xref: /sqlite-3.40.0/src/util.c (revision 067b92ba)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
36 ** or to bypass normal error detection during testing in order to let
37 ** execute proceed futher downstream.
38 **
39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0).  The
40 ** sqlite3FaultSim() function only returns non-zero during testing.
41 **
42 ** During testing, if the test harness has set a fault-sim callback using
43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
44 ** each call to sqlite3FaultSim() is relayed to that application-supplied
45 ** callback and the integer return value form the application-supplied
46 ** callback is returned by sqlite3FaultSim().
47 **
48 ** The integer argument to sqlite3FaultSim() is a code to identify which
49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
50 ** should have a unique code.  To prevent legacy testing applications from
51 ** breaking, the codes should not be changed or reused.
52 */
53 #ifndef SQLITE_UNTESTABLE
54 int sqlite3FaultSim(int iTest){
55   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
56   return xCallback ? xCallback(iTest) : SQLITE_OK;
57 }
58 #endif
59 
60 #ifndef SQLITE_OMIT_FLOATING_POINT
61 /*
62 ** Return true if the floating point value is Not a Number (NaN).
63 */
64 int sqlite3IsNaN(double x){
65   u64 y;
66   memcpy(&y,&x,sizeof(y));
67   return IsNaN(y);
68 }
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
70 
71 /*
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
74 **
75 ** The value returned will never be negative.  Nor will it ever be greater
76 ** than the actual length of the string.  For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
78 */
79 int sqlite3Strlen30(const char *z){
80   if( z==0 ) return 0;
81   return 0x3fffffff & (int)strlen(z);
82 }
83 
84 /*
85 ** Return the declared type of a column.  Or return zDflt if the column
86 ** has no declared type.
87 **
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
90 */
91 char *sqlite3ColumnType(Column *pCol, char *zDflt){
92   if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
93   return pCol->zName + strlen(pCol->zName) + 1;
94 }
95 
96 /*
97 ** Helper function for sqlite3Error() - called rarely.  Broken out into
98 ** a separate routine to avoid unnecessary register saves on entry to
99 ** sqlite3Error().
100 */
101 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
102   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
103   sqlite3SystemError(db, err_code);
104 }
105 
106 /*
107 ** Set the current error code to err_code and clear any prior error message.
108 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
109 ** that would be appropriate.
110 */
111 void sqlite3Error(sqlite3 *db, int err_code){
112   assert( db!=0 );
113   db->errCode = err_code;
114   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
115 }
116 
117 /*
118 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
119 ** to do based on the SQLite error code in rc.
120 */
121 void sqlite3SystemError(sqlite3 *db, int rc){
122   if( rc==SQLITE_IOERR_NOMEM ) return;
123   rc &= 0xff;
124   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
125     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
126   }
127 }
128 
129 /*
130 ** Set the most recent error code and error string for the sqlite
131 ** handle "db". The error code is set to "err_code".
132 **
133 ** If it is not NULL, string zFormat specifies the format of the
134 ** error string in the style of the printf functions: The following
135 ** format characters are allowed:
136 **
137 **      %s      Insert a string
138 **      %z      A string that should be freed after use
139 **      %d      Insert an integer
140 **      %T      Insert a token
141 **      %S      Insert the first element of a SrcList
142 **
143 ** zFormat and any string tokens that follow it are assumed to be
144 ** encoded in UTF-8.
145 **
146 ** To clear the most recent error for sqlite handle "db", sqlite3Error
147 ** should be called with err_code set to SQLITE_OK and zFormat set
148 ** to NULL.
149 */
150 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
151   assert( db!=0 );
152   db->errCode = err_code;
153   sqlite3SystemError(db, err_code);
154   if( zFormat==0 ){
155     sqlite3Error(db, err_code);
156   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
157     char *z;
158     va_list ap;
159     va_start(ap, zFormat);
160     z = sqlite3VMPrintf(db, zFormat, ap);
161     va_end(ap);
162     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
163   }
164 }
165 
166 /*
167 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
168 ** The following formatting characters are allowed:
169 **
170 **      %s      Insert a string
171 **      %z      A string that should be freed after use
172 **      %d      Insert an integer
173 **      %T      Insert a token
174 **      %S      Insert the first element of a SrcList
175 **
176 ** This function should be used to report any error that occurs while
177 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
178 ** last thing the sqlite3_prepare() function does is copy the error
179 ** stored by this function into the database handle using sqlite3Error().
180 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
181 ** during statement execution (sqlite3_step() etc.).
182 */
183 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
184   char *zMsg;
185   va_list ap;
186   sqlite3 *db = pParse->db;
187   va_start(ap, zFormat);
188   zMsg = sqlite3VMPrintf(db, zFormat, ap);
189   va_end(ap);
190   if( db->suppressErr ){
191     sqlite3DbFree(db, zMsg);
192   }else{
193     pParse->nErr++;
194     sqlite3DbFree(db, pParse->zErrMsg);
195     pParse->zErrMsg = zMsg;
196     pParse->rc = SQLITE_ERROR;
197     pParse->pWith = 0;
198   }
199 }
200 
201 /*
202 ** If database connection db is currently parsing SQL, then transfer
203 ** error code errCode to that parser if the parser has not already
204 ** encountered some other kind of error.
205 */
206 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
207   Parse *pParse;
208   if( db==0 || (pParse = db->pParse)==0 ) return errCode;
209   pParse->rc = errCode;
210   pParse->nErr++;
211   return errCode;
212 }
213 
214 /*
215 ** Convert an SQL-style quoted string into a normal string by removing
216 ** the quote characters.  The conversion is done in-place.  If the
217 ** input does not begin with a quote character, then this routine
218 ** is a no-op.
219 **
220 ** The input string must be zero-terminated.  A new zero-terminator
221 ** is added to the dequoted string.
222 **
223 ** The return value is -1 if no dequoting occurs or the length of the
224 ** dequoted string, exclusive of the zero terminator, if dequoting does
225 ** occur.
226 **
227 ** 2002-02-14: This routine is extended to remove MS-Access style
228 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
229 ** "a-b-c".
230 */
231 void sqlite3Dequote(char *z){
232   char quote;
233   int i, j;
234   if( z==0 ) return;
235   quote = z[0];
236   if( !sqlite3Isquote(quote) ) return;
237   if( quote=='[' ) quote = ']';
238   for(i=1, j=0;; i++){
239     assert( z[i] );
240     if( z[i]==quote ){
241       if( z[i+1]==quote ){
242         z[j++] = quote;
243         i++;
244       }else{
245         break;
246       }
247     }else{
248       z[j++] = z[i];
249     }
250   }
251   z[j] = 0;
252 }
253 void sqlite3DequoteExpr(Expr *p){
254   assert( sqlite3Isquote(p->u.zToken[0]) );
255   p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
256   sqlite3Dequote(p->u.zToken);
257 }
258 
259 /*
260 ** Generate a Token object from a string
261 */
262 void sqlite3TokenInit(Token *p, char *z){
263   p->z = z;
264   p->n = sqlite3Strlen30(z);
265 }
266 
267 /* Convenient short-hand */
268 #define UpperToLower sqlite3UpperToLower
269 
270 /*
271 ** Some systems have stricmp().  Others have strcasecmp().  Because
272 ** there is no consistency, we will define our own.
273 **
274 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
275 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
276 ** the contents of two buffers containing UTF-8 strings in a
277 ** case-independent fashion, using the same definition of "case
278 ** independence" that SQLite uses internally when comparing identifiers.
279 */
280 int sqlite3_stricmp(const char *zLeft, const char *zRight){
281   if( zLeft==0 ){
282     return zRight ? -1 : 0;
283   }else if( zRight==0 ){
284     return 1;
285   }
286   return sqlite3StrICmp(zLeft, zRight);
287 }
288 int sqlite3StrICmp(const char *zLeft, const char *zRight){
289   unsigned char *a, *b;
290   int c, x;
291   a = (unsigned char *)zLeft;
292   b = (unsigned char *)zRight;
293   for(;;){
294     c = *a;
295     x = *b;
296     if( c==x ){
297       if( c==0 ) break;
298     }else{
299       c = (int)UpperToLower[c] - (int)UpperToLower[x];
300       if( c ) break;
301     }
302     a++;
303     b++;
304   }
305   return c;
306 }
307 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
308   register unsigned char *a, *b;
309   if( zLeft==0 ){
310     return zRight ? -1 : 0;
311   }else if( zRight==0 ){
312     return 1;
313   }
314   a = (unsigned char *)zLeft;
315   b = (unsigned char *)zRight;
316   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
317   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
318 }
319 
320 /*
321 ** Compute an 8-bit hash on a string that is insensitive to case differences
322 */
323 u8 sqlite3StrIHash(const char *z){
324   u8 h = 0;
325   if( z==0 ) return 0;
326   while( z[0] ){
327     h += UpperToLower[(unsigned char)z[0]];
328     z++;
329   }
330   return h;
331 }
332 
333 /*
334 ** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
335 ** E==2 results in 100.  E==50 results in 1.0e50.
336 **
337 ** This routine only works for values of E between 1 and 341.
338 */
339 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
340 #if defined(_MSC_VER)
341   static const LONGDOUBLE_TYPE x[] = {
342     1.0e+001L,
343     1.0e+002L,
344     1.0e+004L,
345     1.0e+008L,
346     1.0e+016L,
347     1.0e+032L,
348     1.0e+064L,
349     1.0e+128L,
350     1.0e+256L
351   };
352   LONGDOUBLE_TYPE r = 1.0;
353   int i;
354   assert( E>=0 && E<=307 );
355   for(i=0; E!=0; i++, E >>=1){
356     if( E & 1 ) r *= x[i];
357   }
358   return r;
359 #else
360   LONGDOUBLE_TYPE x = 10.0;
361   LONGDOUBLE_TYPE r = 1.0;
362   while(1){
363     if( E & 1 ) r *= x;
364     E >>= 1;
365     if( E==0 ) break;
366     x *= x;
367   }
368   return r;
369 #endif
370 }
371 
372 /*
373 ** The string z[] is an text representation of a real number.
374 ** Convert this string to a double and write it into *pResult.
375 **
376 ** The string z[] is length bytes in length (bytes, not characters) and
377 ** uses the encoding enc.  The string is not necessarily zero-terminated.
378 **
379 ** Return TRUE if the result is a valid real number (or integer) and FALSE
380 ** if the string is empty or contains extraneous text.  More specifically
381 ** return
382 **      1          =>  The input string is a pure integer
383 **      2 or more  =>  The input has a decimal point or eNNN clause
384 **      0 or less  =>  The input string is not a valid number
385 **     -1          =>  Not a valid number, but has a valid prefix which
386 **                     includes a decimal point and/or an eNNN clause
387 **
388 ** Valid numbers are in one of these formats:
389 **
390 **    [+-]digits[E[+-]digits]
391 **    [+-]digits.[digits][E[+-]digits]
392 **    [+-].digits[E[+-]digits]
393 **
394 ** Leading and trailing whitespace is ignored for the purpose of determining
395 ** validity.
396 **
397 ** If some prefix of the input string is a valid number, this routine
398 ** returns FALSE but it still converts the prefix and writes the result
399 ** into *pResult.
400 */
401 #if defined(_MSC_VER)
402 #pragma warning(disable : 4756)
403 #endif
404 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
405 #ifndef SQLITE_OMIT_FLOATING_POINT
406   int incr;
407   const char *zEnd;
408   /* sign * significand * (10 ^ (esign * exponent)) */
409   int sign = 1;    /* sign of significand */
410   i64 s = 0;       /* significand */
411   int d = 0;       /* adjust exponent for shifting decimal point */
412   int esign = 1;   /* sign of exponent */
413   int e = 0;       /* exponent */
414   int eValid = 1;  /* True exponent is either not used or is well-formed */
415   double result;
416   int nDigit = 0;  /* Number of digits processed */
417   int eType = 1;   /* 1: pure integer,  2+: fractional  -1 or less: bad UTF16 */
418 
419   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
420   *pResult = 0.0;   /* Default return value, in case of an error */
421   if( length==0 ) return 0;
422 
423   if( enc==SQLITE_UTF8 ){
424     incr = 1;
425     zEnd = z + length;
426   }else{
427     int i;
428     incr = 2;
429     length &= ~1;
430     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
431     testcase( enc==SQLITE_UTF16LE );
432     testcase( enc==SQLITE_UTF16BE );
433     for(i=3-enc; i<length && z[i]==0; i+=2){}
434     if( i<length ) eType = -100;
435     zEnd = &z[i^1];
436     z += (enc&1);
437   }
438 
439   /* skip leading spaces */
440   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
441   if( z>=zEnd ) return 0;
442 
443   /* get sign of significand */
444   if( *z=='-' ){
445     sign = -1;
446     z+=incr;
447   }else if( *z=='+' ){
448     z+=incr;
449   }
450 
451   /* copy max significant digits to significand */
452   while( z<zEnd && sqlite3Isdigit(*z) ){
453     s = s*10 + (*z - '0');
454     z+=incr; nDigit++;
455     if( s>=((LARGEST_INT64-9)/10) ){
456       /* skip non-significant significand digits
457       ** (increase exponent by d to shift decimal left) */
458       while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
459     }
460   }
461   if( z>=zEnd ) goto do_atof_calc;
462 
463   /* if decimal point is present */
464   if( *z=='.' ){
465     z+=incr;
466     eType++;
467     /* copy digits from after decimal to significand
468     ** (decrease exponent by d to shift decimal right) */
469     while( z<zEnd && sqlite3Isdigit(*z) ){
470       if( s<((LARGEST_INT64-9)/10) ){
471         s = s*10 + (*z - '0');
472         d--;
473         nDigit++;
474       }
475       z+=incr;
476     }
477   }
478   if( z>=zEnd ) goto do_atof_calc;
479 
480   /* if exponent is present */
481   if( *z=='e' || *z=='E' ){
482     z+=incr;
483     eValid = 0;
484     eType++;
485 
486     /* This branch is needed to avoid a (harmless) buffer overread.  The
487     ** special comment alerts the mutation tester that the correct answer
488     ** is obtained even if the branch is omitted */
489     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
490 
491     /* get sign of exponent */
492     if( *z=='-' ){
493       esign = -1;
494       z+=incr;
495     }else if( *z=='+' ){
496       z+=incr;
497     }
498     /* copy digits to exponent */
499     while( z<zEnd && sqlite3Isdigit(*z) ){
500       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
501       z+=incr;
502       eValid = 1;
503     }
504   }
505 
506   /* skip trailing spaces */
507   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
508 
509 do_atof_calc:
510   /* adjust exponent by d, and update sign */
511   e = (e*esign) + d;
512   if( e<0 ) {
513     esign = -1;
514     e *= -1;
515   } else {
516     esign = 1;
517   }
518 
519   if( s==0 ) {
520     /* In the IEEE 754 standard, zero is signed. */
521     result = sign<0 ? -(double)0 : (double)0;
522   } else {
523     /* Attempt to reduce exponent.
524     **
525     ** Branches that are not required for the correct answer but which only
526     ** help to obtain the correct answer faster are marked with special
527     ** comments, as a hint to the mutation tester.
528     */
529     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
530       if( esign>0 ){
531         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
532         s *= 10;
533       }else{
534         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
535         s /= 10;
536       }
537       e--;
538     }
539 
540     /* adjust the sign of significand */
541     s = sign<0 ? -s : s;
542 
543     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
544       result = (double)s;
545     }else{
546       /* attempt to handle extremely small/large numbers better */
547       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
548         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
549           LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
550           if( esign<0 ){
551             result = s / scale;
552             result /= 1.0e+308;
553           }else{
554             result = s * scale;
555             result *= 1.0e+308;
556           }
557         }else{ assert( e>=342 );
558           if( esign<0 ){
559             result = 0.0*s;
560           }else{
561 #ifdef INFINITY
562             result = INFINITY*s;
563 #else
564             result = 1e308*1e308*s;  /* Infinity */
565 #endif
566           }
567         }
568       }else{
569         LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
570         if( esign<0 ){
571           result = s / scale;
572         }else{
573           result = s * scale;
574         }
575       }
576     }
577   }
578 
579   /* store the result */
580   *pResult = result;
581 
582   /* return true if number and no extra non-whitespace chracters after */
583   if( z==zEnd && nDigit>0 && eValid && eType>0 ){
584     return eType;
585   }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
586     return -1;
587   }else{
588     return 0;
589   }
590 #else
591   return !sqlite3Atoi64(z, pResult, length, enc);
592 #endif /* SQLITE_OMIT_FLOATING_POINT */
593 }
594 #if defined(_MSC_VER)
595 #pragma warning(default : 4756)
596 #endif
597 
598 /*
599 ** Compare the 19-character string zNum against the text representation
600 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
601 ** if zNum is less than, equal to, or greater than the string.
602 ** Note that zNum must contain exactly 19 characters.
603 **
604 ** Unlike memcmp() this routine is guaranteed to return the difference
605 ** in the values of the last digit if the only difference is in the
606 ** last digit.  So, for example,
607 **
608 **      compare2pow63("9223372036854775800", 1)
609 **
610 ** will return -8.
611 */
612 static int compare2pow63(const char *zNum, int incr){
613   int c = 0;
614   int i;
615                     /* 012345678901234567 */
616   const char *pow63 = "922337203685477580";
617   for(i=0; c==0 && i<18; i++){
618     c = (zNum[i*incr]-pow63[i])*10;
619   }
620   if( c==0 ){
621     c = zNum[18*incr] - '8';
622     testcase( c==(-1) );
623     testcase( c==0 );
624     testcase( c==(+1) );
625   }
626   return c;
627 }
628 
629 /*
630 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
631 ** routine does *not* accept hexadecimal notation.
632 **
633 ** Returns:
634 **
635 **    -1    Not even a prefix of the input text looks like an integer
636 **     0    Successful transformation.  Fits in a 64-bit signed integer.
637 **     1    Excess non-space text after the integer value
638 **     2    Integer too large for a 64-bit signed integer or is malformed
639 **     3    Special case of 9223372036854775808
640 **
641 ** length is the number of bytes in the string (bytes, not characters).
642 ** The string is not necessarily zero-terminated.  The encoding is
643 ** given by enc.
644 */
645 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
646   int incr;
647   u64 u = 0;
648   int neg = 0; /* assume positive */
649   int i;
650   int c = 0;
651   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
652   int rc;          /* Baseline return code */
653   const char *zStart;
654   const char *zEnd = zNum + length;
655   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
656   if( enc==SQLITE_UTF8 ){
657     incr = 1;
658   }else{
659     incr = 2;
660     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
661     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
662     nonNum = i<length;
663     zEnd = &zNum[i^1];
664     zNum += (enc&1);
665   }
666   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
667   if( zNum<zEnd ){
668     if( *zNum=='-' ){
669       neg = 1;
670       zNum+=incr;
671     }else if( *zNum=='+' ){
672       zNum+=incr;
673     }
674   }
675   zStart = zNum;
676   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
677   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
678     u = u*10 + c - '0';
679   }
680   testcase( i==18*incr );
681   testcase( i==19*incr );
682   testcase( i==20*incr );
683   if( u>LARGEST_INT64 ){
684     /* This test and assignment is needed only to suppress UB warnings
685     ** from clang and -fsanitize=undefined.  This test and assignment make
686     ** the code a little larger and slower, and no harm comes from omitting
687     ** them, but we must appaise the undefined-behavior pharisees. */
688     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
689   }else if( neg ){
690     *pNum = -(i64)u;
691   }else{
692     *pNum = (i64)u;
693   }
694   rc = 0;
695   if( i==0 && zStart==zNum ){    /* No digits */
696     rc = -1;
697   }else if( nonNum ){            /* UTF16 with high-order bytes non-zero */
698     rc = 1;
699   }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
700     int jj = i;
701     do{
702       if( !sqlite3Isspace(zNum[jj]) ){
703         rc = 1;          /* Extra non-space text after the integer */
704         break;
705       }
706       jj += incr;
707     }while( &zNum[jj]<zEnd );
708   }
709   if( i<19*incr ){
710     /* Less than 19 digits, so we know that it fits in 64 bits */
711     assert( u<=LARGEST_INT64 );
712     return rc;
713   }else{
714     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
715     c = i>19*incr ? 1 : compare2pow63(zNum, incr);
716     if( c<0 ){
717       /* zNum is less than 9223372036854775808 so it fits */
718       assert( u<=LARGEST_INT64 );
719       return rc;
720     }else{
721       *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
722       if( c>0 ){
723         /* zNum is greater than 9223372036854775808 so it overflows */
724         return 2;
725       }else{
726         /* zNum is exactly 9223372036854775808.  Fits if negative.  The
727         ** special case 2 overflow if positive */
728         assert( u-1==LARGEST_INT64 );
729         return neg ? rc : 3;
730       }
731     }
732   }
733 }
734 
735 /*
736 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
737 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
738 ** whereas sqlite3Atoi64() does not.
739 **
740 ** Returns:
741 **
742 **     0    Successful transformation.  Fits in a 64-bit signed integer.
743 **     1    Excess text after the integer value
744 **     2    Integer too large for a 64-bit signed integer or is malformed
745 **     3    Special case of 9223372036854775808
746 */
747 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
748 #ifndef SQLITE_OMIT_HEX_INTEGER
749   if( z[0]=='0'
750    && (z[1]=='x' || z[1]=='X')
751   ){
752     u64 u = 0;
753     int i, k;
754     for(i=2; z[i]=='0'; i++){}
755     for(k=i; sqlite3Isxdigit(z[k]); k++){
756       u = u*16 + sqlite3HexToInt(z[k]);
757     }
758     memcpy(pOut, &u, 8);
759     return (z[k]==0 && k-i<=16) ? 0 : 2;
760   }else
761 #endif /* SQLITE_OMIT_HEX_INTEGER */
762   {
763     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
764   }
765 }
766 
767 /*
768 ** If zNum represents an integer that will fit in 32-bits, then set
769 ** *pValue to that integer and return true.  Otherwise return false.
770 **
771 ** This routine accepts both decimal and hexadecimal notation for integers.
772 **
773 ** Any non-numeric characters that following zNum are ignored.
774 ** This is different from sqlite3Atoi64() which requires the
775 ** input number to be zero-terminated.
776 */
777 int sqlite3GetInt32(const char *zNum, int *pValue){
778   sqlite_int64 v = 0;
779   int i, c;
780   int neg = 0;
781   if( zNum[0]=='-' ){
782     neg = 1;
783     zNum++;
784   }else if( zNum[0]=='+' ){
785     zNum++;
786   }
787 #ifndef SQLITE_OMIT_HEX_INTEGER
788   else if( zNum[0]=='0'
789         && (zNum[1]=='x' || zNum[1]=='X')
790         && sqlite3Isxdigit(zNum[2])
791   ){
792     u32 u = 0;
793     zNum += 2;
794     while( zNum[0]=='0' ) zNum++;
795     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
796       u = u*16 + sqlite3HexToInt(zNum[i]);
797     }
798     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
799       memcpy(pValue, &u, 4);
800       return 1;
801     }else{
802       return 0;
803     }
804   }
805 #endif
806   if( !sqlite3Isdigit(zNum[0]) ) return 0;
807   while( zNum[0]=='0' ) zNum++;
808   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
809     v = v*10 + c;
810   }
811 
812   /* The longest decimal representation of a 32 bit integer is 10 digits:
813   **
814   **             1234567890
815   **     2^31 -> 2147483648
816   */
817   testcase( i==10 );
818   if( i>10 ){
819     return 0;
820   }
821   testcase( v-neg==2147483647 );
822   if( v-neg>2147483647 ){
823     return 0;
824   }
825   if( neg ){
826     v = -v;
827   }
828   *pValue = (int)v;
829   return 1;
830 }
831 
832 /*
833 ** Return a 32-bit integer value extracted from a string.  If the
834 ** string is not an integer, just return 0.
835 */
836 int sqlite3Atoi(const char *z){
837   int x = 0;
838   if( z ) sqlite3GetInt32(z, &x);
839   return x;
840 }
841 
842 /*
843 ** The variable-length integer encoding is as follows:
844 **
845 ** KEY:
846 **         A = 0xxxxxxx    7 bits of data and one flag bit
847 **         B = 1xxxxxxx    7 bits of data and one flag bit
848 **         C = xxxxxxxx    8 bits of data
849 **
850 **  7 bits - A
851 ** 14 bits - BA
852 ** 21 bits - BBA
853 ** 28 bits - BBBA
854 ** 35 bits - BBBBA
855 ** 42 bits - BBBBBA
856 ** 49 bits - BBBBBBA
857 ** 56 bits - BBBBBBBA
858 ** 64 bits - BBBBBBBBC
859 */
860 
861 /*
862 ** Write a 64-bit variable-length integer to memory starting at p[0].
863 ** The length of data write will be between 1 and 9 bytes.  The number
864 ** of bytes written is returned.
865 **
866 ** A variable-length integer consists of the lower 7 bits of each byte
867 ** for all bytes that have the 8th bit set and one byte with the 8th
868 ** bit clear.  Except, if we get to the 9th byte, it stores the full
869 ** 8 bits and is the last byte.
870 */
871 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
872   int i, j, n;
873   u8 buf[10];
874   if( v & (((u64)0xff000000)<<32) ){
875     p[8] = (u8)v;
876     v >>= 8;
877     for(i=7; i>=0; i--){
878       p[i] = (u8)((v & 0x7f) | 0x80);
879       v >>= 7;
880     }
881     return 9;
882   }
883   n = 0;
884   do{
885     buf[n++] = (u8)((v & 0x7f) | 0x80);
886     v >>= 7;
887   }while( v!=0 );
888   buf[0] &= 0x7f;
889   assert( n<=9 );
890   for(i=0, j=n-1; j>=0; j--, i++){
891     p[i] = buf[j];
892   }
893   return n;
894 }
895 int sqlite3PutVarint(unsigned char *p, u64 v){
896   if( v<=0x7f ){
897     p[0] = v&0x7f;
898     return 1;
899   }
900   if( v<=0x3fff ){
901     p[0] = ((v>>7)&0x7f)|0x80;
902     p[1] = v&0x7f;
903     return 2;
904   }
905   return putVarint64(p,v);
906 }
907 
908 /*
909 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
910 ** are defined here rather than simply putting the constant expressions
911 ** inline in order to work around bugs in the RVT compiler.
912 **
913 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
914 **
915 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
916 */
917 #define SLOT_2_0     0x001fc07f
918 #define SLOT_4_2_0   0xf01fc07f
919 
920 
921 /*
922 ** Read a 64-bit variable-length integer from memory starting at p[0].
923 ** Return the number of bytes read.  The value is stored in *v.
924 */
925 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
926   u32 a,b,s;
927 
928   if( ((signed char*)p)[0]>=0 ){
929     *v = *p;
930     return 1;
931   }
932   if( ((signed char*)p)[1]>=0 ){
933     *v = ((u32)(p[0]&0x7f)<<7) | p[1];
934     return 2;
935   }
936 
937   /* Verify that constants are precomputed correctly */
938   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
939   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
940 
941   a = ((u32)p[0])<<14;
942   b = p[1];
943   p += 2;
944   a |= *p;
945   /* a: p0<<14 | p2 (unmasked) */
946   if (!(a&0x80))
947   {
948     a &= SLOT_2_0;
949     b &= 0x7f;
950     b = b<<7;
951     a |= b;
952     *v = a;
953     return 3;
954   }
955 
956   /* CSE1 from below */
957   a &= SLOT_2_0;
958   p++;
959   b = b<<14;
960   b |= *p;
961   /* b: p1<<14 | p3 (unmasked) */
962   if (!(b&0x80))
963   {
964     b &= SLOT_2_0;
965     /* moved CSE1 up */
966     /* a &= (0x7f<<14)|(0x7f); */
967     a = a<<7;
968     a |= b;
969     *v = a;
970     return 4;
971   }
972 
973   /* a: p0<<14 | p2 (masked) */
974   /* b: p1<<14 | p3 (unmasked) */
975   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
976   /* moved CSE1 up */
977   /* a &= (0x7f<<14)|(0x7f); */
978   b &= SLOT_2_0;
979   s = a;
980   /* s: p0<<14 | p2 (masked) */
981 
982   p++;
983   a = a<<14;
984   a |= *p;
985   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
986   if (!(a&0x80))
987   {
988     /* we can skip these cause they were (effectively) done above
989     ** while calculating s */
990     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
991     /* b &= (0x7f<<14)|(0x7f); */
992     b = b<<7;
993     a |= b;
994     s = s>>18;
995     *v = ((u64)s)<<32 | a;
996     return 5;
997   }
998 
999   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1000   s = s<<7;
1001   s |= b;
1002   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1003 
1004   p++;
1005   b = b<<14;
1006   b |= *p;
1007   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1008   if (!(b&0x80))
1009   {
1010     /* we can skip this cause it was (effectively) done above in calc'ing s */
1011     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1012     a &= SLOT_2_0;
1013     a = a<<7;
1014     a |= b;
1015     s = s>>18;
1016     *v = ((u64)s)<<32 | a;
1017     return 6;
1018   }
1019 
1020   p++;
1021   a = a<<14;
1022   a |= *p;
1023   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1024   if (!(a&0x80))
1025   {
1026     a &= SLOT_4_2_0;
1027     b &= SLOT_2_0;
1028     b = b<<7;
1029     a |= b;
1030     s = s>>11;
1031     *v = ((u64)s)<<32 | a;
1032     return 7;
1033   }
1034 
1035   /* CSE2 from below */
1036   a &= SLOT_2_0;
1037   p++;
1038   b = b<<14;
1039   b |= *p;
1040   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1041   if (!(b&0x80))
1042   {
1043     b &= SLOT_4_2_0;
1044     /* moved CSE2 up */
1045     /* a &= (0x7f<<14)|(0x7f); */
1046     a = a<<7;
1047     a |= b;
1048     s = s>>4;
1049     *v = ((u64)s)<<32 | a;
1050     return 8;
1051   }
1052 
1053   p++;
1054   a = a<<15;
1055   a |= *p;
1056   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1057 
1058   /* moved CSE2 up */
1059   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1060   b &= SLOT_2_0;
1061   b = b<<8;
1062   a |= b;
1063 
1064   s = s<<4;
1065   b = p[-4];
1066   b &= 0x7f;
1067   b = b>>3;
1068   s |= b;
1069 
1070   *v = ((u64)s)<<32 | a;
1071 
1072   return 9;
1073 }
1074 
1075 /*
1076 ** Read a 32-bit variable-length integer from memory starting at p[0].
1077 ** Return the number of bytes read.  The value is stored in *v.
1078 **
1079 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1080 ** integer, then set *v to 0xffffffff.
1081 **
1082 ** A MACRO version, getVarint32, is provided which inlines the
1083 ** single-byte case.  All code should use the MACRO version as
1084 ** this function assumes the single-byte case has already been handled.
1085 */
1086 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1087   u32 a,b;
1088 
1089   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1090   ** by the getVarin32() macro */
1091   a = *p;
1092   /* a: p0 (unmasked) */
1093 #ifndef getVarint32
1094   if (!(a&0x80))
1095   {
1096     /* Values between 0 and 127 */
1097     *v = a;
1098     return 1;
1099   }
1100 #endif
1101 
1102   /* The 2-byte case */
1103   p++;
1104   b = *p;
1105   /* b: p1 (unmasked) */
1106   if (!(b&0x80))
1107   {
1108     /* Values between 128 and 16383 */
1109     a &= 0x7f;
1110     a = a<<7;
1111     *v = a | b;
1112     return 2;
1113   }
1114 
1115   /* The 3-byte case */
1116   p++;
1117   a = a<<14;
1118   a |= *p;
1119   /* a: p0<<14 | p2 (unmasked) */
1120   if (!(a&0x80))
1121   {
1122     /* Values between 16384 and 2097151 */
1123     a &= (0x7f<<14)|(0x7f);
1124     b &= 0x7f;
1125     b = b<<7;
1126     *v = a | b;
1127     return 3;
1128   }
1129 
1130   /* A 32-bit varint is used to store size information in btrees.
1131   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1132   ** A 3-byte varint is sufficient, for example, to record the size
1133   ** of a 1048569-byte BLOB or string.
1134   **
1135   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1136   ** rare larger cases can be handled by the slower 64-bit varint
1137   ** routine.
1138   */
1139 #if 1
1140   {
1141     u64 v64;
1142     u8 n;
1143 
1144     p -= 2;
1145     n = sqlite3GetVarint(p, &v64);
1146     assert( n>3 && n<=9 );
1147     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1148       *v = 0xffffffff;
1149     }else{
1150       *v = (u32)v64;
1151     }
1152     return n;
1153   }
1154 
1155 #else
1156   /* For following code (kept for historical record only) shows an
1157   ** unrolling for the 3- and 4-byte varint cases.  This code is
1158   ** slightly faster, but it is also larger and much harder to test.
1159   */
1160   p++;
1161   b = b<<14;
1162   b |= *p;
1163   /* b: p1<<14 | p3 (unmasked) */
1164   if (!(b&0x80))
1165   {
1166     /* Values between 2097152 and 268435455 */
1167     b &= (0x7f<<14)|(0x7f);
1168     a &= (0x7f<<14)|(0x7f);
1169     a = a<<7;
1170     *v = a | b;
1171     return 4;
1172   }
1173 
1174   p++;
1175   a = a<<14;
1176   a |= *p;
1177   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1178   if (!(a&0x80))
1179   {
1180     /* Values  between 268435456 and 34359738367 */
1181     a &= SLOT_4_2_0;
1182     b &= SLOT_4_2_0;
1183     b = b<<7;
1184     *v = a | b;
1185     return 5;
1186   }
1187 
1188   /* We can only reach this point when reading a corrupt database
1189   ** file.  In that case we are not in any hurry.  Use the (relatively
1190   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1191   ** value. */
1192   {
1193     u64 v64;
1194     u8 n;
1195 
1196     p -= 4;
1197     n = sqlite3GetVarint(p, &v64);
1198     assert( n>5 && n<=9 );
1199     *v = (u32)v64;
1200     return n;
1201   }
1202 #endif
1203 }
1204 
1205 /*
1206 ** Return the number of bytes that will be needed to store the given
1207 ** 64-bit integer.
1208 */
1209 int sqlite3VarintLen(u64 v){
1210   int i;
1211   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1212   return i;
1213 }
1214 
1215 
1216 /*
1217 ** Read or write a four-byte big-endian integer value.
1218 */
1219 u32 sqlite3Get4byte(const u8 *p){
1220 #if SQLITE_BYTEORDER==4321
1221   u32 x;
1222   memcpy(&x,p,4);
1223   return x;
1224 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1225   u32 x;
1226   memcpy(&x,p,4);
1227   return __builtin_bswap32(x);
1228 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1229   u32 x;
1230   memcpy(&x,p,4);
1231   return _byteswap_ulong(x);
1232 #else
1233   testcase( p[0]&0x80 );
1234   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1235 #endif
1236 }
1237 void sqlite3Put4byte(unsigned char *p, u32 v){
1238 #if SQLITE_BYTEORDER==4321
1239   memcpy(p,&v,4);
1240 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1241   u32 x = __builtin_bswap32(v);
1242   memcpy(p,&x,4);
1243 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1244   u32 x = _byteswap_ulong(v);
1245   memcpy(p,&x,4);
1246 #else
1247   p[0] = (u8)(v>>24);
1248   p[1] = (u8)(v>>16);
1249   p[2] = (u8)(v>>8);
1250   p[3] = (u8)v;
1251 #endif
1252 }
1253 
1254 
1255 
1256 /*
1257 ** Translate a single byte of Hex into an integer.
1258 ** This routine only works if h really is a valid hexadecimal
1259 ** character:  0..9a..fA..F
1260 */
1261 u8 sqlite3HexToInt(int h){
1262   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1263 #ifdef SQLITE_ASCII
1264   h += 9*(1&(h>>6));
1265 #endif
1266 #ifdef SQLITE_EBCDIC
1267   h += 9*(1&~(h>>4));
1268 #endif
1269   return (u8)(h & 0xf);
1270 }
1271 
1272 #if !defined(SQLITE_OMIT_BLOB_LITERAL)
1273 /*
1274 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1275 ** value.  Return a pointer to its binary value.  Space to hold the
1276 ** binary value has been obtained from malloc and must be freed by
1277 ** the calling routine.
1278 */
1279 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1280   char *zBlob;
1281   int i;
1282 
1283   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1284   n--;
1285   if( zBlob ){
1286     for(i=0; i<n; i+=2){
1287       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1288     }
1289     zBlob[i/2] = 0;
1290   }
1291   return zBlob;
1292 }
1293 #endif /* !SQLITE_OMIT_BLOB_LITERAL */
1294 
1295 /*
1296 ** Log an error that is an API call on a connection pointer that should
1297 ** not have been used.  The "type" of connection pointer is given as the
1298 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1299 */
1300 static void logBadConnection(const char *zType){
1301   sqlite3_log(SQLITE_MISUSE,
1302      "API call with %s database connection pointer",
1303      zType
1304   );
1305 }
1306 
1307 /*
1308 ** Check to make sure we have a valid db pointer.  This test is not
1309 ** foolproof but it does provide some measure of protection against
1310 ** misuse of the interface such as passing in db pointers that are
1311 ** NULL or which have been previously closed.  If this routine returns
1312 ** 1 it means that the db pointer is valid and 0 if it should not be
1313 ** dereferenced for any reason.  The calling function should invoke
1314 ** SQLITE_MISUSE immediately.
1315 **
1316 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1317 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1318 ** open properly and is not fit for general use but which can be
1319 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1320 */
1321 int sqlite3SafetyCheckOk(sqlite3 *db){
1322   u32 magic;
1323   if( db==0 ){
1324     logBadConnection("NULL");
1325     return 0;
1326   }
1327   magic = db->magic;
1328   if( magic!=SQLITE_MAGIC_OPEN ){
1329     if( sqlite3SafetyCheckSickOrOk(db) ){
1330       testcase( sqlite3GlobalConfig.xLog!=0 );
1331       logBadConnection("unopened");
1332     }
1333     return 0;
1334   }else{
1335     return 1;
1336   }
1337 }
1338 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1339   u32 magic;
1340   magic = db->magic;
1341   if( magic!=SQLITE_MAGIC_SICK &&
1342       magic!=SQLITE_MAGIC_OPEN &&
1343       magic!=SQLITE_MAGIC_BUSY ){
1344     testcase( sqlite3GlobalConfig.xLog!=0 );
1345     logBadConnection("invalid");
1346     return 0;
1347   }else{
1348     return 1;
1349   }
1350 }
1351 
1352 /*
1353 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1354 ** the other 64-bit signed integer at *pA and store the result in *pA.
1355 ** Return 0 on success.  Or if the operation would have resulted in an
1356 ** overflow, leave *pA unchanged and return 1.
1357 */
1358 int sqlite3AddInt64(i64 *pA, i64 iB){
1359 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1360   return __builtin_add_overflow(*pA, iB, pA);
1361 #else
1362   i64 iA = *pA;
1363   testcase( iA==0 ); testcase( iA==1 );
1364   testcase( iB==-1 ); testcase( iB==0 );
1365   if( iB>=0 ){
1366     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1367     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1368     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1369   }else{
1370     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1371     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1372     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1373   }
1374   *pA += iB;
1375   return 0;
1376 #endif
1377 }
1378 int sqlite3SubInt64(i64 *pA, i64 iB){
1379 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1380   return __builtin_sub_overflow(*pA, iB, pA);
1381 #else
1382   testcase( iB==SMALLEST_INT64+1 );
1383   if( iB==SMALLEST_INT64 ){
1384     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1385     if( (*pA)>=0 ) return 1;
1386     *pA -= iB;
1387     return 0;
1388   }else{
1389     return sqlite3AddInt64(pA, -iB);
1390   }
1391 #endif
1392 }
1393 int sqlite3MulInt64(i64 *pA, i64 iB){
1394 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1395   return __builtin_mul_overflow(*pA, iB, pA);
1396 #else
1397   i64 iA = *pA;
1398   if( iB>0 ){
1399     if( iA>LARGEST_INT64/iB ) return 1;
1400     if( iA<SMALLEST_INT64/iB ) return 1;
1401   }else if( iB<0 ){
1402     if( iA>0 ){
1403       if( iB<SMALLEST_INT64/iA ) return 1;
1404     }else if( iA<0 ){
1405       if( iB==SMALLEST_INT64 ) return 1;
1406       if( iA==SMALLEST_INT64 ) return 1;
1407       if( -iA>LARGEST_INT64/-iB ) return 1;
1408     }
1409   }
1410   *pA = iA*iB;
1411   return 0;
1412 #endif
1413 }
1414 
1415 /*
1416 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1417 ** if the integer has a value of -2147483648, return +2147483647
1418 */
1419 int sqlite3AbsInt32(int x){
1420   if( x>=0 ) return x;
1421   if( x==(int)0x80000000 ) return 0x7fffffff;
1422   return -x;
1423 }
1424 
1425 #ifdef SQLITE_ENABLE_8_3_NAMES
1426 /*
1427 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1428 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1429 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1430 ** three characters, then shorten the suffix on z[] to be the last three
1431 ** characters of the original suffix.
1432 **
1433 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1434 ** do the suffix shortening regardless of URI parameter.
1435 **
1436 ** Examples:
1437 **
1438 **     test.db-journal    =>   test.nal
1439 **     test.db-wal        =>   test.wal
1440 **     test.db-shm        =>   test.shm
1441 **     test.db-mj7f3319fa =>   test.9fa
1442 */
1443 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1444 #if SQLITE_ENABLE_8_3_NAMES<2
1445   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1446 #endif
1447   {
1448     int i, sz;
1449     sz = sqlite3Strlen30(z);
1450     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1451     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1452   }
1453 }
1454 #endif
1455 
1456 /*
1457 ** Find (an approximate) sum of two LogEst values.  This computation is
1458 ** not a simple "+" operator because LogEst is stored as a logarithmic
1459 ** value.
1460 **
1461 */
1462 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1463   static const unsigned char x[] = {
1464      10, 10,                         /* 0,1 */
1465       9, 9,                          /* 2,3 */
1466       8, 8,                          /* 4,5 */
1467       7, 7, 7,                       /* 6,7,8 */
1468       6, 6, 6,                       /* 9,10,11 */
1469       5, 5, 5,                       /* 12-14 */
1470       4, 4, 4, 4,                    /* 15-18 */
1471       3, 3, 3, 3, 3, 3,              /* 19-24 */
1472       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1473   };
1474   if( a>=b ){
1475     if( a>b+49 ) return a;
1476     if( a>b+31 ) return a+1;
1477     return a+x[a-b];
1478   }else{
1479     if( b>a+49 ) return b;
1480     if( b>a+31 ) return b+1;
1481     return b+x[b-a];
1482   }
1483 }
1484 
1485 /*
1486 ** Convert an integer into a LogEst.  In other words, compute an
1487 ** approximation for 10*log2(x).
1488 */
1489 LogEst sqlite3LogEst(u64 x){
1490   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1491   LogEst y = 40;
1492   if( x<8 ){
1493     if( x<2 ) return 0;
1494     while( x<8 ){  y -= 10; x <<= 1; }
1495   }else{
1496 #if GCC_VERSION>=5004000
1497     int i = 60 - __builtin_clzll(x);
1498     y += i*10;
1499     x >>= i;
1500 #else
1501     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1502     while( x>15 ){  y += 10; x >>= 1; }
1503 #endif
1504   }
1505   return a[x&7] + y - 10;
1506 }
1507 
1508 #ifndef SQLITE_OMIT_VIRTUALTABLE
1509 /*
1510 ** Convert a double into a LogEst
1511 ** In other words, compute an approximation for 10*log2(x).
1512 */
1513 LogEst sqlite3LogEstFromDouble(double x){
1514   u64 a;
1515   LogEst e;
1516   assert( sizeof(x)==8 && sizeof(a)==8 );
1517   if( x<=1 ) return 0;
1518   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1519   memcpy(&a, &x, 8);
1520   e = (a>>52) - 1022;
1521   return e*10;
1522 }
1523 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1524 
1525 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1526     defined(SQLITE_ENABLE_STAT4) || \
1527     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1528 /*
1529 ** Convert a LogEst into an integer.
1530 **
1531 ** Note that this routine is only used when one or more of various
1532 ** non-standard compile-time options is enabled.
1533 */
1534 u64 sqlite3LogEstToInt(LogEst x){
1535   u64 n;
1536   n = x%10;
1537   x /= 10;
1538   if( n>=5 ) n -= 2;
1539   else if( n>=1 ) n -= 1;
1540 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1541     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1542   if( x>60 ) return (u64)LARGEST_INT64;
1543 #else
1544   /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
1545   ** possible to this routine is 310, resulting in a maximum x of 31 */
1546   assert( x<=60 );
1547 #endif
1548   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1549 }
1550 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1551 
1552 /*
1553 ** Add a new name/number pair to a VList.  This might require that the
1554 ** VList object be reallocated, so return the new VList.  If an OOM
1555 ** error occurs, the original VList returned and the
1556 ** db->mallocFailed flag is set.
1557 **
1558 ** A VList is really just an array of integers.  To destroy a VList,
1559 ** simply pass it to sqlite3DbFree().
1560 **
1561 ** The first integer is the number of integers allocated for the whole
1562 ** VList.  The second integer is the number of integers actually used.
1563 ** Each name/number pair is encoded by subsequent groups of 3 or more
1564 ** integers.
1565 **
1566 ** Each name/number pair starts with two integers which are the numeric
1567 ** value for the pair and the size of the name/number pair, respectively.
1568 ** The text name overlays one or more following integers.  The text name
1569 ** is always zero-terminated.
1570 **
1571 ** Conceptually:
1572 **
1573 **    struct VList {
1574 **      int nAlloc;   // Number of allocated slots
1575 **      int nUsed;    // Number of used slots
1576 **      struct VListEntry {
1577 **        int iValue;    // Value for this entry
1578 **        int nSlot;     // Slots used by this entry
1579 **        // ... variable name goes here
1580 **      } a[0];
1581 **    }
1582 **
1583 ** During code generation, pointers to the variable names within the
1584 ** VList are taken.  When that happens, nAlloc is set to zero as an
1585 ** indication that the VList may never again be enlarged, since the
1586 ** accompanying realloc() would invalidate the pointers.
1587 */
1588 VList *sqlite3VListAdd(
1589   sqlite3 *db,           /* The database connection used for malloc() */
1590   VList *pIn,            /* The input VList.  Might be NULL */
1591   const char *zName,     /* Name of symbol to add */
1592   int nName,             /* Bytes of text in zName */
1593   int iVal               /* Value to associate with zName */
1594 ){
1595   int nInt;              /* number of sizeof(int) objects needed for zName */
1596   char *z;               /* Pointer to where zName will be stored */
1597   int i;                 /* Index in pIn[] where zName is stored */
1598 
1599   nInt = nName/4 + 3;
1600   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1601   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1602     /* Enlarge the allocation */
1603     sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1604     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1605     if( pOut==0 ) return pIn;
1606     if( pIn==0 ) pOut[1] = 2;
1607     pIn = pOut;
1608     pIn[0] = nAlloc;
1609   }
1610   i = pIn[1];
1611   pIn[i] = iVal;
1612   pIn[i+1] = nInt;
1613   z = (char*)&pIn[i+2];
1614   pIn[1] = i+nInt;
1615   assert( pIn[1]<=pIn[0] );
1616   memcpy(z, zName, nName);
1617   z[nName] = 0;
1618   return pIn;
1619 }
1620 
1621 /*
1622 ** Return a pointer to the name of a variable in the given VList that
1623 ** has the value iVal.  Or return a NULL if there is no such variable in
1624 ** the list
1625 */
1626 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1627   int i, mx;
1628   if( pIn==0 ) return 0;
1629   mx = pIn[1];
1630   i = 2;
1631   do{
1632     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1633     i += pIn[i+1];
1634   }while( i<mx );
1635   return 0;
1636 }
1637 
1638 /*
1639 ** Return the number of the variable named zName, if it is in VList.
1640 ** or return 0 if there is no such variable.
1641 */
1642 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1643   int i, mx;
1644   if( pIn==0 ) return 0;
1645   mx = pIn[1];
1646   i = 2;
1647   do{
1648     const char *z = (const char*)&pIn[i+2];
1649     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1650     i += pIn[i+1];
1651   }while( i<mx );
1652   return 0;
1653 }
1654