xref: /sqlite-3.40.0/src/util.c (revision 3f09beda)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
38 **
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
41 **
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
44 */
45 #ifndef SQLITE_OMIT_BUILTIN_TEST
46 int sqlite3FaultSim(int iTest){
47   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48   return xCallback ? xCallback(iTest) : SQLITE_OK;
49 }
50 #endif
51 
52 #ifndef SQLITE_OMIT_FLOATING_POINT
53 /*
54 ** Return true if the floating point value is Not a Number (NaN).
55 **
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
58 */
59 int sqlite3IsNaN(double x){
60   int rc;   /* The value return */
61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
62   /*
63   ** Systems that support the isnan() library function should probably
64   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
65   ** found that many systems do not have a working isnan() function so
66   ** this implementation is provided as an alternative.
67   **
68   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69   ** On the other hand, the use of -ffast-math comes with the following
70   ** warning:
71   **
72   **      This option [-ffast-math] should never be turned on by any
73   **      -O option since it can result in incorrect output for programs
74   **      which depend on an exact implementation of IEEE or ISO
75   **      rules/specifications for math functions.
76   **
77   ** Under MSVC, this NaN test may fail if compiled with a floating-
78   ** point precision mode other than /fp:precise.  From the MSDN
79   ** documentation:
80   **
81   **      The compiler [with /fp:precise] will properly handle comparisons
82   **      involving NaN. For example, x != x evaluates to true if x is NaN
83   **      ...
84   */
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88   volatile double y = x;
89   volatile double z = y;
90   rc = (y!=z);
91 #else  /* if HAVE_ISNAN */
92   rc = isnan(x);
93 #endif /* HAVE_ISNAN */
94   testcase( rc );
95   return rc;
96 }
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
98 
99 /*
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
102 **
103 ** The value returned will never be negative.  Nor will it ever be greater
104 ** than the actual length of the string.  For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
106 */
107 int sqlite3Strlen30(const char *z){
108   if( z==0 ) return 0;
109   return 0x3fffffff & (int)strlen(z);
110 }
111 
112 /*
113 ** Set the current error code to err_code and clear any prior error message.
114 */
115 void sqlite3Error(sqlite3 *db, int err_code){
116   assert( db!=0 );
117   db->errCode = err_code;
118   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
119 }
120 
121 /*
122 ** Set the most recent error code and error string for the sqlite
123 ** handle "db". The error code is set to "err_code".
124 **
125 ** If it is not NULL, string zFormat specifies the format of the
126 ** error string in the style of the printf functions: The following
127 ** format characters are allowed:
128 **
129 **      %s      Insert a string
130 **      %z      A string that should be freed after use
131 **      %d      Insert an integer
132 **      %T      Insert a token
133 **      %S      Insert the first element of a SrcList
134 **
135 ** zFormat and any string tokens that follow it are assumed to be
136 ** encoded in UTF-8.
137 **
138 ** To clear the most recent error for sqlite handle "db", sqlite3Error
139 ** should be called with err_code set to SQLITE_OK and zFormat set
140 ** to NULL.
141 */
142 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
143   assert( db!=0 );
144   db->errCode = err_code;
145   if( zFormat==0 ){
146     sqlite3Error(db, err_code);
147   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
148     char *z;
149     va_list ap;
150     va_start(ap, zFormat);
151     z = sqlite3VMPrintf(db, zFormat, ap);
152     va_end(ap);
153     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
154   }
155 }
156 
157 /*
158 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
159 ** The following formatting characters are allowed:
160 **
161 **      %s      Insert a string
162 **      %z      A string that should be freed after use
163 **      %d      Insert an integer
164 **      %T      Insert a token
165 **      %S      Insert the first element of a SrcList
166 **
167 ** This function should be used to report any error that occurs while
168 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
169 ** last thing the sqlite3_prepare() function does is copy the error
170 ** stored by this function into the database handle using sqlite3Error().
171 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
172 ** during statement execution (sqlite3_step() etc.).
173 */
174 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
175   char *zMsg;
176   va_list ap;
177   sqlite3 *db = pParse->db;
178   va_start(ap, zFormat);
179   zMsg = sqlite3VMPrintf(db, zFormat, ap);
180   va_end(ap);
181   if( db->suppressErr ){
182     sqlite3DbFree(db, zMsg);
183   }else{
184     pParse->nErr++;
185     sqlite3DbFree(db, pParse->zErrMsg);
186     pParse->zErrMsg = zMsg;
187     pParse->rc = SQLITE_ERROR;
188   }
189 }
190 
191 /*
192 ** Convert an SQL-style quoted string into a normal string by removing
193 ** the quote characters.  The conversion is done in-place.  If the
194 ** input does not begin with a quote character, then this routine
195 ** is a no-op.
196 **
197 ** The input string must be zero-terminated.  A new zero-terminator
198 ** is added to the dequoted string.
199 **
200 ** The return value is -1 if no dequoting occurs or the length of the
201 ** dequoted string, exclusive of the zero terminator, if dequoting does
202 ** occur.
203 **
204 ** 2002-Feb-14: This routine is extended to remove MS-Access style
205 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
206 ** "a-b-c".
207 */
208 int sqlite3Dequote(char *z){
209   char quote;
210   int i, j;
211   if( z==0 ) return -1;
212   quote = z[0];
213   switch( quote ){
214     case '\'':  break;
215     case '"':   break;
216     case '`':   break;                /* For MySQL compatibility */
217     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
218     default:    return -1;
219   }
220   for(i=1, j=0;; i++){
221     assert( z[i] );
222     if( z[i]==quote ){
223       if( z[i+1]==quote ){
224         z[j++] = quote;
225         i++;
226       }else{
227         break;
228       }
229     }else{
230       z[j++] = z[i];
231     }
232   }
233   z[j] = 0;
234   return j;
235 }
236 
237 /* Convenient short-hand */
238 #define UpperToLower sqlite3UpperToLower
239 
240 /*
241 ** Some systems have stricmp().  Others have strcasecmp().  Because
242 ** there is no consistency, we will define our own.
243 **
244 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
245 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
246 ** the contents of two buffers containing UTF-8 strings in a
247 ** case-independent fashion, using the same definition of "case
248 ** independence" that SQLite uses internally when comparing identifiers.
249 */
250 int sqlite3_stricmp(const char *zLeft, const char *zRight){
251   register unsigned char *a, *b;
252   if( zLeft==0 ){
253     return zRight ? -1 : 0;
254   }else if( zRight==0 ){
255     return 1;
256   }
257   a = (unsigned char *)zLeft;
258   b = (unsigned char *)zRight;
259   while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
260   return UpperToLower[*a] - UpperToLower[*b];
261 }
262 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
263   register unsigned char *a, *b;
264   if( zLeft==0 ){
265     return zRight ? -1 : 0;
266   }else if( zRight==0 ){
267     return 1;
268   }
269   a = (unsigned char *)zLeft;
270   b = (unsigned char *)zRight;
271   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
272   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
273 }
274 
275 /*
276 ** The string z[] is an text representation of a real number.
277 ** Convert this string to a double and write it into *pResult.
278 **
279 ** The string z[] is length bytes in length (bytes, not characters) and
280 ** uses the encoding enc.  The string is not necessarily zero-terminated.
281 **
282 ** Return TRUE if the result is a valid real number (or integer) and FALSE
283 ** if the string is empty or contains extraneous text.  Valid numbers
284 ** are in one of these formats:
285 **
286 **    [+-]digits[E[+-]digits]
287 **    [+-]digits.[digits][E[+-]digits]
288 **    [+-].digits[E[+-]digits]
289 **
290 ** Leading and trailing whitespace is ignored for the purpose of determining
291 ** validity.
292 **
293 ** If some prefix of the input string is a valid number, this routine
294 ** returns FALSE but it still converts the prefix and writes the result
295 ** into *pResult.
296 */
297 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
298 #ifndef SQLITE_OMIT_FLOATING_POINT
299   int incr;
300   const char *zEnd = z + length;
301   /* sign * significand * (10 ^ (esign * exponent)) */
302   int sign = 1;    /* sign of significand */
303   i64 s = 0;       /* significand */
304   int d = 0;       /* adjust exponent for shifting decimal point */
305   int esign = 1;   /* sign of exponent */
306   int e = 0;       /* exponent */
307   int eValid = 1;  /* True exponent is either not used or is well-formed */
308   double result;
309   int nDigits = 0;
310   int nonNum = 0;
311 
312   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
313   *pResult = 0.0;   /* Default return value, in case of an error */
314 
315   if( enc==SQLITE_UTF8 ){
316     incr = 1;
317   }else{
318     int i;
319     incr = 2;
320     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
321     for(i=3-enc; i<length && z[i]==0; i+=2){}
322     nonNum = i<length;
323     zEnd = z+i+enc-3;
324     z += (enc&1);
325   }
326 
327   /* skip leading spaces */
328   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
329   if( z>=zEnd ) return 0;
330 
331   /* get sign of significand */
332   if( *z=='-' ){
333     sign = -1;
334     z+=incr;
335   }else if( *z=='+' ){
336     z+=incr;
337   }
338 
339   /* skip leading zeroes */
340   while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
341 
342   /* copy max significant digits to significand */
343   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
344     s = s*10 + (*z - '0');
345     z+=incr, nDigits++;
346   }
347 
348   /* skip non-significant significand digits
349   ** (increase exponent by d to shift decimal left) */
350   while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
351   if( z>=zEnd ) goto do_atof_calc;
352 
353   /* if decimal point is present */
354   if( *z=='.' ){
355     z+=incr;
356     /* copy digits from after decimal to significand
357     ** (decrease exponent by d to shift decimal right) */
358     while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
359       s = s*10 + (*z - '0');
360       z+=incr, nDigits++, d--;
361     }
362     /* skip non-significant digits */
363     while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
364   }
365   if( z>=zEnd ) goto do_atof_calc;
366 
367   /* if exponent is present */
368   if( *z=='e' || *z=='E' ){
369     z+=incr;
370     eValid = 0;
371     if( z>=zEnd ) goto do_atof_calc;
372     /* get sign of exponent */
373     if( *z=='-' ){
374       esign = -1;
375       z+=incr;
376     }else if( *z=='+' ){
377       z+=incr;
378     }
379     /* copy digits to exponent */
380     while( z<zEnd && sqlite3Isdigit(*z) ){
381       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
382       z+=incr;
383       eValid = 1;
384     }
385   }
386 
387   /* skip trailing spaces */
388   if( nDigits && eValid ){
389     while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
390   }
391 
392 do_atof_calc:
393   /* adjust exponent by d, and update sign */
394   e = (e*esign) + d;
395   if( e<0 ) {
396     esign = -1;
397     e *= -1;
398   } else {
399     esign = 1;
400   }
401 
402   /* if 0 significand */
403   if( !s ) {
404     /* In the IEEE 754 standard, zero is signed.
405     ** Add the sign if we've seen at least one digit */
406     result = (sign<0 && nDigits) ? -(double)0 : (double)0;
407   } else {
408     /* attempt to reduce exponent */
409     if( esign>0 ){
410       while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
411     }else{
412       while( !(s%10) && e>0 ) e--,s/=10;
413     }
414 
415     /* adjust the sign of significand */
416     s = sign<0 ? -s : s;
417 
418     /* if exponent, scale significand as appropriate
419     ** and store in result. */
420     if( e ){
421       LONGDOUBLE_TYPE scale = 1.0;
422       /* attempt to handle extremely small/large numbers better */
423       if( e>307 && e<342 ){
424         while( e%308 ) { scale *= 1.0e+1; e -= 1; }
425         if( esign<0 ){
426           result = s / scale;
427           result /= 1.0e+308;
428         }else{
429           result = s * scale;
430           result *= 1.0e+308;
431         }
432       }else if( e>=342 ){
433         if( esign<0 ){
434           result = 0.0*s;
435         }else{
436           result = 1e308*1e308*s;  /* Infinity */
437         }
438       }else{
439         /* 1.0e+22 is the largest power of 10 than can be
440         ** represented exactly. */
441         while( e%22 ) { scale *= 1.0e+1; e -= 1; }
442         while( e>0 ) { scale *= 1.0e+22; e -= 22; }
443         if( esign<0 ){
444           result = s / scale;
445         }else{
446           result = s * scale;
447         }
448       }
449     } else {
450       result = (double)s;
451     }
452   }
453 
454   /* store the result */
455   *pResult = result;
456 
457   /* return true if number and no extra non-whitespace chracters after */
458   return z>=zEnd && nDigits>0 && eValid && nonNum==0;
459 #else
460   return !sqlite3Atoi64(z, pResult, length, enc);
461 #endif /* SQLITE_OMIT_FLOATING_POINT */
462 }
463 
464 /*
465 ** Compare the 19-character string zNum against the text representation
466 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
467 ** if zNum is less than, equal to, or greater than the string.
468 ** Note that zNum must contain exactly 19 characters.
469 **
470 ** Unlike memcmp() this routine is guaranteed to return the difference
471 ** in the values of the last digit if the only difference is in the
472 ** last digit.  So, for example,
473 **
474 **      compare2pow63("9223372036854775800", 1)
475 **
476 ** will return -8.
477 */
478 static int compare2pow63(const char *zNum, int incr){
479   int c = 0;
480   int i;
481                     /* 012345678901234567 */
482   const char *pow63 = "922337203685477580";
483   for(i=0; c==0 && i<18; i++){
484     c = (zNum[i*incr]-pow63[i])*10;
485   }
486   if( c==0 ){
487     c = zNum[18*incr] - '8';
488     testcase( c==(-1) );
489     testcase( c==0 );
490     testcase( c==(+1) );
491   }
492   return c;
493 }
494 
495 /*
496 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
497 ** routine does *not* accept hexadecimal notation.
498 **
499 ** If the zNum value is representable as a 64-bit twos-complement
500 ** integer, then write that value into *pNum and return 0.
501 **
502 ** If zNum is exactly 9223372036854775808, return 2.  This special
503 ** case is broken out because while 9223372036854775808 cannot be a
504 ** signed 64-bit integer, its negative -9223372036854775808 can be.
505 **
506 ** If zNum is too big for a 64-bit integer and is not
507 ** 9223372036854775808  or if zNum contains any non-numeric text,
508 ** then return 1.
509 **
510 ** length is the number of bytes in the string (bytes, not characters).
511 ** The string is not necessarily zero-terminated.  The encoding is
512 ** given by enc.
513 */
514 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
515   int incr;
516   u64 u = 0;
517   int neg = 0; /* assume positive */
518   int i;
519   int c = 0;
520   int nonNum = 0;
521   const char *zStart;
522   const char *zEnd = zNum + length;
523   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
524   if( enc==SQLITE_UTF8 ){
525     incr = 1;
526   }else{
527     incr = 2;
528     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
529     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
530     nonNum = i<length;
531     zEnd = zNum+i+enc-3;
532     zNum += (enc&1);
533   }
534   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
535   if( zNum<zEnd ){
536     if( *zNum=='-' ){
537       neg = 1;
538       zNum+=incr;
539     }else if( *zNum=='+' ){
540       zNum+=incr;
541     }
542   }
543   zStart = zNum;
544   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
545   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
546     u = u*10 + c - '0';
547   }
548   if( u>LARGEST_INT64 ){
549     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
550   }else if( neg ){
551     *pNum = -(i64)u;
552   }else{
553     *pNum = (i64)u;
554   }
555   testcase( i==18 );
556   testcase( i==19 );
557   testcase( i==20 );
558   if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){
559     /* zNum is empty or contains non-numeric text or is longer
560     ** than 19 digits (thus guaranteeing that it is too large) */
561     return 1;
562   }else if( i<19*incr ){
563     /* Less than 19 digits, so we know that it fits in 64 bits */
564     assert( u<=LARGEST_INT64 );
565     return 0;
566   }else{
567     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
568     c = compare2pow63(zNum, incr);
569     if( c<0 ){
570       /* zNum is less than 9223372036854775808 so it fits */
571       assert( u<=LARGEST_INT64 );
572       return 0;
573     }else if( c>0 ){
574       /* zNum is greater than 9223372036854775808 so it overflows */
575       return 1;
576     }else{
577       /* zNum is exactly 9223372036854775808.  Fits if negative.  The
578       ** special case 2 overflow if positive */
579       assert( u-1==LARGEST_INT64 );
580       return neg ? 0 : 2;
581     }
582   }
583 }
584 
585 /*
586 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
587 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
588 ** whereas sqlite3Atoi64() does not.
589 **
590 ** Returns:
591 **
592 **     0    Successful transformation.  Fits in a 64-bit signed integer.
593 **     1    Integer too large for a 64-bit signed integer or is malformed
594 **     2    Special case of 9223372036854775808
595 */
596 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
597 #ifndef SQLITE_OMIT_HEX_INTEGER
598   if( z[0]=='0'
599    && (z[1]=='x' || z[1]=='X')
600    && sqlite3Isxdigit(z[2])
601   ){
602     u64 u = 0;
603     int i, k;
604     for(i=2; z[i]=='0'; i++){}
605     for(k=i; sqlite3Isxdigit(z[k]); k++){
606       u = u*16 + sqlite3HexToInt(z[k]);
607     }
608     memcpy(pOut, &u, 8);
609     return (z[k]==0 && k-i<=16) ? 0 : 1;
610   }else
611 #endif /* SQLITE_OMIT_HEX_INTEGER */
612   {
613     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
614   }
615 }
616 
617 /*
618 ** If zNum represents an integer that will fit in 32-bits, then set
619 ** *pValue to that integer and return true.  Otherwise return false.
620 **
621 ** This routine accepts both decimal and hexadecimal notation for integers.
622 **
623 ** Any non-numeric characters that following zNum are ignored.
624 ** This is different from sqlite3Atoi64() which requires the
625 ** input number to be zero-terminated.
626 */
627 int sqlite3GetInt32(const char *zNum, int *pValue){
628   sqlite_int64 v = 0;
629   int i, c;
630   int neg = 0;
631   if( zNum[0]=='-' ){
632     neg = 1;
633     zNum++;
634   }else if( zNum[0]=='+' ){
635     zNum++;
636   }
637 #ifndef SQLITE_OMIT_HEX_INTEGER
638   else if( zNum[0]=='0'
639         && (zNum[1]=='x' || zNum[1]=='X')
640         && sqlite3Isxdigit(zNum[2])
641   ){
642     u32 u = 0;
643     zNum += 2;
644     while( zNum[0]=='0' ) zNum++;
645     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
646       u = u*16 + sqlite3HexToInt(zNum[i]);
647     }
648     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
649       memcpy(pValue, &u, 4);
650       return 1;
651     }else{
652       return 0;
653     }
654   }
655 #endif
656   while( zNum[0]=='0' ) zNum++;
657   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
658     v = v*10 + c;
659   }
660 
661   /* The longest decimal representation of a 32 bit integer is 10 digits:
662   **
663   **             1234567890
664   **     2^31 -> 2147483648
665   */
666   testcase( i==10 );
667   if( i>10 ){
668     return 0;
669   }
670   testcase( v-neg==2147483647 );
671   if( v-neg>2147483647 ){
672     return 0;
673   }
674   if( neg ){
675     v = -v;
676   }
677   *pValue = (int)v;
678   return 1;
679 }
680 
681 /*
682 ** Return a 32-bit integer value extracted from a string.  If the
683 ** string is not an integer, just return 0.
684 */
685 int sqlite3Atoi(const char *z){
686   int x = 0;
687   if( z ) sqlite3GetInt32(z, &x);
688   return x;
689 }
690 
691 /*
692 ** The variable-length integer encoding is as follows:
693 **
694 ** KEY:
695 **         A = 0xxxxxxx    7 bits of data and one flag bit
696 **         B = 1xxxxxxx    7 bits of data and one flag bit
697 **         C = xxxxxxxx    8 bits of data
698 **
699 **  7 bits - A
700 ** 14 bits - BA
701 ** 21 bits - BBA
702 ** 28 bits - BBBA
703 ** 35 bits - BBBBA
704 ** 42 bits - BBBBBA
705 ** 49 bits - BBBBBBA
706 ** 56 bits - BBBBBBBA
707 ** 64 bits - BBBBBBBBC
708 */
709 
710 /*
711 ** Write a 64-bit variable-length integer to memory starting at p[0].
712 ** The length of data write will be between 1 and 9 bytes.  The number
713 ** of bytes written is returned.
714 **
715 ** A variable-length integer consists of the lower 7 bits of each byte
716 ** for all bytes that have the 8th bit set and one byte with the 8th
717 ** bit clear.  Except, if we get to the 9th byte, it stores the full
718 ** 8 bits and is the last byte.
719 */
720 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
721   int i, j, n;
722   u8 buf[10];
723   if( v & (((u64)0xff000000)<<32) ){
724     p[8] = (u8)v;
725     v >>= 8;
726     for(i=7; i>=0; i--){
727       p[i] = (u8)((v & 0x7f) | 0x80);
728       v >>= 7;
729     }
730     return 9;
731   }
732   n = 0;
733   do{
734     buf[n++] = (u8)((v & 0x7f) | 0x80);
735     v >>= 7;
736   }while( v!=0 );
737   buf[0] &= 0x7f;
738   assert( n<=9 );
739   for(i=0, j=n-1; j>=0; j--, i++){
740     p[i] = buf[j];
741   }
742   return n;
743 }
744 int sqlite3PutVarint(unsigned char *p, u64 v){
745   if( v<=0x7f ){
746     p[0] = v&0x7f;
747     return 1;
748   }
749   if( v<=0x3fff ){
750     p[0] = ((v>>7)&0x7f)|0x80;
751     p[1] = v&0x7f;
752     return 2;
753   }
754   return putVarint64(p,v);
755 }
756 
757 /*
758 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
759 ** are defined here rather than simply putting the constant expressions
760 ** inline in order to work around bugs in the RVT compiler.
761 **
762 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
763 **
764 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
765 */
766 #define SLOT_2_0     0x001fc07f
767 #define SLOT_4_2_0   0xf01fc07f
768 
769 
770 /*
771 ** Read a 64-bit variable-length integer from memory starting at p[0].
772 ** Return the number of bytes read.  The value is stored in *v.
773 */
774 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
775   u32 a,b,s;
776 
777   a = *p;
778   /* a: p0 (unmasked) */
779   if (!(a&0x80))
780   {
781     *v = a;
782     return 1;
783   }
784 
785   p++;
786   b = *p;
787   /* b: p1 (unmasked) */
788   if (!(b&0x80))
789   {
790     a &= 0x7f;
791     a = a<<7;
792     a |= b;
793     *v = a;
794     return 2;
795   }
796 
797   /* Verify that constants are precomputed correctly */
798   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
799   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
800 
801   p++;
802   a = a<<14;
803   a |= *p;
804   /* a: p0<<14 | p2 (unmasked) */
805   if (!(a&0x80))
806   {
807     a &= SLOT_2_0;
808     b &= 0x7f;
809     b = b<<7;
810     a |= b;
811     *v = a;
812     return 3;
813   }
814 
815   /* CSE1 from below */
816   a &= SLOT_2_0;
817   p++;
818   b = b<<14;
819   b |= *p;
820   /* b: p1<<14 | p3 (unmasked) */
821   if (!(b&0x80))
822   {
823     b &= SLOT_2_0;
824     /* moved CSE1 up */
825     /* a &= (0x7f<<14)|(0x7f); */
826     a = a<<7;
827     a |= b;
828     *v = a;
829     return 4;
830   }
831 
832   /* a: p0<<14 | p2 (masked) */
833   /* b: p1<<14 | p3 (unmasked) */
834   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
835   /* moved CSE1 up */
836   /* a &= (0x7f<<14)|(0x7f); */
837   b &= SLOT_2_0;
838   s = a;
839   /* s: p0<<14 | p2 (masked) */
840 
841   p++;
842   a = a<<14;
843   a |= *p;
844   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
845   if (!(a&0x80))
846   {
847     /* we can skip these cause they were (effectively) done above in calc'ing s */
848     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
849     /* b &= (0x7f<<14)|(0x7f); */
850     b = b<<7;
851     a |= b;
852     s = s>>18;
853     *v = ((u64)s)<<32 | a;
854     return 5;
855   }
856 
857   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
858   s = s<<7;
859   s |= b;
860   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
861 
862   p++;
863   b = b<<14;
864   b |= *p;
865   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
866   if (!(b&0x80))
867   {
868     /* we can skip this cause it was (effectively) done above in calc'ing s */
869     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
870     a &= SLOT_2_0;
871     a = a<<7;
872     a |= b;
873     s = s>>18;
874     *v = ((u64)s)<<32 | a;
875     return 6;
876   }
877 
878   p++;
879   a = a<<14;
880   a |= *p;
881   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
882   if (!(a&0x80))
883   {
884     a &= SLOT_4_2_0;
885     b &= SLOT_2_0;
886     b = b<<7;
887     a |= b;
888     s = s>>11;
889     *v = ((u64)s)<<32 | a;
890     return 7;
891   }
892 
893   /* CSE2 from below */
894   a &= SLOT_2_0;
895   p++;
896   b = b<<14;
897   b |= *p;
898   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
899   if (!(b&0x80))
900   {
901     b &= SLOT_4_2_0;
902     /* moved CSE2 up */
903     /* a &= (0x7f<<14)|(0x7f); */
904     a = a<<7;
905     a |= b;
906     s = s>>4;
907     *v = ((u64)s)<<32 | a;
908     return 8;
909   }
910 
911   p++;
912   a = a<<15;
913   a |= *p;
914   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
915 
916   /* moved CSE2 up */
917   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
918   b &= SLOT_2_0;
919   b = b<<8;
920   a |= b;
921 
922   s = s<<4;
923   b = p[-4];
924   b &= 0x7f;
925   b = b>>3;
926   s |= b;
927 
928   *v = ((u64)s)<<32 | a;
929 
930   return 9;
931 }
932 
933 /*
934 ** Read a 32-bit variable-length integer from memory starting at p[0].
935 ** Return the number of bytes read.  The value is stored in *v.
936 **
937 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
938 ** integer, then set *v to 0xffffffff.
939 **
940 ** A MACRO version, getVarint32, is provided which inlines the
941 ** single-byte case.  All code should use the MACRO version as
942 ** this function assumes the single-byte case has already been handled.
943 */
944 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
945   u32 a,b;
946 
947   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
948   ** by the getVarin32() macro */
949   a = *p;
950   /* a: p0 (unmasked) */
951 #ifndef getVarint32
952   if (!(a&0x80))
953   {
954     /* Values between 0 and 127 */
955     *v = a;
956     return 1;
957   }
958 #endif
959 
960   /* The 2-byte case */
961   p++;
962   b = *p;
963   /* b: p1 (unmasked) */
964   if (!(b&0x80))
965   {
966     /* Values between 128 and 16383 */
967     a &= 0x7f;
968     a = a<<7;
969     *v = a | b;
970     return 2;
971   }
972 
973   /* The 3-byte case */
974   p++;
975   a = a<<14;
976   a |= *p;
977   /* a: p0<<14 | p2 (unmasked) */
978   if (!(a&0x80))
979   {
980     /* Values between 16384 and 2097151 */
981     a &= (0x7f<<14)|(0x7f);
982     b &= 0x7f;
983     b = b<<7;
984     *v = a | b;
985     return 3;
986   }
987 
988   /* A 32-bit varint is used to store size information in btrees.
989   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
990   ** A 3-byte varint is sufficient, for example, to record the size
991   ** of a 1048569-byte BLOB or string.
992   **
993   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
994   ** rare larger cases can be handled by the slower 64-bit varint
995   ** routine.
996   */
997 #if 1
998   {
999     u64 v64;
1000     u8 n;
1001 
1002     p -= 2;
1003     n = sqlite3GetVarint(p, &v64);
1004     assert( n>3 && n<=9 );
1005     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1006       *v = 0xffffffff;
1007     }else{
1008       *v = (u32)v64;
1009     }
1010     return n;
1011   }
1012 
1013 #else
1014   /* For following code (kept for historical record only) shows an
1015   ** unrolling for the 3- and 4-byte varint cases.  This code is
1016   ** slightly faster, but it is also larger and much harder to test.
1017   */
1018   p++;
1019   b = b<<14;
1020   b |= *p;
1021   /* b: p1<<14 | p3 (unmasked) */
1022   if (!(b&0x80))
1023   {
1024     /* Values between 2097152 and 268435455 */
1025     b &= (0x7f<<14)|(0x7f);
1026     a &= (0x7f<<14)|(0x7f);
1027     a = a<<7;
1028     *v = a | b;
1029     return 4;
1030   }
1031 
1032   p++;
1033   a = a<<14;
1034   a |= *p;
1035   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1036   if (!(a&0x80))
1037   {
1038     /* Values  between 268435456 and 34359738367 */
1039     a &= SLOT_4_2_0;
1040     b &= SLOT_4_2_0;
1041     b = b<<7;
1042     *v = a | b;
1043     return 5;
1044   }
1045 
1046   /* We can only reach this point when reading a corrupt database
1047   ** file.  In that case we are not in any hurry.  Use the (relatively
1048   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1049   ** value. */
1050   {
1051     u64 v64;
1052     u8 n;
1053 
1054     p -= 4;
1055     n = sqlite3GetVarint(p, &v64);
1056     assert( n>5 && n<=9 );
1057     *v = (u32)v64;
1058     return n;
1059   }
1060 #endif
1061 }
1062 
1063 /*
1064 ** Return the number of bytes that will be needed to store the given
1065 ** 64-bit integer.
1066 */
1067 int sqlite3VarintLen(u64 v){
1068   int i = 0;
1069   do{
1070     i++;
1071     v >>= 7;
1072   }while( v!=0 && ALWAYS(i<9) );
1073   return i;
1074 }
1075 
1076 
1077 /*
1078 ** Read or write a four-byte big-endian integer value.
1079 */
1080 u32 sqlite3Get4byte(const u8 *p){
1081 #if SQLITE_BYTEORDER==4321
1082   u32 x;
1083   memcpy(&x,p,4);
1084   return x;
1085 #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__)
1086   u32 x;
1087   memcpy(&x,p,4);
1088   return __builtin_bswap32(x);
1089 #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300
1090   u32 x;
1091   memcpy(&x,p,4);
1092   return _byteswap_ulong(x);
1093 #else
1094   testcase( p[0]&0x80 );
1095   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1096 #endif
1097 }
1098 void sqlite3Put4byte(unsigned char *p, u32 v){
1099 #if SQLITE_BYTEORDER==4321
1100   memcpy(p,&v,4);
1101 #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__)
1102   u32 x = __builtin_bswap32(v);
1103   memcpy(p,&x,4);
1104 #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300
1105   u32 x = _byteswap_ulong(v);
1106   memcpy(p,&x,4);
1107 #else
1108   p[0] = (u8)(v>>24);
1109   p[1] = (u8)(v>>16);
1110   p[2] = (u8)(v>>8);
1111   p[3] = (u8)v;
1112 #endif
1113 }
1114 
1115 
1116 
1117 /*
1118 ** Translate a single byte of Hex into an integer.
1119 ** This routine only works if h really is a valid hexadecimal
1120 ** character:  0..9a..fA..F
1121 */
1122 u8 sqlite3HexToInt(int h){
1123   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1124 #ifdef SQLITE_ASCII
1125   h += 9*(1&(h>>6));
1126 #endif
1127 #ifdef SQLITE_EBCDIC
1128   h += 9*(1&~(h>>4));
1129 #endif
1130   return (u8)(h & 0xf);
1131 }
1132 
1133 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1134 /*
1135 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1136 ** value.  Return a pointer to its binary value.  Space to hold the
1137 ** binary value has been obtained from malloc and must be freed by
1138 ** the calling routine.
1139 */
1140 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1141   char *zBlob;
1142   int i;
1143 
1144   zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1145   n--;
1146   if( zBlob ){
1147     for(i=0; i<n; i+=2){
1148       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1149     }
1150     zBlob[i/2] = 0;
1151   }
1152   return zBlob;
1153 }
1154 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1155 
1156 /*
1157 ** Log an error that is an API call on a connection pointer that should
1158 ** not have been used.  The "type" of connection pointer is given as the
1159 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1160 */
1161 static void logBadConnection(const char *zType){
1162   sqlite3_log(SQLITE_MISUSE,
1163      "API call with %s database connection pointer",
1164      zType
1165   );
1166 }
1167 
1168 /*
1169 ** Check to make sure we have a valid db pointer.  This test is not
1170 ** foolproof but it does provide some measure of protection against
1171 ** misuse of the interface such as passing in db pointers that are
1172 ** NULL or which have been previously closed.  If this routine returns
1173 ** 1 it means that the db pointer is valid and 0 if it should not be
1174 ** dereferenced for any reason.  The calling function should invoke
1175 ** SQLITE_MISUSE immediately.
1176 **
1177 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1178 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1179 ** open properly and is not fit for general use but which can be
1180 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1181 */
1182 int sqlite3SafetyCheckOk(sqlite3 *db){
1183   u32 magic;
1184   if( db==0 ){
1185     logBadConnection("NULL");
1186     return 0;
1187   }
1188   magic = db->magic;
1189   if( magic!=SQLITE_MAGIC_OPEN ){
1190     if( sqlite3SafetyCheckSickOrOk(db) ){
1191       testcase( sqlite3GlobalConfig.xLog!=0 );
1192       logBadConnection("unopened");
1193     }
1194     return 0;
1195   }else{
1196     return 1;
1197   }
1198 }
1199 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1200   u32 magic;
1201   magic = db->magic;
1202   if( magic!=SQLITE_MAGIC_SICK &&
1203       magic!=SQLITE_MAGIC_OPEN &&
1204       magic!=SQLITE_MAGIC_BUSY ){
1205     testcase( sqlite3GlobalConfig.xLog!=0 );
1206     logBadConnection("invalid");
1207     return 0;
1208   }else{
1209     return 1;
1210   }
1211 }
1212 
1213 /*
1214 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1215 ** the other 64-bit signed integer at *pA and store the result in *pA.
1216 ** Return 0 on success.  Or if the operation would have resulted in an
1217 ** overflow, leave *pA unchanged and return 1.
1218 */
1219 int sqlite3AddInt64(i64 *pA, i64 iB){
1220   i64 iA = *pA;
1221   testcase( iA==0 ); testcase( iA==1 );
1222   testcase( iB==-1 ); testcase( iB==0 );
1223   if( iB>=0 ){
1224     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1225     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1226     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1227   }else{
1228     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1229     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1230     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1231   }
1232   *pA += iB;
1233   return 0;
1234 }
1235 int sqlite3SubInt64(i64 *pA, i64 iB){
1236   testcase( iB==SMALLEST_INT64+1 );
1237   if( iB==SMALLEST_INT64 ){
1238     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1239     if( (*pA)>=0 ) return 1;
1240     *pA -= iB;
1241     return 0;
1242   }else{
1243     return sqlite3AddInt64(pA, -iB);
1244   }
1245 }
1246 #define TWOPOWER32 (((i64)1)<<32)
1247 #define TWOPOWER31 (((i64)1)<<31)
1248 int sqlite3MulInt64(i64 *pA, i64 iB){
1249   i64 iA = *pA;
1250   i64 iA1, iA0, iB1, iB0, r;
1251 
1252   iA1 = iA/TWOPOWER32;
1253   iA0 = iA % TWOPOWER32;
1254   iB1 = iB/TWOPOWER32;
1255   iB0 = iB % TWOPOWER32;
1256   if( iA1==0 ){
1257     if( iB1==0 ){
1258       *pA *= iB;
1259       return 0;
1260     }
1261     r = iA0*iB1;
1262   }else if( iB1==0 ){
1263     r = iA1*iB0;
1264   }else{
1265     /* If both iA1 and iB1 are non-zero, overflow will result */
1266     return 1;
1267   }
1268   testcase( r==(-TWOPOWER31)-1 );
1269   testcase( r==(-TWOPOWER31) );
1270   testcase( r==TWOPOWER31 );
1271   testcase( r==TWOPOWER31-1 );
1272   if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1273   r *= TWOPOWER32;
1274   if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1275   *pA = r;
1276   return 0;
1277 }
1278 
1279 /*
1280 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1281 ** if the integer has a value of -2147483648, return +2147483647
1282 */
1283 int sqlite3AbsInt32(int x){
1284   if( x>=0 ) return x;
1285   if( x==(int)0x80000000 ) return 0x7fffffff;
1286   return -x;
1287 }
1288 
1289 #ifdef SQLITE_ENABLE_8_3_NAMES
1290 /*
1291 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1292 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1293 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1294 ** three characters, then shorten the suffix on z[] to be the last three
1295 ** characters of the original suffix.
1296 **
1297 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1298 ** do the suffix shortening regardless of URI parameter.
1299 **
1300 ** Examples:
1301 **
1302 **     test.db-journal    =>   test.nal
1303 **     test.db-wal        =>   test.wal
1304 **     test.db-shm        =>   test.shm
1305 **     test.db-mj7f3319fa =>   test.9fa
1306 */
1307 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1308 #if SQLITE_ENABLE_8_3_NAMES<2
1309   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1310 #endif
1311   {
1312     int i, sz;
1313     sz = sqlite3Strlen30(z);
1314     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1315     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1316   }
1317 }
1318 #endif
1319 
1320 /*
1321 ** Find (an approximate) sum of two LogEst values.  This computation is
1322 ** not a simple "+" operator because LogEst is stored as a logarithmic
1323 ** value.
1324 **
1325 */
1326 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1327   static const unsigned char x[] = {
1328      10, 10,                         /* 0,1 */
1329       9, 9,                          /* 2,3 */
1330       8, 8,                          /* 4,5 */
1331       7, 7, 7,                       /* 6,7,8 */
1332       6, 6, 6,                       /* 9,10,11 */
1333       5, 5, 5,                       /* 12-14 */
1334       4, 4, 4, 4,                    /* 15-18 */
1335       3, 3, 3, 3, 3, 3,              /* 19-24 */
1336       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1337   };
1338   if( a>=b ){
1339     if( a>b+49 ) return a;
1340     if( a>b+31 ) return a+1;
1341     return a+x[a-b];
1342   }else{
1343     if( b>a+49 ) return b;
1344     if( b>a+31 ) return b+1;
1345     return b+x[b-a];
1346   }
1347 }
1348 
1349 /*
1350 ** Convert an integer into a LogEst.  In other words, compute an
1351 ** approximation for 10*log2(x).
1352 */
1353 LogEst sqlite3LogEst(u64 x){
1354   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1355   LogEst y = 40;
1356   if( x<8 ){
1357     if( x<2 ) return 0;
1358     while( x<8 ){  y -= 10; x <<= 1; }
1359   }else{
1360     while( x>255 ){ y += 40; x >>= 4; }
1361     while( x>15 ){  y += 10; x >>= 1; }
1362   }
1363   return a[x&7] + y - 10;
1364 }
1365 
1366 #ifndef SQLITE_OMIT_VIRTUALTABLE
1367 /*
1368 ** Convert a double into a LogEst
1369 ** In other words, compute an approximation for 10*log2(x).
1370 */
1371 LogEst sqlite3LogEstFromDouble(double x){
1372   u64 a;
1373   LogEst e;
1374   assert( sizeof(x)==8 && sizeof(a)==8 );
1375   if( x<=1 ) return 0;
1376   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1377   memcpy(&a, &x, 8);
1378   e = (a>>52) - 1022;
1379   return e*10;
1380 }
1381 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1382 
1383 /*
1384 ** Convert a LogEst into an integer.
1385 */
1386 u64 sqlite3LogEstToInt(LogEst x){
1387   u64 n;
1388   if( x<10 ) return 1;
1389   n = x%10;
1390   x /= 10;
1391   if( n>=5 ) n -= 2;
1392   else if( n>=1 ) n -= 1;
1393   if( x>=3 ){
1394     return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
1395   }
1396   return (n+8)>>(3-x);
1397 }
1398