xref: /sqlite-3.40.0/src/util.c (revision 48bf2d72)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
36 ** or to bypass normal error detection during testing in order to let
37 ** execute proceed futher downstream.
38 **
39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0).  The
40 ** sqlite3FaultSim() function only returns non-zero during testing.
41 **
42 ** During testing, if the test harness has set a fault-sim callback using
43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
44 ** each call to sqlite3FaultSim() is relayed to that application-supplied
45 ** callback and the integer return value form the application-supplied
46 ** callback is returned by sqlite3FaultSim().
47 **
48 ** The integer argument to sqlite3FaultSim() is a code to identify which
49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
50 ** should have a unique code.  To prevent legacy testing applications from
51 ** breaking, the codes should not be changed or reused.
52 */
53 #ifndef SQLITE_UNTESTABLE
54 int sqlite3FaultSim(int iTest){
55   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
56   return xCallback ? xCallback(iTest) : SQLITE_OK;
57 }
58 #endif
59 
60 #ifndef SQLITE_OMIT_FLOATING_POINT
61 /*
62 ** Return true if the floating point value is Not a Number (NaN).
63 */
64 int sqlite3IsNaN(double x){
65   u64 y;
66   memcpy(&y,&x,sizeof(y));
67   return IsNaN(y);
68 }
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
70 
71 /*
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
74 **
75 ** The value returned will never be negative.  Nor will it ever be greater
76 ** than the actual length of the string.  For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
78 */
79 int sqlite3Strlen30(const char *z){
80   if( z==0 ) return 0;
81   return 0x3fffffff & (int)strlen(z);
82 }
83 
84 /*
85 ** Return the declared type of a column.  Or return zDflt if the column
86 ** has no declared type.
87 **
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
90 */
91 char *sqlite3ColumnType(Column *pCol, char *zDflt){
92   if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
93   return pCol->zName + strlen(pCol->zName) + 1;
94 }
95 
96 /*
97 ** Helper function for sqlite3Error() - called rarely.  Broken out into
98 ** a separate routine to avoid unnecessary register saves on entry to
99 ** sqlite3Error().
100 */
101 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
102   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
103   sqlite3SystemError(db, err_code);
104 }
105 
106 /*
107 ** Set the current error code to err_code and clear any prior error message.
108 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
109 ** that would be appropriate.
110 */
111 void sqlite3Error(sqlite3 *db, int err_code){
112   assert( db!=0 );
113   db->errCode = err_code;
114   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
115 }
116 
117 /*
118 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
119 ** to do based on the SQLite error code in rc.
120 */
121 void sqlite3SystemError(sqlite3 *db, int rc){
122   if( rc==SQLITE_IOERR_NOMEM ) return;
123   rc &= 0xff;
124   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
125     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
126   }
127 }
128 
129 /*
130 ** Set the most recent error code and error string for the sqlite
131 ** handle "db". The error code is set to "err_code".
132 **
133 ** If it is not NULL, string zFormat specifies the format of the
134 ** error string in the style of the printf functions: The following
135 ** format characters are allowed:
136 **
137 **      %s      Insert a string
138 **      %z      A string that should be freed after use
139 **      %d      Insert an integer
140 **      %T      Insert a token
141 **      %S      Insert the first element of a SrcList
142 **
143 ** zFormat and any string tokens that follow it are assumed to be
144 ** encoded in UTF-8.
145 **
146 ** To clear the most recent error for sqlite handle "db", sqlite3Error
147 ** should be called with err_code set to SQLITE_OK and zFormat set
148 ** to NULL.
149 */
150 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
151   assert( db!=0 );
152   db->errCode = err_code;
153   sqlite3SystemError(db, err_code);
154   if( zFormat==0 ){
155     sqlite3Error(db, err_code);
156   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
157     char *z;
158     va_list ap;
159     va_start(ap, zFormat);
160     z = sqlite3VMPrintf(db, zFormat, ap);
161     va_end(ap);
162     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
163   }
164 }
165 
166 /*
167 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
168 ** The following formatting characters are allowed:
169 **
170 **      %s      Insert a string
171 **      %z      A string that should be freed after use
172 **      %d      Insert an integer
173 **      %T      Insert a token
174 **      %S      Insert the first element of a SrcList
175 **
176 ** This function should be used to report any error that occurs while
177 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
178 ** last thing the sqlite3_prepare() function does is copy the error
179 ** stored by this function into the database handle using sqlite3Error().
180 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
181 ** during statement execution (sqlite3_step() etc.).
182 */
183 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
184   char *zMsg;
185   va_list ap;
186   sqlite3 *db = pParse->db;
187   va_start(ap, zFormat);
188   zMsg = sqlite3VMPrintf(db, zFormat, ap);
189   va_end(ap);
190   if( db->suppressErr ){
191     sqlite3DbFree(db, zMsg);
192   }else{
193     pParse->nErr++;
194     sqlite3DbFree(db, pParse->zErrMsg);
195     pParse->zErrMsg = zMsg;
196     pParse->rc = SQLITE_ERROR;
197     pParse->pWith = 0;
198   }
199 }
200 
201 /*
202 ** If database connection db is currently parsing SQL, then transfer
203 ** error code errCode to that parser if the parser has not already
204 ** encountered some other kind of error.
205 */
206 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
207   Parse *pParse;
208   if( db==0 || (pParse = db->pParse)==0 ) return errCode;
209   pParse->rc = errCode;
210   pParse->nErr++;
211   return errCode;
212 }
213 
214 /*
215 ** Convert an SQL-style quoted string into a normal string by removing
216 ** the quote characters.  The conversion is done in-place.  If the
217 ** input does not begin with a quote character, then this routine
218 ** is a no-op.
219 **
220 ** The input string must be zero-terminated.  A new zero-terminator
221 ** is added to the dequoted string.
222 **
223 ** The return value is -1 if no dequoting occurs or the length of the
224 ** dequoted string, exclusive of the zero terminator, if dequoting does
225 ** occur.
226 **
227 ** 2002-02-14: This routine is extended to remove MS-Access style
228 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
229 ** "a-b-c".
230 */
231 void sqlite3Dequote(char *z){
232   char quote;
233   int i, j;
234   if( z==0 ) return;
235   quote = z[0];
236   if( !sqlite3Isquote(quote) ) return;
237   if( quote=='[' ) quote = ']';
238   for(i=1, j=0;; i++){
239     assert( z[i] );
240     if( z[i]==quote ){
241       if( z[i+1]==quote ){
242         z[j++] = quote;
243         i++;
244       }else{
245         break;
246       }
247     }else{
248       z[j++] = z[i];
249     }
250   }
251   z[j] = 0;
252 }
253 void sqlite3DequoteExpr(Expr *p){
254   assert( sqlite3Isquote(p->u.zToken[0]) );
255   p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
256   sqlite3Dequote(p->u.zToken);
257 }
258 
259 /*
260 ** Generate a Token object from a string
261 */
262 void sqlite3TokenInit(Token *p, char *z){
263   p->z = z;
264   p->n = sqlite3Strlen30(z);
265 }
266 
267 /* Convenient short-hand */
268 #define UpperToLower sqlite3UpperToLower
269 
270 /*
271 ** Some systems have stricmp().  Others have strcasecmp().  Because
272 ** there is no consistency, we will define our own.
273 **
274 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
275 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
276 ** the contents of two buffers containing UTF-8 strings in a
277 ** case-independent fashion, using the same definition of "case
278 ** independence" that SQLite uses internally when comparing identifiers.
279 */
280 int sqlite3_stricmp(const char *zLeft, const char *zRight){
281   if( zLeft==0 ){
282     return zRight ? -1 : 0;
283   }else if( zRight==0 ){
284     return 1;
285   }
286   return sqlite3StrICmp(zLeft, zRight);
287 }
288 int sqlite3StrICmp(const char *zLeft, const char *zRight){
289   unsigned char *a, *b;
290   int c, x;
291   a = (unsigned char *)zLeft;
292   b = (unsigned char *)zRight;
293   for(;;){
294     c = *a;
295     x = *b;
296     if( c==x ){
297       if( c==0 ) break;
298     }else{
299       c = (int)UpperToLower[c] - (int)UpperToLower[x];
300       if( c ) break;
301     }
302     a++;
303     b++;
304   }
305   return c;
306 }
307 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
308   register unsigned char *a, *b;
309   if( zLeft==0 ){
310     return zRight ? -1 : 0;
311   }else if( zRight==0 ){
312     return 1;
313   }
314   a = (unsigned char *)zLeft;
315   b = (unsigned char *)zRight;
316   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
317   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
318 }
319 
320 /*
321 ** Compute an 8-bit hash on a string that is insensitive to case differences
322 */
323 u8 sqlite3StrIHash(const char *z){
324   u8 h = 0;
325   if( z==0 ) return 0;
326   while( z[0] ){
327     h += UpperToLower[(unsigned char)z[0]];
328     z++;
329   }
330   return h;
331 }
332 
333 /*
334 ** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
335 ** E==2 results in 100.  E==50 results in 1.0e50.
336 **
337 ** This routine only works for values of E between 1 and 341.
338 */
339 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
340 #if defined(_MSC_VER)
341   static const LONGDOUBLE_TYPE x[] = {
342     1.0e+001L,
343     1.0e+002L,
344     1.0e+004L,
345     1.0e+008L,
346     1.0e+016L,
347     1.0e+032L,
348     1.0e+064L,
349     1.0e+128L,
350     1.0e+256L
351   };
352   LONGDOUBLE_TYPE r = 1.0;
353   int i;
354   assert( E>=0 && E<=307 );
355   for(i=0; E!=0; i++, E >>=1){
356     if( E & 1 ) r *= x[i];
357   }
358   return r;
359 #else
360   LONGDOUBLE_TYPE x = 10.0;
361   LONGDOUBLE_TYPE r = 1.0;
362   while(1){
363     if( E & 1 ) r *= x;
364     E >>= 1;
365     if( E==0 ) break;
366     x *= x;
367   }
368   return r;
369 #endif
370 }
371 
372 /*
373 ** The string z[] is an text representation of a real number.
374 ** Convert this string to a double and write it into *pResult.
375 **
376 ** The string z[] is length bytes in length (bytes, not characters) and
377 ** uses the encoding enc.  The string is not necessarily zero-terminated.
378 **
379 ** Return TRUE if the result is a valid real number (or integer) and FALSE
380 ** if the string is empty or contains extraneous text.  More specifically
381 ** return
382 **      1          =>  The input string is a pure integer
383 **      2 or more  =>  The input has a decimal point or eNNN clause
384 **      0 or less  =>  The input string is not a valid number
385 **     -1          =>  Not a valid number, but has a valid prefix which
386 **                     includes a decimal point and/or an eNNN clause
387 **
388 ** Valid numbers are in one of these formats:
389 **
390 **    [+-]digits[E[+-]digits]
391 **    [+-]digits.[digits][E[+-]digits]
392 **    [+-].digits[E[+-]digits]
393 **
394 ** Leading and trailing whitespace is ignored for the purpose of determining
395 ** validity.
396 **
397 ** If some prefix of the input string is a valid number, this routine
398 ** returns FALSE but it still converts the prefix and writes the result
399 ** into *pResult.
400 */
401 #if defined(_MSC_VER)
402 #pragma warning(disable : 4756)
403 #endif
404 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
405 #ifndef SQLITE_OMIT_FLOATING_POINT
406   int incr;
407   const char *zEnd;
408   /* sign * significand * (10 ^ (esign * exponent)) */
409   int sign = 1;    /* sign of significand */
410   i64 s = 0;       /* significand */
411   int d = 0;       /* adjust exponent for shifting decimal point */
412   int esign = 1;   /* sign of exponent */
413   int e = 0;       /* exponent */
414   int eValid = 1;  /* True exponent is either not used or is well-formed */
415   double result;
416   int nDigit = 0;  /* Number of digits processed */
417   int eType = 1;   /* 1: pure integer,  2+: fractional  -1 or less: bad UTF16 */
418 
419   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
420   *pResult = 0.0;   /* Default return value, in case of an error */
421   if( length==0 ) return 0;
422 
423   if( enc==SQLITE_UTF8 ){
424     incr = 1;
425     zEnd = z + length;
426   }else{
427     int i;
428     incr = 2;
429     length &= ~1;
430     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
431     testcase( enc==SQLITE_UTF16LE );
432     testcase( enc==SQLITE_UTF16BE );
433     for(i=3-enc; i<length && z[i]==0; i+=2){}
434     if( i<length ) eType = -100;
435     zEnd = &z[i^1];
436     z += (enc&1);
437   }
438 
439   /* skip leading spaces */
440   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
441   if( z>=zEnd ) return 0;
442 
443   /* get sign of significand */
444   if( *z=='-' ){
445     sign = -1;
446     z+=incr;
447   }else if( *z=='+' ){
448     z+=incr;
449   }
450 
451   /* copy max significant digits to significand */
452   while( z<zEnd && sqlite3Isdigit(*z) ){
453     s = s*10 + (*z - '0');
454     z+=incr; nDigit++;
455     if( s>=((LARGEST_INT64-9)/10) ){
456       /* skip non-significant significand digits
457       ** (increase exponent by d to shift decimal left) */
458       while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
459     }
460   }
461   if( z>=zEnd ) goto do_atof_calc;
462 
463   /* if decimal point is present */
464   if( *z=='.' ){
465     z+=incr;
466     eType++;
467     /* copy digits from after decimal to significand
468     ** (decrease exponent by d to shift decimal right) */
469     while( z<zEnd && sqlite3Isdigit(*z) ){
470       if( s<((LARGEST_INT64-9)/10) ){
471         s = s*10 + (*z - '0');
472         d--;
473         nDigit++;
474       }
475       z+=incr;
476     }
477   }
478   if( z>=zEnd ) goto do_atof_calc;
479 
480   /* if exponent is present */
481   if( *z=='e' || *z=='E' ){
482     z+=incr;
483     eValid = 0;
484     eType++;
485 
486     /* This branch is needed to avoid a (harmless) buffer overread.  The
487     ** special comment alerts the mutation tester that the correct answer
488     ** is obtained even if the branch is omitted */
489     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
490 
491     /* get sign of exponent */
492     if( *z=='-' ){
493       esign = -1;
494       z+=incr;
495     }else if( *z=='+' ){
496       z+=incr;
497     }
498     /* copy digits to exponent */
499     while( z<zEnd && sqlite3Isdigit(*z) ){
500       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
501       z+=incr;
502       eValid = 1;
503     }
504   }
505 
506   /* skip trailing spaces */
507   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
508 
509 do_atof_calc:
510   /* adjust exponent by d, and update sign */
511   e = (e*esign) + d;
512   if( e<0 ) {
513     esign = -1;
514     e *= -1;
515   } else {
516     esign = 1;
517   }
518 
519   if( s==0 ) {
520     /* In the IEEE 754 standard, zero is signed. */
521     result = sign<0 ? -(double)0 : (double)0;
522   } else {
523     /* Attempt to reduce exponent.
524     **
525     ** Branches that are not required for the correct answer but which only
526     ** help to obtain the correct answer faster are marked with special
527     ** comments, as a hint to the mutation tester.
528     */
529     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
530       if( esign>0 ){
531         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
532         s *= 10;
533       }else{
534         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
535         s /= 10;
536       }
537       e--;
538     }
539 
540     /* adjust the sign of significand */
541     s = sign<0 ? -s : s;
542 
543     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
544       result = (double)s;
545     }else{
546       /* attempt to handle extremely small/large numbers better */
547       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
548         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
549           LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
550           if( esign<0 ){
551             result = s / scale;
552             result /= 1.0e+308;
553           }else{
554             result = s * scale;
555             result *= 1.0e+308;
556           }
557         }else{ assert( e>=342 );
558           if( esign<0 ){
559             result = 0.0*s;
560           }else{
561 #ifdef INFINITY
562             result = INFINITY*s;
563 #else
564             result = 1e308*1e308*s;  /* Infinity */
565 #endif
566           }
567         }
568       }else{
569         LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
570         if( esign<0 ){
571           result = s / scale;
572         }else{
573           result = s * scale;
574         }
575       }
576     }
577   }
578 
579   /* store the result */
580   *pResult = result;
581 
582   /* return true if number and no extra non-whitespace chracters after */
583   if( z==zEnd && nDigit>0 && eValid && eType>0 ){
584     return eType;
585   }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
586     return -1;
587   }else{
588     return 0;
589   }
590 #else
591   return !sqlite3Atoi64(z, pResult, length, enc);
592 #endif /* SQLITE_OMIT_FLOATING_POINT */
593 }
594 #if defined(_MSC_VER)
595 #pragma warning(default : 4756)
596 #endif
597 
598 /*
599 ** Render an signed 64-bit integer as text.  Store the result in zOut[].
600 **
601 ** The caller must ensure that zOut[] is at least 21 bytes in size.
602 */
603 void sqlite3Int64ToText(i64 v, char *zOut){
604   int i;
605   u64 x;
606   char zTemp[22];
607   if( v<0 ){
608     x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
609   }else{
610     x = v;
611   }
612   i = sizeof(zTemp)-2;
613   zTemp[sizeof(zTemp)-1] = 0;
614   do{
615     zTemp[i--] = (x%10) + '0';
616     x = x/10;
617   }while( x );
618   if( v<0 ) zTemp[i--] = '-';
619   memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
620 }
621 
622 /*
623 ** Compare the 19-character string zNum against the text representation
624 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
625 ** if zNum is less than, equal to, or greater than the string.
626 ** Note that zNum must contain exactly 19 characters.
627 **
628 ** Unlike memcmp() this routine is guaranteed to return the difference
629 ** in the values of the last digit if the only difference is in the
630 ** last digit.  So, for example,
631 **
632 **      compare2pow63("9223372036854775800", 1)
633 **
634 ** will return -8.
635 */
636 static int compare2pow63(const char *zNum, int incr){
637   int c = 0;
638   int i;
639                     /* 012345678901234567 */
640   const char *pow63 = "922337203685477580";
641   for(i=0; c==0 && i<18; i++){
642     c = (zNum[i*incr]-pow63[i])*10;
643   }
644   if( c==0 ){
645     c = zNum[18*incr] - '8';
646     testcase( c==(-1) );
647     testcase( c==0 );
648     testcase( c==(+1) );
649   }
650   return c;
651 }
652 
653 /*
654 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
655 ** routine does *not* accept hexadecimal notation.
656 **
657 ** Returns:
658 **
659 **    -1    Not even a prefix of the input text looks like an integer
660 **     0    Successful transformation.  Fits in a 64-bit signed integer.
661 **     1    Excess non-space text after the integer value
662 **     2    Integer too large for a 64-bit signed integer or is malformed
663 **     3    Special case of 9223372036854775808
664 **
665 ** length is the number of bytes in the string (bytes, not characters).
666 ** The string is not necessarily zero-terminated.  The encoding is
667 ** given by enc.
668 */
669 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
670   int incr;
671   u64 u = 0;
672   int neg = 0; /* assume positive */
673   int i;
674   int c = 0;
675   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
676   int rc;          /* Baseline return code */
677   const char *zStart;
678   const char *zEnd = zNum + length;
679   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
680   if( enc==SQLITE_UTF8 ){
681     incr = 1;
682   }else{
683     incr = 2;
684     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
685     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
686     nonNum = i<length;
687     zEnd = &zNum[i^1];
688     zNum += (enc&1);
689   }
690   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
691   if( zNum<zEnd ){
692     if( *zNum=='-' ){
693       neg = 1;
694       zNum+=incr;
695     }else if( *zNum=='+' ){
696       zNum+=incr;
697     }
698   }
699   zStart = zNum;
700   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
701   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
702     u = u*10 + c - '0';
703   }
704   testcase( i==18*incr );
705   testcase( i==19*incr );
706   testcase( i==20*incr );
707   if( u>LARGEST_INT64 ){
708     /* This test and assignment is needed only to suppress UB warnings
709     ** from clang and -fsanitize=undefined.  This test and assignment make
710     ** the code a little larger and slower, and no harm comes from omitting
711     ** them, but we must appaise the undefined-behavior pharisees. */
712     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
713   }else if( neg ){
714     *pNum = -(i64)u;
715   }else{
716     *pNum = (i64)u;
717   }
718   rc = 0;
719   if( i==0 && zStart==zNum ){    /* No digits */
720     rc = -1;
721   }else if( nonNum ){            /* UTF16 with high-order bytes non-zero */
722     rc = 1;
723   }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
724     int jj = i;
725     do{
726       if( !sqlite3Isspace(zNum[jj]) ){
727         rc = 1;          /* Extra non-space text after the integer */
728         break;
729       }
730       jj += incr;
731     }while( &zNum[jj]<zEnd );
732   }
733   if( i<19*incr ){
734     /* Less than 19 digits, so we know that it fits in 64 bits */
735     assert( u<=LARGEST_INT64 );
736     return rc;
737   }else{
738     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
739     c = i>19*incr ? 1 : compare2pow63(zNum, incr);
740     if( c<0 ){
741       /* zNum is less than 9223372036854775808 so it fits */
742       assert( u<=LARGEST_INT64 );
743       return rc;
744     }else{
745       *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
746       if( c>0 ){
747         /* zNum is greater than 9223372036854775808 so it overflows */
748         return 2;
749       }else{
750         /* zNum is exactly 9223372036854775808.  Fits if negative.  The
751         ** special case 2 overflow if positive */
752         assert( u-1==LARGEST_INT64 );
753         return neg ? rc : 3;
754       }
755     }
756   }
757 }
758 
759 /*
760 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
761 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
762 ** whereas sqlite3Atoi64() does not.
763 **
764 ** Returns:
765 **
766 **     0    Successful transformation.  Fits in a 64-bit signed integer.
767 **     1    Excess text after the integer value
768 **     2    Integer too large for a 64-bit signed integer or is malformed
769 **     3    Special case of 9223372036854775808
770 */
771 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
772 #ifndef SQLITE_OMIT_HEX_INTEGER
773   if( z[0]=='0'
774    && (z[1]=='x' || z[1]=='X')
775   ){
776     u64 u = 0;
777     int i, k;
778     for(i=2; z[i]=='0'; i++){}
779     for(k=i; sqlite3Isxdigit(z[k]); k++){
780       u = u*16 + sqlite3HexToInt(z[k]);
781     }
782     memcpy(pOut, &u, 8);
783     return (z[k]==0 && k-i<=16) ? 0 : 2;
784   }else
785 #endif /* SQLITE_OMIT_HEX_INTEGER */
786   {
787     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
788   }
789 }
790 
791 /*
792 ** If zNum represents an integer that will fit in 32-bits, then set
793 ** *pValue to that integer and return true.  Otherwise return false.
794 **
795 ** This routine accepts both decimal and hexadecimal notation for integers.
796 **
797 ** Any non-numeric characters that following zNum are ignored.
798 ** This is different from sqlite3Atoi64() which requires the
799 ** input number to be zero-terminated.
800 */
801 int sqlite3GetInt32(const char *zNum, int *pValue){
802   sqlite_int64 v = 0;
803   int i, c;
804   int neg = 0;
805   if( zNum[0]=='-' ){
806     neg = 1;
807     zNum++;
808   }else if( zNum[0]=='+' ){
809     zNum++;
810   }
811 #ifndef SQLITE_OMIT_HEX_INTEGER
812   else if( zNum[0]=='0'
813         && (zNum[1]=='x' || zNum[1]=='X')
814         && sqlite3Isxdigit(zNum[2])
815   ){
816     u32 u = 0;
817     zNum += 2;
818     while( zNum[0]=='0' ) zNum++;
819     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
820       u = u*16 + sqlite3HexToInt(zNum[i]);
821     }
822     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
823       memcpy(pValue, &u, 4);
824       return 1;
825     }else{
826       return 0;
827     }
828   }
829 #endif
830   if( !sqlite3Isdigit(zNum[0]) ) return 0;
831   while( zNum[0]=='0' ) zNum++;
832   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
833     v = v*10 + c;
834   }
835 
836   /* The longest decimal representation of a 32 bit integer is 10 digits:
837   **
838   **             1234567890
839   **     2^31 -> 2147483648
840   */
841   testcase( i==10 );
842   if( i>10 ){
843     return 0;
844   }
845   testcase( v-neg==2147483647 );
846   if( v-neg>2147483647 ){
847     return 0;
848   }
849   if( neg ){
850     v = -v;
851   }
852   *pValue = (int)v;
853   return 1;
854 }
855 
856 /*
857 ** Return a 32-bit integer value extracted from a string.  If the
858 ** string is not an integer, just return 0.
859 */
860 int sqlite3Atoi(const char *z){
861   int x = 0;
862   sqlite3GetInt32(z, &x);
863   return x;
864 }
865 
866 /*
867 ** Try to convert z into an unsigned 32-bit integer.  Return true on
868 ** success and false if there is an error.
869 **
870 ** Only decimal notation is accepted.
871 */
872 int sqlite3GetUInt32(const char *z, u32 *pI){
873   u64 v = 0;
874   int i;
875   for(i=0; sqlite3Isdigit(z[i]); i++){
876     v = v*10 + z[i] - '0';
877     if( v>4294967296LL ){ *pI = 0; return 0; }
878   }
879   if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
880   *pI = (u32)v;
881   return 1;
882 }
883 
884 /*
885 ** The variable-length integer encoding is as follows:
886 **
887 ** KEY:
888 **         A = 0xxxxxxx    7 bits of data and one flag bit
889 **         B = 1xxxxxxx    7 bits of data and one flag bit
890 **         C = xxxxxxxx    8 bits of data
891 **
892 **  7 bits - A
893 ** 14 bits - BA
894 ** 21 bits - BBA
895 ** 28 bits - BBBA
896 ** 35 bits - BBBBA
897 ** 42 bits - BBBBBA
898 ** 49 bits - BBBBBBA
899 ** 56 bits - BBBBBBBA
900 ** 64 bits - BBBBBBBBC
901 */
902 
903 /*
904 ** Write a 64-bit variable-length integer to memory starting at p[0].
905 ** The length of data write will be between 1 and 9 bytes.  The number
906 ** of bytes written is returned.
907 **
908 ** A variable-length integer consists of the lower 7 bits of each byte
909 ** for all bytes that have the 8th bit set and one byte with the 8th
910 ** bit clear.  Except, if we get to the 9th byte, it stores the full
911 ** 8 bits and is the last byte.
912 */
913 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
914   int i, j, n;
915   u8 buf[10];
916   if( v & (((u64)0xff000000)<<32) ){
917     p[8] = (u8)v;
918     v >>= 8;
919     for(i=7; i>=0; i--){
920       p[i] = (u8)((v & 0x7f) | 0x80);
921       v >>= 7;
922     }
923     return 9;
924   }
925   n = 0;
926   do{
927     buf[n++] = (u8)((v & 0x7f) | 0x80);
928     v >>= 7;
929   }while( v!=0 );
930   buf[0] &= 0x7f;
931   assert( n<=9 );
932   for(i=0, j=n-1; j>=0; j--, i++){
933     p[i] = buf[j];
934   }
935   return n;
936 }
937 int sqlite3PutVarint(unsigned char *p, u64 v){
938   if( v<=0x7f ){
939     p[0] = v&0x7f;
940     return 1;
941   }
942   if( v<=0x3fff ){
943     p[0] = ((v>>7)&0x7f)|0x80;
944     p[1] = v&0x7f;
945     return 2;
946   }
947   return putVarint64(p,v);
948 }
949 
950 /*
951 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
952 ** are defined here rather than simply putting the constant expressions
953 ** inline in order to work around bugs in the RVT compiler.
954 **
955 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
956 **
957 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
958 */
959 #define SLOT_2_0     0x001fc07f
960 #define SLOT_4_2_0   0xf01fc07f
961 
962 
963 /*
964 ** Read a 64-bit variable-length integer from memory starting at p[0].
965 ** Return the number of bytes read.  The value is stored in *v.
966 */
967 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
968   u32 a,b,s;
969 
970   if( ((signed char*)p)[0]>=0 ){
971     *v = *p;
972     return 1;
973   }
974   if( ((signed char*)p)[1]>=0 ){
975     *v = ((u32)(p[0]&0x7f)<<7) | p[1];
976     return 2;
977   }
978 
979   /* Verify that constants are precomputed correctly */
980   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
981   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
982 
983   a = ((u32)p[0])<<14;
984   b = p[1];
985   p += 2;
986   a |= *p;
987   /* a: p0<<14 | p2 (unmasked) */
988   if (!(a&0x80))
989   {
990     a &= SLOT_2_0;
991     b &= 0x7f;
992     b = b<<7;
993     a |= b;
994     *v = a;
995     return 3;
996   }
997 
998   /* CSE1 from below */
999   a &= SLOT_2_0;
1000   p++;
1001   b = b<<14;
1002   b |= *p;
1003   /* b: p1<<14 | p3 (unmasked) */
1004   if (!(b&0x80))
1005   {
1006     b &= SLOT_2_0;
1007     /* moved CSE1 up */
1008     /* a &= (0x7f<<14)|(0x7f); */
1009     a = a<<7;
1010     a |= b;
1011     *v = a;
1012     return 4;
1013   }
1014 
1015   /* a: p0<<14 | p2 (masked) */
1016   /* b: p1<<14 | p3 (unmasked) */
1017   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1018   /* moved CSE1 up */
1019   /* a &= (0x7f<<14)|(0x7f); */
1020   b &= SLOT_2_0;
1021   s = a;
1022   /* s: p0<<14 | p2 (masked) */
1023 
1024   p++;
1025   a = a<<14;
1026   a |= *p;
1027   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1028   if (!(a&0x80))
1029   {
1030     /* we can skip these cause they were (effectively) done above
1031     ** while calculating s */
1032     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1033     /* b &= (0x7f<<14)|(0x7f); */
1034     b = b<<7;
1035     a |= b;
1036     s = s>>18;
1037     *v = ((u64)s)<<32 | a;
1038     return 5;
1039   }
1040 
1041   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1042   s = s<<7;
1043   s |= b;
1044   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1045 
1046   p++;
1047   b = b<<14;
1048   b |= *p;
1049   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1050   if (!(b&0x80))
1051   {
1052     /* we can skip this cause it was (effectively) done above in calc'ing s */
1053     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1054     a &= SLOT_2_0;
1055     a = a<<7;
1056     a |= b;
1057     s = s>>18;
1058     *v = ((u64)s)<<32 | a;
1059     return 6;
1060   }
1061 
1062   p++;
1063   a = a<<14;
1064   a |= *p;
1065   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1066   if (!(a&0x80))
1067   {
1068     a &= SLOT_4_2_0;
1069     b &= SLOT_2_0;
1070     b = b<<7;
1071     a |= b;
1072     s = s>>11;
1073     *v = ((u64)s)<<32 | a;
1074     return 7;
1075   }
1076 
1077   /* CSE2 from below */
1078   a &= SLOT_2_0;
1079   p++;
1080   b = b<<14;
1081   b |= *p;
1082   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1083   if (!(b&0x80))
1084   {
1085     b &= SLOT_4_2_0;
1086     /* moved CSE2 up */
1087     /* a &= (0x7f<<14)|(0x7f); */
1088     a = a<<7;
1089     a |= b;
1090     s = s>>4;
1091     *v = ((u64)s)<<32 | a;
1092     return 8;
1093   }
1094 
1095   p++;
1096   a = a<<15;
1097   a |= *p;
1098   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1099 
1100   /* moved CSE2 up */
1101   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1102   b &= SLOT_2_0;
1103   b = b<<8;
1104   a |= b;
1105 
1106   s = s<<4;
1107   b = p[-4];
1108   b &= 0x7f;
1109   b = b>>3;
1110   s |= b;
1111 
1112   *v = ((u64)s)<<32 | a;
1113 
1114   return 9;
1115 }
1116 
1117 /*
1118 ** Read a 32-bit variable-length integer from memory starting at p[0].
1119 ** Return the number of bytes read.  The value is stored in *v.
1120 **
1121 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1122 ** integer, then set *v to 0xffffffff.
1123 **
1124 ** A MACRO version, getVarint32, is provided which inlines the
1125 ** single-byte case.  All code should use the MACRO version as
1126 ** this function assumes the single-byte case has already been handled.
1127 */
1128 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1129   u32 a,b;
1130 
1131   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1132   ** by the getVarin32() macro */
1133   a = *p;
1134   /* a: p0 (unmasked) */
1135 #ifndef getVarint32
1136   if (!(a&0x80))
1137   {
1138     /* Values between 0 and 127 */
1139     *v = a;
1140     return 1;
1141   }
1142 #endif
1143 
1144   /* The 2-byte case */
1145   p++;
1146   b = *p;
1147   /* b: p1 (unmasked) */
1148   if (!(b&0x80))
1149   {
1150     /* Values between 128 and 16383 */
1151     a &= 0x7f;
1152     a = a<<7;
1153     *v = a | b;
1154     return 2;
1155   }
1156 
1157   /* The 3-byte case */
1158   p++;
1159   a = a<<14;
1160   a |= *p;
1161   /* a: p0<<14 | p2 (unmasked) */
1162   if (!(a&0x80))
1163   {
1164     /* Values between 16384 and 2097151 */
1165     a &= (0x7f<<14)|(0x7f);
1166     b &= 0x7f;
1167     b = b<<7;
1168     *v = a | b;
1169     return 3;
1170   }
1171 
1172   /* A 32-bit varint is used to store size information in btrees.
1173   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1174   ** A 3-byte varint is sufficient, for example, to record the size
1175   ** of a 1048569-byte BLOB or string.
1176   **
1177   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1178   ** rare larger cases can be handled by the slower 64-bit varint
1179   ** routine.
1180   */
1181 #if 1
1182   {
1183     u64 v64;
1184     u8 n;
1185 
1186     n = sqlite3GetVarint(p-2, &v64);
1187     assert( n>3 && n<=9 );
1188     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1189       *v = 0xffffffff;
1190     }else{
1191       *v = (u32)v64;
1192     }
1193     return n;
1194   }
1195 
1196 #else
1197   /* For following code (kept for historical record only) shows an
1198   ** unrolling for the 3- and 4-byte varint cases.  This code is
1199   ** slightly faster, but it is also larger and much harder to test.
1200   */
1201   p++;
1202   b = b<<14;
1203   b |= *p;
1204   /* b: p1<<14 | p3 (unmasked) */
1205   if (!(b&0x80))
1206   {
1207     /* Values between 2097152 and 268435455 */
1208     b &= (0x7f<<14)|(0x7f);
1209     a &= (0x7f<<14)|(0x7f);
1210     a = a<<7;
1211     *v = a | b;
1212     return 4;
1213   }
1214 
1215   p++;
1216   a = a<<14;
1217   a |= *p;
1218   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1219   if (!(a&0x80))
1220   {
1221     /* Values  between 268435456 and 34359738367 */
1222     a &= SLOT_4_2_0;
1223     b &= SLOT_4_2_0;
1224     b = b<<7;
1225     *v = a | b;
1226     return 5;
1227   }
1228 
1229   /* We can only reach this point when reading a corrupt database
1230   ** file.  In that case we are not in any hurry.  Use the (relatively
1231   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1232   ** value. */
1233   {
1234     u64 v64;
1235     u8 n;
1236 
1237     p -= 4;
1238     n = sqlite3GetVarint(p, &v64);
1239     assert( n>5 && n<=9 );
1240     *v = (u32)v64;
1241     return n;
1242   }
1243 #endif
1244 }
1245 
1246 /*
1247 ** Return the number of bytes that will be needed to store the given
1248 ** 64-bit integer.
1249 */
1250 int sqlite3VarintLen(u64 v){
1251   int i;
1252   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1253   return i;
1254 }
1255 
1256 
1257 /*
1258 ** Read or write a four-byte big-endian integer value.
1259 */
1260 u32 sqlite3Get4byte(const u8 *p){
1261 #if SQLITE_BYTEORDER==4321
1262   u32 x;
1263   memcpy(&x,p,4);
1264   return x;
1265 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1266   u32 x;
1267   memcpy(&x,p,4);
1268   return __builtin_bswap32(x);
1269 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1270   u32 x;
1271   memcpy(&x,p,4);
1272   return _byteswap_ulong(x);
1273 #else
1274   testcase( p[0]&0x80 );
1275   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1276 #endif
1277 }
1278 void sqlite3Put4byte(unsigned char *p, u32 v){
1279 #if SQLITE_BYTEORDER==4321
1280   memcpy(p,&v,4);
1281 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1282   u32 x = __builtin_bswap32(v);
1283   memcpy(p,&x,4);
1284 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1285   u32 x = _byteswap_ulong(v);
1286   memcpy(p,&x,4);
1287 #else
1288   p[0] = (u8)(v>>24);
1289   p[1] = (u8)(v>>16);
1290   p[2] = (u8)(v>>8);
1291   p[3] = (u8)v;
1292 #endif
1293 }
1294 
1295 
1296 
1297 /*
1298 ** Translate a single byte of Hex into an integer.
1299 ** This routine only works if h really is a valid hexadecimal
1300 ** character:  0..9a..fA..F
1301 */
1302 u8 sqlite3HexToInt(int h){
1303   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1304 #ifdef SQLITE_ASCII
1305   h += 9*(1&(h>>6));
1306 #endif
1307 #ifdef SQLITE_EBCDIC
1308   h += 9*(1&~(h>>4));
1309 #endif
1310   return (u8)(h & 0xf);
1311 }
1312 
1313 #if !defined(SQLITE_OMIT_BLOB_LITERAL)
1314 /*
1315 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1316 ** value.  Return a pointer to its binary value.  Space to hold the
1317 ** binary value has been obtained from malloc and must be freed by
1318 ** the calling routine.
1319 */
1320 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1321   char *zBlob;
1322   int i;
1323 
1324   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1325   n--;
1326   if( zBlob ){
1327     for(i=0; i<n; i+=2){
1328       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1329     }
1330     zBlob[i/2] = 0;
1331   }
1332   return zBlob;
1333 }
1334 #endif /* !SQLITE_OMIT_BLOB_LITERAL */
1335 
1336 /*
1337 ** Log an error that is an API call on a connection pointer that should
1338 ** not have been used.  The "type" of connection pointer is given as the
1339 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1340 */
1341 static void logBadConnection(const char *zType){
1342   sqlite3_log(SQLITE_MISUSE,
1343      "API call with %s database connection pointer",
1344      zType
1345   );
1346 }
1347 
1348 /*
1349 ** Check to make sure we have a valid db pointer.  This test is not
1350 ** foolproof but it does provide some measure of protection against
1351 ** misuse of the interface such as passing in db pointers that are
1352 ** NULL or which have been previously closed.  If this routine returns
1353 ** 1 it means that the db pointer is valid and 0 if it should not be
1354 ** dereferenced for any reason.  The calling function should invoke
1355 ** SQLITE_MISUSE immediately.
1356 **
1357 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1358 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1359 ** open properly and is not fit for general use but which can be
1360 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1361 */
1362 int sqlite3SafetyCheckOk(sqlite3 *db){
1363   u32 magic;
1364   if( db==0 ){
1365     logBadConnection("NULL");
1366     return 0;
1367   }
1368   magic = db->magic;
1369   if( magic!=SQLITE_MAGIC_OPEN ){
1370     if( sqlite3SafetyCheckSickOrOk(db) ){
1371       testcase( sqlite3GlobalConfig.xLog!=0 );
1372       logBadConnection("unopened");
1373     }
1374     return 0;
1375   }else{
1376     return 1;
1377   }
1378 }
1379 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1380   u32 magic;
1381   magic = db->magic;
1382   if( magic!=SQLITE_MAGIC_SICK &&
1383       magic!=SQLITE_MAGIC_OPEN &&
1384       magic!=SQLITE_MAGIC_BUSY ){
1385     testcase( sqlite3GlobalConfig.xLog!=0 );
1386     logBadConnection("invalid");
1387     return 0;
1388   }else{
1389     return 1;
1390   }
1391 }
1392 
1393 /*
1394 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1395 ** the other 64-bit signed integer at *pA and store the result in *pA.
1396 ** Return 0 on success.  Or if the operation would have resulted in an
1397 ** overflow, leave *pA unchanged and return 1.
1398 */
1399 int sqlite3AddInt64(i64 *pA, i64 iB){
1400 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1401   return __builtin_add_overflow(*pA, iB, pA);
1402 #else
1403   i64 iA = *pA;
1404   testcase( iA==0 ); testcase( iA==1 );
1405   testcase( iB==-1 ); testcase( iB==0 );
1406   if( iB>=0 ){
1407     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1408     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1409     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1410   }else{
1411     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1412     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1413     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1414   }
1415   *pA += iB;
1416   return 0;
1417 #endif
1418 }
1419 int sqlite3SubInt64(i64 *pA, i64 iB){
1420 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1421   return __builtin_sub_overflow(*pA, iB, pA);
1422 #else
1423   testcase( iB==SMALLEST_INT64+1 );
1424   if( iB==SMALLEST_INT64 ){
1425     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1426     if( (*pA)>=0 ) return 1;
1427     *pA -= iB;
1428     return 0;
1429   }else{
1430     return sqlite3AddInt64(pA, -iB);
1431   }
1432 #endif
1433 }
1434 int sqlite3MulInt64(i64 *pA, i64 iB){
1435 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1436   return __builtin_mul_overflow(*pA, iB, pA);
1437 #else
1438   i64 iA = *pA;
1439   if( iB>0 ){
1440     if( iA>LARGEST_INT64/iB ) return 1;
1441     if( iA<SMALLEST_INT64/iB ) return 1;
1442   }else if( iB<0 ){
1443     if( iA>0 ){
1444       if( iB<SMALLEST_INT64/iA ) return 1;
1445     }else if( iA<0 ){
1446       if( iB==SMALLEST_INT64 ) return 1;
1447       if( iA==SMALLEST_INT64 ) return 1;
1448       if( -iA>LARGEST_INT64/-iB ) return 1;
1449     }
1450   }
1451   *pA = iA*iB;
1452   return 0;
1453 #endif
1454 }
1455 
1456 /*
1457 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1458 ** if the integer has a value of -2147483648, return +2147483647
1459 */
1460 int sqlite3AbsInt32(int x){
1461   if( x>=0 ) return x;
1462   if( x==(int)0x80000000 ) return 0x7fffffff;
1463   return -x;
1464 }
1465 
1466 #ifdef SQLITE_ENABLE_8_3_NAMES
1467 /*
1468 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1469 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1470 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1471 ** three characters, then shorten the suffix on z[] to be the last three
1472 ** characters of the original suffix.
1473 **
1474 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1475 ** do the suffix shortening regardless of URI parameter.
1476 **
1477 ** Examples:
1478 **
1479 **     test.db-journal    =>   test.nal
1480 **     test.db-wal        =>   test.wal
1481 **     test.db-shm        =>   test.shm
1482 **     test.db-mj7f3319fa =>   test.9fa
1483 */
1484 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1485 #if SQLITE_ENABLE_8_3_NAMES<2
1486   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1487 #endif
1488   {
1489     int i, sz;
1490     sz = sqlite3Strlen30(z);
1491     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1492     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1493   }
1494 }
1495 #endif
1496 
1497 /*
1498 ** Find (an approximate) sum of two LogEst values.  This computation is
1499 ** not a simple "+" operator because LogEst is stored as a logarithmic
1500 ** value.
1501 **
1502 */
1503 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1504   static const unsigned char x[] = {
1505      10, 10,                         /* 0,1 */
1506       9, 9,                          /* 2,3 */
1507       8, 8,                          /* 4,5 */
1508       7, 7, 7,                       /* 6,7,8 */
1509       6, 6, 6,                       /* 9,10,11 */
1510       5, 5, 5,                       /* 12-14 */
1511       4, 4, 4, 4,                    /* 15-18 */
1512       3, 3, 3, 3, 3, 3,              /* 19-24 */
1513       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1514   };
1515   if( a>=b ){
1516     if( a>b+49 ) return a;
1517     if( a>b+31 ) return a+1;
1518     return a+x[a-b];
1519   }else{
1520     if( b>a+49 ) return b;
1521     if( b>a+31 ) return b+1;
1522     return b+x[b-a];
1523   }
1524 }
1525 
1526 /*
1527 ** Convert an integer into a LogEst.  In other words, compute an
1528 ** approximation for 10*log2(x).
1529 */
1530 LogEst sqlite3LogEst(u64 x){
1531   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1532   LogEst y = 40;
1533   if( x<8 ){
1534     if( x<2 ) return 0;
1535     while( x<8 ){  y -= 10; x <<= 1; }
1536   }else{
1537 #if GCC_VERSION>=5004000
1538     int i = 60 - __builtin_clzll(x);
1539     y += i*10;
1540     x >>= i;
1541 #else
1542     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1543     while( x>15 ){  y += 10; x >>= 1; }
1544 #endif
1545   }
1546   return a[x&7] + y - 10;
1547 }
1548 
1549 #ifndef SQLITE_OMIT_VIRTUALTABLE
1550 /*
1551 ** Convert a double into a LogEst
1552 ** In other words, compute an approximation for 10*log2(x).
1553 */
1554 LogEst sqlite3LogEstFromDouble(double x){
1555   u64 a;
1556   LogEst e;
1557   assert( sizeof(x)==8 && sizeof(a)==8 );
1558   if( x<=1 ) return 0;
1559   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1560   memcpy(&a, &x, 8);
1561   e = (a>>52) - 1022;
1562   return e*10;
1563 }
1564 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1565 
1566 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1567     defined(SQLITE_ENABLE_STAT4) || \
1568     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1569 /*
1570 ** Convert a LogEst into an integer.
1571 **
1572 ** Note that this routine is only used when one or more of various
1573 ** non-standard compile-time options is enabled.
1574 */
1575 u64 sqlite3LogEstToInt(LogEst x){
1576   u64 n;
1577   n = x%10;
1578   x /= 10;
1579   if( n>=5 ) n -= 2;
1580   else if( n>=1 ) n -= 1;
1581 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1582     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1583   if( x>60 ) return (u64)LARGEST_INT64;
1584 #else
1585   /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
1586   ** possible to this routine is 310, resulting in a maximum x of 31 */
1587   assert( x<=60 );
1588 #endif
1589   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1590 }
1591 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1592 
1593 /*
1594 ** Add a new name/number pair to a VList.  This might require that the
1595 ** VList object be reallocated, so return the new VList.  If an OOM
1596 ** error occurs, the original VList returned and the
1597 ** db->mallocFailed flag is set.
1598 **
1599 ** A VList is really just an array of integers.  To destroy a VList,
1600 ** simply pass it to sqlite3DbFree().
1601 **
1602 ** The first integer is the number of integers allocated for the whole
1603 ** VList.  The second integer is the number of integers actually used.
1604 ** Each name/number pair is encoded by subsequent groups of 3 or more
1605 ** integers.
1606 **
1607 ** Each name/number pair starts with two integers which are the numeric
1608 ** value for the pair and the size of the name/number pair, respectively.
1609 ** The text name overlays one or more following integers.  The text name
1610 ** is always zero-terminated.
1611 **
1612 ** Conceptually:
1613 **
1614 **    struct VList {
1615 **      int nAlloc;   // Number of allocated slots
1616 **      int nUsed;    // Number of used slots
1617 **      struct VListEntry {
1618 **        int iValue;    // Value for this entry
1619 **        int nSlot;     // Slots used by this entry
1620 **        // ... variable name goes here
1621 **      } a[0];
1622 **    }
1623 **
1624 ** During code generation, pointers to the variable names within the
1625 ** VList are taken.  When that happens, nAlloc is set to zero as an
1626 ** indication that the VList may never again be enlarged, since the
1627 ** accompanying realloc() would invalidate the pointers.
1628 */
1629 VList *sqlite3VListAdd(
1630   sqlite3 *db,           /* The database connection used for malloc() */
1631   VList *pIn,            /* The input VList.  Might be NULL */
1632   const char *zName,     /* Name of symbol to add */
1633   int nName,             /* Bytes of text in zName */
1634   int iVal               /* Value to associate with zName */
1635 ){
1636   int nInt;              /* number of sizeof(int) objects needed for zName */
1637   char *z;               /* Pointer to where zName will be stored */
1638   int i;                 /* Index in pIn[] where zName is stored */
1639 
1640   nInt = nName/4 + 3;
1641   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1642   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1643     /* Enlarge the allocation */
1644     sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1645     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1646     if( pOut==0 ) return pIn;
1647     if( pIn==0 ) pOut[1] = 2;
1648     pIn = pOut;
1649     pIn[0] = nAlloc;
1650   }
1651   i = pIn[1];
1652   pIn[i] = iVal;
1653   pIn[i+1] = nInt;
1654   z = (char*)&pIn[i+2];
1655   pIn[1] = i+nInt;
1656   assert( pIn[1]<=pIn[0] );
1657   memcpy(z, zName, nName);
1658   z[nName] = 0;
1659   return pIn;
1660 }
1661 
1662 /*
1663 ** Return a pointer to the name of a variable in the given VList that
1664 ** has the value iVal.  Or return a NULL if there is no such variable in
1665 ** the list
1666 */
1667 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1668   int i, mx;
1669   if( pIn==0 ) return 0;
1670   mx = pIn[1];
1671   i = 2;
1672   do{
1673     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1674     i += pIn[i+1];
1675   }while( i<mx );
1676   return 0;
1677 }
1678 
1679 /*
1680 ** Return the number of the variable named zName, if it is in VList.
1681 ** or return 0 if there is no such variable.
1682 */
1683 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1684   int i, mx;
1685   if( pIn==0 ) return 0;
1686   mx = pIn[1];
1687   i = 2;
1688   do{
1689     const char *z = (const char*)&pIn[i+2];
1690     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1691     i += pIn[i+1];
1692   }while( i<mx );
1693   return 0;
1694 }
1695