1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_OMIT_BUILTIN_TEST 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if HAVE_ISNAN */ 92 rc = isnan(x); 93 #endif /* HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 const char *z2 = z; 109 if( z==0 ) return 0; 110 while( *z2 ){ z2++; } 111 return 0x3fffffff & (int)(z2 - z); 112 } 113 114 /* 115 ** Set the current error code to err_code and clear any prior error message. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code){ 118 assert( db!=0 ); 119 db->errCode = err_code; 120 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 121 } 122 123 /* 124 ** Set the most recent error code and error string for the sqlite 125 ** handle "db". The error code is set to "err_code". 126 ** 127 ** If it is not NULL, string zFormat specifies the format of the 128 ** error string in the style of the printf functions: The following 129 ** format characters are allowed: 130 ** 131 ** %s Insert a string 132 ** %z A string that should be freed after use 133 ** %d Insert an integer 134 ** %T Insert a token 135 ** %S Insert the first element of a SrcList 136 ** 137 ** zFormat and any string tokens that follow it are assumed to be 138 ** encoded in UTF-8. 139 ** 140 ** To clear the most recent error for sqlite handle "db", sqlite3Error 141 ** should be called with err_code set to SQLITE_OK and zFormat set 142 ** to NULL. 143 */ 144 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 145 assert( db!=0 ); 146 db->errCode = err_code; 147 if( zFormat==0 ){ 148 sqlite3Error(db, err_code); 149 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 150 char *z; 151 va_list ap; 152 va_start(ap, zFormat); 153 z = sqlite3VMPrintf(db, zFormat, ap); 154 va_end(ap); 155 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 156 } 157 } 158 159 /* 160 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 161 ** The following formatting characters are allowed: 162 ** 163 ** %s Insert a string 164 ** %z A string that should be freed after use 165 ** %d Insert an integer 166 ** %T Insert a token 167 ** %S Insert the first element of a SrcList 168 ** 169 ** This function should be used to report any error that occurs while 170 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 171 ** last thing the sqlite3_prepare() function does is copy the error 172 ** stored by this function into the database handle using sqlite3Error(). 173 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 174 ** during statement execution (sqlite3_step() etc.). 175 */ 176 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 177 char *zMsg; 178 va_list ap; 179 sqlite3 *db = pParse->db; 180 va_start(ap, zFormat); 181 zMsg = sqlite3VMPrintf(db, zFormat, ap); 182 va_end(ap); 183 if( db->suppressErr ){ 184 sqlite3DbFree(db, zMsg); 185 }else{ 186 pParse->nErr++; 187 sqlite3DbFree(db, pParse->zErrMsg); 188 pParse->zErrMsg = zMsg; 189 pParse->rc = SQLITE_ERROR; 190 } 191 } 192 193 /* 194 ** Convert an SQL-style quoted string into a normal string by removing 195 ** the quote characters. The conversion is done in-place. If the 196 ** input does not begin with a quote character, then this routine 197 ** is a no-op. 198 ** 199 ** The input string must be zero-terminated. A new zero-terminator 200 ** is added to the dequoted string. 201 ** 202 ** The return value is -1 if no dequoting occurs or the length of the 203 ** dequoted string, exclusive of the zero terminator, if dequoting does 204 ** occur. 205 ** 206 ** 2002-Feb-14: This routine is extended to remove MS-Access style 207 ** brackets from around identifiers. For example: "[a-b-c]" becomes 208 ** "a-b-c". 209 */ 210 int sqlite3Dequote(char *z){ 211 char quote; 212 int i, j; 213 if( z==0 ) return -1; 214 quote = z[0]; 215 switch( quote ){ 216 case '\'': break; 217 case '"': break; 218 case '`': break; /* For MySQL compatibility */ 219 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 220 default: return -1; 221 } 222 for(i=1, j=0;; i++){ 223 assert( z[i] ); 224 if( z[i]==quote ){ 225 if( z[i+1]==quote ){ 226 z[j++] = quote; 227 i++; 228 }else{ 229 break; 230 } 231 }else{ 232 z[j++] = z[i]; 233 } 234 } 235 z[j] = 0; 236 return j; 237 } 238 239 /* Convenient short-hand */ 240 #define UpperToLower sqlite3UpperToLower 241 242 /* 243 ** Some systems have stricmp(). Others have strcasecmp(). Because 244 ** there is no consistency, we will define our own. 245 ** 246 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 247 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 248 ** the contents of two buffers containing UTF-8 strings in a 249 ** case-independent fashion, using the same definition of "case 250 ** independence" that SQLite uses internally when comparing identifiers. 251 */ 252 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 253 register unsigned char *a, *b; 254 if( zLeft==0 ){ 255 return zRight ? -1 : 0; 256 }else if( zRight==0 ){ 257 return 1; 258 } 259 a = (unsigned char *)zLeft; 260 b = (unsigned char *)zRight; 261 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 262 return UpperToLower[*a] - UpperToLower[*b]; 263 } 264 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 265 register unsigned char *a, *b; 266 if( zLeft==0 ){ 267 return zRight ? -1 : 0; 268 }else if( zRight==0 ){ 269 return 1; 270 } 271 a = (unsigned char *)zLeft; 272 b = (unsigned char *)zRight; 273 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 274 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 275 } 276 277 /* 278 ** The string z[] is an text representation of a real number. 279 ** Convert this string to a double and write it into *pResult. 280 ** 281 ** The string z[] is length bytes in length (bytes, not characters) and 282 ** uses the encoding enc. The string is not necessarily zero-terminated. 283 ** 284 ** Return TRUE if the result is a valid real number (or integer) and FALSE 285 ** if the string is empty or contains extraneous text. Valid numbers 286 ** are in one of these formats: 287 ** 288 ** [+-]digits[E[+-]digits] 289 ** [+-]digits.[digits][E[+-]digits] 290 ** [+-].digits[E[+-]digits] 291 ** 292 ** Leading and trailing whitespace is ignored for the purpose of determining 293 ** validity. 294 ** 295 ** If some prefix of the input string is a valid number, this routine 296 ** returns FALSE but it still converts the prefix and writes the result 297 ** into *pResult. 298 */ 299 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 300 #ifndef SQLITE_OMIT_FLOATING_POINT 301 int incr; 302 const char *zEnd = z + length; 303 /* sign * significand * (10 ^ (esign * exponent)) */ 304 int sign = 1; /* sign of significand */ 305 i64 s = 0; /* significand */ 306 int d = 0; /* adjust exponent for shifting decimal point */ 307 int esign = 1; /* sign of exponent */ 308 int e = 0; /* exponent */ 309 int eValid = 1; /* True exponent is either not used or is well-formed */ 310 double result; 311 int nDigits = 0; 312 int nonNum = 0; 313 314 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 315 *pResult = 0.0; /* Default return value, in case of an error */ 316 317 if( enc==SQLITE_UTF8 ){ 318 incr = 1; 319 }else{ 320 int i; 321 incr = 2; 322 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 323 for(i=3-enc; i<length && z[i]==0; i+=2){} 324 nonNum = i<length; 325 zEnd = z+i+enc-3; 326 z += (enc&1); 327 } 328 329 /* skip leading spaces */ 330 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 331 if( z>=zEnd ) return 0; 332 333 /* get sign of significand */ 334 if( *z=='-' ){ 335 sign = -1; 336 z+=incr; 337 }else if( *z=='+' ){ 338 z+=incr; 339 } 340 341 /* skip leading zeroes */ 342 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 343 344 /* copy max significant digits to significand */ 345 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 346 s = s*10 + (*z - '0'); 347 z+=incr, nDigits++; 348 } 349 350 /* skip non-significant significand digits 351 ** (increase exponent by d to shift decimal left) */ 352 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 353 if( z>=zEnd ) goto do_atof_calc; 354 355 /* if decimal point is present */ 356 if( *z=='.' ){ 357 z+=incr; 358 /* copy digits from after decimal to significand 359 ** (decrease exponent by d to shift decimal right) */ 360 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 361 s = s*10 + (*z - '0'); 362 z+=incr, nDigits++, d--; 363 } 364 /* skip non-significant digits */ 365 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 366 } 367 if( z>=zEnd ) goto do_atof_calc; 368 369 /* if exponent is present */ 370 if( *z=='e' || *z=='E' ){ 371 z+=incr; 372 eValid = 0; 373 if( z>=zEnd ) goto do_atof_calc; 374 /* get sign of exponent */ 375 if( *z=='-' ){ 376 esign = -1; 377 z+=incr; 378 }else if( *z=='+' ){ 379 z+=incr; 380 } 381 /* copy digits to exponent */ 382 while( z<zEnd && sqlite3Isdigit(*z) ){ 383 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 384 z+=incr; 385 eValid = 1; 386 } 387 } 388 389 /* skip trailing spaces */ 390 if( nDigits && eValid ){ 391 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 392 } 393 394 do_atof_calc: 395 /* adjust exponent by d, and update sign */ 396 e = (e*esign) + d; 397 if( e<0 ) { 398 esign = -1; 399 e *= -1; 400 } else { 401 esign = 1; 402 } 403 404 /* if 0 significand */ 405 if( !s ) { 406 /* In the IEEE 754 standard, zero is signed. 407 ** Add the sign if we've seen at least one digit */ 408 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 409 } else { 410 /* attempt to reduce exponent */ 411 if( esign>0 ){ 412 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 413 }else{ 414 while( !(s%10) && e>0 ) e--,s/=10; 415 } 416 417 /* adjust the sign of significand */ 418 s = sign<0 ? -s : s; 419 420 /* if exponent, scale significand as appropriate 421 ** and store in result. */ 422 if( e ){ 423 LONGDOUBLE_TYPE scale = 1.0; 424 /* attempt to handle extremely small/large numbers better */ 425 if( e>307 && e<342 ){ 426 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 427 if( esign<0 ){ 428 result = s / scale; 429 result /= 1.0e+308; 430 }else{ 431 result = s * scale; 432 result *= 1.0e+308; 433 } 434 }else if( e>=342 ){ 435 if( esign<0 ){ 436 result = 0.0*s; 437 }else{ 438 result = 1e308*1e308*s; /* Infinity */ 439 } 440 }else{ 441 /* 1.0e+22 is the largest power of 10 than can be 442 ** represented exactly. */ 443 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 444 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 445 if( esign<0 ){ 446 result = s / scale; 447 }else{ 448 result = s * scale; 449 } 450 } 451 } else { 452 result = (double)s; 453 } 454 } 455 456 /* store the result */ 457 *pResult = result; 458 459 /* return true if number and no extra non-whitespace chracters after */ 460 return z>=zEnd && nDigits>0 && eValid && nonNum==0; 461 #else 462 return !sqlite3Atoi64(z, pResult, length, enc); 463 #endif /* SQLITE_OMIT_FLOATING_POINT */ 464 } 465 466 /* 467 ** Compare the 19-character string zNum against the text representation 468 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 469 ** if zNum is less than, equal to, or greater than the string. 470 ** Note that zNum must contain exactly 19 characters. 471 ** 472 ** Unlike memcmp() this routine is guaranteed to return the difference 473 ** in the values of the last digit if the only difference is in the 474 ** last digit. So, for example, 475 ** 476 ** compare2pow63("9223372036854775800", 1) 477 ** 478 ** will return -8. 479 */ 480 static int compare2pow63(const char *zNum, int incr){ 481 int c = 0; 482 int i; 483 /* 012345678901234567 */ 484 const char *pow63 = "922337203685477580"; 485 for(i=0; c==0 && i<18; i++){ 486 c = (zNum[i*incr]-pow63[i])*10; 487 } 488 if( c==0 ){ 489 c = zNum[18*incr] - '8'; 490 testcase( c==(-1) ); 491 testcase( c==0 ); 492 testcase( c==(+1) ); 493 } 494 return c; 495 } 496 497 /* 498 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 499 ** routine does *not* accept hexadecimal notation. 500 ** 501 ** If the zNum value is representable as a 64-bit twos-complement 502 ** integer, then write that value into *pNum and return 0. 503 ** 504 ** If zNum is exactly 9223372036854775808, return 2. This special 505 ** case is broken out because while 9223372036854775808 cannot be a 506 ** signed 64-bit integer, its negative -9223372036854775808 can be. 507 ** 508 ** If zNum is too big for a 64-bit integer and is not 509 ** 9223372036854775808 or if zNum contains any non-numeric text, 510 ** then return 1. 511 ** 512 ** length is the number of bytes in the string (bytes, not characters). 513 ** The string is not necessarily zero-terminated. The encoding is 514 ** given by enc. 515 */ 516 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 517 int incr; 518 u64 u = 0; 519 int neg = 0; /* assume positive */ 520 int i; 521 int c = 0; 522 int nonNum = 0; 523 const char *zStart; 524 const char *zEnd = zNum + length; 525 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 526 if( enc==SQLITE_UTF8 ){ 527 incr = 1; 528 }else{ 529 incr = 2; 530 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 531 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 532 nonNum = i<length; 533 zEnd = zNum+i+enc-3; 534 zNum += (enc&1); 535 } 536 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 537 if( zNum<zEnd ){ 538 if( *zNum=='-' ){ 539 neg = 1; 540 zNum+=incr; 541 }else if( *zNum=='+' ){ 542 zNum+=incr; 543 } 544 } 545 zStart = zNum; 546 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 547 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 548 u = u*10 + c - '0'; 549 } 550 if( u>LARGEST_INT64 ){ 551 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 552 }else if( neg ){ 553 *pNum = -(i64)u; 554 }else{ 555 *pNum = (i64)u; 556 } 557 testcase( i==18 ); 558 testcase( i==19 ); 559 testcase( i==20 ); 560 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){ 561 /* zNum is empty or contains non-numeric text or is longer 562 ** than 19 digits (thus guaranteeing that it is too large) */ 563 return 1; 564 }else if( i<19*incr ){ 565 /* Less than 19 digits, so we know that it fits in 64 bits */ 566 assert( u<=LARGEST_INT64 ); 567 return 0; 568 }else{ 569 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 570 c = compare2pow63(zNum, incr); 571 if( c<0 ){ 572 /* zNum is less than 9223372036854775808 so it fits */ 573 assert( u<=LARGEST_INT64 ); 574 return 0; 575 }else if( c>0 ){ 576 /* zNum is greater than 9223372036854775808 so it overflows */ 577 return 1; 578 }else{ 579 /* zNum is exactly 9223372036854775808. Fits if negative. The 580 ** special case 2 overflow if positive */ 581 assert( u-1==LARGEST_INT64 ); 582 return neg ? 0 : 2; 583 } 584 } 585 } 586 587 /* 588 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 589 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 590 ** whereas sqlite3Atoi64() does not. 591 ** 592 ** Returns: 593 ** 594 ** 0 Successful transformation. Fits in a 64-bit signed integer. 595 ** 1 Integer too large for a 64-bit signed integer or is malformed 596 ** 2 Special case of 9223372036854775808 597 */ 598 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 599 #ifndef SQLITE_OMIT_HEX_INTEGER 600 if( z[0]=='0' 601 && (z[1]=='x' || z[1]=='X') 602 && sqlite3Isxdigit(z[2]) 603 ){ 604 u64 u = 0; 605 int i, k; 606 for(i=2; z[i]=='0'; i++){} 607 for(k=i; sqlite3Isxdigit(z[k]); k++){ 608 u = u*16 + sqlite3HexToInt(z[k]); 609 } 610 memcpy(pOut, &u, 8); 611 return (z[k]==0 && k-i<=16) ? 0 : 1; 612 }else 613 #endif /* SQLITE_OMIT_HEX_INTEGER */ 614 { 615 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 616 } 617 } 618 619 /* 620 ** If zNum represents an integer that will fit in 32-bits, then set 621 ** *pValue to that integer and return true. Otherwise return false. 622 ** 623 ** This routine accepts both decimal and hexadecimal notation for integers. 624 ** 625 ** Any non-numeric characters that following zNum are ignored. 626 ** This is different from sqlite3Atoi64() which requires the 627 ** input number to be zero-terminated. 628 */ 629 int sqlite3GetInt32(const char *zNum, int *pValue){ 630 sqlite_int64 v = 0; 631 int i, c; 632 int neg = 0; 633 if( zNum[0]=='-' ){ 634 neg = 1; 635 zNum++; 636 }else if( zNum[0]=='+' ){ 637 zNum++; 638 } 639 #ifndef SQLITE_OMIT_HEX_INTEGER 640 else if( zNum[0]=='0' 641 && (zNum[1]=='x' || zNum[1]=='X') 642 && sqlite3Isxdigit(zNum[2]) 643 ){ 644 u32 u = 0; 645 zNum += 2; 646 while( zNum[0]=='0' ) zNum++; 647 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 648 u = u*16 + sqlite3HexToInt(zNum[i]); 649 } 650 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 651 memcpy(pValue, &u, 4); 652 return 1; 653 }else{ 654 return 0; 655 } 656 } 657 #endif 658 while( zNum[0]=='0' ) zNum++; 659 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 660 v = v*10 + c; 661 } 662 663 /* The longest decimal representation of a 32 bit integer is 10 digits: 664 ** 665 ** 1234567890 666 ** 2^31 -> 2147483648 667 */ 668 testcase( i==10 ); 669 if( i>10 ){ 670 return 0; 671 } 672 testcase( v-neg==2147483647 ); 673 if( v-neg>2147483647 ){ 674 return 0; 675 } 676 if( neg ){ 677 v = -v; 678 } 679 *pValue = (int)v; 680 return 1; 681 } 682 683 /* 684 ** Return a 32-bit integer value extracted from a string. If the 685 ** string is not an integer, just return 0. 686 */ 687 int sqlite3Atoi(const char *z){ 688 int x = 0; 689 if( z ) sqlite3GetInt32(z, &x); 690 return x; 691 } 692 693 /* 694 ** The variable-length integer encoding is as follows: 695 ** 696 ** KEY: 697 ** A = 0xxxxxxx 7 bits of data and one flag bit 698 ** B = 1xxxxxxx 7 bits of data and one flag bit 699 ** C = xxxxxxxx 8 bits of data 700 ** 701 ** 7 bits - A 702 ** 14 bits - BA 703 ** 21 bits - BBA 704 ** 28 bits - BBBA 705 ** 35 bits - BBBBA 706 ** 42 bits - BBBBBA 707 ** 49 bits - BBBBBBA 708 ** 56 bits - BBBBBBBA 709 ** 64 bits - BBBBBBBBC 710 */ 711 712 /* 713 ** Write a 64-bit variable-length integer to memory starting at p[0]. 714 ** The length of data write will be between 1 and 9 bytes. The number 715 ** of bytes written is returned. 716 ** 717 ** A variable-length integer consists of the lower 7 bits of each byte 718 ** for all bytes that have the 8th bit set and one byte with the 8th 719 ** bit clear. Except, if we get to the 9th byte, it stores the full 720 ** 8 bits and is the last byte. 721 */ 722 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 723 int i, j, n; 724 u8 buf[10]; 725 if( v & (((u64)0xff000000)<<32) ){ 726 p[8] = (u8)v; 727 v >>= 8; 728 for(i=7; i>=0; i--){ 729 p[i] = (u8)((v & 0x7f) | 0x80); 730 v >>= 7; 731 } 732 return 9; 733 } 734 n = 0; 735 do{ 736 buf[n++] = (u8)((v & 0x7f) | 0x80); 737 v >>= 7; 738 }while( v!=0 ); 739 buf[0] &= 0x7f; 740 assert( n<=9 ); 741 for(i=0, j=n-1; j>=0; j--, i++){ 742 p[i] = buf[j]; 743 } 744 return n; 745 } 746 int sqlite3PutVarint(unsigned char *p, u64 v){ 747 if( v<=0x7f ){ 748 p[0] = v&0x7f; 749 return 1; 750 } 751 if( v<=0x3fff ){ 752 p[0] = ((v>>7)&0x7f)|0x80; 753 p[1] = v&0x7f; 754 return 2; 755 } 756 return putVarint64(p,v); 757 } 758 759 /* 760 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 761 ** are defined here rather than simply putting the constant expressions 762 ** inline in order to work around bugs in the RVT compiler. 763 ** 764 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 765 ** 766 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 767 */ 768 #define SLOT_2_0 0x001fc07f 769 #define SLOT_4_2_0 0xf01fc07f 770 771 772 /* 773 ** Read a 64-bit variable-length integer from memory starting at p[0]. 774 ** Return the number of bytes read. The value is stored in *v. 775 */ 776 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 777 u32 a,b,s; 778 779 a = *p; 780 /* a: p0 (unmasked) */ 781 if (!(a&0x80)) 782 { 783 *v = a; 784 return 1; 785 } 786 787 p++; 788 b = *p; 789 /* b: p1 (unmasked) */ 790 if (!(b&0x80)) 791 { 792 a &= 0x7f; 793 a = a<<7; 794 a |= b; 795 *v = a; 796 return 2; 797 } 798 799 /* Verify that constants are precomputed correctly */ 800 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 801 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 802 803 p++; 804 a = a<<14; 805 a |= *p; 806 /* a: p0<<14 | p2 (unmasked) */ 807 if (!(a&0x80)) 808 { 809 a &= SLOT_2_0; 810 b &= 0x7f; 811 b = b<<7; 812 a |= b; 813 *v = a; 814 return 3; 815 } 816 817 /* CSE1 from below */ 818 a &= SLOT_2_0; 819 p++; 820 b = b<<14; 821 b |= *p; 822 /* b: p1<<14 | p3 (unmasked) */ 823 if (!(b&0x80)) 824 { 825 b &= SLOT_2_0; 826 /* moved CSE1 up */ 827 /* a &= (0x7f<<14)|(0x7f); */ 828 a = a<<7; 829 a |= b; 830 *v = a; 831 return 4; 832 } 833 834 /* a: p0<<14 | p2 (masked) */ 835 /* b: p1<<14 | p3 (unmasked) */ 836 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 837 /* moved CSE1 up */ 838 /* a &= (0x7f<<14)|(0x7f); */ 839 b &= SLOT_2_0; 840 s = a; 841 /* s: p0<<14 | p2 (masked) */ 842 843 p++; 844 a = a<<14; 845 a |= *p; 846 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 847 if (!(a&0x80)) 848 { 849 /* we can skip these cause they were (effectively) done above in calc'ing s */ 850 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 851 /* b &= (0x7f<<14)|(0x7f); */ 852 b = b<<7; 853 a |= b; 854 s = s>>18; 855 *v = ((u64)s)<<32 | a; 856 return 5; 857 } 858 859 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 860 s = s<<7; 861 s |= b; 862 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 863 864 p++; 865 b = b<<14; 866 b |= *p; 867 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 868 if (!(b&0x80)) 869 { 870 /* we can skip this cause it was (effectively) done above in calc'ing s */ 871 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 872 a &= SLOT_2_0; 873 a = a<<7; 874 a |= b; 875 s = s>>18; 876 *v = ((u64)s)<<32 | a; 877 return 6; 878 } 879 880 p++; 881 a = a<<14; 882 a |= *p; 883 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 884 if (!(a&0x80)) 885 { 886 a &= SLOT_4_2_0; 887 b &= SLOT_2_0; 888 b = b<<7; 889 a |= b; 890 s = s>>11; 891 *v = ((u64)s)<<32 | a; 892 return 7; 893 } 894 895 /* CSE2 from below */ 896 a &= SLOT_2_0; 897 p++; 898 b = b<<14; 899 b |= *p; 900 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 901 if (!(b&0x80)) 902 { 903 b &= SLOT_4_2_0; 904 /* moved CSE2 up */ 905 /* a &= (0x7f<<14)|(0x7f); */ 906 a = a<<7; 907 a |= b; 908 s = s>>4; 909 *v = ((u64)s)<<32 | a; 910 return 8; 911 } 912 913 p++; 914 a = a<<15; 915 a |= *p; 916 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 917 918 /* moved CSE2 up */ 919 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 920 b &= SLOT_2_0; 921 b = b<<8; 922 a |= b; 923 924 s = s<<4; 925 b = p[-4]; 926 b &= 0x7f; 927 b = b>>3; 928 s |= b; 929 930 *v = ((u64)s)<<32 | a; 931 932 return 9; 933 } 934 935 /* 936 ** Read a 32-bit variable-length integer from memory starting at p[0]. 937 ** Return the number of bytes read. The value is stored in *v. 938 ** 939 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 940 ** integer, then set *v to 0xffffffff. 941 ** 942 ** A MACRO version, getVarint32, is provided which inlines the 943 ** single-byte case. All code should use the MACRO version as 944 ** this function assumes the single-byte case has already been handled. 945 */ 946 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 947 u32 a,b; 948 949 /* The 1-byte case. Overwhelmingly the most common. Handled inline 950 ** by the getVarin32() macro */ 951 a = *p; 952 /* a: p0 (unmasked) */ 953 #ifndef getVarint32 954 if (!(a&0x80)) 955 { 956 /* Values between 0 and 127 */ 957 *v = a; 958 return 1; 959 } 960 #endif 961 962 /* The 2-byte case */ 963 p++; 964 b = *p; 965 /* b: p1 (unmasked) */ 966 if (!(b&0x80)) 967 { 968 /* Values between 128 and 16383 */ 969 a &= 0x7f; 970 a = a<<7; 971 *v = a | b; 972 return 2; 973 } 974 975 /* The 3-byte case */ 976 p++; 977 a = a<<14; 978 a |= *p; 979 /* a: p0<<14 | p2 (unmasked) */ 980 if (!(a&0x80)) 981 { 982 /* Values between 16384 and 2097151 */ 983 a &= (0x7f<<14)|(0x7f); 984 b &= 0x7f; 985 b = b<<7; 986 *v = a | b; 987 return 3; 988 } 989 990 /* A 32-bit varint is used to store size information in btrees. 991 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 992 ** A 3-byte varint is sufficient, for example, to record the size 993 ** of a 1048569-byte BLOB or string. 994 ** 995 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 996 ** rare larger cases can be handled by the slower 64-bit varint 997 ** routine. 998 */ 999 #if 1 1000 { 1001 u64 v64; 1002 u8 n; 1003 1004 p -= 2; 1005 n = sqlite3GetVarint(p, &v64); 1006 assert( n>3 && n<=9 ); 1007 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1008 *v = 0xffffffff; 1009 }else{ 1010 *v = (u32)v64; 1011 } 1012 return n; 1013 } 1014 1015 #else 1016 /* For following code (kept for historical record only) shows an 1017 ** unrolling for the 3- and 4-byte varint cases. This code is 1018 ** slightly faster, but it is also larger and much harder to test. 1019 */ 1020 p++; 1021 b = b<<14; 1022 b |= *p; 1023 /* b: p1<<14 | p3 (unmasked) */ 1024 if (!(b&0x80)) 1025 { 1026 /* Values between 2097152 and 268435455 */ 1027 b &= (0x7f<<14)|(0x7f); 1028 a &= (0x7f<<14)|(0x7f); 1029 a = a<<7; 1030 *v = a | b; 1031 return 4; 1032 } 1033 1034 p++; 1035 a = a<<14; 1036 a |= *p; 1037 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1038 if (!(a&0x80)) 1039 { 1040 /* Values between 268435456 and 34359738367 */ 1041 a &= SLOT_4_2_0; 1042 b &= SLOT_4_2_0; 1043 b = b<<7; 1044 *v = a | b; 1045 return 5; 1046 } 1047 1048 /* We can only reach this point when reading a corrupt database 1049 ** file. In that case we are not in any hurry. Use the (relatively 1050 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1051 ** value. */ 1052 { 1053 u64 v64; 1054 u8 n; 1055 1056 p -= 4; 1057 n = sqlite3GetVarint(p, &v64); 1058 assert( n>5 && n<=9 ); 1059 *v = (u32)v64; 1060 return n; 1061 } 1062 #endif 1063 } 1064 1065 /* 1066 ** Return the number of bytes that will be needed to store the given 1067 ** 64-bit integer. 1068 */ 1069 int sqlite3VarintLen(u64 v){ 1070 int i = 0; 1071 do{ 1072 i++; 1073 v >>= 7; 1074 }while( v!=0 && ALWAYS(i<9) ); 1075 return i; 1076 } 1077 1078 1079 /* 1080 ** Read or write a four-byte big-endian integer value. 1081 */ 1082 u32 sqlite3Get4byte(const u8 *p){ 1083 testcase( p[0]&0x80 ); 1084 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1085 } 1086 void sqlite3Put4byte(unsigned char *p, u32 v){ 1087 p[0] = (u8)(v>>24); 1088 p[1] = (u8)(v>>16); 1089 p[2] = (u8)(v>>8); 1090 p[3] = (u8)v; 1091 } 1092 1093 1094 1095 /* 1096 ** Translate a single byte of Hex into an integer. 1097 ** This routine only works if h really is a valid hexadecimal 1098 ** character: 0..9a..fA..F 1099 */ 1100 u8 sqlite3HexToInt(int h){ 1101 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1102 #ifdef SQLITE_ASCII 1103 h += 9*(1&(h>>6)); 1104 #endif 1105 #ifdef SQLITE_EBCDIC 1106 h += 9*(1&~(h>>4)); 1107 #endif 1108 return (u8)(h & 0xf); 1109 } 1110 1111 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1112 /* 1113 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1114 ** value. Return a pointer to its binary value. Space to hold the 1115 ** binary value has been obtained from malloc and must be freed by 1116 ** the calling routine. 1117 */ 1118 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1119 char *zBlob; 1120 int i; 1121 1122 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1123 n--; 1124 if( zBlob ){ 1125 for(i=0; i<n; i+=2){ 1126 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1127 } 1128 zBlob[i/2] = 0; 1129 } 1130 return zBlob; 1131 } 1132 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1133 1134 /* 1135 ** Log an error that is an API call on a connection pointer that should 1136 ** not have been used. The "type" of connection pointer is given as the 1137 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1138 */ 1139 static void logBadConnection(const char *zType){ 1140 sqlite3_log(SQLITE_MISUSE, 1141 "API call with %s database connection pointer", 1142 zType 1143 ); 1144 } 1145 1146 /* 1147 ** Check to make sure we have a valid db pointer. This test is not 1148 ** foolproof but it does provide some measure of protection against 1149 ** misuse of the interface such as passing in db pointers that are 1150 ** NULL or which have been previously closed. If this routine returns 1151 ** 1 it means that the db pointer is valid and 0 if it should not be 1152 ** dereferenced for any reason. The calling function should invoke 1153 ** SQLITE_MISUSE immediately. 1154 ** 1155 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1156 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1157 ** open properly and is not fit for general use but which can be 1158 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1159 */ 1160 int sqlite3SafetyCheckOk(sqlite3 *db){ 1161 u32 magic; 1162 if( db==0 ){ 1163 logBadConnection("NULL"); 1164 return 0; 1165 } 1166 magic = db->magic; 1167 if( magic!=SQLITE_MAGIC_OPEN ){ 1168 if( sqlite3SafetyCheckSickOrOk(db) ){ 1169 testcase( sqlite3GlobalConfig.xLog!=0 ); 1170 logBadConnection("unopened"); 1171 } 1172 return 0; 1173 }else{ 1174 return 1; 1175 } 1176 } 1177 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1178 u32 magic; 1179 magic = db->magic; 1180 if( magic!=SQLITE_MAGIC_SICK && 1181 magic!=SQLITE_MAGIC_OPEN && 1182 magic!=SQLITE_MAGIC_BUSY ){ 1183 testcase( sqlite3GlobalConfig.xLog!=0 ); 1184 logBadConnection("invalid"); 1185 return 0; 1186 }else{ 1187 return 1; 1188 } 1189 } 1190 1191 /* 1192 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1193 ** the other 64-bit signed integer at *pA and store the result in *pA. 1194 ** Return 0 on success. Or if the operation would have resulted in an 1195 ** overflow, leave *pA unchanged and return 1. 1196 */ 1197 int sqlite3AddInt64(i64 *pA, i64 iB){ 1198 i64 iA = *pA; 1199 testcase( iA==0 ); testcase( iA==1 ); 1200 testcase( iB==-1 ); testcase( iB==0 ); 1201 if( iB>=0 ){ 1202 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1203 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1204 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1205 }else{ 1206 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1207 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1208 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1209 } 1210 *pA += iB; 1211 return 0; 1212 } 1213 int sqlite3SubInt64(i64 *pA, i64 iB){ 1214 testcase( iB==SMALLEST_INT64+1 ); 1215 if( iB==SMALLEST_INT64 ){ 1216 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1217 if( (*pA)>=0 ) return 1; 1218 *pA -= iB; 1219 return 0; 1220 }else{ 1221 return sqlite3AddInt64(pA, -iB); 1222 } 1223 } 1224 #define TWOPOWER32 (((i64)1)<<32) 1225 #define TWOPOWER31 (((i64)1)<<31) 1226 int sqlite3MulInt64(i64 *pA, i64 iB){ 1227 i64 iA = *pA; 1228 i64 iA1, iA0, iB1, iB0, r; 1229 1230 iA1 = iA/TWOPOWER32; 1231 iA0 = iA % TWOPOWER32; 1232 iB1 = iB/TWOPOWER32; 1233 iB0 = iB % TWOPOWER32; 1234 if( iA1==0 ){ 1235 if( iB1==0 ){ 1236 *pA *= iB; 1237 return 0; 1238 } 1239 r = iA0*iB1; 1240 }else if( iB1==0 ){ 1241 r = iA1*iB0; 1242 }else{ 1243 /* If both iA1 and iB1 are non-zero, overflow will result */ 1244 return 1; 1245 } 1246 testcase( r==(-TWOPOWER31)-1 ); 1247 testcase( r==(-TWOPOWER31) ); 1248 testcase( r==TWOPOWER31 ); 1249 testcase( r==TWOPOWER31-1 ); 1250 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1251 r *= TWOPOWER32; 1252 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1253 *pA = r; 1254 return 0; 1255 } 1256 1257 /* 1258 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1259 ** if the integer has a value of -2147483648, return +2147483647 1260 */ 1261 int sqlite3AbsInt32(int x){ 1262 if( x>=0 ) return x; 1263 if( x==(int)0x80000000 ) return 0x7fffffff; 1264 return -x; 1265 } 1266 1267 #ifdef SQLITE_ENABLE_8_3_NAMES 1268 /* 1269 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1270 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1271 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1272 ** three characters, then shorten the suffix on z[] to be the last three 1273 ** characters of the original suffix. 1274 ** 1275 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1276 ** do the suffix shortening regardless of URI parameter. 1277 ** 1278 ** Examples: 1279 ** 1280 ** test.db-journal => test.nal 1281 ** test.db-wal => test.wal 1282 ** test.db-shm => test.shm 1283 ** test.db-mj7f3319fa => test.9fa 1284 */ 1285 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1286 #if SQLITE_ENABLE_8_3_NAMES<2 1287 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1288 #endif 1289 { 1290 int i, sz; 1291 sz = sqlite3Strlen30(z); 1292 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1293 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1294 } 1295 } 1296 #endif 1297 1298 /* 1299 ** Find (an approximate) sum of two LogEst values. This computation is 1300 ** not a simple "+" operator because LogEst is stored as a logarithmic 1301 ** value. 1302 ** 1303 */ 1304 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1305 static const unsigned char x[] = { 1306 10, 10, /* 0,1 */ 1307 9, 9, /* 2,3 */ 1308 8, 8, /* 4,5 */ 1309 7, 7, 7, /* 6,7,8 */ 1310 6, 6, 6, /* 9,10,11 */ 1311 5, 5, 5, /* 12-14 */ 1312 4, 4, 4, 4, /* 15-18 */ 1313 3, 3, 3, 3, 3, 3, /* 19-24 */ 1314 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1315 }; 1316 if( a>=b ){ 1317 if( a>b+49 ) return a; 1318 if( a>b+31 ) return a+1; 1319 return a+x[a-b]; 1320 }else{ 1321 if( b>a+49 ) return b; 1322 if( b>a+31 ) return b+1; 1323 return b+x[b-a]; 1324 } 1325 } 1326 1327 /* 1328 ** Convert an integer into a LogEst. In other words, compute an 1329 ** approximation for 10*log2(x). 1330 */ 1331 LogEst sqlite3LogEst(u64 x){ 1332 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1333 LogEst y = 40; 1334 if( x<8 ){ 1335 if( x<2 ) return 0; 1336 while( x<8 ){ y -= 10; x <<= 1; } 1337 }else{ 1338 while( x>255 ){ y += 40; x >>= 4; } 1339 while( x>15 ){ y += 10; x >>= 1; } 1340 } 1341 return a[x&7] + y - 10; 1342 } 1343 1344 #ifndef SQLITE_OMIT_VIRTUALTABLE 1345 /* 1346 ** Convert a double into a LogEst 1347 ** In other words, compute an approximation for 10*log2(x). 1348 */ 1349 LogEst sqlite3LogEstFromDouble(double x){ 1350 u64 a; 1351 LogEst e; 1352 assert( sizeof(x)==8 && sizeof(a)==8 ); 1353 if( x<=1 ) return 0; 1354 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1355 memcpy(&a, &x, 8); 1356 e = (a>>52) - 1022; 1357 return e*10; 1358 } 1359 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1360 1361 /* 1362 ** Convert a LogEst into an integer. 1363 */ 1364 u64 sqlite3LogEstToInt(LogEst x){ 1365 u64 n; 1366 if( x<10 ) return 1; 1367 n = x%10; 1368 x /= 10; 1369 if( n>=5 ) n -= 2; 1370 else if( n>=1 ) n -= 1; 1371 if( x>=3 ){ 1372 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3); 1373 } 1374 return (n+8)>>(3-x); 1375 } 1376