONGDOUBLE_TYPE r = 1.0; 401 while(1){ 402 if( E & 1 ) r *= x; 403 E >>= 1; 404 if( E==0 ) break; 405 x *= x; 406 } 407 return r; 408 #endif 409 } 410 411 /* 412 ** The string z[] is an text representation of a real number. 413 ** Convert this string to a double and write it into *pResult. 414 ** 415 ** The string z[] is length bytes in length (bytes, not characters) and 416 ** uses the encoding enc. The string is not necessarily zero-terminated. 417 ** 418 ** Return TRUE if the result is a valid real number (or integer) and FALSE 419 ** if the string is empty or contains extraneous text. More specifically 420 ** return 421 ** 1 => The input string is a pure integer 422 ** 2 or more => The input has a decimal point or eNNN clause 423 ** 0 or less => The input string is not a valid number 424 ** -1 => Not a valid number, but has a valid prefix which 425 ** includes a decimal point and/or an eNNN clause 426 ** 427 ** Valid numbers are in one of these formats: 428 ** 429 ** [+-]digits[E[+-]digits] 430 ** [+-]digits.[digits][E[+-]digits] 431 ** [+-].digits[E[+-]digits] 432 ** 433 ** Leading and trailing whitespace is ignored for the purpose of determining 434 ** validity. 435 ** 436 ** If some prefix of the input string is a valid number, this routine 437 ** returns FALSE but it still converts the prefix and writes the result 438 ** into *pResult. 439 */ 440 #if defined(_MSC_VER) 441 #pragma warning(disable : 4756) 442 #endif 443 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 444 #ifndef SQLITE_OMIT_FLOATING_POINT 445 int incr; 446 const char *zEnd; 447 /* sign * significand * (10 ^ (esign * exponent)) */ 448 int sign = 1; /* sign of significand */ 449 i64 s = 0; /* significand */ 450 int d = 0; /* adjust exponent for shifting decimal point */ 451 int esign = 1; /* sign of exponent */ 452 int e = 0; /* exponent */ 453 int eValid = 1; /* True exponent is either not used or is well-formed */ 454 double result; 455 int nDigit = 0; /* Number of digits processed */ 456 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 457 458 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 459 *pResult = 0.0; /* Default return value, in case of an error */ 460 if( length==0 ) return 0; 461 462 if( enc==SQLITE_UTF8 ){ 463 incr = 1; 464 zEnd = z + length; 465 }else{ 466 int i; 467 incr = 2; 468 length &= ~1; 469 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 470 testcase( enc==SQLITE_UTF16LE ); 471 testcase( enc==SQLITE_UTF16BE ); 472 for(i=3-enc; i<length && z[i]==0; i+=2){} 473 if( i<length ) eType = -100; 474 zEnd = &z[i^1]; 475 z += (enc&1); 476 } 477 478 /* skip leading spaces */ 479 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 480 if( z>=zEnd ) return 0; 481 482 /* get sign of significand */ 483 if( *z=='-' ){ 484 sign = -1; 485 z+=incr; 486 }else if( *z=='+' ){ 487 z+=incr; 488 } 489 490 /* copy max significant digits to significand */ 491 while( z<zEnd && sqlite3Isdigit(*z) ){ 492 s = s*10 + (*z - '0'); 493 z+=incr; nDigit++; 494 if( s>=((LARGEST_INT64-9)/10) ){ 495 /* skip non-significant significand digits 496 ** (increase exponent by d to shift decimal left) */ 497 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 498 } 499 } 500 if( z>=zEnd ) goto do_atof_calc; 501 502 /* if decimal point is present */ 503 if( *z=='.' ){ 504 z+=incr; 505 eType++; 506 /* copy digits from after decimal to significand 507 ** (decrease exponent by d to shift decimal right) */ 508 while( z<zEnd && sqlite3Isdigit(*z) ){ 509 if( s<((LARGEST_INT64-9)/10) ){ 510 s = s*10 + (*z - '0'); 511 d--; 512 nDigit++; 513 } 514 z+=incr; 515 } 516 } 517 if( z>=zEnd ) goto do_atof_calc; 518 519 /* if exponent is present */ 520 if( *z=='e' || *z=='E' ){ 521 z+=incr; 522 eValid = 0; 523 eType++; 524 525 /* This branch is needed to avoid a (harmless) buffer overread. The 526 ** special comment alerts the mutation tester that the correct answer 527 ** is obtained even if the branch is omitted */ 528 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 529 530 /* get sign of exponent */ 531 if( *z=='-' ){ 532 esign = -1; 533 z+=incr; 534 }else if( *z=='+' ){ 535 z+=incr; 536 } 537 /* copy digits to exponent */ 538 while( z<zEnd && sqlite3Isdigit(*z) ){ 539 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 540 z+=incr; 541 eValid = 1; 542 } 543 } 544 545 /* skip trailing spaces */ 546 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 547 548 do_atof_calc: 549 /* adjust exponent by d, and update sign */ 550 e = (e*esign) + d; 551 if( e<0 ) { 552 esign = -1; 553 e *= -1; 554 } else { 555 esign = 1; 556 } 557 558 if( s==0 ) { 559 /* In the IEEE 754 standard, zero is signed. */ 560 result = sign<0 ? -(double)0 : (double)0; 561 } else { 562 /* Attempt to reduce exponent. 563 ** 564 ** Branches that are not required for the correct answer but which only 565 ** help to obtain the correct answer faster are marked with special 566 ** comments, as a hint to the mutation tester. 567 */ 568 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 569 if( esign>0 ){ 570 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 571 s *= 10; 572 }else{ 573 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 574 s /= 10; 575 } 576 e--; 577 } 578 579 /* adjust the sign of significand */ 580 s = sign<0 ? -s : s; 581 582 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 583 result = (double)s; 584 }else{ 585 /* attempt to handle extremely small/large numbers better */ 586 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 587 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 588 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 589 if( esign<0 ){ 590 result = s / scale; 591 result /= 1.0e+308; 592 }else{ 593 result = s * scale; 594 result *= 1.0e+308; 595 } 596 }else{ assert( e>=342 ); 597 if( esign<0 ){ 598 result = 0.0*s; 599 }else{ 600 #ifdef INFINITY 601 result = INFINITY*s; 602 #else 603 result = 1e308*1e308*s; /* Infinity */ 604 #endif 605 } 606 } 607 }else{ 608 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 609 if( esign<0 ){ 610 result = s / scale; 611 }else{ 612 result = s * scale; 613 } 614 } 615 } 616 } 617 618 /* store the result */ 619 *pResult = result; 620 621 /* return true if number and no extra non-whitespace chracters after */ 622 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 623 return eType; 624 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 625 return -1; 626 }else{ 627 return 0; 628 } 629 #else 630 return !sqlite3Atoi64(z, pResult, length, enc); 631 #endif /* SQLITE_OMIT_FLOATING_POINT */ 632 } 633 #if defined(_MSC_VER) 634 #pragma warning(default : 4756) 635 #endif 636 637 /* 638 ** Render an signed 64-bit integer as text. Store the result in zOut[]. 639 ** 640 ** The caller must ensure that zOut[] is at least 21 bytes in size. 641 */ 642 void sqlite3Int64ToText(i64 v, char *zOut){ 643 int i; 644 u64 x; 645 char zTemp[22]; 646 if( v<0 ){ 647 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; 648 }else{ 649 x = v; 650 } 651 i = sizeof(zTemp)-2; 652 zTemp[sizeof(zTemp)-1] = 0; 653 do{ 654 zTemp[i--] = (x%10) + '0'; 655 x = x/10; 656 }while( x ); 657 if( v<0 ) zTemp[i--] = '-'; 658 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i); 659 } 660 661 /* 662 ** Compare the 19-character string zNum against the text representation 663 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 664 ** if zNum is less than, equal to, or greater than the string. 665 ** Note that zNum must contain exactly 19 characters. 666 ** 667 ** Unlike memcmp() this routine is guaranteed to return the difference 668 ** in the values of the last digit if the only difference is in the 669 ** last digit. So, for example, 670 ** 671 ** compare2pow63("9223372036854775800", 1) 672 ** 673 ** will return -8. 674 */ 675 static int compare2pow63(const char *zNum, int incr){ 676 int c = 0; 677 int i; 678 /* 012345678901234567 */ 679 const char *pow63 = "922337203685477580"; 680 for(i=0; c==0 && i<18; i++){ 681 c = (zNum[i*incr]-pow63[i])*10; 682 } 683 if( c==0 ){ 684 c = zNum[18*incr] - '8'; 685 testcase( c==(-1) ); 686 testcase( c==0 ); 687 testcase( c==(+1) ); 688 } 689 return c; 690 } 691 692 /* 693 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 694 ** routine does *not* accept hexadecimal notation. 695 ** 696 ** Returns: 697 ** 698 ** -1 Not even a prefix of the input text looks like an integer 699 ** 0 Successful transformation. Fits in a 64-bit signed integer. 700 ** 1 Excess non-space text after the integer value 701 ** 2 Integer too large for a 64-bit signed integer or is malformed 702 ** 3 Special case of 9223372036854775808 703 ** 704 ** length is the number of bytes in the string (bytes, not characters). 705 ** The string is not necessarily zero-terminated. The encoding is 706 ** given by enc. 707 */ 708 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 709 int incr; 710 u64 u = 0; 711 int neg = 0; /* assume positive */ 712 int i; 713 int c = 0; 714 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 715 int rc; /* Baseline return code */ 716 const char *zStart; 717 const char *zEnd = zNum + length; 718 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 719 if( enc==SQLITE_UTF8 ){ 720 incr = 1; 721 }else{ 722 incr = 2; 723 length &= ~1; 724 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 725 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 726 nonNum = i<length; 727 zEnd = &zNum[i^1]; 728 zNum += (enc&1); 729 } 730 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 731 if( zNum<zEnd ){ 732 if( *zNum=='-' ){ 733 neg = 1; 734 zNum+=incr; 735 }else if( *zNum=='+' ){ 736 zNum+=incr; 737 } 738 } 739 zStart = zNum; 740 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 741 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 742 u = u*10 + c - '0'; 743 } 744 testcase( i==18*incr ); 745 testcase( i==19*incr ); 746 testcase( i==20*incr ); 747 if( u>LARGEST_INT64 ){ 748 /* This test and assignment is needed only to suppress UB warnings 749 ** from clang and -fsanitize=undefined. This test and assignment make 750 ** the code a little larger and slower, and no harm comes from omitting 751 ** them, but we must appaise the undefined-behavior pharisees. */ 752 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 753 }else if( neg ){ 754 *pNum = -(i64)u; 755 }else{ 756 *pNum = (i64)u; 757 } 758 rc = 0; 759 if( i==0 && zStart==zNum ){ /* No digits */ 760 rc = -1; 761 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 762 rc = 1; 763 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 764 int jj = i; 765 do{ 766 if( !sqlite3Isspace(zNum[jj]) ){ 767 rc = 1; /* Extra non-space text after the integer */ 768 break; 769 } 770 jj += incr; 771 }while( &zNum[jj]<zEnd ); 772 } 773 if( i<19*incr ){ 774 /* Less than 19 digits, so we know that it fits in 64 bits */ 775 assert( u<=LARGEST_INT64 ); 776 return rc; 777 }else{ 778 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 779 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 780 if( c<0 ){ 781 /* zNum is less than 9223372036854775808 so it fits */ 782 assert( u<=LARGEST_INT64 ); 783 return rc; 784 }else{ 785 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 786 if( c>0 ){ 787 /* zNum is greater than 9223372036854775808 so it overflows */ 788 return 2; 789 }else{ 790 /* zNum is exactly 9223372036854775808. Fits if negative. The 791 ** special case 2 overflow if positive */ 792 assert( u-1==LARGEST_INT64 ); 793 return neg ? rc : 3; 794 } 795 } 796 } 797 } 798 799 /* 800 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 801 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 802 ** whereas sqlite3Atoi64() does not. 803 ** 804 ** Returns: 805 ** 806 ** 0 Successful transformation. Fits in a 64-bit signed integer. 807 ** 1 Excess text after the integer value 808 ** 2 Integer too large for a 64-bit signed integer or is malformed 809 ** 3 Special case of 9223372036854775808 810 */ 811 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 812 #ifndef SQLITE_OMIT_HEX_INTEGER 813 if( z[0]=='0' 814 && (z[1]=='x' || z[1]=='X') 815 ){ 816 u64 u = 0; 817 int i, k; 818 for(i=2; z[i]=='0'; i++){} 819 for(k=i; sqlite3Isxdigit(z[k]); k++){ 820 u = u*16 + sqlite3HexToInt(z[k]); 821 } 822 memcpy(pOut, &u, 8); 823 return (z[k]==0 && k-i<=16) ? 0 : 2; 824 }else 825 #endif /* SQLITE_OMIT_HEX_INTEGER */ 826 { 827 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 828 } 829 } 830 831 /* 832 ** If zNum represents an integer that will fit in 32-bits, then set 833 ** *pValue to that integer and return true. Otherwise return false. 834 ** 835 ** This routine accepts both decimal and hexadecimal notation for integers. 836 ** 837 ** Any non-numeric characters that following zNum are ignored. 838 ** This is different from sqlite3Atoi64() which requires the 839 ** input number to be zero-terminated. 840 */ 841 int sqlite3GetInt32(const char *zNum, int *pValue){ 842 sqlite_int64 v = 0; 843 int i, c; 844 int neg = 0; 845 if( zNum[0]=='-' ){ 846 neg = 1; 847 zNum++; 848 }else if( zNum[0]=='+' ){ 849 zNum++; 850 } 851 #ifndef SQLITE_OMIT_HEX_INTEGER 852 else if( zNum[0]=='0' 853 && (zNum[1]=='x' || zNum[1]=='X') 854 && sqlite3Isxdigit(zNum[2]) 855 ){ 856 u32 u = 0; 857 zNum += 2; 858 while( zNum[0]=='0' ) zNum++; 859 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 860 u = u*16 + sqlite3HexToInt(zNum[i]); 861 } 862 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 863 memcpy(pValue, &u, 4); 864 return 1; 865 }else{ 866 return 0; 867 } 868 } 869 #endif 870 if( !sqlite3Isdigit(zNum[0]) ) return 0; 871 while( zNum[0]=='0' ) zNum++; 872 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 873 v = v*10 + c; 874 } 875 876 /* The longest decimal representation of a 32 bit integer is 10 digits: 877 ** 878 ** 1234567890 879 ** 2^31 -> 2147483648 880 */ 881 testcase( i==10 ); 882 if( i>10 ){ 883 return 0; 884 } 885 testcase( v-neg==2147483647 ); 886 if( v-neg>2147483647 ){ 887 return 0; 888 } 889 if( neg ){ 890 v = -v; 891 } 892 *pValue = (int)v; 893 return 1; 894 } 895 896 /* 897 ** Return a 32-bit integer value extracted from a string. If the 898 ** string is not an integer, just return 0. 899 */ 900 int sqlite3Atoi(const char *z){ 901 int x = 0; 902 sqlite3GetInt32(z, &x); 903 return x; 904 } 905 906 /* 907 ** Try to convert z into an unsigned 32-bit integer. Return true on 908 ** success and false if there is an error. 909 ** 910 ** Only decimal notation is accepted. 911 */ 912 int sqlite3GetUInt32(const char *z, u32 *pI){ 913 u64 v = 0; 914 int i; 915 for(i=0; sqlite3Isdigit(z[i]); i++){ 916 v = v*10 + z[i] - '0'; 917 if( v>4294967296LL ){ *pI = 0; return 0; } 918 } 919 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } 920 *pI = (u32)v; 921 return 1; 922 } 923 924 /* 925 ** The variable-length integer encoding is as follows: 926 ** 927 ** KEY: 928 ** A = 0xxxxxxx 7 bits of data and one flag bit 929 ** B = 1xxxxxxx 7 bits of data and one flag bit 930 ** C = xxxxxxxx 8 bits of data 931 ** 932 ** 7 bits - A 933 ** 14 bits - BA 934 ** 21 bits - BBA 935 ** 28 bits - BBBA 936 ** 35 bits - BBBBA 937 ** 42 bits - BBBBBA 938 ** 49 bits - BBBBBBA 939 ** 56 bits - BBBBBBBA 940 ** 64 bits - BBBBBBBBC 941 */ 942 943 /* 944 ** Write a 64-bit variable-length integer to memory starting at p[0]. 945 ** The length of data write will be between 1 and 9 bytes. The number 946 ** of bytes written is returned. 947 ** 948 ** A variable-length integer consists of the lower 7 bits of each byte 949 ** for all bytes that have the 8th bit set and one byte with the 8th 950 ** bit clear. Except, if we get to the 9th byte, it stores the full 951 ** 8 bits and is the last byte. 952 */ 953 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 954 int i, j, n; 955 u8 buf[10]; 956 if( v & (((u64)0xff000000)<<32) ){ 957 p[8] = (u8)v; 958 v >>= 8; 959 for(i=7; i>=0; i--){ 960 p[i] = (u8)((v & 0x7f) | 0x80); 961 v >>= 7; 962 } 963 return 9; 964 } 965 n = 0; 966 do{ 967 buf[n++] = (u8)((v & 0x7f) | 0x80); 968 v >>= 7; 969 }while( v!=0 ); 970 buf[0] &= 0x7f; 971 assert( n<=9 ); 972 for(i=0, j=n-1; j>=0; j--, i++){ 973 p[i] = buf[j]; 974 } 975 return n; 976 } 977 int sqlite3PutVarint(unsigned char *p, u64 v){ 978 if( v<=0x7f ){ 979 p[0] = v&0x7f; 980 return 1; 981 } 982 if( v<=0x3fff ){ 983 p[0] = ((v>>7)&0x7f)|0x80; 984 p[1] = v&0x7f; 985 return 2; 986 } 987 return putVarint64(p,v); 988 } 989 990 /* 991 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 992 ** are defined here rather than simply putting the constant expressions 993 ** inline in order to work around bugs in the RVT compiler. 994 ** 995 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 996 ** 997 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 998 */ 999 #define SLOT_2_0 0x001fc07f 1000 #define SLOT_4_2_0 0xf01fc07f 1001 1002 1003 /* 1004 ** Read a 64-bit variable-length integer from memory starting at p[0]. 1005 ** Return the number of bytes read. The value is stored in *v. 1006 */ 1007 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 1008 u32 a,b,s; 1009 1010 if( ((signed char*)p)[0]>=0 ){ 1011 *v = *p; 1012 return 1; 1013 } 1014 if( ((signed char*)p)[1]>=0 ){ 1015 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 1016 return 2; 1017 } 1018 1019 /* Verify that constants are precomputed correctly */ 1020 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 1021 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 1022 1023 a = ((u32)p[0])<<14; 1024 b = p[1]; 1025 p += 2; 1026 a |= *p; 1027 /* a: p0<<14 | p2 (unmasked) */ 1028 if (!(a&0x80)) 1029 { 1030 a &= SLOT_2_0; 1031 b &= 0x7f; 1032 b = b<<7; 1033 a |= b; 1034 *v = a; 1035 return 3; 1036 } 1037 1038 /* CSE1 from below */ 1039 a &= SLOT_2_0; 1040 p++; 1041 b = b<<14; 1042 b |= *p; 1043 /* b: p1<<14 | p3 (unmasked) */ 1044 if (!(b&0x80)) 1045 { 1046 b &= SLOT_2_0; 1047 /* moved CSE1 up */ 1048 /* a &= (0x7f<<14)|(0x7f); */ 1049 a = a<<7; 1050 a |= b; 1051 *v = a; 1052 return 4; 1053 } 1054 1055 /* a: p0<<14 | p2 (masked) */ 1056 /* b: p1<<14 | p3 (unmasked) */ 1057 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1058 /* moved CSE1 up */ 1059 /* a &= (0x7f<<14)|(0x7f); */ 1060 b &= SLOT_2_0; 1061 s = a; 1062 /* s: p0<<14 | p2 (masked) */ 1063 1064 p++; 1065 a = a<<14; 1066 a |= *p; 1067 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1068 if (!(a&0x80)) 1069 { 1070 /* we can skip these cause they were (effectively) done above 1071 ** while calculating s */ 1072 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1073 /* b &= (0x7f<<14)|(0x7f); */ 1074 b = b<<7; 1075 a |= b; 1076 s = s>>18; 1077 *v = ((u64)s)<<32 | a; 1078 return 5; 1079 } 1080 1081 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1082 s = s<<7; 1083 s |= b; 1084 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1085 1086 p++; 1087 b = b<<14; 1088 b |= *p; 1089 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 1090 if (!(b&0x80)) 1091 { 1092 /* we can skip this cause it was (effectively) done above in calc'ing s */ 1093 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1094 a &= SLOT_2_0; 1095 a = a<<7; 1096 a |= b; 1097 s = s>>18; 1098 *v = ((u64)s)<<32 | a; 1099 return 6; 1100 } 1101 1102 p++; 1103 a = a<<14; 1104 a |= *p; 1105 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1106 if (!(a&0x80)) 1107 { 1108 a &= SLOT_4_2_0; 1109 b &= SLOT_2_0; 1110 b = b<<7; 1111 a |= b; 1112 s = s>>11; 1113 *v = ((u64)s)<<32 | a; 1114 return 7; 1115 } 1116 1117 /* CSE2 from below */ 1118 a &= SLOT_2_0; 1119 p++; 1120 b = b<<14; 1121 b |= *p; 1122 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1123 if (!(b&0x80)) 1124 { 1125 b &= SLOT_4_2_0; 1126 /* moved CSE2 up */ 1127 /* a &= (0x7f<<14)|(0x7f); */ 1128 a = a<<7; 1129 a |= b; 1130 s = s>>4; 1131 *v = ((u64)s)<<32 | a; 1132 return 8; 1133 } 1134 1135 p++; 1136 a = a<<15; 1137 a |= *p; 1138 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1139 1140 /* moved CSE2 up */ 1141 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1142 b &= SLOT_2_0; 1143 b = b<<8; 1144 a |= b; 1145 1146 s = s<<4; 1147 b = p[-4]; 1148 b &= 0x7f; 1149 b = b>>3; 1150 s |= b; 1151 1152 *v = ((u64)s)<<32 | a; 1153 1154 return 9; 1155 } 1156 1157 /* 1158 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1159 ** Return the number of bytes read. The value is stored in *v. 1160 ** 1161 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1162 ** integer, then set *v to 0xffffffff. 1163 ** 1164 ** A MACRO version, getVarint32, is provided which inlines the 1165 ** single-byte case. All code should use the MACRO version as 1166 ** this function assumes the single-byte case has already been handled. 1167 */ 1168 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1169 u32 a,b; 1170 1171 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1172 ** by the getVarin32() macro */ 1173 a = *p; 1174 /* a: p0 (unmasked) */ 1175 #ifndef getVarint32 1176 if (!(a&0x80)) 1177 { 1178 /* Values between 0 and 127 */ 1179 *v = a; 1180 return 1; 1181 } 1182 #endif 1183 1184 /* The 2-byte case */ 1185 p++; 1186 b = *p; 1187 /* b: p1 (unmasked) */ 1188 if (!(b&0x80)) 1189 { 1190 /* Values between 128 and 16383 */ 1191 a &= 0x7f; 1192 a = a<<7; 1193 *v = a | b; 1194 return 2; 1195 } 1196 1197 /* The 3-byte case */ 1198 p++; 1199 a = a<<14; 1200 a |= *p; 1201 /* a: p0<<14 | p2 (unmasked) */ 1202 if (!(a&0x80)) 1203 { 1204 /* Values between 16384 and 2097151 */ 1205 a &= (0x7f<<14)|(0x7f); 1206 b &= 0x7f; 1207 b = b<<7; 1208 *v = a | b; 1209 return 3; 1210 } 1211 1212 /* A 32-bit varint is used to store size information in btrees. 1213 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1214 ** A 3-byte varint is sufficient, for example, to record the size 1215 ** of a 1048569-byte BLOB or string. 1216 ** 1217 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1218 ** rare larger cases can be handled by the slower 64-bit varint 1219 ** routine. 1220 */ 1221 #if 1 1222 { 1223 u64 v64; 1224 u8 n; 1225 1226 n = sqlite3GetVarint(p-2, &v64); 1227 assert( n>3 && n<=9 ); 1228 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1229 *v = 0xffffffff; 1230 }else{ 1231 *v = (u32)v64; 1232 } 1233 return n; 1234 } 1235 1236 #else 1237 /* For following code (kept for historical record only) shows an 1238 ** unrolling for the 3- and 4-byte varint cases. This code is 1239 ** slightly faster, but it is also larger and much harder to test. 1240 */ 1241 p++; 1242 b = b<<14; 1243 b |= *p; 1244 /* b: p1<<14 | p3 (unmasked) */ 1245 if (!(b&0x80)) 1246 { 1247 /* Values between 2097152 and 268435455 */ 1248 b &= (0x7f<<14)|(0x7f); 1249 a &= (0x7f<<14)|(0x7f); 1250 a = a<<7; 1251 *v = a | b; 1252 return 4; 1253 } 1254 1255 p++; 1256 a = a<<14; 1257 a |= *p; 1258 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1259 if (!(a&0x80)) 1260 { 1261 /* Values between 268435456 and 34359738367 */ 1262 a &= SLOT_4_2_0; 1263 b &= SLOT_4_2_0; 1264 b = b<<7; 1265 *v = a | b; 1266 return 5; 1267 } 1268 1269 /* We can only reach this point when reading a corrupt database 1270 ** file. In that case we are not in any hurry. Use the (relatively 1271 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1272 ** value. */ 1273 { 1274 u64 v64; 1275 u8 n; 1276 1277 p -= 4; 1278 n = sqlite3GetVarint(p, &v64); 1279 assert( n>5 && n<=9 ); 1280 *v = (u32)v64; 1281 return n; 1282 } 1283 #endif 1284 } 1285 1286 /* 1287 ** Return the number of bytes that will be needed to store the given 1288 ** 64-bit integer. 1289 */ 1290 int sqlite3VarintLen(u64 v){ 1291 int i; 1292 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1293 return i; 1294 } 1295 1296 1297 /* 1298 ** Read or write a four-byte big-endian integer value. 1299 */ 1300 u32 sqlite3Get4byte(const u8 *p){ 1301 #if SQLITE_BYTEORDER==4321 1302 u32 x; 1303 memcpy(&x,p,4); 1304 return x; 1305 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1306 u32 x; 1307 memcpy(&x,p,4); 1308 return __builtin_bswap32(x); 1309 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1310 u32 x; 1311 memcpy(&x,p,4); 1312 return _byteswap_ulong(x); 1313 #else 1314 testcase( p[0]&0x80 ); 1315 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1316 #endif 1317 } 1318 void sqlite3Put4byte(unsigned char *p, u32 v){ 1319 #if SQLITE_BYTEORDER==4321 1320 memcpy(p,&v,4); 1321 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1322 u32 x = __builtin_bswap32(v); 1323 memcpy(p,&x,4); 1324 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1325 u32 x = _byteswap_ulong(v); 1326 memcpy(p,&x,4); 1327 #else 1328 p[0] = (u8)(v>>24); 1329 p[1] = (u8)(v>>16); 1330 p[2] = (u8)(v>>8); 1331 p[3] = (u8)v; 1332 #endif 1333 } 1334 1335 1336 1337 /* 1338 ** Translate a single byte of Hex into an integer. 1339 ** This routine only works if h really is a valid hexadecimal 1340 ** character: 0..9a..fA..F 1341 */ 1342 u8 sqlite3HexToInt(int h){ 1343 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1344 #ifdef SQLITE_ASCII 1345 h += 9*(1&(h>>6)); 1346 #endif 1347 #ifdef SQLITE_EBCDIC 1348 h += 9*(1&~(h>>4)); 1349 #endif 1350 return (u8)(h & 0xf); 1351 } 1352 1353 #if !defined(SQLITE_OMIT_BLOB_LITERAL) 1354 /* 1355 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1356 ** value. Return a pointer to its binary value. Space to hold the 1357 ** binary value has been obtained from malloc and must be freed by 1358 ** the calling routine. 1359 */ 1360 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1361 char *zBlob; 1362 int i; 1363 1364 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1365 n--; 1366 if( zBlob ){ 1367 for(i=0; i<n; i+=2){ 1368 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1369 } 1370 zBlob[i/2] = 0; 1371 } 1372 return zBlob; 1373 } 1374 #endif /* !SQLITE_OMIT_BLOB_LITERAL */ 1375 1376 /* 1377 ** Log an error that is an API call on a connection pointer that should 1378 ** not have been used. The "type" of connection pointer is given as the 1379 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1380 */ 1381 static void logBadConnection(const char *zType){ 1382 sqlite3_log(SQLITE_MISUSE, 1383 "API call with %s database connection pointer", 1384 zType 1385 ); 1386 } 1387 1388 /* 1389 ** Check to make sure we have a valid db pointer. This test is not 1390 ** foolproof but it does provide some measure of protection against 1391 ** misuse of the interface such as passing in db pointers that are 1392 ** NULL or which have been previously closed. If this routine returns 1393 ** 1 it means that the db pointer is valid and 0 if it should not be 1394 ** dereferenced for any reason. The calling function should invoke 1395 ** SQLITE_MISUSE immediately. 1396 ** 1397 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1398 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1399 ** open properly and is not fit for general use but which can be 1400 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1401 */ 1402 int sqlite3SafetyCheckOk(sqlite3 *db){ 1403 u8 eOpenState; 1404 if( db==0 ){ 1405 logBadConnection("NULL"); 1406 return 0; 1407 } 1408 eOpenState = db->eOpenState; 1409 if( eOpenState!=SQLITE_STATE_OPEN ){ 1410 if( sqlite3SafetyCheckSickOrOk(db) ){ 1411 testcase( sqlite3GlobalConfig.xLog!=0 ); 1412 logBadConnection("unopened"); 1413 } 1414 return 0; 1415 }else{ 1416 return 1; 1417 } 1418 } 1419 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1420 u8 eOpenState; 1421 eOpenState = db->eOpenState; 1422 if( eOpenState!=SQLITE_STATE_SICK && 1423 eOpenState!=SQLITE_STATE_OPEN && 1424 eOpenState!=SQLITE_STATE_BUSY ){ 1425 testcase( sqlite3GlobalConfig.xLog!=0 ); 1426 logBadConnection("invalid"); 1427 return 0; 1428 }else{ 1429 return 1; 1430 } 1431 } 1432 1433 /* 1434 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1435 ** the other 64-bit signed integer at *pA and store the result in *pA. 1436 ** Return 0 on success. Or if the operation would have resulted in an 1437 ** overflow, leave *pA unchanged and return 1. 1438 */ 1439 int sqlite3AddInt64(i64 *pA, i64 iB){ 1440 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1441 return __builtin_add_overflow(*pA, iB, pA); 1442 #else 1443 i64 iA = *pA; 1444 testcase( iA==0 ); testcase( iA==1 ); 1445 testcase( iB==-1 ); testcase( iB==0 ); 1446 if( iB>=0 ){ 1447 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1448 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1449 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1450 }else{ 1451 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1452 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1453 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1454 } 1455 *pA += iB; 1456 return 0; 1457 #endif 1458 } 1459 int sqlite3SubInt64(i64 *pA, i64 iB){ 1460 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1461 return __builtin_sub_overflow(*pA, iB, pA); 1462 #else 1463 testcase( iB==SMALLEST_INT64+1 ); 1464 if( iB==SMALLEST_INT64 ){ 1465 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1466 if( (*pA)>=0 ) return 1; 1467 *pA -= iB; 1468 return 0; 1469 }else{ 1470 return sqlite3AddInt64(pA, -iB); 1471 } 1472 #endif 1473 } 1474 int sqlite3MulInt64(i64 *pA, i64 iB){ 1475 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1476 return __builtin_mul_overflow(*pA, iB, pA); 1477 #else 1478 i64 iA = *pA; 1479 if( iB>0 ){ 1480 if( iA>LARGEST_INT64/iB ) return 1; 1481 if( iA<SMALLEST_INT64/iB ) return 1; 1482 }else if( iB<0 ){ 1483 if( iA>0 ){ 1484 if( iB<SMALLEST_INT64/iA ) return 1; 1485 }else if( iA<0 ){ 1486 if( iB==SMALLEST_INT64 ) return 1; 1487 if( iA==SMALLEST_INT64 ) return 1; 1488 if( -iA>LARGEST_INT64/-iB ) return 1; 1489 } 1490 } 1491 *pA = iA*iB; 1492 return 0; 1493 #endif 1494 } 1495 1496 /* 1497 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1498 ** if the integer has a value of -2147483648, return +2147483647 1499 */ 1500 int sqlite3AbsInt32(int x){ 1501 if( x>=0 ) return x; 1502 if( x==(int)0x80000000 ) return 0x7fffffff; 1503 return -x; 1504 } 1505 1506 #ifdef SQLITE_ENABLE_8_3_NAMES 1507 /* 1508 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1509 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1510 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1511 ** three characters, then shorten the suffix on z[] to be the last three 1512 ** characters of the original suffix. 1513 ** 1514 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1515 ** do the suffix shortening regardless of URI parameter. 1516 ** 1517 ** Examples: 1518 ** 1519 ** test.db-journal => test.nal 1520 ** test.db-wal => test.wal 1521 ** test.db-shm => test.shm 1522 ** test.db-mj7f3319fa => test.9fa 1523 */ 1524 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1525 #if SQLITE_ENABLE_8_3_NAMES<2 1526 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1527 #endif 1528 { 1529 int i, sz; 1530 sz = sqlite3Strlen30(z); 1531 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1532 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1533 } 1534 } 1535 #endif 1536 1537 /* 1538 ** Find (an approximate) sum of two LogEst values. This computation is 1539 ** not a simple "+" operator because LogEst is stored as a logarithmic 1540 ** value. 1541 ** 1542 */ 1543 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1544 static const unsigned char x[] = { 1545 10, 10, /* 0,1 */ 1546 9, 9, /* 2,3 */ 1547 8, 8, /* 4,5 */ 1548 7, 7, 7, /* 6,7,8 */ 1549 6, 6, 6, /* 9,10,11 */ 1550 5, 5, 5, /* 12-14 */ 1551 4, 4, 4, 4, /* 15-18 */ 1552 3, 3, 3, 3, 3, 3, /* 19-24 */ 1553 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1554 }; 1555 if( a>=b ){ 1556 if( a>b+49 ) return a; 1557 if( a>b+31 ) return a+1; 1558 return a+x[a-b]; 1559 }else{ 1560 if( b>a+49 ) return b; 1561 if( b>a+31 ) return b+1; 1562 return b+x[b-a]; 1563 } 1564 } 1565 1566 /* 1567 ** Convert an integer into a LogEst. In other words, compute an 1568 ** approximation for 10*log2(x). 1569 */ 1570 LogEst sqlite3LogEst(u64 x){ 1571 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1572 LogEst y = 40; 1573 if( x<8 ){ 1574 if( x<2 ) return 0; 1575 while( x<8 ){ y -= 10; x <<= 1; } 1576 }else{ 1577 #if GCC_VERSION>=5004000 1578 int i = 60 - __builtin_clzll(x); 1579 y += i*10; 1580 x >>= i; 1581 #else 1582 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1583 while( x>15 ){ y += 10; x >>= 1; } 1584 #endif 1585 } 1586 return a[x&7] + y - 10; 1587 } 1588 1589 #ifndef SQLITE_OMIT_VIRTUALTABLE 1590 /* 1591 ** Convert a double into a LogEst 1592 ** In other words, compute an approximation for 10*log2(x). 1593 */ 1594 LogEst sqlite3LogEstFromDouble(double x){ 1595 u64 a; 1596 LogEst e; 1597 assert( sizeof(x)==8 && sizeof(a)==8 ); 1598 if( x<=1 ) return 0; 1599 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1600 memcpy(&a, &x, 8); 1601 e = (a>>52) - 1022; 1602 return e*10; 1603 } 1604 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1605 1606 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1607 defined(SQLITE_ENABLE_STAT4) || \ 1608 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1609 /* 1610 ** Convert a LogEst into an integer. 1611 ** 1612 ** Note that this routine is only used when one or more of various 1613 ** non-standard compile-time options is enabled. 1614 */ 1615 u64 sqlite3LogEstToInt(LogEst x){ 1616 u64 n; 1617 n = x%10; 1618 x /= 10; 1619 if( n>=5 ) n -= 2; 1620 else if( n>=1 ) n -= 1; 1621 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1622 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1623 if( x>60 ) return (u64)LARGEST_INT64; 1624 #else 1625 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input 1626 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1627 assert( x<=60 ); 1628 #endif 1629 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1630 } 1631 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1632 1633 /* 1634 ** Add a new name/number pair to a VList. This might require that the 1635 ** VList object be reallocated, so return the new VList. If an OOM 1636 ** error occurs, the original VList returned and the 1637 ** db->mallocFailed flag is set. 1638 ** 1639 ** A VList is really just an array of integers. To destroy a VList, 1640 ** simply pass it to sqlite3DbFree(). 1641 ** 1642 ** The first integer is the number of integers allocated for the whole 1643 ** VList. The second integer is the number of integers actually used. 1644 ** Each name/number pair is encoded by subsequent groups of 3 or more 1645 ** integers. 1646 ** 1647 ** Each name/number pair starts with two integers which are the numeric 1648 ** value for the pair and the size of the name/number pair, respectively. 1649 ** The text name overlays one or more following integers. The text name 1650 ** is always zero-terminated. 1651 ** 1652 ** Conceptually: 1653 ** 1654 ** struct VList { 1655 ** int nAlloc; // Number of allocated slots 1656 ** int nUsed; // Number of used slots 1657 ** struct VListEntry { 1658 ** int iValue; // Value for this entry 1659 ** int nSlot; // Slots used by this entry 1660 ** // ... variable name goes here 1661 ** } a[0]; 1662 ** } 1663 ** 1664 ** During code generation, pointers to the variable names within the 1665 ** VList are taken. When that happens, nAlloc is set to zero as an 1666 ** indication that the VList may never again be enlarged, since the 1667 ** accompanying realloc() would invalidate the pointers. 1668 */ 1669 VList *sqlite3VListAdd( 1670 sqlite3 *db, /* The database connection used for malloc() */ 1671 VList *pIn, /* The input VList. Might be NULL */ 1672 const char *zName, /* Name of symbol to add */ 1673 int nName, /* Bytes of text in zName */ 1674 int iVal /* Value to associate with zName */ 1675 ){ 1676 int nInt; /* number of sizeof(int) objects needed for zName */ 1677 char *z; /* Pointer to where zName will be stored */ 1678 int i; /* Index in pIn[] where zName is stored */ 1679 1680 nInt = nName/4 + 3; 1681 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1682 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1683 /* Enlarge the allocation */ 1684 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1685 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1686 if( pOut==0 ) return pIn; 1687 if( pIn==0 ) pOut[1] = 2; 1688 pIn = pOut; 1689 pIn[0] = nAlloc; 1690 } 1691 i = pIn[1]; 1692 pIn[i] = iVal; 1693 pIn[i+1] = nInt; 1694 z = (char*)&pIn[i+2]; 1695 pIn[1] = i+nInt; 1696 assert( pIn[1]<=pIn[0] ); 1697 memcpy(z, zName, nName); 1698 z[nName] = 0; 1699 return pIn; 1700 } 1701 1702 /* 1703 ** Return a pointer to the name of a variable in the given VList that 1704 ** has the value iVal. Or return a NULL if there is no such variable in 1705 ** the list 1706 */ 1707 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1708 int i, mx; 1709 if( pIn==0 ) return 0; 1710 mx = pIn[1]; 1711 i = 2; 1712 do{ 1713 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1714 i += pIn[i+1]; 1715 }while( i<mx ); 1716 return 0; 1717 } 1718 1719 /* 1720 ** Return the number of the variable named zName, if it is in VList. 1721 ** or return 0 if there is no such variable. 1722 */ 1723 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1724 int i, mx; 1725 if( pIn==0 ) return 0; 1726 mx = pIn[1]; 1727 i = 2; 1728 do{ 1729 const char *z = (const char*)&pIn[i+2]; 1730 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1731 i += pIn[i+1]; 1732 }while( i<mx ); 1733 return 0; 1734 } 1735