1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 ** $Id: util.c,v 1.254 2009/05/06 19:03:14 drh Exp $ 18 */ 19 #include "sqliteInt.h" 20 #include <stdarg.h> 21 #ifdef SQLITE_HAVE_ISNAN 22 # include <math.h> 23 #endif 24 25 /* 26 ** Routine needed to support the testcase() macro. 27 */ 28 #ifdef SQLITE_COVERAGE_TEST 29 void sqlite3Coverage(int x){ 30 static int dummy = 0; 31 dummy += x; 32 } 33 #endif 34 35 /* 36 ** Routine needed to support the ALWAYS() and NEVER() macros. 37 ** 38 ** The argument to ALWAYS() should always be true and the argument 39 ** to NEVER() should always be false. If either is not the case 40 ** then this routine is called in order to throw an error. 41 ** 42 ** This routine only exists if assert() is operational. It always 43 ** throws an assert on its first invocation. The variable has a long 44 ** name to help the assert() message be more readable. The variable 45 ** is used to prevent a too-clever optimizer from optimizing out the 46 ** entire call. 47 */ 48 #ifndef NDEBUG 49 int sqlite3Assert(void){ 50 static volatile int ALWAYS_was_false_or_NEVER_was_true = 0; 51 assert( ALWAYS_was_false_or_NEVER_was_true ); /* Always fails */ 52 return ALWAYS_was_false_or_NEVER_was_true++; /* Not Reached */ 53 } 54 #endif 55 56 /* 57 ** Return true if the floating point value is Not a Number (NaN). 58 ** 59 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 60 ** Otherwise, we have our own implementation that works on most systems. 61 */ 62 int sqlite3IsNaN(double x){ 63 int rc; /* The value return */ 64 #if !defined(SQLITE_HAVE_ISNAN) 65 /* 66 ** Systems that support the isnan() library function should probably 67 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 68 ** found that many systems do not have a working isnan() function so 69 ** this implementation is provided as an alternative. 70 ** 71 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 72 ** On the other hand, the use of -ffast-math comes with the following 73 ** warning: 74 ** 75 ** This option [-ffast-math] should never be turned on by any 76 ** -O option since it can result in incorrect output for programs 77 ** which depend on an exact implementation of IEEE or ISO 78 ** rules/specifications for math functions. 79 ** 80 ** Under MSVC, this NaN test may fail if compiled with a floating- 81 ** point precision mode other than /fp:precise. From the MSDN 82 ** documentation: 83 ** 84 ** The compiler [with /fp:precise] will properly handle comparisons 85 ** involving NaN. For example, x != x evaluates to true if x is NaN 86 ** ... 87 */ 88 #ifdef __FAST_MATH__ 89 # error SQLite will not work correctly with the -ffast-math option of GCC. 90 #endif 91 volatile double y = x; 92 volatile double z = y; 93 rc = (y!=z); 94 #else /* if defined(SQLITE_HAVE_ISNAN) */ 95 rc = isnan(x); 96 #endif /* SQLITE_HAVE_ISNAN */ 97 testcase( rc ); 98 return rc; 99 } 100 101 /* 102 ** Compute a string length that is limited to what can be stored in 103 ** lower 30 bits of a 32-bit signed integer. 104 ** 105 ** The value returned will never be negative. Nor will it ever be greater 106 ** than the actual length of the string. For very long strings (greater 107 ** than 1GiB) the value returned might be less than the true string length. 108 */ 109 int sqlite3Strlen30(const char *z){ 110 const char *z2 = z; 111 while( *z2 ){ z2++; } 112 return 0x3fffffff & (int)(z2 - z); 113 } 114 115 /* 116 ** Set the most recent error code and error string for the sqlite 117 ** handle "db". The error code is set to "err_code". 118 ** 119 ** If it is not NULL, string zFormat specifies the format of the 120 ** error string in the style of the printf functions: The following 121 ** format characters are allowed: 122 ** 123 ** %s Insert a string 124 ** %z A string that should be freed after use 125 ** %d Insert an integer 126 ** %T Insert a token 127 ** %S Insert the first element of a SrcList 128 ** 129 ** zFormat and any string tokens that follow it are assumed to be 130 ** encoded in UTF-8. 131 ** 132 ** To clear the most recent error for sqlite handle "db", sqlite3Error 133 ** should be called with err_code set to SQLITE_OK and zFormat set 134 ** to NULL. 135 */ 136 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 137 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 138 db->errCode = err_code; 139 if( zFormat ){ 140 char *z; 141 va_list ap; 142 va_start(ap, zFormat); 143 z = sqlite3VMPrintf(db, zFormat, ap); 144 va_end(ap); 145 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 146 }else{ 147 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 148 } 149 } 150 } 151 152 /* 153 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 154 ** The following formatting characters are allowed: 155 ** 156 ** %s Insert a string 157 ** %z A string that should be freed after use 158 ** %d Insert an integer 159 ** %T Insert a token 160 ** %S Insert the first element of a SrcList 161 ** 162 ** This function should be used to report any error that occurs whilst 163 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 164 ** last thing the sqlite3_prepare() function does is copy the error 165 ** stored by this function into the database handle using sqlite3Error(). 166 ** Function sqlite3Error() should be used during statement execution 167 ** (sqlite3_step() etc.). 168 */ 169 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 170 va_list ap; 171 sqlite3 *db = pParse->db; 172 pParse->nErr++; 173 testcase( pParse->zErrMsg!=0 ); 174 sqlite3DbFree(db, pParse->zErrMsg); 175 va_start(ap, zFormat); 176 pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap); 177 va_end(ap); 178 if( pParse->rc==SQLITE_OK ){ 179 pParse->rc = SQLITE_ERROR; 180 } 181 } 182 183 /* 184 ** Clear the error message in pParse, if any 185 */ 186 void sqlite3ErrorClear(Parse *pParse){ 187 sqlite3DbFree(pParse->db, pParse->zErrMsg); 188 pParse->zErrMsg = 0; 189 pParse->nErr = 0; 190 } 191 192 /* 193 ** Convert an SQL-style quoted string into a normal string by removing 194 ** the quote characters. The conversion is done in-place. If the 195 ** input does not begin with a quote character, then this routine 196 ** is a no-op. 197 ** 198 ** The input string must be zero-terminated. A new zero-terminator 199 ** is added to the dequoted string. 200 ** 201 ** The return value is -1 if no dequoting occurs or the length of the 202 ** dequoted string, exclusive of the zero terminator, if dequoting does 203 ** occur. 204 ** 205 ** 2002-Feb-14: This routine is extended to remove MS-Access style 206 ** brackets from around identifers. For example: "[a-b-c]" becomes 207 ** "a-b-c". 208 */ 209 int sqlite3Dequote(char *z){ 210 char quote; 211 int i, j; 212 if( z==0 ) return -1; 213 quote = z[0]; 214 switch( quote ){ 215 case '\'': break; 216 case '"': break; 217 case '`': break; /* For MySQL compatibility */ 218 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 219 default: return -1; 220 } 221 for(i=1, j=0; ALWAYS(z[i]); i++){ 222 if( z[i]==quote ){ 223 if( z[i+1]==quote ){ 224 z[j++] = quote; 225 i++; 226 }else{ 227 break; 228 } 229 }else{ 230 z[j++] = z[i]; 231 } 232 } 233 z[j] = 0; 234 return j; 235 } 236 237 /* Convenient short-hand */ 238 #define UpperToLower sqlite3UpperToLower 239 240 /* 241 ** Some systems have stricmp(). Others have strcasecmp(). Because 242 ** there is no consistency, we will define our own. 243 */ 244 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 245 register unsigned char *a, *b; 246 a = (unsigned char *)zLeft; 247 b = (unsigned char *)zRight; 248 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 249 return UpperToLower[*a] - UpperToLower[*b]; 250 } 251 int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ 252 register unsigned char *a, *b; 253 a = (unsigned char *)zLeft; 254 b = (unsigned char *)zRight; 255 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 256 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 257 } 258 259 /* 260 ** Return TRUE if z is a pure numeric string. Return FALSE and leave 261 ** *realnum unchanged if the string contains any character which is not 262 ** part of a number. 263 ** 264 ** If the string is pure numeric, set *realnum to TRUE if the string 265 ** contains the '.' character or an "E+000" style exponentiation suffix. 266 ** Otherwise set *realnum to FALSE. Note that just becaue *realnum is 267 ** false does not mean that the number can be successfully converted into 268 ** an integer - it might be too big. 269 ** 270 ** An empty string is considered non-numeric. 271 */ 272 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ 273 int incr = (enc==SQLITE_UTF8?1:2); 274 if( enc==SQLITE_UTF16BE ) z++; 275 if( *z=='-' || *z=='+' ) z += incr; 276 if( !sqlite3Isdigit(*z) ){ 277 return 0; 278 } 279 z += incr; 280 *realnum = 0; 281 while( sqlite3Isdigit(*z) ){ z += incr; } 282 if( *z=='.' ){ 283 z += incr; 284 if( !sqlite3Isdigit(*z) ) return 0; 285 while( sqlite3Isdigit(*z) ){ z += incr; } 286 *realnum = 1; 287 } 288 if( *z=='e' || *z=='E' ){ 289 z += incr; 290 if( *z=='+' || *z=='-' ) z += incr; 291 if( !sqlite3Isdigit(*z) ) return 0; 292 while( sqlite3Isdigit(*z) ){ z += incr; } 293 *realnum = 1; 294 } 295 return *z==0; 296 } 297 298 /* 299 ** The string z[] is an ascii representation of a real number. 300 ** Convert this string to a double. 301 ** 302 ** This routine assumes that z[] really is a valid number. If it 303 ** is not, the result is undefined. 304 ** 305 ** This routine is used instead of the library atof() function because 306 ** the library atof() might want to use "," as the decimal point instead 307 ** of "." depending on how locale is set. But that would cause problems 308 ** for SQL. So this routine always uses "." regardless of locale. 309 */ 310 int sqlite3AtoF(const char *z, double *pResult){ 311 #ifndef SQLITE_OMIT_FLOATING_POINT 312 int sign = 1; 313 const char *zBegin = z; 314 LONGDOUBLE_TYPE v1 = 0.0; 315 int nSignificant = 0; 316 while( sqlite3Isspace(*z) ) z++; 317 if( *z=='-' ){ 318 sign = -1; 319 z++; 320 }else if( *z=='+' ){ 321 z++; 322 } 323 while( z[0]=='0' ){ 324 z++; 325 } 326 while( sqlite3Isdigit(*z) ){ 327 v1 = v1*10.0 + (*z - '0'); 328 z++; 329 nSignificant++; 330 } 331 if( *z=='.' ){ 332 LONGDOUBLE_TYPE divisor = 1.0; 333 z++; 334 if( nSignificant==0 ){ 335 while( z[0]=='0' ){ 336 divisor *= 10.0; 337 z++; 338 } 339 } 340 while( sqlite3Isdigit(*z) ){ 341 if( nSignificant<18 ){ 342 v1 = v1*10.0 + (*z - '0'); 343 divisor *= 10.0; 344 nSignificant++; 345 } 346 z++; 347 } 348 v1 /= divisor; 349 } 350 if( *z=='e' || *z=='E' ){ 351 int esign = 1; 352 int eval = 0; 353 LONGDOUBLE_TYPE scale = 1.0; 354 z++; 355 if( *z=='-' ){ 356 esign = -1; 357 z++; 358 }else if( *z=='+' ){ 359 z++; 360 } 361 while( sqlite3Isdigit(*z) ){ 362 eval = eval*10 + *z - '0'; 363 z++; 364 } 365 while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } 366 while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } 367 while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } 368 while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } 369 if( esign<0 ){ 370 v1 /= scale; 371 }else{ 372 v1 *= scale; 373 } 374 } 375 *pResult = (double)(sign<0 ? -v1 : v1); 376 return (int)(z - zBegin); 377 #else 378 return sqlite3Atoi64(z, pResult); 379 #endif /* SQLITE_OMIT_FLOATING_POINT */ 380 } 381 382 /* 383 ** Compare the 19-character string zNum against the text representation 384 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 385 ** if zNum is less than, equal to, or greater than the string. 386 ** 387 ** Unlike memcmp() this routine is guaranteed to return the difference 388 ** in the values of the last digit if the only difference is in the 389 ** last digit. So, for example, 390 ** 391 ** compare2pow63("9223372036854775800") 392 ** 393 ** will return -8. 394 */ 395 static int compare2pow63(const char *zNum){ 396 int c; 397 c = memcmp(zNum,"922337203685477580",18); 398 if( c==0 ){ 399 c = zNum[18] - '8'; 400 } 401 return c; 402 } 403 404 405 /* 406 ** Return TRUE if zNum is a 64-bit signed integer and write 407 ** the value of the integer into *pNum. If zNum is not an integer 408 ** or is an integer that is too large to be expressed with 64 bits, 409 ** then return false. 410 ** 411 ** When this routine was originally written it dealt with only 412 ** 32-bit numbers. At that time, it was much faster than the 413 ** atoi() library routine in RedHat 7.2. 414 */ 415 int sqlite3Atoi64(const char *zNum, i64 *pNum){ 416 i64 v = 0; 417 int neg; 418 int i, c; 419 const char *zStart; 420 while( sqlite3Isspace(*zNum) ) zNum++; 421 if( *zNum=='-' ){ 422 neg = 1; 423 zNum++; 424 }else if( *zNum=='+' ){ 425 neg = 0; 426 zNum++; 427 }else{ 428 neg = 0; 429 } 430 zStart = zNum; 431 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ 432 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ 433 v = v*10 + c - '0'; 434 } 435 *pNum = neg ? -v : v; 436 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ 437 /* zNum is empty or contains non-numeric text or is longer 438 ** than 19 digits (thus guaranting that it is too large) */ 439 return 0; 440 }else if( i<19 ){ 441 /* Less than 19 digits, so we know that it fits in 64 bits */ 442 return 1; 443 }else{ 444 /* 19-digit numbers must be no larger than 9223372036854775807 if positive 445 ** or 9223372036854775808 if negative. Note that 9223372036854665808 446 ** is 2^63. */ 447 return compare2pow63(zNum)<neg; 448 } 449 } 450 451 /* 452 ** The string zNum represents an unsigned integer. There might be some other 453 ** information following the integer too, but that part is ignored. 454 ** If the integer that the prefix of zNum represents will fit in a 455 ** 64-bit signed integer, return TRUE. Otherwise return FALSE. 456 ** 457 ** If the negFlag parameter is true, that means that zNum really represents 458 ** a negative number. (The leading "-" is omitted from zNum.) This 459 ** parameter is needed to determine a boundary case. A string 460 ** of "9223373036854775808" returns false if negFlag is false or true 461 ** if negFlag is true. 462 ** 463 ** Leading zeros are ignored. 464 */ 465 int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ 466 int i, c; 467 int neg = 0; 468 469 assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */ 470 471 if( negFlag ) neg = 1-neg; 472 while( *zNum=='0' ){ 473 zNum++; /* Skip leading zeros. Ticket #2454 */ 474 } 475 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} 476 if( i<19 ){ 477 /* Guaranteed to fit if less than 19 digits */ 478 return 1; 479 }else if( i>19 ){ 480 /* Guaranteed to be too big if greater than 19 digits */ 481 return 0; 482 }else{ 483 /* Compare against 2^63. */ 484 return compare2pow63(zNum)<neg; 485 } 486 } 487 488 /* 489 ** If zNum represents an integer that will fit in 32-bits, then set 490 ** *pValue to that integer and return true. Otherwise return false. 491 ** 492 ** Any non-numeric characters that following zNum are ignored. 493 ** This is different from sqlite3Atoi64() which requires the 494 ** input number to be zero-terminated. 495 */ 496 int sqlite3GetInt32(const char *zNum, int *pValue){ 497 sqlite_int64 v = 0; 498 int i, c; 499 int neg = 0; 500 if( zNum[0]=='-' ){ 501 neg = 1; 502 zNum++; 503 }else if( zNum[0]=='+' ){ 504 zNum++; 505 } 506 while( zNum[0]=='0' ) zNum++; 507 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 508 v = v*10 + c; 509 } 510 511 /* The longest decimal representation of a 32 bit integer is 10 digits: 512 ** 513 ** 1234567890 514 ** 2^31 -> 2147483648 515 */ 516 if( i>10 ){ 517 return 0; 518 } 519 if( v-neg>2147483647 ){ 520 return 0; 521 } 522 if( neg ){ 523 v = -v; 524 } 525 *pValue = (int)v; 526 return 1; 527 } 528 529 /* 530 ** The variable-length integer encoding is as follows: 531 ** 532 ** KEY: 533 ** A = 0xxxxxxx 7 bits of data and one flag bit 534 ** B = 1xxxxxxx 7 bits of data and one flag bit 535 ** C = xxxxxxxx 8 bits of data 536 ** 537 ** 7 bits - A 538 ** 14 bits - BA 539 ** 21 bits - BBA 540 ** 28 bits - BBBA 541 ** 35 bits - BBBBA 542 ** 42 bits - BBBBBA 543 ** 49 bits - BBBBBBA 544 ** 56 bits - BBBBBBBA 545 ** 64 bits - BBBBBBBBC 546 */ 547 548 /* 549 ** Write a 64-bit variable-length integer to memory starting at p[0]. 550 ** The length of data write will be between 1 and 9 bytes. The number 551 ** of bytes written is returned. 552 ** 553 ** A variable-length integer consists of the lower 7 bits of each byte 554 ** for all bytes that have the 8th bit set and one byte with the 8th 555 ** bit clear. Except, if we get to the 9th byte, it stores the full 556 ** 8 bits and is the last byte. 557 */ 558 int sqlite3PutVarint(unsigned char *p, u64 v){ 559 int i, j, n; 560 u8 buf[10]; 561 if( v & (((u64)0xff000000)<<32) ){ 562 p[8] = (u8)v; 563 v >>= 8; 564 for(i=7; i>=0; i--){ 565 p[i] = (u8)((v & 0x7f) | 0x80); 566 v >>= 7; 567 } 568 return 9; 569 } 570 n = 0; 571 do{ 572 buf[n++] = (u8)((v & 0x7f) | 0x80); 573 v >>= 7; 574 }while( v!=0 ); 575 buf[0] &= 0x7f; 576 assert( n<=9 ); 577 for(i=0, j=n-1; j>=0; j--, i++){ 578 p[i] = buf[j]; 579 } 580 return n; 581 } 582 583 /* 584 ** This routine is a faster version of sqlite3PutVarint() that only 585 ** works for 32-bit positive integers and which is optimized for 586 ** the common case of small integers. A MACRO version, putVarint32, 587 ** is provided which inlines the single-byte case. All code should use 588 ** the MACRO version as this function assumes the single-byte case has 589 ** already been handled. 590 */ 591 int sqlite3PutVarint32(unsigned char *p, u32 v){ 592 #ifndef putVarint32 593 if( (v & ~0x7f)==0 ){ 594 p[0] = v; 595 return 1; 596 } 597 #endif 598 if( (v & ~0x3fff)==0 ){ 599 p[0] = (u8)((v>>7) | 0x80); 600 p[1] = (u8)(v & 0x7f); 601 return 2; 602 } 603 return sqlite3PutVarint(p, v); 604 } 605 606 /* 607 ** Read a 64-bit variable-length integer from memory starting at p[0]. 608 ** Return the number of bytes read. The value is stored in *v. 609 */ 610 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 611 u32 a,b,s; 612 613 a = *p; 614 /* a: p0 (unmasked) */ 615 if (!(a&0x80)) 616 { 617 *v = a; 618 return 1; 619 } 620 621 p++; 622 b = *p; 623 /* b: p1 (unmasked) */ 624 if (!(b&0x80)) 625 { 626 a &= 0x7f; 627 a = a<<7; 628 a |= b; 629 *v = a; 630 return 2; 631 } 632 633 p++; 634 a = a<<14; 635 a |= *p; 636 /* a: p0<<14 | p2 (unmasked) */ 637 if (!(a&0x80)) 638 { 639 a &= (0x7f<<14)|(0x7f); 640 b &= 0x7f; 641 b = b<<7; 642 a |= b; 643 *v = a; 644 return 3; 645 } 646 647 /* CSE1 from below */ 648 a &= (0x7f<<14)|(0x7f); 649 p++; 650 b = b<<14; 651 b |= *p; 652 /* b: p1<<14 | p3 (unmasked) */ 653 if (!(b&0x80)) 654 { 655 b &= (0x7f<<14)|(0x7f); 656 /* moved CSE1 up */ 657 /* a &= (0x7f<<14)|(0x7f); */ 658 a = a<<7; 659 a |= b; 660 *v = a; 661 return 4; 662 } 663 664 /* a: p0<<14 | p2 (masked) */ 665 /* b: p1<<14 | p3 (unmasked) */ 666 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 667 /* moved CSE1 up */ 668 /* a &= (0x7f<<14)|(0x7f); */ 669 b &= (0x7f<<14)|(0x7f); 670 s = a; 671 /* s: p0<<14 | p2 (masked) */ 672 673 p++; 674 a = a<<14; 675 a |= *p; 676 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 677 if (!(a&0x80)) 678 { 679 /* we can skip these cause they were (effectively) done above in calc'ing s */ 680 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 681 /* b &= (0x7f<<14)|(0x7f); */ 682 b = b<<7; 683 a |= b; 684 s = s>>18; 685 *v = ((u64)s)<<32 | a; 686 return 5; 687 } 688 689 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 690 s = s<<7; 691 s |= b; 692 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 693 694 p++; 695 b = b<<14; 696 b |= *p; 697 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 698 if (!(b&0x80)) 699 { 700 /* we can skip this cause it was (effectively) done above in calc'ing s */ 701 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 702 a &= (0x7f<<14)|(0x7f); 703 a = a<<7; 704 a |= b; 705 s = s>>18; 706 *v = ((u64)s)<<32 | a; 707 return 6; 708 } 709 710 p++; 711 a = a<<14; 712 a |= *p; 713 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 714 if (!(a&0x80)) 715 { 716 a &= (0x1f<<28)|(0x7f<<14)|(0x7f); 717 b &= (0x7f<<14)|(0x7f); 718 b = b<<7; 719 a |= b; 720 s = s>>11; 721 *v = ((u64)s)<<32 | a; 722 return 7; 723 } 724 725 /* CSE2 from below */ 726 a &= (0x7f<<14)|(0x7f); 727 p++; 728 b = b<<14; 729 b |= *p; 730 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 731 if (!(b&0x80)) 732 { 733 b &= (0x1f<<28)|(0x7f<<14)|(0x7f); 734 /* moved CSE2 up */ 735 /* a &= (0x7f<<14)|(0x7f); */ 736 a = a<<7; 737 a |= b; 738 s = s>>4; 739 *v = ((u64)s)<<32 | a; 740 return 8; 741 } 742 743 p++; 744 a = a<<15; 745 a |= *p; 746 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 747 748 /* moved CSE2 up */ 749 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 750 b &= (0x7f<<14)|(0x7f); 751 b = b<<8; 752 a |= b; 753 754 s = s<<4; 755 b = p[-4]; 756 b &= 0x7f; 757 b = b>>3; 758 s |= b; 759 760 *v = ((u64)s)<<32 | a; 761 762 return 9; 763 } 764 765 /* 766 ** Read a 32-bit variable-length integer from memory starting at p[0]. 767 ** Return the number of bytes read. The value is stored in *v. 768 ** A MACRO version, getVarint32, is provided which inlines the 769 ** single-byte case. All code should use the MACRO version as 770 ** this function assumes the single-byte case has already been handled. 771 */ 772 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 773 u32 a,b; 774 775 /* The 1-byte case. Overwhelmingly the most common. Handled inline 776 ** by the getVarin32() macro */ 777 a = *p; 778 /* a: p0 (unmasked) */ 779 #ifndef getVarint32 780 if (!(a&0x80)) 781 { 782 /* Values between 0 and 127 */ 783 *v = a; 784 return 1; 785 } 786 #endif 787 788 /* The 2-byte case */ 789 p++; 790 b = *p; 791 /* b: p1 (unmasked) */ 792 if (!(b&0x80)) 793 { 794 /* Values between 128 and 16383 */ 795 a &= 0x7f; 796 a = a<<7; 797 *v = a | b; 798 return 2; 799 } 800 801 /* The 3-byte case */ 802 p++; 803 a = a<<14; 804 a |= *p; 805 /* a: p0<<14 | p2 (unmasked) */ 806 if (!(a&0x80)) 807 { 808 /* Values between 16384 and 2097151 */ 809 a &= (0x7f<<14)|(0x7f); 810 b &= 0x7f; 811 b = b<<7; 812 *v = a | b; 813 return 3; 814 } 815 816 /* A 32-bit varint is used to store size information in btrees. 817 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 818 ** A 3-byte varint is sufficient, for example, to record the size 819 ** of a 1048569-byte BLOB or string. 820 ** 821 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 822 ** rare larger cases can be handled by the slower 64-bit varint 823 ** routine. 824 */ 825 #if 1 826 { 827 u64 v64; 828 u8 n; 829 830 p -= 2; 831 n = sqlite3GetVarint(p, &v64); 832 assert( n>3 && n<=9 ); 833 *v = (u32)v64; 834 return n; 835 } 836 837 #else 838 /* For following code (kept for historical record only) shows an 839 ** unrolling for the 3- and 4-byte varint cases. This code is 840 ** slightly faster, but it is also larger and much harder to test. 841 */ 842 p++; 843 b = b<<14; 844 b |= *p; 845 /* b: p1<<14 | p3 (unmasked) */ 846 if (!(b&0x80)) 847 { 848 /* Values between 2097152 and 268435455 */ 849 b &= (0x7f<<14)|(0x7f); 850 a &= (0x7f<<14)|(0x7f); 851 a = a<<7; 852 *v = a | b; 853 return 4; 854 } 855 856 p++; 857 a = a<<14; 858 a |= *p; 859 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 860 if (!(a&0x80)) 861 { 862 /* Walues between 268435456 and 34359738367 */ 863 a &= (0x1f<<28)|(0x7f<<14)|(0x7f); 864 b &= (0x1f<<28)|(0x7f<<14)|(0x7f); 865 b = b<<7; 866 *v = a | b; 867 return 5; 868 } 869 870 /* We can only reach this point when reading a corrupt database 871 ** file. In that case we are not in any hurry. Use the (relatively 872 ** slow) general-purpose sqlite3GetVarint() routine to extract the 873 ** value. */ 874 { 875 u64 v64; 876 u8 n; 877 878 p -= 4; 879 n = sqlite3GetVarint(p, &v64); 880 assert( n>5 && n<=9 ); 881 *v = (u32)v64; 882 return n; 883 } 884 #endif 885 } 886 887 /* 888 ** Return the number of bytes that will be needed to store the given 889 ** 64-bit integer. 890 */ 891 int sqlite3VarintLen(u64 v){ 892 int i = 0; 893 do{ 894 i++; 895 v >>= 7; 896 }while( v!=0 && ALWAYS(i<9) ); 897 return i; 898 } 899 900 901 /* 902 ** Read or write a four-byte big-endian integer value. 903 */ 904 u32 sqlite3Get4byte(const u8 *p){ 905 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 906 } 907 void sqlite3Put4byte(unsigned char *p, u32 v){ 908 p[0] = (u8)(v>>24); 909 p[1] = (u8)(v>>16); 910 p[2] = (u8)(v>>8); 911 p[3] = (u8)v; 912 } 913 914 915 916 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 917 /* 918 ** Translate a single byte of Hex into an integer. 919 ** This routinen only works if h really is a valid hexadecimal 920 ** character: 0..9a..fA..F 921 */ 922 static u8 hexToInt(int h){ 923 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 924 #ifdef SQLITE_ASCII 925 h += 9*(1&(h>>6)); 926 #endif 927 #ifdef SQLITE_EBCDIC 928 h += 9*(1&~(h>>4)); 929 #endif 930 return (u8)(h & 0xf); 931 } 932 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 933 934 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 935 /* 936 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 937 ** value. Return a pointer to its binary value. Space to hold the 938 ** binary value has been obtained from malloc and must be freed by 939 ** the calling routine. 940 */ 941 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 942 char *zBlob; 943 int i; 944 945 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 946 n--; 947 if( zBlob ){ 948 for(i=0; i<n; i+=2){ 949 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); 950 } 951 zBlob[i/2] = 0; 952 } 953 return zBlob; 954 } 955 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 956 957 958 /* 959 ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. 960 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN 961 ** when this routine is called. 962 ** 963 ** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN 964 ** value indicates that the database connection passed into the API is 965 ** open and is not being used by another thread. By changing the value 966 ** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. 967 ** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN 968 ** when the API exits. 969 ** 970 ** This routine is a attempt to detect if two threads use the 971 ** same sqlite* pointer at the same time. There is a race 972 ** condition so it is possible that the error is not detected. 973 ** But usually the problem will be seen. The result will be an 974 ** error which can be used to debug the application that is 975 ** using SQLite incorrectly. 976 ** 977 ** Ticket #202: If db->magic is not a valid open value, take care not 978 ** to modify the db structure at all. It could be that db is a stale 979 ** pointer. In other words, it could be that there has been a prior 980 ** call to sqlite3_close(db) and db has been deallocated. And we do 981 ** not want to write into deallocated memory. 982 */ 983 #ifdef SQLITE_DEBUG 984 int sqlite3SafetyOn(sqlite3 *db){ 985 if( db->magic==SQLITE_MAGIC_OPEN ){ 986 db->magic = SQLITE_MAGIC_BUSY; 987 assert( sqlite3_mutex_held(db->mutex) ); 988 return 0; 989 }else if( db->magic==SQLITE_MAGIC_BUSY ){ 990 db->magic = SQLITE_MAGIC_ERROR; 991 db->u1.isInterrupted = 1; 992 } 993 return 1; 994 } 995 #endif 996 997 /* 998 ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. 999 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY 1000 ** when this routine is called. 1001 */ 1002 #ifdef SQLITE_DEBUG 1003 int sqlite3SafetyOff(sqlite3 *db){ 1004 if( db->magic==SQLITE_MAGIC_BUSY ){ 1005 db->magic = SQLITE_MAGIC_OPEN; 1006 assert( sqlite3_mutex_held(db->mutex) ); 1007 return 0; 1008 }else{ 1009 db->magic = SQLITE_MAGIC_ERROR; 1010 db->u1.isInterrupted = 1; 1011 return 1; 1012 } 1013 } 1014 #endif 1015 1016 /* 1017 ** Check to make sure we have a valid db pointer. This test is not 1018 ** foolproof but it does provide some measure of protection against 1019 ** misuse of the interface such as passing in db pointers that are 1020 ** NULL or which have been previously closed. If this routine returns 1021 ** 1 it means that the db pointer is valid and 0 if it should not be 1022 ** dereferenced for any reason. The calling function should invoke 1023 ** SQLITE_MISUSE immediately. 1024 ** 1025 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1026 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1027 ** open properly and is not fit for general use but which can be 1028 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1029 */ 1030 int sqlite3SafetyCheckOk(sqlite3 *db){ 1031 u32 magic; 1032 if( db==0 ) return 0; 1033 magic = db->magic; 1034 if( magic!=SQLITE_MAGIC_OPEN 1035 #ifdef SQLITE_DEBUG 1036 && magic!=SQLITE_MAGIC_BUSY 1037 #endif 1038 ){ 1039 return 0; 1040 }else{ 1041 return 1; 1042 } 1043 } 1044 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1045 u32 magic; 1046 magic = db->magic; 1047 if( magic!=SQLITE_MAGIC_SICK && 1048 magic!=SQLITE_MAGIC_OPEN && 1049 magic!=SQLITE_MAGIC_BUSY ) return 0; 1050 return 1; 1051 } 1052