1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifndef SQLITE_OMIT_FLOATING_POINT 21 #include <math.h> 22 #endif 23 24 /* 25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 26 ** or to bypass normal error detection during testing in order to let 27 ** execute proceed futher downstream. 28 ** 29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 30 ** sqlite3FaultSim() function only returns non-zero during testing. 31 ** 32 ** During testing, if the test harness has set a fault-sim callback using 33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 34 ** each call to sqlite3FaultSim() is relayed to that application-supplied 35 ** callback and the integer return value form the application-supplied 36 ** callback is returned by sqlite3FaultSim(). 37 ** 38 ** The integer argument to sqlite3FaultSim() is a code to identify which 39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 40 ** should have a unique code. To prevent legacy testing applications from 41 ** breaking, the codes should not be changed or reused. 42 */ 43 #ifndef SQLITE_UNTESTABLE 44 int sqlite3FaultSim(int iTest){ 45 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 46 return xCallback ? xCallback(iTest) : SQLITE_OK; 47 } 48 #endif 49 50 #ifndef SQLITE_OMIT_FLOATING_POINT 51 /* 52 ** Return true if the floating point value is Not a Number (NaN). 53 ** 54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 55 ** Otherwise, we have our own implementation that works on most systems. 56 */ 57 int sqlite3IsNaN(double x){ 58 int rc; /* The value return */ 59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 60 u64 y; 61 memcpy(&y,&x,sizeof(y)); 62 rc = IsNaN(y); 63 #else 64 rc = isnan(x); 65 #endif /* HAVE_ISNAN */ 66 testcase( rc ); 67 return rc; 68 } 69 #endif /* SQLITE_OMIT_FLOATING_POINT */ 70 71 /* 72 ** Compute a string length that is limited to what can be stored in 73 ** lower 30 bits of a 32-bit signed integer. 74 ** 75 ** The value returned will never be negative. Nor will it ever be greater 76 ** than the actual length of the string. For very long strings (greater 77 ** than 1GiB) the value returned might be less than the true string length. 78 */ 79 int sqlite3Strlen30(const char *z){ 80 if( z==0 ) return 0; 81 return 0x3fffffff & (int)strlen(z); 82 } 83 84 /* 85 ** Return the declared type of a column. Or return zDflt if the column 86 ** has no declared type. 87 ** 88 ** The column type is an extra string stored after the zero-terminator on 89 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 90 */ 91 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 92 if( pCol->colFlags & COLFLAG_HASTYPE ){ 93 return pCol->zCnName + strlen(pCol->zCnName) + 1; 94 }else if( pCol->eCType ){ 95 assert( pCol->eCType<=SQLITE_N_STDTYPE ); 96 return (char*)sqlite3StdType[pCol->eCType-1]; 97 }else{ 98 return zDflt; 99 } 100 } 101 102 /* 103 ** Helper function for sqlite3Error() - called rarely. Broken out into 104 ** a separate routine to avoid unnecessary register saves on entry to 105 ** sqlite3Error(). 106 */ 107 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 108 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 109 sqlite3SystemError(db, err_code); 110 } 111 112 /* 113 ** Set the current error code to err_code and clear any prior error message. 114 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 115 ** that would be appropriate. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code){ 118 assert( db!=0 ); 119 db->errCode = err_code; 120 if( err_code || db->pErr ){ 121 sqlite3ErrorFinish(db, err_code); 122 }else{ 123 db->errByteOffset = -1; 124 } 125 } 126 127 /* 128 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state 129 ** and error message. 130 */ 131 void sqlite3ErrorClear(sqlite3 *db){ 132 assert( db!=0 ); 133 db->errCode = SQLITE_OK; 134 db->errByteOffset = -1; 135 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 136 } 137 138 /* 139 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 140 ** to do based on the SQLite error code in rc. 141 */ 142 void sqlite3SystemError(sqlite3 *db, int rc){ 143 if( rc==SQLITE_IOERR_NOMEM ) return; 144 rc &= 0xff; 145 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 146 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 147 } 148 } 149 150 /* 151 ** Set the most recent error code and error string for the sqlite 152 ** handle "db". The error code is set to "err_code". 153 ** 154 ** If it is not NULL, string zFormat specifies the format of the 155 ** error string. zFormat and any string tokens that follow it are 156 ** assumed to be encoded in UTF-8. 157 ** 158 ** To clear the most recent error for sqlite handle "db", sqlite3Error 159 ** should be called with err_code set to SQLITE_OK and zFormat set 160 ** to NULL. 161 */ 162 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 163 assert( db!=0 ); 164 db->errCode = err_code; 165 sqlite3SystemError(db, err_code); 166 if( zFormat==0 ){ 167 sqlite3Error(db, err_code); 168 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 169 char *z; 170 va_list ap; 171 va_start(ap, zFormat); 172 z = sqlite3VMPrintf(db, zFormat, ap); 173 va_end(ap); 174 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 175 } 176 } 177 178 /* 179 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 180 ** 181 ** This function should be used to report any error that occurs while 182 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 183 ** last thing the sqlite3_prepare() function does is copy the error 184 ** stored by this function into the database handle using sqlite3Error(). 185 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 186 ** during statement execution (sqlite3_step() etc.). 187 */ 188 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 189 char *zMsg; 190 va_list ap; 191 sqlite3 *db = pParse->db; 192 db->errByteOffset = -2; 193 va_start(ap, zFormat); 194 zMsg = sqlite3VMPrintf(db, zFormat, ap); 195 va_end(ap); 196 if( db->errByteOffset<-1 ) db->errByteOffset = -1; 197 if( db->suppressErr ){ 198 sqlite3DbFree(db, zMsg); 199 }else{ 200 pParse->nErr++; 201 sqlite3DbFree(db, pParse->zErrMsg); 202 pParse->zErrMsg = zMsg; 203 pParse->rc = SQLITE_ERROR; 204 pParse->pWith = 0; 205 } 206 } 207 208 /* 209 ** If database connection db is currently parsing SQL, then transfer 210 ** error code errCode to that parser if the parser has not already 211 ** encountered some other kind of error. 212 */ 213 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 214 Parse *pParse; 215 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 216 pParse->rc = errCode; 217 pParse->nErr++; 218 return errCode; 219 } 220 221 /* 222 ** Convert an SQL-style quoted string into a normal string by removing 223 ** the quote characters. The conversion is done in-place. If the 224 ** input does not begin with a quote character, then this routine 225 ** is a no-op. 226 ** 227 ** The input string must be zero-terminated. A new zero-terminator 228 ** is added to the dequoted string. 229 ** 230 ** The return value is -1 if no dequoting occurs or the length of the 231 ** dequoted string, exclusive of the zero terminator, if dequoting does 232 ** occur. 233 ** 234 ** 2002-02-14: This routine is extended to remove MS-Access style 235 ** brackets from around identifiers. For example: "[a-b-c]" becomes 236 ** "a-b-c". 237 */ 238 void sqlite3Dequote(char *z){ 239 char quote; 240 int i, j; 241 if( z==0 ) return; 242 quote = z[0]; 243 if( !sqlite3Isquote(quote) ) return; 244 if( quote=='[' ) quote = ']'; 245 for(i=1, j=0;; i++){ 246 assert( z[i] ); 247 if( z[i]==quote ){ 248 if( z[i+1]==quote ){ 249 z[j++] = quote; 250 i++; 251 }else{ 252 break; 253 } 254 }else{ 255 z[j++] = z[i]; 256 } 257 } 258 z[j] = 0; 259 } 260 void sqlite3DequoteExpr(Expr *p){ 261 assert( !ExprHasProperty(p, EP_IntValue) ); 262 assert( sqlite3Isquote(p->u.zToken[0]) ); 263 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 264 sqlite3Dequote(p->u.zToken); 265 } 266 267 /* 268 ** If the input token p is quoted, try to adjust the token to remove 269 ** the quotes. This is not always possible: 270 ** 271 ** "abc" -> abc 272 ** "ab""cd" -> (not possible because of the interior "") 273 ** 274 ** Remove the quotes if possible. This is a optimization. The overall 275 ** system should still return the correct answer even if this routine 276 ** is always a no-op. 277 */ 278 void sqlite3DequoteToken(Token *p){ 279 unsigned int i; 280 if( p->n<2 ) return; 281 if( !sqlite3Isquote(p->z[0]) ) return; 282 for(i=1; i<p->n-1; i++){ 283 if( sqlite3Isquote(p->z[i]) ) return; 284 } 285 p->n -= 2; 286 p->z++; 287 } 288 289 /* 290 ** Generate a Token object from a string 291 */ 292 void sqlite3TokenInit(Token *p, char *z){ 293 p->z = z; 294 p->n = sqlite3Strlen30(z); 295 } 296 297 /* Convenient short-hand */ 298 #define UpperToLower sqlite3UpperToLower 299 300 /* 301 ** Some systems have stricmp(). Others have strcasecmp(). Because 302 ** there is no consistency, we will define our own. 303 ** 304 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 305 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 306 ** the contents of two buffers containing UTF-8 strings in a 307 ** case-independent fashion, using the same definition of "case 308 ** independence" that SQLite uses internally when comparing identifiers. 309 */ 310 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 311 if( zLeft==0 ){ 312 return zRight ? -1 : 0; 313 }else if( zRight==0 ){ 314 return 1; 315 } 316 return sqlite3StrICmp(zLeft, zRight); 317 } 318 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 319 unsigned char *a, *b; 320 int c, x; 321 a = (unsigned char *)zLeft; 322 b = (unsigned char *)zRight; 323 for(;;){ 324 c = *a; 325 x = *b; 326 if( c==x ){ 327 if( c==0 ) break; 328 }else{ 329 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 330 if( c ) break; 331 } 332 a++; 333 b++; 334 } 335 return c; 336 } 337 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 338 register unsigned char *a, *b; 339 if( zLeft==0 ){ 340 return zRight ? -1 : 0; 341 }else if( zRight==0 ){ 342 return 1; 343 } 344 a = (unsigned char *)zLeft; 345 b = (unsigned char *)zRight; 346 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 347 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 348 } 349 350 /* 351 ** Compute an 8-bit hash on a string that is insensitive to case differences 352 */ 353 u8 sqlite3StrIHash(const char *z){ 354 u8 h = 0; 355 if( z==0 ) return 0; 356 while( z[0] ){ 357 h += UpperToLower[(unsigned char)z[0]]; 358 z++; 359 } 360 return h; 361 } 362 363 /* 364 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 365 ** E==2 results in 100. E==50 results in 1.0e50. 366 ** 367 ** This routine only works for values of E between 1 and 341. 368 */ 369 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 370 #if defined(_MSC_VER) 371 static const LONGDOUBLE_TYPE x[] = { 372 1.0e+001L, 373 1.0e+002L, 374 1.0e+004L, 375 1.0e+008L, 376 1.0e+016L, 377 1.0e+032L, 378 1.0e+064L, 379 1.0e+128L, 380 1.0e+256L 381 }; 382 LONGDOUBLE_TYPE r = 1.0; 383 int i; 384 assert( E>=0 && E<=307 ); 385 for(i=0; E!=0; i++, E >>=1){ 386 if( E & 1 ) r *= x[i]; 387 } 388 return r; 389 #else 390 LONGDOUBLE_TYPE x = 10.0; 391 LONGDOUBLE_TYPE r = 1.0; 392 while(1){ 393 if( E & 1 ) r *= x; 394 E >>= 1; 395 if( E==0 ) break; 396 x *= x; 397 } 398 return r; 399 #endif 400 } 401 402 /* 403 ** The string z[] is an text representation of a real number. 404 ** Convert this string to a double and write it into *pResult. 405 ** 406 ** The string z[] is length bytes in length (bytes, not characters) and 407 ** uses the encoding enc. The string is not necessarily zero-terminated. 408 ** 409 ** Return TRUE if the result is a valid real number (or integer) and FALSE 410 ** if the string is empty or contains extraneous text. More specifically 411 ** return 412 ** 1 => The input string is a pure integer 413 ** 2 or more => The input has a decimal point or eNNN clause 414 ** 0 or less => The input string is not a valid number 415 ** -1 => Not a valid number, but has a valid prefix which 416 ** includes a decimal point and/or an eNNN clause 417 ** 418 ** Valid numbers are in one of these formats: 419 ** 420 ** [+-]digits[E[+-]digits] 421 ** [+-]digits.[digits][E[+-]digits] 422 ** [+-].digits[E[+-]digits] 423 ** 424 ** Leading and trailing whitespace is ignored for the purpose of determining 425 ** validity. 426 ** 427 ** If some prefix of the input string is a valid number, this routine 428 ** returns FALSE but it still converts the prefix and writes the result 429 ** into *pResult. 430 */ 431 #if defined(_MSC_VER) 432 #pragma warning(disable : 4756) 433 #endif 434 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 435 #ifndef SQLITE_OMIT_FLOATING_POINT 436 int incr; 437 const char *zEnd; 438 /* sign * significand * (10 ^ (esign * exponent)) */ 439 int sign = 1; /* sign of significand */ 440 i64 s = 0; /* significand */ 441 int d = 0; /* adjust exponent for shifting decimal point */ 442 int esign = 1; /* sign of exponent */ 443 int e = 0; /* exponent */ 444 int eValid = 1; /* True exponent is either not used or is well-formed */ 445 double result; 446 int nDigit = 0; /* Number of digits processed */ 447 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 448 449 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 450 *pResult = 0.0; /* Default return value, in case of an error */ 451 if( length==0 ) return 0; 452 453 if( enc==SQLITE_UTF8 ){ 454 incr = 1; 455 zEnd = z + length; 456 }else{ 457 int i; 458 incr = 2; 459 length &= ~1; 460 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 461 testcase( enc==SQLITE_UTF16LE ); 462 testcase( enc==SQLITE_UTF16BE ); 463 for(i=3-enc; i<length && z[i]==0; i+=2){} 464 if( i<length ) eType = -100; 465 zEnd = &z[i^1]; 466 z += (enc&1); 467 } 468 469 /* skip leading spaces */ 470 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 471 if( z>=zEnd ) return 0; 472 473 /* get sign of significand */ 474 if( *z=='-' ){ 475 sign = -1; 476 z+=incr; 477 }else if( *z=='+' ){ 478 z+=incr; 479 } 480 481 /* copy max significant digits to significand */ 482 while( z<zEnd && sqlite3Isdigit(*z) ){ 483 s = s*10 + (*z - '0'); 484 z+=incr; nDigit++; 485 if( s>=((LARGEST_INT64-9)/10) ){ 486 /* skip non-significant significand digits 487 ** (increase exponent by d to shift decimal left) */ 488 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 489 } 490 } 491 if( z>=zEnd ) goto do_atof_calc; 492 493 /* if decimal point is present */ 494 if( *z=='.' ){ 495 z+=incr; 496 eType++; 497 /* copy digits from after decimal to significand 498 ** (decrease exponent by d to shift decimal right) */ 499 while( z<zEnd && sqlite3Isdigit(*z) ){ 500 if( s<((LARGEST_INT64-9)/10) ){ 501 s = s*10 + (*z - '0'); 502 d--; 503 nDigit++; 504 } 505 z+=incr; 506 } 507 } 508 if( z>=zEnd ) goto do_atof_calc; 509 510 /* if exponent is present */ 511 if( *z=='e' || *z=='E' ){ 512 z+=incr; 513 eValid = 0; 514 eType++; 515 516 /* This branch is needed to avoid a (harmless) buffer overread. The 517 ** special comment alerts the mutation tester that the correct answer 518 ** is obtained even if the branch is omitted */ 519 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 520 521 /* get sign of exponent */ 522 if( *z=='-' ){ 523 esign = -1; 524 z+=incr; 525 }else if( *z=='+' ){ 526 z+=incr; 527 } 528 /* copy digits to exponent */ 529 while( z<zEnd && sqlite3Isdigit(*z) ){ 530 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 531 z+=incr; 532 eValid = 1; 533 } 534 } 535 536 /* skip trailing spaces */ 537 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 538 539 do_atof_calc: 540 /* adjust exponent by d, and update sign */ 541 e = (e*esign) + d; 542 if( e<0 ) { 543 esign = -1; 544 e *= -1; 545 } else { 546 esign = 1; 547 } 548 549 if( s==0 ) { 550 /* In the IEEE 754 standard, zero is signed. */ 551 result = sign<0 ? -(double)0 : (double)0; 552 } else { 553 /* Attempt to reduce exponent. 554 ** 555 ** Branches that are not required for the correct answer but which only 556 ** help to obtain the correct answer faster are marked with special 557 ** comments, as a hint to the mutation tester. 558 */ 559 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 560 if( esign>0 ){ 561 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 562 s *= 10; 563 }else{ 564 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 565 s /= 10; 566 } 567 e--; 568 } 569 570 /* adjust the sign of significand */ 571 s = sign<0 ? -s : s; 572 573 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 574 result = (double)s; 575 }else{ 576 /* attempt to handle extremely small/large numbers better */ 577 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 578 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 579 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 580 if( esign<0 ){ 581 result = s / scale; 582 result /= 1.0e+308; 583 }else{ 584 result = s * scale; 585 result *= 1.0e+308; 586 } 587 }else{ assert( e>=342 ); 588 if( esign<0 ){ 589 result = 0.0*s; 590 }else{ 591 #ifdef INFINITY 592 result = INFINITY*s; 593 #else 594 result = 1e308*1e308*s; /* Infinity */ 595 #endif 596 } 597 } 598 }else{ 599 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 600 if( esign<0 ){ 601 result = s / scale; 602 }else{ 603 result = s * scale; 604 } 605 } 606 } 607 } 608 609 /* store the result */ 610 *pResult = result; 611 612 /* return true if number and no extra non-whitespace chracters after */ 613 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 614 return eType; 615 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 616 return -1; 617 }else{ 618 return 0; 619 } 620 #else 621 return !sqlite3Atoi64(z, pResult, length, enc); 622 #endif /* SQLITE_OMIT_FLOATING_POINT */ 623 } 624 #if defined(_MSC_VER) 625 #pragma warning(default : 4756) 626 #endif 627 628 /* 629 ** Render an signed 64-bit integer as text. Store the result in zOut[]. 630 ** 631 ** The caller must ensure that zOut[] is at least 21 bytes in size. 632 */ 633 void sqlite3Int64ToText(i64 v, char *zOut){ 634 int i; 635 u64 x; 636 char zTemp[22]; 637 if( v<0 ){ 638 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; 639 }else{ 640 x = v; 641 } 642 i = sizeof(zTemp)-2; 643 zTemp[sizeof(zTemp)-1] = 0; 644 do{ 645 zTemp[i--] = (x%10) + '0'; 646 x = x/10; 647 }while( x ); 648 if( v<0 ) zTemp[i--] = '-'; 649 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i); 650 } 651 652 /* 653 ** Compare the 19-character string zNum against the text representation 654 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 655 ** if zNum is less than, equal to, or greater than the string. 656 ** Note that zNum must contain exactly 19 characters. 657 ** 658 ** Unlike memcmp() this routine is guaranteed to return the difference 659 ** in the values of the last digit if the only difference is in the 660 ** last digit. So, for example, 661 ** 662 ** compare2pow63("9223372036854775800", 1) 663 ** 664 ** will return -8. 665 */ 666 static int compare2pow63(const char *zNum, int incr){ 667 int c = 0; 668 int i; 669 /* 012345678901234567 */ 670 const char *pow63 = "922337203685477580"; 671 for(i=0; c==0 && i<18; i++){ 672 c = (zNum[i*incr]-pow63[i])*10; 673 } 674 if( c==0 ){ 675 c = zNum[18*incr] - '8'; 676 testcase( c==(-1) ); 677 testcase( c==0 ); 678 testcase( c==(+1) ); 679 } 680 return c; 681 } 682 683 /* 684 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 685 ** routine does *not* accept hexadecimal notation. 686 ** 687 ** Returns: 688 ** 689 ** -1 Not even a prefix of the input text looks like an integer 690 ** 0 Successful transformation. Fits in a 64-bit signed integer. 691 ** 1 Excess non-space text after the integer value 692 ** 2 Integer too large for a 64-bit signed integer or is malformed 693 ** 3 Special case of 9223372036854775808 694 ** 695 ** length is the number of bytes in the string (bytes, not characters). 696 ** The string is not necessarily zero-terminated. The encoding is 697 ** given by enc. 698 */ 699 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 700 int incr; 701 u64 u = 0; 702 int neg = 0; /* assume positive */ 703 int i; 704 int c = 0; 705 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 706 int rc; /* Baseline return code */ 707 const char *zStart; 708 const char *zEnd = zNum + length; 709 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 710 if( enc==SQLITE_UTF8 ){ 711 incr = 1; 712 }else{ 713 incr = 2; 714 length &= ~1; 715 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 716 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 717 nonNum = i<length; 718 zEnd = &zNum[i^1]; 719 zNum += (enc&1); 720 } 721 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 722 if( zNum<zEnd ){ 723 if( *zNum=='-' ){ 724 neg = 1; 725 zNum+=incr; 726 }else if( *zNum=='+' ){ 727 zNum+=incr; 728 } 729 } 730 zStart = zNum; 731 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 732 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 733 u = u*10 + c - '0'; 734 } 735 testcase( i==18*incr ); 736 testcase( i==19*incr ); 737 testcase( i==20*incr ); 738 if( u>LARGEST_INT64 ){ 739 /* This test and assignment is needed only to suppress UB warnings 740 ** from clang and -fsanitize=undefined. This test and assignment make 741 ** the code a little larger and slower, and no harm comes from omitting 742 ** them, but we must appaise the undefined-behavior pharisees. */ 743 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 744 }else if( neg ){ 745 *pNum = -(i64)u; 746 }else{ 747 *pNum = (i64)u; 748 } 749 rc = 0; 750 if( i==0 && zStart==zNum ){ /* No digits */ 751 rc = -1; 752 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 753 rc = 1; 754 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 755 int jj = i; 756 do{ 757 if( !sqlite3Isspace(zNum[jj]) ){ 758 rc = 1; /* Extra non-space text after the integer */ 759 break; 760 } 761 jj += incr; 762 }while( &zNum[jj]<zEnd ); 763 } 764 if( i<19*incr ){ 765 /* Less than 19 digits, so we know that it fits in 64 bits */ 766 assert( u<=LARGEST_INT64 ); 767 return rc; 768 }else{ 769 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 770 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 771 if( c<0 ){ 772 /* zNum is less than 9223372036854775808 so it fits */ 773 assert( u<=LARGEST_INT64 ); 774 return rc; 775 }else{ 776 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 777 if( c>0 ){ 778 /* zNum is greater than 9223372036854775808 so it overflows */ 779 return 2; 780 }else{ 781 /* zNum is exactly 9223372036854775808. Fits if negative. The 782 ** special case 2 overflow if positive */ 783 assert( u-1==LARGEST_INT64 ); 784 return neg ? rc : 3; 785 } 786 } 787 } 788 } 789 790 /* 791 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 792 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 793 ** whereas sqlite3Atoi64() does not. 794 ** 795 ** Returns: 796 ** 797 ** 0 Successful transformation. Fits in a 64-bit signed integer. 798 ** 1 Excess text after the integer value 799 ** 2 Integer too large for a 64-bit signed integer or is malformed 800 ** 3 Special case of 9223372036854775808 801 */ 802 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 803 #ifndef SQLITE_OMIT_HEX_INTEGER 804 if( z[0]=='0' 805 && (z[1]=='x' || z[1]=='X') 806 ){ 807 u64 u = 0; 808 int i, k; 809 for(i=2; z[i]=='0'; i++){} 810 for(k=i; sqlite3Isxdigit(z[k]); k++){ 811 u = u*16 + sqlite3HexToInt(z[k]); 812 } 813 memcpy(pOut, &u, 8); 814 return (z[k]==0 && k-i<=16) ? 0 : 2; 815 }else 816 #endif /* SQLITE_OMIT_HEX_INTEGER */ 817 { 818 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 819 } 820 } 821 822 /* 823 ** If zNum represents an integer that will fit in 32-bits, then set 824 ** *pValue to that integer and return true. Otherwise return false. 825 ** 826 ** This routine accepts both decimal and hexadecimal notation for integers. 827 ** 828 ** Any non-numeric characters that following zNum are ignored. 829 ** This is different from sqlite3Atoi64() which requires the 830 ** input number to be zero-terminated. 831 */ 832 int sqlite3GetInt32(const char *zNum, int *pValue){ 833 sqlite_int64 v = 0; 834 int i, c; 835 int neg = 0; 836 if( zNum[0]=='-' ){ 837 neg = 1; 838 zNum++; 839 }else if( zNum[0]=='+' ){ 840 zNum++; 841 } 842 #ifndef SQLITE_OMIT_HEX_INTEGER 843 else if( zNum[0]=='0' 844 && (zNum[1]=='x' || zNum[1]=='X') 845 && sqlite3Isxdigit(zNum[2]) 846 ){ 847 u32 u = 0; 848 zNum += 2; 849 while( zNum[0]=='0' ) zNum++; 850 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 851 u = u*16 + sqlite3HexToInt(zNum[i]); 852 } 853 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 854 memcpy(pValue, &u, 4); 855 return 1; 856 }else{ 857 return 0; 858 } 859 } 860 #endif 861 if( !sqlite3Isdigit(zNum[0]) ) return 0; 862 while( zNum[0]=='0' ) zNum++; 863 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 864 v = v*10 + c; 865 } 866 867 /* The longest decimal representation of a 32 bit integer is 10 digits: 868 ** 869 ** 1234567890 870 ** 2^31 -> 2147483648 871 */ 872 testcase( i==10 ); 873 if( i>10 ){ 874 return 0; 875 } 876 testcase( v-neg==2147483647 ); 877 if( v-neg>2147483647 ){ 878 return 0; 879 } 880 if( neg ){ 881 v = -v; 882 } 883 *pValue = (int)v; 884 return 1; 885 } 886 887 /* 888 ** Return a 32-bit integer value extracted from a string. If the 889 ** string is not an integer, just return 0. 890 */ 891 int sqlite3Atoi(const char *z){ 892 int x = 0; 893 sqlite3GetInt32(z, &x); 894 return x; 895 } 896 897 /* 898 ** Try to convert z into an unsigned 32-bit integer. Return true on 899 ** success and false if there is an error. 900 ** 901 ** Only decimal notation is accepted. 902 */ 903 int sqlite3GetUInt32(const char *z, u32 *pI){ 904 u64 v = 0; 905 int i; 906 for(i=0; sqlite3Isdigit(z[i]); i++){ 907 v = v*10 + z[i] - '0'; 908 if( v>4294967296LL ){ *pI = 0; return 0; } 909 } 910 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } 911 *pI = (u32)v; 912 return 1; 913 } 914 915 /* 916 ** The variable-length integer encoding is as follows: 917 ** 918 ** KEY: 919 ** A = 0xxxxxxx 7 bits of data and one flag bit 920 ** B = 1xxxxxxx 7 bits of data and one flag bit 921 ** C = xxxxxxxx 8 bits of data 922 ** 923 ** 7 bits - A 924 ** 14 bits - BA 925 ** 21 bits - BBA 926 ** 28 bits - BBBA 927 ** 35 bits - BBBBA 928 ** 42 bits - BBBBBA 929 ** 49 bits - BBBBBBA 930 ** 56 bits - BBBBBBBA 931 ** 64 bits - BBBBBBBBC 932 */ 933 934 /* 935 ** Write a 64-bit variable-length integer to memory starting at p[0]. 936 ** The length of data write will be between 1 and 9 bytes. The number 937 ** of bytes written is returned. 938 ** 939 ** A variable-length integer consists of the lower 7 bits of each byte 940 ** for all bytes that have the 8th bit set and one byte with the 8th 941 ** bit clear. Except, if we get to the 9th byte, it stores the full 942 ** 8 bits and is the last byte. 943 */ 944 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 945 int i, j, n; 946 u8 buf[10]; 947 if( v & (((u64)0xff000000)<<32) ){ 948 p[8] = (u8)v; 949 v >>= 8; 950 for(i=7; i>=0; i--){ 951 p[i] = (u8)((v & 0x7f) | 0x80); 952 v >>= 7; 953 } 954 return 9; 955 } 956 n = 0; 957 do{ 958 buf[n++] = (u8)((v & 0x7f) | 0x80); 959 v >>= 7; 960 }while( v!=0 ); 961 buf[0] &= 0x7f; 962 assert( n<=9 ); 963 for(i=0, j=n-1; j>=0; j--, i++){ 964 p[i] = buf[j]; 965 } 966 return n; 967 } 968 int sqlite3PutVarint(unsigned char *p, u64 v){ 969 if( v<=0x7f ){ 970 p[0] = v&0x7f; 971 return 1; 972 } 973 if( v<=0x3fff ){ 974 p[0] = ((v>>7)&0x7f)|0x80; 975 p[1] = v&0x7f; 976 return 2; 977 } 978 return putVarint64(p,v); 979 } 980 981 /* 982 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 983 ** are defined here rather than simply putting the constant expressions 984 ** inline in order to work around bugs in the RVT compiler. 985 ** 986 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 987 ** 988 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 989 */ 990 #define SLOT_2_0 0x001fc07f 991 #define SLOT_4_2_0 0xf01fc07f 992 993 994 /* 995 ** Read a 64-bit variable-length integer from memory starting at p[0]. 996 ** Return the number of bytes read. The value is stored in *v. 997 */ 998 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 999 u32 a,b,s; 1000 1001 if( ((signed char*)p)[0]>=0 ){ 1002 *v = *p; 1003 return 1; 1004 } 1005 if( ((signed char*)p)[1]>=0 ){ 1006 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 1007 return 2; 1008 } 1009 1010 /* Verify that constants are precomputed correctly */ 1011 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 1012 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 1013 1014 a = ((u32)p[0])<<14; 1015 b = p[1]; 1016 p += 2; 1017 a |= *p; 1018 /* a: p0<<14 | p2 (unmasked) */ 1019 if (!(a&0x80)) 1020 { 1021 a &= SLOT_2_0; 1022 b &= 0x7f; 1023 b = b<<7; 1024 a |= b; 1025 *v = a; 1026 return 3; 1027 } 1028 1029 /* CSE1 from below */ 1030 a &= SLOT_2_0; 1031 p++; 1032 b = b<<14; 1033 b |= *p; 1034 /* b: p1<<14 | p3 (unmasked) */ 1035 if (!(b&0x80)) 1036 { 1037 b &= SLOT_2_0; 1038 /* moved CSE1 up */ 1039 /* a &= (0x7f<<14)|(0x7f); */ 1040 a = a<<7; 1041 a |= b; 1042 *v = a; 1043 return 4; 1044 } 1045 1046 /* a: p0<<14 | p2 (masked) */ 1047 /* b: p1<<14 | p3 (unmasked) */ 1048 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1049 /* moved CSE1 up */ 1050 /* a &= (0x7f<<14)|(0x7f); */ 1051 b &= SLOT_2_0; 1052 s = a; 1053 /* s: p0<<14 | p2 (masked) */ 1054 1055 p++; 1056 a = a<<14; 1057 a |= *p; 1058 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1059 if (!(a&0x80)) 1060 { 1061 /* we can skip these cause they were (effectively) done above 1062 ** while calculating s */ 1063 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1064 /* b &= (0x7f<<14)|(0x7f); */ 1065 b = b<<7; 1066 a |= b; 1067 s = s>>18; 1068 *v = ((u64)s)<<32 | a; 1069 return 5; 1070 } 1071 1072 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1073 s = s<<7; 1074 s |= b; 1075 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1076 1077 p++; 1078 b = b<<14; 1079 b |= *p; 1080 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 1081 if (!(b&0x80)) 1082 { 1083 /* we can skip this cause it was (effectively) done above in calc'ing s */ 1084 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1085 a &= SLOT_2_0; 1086 a = a<<7; 1087 a |= b; 1088 s = s>>18; 1089 *v = ((u64)s)<<32 | a; 1090 return 6; 1091 } 1092 1093 p++; 1094 a = a<<14; 1095 a |= *p; 1096 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1097 if (!(a&0x80)) 1098 { 1099 a &= SLOT_4_2_0; 1100 b &= SLOT_2_0; 1101 b = b<<7; 1102 a |= b; 1103 s = s>>11; 1104 *v = ((u64)s)<<32 | a; 1105 return 7; 1106 } 1107 1108 /* CSE2 from below */ 1109 a &= SLOT_2_0; 1110 p++; 1111 b = b<<14; 1112 b |= *p; 1113 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1114 if (!(b&0x80)) 1115 { 1116 b &= SLOT_4_2_0; 1117 /* moved CSE2 up */ 1118 /* a &= (0x7f<<14)|(0x7f); */ 1119 a = a<<7; 1120 a |= b; 1121 s = s>>4; 1122 *v = ((u64)s)<<32 | a; 1123 return 8; 1124 } 1125 1126 p++; 1127 a = a<<15; 1128 a |= *p; 1129 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1130 1131 /* moved CSE2 up */ 1132 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1133 b &= SLOT_2_0; 1134 b = b<<8; 1135 a |= b; 1136 1137 s = s<<4; 1138 b = p[-4]; 1139 b &= 0x7f; 1140 b = b>>3; 1141 s |= b; 1142 1143 *v = ((u64)s)<<32 | a; 1144 1145 return 9; 1146 } 1147 1148 /* 1149 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1150 ** Return the number of bytes read. The value is stored in *v. 1151 ** 1152 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1153 ** integer, then set *v to 0xffffffff. 1154 ** 1155 ** A MACRO version, getVarint32, is provided which inlines the 1156 ** single-byte case. All code should use the MACRO version as 1157 ** this function assumes the single-byte case has already been handled. 1158 */ 1159 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1160 u32 a,b; 1161 1162 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1163 ** by the getVarin32() macro */ 1164 a = *p; 1165 /* a: p0 (unmasked) */ 1166 #ifndef getVarint32 1167 if (!(a&0x80)) 1168 { 1169 /* Values between 0 and 127 */ 1170 *v = a; 1171 return 1; 1172 } 1173 #endif 1174 1175 /* The 2-byte case */ 1176 p++; 1177 b = *p; 1178 /* b: p1 (unmasked) */ 1179 if (!(b&0x80)) 1180 { 1181 /* Values between 128 and 16383 */ 1182 a &= 0x7f; 1183 a = a<<7; 1184 *v = a | b; 1185 return 2; 1186 } 1187 1188 /* The 3-byte case */ 1189 p++; 1190 a = a<<14; 1191 a |= *p; 1192 /* a: p0<<14 | p2 (unmasked) */ 1193 if (!(a&0x80)) 1194 { 1195 /* Values between 16384 and 2097151 */ 1196 a &= (0x7f<<14)|(0x7f); 1197 b &= 0x7f; 1198 b = b<<7; 1199 *v = a | b; 1200 return 3; 1201 } 1202 1203 /* A 32-bit varint is used to store size information in btrees. 1204 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1205 ** A 3-byte varint is sufficient, for example, to record the size 1206 ** of a 1048569-byte BLOB or string. 1207 ** 1208 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1209 ** rare larger cases can be handled by the slower 64-bit varint 1210 ** routine. 1211 */ 1212 #if 1 1213 { 1214 u64 v64; 1215 u8 n; 1216 1217 n = sqlite3GetVarint(p-2, &v64); 1218 assert( n>3 && n<=9 ); 1219 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1220 *v = 0xffffffff; 1221 }else{ 1222 *v = (u32)v64; 1223 } 1224 return n; 1225 } 1226 1227 #else 1228 /* For following code (kept for historical record only) shows an 1229 ** unrolling for the 3- and 4-byte varint cases. This code is 1230 ** slightly faster, but it is also larger and much harder to test. 1231 */ 1232 p++; 1233 b = b<<14; 1234 b |= *p; 1235 /* b: p1<<14 | p3 (unmasked) */ 1236 if (!(b&0x80)) 1237 { 1238 /* Values between 2097152 and 268435455 */ 1239 b &= (0x7f<<14)|(0x7f); 1240 a &= (0x7f<<14)|(0x7f); 1241 a = a<<7; 1242 *v = a | b; 1243 return 4; 1244 } 1245 1246 p++; 1247 a = a<<14; 1248 a |= *p; 1249 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1250 if (!(a&0x80)) 1251 { 1252 /* Values between 268435456 and 34359738367 */ 1253 a &= SLOT_4_2_0; 1254 b &= SLOT_4_2_0; 1255 b = b<<7; 1256 *v = a | b; 1257 return 5; 1258 } 1259 1260 /* We can only reach this point when reading a corrupt database 1261 ** file. In that case we are not in any hurry. Use the (relatively 1262 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1263 ** value. */ 1264 { 1265 u64 v64; 1266 u8 n; 1267 1268 p -= 4; 1269 n = sqlite3GetVarint(p, &v64); 1270 assert( n>5 && n<=9 ); 1271 *v = (u32)v64; 1272 return n; 1273 } 1274 #endif 1275 } 1276 1277 /* 1278 ** Return the number of bytes that will be needed to store the given 1279 ** 64-bit integer. 1280 */ 1281 int sqlite3VarintLen(u64 v){ 1282 int i; 1283 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1284 return i; 1285 } 1286 1287 1288 /* 1289 ** Read or write a four-byte big-endian integer value. 1290 */ 1291 u32 sqlite3Get4byte(const u8 *p){ 1292 #if SQLITE_BYTEORDER==4321 1293 u32 x; 1294 memcpy(&x,p,4); 1295 return x; 1296 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1297 u32 x; 1298 memcpy(&x,p,4); 1299 return __builtin_bswap32(x); 1300 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1301 u32 x; 1302 memcpy(&x,p,4); 1303 return _byteswap_ulong(x); 1304 #else 1305 testcase( p[0]&0x80 ); 1306 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1307 #endif 1308 } 1309 void sqlite3Put4byte(unsigned char *p, u32 v){ 1310 #if SQLITE_BYTEORDER==4321 1311 memcpy(p,&v,4); 1312 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1313 u32 x = __builtin_bswap32(v); 1314 memcpy(p,&x,4); 1315 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1316 u32 x = _byteswap_ulong(v); 1317 memcpy(p,&x,4); 1318 #else 1319 p[0] = (u8)(v>>24); 1320 p[1] = (u8)(v>>16); 1321 p[2] = (u8)(v>>8); 1322 p[3] = (u8)v; 1323 #endif 1324 } 1325 1326 1327 1328 /* 1329 ** Translate a single byte of Hex into an integer. 1330 ** This routine only works if h really is a valid hexadecimal 1331 ** character: 0..9a..fA..F 1332 */ 1333 u8 sqlite3HexToInt(int h){ 1334 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1335 #ifdef SQLITE_ASCII 1336 h += 9*(1&(h>>6)); 1337 #endif 1338 #ifdef SQLITE_EBCDIC 1339 h += 9*(1&~(h>>4)); 1340 #endif 1341 return (u8)(h & 0xf); 1342 } 1343 1344 #if !defined(SQLITE_OMIT_BLOB_LITERAL) 1345 /* 1346 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1347 ** value. Return a pointer to its binary value. Space to hold the 1348 ** binary value has been obtained from malloc and must be freed by 1349 ** the calling routine. 1350 */ 1351 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1352 char *zBlob; 1353 int i; 1354 1355 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1356 n--; 1357 if( zBlob ){ 1358 for(i=0; i<n; i+=2){ 1359 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1360 } 1361 zBlob[i/2] = 0; 1362 } 1363 return zBlob; 1364 } 1365 #endif /* !SQLITE_OMIT_BLOB_LITERAL */ 1366 1367 /* 1368 ** Log an error that is an API call on a connection pointer that should 1369 ** not have been used. The "type" of connection pointer is given as the 1370 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1371 */ 1372 static void logBadConnection(const char *zType){ 1373 sqlite3_log(SQLITE_MISUSE, 1374 "API call with %s database connection pointer", 1375 zType 1376 ); 1377 } 1378 1379 /* 1380 ** Check to make sure we have a valid db pointer. This test is not 1381 ** foolproof but it does provide some measure of protection against 1382 ** misuse of the interface such as passing in db pointers that are 1383 ** NULL or which have been previously closed. If this routine returns 1384 ** 1 it means that the db pointer is valid and 0 if it should not be 1385 ** dereferenced for any reason. The calling function should invoke 1386 ** SQLITE_MISUSE immediately. 1387 ** 1388 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1389 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1390 ** open properly and is not fit for general use but which can be 1391 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1392 */ 1393 int sqlite3SafetyCheckOk(sqlite3 *db){ 1394 u8 eOpenState; 1395 if( db==0 ){ 1396 logBadConnection("NULL"); 1397 return 0; 1398 } 1399 eOpenState = db->eOpenState; 1400 if( eOpenState!=SQLITE_STATE_OPEN ){ 1401 if( sqlite3SafetyCheckSickOrOk(db) ){ 1402 testcase( sqlite3GlobalConfig.xLog!=0 ); 1403 logBadConnection("unopened"); 1404 } 1405 return 0; 1406 }else{ 1407 return 1; 1408 } 1409 } 1410 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1411 u8 eOpenState; 1412 eOpenState = db->eOpenState; 1413 if( eOpenState!=SQLITE_STATE_SICK && 1414 eOpenState!=SQLITE_STATE_OPEN && 1415 eOpenState!=SQLITE_STATE_BUSY ){ 1416 testcase( sqlite3GlobalConfig.xLog!=0 ); 1417 logBadConnection("invalid"); 1418 return 0; 1419 }else{ 1420 return 1; 1421 } 1422 } 1423 1424 /* 1425 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1426 ** the other 64-bit signed integer at *pA and store the result in *pA. 1427 ** Return 0 on success. Or if the operation would have resulted in an 1428 ** overflow, leave *pA unchanged and return 1. 1429 */ 1430 int sqlite3AddInt64(i64 *pA, i64 iB){ 1431 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1432 return __builtin_add_overflow(*pA, iB, pA); 1433 #else 1434 i64 iA = *pA; 1435 testcase( iA==0 ); testcase( iA==1 ); 1436 testcase( iB==-1 ); testcase( iB==0 ); 1437 if( iB>=0 ){ 1438 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1439 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1440 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1441 }else{ 1442 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1443 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1444 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1445 } 1446 *pA += iB; 1447 return 0; 1448 #endif 1449 } 1450 int sqlite3SubInt64(i64 *pA, i64 iB){ 1451 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1452 return __builtin_sub_overflow(*pA, iB, pA); 1453 #else 1454 testcase( iB==SMALLEST_INT64+1 ); 1455 if( iB==SMALLEST_INT64 ){ 1456 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1457 if( (*pA)>=0 ) return 1; 1458 *pA -= iB; 1459 return 0; 1460 }else{ 1461 return sqlite3AddInt64(pA, -iB); 1462 } 1463 #endif 1464 } 1465 int sqlite3MulInt64(i64 *pA, i64 iB){ 1466 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1467 return __builtin_mul_overflow(*pA, iB, pA); 1468 #else 1469 i64 iA = *pA; 1470 if( iB>0 ){ 1471 if( iA>LARGEST_INT64/iB ) return 1; 1472 if( iA<SMALLEST_INT64/iB ) return 1; 1473 }else if( iB<0 ){ 1474 if( iA>0 ){ 1475 if( iB<SMALLEST_INT64/iA ) return 1; 1476 }else if( iA<0 ){ 1477 if( iB==SMALLEST_INT64 ) return 1; 1478 if( iA==SMALLEST_INT64 ) return 1; 1479 if( -iA>LARGEST_INT64/-iB ) return 1; 1480 } 1481 } 1482 *pA = iA*iB; 1483 return 0; 1484 #endif 1485 } 1486 1487 /* 1488 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1489 ** if the integer has a value of -2147483648, return +2147483647 1490 */ 1491 int sqlite3AbsInt32(int x){ 1492 if( x>=0 ) return x; 1493 if( x==(int)0x80000000 ) return 0x7fffffff; 1494 return -x; 1495 } 1496 1497 #ifdef SQLITE_ENABLE_8_3_NAMES 1498 /* 1499 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1500 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1501 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1502 ** three characters, then shorten the suffix on z[] to be the last three 1503 ** characters of the original suffix. 1504 ** 1505 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1506 ** do the suffix shortening regardless of URI parameter. 1507 ** 1508 ** Examples: 1509 ** 1510 ** test.db-journal => test.nal 1511 ** test.db-wal => test.wal 1512 ** test.db-shm => test.shm 1513 ** test.db-mj7f3319fa => test.9fa 1514 */ 1515 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1516 #if SQLITE_ENABLE_8_3_NAMES<2 1517 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1518 #endif 1519 { 1520 int i, sz; 1521 sz = sqlite3Strlen30(z); 1522 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1523 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1524 } 1525 } 1526 #endif 1527 1528 /* 1529 ** Find (an approximate) sum of two LogEst values. This computation is 1530 ** not a simple "+" operator because LogEst is stored as a logarithmic 1531 ** value. 1532 ** 1533 */ 1534 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1535 static const unsigned char x[] = { 1536 10, 10, /* 0,1 */ 1537 9, 9, /* 2,3 */ 1538 8, 8, /* 4,5 */ 1539 7, 7, 7, /* 6,7,8 */ 1540 6, 6, 6, /* 9,10,11 */ 1541 5, 5, 5, /* 12-14 */ 1542 4, 4, 4, 4, /* 15-18 */ 1543 3, 3, 3, 3, 3, 3, /* 19-24 */ 1544 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1545 }; 1546 if( a>=b ){ 1547 if( a>b+49 ) return a; 1548 if( a>b+31 ) return a+1; 1549 return a+x[a-b]; 1550 }else{ 1551 if( b>a+49 ) return b; 1552 if( b>a+31 ) return b+1; 1553 return b+x[b-a]; 1554 } 1555 } 1556 1557 /* 1558 ** Convert an integer into a LogEst. In other words, compute an 1559 ** approximation for 10*log2(x). 1560 */ 1561 LogEst sqlite3LogEst(u64 x){ 1562 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1563 LogEst y = 40; 1564 if( x<8 ){ 1565 if( x<2 ) return 0; 1566 while( x<8 ){ y -= 10; x <<= 1; } 1567 }else{ 1568 #if GCC_VERSION>=5004000 1569 int i = 60 - __builtin_clzll(x); 1570 y += i*10; 1571 x >>= i; 1572 #else 1573 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1574 while( x>15 ){ y += 10; x >>= 1; } 1575 #endif 1576 } 1577 return a[x&7] + y - 10; 1578 } 1579 1580 /* 1581 ** Convert a double into a LogEst 1582 ** In other words, compute an approximation for 10*log2(x). 1583 */ 1584 LogEst sqlite3LogEstFromDouble(double x){ 1585 u64 a; 1586 LogEst e; 1587 assert( sizeof(x)==8 && sizeof(a)==8 ); 1588 if( x<=1 ) return 0; 1589 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1590 memcpy(&a, &x, 8); 1591 e = (a>>52) - 1022; 1592 return e*10; 1593 } 1594 1595 /* 1596 ** Convert a LogEst into an integer. 1597 */ 1598 u64 sqlite3LogEstToInt(LogEst x){ 1599 u64 n; 1600 n = x%10; 1601 x /= 10; 1602 if( n>=5 ) n -= 2; 1603 else if( n>=1 ) n -= 1; 1604 if( x>60 ) return (u64)LARGEST_INT64; 1605 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1606 } 1607 1608 /* 1609 ** Add a new name/number pair to a VList. This might require that the 1610 ** VList object be reallocated, so return the new VList. If an OOM 1611 ** error occurs, the original VList returned and the 1612 ** db->mallocFailed flag is set. 1613 ** 1614 ** A VList is really just an array of integers. To destroy a VList, 1615 ** simply pass it to sqlite3DbFree(). 1616 ** 1617 ** The first integer is the number of integers allocated for the whole 1618 ** VList. The second integer is the number of integers actually used. 1619 ** Each name/number pair is encoded by subsequent groups of 3 or more 1620 ** integers. 1621 ** 1622 ** Each name/number pair starts with two integers which are the numeric 1623 ** value for the pair and the size of the name/number pair, respectively. 1624 ** The text name overlays one or more following integers. The text name 1625 ** is always zero-terminated. 1626 ** 1627 ** Conceptually: 1628 ** 1629 ** struct VList { 1630 ** int nAlloc; // Number of allocated slots 1631 ** int nUsed; // Number of used slots 1632 ** struct VListEntry { 1633 ** int iValue; // Value for this entry 1634 ** int nSlot; // Slots used by this entry 1635 ** // ... variable name goes here 1636 ** } a[0]; 1637 ** } 1638 ** 1639 ** During code generation, pointers to the variable names within the 1640 ** VList are taken. When that happens, nAlloc is set to zero as an 1641 ** indication that the VList may never again be enlarged, since the 1642 ** accompanying realloc() would invalidate the pointers. 1643 */ 1644 VList *sqlite3VListAdd( 1645 sqlite3 *db, /* The database connection used for malloc() */ 1646 VList *pIn, /* The input VList. Might be NULL */ 1647 const char *zName, /* Name of symbol to add */ 1648 int nName, /* Bytes of text in zName */ 1649 int iVal /* Value to associate with zName */ 1650 ){ 1651 int nInt; /* number of sizeof(int) objects needed for zName */ 1652 char *z; /* Pointer to where zName will be stored */ 1653 int i; /* Index in pIn[] where zName is stored */ 1654 1655 nInt = nName/4 + 3; 1656 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1657 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1658 /* Enlarge the allocation */ 1659 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1660 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1661 if( pOut==0 ) return pIn; 1662 if( pIn==0 ) pOut[1] = 2; 1663 pIn = pOut; 1664 pIn[0] = nAlloc; 1665 } 1666 i = pIn[1]; 1667 pIn[i] = iVal; 1668 pIn[i+1] = nInt; 1669 z = (char*)&pIn[i+2]; 1670 pIn[1] = i+nInt; 1671 assert( pIn[1]<=pIn[0] ); 1672 memcpy(z, zName, nName); 1673 z[nName] = 0; 1674 return pIn; 1675 } 1676 1677 /* 1678 ** Return a pointer to the name of a variable in the given VList that 1679 ** has the value iVal. Or return a NULL if there is no such variable in 1680 ** the list 1681 */ 1682 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1683 int i, mx; 1684 if( pIn==0 ) return 0; 1685 mx = pIn[1]; 1686 i = 2; 1687 do{ 1688 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1689 i += pIn[i+1]; 1690 }while( i<mx ); 1691 return 0; 1692 } 1693 1694 /* 1695 ** Return the number of the variable named zName, if it is in VList. 1696 ** or return 0 if there is no such variable. 1697 */ 1698 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1699 int i, mx; 1700 if( pIn==0 ) return 0; 1701 mx = pIn[1]; 1702 i = 2; 1703 do{ 1704 const char *z = (const char*)&pIn[i+2]; 1705 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1706 i += pIn[i+1]; 1707 }while( i<mx ); 1708 return 0; 1709 } 1710