1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_OMIT_BUILTIN_TEST 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if HAVE_ISNAN */ 92 rc = isnan(x); 93 #endif /* HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 if( z==0 ) return 0; 109 return 0x3fffffff & (int)strlen(z); 110 } 111 112 /* 113 ** Set the current error code to err_code and clear any prior error message. 114 */ 115 void sqlite3Error(sqlite3 *db, int err_code){ 116 assert( db!=0 ); 117 db->errCode = err_code; 118 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 119 } 120 121 /* 122 ** Set the most recent error code and error string for the sqlite 123 ** handle "db". The error code is set to "err_code". 124 ** 125 ** If it is not NULL, string zFormat specifies the format of the 126 ** error string in the style of the printf functions: The following 127 ** format characters are allowed: 128 ** 129 ** %s Insert a string 130 ** %z A string that should be freed after use 131 ** %d Insert an integer 132 ** %T Insert a token 133 ** %S Insert the first element of a SrcList 134 ** 135 ** zFormat and any string tokens that follow it are assumed to be 136 ** encoded in UTF-8. 137 ** 138 ** To clear the most recent error for sqlite handle "db", sqlite3Error 139 ** should be called with err_code set to SQLITE_OK and zFormat set 140 ** to NULL. 141 */ 142 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 143 assert( db!=0 ); 144 db->errCode = err_code; 145 if( zFormat==0 ){ 146 sqlite3Error(db, err_code); 147 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 148 char *z; 149 va_list ap; 150 va_start(ap, zFormat); 151 z = sqlite3VMPrintf(db, zFormat, ap); 152 va_end(ap); 153 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 154 } 155 } 156 157 /* 158 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 159 ** The following formatting characters are allowed: 160 ** 161 ** %s Insert a string 162 ** %z A string that should be freed after use 163 ** %d Insert an integer 164 ** %T Insert a token 165 ** %S Insert the first element of a SrcList 166 ** 167 ** This function should be used to report any error that occurs while 168 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 169 ** last thing the sqlite3_prepare() function does is copy the error 170 ** stored by this function into the database handle using sqlite3Error(). 171 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 172 ** during statement execution (sqlite3_step() etc.). 173 */ 174 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 175 char *zMsg; 176 va_list ap; 177 sqlite3 *db = pParse->db; 178 va_start(ap, zFormat); 179 zMsg = sqlite3VMPrintf(db, zFormat, ap); 180 va_end(ap); 181 if( db->suppressErr ){ 182 sqlite3DbFree(db, zMsg); 183 }else{ 184 pParse->nErr++; 185 sqlite3DbFree(db, pParse->zErrMsg); 186 pParse->zErrMsg = zMsg; 187 pParse->rc = SQLITE_ERROR; 188 } 189 } 190 191 /* 192 ** Convert an SQL-style quoted string into a normal string by removing 193 ** the quote characters. The conversion is done in-place. If the 194 ** input does not begin with a quote character, then this routine 195 ** is a no-op. 196 ** 197 ** The input string must be zero-terminated. A new zero-terminator 198 ** is added to the dequoted string. 199 ** 200 ** The return value is -1 if no dequoting occurs or the length of the 201 ** dequoted string, exclusive of the zero terminator, if dequoting does 202 ** occur. 203 ** 204 ** 2002-Feb-14: This routine is extended to remove MS-Access style 205 ** brackets from around identifiers. For example: "[a-b-c]" becomes 206 ** "a-b-c". 207 */ 208 int sqlite3Dequote(char *z){ 209 char quote; 210 int i, j; 211 if( z==0 ) return -1; 212 quote = z[0]; 213 switch( quote ){ 214 case '\'': break; 215 case '"': break; 216 case '`': break; /* For MySQL compatibility */ 217 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 218 default: return -1; 219 } 220 for(i=1, j=0;; i++){ 221 assert( z[i] ); 222 if( z[i]==quote ){ 223 if( z[i+1]==quote ){ 224 z[j++] = quote; 225 i++; 226 }else{ 227 break; 228 } 229 }else{ 230 z[j++] = z[i]; 231 } 232 } 233 z[j] = 0; 234 return j; 235 } 236 237 /* Convenient short-hand */ 238 #define UpperToLower sqlite3UpperToLower 239 240 /* 241 ** Some systems have stricmp(). Others have strcasecmp(). Because 242 ** there is no consistency, we will define our own. 243 ** 244 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 245 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 246 ** the contents of two buffers containing UTF-8 strings in a 247 ** case-independent fashion, using the same definition of "case 248 ** independence" that SQLite uses internally when comparing identifiers. 249 */ 250 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 251 register unsigned char *a, *b; 252 if( zLeft==0 ){ 253 return zRight ? -1 : 0; 254 }else if( zRight==0 ){ 255 return 1; 256 } 257 a = (unsigned char *)zLeft; 258 b = (unsigned char *)zRight; 259 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 260 return UpperToLower[*a] - UpperToLower[*b]; 261 } 262 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 263 register unsigned char *a, *b; 264 if( zLeft==0 ){ 265 return zRight ? -1 : 0; 266 }else if( zRight==0 ){ 267 return 1; 268 } 269 a = (unsigned char *)zLeft; 270 b = (unsigned char *)zRight; 271 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 272 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 273 } 274 275 /* 276 ** The string z[] is an text representation of a real number. 277 ** Convert this string to a double and write it into *pResult. 278 ** 279 ** The string z[] is length bytes in length (bytes, not characters) and 280 ** uses the encoding enc. The string is not necessarily zero-terminated. 281 ** 282 ** Return TRUE if the result is a valid real number (or integer) and FALSE 283 ** if the string is empty or contains extraneous text. Valid numbers 284 ** are in one of these formats: 285 ** 286 ** [+-]digits[E[+-]digits] 287 ** [+-]digits.[digits][E[+-]digits] 288 ** [+-].digits[E[+-]digits] 289 ** 290 ** Leading and trailing whitespace is ignored for the purpose of determining 291 ** validity. 292 ** 293 ** If some prefix of the input string is a valid number, this routine 294 ** returns FALSE but it still converts the prefix and writes the result 295 ** into *pResult. 296 */ 297 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 298 #ifndef SQLITE_OMIT_FLOATING_POINT 299 int incr; 300 const char *zEnd = z + length; 301 /* sign * significand * (10 ^ (esign * exponent)) */ 302 int sign = 1; /* sign of significand */ 303 i64 s = 0; /* significand */ 304 int d = 0; /* adjust exponent for shifting decimal point */ 305 int esign = 1; /* sign of exponent */ 306 int e = 0; /* exponent */ 307 int eValid = 1; /* True exponent is either not used or is well-formed */ 308 double result; 309 int nDigits = 0; 310 int nonNum = 0; 311 312 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 313 *pResult = 0.0; /* Default return value, in case of an error */ 314 315 if( enc==SQLITE_UTF8 ){ 316 incr = 1; 317 }else{ 318 int i; 319 incr = 2; 320 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 321 for(i=3-enc; i<length && z[i]==0; i+=2){} 322 nonNum = i<length; 323 zEnd = z+i+enc-3; 324 z += (enc&1); 325 } 326 327 /* skip leading spaces */ 328 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 329 if( z>=zEnd ) return 0; 330 331 /* get sign of significand */ 332 if( *z=='-' ){ 333 sign = -1; 334 z+=incr; 335 }else if( *z=='+' ){ 336 z+=incr; 337 } 338 339 /* skip leading zeroes */ 340 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 341 342 /* copy max significant digits to significand */ 343 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 344 s = s*10 + (*z - '0'); 345 z+=incr, nDigits++; 346 } 347 348 /* skip non-significant significand digits 349 ** (increase exponent by d to shift decimal left) */ 350 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 351 if( z>=zEnd ) goto do_atof_calc; 352 353 /* if decimal point is present */ 354 if( *z=='.' ){ 355 z+=incr; 356 /* copy digits from after decimal to significand 357 ** (decrease exponent by d to shift decimal right) */ 358 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 359 s = s*10 + (*z - '0'); 360 z+=incr, nDigits++, d--; 361 } 362 /* skip non-significant digits */ 363 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 364 } 365 if( z>=zEnd ) goto do_atof_calc; 366 367 /* if exponent is present */ 368 if( *z=='e' || *z=='E' ){ 369 z+=incr; 370 eValid = 0; 371 if( z>=zEnd ) goto do_atof_calc; 372 /* get sign of exponent */ 373 if( *z=='-' ){ 374 esign = -1; 375 z+=incr; 376 }else if( *z=='+' ){ 377 z+=incr; 378 } 379 /* copy digits to exponent */ 380 while( z<zEnd && sqlite3Isdigit(*z) ){ 381 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 382 z+=incr; 383 eValid = 1; 384 } 385 } 386 387 /* skip trailing spaces */ 388 if( nDigits && eValid ){ 389 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 390 } 391 392 do_atof_calc: 393 /* adjust exponent by d, and update sign */ 394 e = (e*esign) + d; 395 if( e<0 ) { 396 esign = -1; 397 e *= -1; 398 } else { 399 esign = 1; 400 } 401 402 /* if 0 significand */ 403 if( !s ) { 404 /* In the IEEE 754 standard, zero is signed. 405 ** Add the sign if we've seen at least one digit */ 406 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 407 } else { 408 /* attempt to reduce exponent */ 409 if( esign>0 ){ 410 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 411 }else{ 412 while( !(s%10) && e>0 ) e--,s/=10; 413 } 414 415 /* adjust the sign of significand */ 416 s = sign<0 ? -s : s; 417 418 /* if exponent, scale significand as appropriate 419 ** and store in result. */ 420 if( e ){ 421 LONGDOUBLE_TYPE scale = 1.0; 422 /* attempt to handle extremely small/large numbers better */ 423 if( e>307 && e<342 ){ 424 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 425 if( esign<0 ){ 426 result = s / scale; 427 result /= 1.0e+308; 428 }else{ 429 result = s * scale; 430 result *= 1.0e+308; 431 } 432 }else if( e>=342 ){ 433 if( esign<0 ){ 434 result = 0.0*s; 435 }else{ 436 result = 1e308*1e308*s; /* Infinity */ 437 } 438 }else{ 439 /* 1.0e+22 is the largest power of 10 than can be 440 ** represented exactly. */ 441 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 442 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 443 if( esign<0 ){ 444 result = s / scale; 445 }else{ 446 result = s * scale; 447 } 448 } 449 } else { 450 result = (double)s; 451 } 452 } 453 454 /* store the result */ 455 *pResult = result; 456 457 /* return true if number and no extra non-whitespace chracters after */ 458 return z>=zEnd && nDigits>0 && eValid && nonNum==0; 459 #else 460 return !sqlite3Atoi64(z, pResult, length, enc); 461 #endif /* SQLITE_OMIT_FLOATING_POINT */ 462 } 463 464 /* 465 ** Compare the 19-character string zNum against the text representation 466 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 467 ** if zNum is less than, equal to, or greater than the string. 468 ** Note that zNum must contain exactly 19 characters. 469 ** 470 ** Unlike memcmp() this routine is guaranteed to return the difference 471 ** in the values of the last digit if the only difference is in the 472 ** last digit. So, for example, 473 ** 474 ** compare2pow63("9223372036854775800", 1) 475 ** 476 ** will return -8. 477 */ 478 static int compare2pow63(const char *zNum, int incr){ 479 int c = 0; 480 int i; 481 /* 012345678901234567 */ 482 const char *pow63 = "922337203685477580"; 483 for(i=0; c==0 && i<18; i++){ 484 c = (zNum[i*incr]-pow63[i])*10; 485 } 486 if( c==0 ){ 487 c = zNum[18*incr] - '8'; 488 testcase( c==(-1) ); 489 testcase( c==0 ); 490 testcase( c==(+1) ); 491 } 492 return c; 493 } 494 495 /* 496 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 497 ** routine does *not* accept hexadecimal notation. 498 ** 499 ** If the zNum value is representable as a 64-bit twos-complement 500 ** integer, then write that value into *pNum and return 0. 501 ** 502 ** If zNum is exactly 9223372036854775808, return 2. This special 503 ** case is broken out because while 9223372036854775808 cannot be a 504 ** signed 64-bit integer, its negative -9223372036854775808 can be. 505 ** 506 ** If zNum is too big for a 64-bit integer and is not 507 ** 9223372036854775808 or if zNum contains any non-numeric text, 508 ** then return 1. 509 ** 510 ** length is the number of bytes in the string (bytes, not characters). 511 ** The string is not necessarily zero-terminated. The encoding is 512 ** given by enc. 513 */ 514 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 515 int incr; 516 u64 u = 0; 517 int neg = 0; /* assume positive */ 518 int i; 519 int c = 0; 520 int nonNum = 0; 521 const char *zStart; 522 const char *zEnd = zNum + length; 523 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 524 if( enc==SQLITE_UTF8 ){ 525 incr = 1; 526 }else{ 527 incr = 2; 528 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 529 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 530 nonNum = i<length; 531 zEnd = zNum+i+enc-3; 532 zNum += (enc&1); 533 } 534 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 535 if( zNum<zEnd ){ 536 if( *zNum=='-' ){ 537 neg = 1; 538 zNum+=incr; 539 }else if( *zNum=='+' ){ 540 zNum+=incr; 541 } 542 } 543 zStart = zNum; 544 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 545 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 546 u = u*10 + c - '0'; 547 } 548 if( u>LARGEST_INT64 ){ 549 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 550 }else if( neg ){ 551 *pNum = -(i64)u; 552 }else{ 553 *pNum = (i64)u; 554 } 555 testcase( i==18 ); 556 testcase( i==19 ); 557 testcase( i==20 ); 558 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){ 559 /* zNum is empty or contains non-numeric text or is longer 560 ** than 19 digits (thus guaranteeing that it is too large) */ 561 return 1; 562 }else if( i<19*incr ){ 563 /* Less than 19 digits, so we know that it fits in 64 bits */ 564 assert( u<=LARGEST_INT64 ); 565 return 0; 566 }else{ 567 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 568 c = compare2pow63(zNum, incr); 569 if( c<0 ){ 570 /* zNum is less than 9223372036854775808 so it fits */ 571 assert( u<=LARGEST_INT64 ); 572 return 0; 573 }else if( c>0 ){ 574 /* zNum is greater than 9223372036854775808 so it overflows */ 575 return 1; 576 }else{ 577 /* zNum is exactly 9223372036854775808. Fits if negative. The 578 ** special case 2 overflow if positive */ 579 assert( u-1==LARGEST_INT64 ); 580 return neg ? 0 : 2; 581 } 582 } 583 } 584 585 /* 586 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 587 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 588 ** whereas sqlite3Atoi64() does not. 589 ** 590 ** Returns: 591 ** 592 ** 0 Successful transformation. Fits in a 64-bit signed integer. 593 ** 1 Integer too large for a 64-bit signed integer or is malformed 594 ** 2 Special case of 9223372036854775808 595 */ 596 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 597 #ifndef SQLITE_OMIT_HEX_INTEGER 598 if( z[0]=='0' 599 && (z[1]=='x' || z[1]=='X') 600 && sqlite3Isxdigit(z[2]) 601 ){ 602 u64 u = 0; 603 int i, k; 604 for(i=2; z[i]=='0'; i++){} 605 for(k=i; sqlite3Isxdigit(z[k]); k++){ 606 u = u*16 + sqlite3HexToInt(z[k]); 607 } 608 memcpy(pOut, &u, 8); 609 return (z[k]==0 && k-i<=16) ? 0 : 1; 610 }else 611 #endif /* SQLITE_OMIT_HEX_INTEGER */ 612 { 613 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 614 } 615 } 616 617 /* 618 ** If zNum represents an integer that will fit in 32-bits, then set 619 ** *pValue to that integer and return true. Otherwise return false. 620 ** 621 ** This routine accepts both decimal and hexadecimal notation for integers. 622 ** 623 ** Any non-numeric characters that following zNum are ignored. 624 ** This is different from sqlite3Atoi64() which requires the 625 ** input number to be zero-terminated. 626 */ 627 int sqlite3GetInt32(const char *zNum, int *pValue){ 628 sqlite_int64 v = 0; 629 int i, c; 630 int neg = 0; 631 if( zNum[0]=='-' ){ 632 neg = 1; 633 zNum++; 634 }else if( zNum[0]=='+' ){ 635 zNum++; 636 } 637 #ifndef SQLITE_OMIT_HEX_INTEGER 638 else if( zNum[0]=='0' 639 && (zNum[1]=='x' || zNum[1]=='X') 640 && sqlite3Isxdigit(zNum[2]) 641 ){ 642 u32 u = 0; 643 zNum += 2; 644 while( zNum[0]=='0' ) zNum++; 645 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 646 u = u*16 + sqlite3HexToInt(zNum[i]); 647 } 648 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 649 memcpy(pValue, &u, 4); 650 return 1; 651 }else{ 652 return 0; 653 } 654 } 655 #endif 656 while( zNum[0]=='0' ) zNum++; 657 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 658 v = v*10 + c; 659 } 660 661 /* The longest decimal representation of a 32 bit integer is 10 digits: 662 ** 663 ** 1234567890 664 ** 2^31 -> 2147483648 665 */ 666 testcase( i==10 ); 667 if( i>10 ){ 668 return 0; 669 } 670 testcase( v-neg==2147483647 ); 671 if( v-neg>2147483647 ){ 672 return 0; 673 } 674 if( neg ){ 675 v = -v; 676 } 677 *pValue = (int)v; 678 return 1; 679 } 680 681 /* 682 ** Return a 32-bit integer value extracted from a string. If the 683 ** string is not an integer, just return 0. 684 */ 685 int sqlite3Atoi(const char *z){ 686 int x = 0; 687 if( z ) sqlite3GetInt32(z, &x); 688 return x; 689 } 690 691 /* 692 ** The variable-length integer encoding is as follows: 693 ** 694 ** KEY: 695 ** A = 0xxxxxxx 7 bits of data and one flag bit 696 ** B = 1xxxxxxx 7 bits of data and one flag bit 697 ** C = xxxxxxxx 8 bits of data 698 ** 699 ** 7 bits - A 700 ** 14 bits - BA 701 ** 21 bits - BBA 702 ** 28 bits - BBBA 703 ** 35 bits - BBBBA 704 ** 42 bits - BBBBBA 705 ** 49 bits - BBBBBBA 706 ** 56 bits - BBBBBBBA 707 ** 64 bits - BBBBBBBBC 708 */ 709 710 /* 711 ** Write a 64-bit variable-length integer to memory starting at p[0]. 712 ** The length of data write will be between 1 and 9 bytes. The number 713 ** of bytes written is returned. 714 ** 715 ** A variable-length integer consists of the lower 7 bits of each byte 716 ** for all bytes that have the 8th bit set and one byte with the 8th 717 ** bit clear. Except, if we get to the 9th byte, it stores the full 718 ** 8 bits and is the last byte. 719 */ 720 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 721 int i, j, n; 722 u8 buf[10]; 723 if( v & (((u64)0xff000000)<<32) ){ 724 p[8] = (u8)v; 725 v >>= 8; 726 for(i=7; i>=0; i--){ 727 p[i] = (u8)((v & 0x7f) | 0x80); 728 v >>= 7; 729 } 730 return 9; 731 } 732 n = 0; 733 do{ 734 buf[n++] = (u8)((v & 0x7f) | 0x80); 735 v >>= 7; 736 }while( v!=0 ); 737 buf[0] &= 0x7f; 738 assert( n<=9 ); 739 for(i=0, j=n-1; j>=0; j--, i++){ 740 p[i] = buf[j]; 741 } 742 return n; 743 } 744 int sqlite3PutVarint(unsigned char *p, u64 v){ 745 if( v<=0x7f ){ 746 p[0] = v&0x7f; 747 return 1; 748 } 749 if( v<=0x3fff ){ 750 p[0] = ((v>>7)&0x7f)|0x80; 751 p[1] = v&0x7f; 752 return 2; 753 } 754 return putVarint64(p,v); 755 } 756 757 /* 758 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 759 ** are defined here rather than simply putting the constant expressions 760 ** inline in order to work around bugs in the RVT compiler. 761 ** 762 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 763 ** 764 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 765 */ 766 #define SLOT_2_0 0x001fc07f 767 #define SLOT_4_2_0 0xf01fc07f 768 769 770 /* 771 ** Read a 64-bit variable-length integer from memory starting at p[0]. 772 ** Return the number of bytes read. The value is stored in *v. 773 */ 774 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 775 u32 a,b,s; 776 777 a = *p; 778 /* a: p0 (unmasked) */ 779 if (!(a&0x80)) 780 { 781 *v = a; 782 return 1; 783 } 784 785 p++; 786 b = *p; 787 /* b: p1 (unmasked) */ 788 if (!(b&0x80)) 789 { 790 a &= 0x7f; 791 a = a<<7; 792 a |= b; 793 *v = a; 794 return 2; 795 } 796 797 /* Verify that constants are precomputed correctly */ 798 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 799 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 800 801 p++; 802 a = a<<14; 803 a |= *p; 804 /* a: p0<<14 | p2 (unmasked) */ 805 if (!(a&0x80)) 806 { 807 a &= SLOT_2_0; 808 b &= 0x7f; 809 b = b<<7; 810 a |= b; 811 *v = a; 812 return 3; 813 } 814 815 /* CSE1 from below */ 816 a &= SLOT_2_0; 817 p++; 818 b = b<<14; 819 b |= *p; 820 /* b: p1<<14 | p3 (unmasked) */ 821 if (!(b&0x80)) 822 { 823 b &= SLOT_2_0; 824 /* moved CSE1 up */ 825 /* a &= (0x7f<<14)|(0x7f); */ 826 a = a<<7; 827 a |= b; 828 *v = a; 829 return 4; 830 } 831 832 /* a: p0<<14 | p2 (masked) */ 833 /* b: p1<<14 | p3 (unmasked) */ 834 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 835 /* moved CSE1 up */ 836 /* a &= (0x7f<<14)|(0x7f); */ 837 b &= SLOT_2_0; 838 s = a; 839 /* s: p0<<14 | p2 (masked) */ 840 841 p++; 842 a = a<<14; 843 a |= *p; 844 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 845 if (!(a&0x80)) 846 { 847 /* we can skip these cause they were (effectively) done above in calc'ing s */ 848 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 849 /* b &= (0x7f<<14)|(0x7f); */ 850 b = b<<7; 851 a |= b; 852 s = s>>18; 853 *v = ((u64)s)<<32 | a; 854 return 5; 855 } 856 857 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 858 s = s<<7; 859 s |= b; 860 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 861 862 p++; 863 b = b<<14; 864 b |= *p; 865 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 866 if (!(b&0x80)) 867 { 868 /* we can skip this cause it was (effectively) done above in calc'ing s */ 869 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 870 a &= SLOT_2_0; 871 a = a<<7; 872 a |= b; 873 s = s>>18; 874 *v = ((u64)s)<<32 | a; 875 return 6; 876 } 877 878 p++; 879 a = a<<14; 880 a |= *p; 881 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 882 if (!(a&0x80)) 883 { 884 a &= SLOT_4_2_0; 885 b &= SLOT_2_0; 886 b = b<<7; 887 a |= b; 888 s = s>>11; 889 *v = ((u64)s)<<32 | a; 890 return 7; 891 } 892 893 /* CSE2 from below */ 894 a &= SLOT_2_0; 895 p++; 896 b = b<<14; 897 b |= *p; 898 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 899 if (!(b&0x80)) 900 { 901 b &= SLOT_4_2_0; 902 /* moved CSE2 up */ 903 /* a &= (0x7f<<14)|(0x7f); */ 904 a = a<<7; 905 a |= b; 906 s = s>>4; 907 *v = ((u64)s)<<32 | a; 908 return 8; 909 } 910 911 p++; 912 a = a<<15; 913 a |= *p; 914 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 915 916 /* moved CSE2 up */ 917 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 918 b &= SLOT_2_0; 919 b = b<<8; 920 a |= b; 921 922 s = s<<4; 923 b = p[-4]; 924 b &= 0x7f; 925 b = b>>3; 926 s |= b; 927 928 *v = ((u64)s)<<32 | a; 929 930 return 9; 931 } 932 933 /* 934 ** Read a 32-bit variable-length integer from memory starting at p[0]. 935 ** Return the number of bytes read. The value is stored in *v. 936 ** 937 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 938 ** integer, then set *v to 0xffffffff. 939 ** 940 ** A MACRO version, getVarint32, is provided which inlines the 941 ** single-byte case. All code should use the MACRO version as 942 ** this function assumes the single-byte case has already been handled. 943 */ 944 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 945 u32 a,b; 946 947 /* The 1-byte case. Overwhelmingly the most common. Handled inline 948 ** by the getVarin32() macro */ 949 a = *p; 950 /* a: p0 (unmasked) */ 951 #ifndef getVarint32 952 if (!(a&0x80)) 953 { 954 /* Values between 0 and 127 */ 955 *v = a; 956 return 1; 957 } 958 #endif 959 960 /* The 2-byte case */ 961 p++; 962 b = *p; 963 /* b: p1 (unmasked) */ 964 if (!(b&0x80)) 965 { 966 /* Values between 128 and 16383 */ 967 a &= 0x7f; 968 a = a<<7; 969 *v = a | b; 970 return 2; 971 } 972 973 /* The 3-byte case */ 974 p++; 975 a = a<<14; 976 a |= *p; 977 /* a: p0<<14 | p2 (unmasked) */ 978 if (!(a&0x80)) 979 { 980 /* Values between 16384 and 2097151 */ 981 a &= (0x7f<<14)|(0x7f); 982 b &= 0x7f; 983 b = b<<7; 984 *v = a | b; 985 return 3; 986 } 987 988 /* A 32-bit varint is used to store size information in btrees. 989 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 990 ** A 3-byte varint is sufficient, for example, to record the size 991 ** of a 1048569-byte BLOB or string. 992 ** 993 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 994 ** rare larger cases can be handled by the slower 64-bit varint 995 ** routine. 996 */ 997 #if 1 998 { 999 u64 v64; 1000 u8 n; 1001 1002 p -= 2; 1003 n = sqlite3GetVarint(p, &v64); 1004 assert( n>3 && n<=9 ); 1005 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1006 *v = 0xffffffff; 1007 }else{ 1008 *v = (u32)v64; 1009 } 1010 return n; 1011 } 1012 1013 #else 1014 /* For following code (kept for historical record only) shows an 1015 ** unrolling for the 3- and 4-byte varint cases. This code is 1016 ** slightly faster, but it is also larger and much harder to test. 1017 */ 1018 p++; 1019 b = b<<14; 1020 b |= *p; 1021 /* b: p1<<14 | p3 (unmasked) */ 1022 if (!(b&0x80)) 1023 { 1024 /* Values between 2097152 and 268435455 */ 1025 b &= (0x7f<<14)|(0x7f); 1026 a &= (0x7f<<14)|(0x7f); 1027 a = a<<7; 1028 *v = a | b; 1029 return 4; 1030 } 1031 1032 p++; 1033 a = a<<14; 1034 a |= *p; 1035 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1036 if (!(a&0x80)) 1037 { 1038 /* Values between 268435456 and 34359738367 */ 1039 a &= SLOT_4_2_0; 1040 b &= SLOT_4_2_0; 1041 b = b<<7; 1042 *v = a | b; 1043 return 5; 1044 } 1045 1046 /* We can only reach this point when reading a corrupt database 1047 ** file. In that case we are not in any hurry. Use the (relatively 1048 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1049 ** value. */ 1050 { 1051 u64 v64; 1052 u8 n; 1053 1054 p -= 4; 1055 n = sqlite3GetVarint(p, &v64); 1056 assert( n>5 && n<=9 ); 1057 *v = (u32)v64; 1058 return n; 1059 } 1060 #endif 1061 } 1062 1063 /* 1064 ** Return the number of bytes that will be needed to store the given 1065 ** 64-bit integer. 1066 */ 1067 int sqlite3VarintLen(u64 v){ 1068 int i = 0; 1069 do{ 1070 i++; 1071 v >>= 7; 1072 }while( v!=0 && ALWAYS(i<9) ); 1073 return i; 1074 } 1075 1076 1077 /* 1078 ** Read or write a four-byte big-endian integer value. 1079 */ 1080 u32 sqlite3Get4byte(const u8 *p){ 1081 #if SQLITE_BYTEORDER==4321 1082 u32 x; 1083 memcpy(&x,p,4); 1084 return x; 1085 #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) 1086 u32 x; 1087 memcpy(&x,p,4); 1088 return __builtin_bswap32(x); 1089 #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300 1090 u32 x; 1091 memcpy(&x,p,4); 1092 return _byteswap_ulong(x); 1093 #else 1094 testcase( p[0]&0x80 ); 1095 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1096 #endif 1097 } 1098 void sqlite3Put4byte(unsigned char *p, u32 v){ 1099 #if SQLITE_BYTEORDER==4321 1100 memcpy(p,&v,4); 1101 #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) 1102 u32 x = __builtin_bswap32(v); 1103 memcpy(p,&x,4); 1104 #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300 1105 u32 x = _byteswap_ulong(v); 1106 memcpy(p,&x,4); 1107 #else 1108 p[0] = (u8)(v>>24); 1109 p[1] = (u8)(v>>16); 1110 p[2] = (u8)(v>>8); 1111 p[3] = (u8)v; 1112 #endif 1113 } 1114 1115 1116 1117 /* 1118 ** Translate a single byte of Hex into an integer. 1119 ** This routine only works if h really is a valid hexadecimal 1120 ** character: 0..9a..fA..F 1121 */ 1122 u8 sqlite3HexToInt(int h){ 1123 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1124 #ifdef SQLITE_ASCII 1125 h += 9*(1&(h>>6)); 1126 #endif 1127 #ifdef SQLITE_EBCDIC 1128 h += 9*(1&~(h>>4)); 1129 #endif 1130 return (u8)(h & 0xf); 1131 } 1132 1133 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1134 /* 1135 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1136 ** value. Return a pointer to its binary value. Space to hold the 1137 ** binary value has been obtained from malloc and must be freed by 1138 ** the calling routine. 1139 */ 1140 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1141 char *zBlob; 1142 int i; 1143 1144 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1145 n--; 1146 if( zBlob ){ 1147 for(i=0; i<n; i+=2){ 1148 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1149 } 1150 zBlob[i/2] = 0; 1151 } 1152 return zBlob; 1153 } 1154 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1155 1156 /* 1157 ** Log an error that is an API call on a connection pointer that should 1158 ** not have been used. The "type" of connection pointer is given as the 1159 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1160 */ 1161 static void logBadConnection(const char *zType){ 1162 sqlite3_log(SQLITE_MISUSE, 1163 "API call with %s database connection pointer", 1164 zType 1165 ); 1166 } 1167 1168 /* 1169 ** Check to make sure we have a valid db pointer. This test is not 1170 ** foolproof but it does provide some measure of protection against 1171 ** misuse of the interface such as passing in db pointers that are 1172 ** NULL or which have been previously closed. If this routine returns 1173 ** 1 it means that the db pointer is valid and 0 if it should not be 1174 ** dereferenced for any reason. The calling function should invoke 1175 ** SQLITE_MISUSE immediately. 1176 ** 1177 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1178 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1179 ** open properly and is not fit for general use but which can be 1180 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1181 */ 1182 int sqlite3SafetyCheckOk(sqlite3 *db){ 1183 u32 magic; 1184 if( db==0 ){ 1185 logBadConnection("NULL"); 1186 return 0; 1187 } 1188 magic = db->magic; 1189 if( magic!=SQLITE_MAGIC_OPEN ){ 1190 if( sqlite3SafetyCheckSickOrOk(db) ){ 1191 testcase( sqlite3GlobalConfig.xLog!=0 ); 1192 logBadConnection("unopened"); 1193 } 1194 return 0; 1195 }else{ 1196 return 1; 1197 } 1198 } 1199 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1200 u32 magic; 1201 magic = db->magic; 1202 if( magic!=SQLITE_MAGIC_SICK && 1203 magic!=SQLITE_MAGIC_OPEN && 1204 magic!=SQLITE_MAGIC_BUSY ){ 1205 testcase( sqlite3GlobalConfig.xLog!=0 ); 1206 logBadConnection("invalid"); 1207 return 0; 1208 }else{ 1209 return 1; 1210 } 1211 } 1212 1213 /* 1214 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1215 ** the other 64-bit signed integer at *pA and store the result in *pA. 1216 ** Return 0 on success. Or if the operation would have resulted in an 1217 ** overflow, leave *pA unchanged and return 1. 1218 */ 1219 int sqlite3AddInt64(i64 *pA, i64 iB){ 1220 i64 iA = *pA; 1221 testcase( iA==0 ); testcase( iA==1 ); 1222 testcase( iB==-1 ); testcase( iB==0 ); 1223 if( iB>=0 ){ 1224 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1225 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1226 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1227 }else{ 1228 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1229 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1230 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1231 } 1232 *pA += iB; 1233 return 0; 1234 } 1235 int sqlite3SubInt64(i64 *pA, i64 iB){ 1236 testcase( iB==SMALLEST_INT64+1 ); 1237 if( iB==SMALLEST_INT64 ){ 1238 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1239 if( (*pA)>=0 ) return 1; 1240 *pA -= iB; 1241 return 0; 1242 }else{ 1243 return sqlite3AddInt64(pA, -iB); 1244 } 1245 } 1246 #define TWOPOWER32 (((i64)1)<<32) 1247 #define TWOPOWER31 (((i64)1)<<31) 1248 int sqlite3MulInt64(i64 *pA, i64 iB){ 1249 i64 iA = *pA; 1250 i64 iA1, iA0, iB1, iB0, r; 1251 1252 iA1 = iA/TWOPOWER32; 1253 iA0 = iA % TWOPOWER32; 1254 iB1 = iB/TWOPOWER32; 1255 iB0 = iB % TWOPOWER32; 1256 if( iA1==0 ){ 1257 if( iB1==0 ){ 1258 *pA *= iB; 1259 return 0; 1260 } 1261 r = iA0*iB1; 1262 }else if( iB1==0 ){ 1263 r = iA1*iB0; 1264 }else{ 1265 /* If both iA1 and iB1 are non-zero, overflow will result */ 1266 return 1; 1267 } 1268 testcase( r==(-TWOPOWER31)-1 ); 1269 testcase( r==(-TWOPOWER31) ); 1270 testcase( r==TWOPOWER31 ); 1271 testcase( r==TWOPOWER31-1 ); 1272 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1273 r *= TWOPOWER32; 1274 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1275 *pA = r; 1276 return 0; 1277 } 1278 1279 /* 1280 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1281 ** if the integer has a value of -2147483648, return +2147483647 1282 */ 1283 int sqlite3AbsInt32(int x){ 1284 if( x>=0 ) return x; 1285 if( x==(int)0x80000000 ) return 0x7fffffff; 1286 return -x; 1287 } 1288 1289 #ifdef SQLITE_ENABLE_8_3_NAMES 1290 /* 1291 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1292 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1293 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1294 ** three characters, then shorten the suffix on z[] to be the last three 1295 ** characters of the original suffix. 1296 ** 1297 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1298 ** do the suffix shortening regardless of URI parameter. 1299 ** 1300 ** Examples: 1301 ** 1302 ** test.db-journal => test.nal 1303 ** test.db-wal => test.wal 1304 ** test.db-shm => test.shm 1305 ** test.db-mj7f3319fa => test.9fa 1306 */ 1307 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1308 #if SQLITE_ENABLE_8_3_NAMES<2 1309 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1310 #endif 1311 { 1312 int i, sz; 1313 sz = sqlite3Strlen30(z); 1314 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1315 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1316 } 1317 } 1318 #endif 1319 1320 /* 1321 ** Find (an approximate) sum of two LogEst values. This computation is 1322 ** not a simple "+" operator because LogEst is stored as a logarithmic 1323 ** value. 1324 ** 1325 */ 1326 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1327 static const unsigned char x[] = { 1328 10, 10, /* 0,1 */ 1329 9, 9, /* 2,3 */ 1330 8, 8, /* 4,5 */ 1331 7, 7, 7, /* 6,7,8 */ 1332 6, 6, 6, /* 9,10,11 */ 1333 5, 5, 5, /* 12-14 */ 1334 4, 4, 4, 4, /* 15-18 */ 1335 3, 3, 3, 3, 3, 3, /* 19-24 */ 1336 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1337 }; 1338 if( a>=b ){ 1339 if( a>b+49 ) return a; 1340 if( a>b+31 ) return a+1; 1341 return a+x[a-b]; 1342 }else{ 1343 if( b>a+49 ) return b; 1344 if( b>a+31 ) return b+1; 1345 return b+x[b-a]; 1346 } 1347 } 1348 1349 /* 1350 ** Convert an integer into a LogEst. In other words, compute an 1351 ** approximation for 10*log2(x). 1352 */ 1353 LogEst sqlite3LogEst(u64 x){ 1354 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1355 LogEst y = 40; 1356 if( x<8 ){ 1357 if( x<2 ) return 0; 1358 while( x<8 ){ y -= 10; x <<= 1; } 1359 }else{ 1360 while( x>255 ){ y += 40; x >>= 4; } 1361 while( x>15 ){ y += 10; x >>= 1; } 1362 } 1363 return a[x&7] + y - 10; 1364 } 1365 1366 #ifndef SQLITE_OMIT_VIRTUALTABLE 1367 /* 1368 ** Convert a double into a LogEst 1369 ** In other words, compute an approximation for 10*log2(x). 1370 */ 1371 LogEst sqlite3LogEstFromDouble(double x){ 1372 u64 a; 1373 LogEst e; 1374 assert( sizeof(x)==8 && sizeof(a)==8 ); 1375 if( x<=1 ) return 0; 1376 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1377 memcpy(&a, &x, 8); 1378 e = (a>>52) - 1022; 1379 return e*10; 1380 } 1381 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1382 1383 /* 1384 ** Convert a LogEst into an integer. 1385 */ 1386 u64 sqlite3LogEstToInt(LogEst x){ 1387 u64 n; 1388 if( x<10 ) return 1; 1389 n = x%10; 1390 x /= 10; 1391 if( n>=5 ) n -= 2; 1392 else if( n>=1 ) n -= 1; 1393 if( x>=3 ){ 1394 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3); 1395 } 1396 return (n+8)>>(3-x); 1397 } 1398