1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifdef SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 #ifndef SQLITE_OMIT_FLOATING_POINT 35 /* 36 ** Return true if the floating point value is Not a Number (NaN). 37 ** 38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 39 ** Otherwise, we have our own implementation that works on most systems. 40 */ 41 int sqlite3IsNaN(double x){ 42 int rc; /* The value return */ 43 #if !defined(SQLITE_HAVE_ISNAN) 44 /* 45 ** Systems that support the isnan() library function should probably 46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 47 ** found that many systems do not have a working isnan() function so 48 ** this implementation is provided as an alternative. 49 ** 50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 51 ** On the other hand, the use of -ffast-math comes with the following 52 ** warning: 53 ** 54 ** This option [-ffast-math] should never be turned on by any 55 ** -O option since it can result in incorrect output for programs 56 ** which depend on an exact implementation of IEEE or ISO 57 ** rules/specifications for math functions. 58 ** 59 ** Under MSVC, this NaN test may fail if compiled with a floating- 60 ** point precision mode other than /fp:precise. From the MSDN 61 ** documentation: 62 ** 63 ** The compiler [with /fp:precise] will properly handle comparisons 64 ** involving NaN. For example, x != x evaluates to true if x is NaN 65 ** ... 66 */ 67 #ifdef __FAST_MATH__ 68 # error SQLite will not work correctly with the -ffast-math option of GCC. 69 #endif 70 volatile double y = x; 71 volatile double z = y; 72 rc = (y!=z); 73 #else /* if defined(SQLITE_HAVE_ISNAN) */ 74 rc = isnan(x); 75 #endif /* SQLITE_HAVE_ISNAN */ 76 testcase( rc ); 77 return rc; 78 } 79 #endif /* SQLITE_OMIT_FLOATING_POINT */ 80 81 /* 82 ** Compute a string length that is limited to what can be stored in 83 ** lower 30 bits of a 32-bit signed integer. 84 ** 85 ** The value returned will never be negative. Nor will it ever be greater 86 ** than the actual length of the string. For very long strings (greater 87 ** than 1GiB) the value returned might be less than the true string length. 88 */ 89 int sqlite3Strlen30(const char *z){ 90 const char *z2 = z; 91 if( z==0 ) return 0; 92 while( *z2 ){ z2++; } 93 return 0x3fffffff & (int)(z2 - z); 94 } 95 96 /* 97 ** Set the most recent error code and error string for the sqlite 98 ** handle "db". The error code is set to "err_code". 99 ** 100 ** If it is not NULL, string zFormat specifies the format of the 101 ** error string in the style of the printf functions: The following 102 ** format characters are allowed: 103 ** 104 ** %s Insert a string 105 ** %z A string that should be freed after use 106 ** %d Insert an integer 107 ** %T Insert a token 108 ** %S Insert the first element of a SrcList 109 ** 110 ** zFormat and any string tokens that follow it are assumed to be 111 ** encoded in UTF-8. 112 ** 113 ** To clear the most recent error for sqlite handle "db", sqlite3Error 114 ** should be called with err_code set to SQLITE_OK and zFormat set 115 ** to NULL. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 118 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 119 db->errCode = err_code; 120 if( zFormat ){ 121 char *z; 122 va_list ap; 123 va_start(ap, zFormat); 124 z = sqlite3VMPrintf(db, zFormat, ap); 125 va_end(ap); 126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 127 }else{ 128 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 129 } 130 } 131 } 132 133 /* 134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 135 ** The following formatting characters are allowed: 136 ** 137 ** %s Insert a string 138 ** %z A string that should be freed after use 139 ** %d Insert an integer 140 ** %T Insert a token 141 ** %S Insert the first element of a SrcList 142 ** 143 ** This function should be used to report any error that occurs whilst 144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 145 ** last thing the sqlite3_prepare() function does is copy the error 146 ** stored by this function into the database handle using sqlite3Error(). 147 ** Function sqlite3Error() should be used during statement execution 148 ** (sqlite3_step() etc.). 149 */ 150 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 151 char *zMsg; 152 va_list ap; 153 sqlite3 *db = pParse->db; 154 va_start(ap, zFormat); 155 zMsg = sqlite3VMPrintf(db, zFormat, ap); 156 va_end(ap); 157 if( db->suppressErr ){ 158 sqlite3DbFree(db, zMsg); 159 }else{ 160 pParse->nErr++; 161 sqlite3DbFree(db, pParse->zErrMsg); 162 pParse->zErrMsg = zMsg; 163 pParse->rc = SQLITE_ERROR; 164 } 165 } 166 167 /* 168 ** Convert an SQL-style quoted string into a normal string by removing 169 ** the quote characters. The conversion is done in-place. If the 170 ** input does not begin with a quote character, then this routine 171 ** is a no-op. 172 ** 173 ** The input string must be zero-terminated. A new zero-terminator 174 ** is added to the dequoted string. 175 ** 176 ** The return value is -1 if no dequoting occurs or the length of the 177 ** dequoted string, exclusive of the zero terminator, if dequoting does 178 ** occur. 179 ** 180 ** 2002-Feb-14: This routine is extended to remove MS-Access style 181 ** brackets from around identifers. For example: "[a-b-c]" becomes 182 ** "a-b-c". 183 */ 184 int sqlite3Dequote(char *z){ 185 char quote; 186 int i, j; 187 if( z==0 ) return -1; 188 quote = z[0]; 189 switch( quote ){ 190 case '\'': break; 191 case '"': break; 192 case '`': break; /* For MySQL compatibility */ 193 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 194 default: return -1; 195 } 196 for(i=1, j=0; ALWAYS(z[i]); i++){ 197 if( z[i]==quote ){ 198 if( z[i+1]==quote ){ 199 z[j++] = quote; 200 i++; 201 }else{ 202 break; 203 } 204 }else{ 205 z[j++] = z[i]; 206 } 207 } 208 z[j] = 0; 209 return j; 210 } 211 212 /* Convenient short-hand */ 213 #define UpperToLower sqlite3UpperToLower 214 215 /* 216 ** Some systems have stricmp(). Others have strcasecmp(). Because 217 ** there is no consistency, we will define our own. 218 ** 219 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 220 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 221 ** the contents of two buffers containing UTF-8 strings in a 222 ** case-independent fashion, using the same definition of "case 223 ** independence" that SQLite uses internally when comparing identifiers. 224 */ 225 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 226 register unsigned char *a, *b; 227 a = (unsigned char *)zLeft; 228 b = (unsigned char *)zRight; 229 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 230 return UpperToLower[*a] - UpperToLower[*b]; 231 } 232 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 233 register unsigned char *a, *b; 234 a = (unsigned char *)zLeft; 235 b = (unsigned char *)zRight; 236 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 237 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 238 } 239 240 /* 241 ** The string z[] is an text representation of a real number. 242 ** Convert this string to a double and write it into *pResult. 243 ** 244 ** The string z[] is length bytes in length (bytes, not characters) and 245 ** uses the encoding enc. The string is not necessarily zero-terminated. 246 ** 247 ** Return TRUE if the result is a valid real number (or integer) and FALSE 248 ** if the string is empty or contains extraneous text. Valid numbers 249 ** are in one of these formats: 250 ** 251 ** [+-]digits[E[+-]digits] 252 ** [+-]digits.[digits][E[+-]digits] 253 ** [+-].digits[E[+-]digits] 254 ** 255 ** Leading and trailing whitespace is ignored for the purpose of determining 256 ** validity. 257 ** 258 ** If some prefix of the input string is a valid number, this routine 259 ** returns FALSE but it still converts the prefix and writes the result 260 ** into *pResult. 261 */ 262 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 263 #ifndef SQLITE_OMIT_FLOATING_POINT 264 int incr; 265 const char *zEnd = z + length; 266 /* sign * significand * (10 ^ (esign * exponent)) */ 267 int sign = 1; /* sign of significand */ 268 i64 s = 0; /* significand */ 269 int d = 0; /* adjust exponent for shifting decimal point */ 270 int esign = 1; /* sign of exponent */ 271 int e = 0; /* exponent */ 272 int eValid = 1; /* True exponent is either not used or is well-formed */ 273 double result; 274 int nDigits = 0; 275 int nonNum = 0; 276 277 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 278 *pResult = 0.0; /* Default return value, in case of an error */ 279 280 if( enc==SQLITE_UTF8 ){ 281 incr = 1; 282 }else{ 283 int i; 284 incr = 2; 285 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 286 for(i=3-enc; i<length && z[i]==0; i+=2){} 287 nonNum = i<length; 288 zEnd = z+i+enc-3; 289 z += (enc&1); 290 } 291 292 /* skip leading spaces */ 293 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 294 if( z>=zEnd ) return 0; 295 296 /* get sign of significand */ 297 if( *z=='-' ){ 298 sign = -1; 299 z+=incr; 300 }else if( *z=='+' ){ 301 z+=incr; 302 } 303 304 /* skip leading zeroes */ 305 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 306 307 /* copy max significant digits to significand */ 308 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 309 s = s*10 + (*z - '0'); 310 z+=incr, nDigits++; 311 } 312 313 /* skip non-significant significand digits 314 ** (increase exponent by d to shift decimal left) */ 315 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 316 if( z>=zEnd ) goto do_atof_calc; 317 318 /* if decimal point is present */ 319 if( *z=='.' ){ 320 z+=incr; 321 /* copy digits from after decimal to significand 322 ** (decrease exponent by d to shift decimal right) */ 323 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 324 s = s*10 + (*z - '0'); 325 z+=incr, nDigits++, d--; 326 } 327 /* skip non-significant digits */ 328 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 329 } 330 if( z>=zEnd ) goto do_atof_calc; 331 332 /* if exponent is present */ 333 if( *z=='e' || *z=='E' ){ 334 z+=incr; 335 eValid = 0; 336 if( z>=zEnd ) goto do_atof_calc; 337 /* get sign of exponent */ 338 if( *z=='-' ){ 339 esign = -1; 340 z+=incr; 341 }else if( *z=='+' ){ 342 z+=incr; 343 } 344 /* copy digits to exponent */ 345 while( z<zEnd && sqlite3Isdigit(*z) ){ 346 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 347 z+=incr; 348 eValid = 1; 349 } 350 } 351 352 /* skip trailing spaces */ 353 if( nDigits && eValid ){ 354 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 355 } 356 357 do_atof_calc: 358 /* adjust exponent by d, and update sign */ 359 e = (e*esign) + d; 360 if( e<0 ) { 361 esign = -1; 362 e *= -1; 363 } else { 364 esign = 1; 365 } 366 367 /* if 0 significand */ 368 if( !s ) { 369 /* In the IEEE 754 standard, zero is signed. 370 ** Add the sign if we've seen at least one digit */ 371 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 372 } else { 373 /* attempt to reduce exponent */ 374 if( esign>0 ){ 375 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 376 }else{ 377 while( !(s%10) && e>0 ) e--,s/=10; 378 } 379 380 /* adjust the sign of significand */ 381 s = sign<0 ? -s : s; 382 383 /* if exponent, scale significand as appropriate 384 ** and store in result. */ 385 if( e ){ 386 LONGDOUBLE_TYPE scale = 1.0; 387 /* attempt to handle extremely small/large numbers better */ 388 if( e>307 && e<342 ){ 389 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 390 if( esign<0 ){ 391 result = s / scale; 392 result /= 1.0e+308; 393 }else{ 394 result = s * scale; 395 result *= 1.0e+308; 396 } 397 }else if( e>=342 ){ 398 if( esign<0 ){ 399 result = 0.0*s; 400 }else{ 401 result = 1e308*1e308*s; /* Infinity */ 402 } 403 }else{ 404 /* 1.0e+22 is the largest power of 10 than can be 405 ** represented exactly. */ 406 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 407 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 408 if( esign<0 ){ 409 result = s / scale; 410 }else{ 411 result = s * scale; 412 } 413 } 414 } else { 415 result = (double)s; 416 } 417 } 418 419 /* store the result */ 420 *pResult = result; 421 422 /* return true if number and no extra non-whitespace chracters after */ 423 return z>=zEnd && nDigits>0 && eValid && nonNum==0; 424 #else 425 return !sqlite3Atoi64(z, pResult, length, enc); 426 #endif /* SQLITE_OMIT_FLOATING_POINT */ 427 } 428 429 /* 430 ** Compare the 19-character string zNum against the text representation 431 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 432 ** if zNum is less than, equal to, or greater than the string. 433 ** Note that zNum must contain exactly 19 characters. 434 ** 435 ** Unlike memcmp() this routine is guaranteed to return the difference 436 ** in the values of the last digit if the only difference is in the 437 ** last digit. So, for example, 438 ** 439 ** compare2pow63("9223372036854775800", 1) 440 ** 441 ** will return -8. 442 */ 443 static int compare2pow63(const char *zNum, int incr){ 444 int c = 0; 445 int i; 446 /* 012345678901234567 */ 447 const char *pow63 = "922337203685477580"; 448 for(i=0; c==0 && i<18; i++){ 449 c = (zNum[i*incr]-pow63[i])*10; 450 } 451 if( c==0 ){ 452 c = zNum[18*incr] - '8'; 453 testcase( c==(-1) ); 454 testcase( c==0 ); 455 testcase( c==(+1) ); 456 } 457 return c; 458 } 459 460 461 /* 462 ** Convert zNum to a 64-bit signed integer. 463 ** 464 ** If the zNum value is representable as a 64-bit twos-complement 465 ** integer, then write that value into *pNum and return 0. 466 ** 467 ** If zNum is exactly 9223372036854665808, return 2. This special 468 ** case is broken out because while 9223372036854665808 cannot be a 469 ** signed 64-bit integer, its negative -9223372036854665808 can be. 470 ** 471 ** If zNum is too big for a 64-bit integer and is not 472 ** 9223372036854665808 or if zNum contains any non-numeric text, 473 ** then return 1. 474 ** 475 ** length is the number of bytes in the string (bytes, not characters). 476 ** The string is not necessarily zero-terminated. The encoding is 477 ** given by enc. 478 */ 479 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 480 int incr; 481 u64 u = 0; 482 int neg = 0; /* assume positive */ 483 int i; 484 int c = 0; 485 int nonNum = 0; 486 const char *zStart; 487 const char *zEnd = zNum + length; 488 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 489 if( enc==SQLITE_UTF8 ){ 490 incr = 1; 491 }else{ 492 incr = 2; 493 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 494 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 495 nonNum = i<length; 496 zEnd = zNum+i+enc-3; 497 zNum += (enc&1); 498 } 499 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 500 if( zNum<zEnd ){ 501 if( *zNum=='-' ){ 502 neg = 1; 503 zNum+=incr; 504 }else if( *zNum=='+' ){ 505 zNum+=incr; 506 } 507 } 508 zStart = zNum; 509 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 510 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 511 u = u*10 + c - '0'; 512 } 513 if( u>LARGEST_INT64 ){ 514 *pNum = SMALLEST_INT64; 515 }else if( neg ){ 516 *pNum = -(i64)u; 517 }else{ 518 *pNum = (i64)u; 519 } 520 testcase( i==18 ); 521 testcase( i==19 ); 522 testcase( i==20 ); 523 if( (c+nonNum!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){ 524 /* zNum is empty or contains non-numeric text or is longer 525 ** than 19 digits (thus guaranteeing that it is too large) */ 526 return 1; 527 }else if( i<19*incr ){ 528 /* Less than 19 digits, so we know that it fits in 64 bits */ 529 assert( u<=LARGEST_INT64 ); 530 return 0; 531 }else{ 532 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 533 c = compare2pow63(zNum, incr); 534 if( c<0 ){ 535 /* zNum is less than 9223372036854775808 so it fits */ 536 assert( u<=LARGEST_INT64 ); 537 return 0; 538 }else if( c>0 ){ 539 /* zNum is greater than 9223372036854775808 so it overflows */ 540 return 1; 541 }else{ 542 /* zNum is exactly 9223372036854775808. Fits if negative. The 543 ** special case 2 overflow if positive */ 544 assert( u-1==LARGEST_INT64 ); 545 assert( (*pNum)==SMALLEST_INT64 ); 546 return neg ? 0 : 2; 547 } 548 } 549 } 550 551 /* 552 ** If zNum represents an integer that will fit in 32-bits, then set 553 ** *pValue to that integer and return true. Otherwise return false. 554 ** 555 ** Any non-numeric characters that following zNum are ignored. 556 ** This is different from sqlite3Atoi64() which requires the 557 ** input number to be zero-terminated. 558 */ 559 int sqlite3GetInt32(const char *zNum, int *pValue){ 560 sqlite_int64 v = 0; 561 int i, c; 562 int neg = 0; 563 if( zNum[0]=='-' ){ 564 neg = 1; 565 zNum++; 566 }else if( zNum[0]=='+' ){ 567 zNum++; 568 } 569 while( zNum[0]=='0' ) zNum++; 570 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 571 v = v*10 + c; 572 } 573 574 /* The longest decimal representation of a 32 bit integer is 10 digits: 575 ** 576 ** 1234567890 577 ** 2^31 -> 2147483648 578 */ 579 testcase( i==10 ); 580 if( i>10 ){ 581 return 0; 582 } 583 testcase( v-neg==2147483647 ); 584 if( v-neg>2147483647 ){ 585 return 0; 586 } 587 if( neg ){ 588 v = -v; 589 } 590 *pValue = (int)v; 591 return 1; 592 } 593 594 /* 595 ** Return a 32-bit integer value extracted from a string. If the 596 ** string is not an integer, just return 0. 597 */ 598 int sqlite3Atoi(const char *z){ 599 int x = 0; 600 if( z ) sqlite3GetInt32(z, &x); 601 return x; 602 } 603 604 /* 605 ** The variable-length integer encoding is as follows: 606 ** 607 ** KEY: 608 ** A = 0xxxxxxx 7 bits of data and one flag bit 609 ** B = 1xxxxxxx 7 bits of data and one flag bit 610 ** C = xxxxxxxx 8 bits of data 611 ** 612 ** 7 bits - A 613 ** 14 bits - BA 614 ** 21 bits - BBA 615 ** 28 bits - BBBA 616 ** 35 bits - BBBBA 617 ** 42 bits - BBBBBA 618 ** 49 bits - BBBBBBA 619 ** 56 bits - BBBBBBBA 620 ** 64 bits - BBBBBBBBC 621 */ 622 623 /* 624 ** Write a 64-bit variable-length integer to memory starting at p[0]. 625 ** The length of data write will be between 1 and 9 bytes. The number 626 ** of bytes written is returned. 627 ** 628 ** A variable-length integer consists of the lower 7 bits of each byte 629 ** for all bytes that have the 8th bit set and one byte with the 8th 630 ** bit clear. Except, if we get to the 9th byte, it stores the full 631 ** 8 bits and is the last byte. 632 */ 633 int sqlite3PutVarint(unsigned char *p, u64 v){ 634 int i, j, n; 635 u8 buf[10]; 636 if( v & (((u64)0xff000000)<<32) ){ 637 p[8] = (u8)v; 638 v >>= 8; 639 for(i=7; i>=0; i--){ 640 p[i] = (u8)((v & 0x7f) | 0x80); 641 v >>= 7; 642 } 643 return 9; 644 } 645 n = 0; 646 do{ 647 buf[n++] = (u8)((v & 0x7f) | 0x80); 648 v >>= 7; 649 }while( v!=0 ); 650 buf[0] &= 0x7f; 651 assert( n<=9 ); 652 for(i=0, j=n-1; j>=0; j--, i++){ 653 p[i] = buf[j]; 654 } 655 return n; 656 } 657 658 /* 659 ** This routine is a faster version of sqlite3PutVarint() that only 660 ** works for 32-bit positive integers and which is optimized for 661 ** the common case of small integers. A MACRO version, putVarint32, 662 ** is provided which inlines the single-byte case. All code should use 663 ** the MACRO version as this function assumes the single-byte case has 664 ** already been handled. 665 */ 666 int sqlite3PutVarint32(unsigned char *p, u32 v){ 667 #ifndef putVarint32 668 if( (v & ~0x7f)==0 ){ 669 p[0] = v; 670 return 1; 671 } 672 #endif 673 if( (v & ~0x3fff)==0 ){ 674 p[0] = (u8)((v>>7) | 0x80); 675 p[1] = (u8)(v & 0x7f); 676 return 2; 677 } 678 return sqlite3PutVarint(p, v); 679 } 680 681 /* 682 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 683 ** are defined here rather than simply putting the constant expressions 684 ** inline in order to work around bugs in the RVT compiler. 685 ** 686 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 687 ** 688 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 689 */ 690 #define SLOT_2_0 0x001fc07f 691 #define SLOT_4_2_0 0xf01fc07f 692 693 694 /* 695 ** Read a 64-bit variable-length integer from memory starting at p[0]. 696 ** Return the number of bytes read. The value is stored in *v. 697 */ 698 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 699 u32 a,b,s; 700 701 a = *p; 702 /* a: p0 (unmasked) */ 703 if (!(a&0x80)) 704 { 705 *v = a; 706 return 1; 707 } 708 709 p++; 710 b = *p; 711 /* b: p1 (unmasked) */ 712 if (!(b&0x80)) 713 { 714 a &= 0x7f; 715 a = a<<7; 716 a |= b; 717 *v = a; 718 return 2; 719 } 720 721 /* Verify that constants are precomputed correctly */ 722 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 723 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 724 725 p++; 726 a = a<<14; 727 a |= *p; 728 /* a: p0<<14 | p2 (unmasked) */ 729 if (!(a&0x80)) 730 { 731 a &= SLOT_2_0; 732 b &= 0x7f; 733 b = b<<7; 734 a |= b; 735 *v = a; 736 return 3; 737 } 738 739 /* CSE1 from below */ 740 a &= SLOT_2_0; 741 p++; 742 b = b<<14; 743 b |= *p; 744 /* b: p1<<14 | p3 (unmasked) */ 745 if (!(b&0x80)) 746 { 747 b &= SLOT_2_0; 748 /* moved CSE1 up */ 749 /* a &= (0x7f<<14)|(0x7f); */ 750 a = a<<7; 751 a |= b; 752 *v = a; 753 return 4; 754 } 755 756 /* a: p0<<14 | p2 (masked) */ 757 /* b: p1<<14 | p3 (unmasked) */ 758 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 759 /* moved CSE1 up */ 760 /* a &= (0x7f<<14)|(0x7f); */ 761 b &= SLOT_2_0; 762 s = a; 763 /* s: p0<<14 | p2 (masked) */ 764 765 p++; 766 a = a<<14; 767 a |= *p; 768 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 769 if (!(a&0x80)) 770 { 771 /* we can skip these cause they were (effectively) done above in calc'ing s */ 772 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 773 /* b &= (0x7f<<14)|(0x7f); */ 774 b = b<<7; 775 a |= b; 776 s = s>>18; 777 *v = ((u64)s)<<32 | a; 778 return 5; 779 } 780 781 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 782 s = s<<7; 783 s |= b; 784 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 785 786 p++; 787 b = b<<14; 788 b |= *p; 789 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 790 if (!(b&0x80)) 791 { 792 /* we can skip this cause it was (effectively) done above in calc'ing s */ 793 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 794 a &= SLOT_2_0; 795 a = a<<7; 796 a |= b; 797 s = s>>18; 798 *v = ((u64)s)<<32 | a; 799 return 6; 800 } 801 802 p++; 803 a = a<<14; 804 a |= *p; 805 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 806 if (!(a&0x80)) 807 { 808 a &= SLOT_4_2_0; 809 b &= SLOT_2_0; 810 b = b<<7; 811 a |= b; 812 s = s>>11; 813 *v = ((u64)s)<<32 | a; 814 return 7; 815 } 816 817 /* CSE2 from below */ 818 a &= SLOT_2_0; 819 p++; 820 b = b<<14; 821 b |= *p; 822 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 823 if (!(b&0x80)) 824 { 825 b &= SLOT_4_2_0; 826 /* moved CSE2 up */ 827 /* a &= (0x7f<<14)|(0x7f); */ 828 a = a<<7; 829 a |= b; 830 s = s>>4; 831 *v = ((u64)s)<<32 | a; 832 return 8; 833 } 834 835 p++; 836 a = a<<15; 837 a |= *p; 838 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 839 840 /* moved CSE2 up */ 841 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 842 b &= SLOT_2_0; 843 b = b<<8; 844 a |= b; 845 846 s = s<<4; 847 b = p[-4]; 848 b &= 0x7f; 849 b = b>>3; 850 s |= b; 851 852 *v = ((u64)s)<<32 | a; 853 854 return 9; 855 } 856 857 /* 858 ** Read a 32-bit variable-length integer from memory starting at p[0]. 859 ** Return the number of bytes read. The value is stored in *v. 860 ** 861 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 862 ** integer, then set *v to 0xffffffff. 863 ** 864 ** A MACRO version, getVarint32, is provided which inlines the 865 ** single-byte case. All code should use the MACRO version as 866 ** this function assumes the single-byte case has already been handled. 867 */ 868 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 869 u32 a,b; 870 871 /* The 1-byte case. Overwhelmingly the most common. Handled inline 872 ** by the getVarin32() macro */ 873 a = *p; 874 /* a: p0 (unmasked) */ 875 #ifndef getVarint32 876 if (!(a&0x80)) 877 { 878 /* Values between 0 and 127 */ 879 *v = a; 880 return 1; 881 } 882 #endif 883 884 /* The 2-byte case */ 885 p++; 886 b = *p; 887 /* b: p1 (unmasked) */ 888 if (!(b&0x80)) 889 { 890 /* Values between 128 and 16383 */ 891 a &= 0x7f; 892 a = a<<7; 893 *v = a | b; 894 return 2; 895 } 896 897 /* The 3-byte case */ 898 p++; 899 a = a<<14; 900 a |= *p; 901 /* a: p0<<14 | p2 (unmasked) */ 902 if (!(a&0x80)) 903 { 904 /* Values between 16384 and 2097151 */ 905 a &= (0x7f<<14)|(0x7f); 906 b &= 0x7f; 907 b = b<<7; 908 *v = a | b; 909 return 3; 910 } 911 912 /* A 32-bit varint is used to store size information in btrees. 913 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 914 ** A 3-byte varint is sufficient, for example, to record the size 915 ** of a 1048569-byte BLOB or string. 916 ** 917 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 918 ** rare larger cases can be handled by the slower 64-bit varint 919 ** routine. 920 */ 921 #if 1 922 { 923 u64 v64; 924 u8 n; 925 926 p -= 2; 927 n = sqlite3GetVarint(p, &v64); 928 assert( n>3 && n<=9 ); 929 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 930 *v = 0xffffffff; 931 }else{ 932 *v = (u32)v64; 933 } 934 return n; 935 } 936 937 #else 938 /* For following code (kept for historical record only) shows an 939 ** unrolling for the 3- and 4-byte varint cases. This code is 940 ** slightly faster, but it is also larger and much harder to test. 941 */ 942 p++; 943 b = b<<14; 944 b |= *p; 945 /* b: p1<<14 | p3 (unmasked) */ 946 if (!(b&0x80)) 947 { 948 /* Values between 2097152 and 268435455 */ 949 b &= (0x7f<<14)|(0x7f); 950 a &= (0x7f<<14)|(0x7f); 951 a = a<<7; 952 *v = a | b; 953 return 4; 954 } 955 956 p++; 957 a = a<<14; 958 a |= *p; 959 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 960 if (!(a&0x80)) 961 { 962 /* Values between 268435456 and 34359738367 */ 963 a &= SLOT_4_2_0; 964 b &= SLOT_4_2_0; 965 b = b<<7; 966 *v = a | b; 967 return 5; 968 } 969 970 /* We can only reach this point when reading a corrupt database 971 ** file. In that case we are not in any hurry. Use the (relatively 972 ** slow) general-purpose sqlite3GetVarint() routine to extract the 973 ** value. */ 974 { 975 u64 v64; 976 u8 n; 977 978 p -= 4; 979 n = sqlite3GetVarint(p, &v64); 980 assert( n>5 && n<=9 ); 981 *v = (u32)v64; 982 return n; 983 } 984 #endif 985 } 986 987 /* 988 ** Return the number of bytes that will be needed to store the given 989 ** 64-bit integer. 990 */ 991 int sqlite3VarintLen(u64 v){ 992 int i = 0; 993 do{ 994 i++; 995 v >>= 7; 996 }while( v!=0 && ALWAYS(i<9) ); 997 return i; 998 } 999 1000 1001 /* 1002 ** Read or write a four-byte big-endian integer value. 1003 */ 1004 u32 sqlite3Get4byte(const u8 *p){ 1005 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1006 } 1007 void sqlite3Put4byte(unsigned char *p, u32 v){ 1008 p[0] = (u8)(v>>24); 1009 p[1] = (u8)(v>>16); 1010 p[2] = (u8)(v>>8); 1011 p[3] = (u8)v; 1012 } 1013 1014 1015 1016 /* 1017 ** Translate a single byte of Hex into an integer. 1018 ** This routine only works if h really is a valid hexadecimal 1019 ** character: 0..9a..fA..F 1020 */ 1021 u8 sqlite3HexToInt(int h){ 1022 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1023 #ifdef SQLITE_ASCII 1024 h += 9*(1&(h>>6)); 1025 #endif 1026 #ifdef SQLITE_EBCDIC 1027 h += 9*(1&~(h>>4)); 1028 #endif 1029 return (u8)(h & 0xf); 1030 } 1031 1032 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1033 /* 1034 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1035 ** value. Return a pointer to its binary value. Space to hold the 1036 ** binary value has been obtained from malloc and must be freed by 1037 ** the calling routine. 1038 */ 1039 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1040 char *zBlob; 1041 int i; 1042 1043 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1044 n--; 1045 if( zBlob ){ 1046 for(i=0; i<n; i+=2){ 1047 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1048 } 1049 zBlob[i/2] = 0; 1050 } 1051 return zBlob; 1052 } 1053 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1054 1055 /* 1056 ** Log an error that is an API call on a connection pointer that should 1057 ** not have been used. The "type" of connection pointer is given as the 1058 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1059 */ 1060 static void logBadConnection(const char *zType){ 1061 sqlite3_log(SQLITE_MISUSE, 1062 "API call with %s database connection pointer", 1063 zType 1064 ); 1065 } 1066 1067 /* 1068 ** Check to make sure we have a valid db pointer. This test is not 1069 ** foolproof but it does provide some measure of protection against 1070 ** misuse of the interface such as passing in db pointers that are 1071 ** NULL or which have been previously closed. If this routine returns 1072 ** 1 it means that the db pointer is valid and 0 if it should not be 1073 ** dereferenced for any reason. The calling function should invoke 1074 ** SQLITE_MISUSE immediately. 1075 ** 1076 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1077 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1078 ** open properly and is not fit for general use but which can be 1079 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1080 */ 1081 int sqlite3SafetyCheckOk(sqlite3 *db){ 1082 u32 magic; 1083 if( db==0 ){ 1084 logBadConnection("NULL"); 1085 return 0; 1086 } 1087 magic = db->magic; 1088 if( magic!=SQLITE_MAGIC_OPEN ){ 1089 if( sqlite3SafetyCheckSickOrOk(db) ){ 1090 testcase( sqlite3GlobalConfig.xLog!=0 ); 1091 logBadConnection("unopened"); 1092 } 1093 return 0; 1094 }else{ 1095 return 1; 1096 } 1097 } 1098 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1099 u32 magic; 1100 magic = db->magic; 1101 if( magic!=SQLITE_MAGIC_SICK && 1102 magic!=SQLITE_MAGIC_OPEN && 1103 magic!=SQLITE_MAGIC_BUSY ){ 1104 testcase( sqlite3GlobalConfig.xLog!=0 ); 1105 logBadConnection("invalid"); 1106 return 0; 1107 }else{ 1108 return 1; 1109 } 1110 } 1111 1112 /* 1113 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1114 ** the other 64-bit signed integer at *pA and store the result in *pA. 1115 ** Return 0 on success. Or if the operation would have resulted in an 1116 ** overflow, leave *pA unchanged and return 1. 1117 */ 1118 int sqlite3AddInt64(i64 *pA, i64 iB){ 1119 i64 iA = *pA; 1120 testcase( iA==0 ); testcase( iA==1 ); 1121 testcase( iB==-1 ); testcase( iB==0 ); 1122 if( iB>=0 ){ 1123 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1124 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1125 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1126 *pA += iB; 1127 }else{ 1128 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1129 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1130 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1131 *pA += iB; 1132 } 1133 return 0; 1134 } 1135 int sqlite3SubInt64(i64 *pA, i64 iB){ 1136 testcase( iB==SMALLEST_INT64+1 ); 1137 if( iB==SMALLEST_INT64 ){ 1138 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1139 if( (*pA)>=0 ) return 1; 1140 *pA -= iB; 1141 return 0; 1142 }else{ 1143 return sqlite3AddInt64(pA, -iB); 1144 } 1145 } 1146 #define TWOPOWER32 (((i64)1)<<32) 1147 #define TWOPOWER31 (((i64)1)<<31) 1148 int sqlite3MulInt64(i64 *pA, i64 iB){ 1149 i64 iA = *pA; 1150 i64 iA1, iA0, iB1, iB0, r; 1151 1152 iA1 = iA/TWOPOWER32; 1153 iA0 = iA % TWOPOWER32; 1154 iB1 = iB/TWOPOWER32; 1155 iB0 = iB % TWOPOWER32; 1156 if( iA1*iB1 != 0 ) return 1; 1157 assert( iA1*iB0==0 || iA0*iB1==0 ); 1158 r = iA1*iB0 + iA0*iB1; 1159 testcase( r==(-TWOPOWER31)-1 ); 1160 testcase( r==(-TWOPOWER31) ); 1161 testcase( r==TWOPOWER31 ); 1162 testcase( r==TWOPOWER31-1 ); 1163 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1164 r *= TWOPOWER32; 1165 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1166 *pA = r; 1167 return 0; 1168 } 1169 1170 /* 1171 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1172 ** if the integer has a value of -2147483648, return +2147483647 1173 */ 1174 int sqlite3AbsInt32(int x){ 1175 if( x>=0 ) return x; 1176 if( x==(int)0x80000000 ) return 0x7fffffff; 1177 return -x; 1178 } 1179 1180 #ifdef SQLITE_ENABLE_8_3_NAMES 1181 /* 1182 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1183 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1184 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1185 ** three characters, then shorten the suffix on z[] to be the last three 1186 ** characters of the original suffix. 1187 ** 1188 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1189 ** do the suffix shortening regardless of URI parameter. 1190 ** 1191 ** Examples: 1192 ** 1193 ** test.db-journal => test.nal 1194 ** test.db-wal => test.wal 1195 ** test.db-shm => test.shm 1196 ** test.db-mj7f3319fa => test.9fa 1197 */ 1198 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1199 #if SQLITE_ENABLE_8_3_NAMES<2 1200 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1201 #endif 1202 { 1203 int i, sz; 1204 sz = sqlite3Strlen30(z); 1205 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1206 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1207 } 1208 } 1209 #endif 1210