1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_OMIT_BUILTIN_TEST 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if HAVE_ISNAN */ 92 rc = isnan(x); 93 #endif /* HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 if( z==0 ) return 0; 109 return 0x3fffffff & (int)strlen(z); 110 } 111 112 /* 113 ** Return the declared type of a column. Or return zDflt if the column 114 ** has no declared type. 115 ** 116 ** The column type is an extra string stored after the zero-terminator on 117 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 118 */ 119 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 120 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt; 121 return pCol->zName + strlen(pCol->zName) + 1; 122 } 123 124 /* 125 ** Helper function for sqlite3Error() - called rarely. Broken out into 126 ** a separate routine to avoid unnecessary register saves on entry to 127 ** sqlite3Error(). 128 */ 129 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 130 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 131 sqlite3SystemError(db, err_code); 132 } 133 134 /* 135 ** Set the current error code to err_code and clear any prior error message. 136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 137 ** that would be appropriate. 138 */ 139 void sqlite3Error(sqlite3 *db, int err_code){ 140 assert( db!=0 ); 141 db->errCode = err_code; 142 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 143 } 144 145 /* 146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 147 ** to do based on the SQLite error code in rc. 148 */ 149 void sqlite3SystemError(sqlite3 *db, int rc){ 150 if( rc==SQLITE_IOERR_NOMEM ) return; 151 rc &= 0xff; 152 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 153 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 154 } 155 } 156 157 /* 158 ** Set the most recent error code and error string for the sqlite 159 ** handle "db". The error code is set to "err_code". 160 ** 161 ** If it is not NULL, string zFormat specifies the format of the 162 ** error string in the style of the printf functions: The following 163 ** format characters are allowed: 164 ** 165 ** %s Insert a string 166 ** %z A string that should be freed after use 167 ** %d Insert an integer 168 ** %T Insert a token 169 ** %S Insert the first element of a SrcList 170 ** 171 ** zFormat and any string tokens that follow it are assumed to be 172 ** encoded in UTF-8. 173 ** 174 ** To clear the most recent error for sqlite handle "db", sqlite3Error 175 ** should be called with err_code set to SQLITE_OK and zFormat set 176 ** to NULL. 177 */ 178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 179 assert( db!=0 ); 180 db->errCode = err_code; 181 sqlite3SystemError(db, err_code); 182 if( zFormat==0 ){ 183 sqlite3Error(db, err_code); 184 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 185 char *z; 186 va_list ap; 187 va_start(ap, zFormat); 188 z = sqlite3VMPrintf(db, zFormat, ap); 189 va_end(ap); 190 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 191 } 192 } 193 194 /* 195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 196 ** The following formatting characters are allowed: 197 ** 198 ** %s Insert a string 199 ** %z A string that should be freed after use 200 ** %d Insert an integer 201 ** %T Insert a token 202 ** %S Insert the first element of a SrcList 203 ** 204 ** This function should be used to report any error that occurs while 205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 206 ** last thing the sqlite3_prepare() function does is copy the error 207 ** stored by this function into the database handle using sqlite3Error(). 208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 209 ** during statement execution (sqlite3_step() etc.). 210 */ 211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 212 char *zMsg; 213 va_list ap; 214 sqlite3 *db = pParse->db; 215 va_start(ap, zFormat); 216 zMsg = sqlite3VMPrintf(db, zFormat, ap); 217 va_end(ap); 218 if( db->suppressErr ){ 219 sqlite3DbFree(db, zMsg); 220 }else{ 221 pParse->nErr++; 222 sqlite3DbFree(db, pParse->zErrMsg); 223 pParse->zErrMsg = zMsg; 224 pParse->rc = SQLITE_ERROR; 225 } 226 } 227 228 /* 229 ** Convert an SQL-style quoted string into a normal string by removing 230 ** the quote characters. The conversion is done in-place. If the 231 ** input does not begin with a quote character, then this routine 232 ** is a no-op. 233 ** 234 ** The input string must be zero-terminated. A new zero-terminator 235 ** is added to the dequoted string. 236 ** 237 ** The return value is -1 if no dequoting occurs or the length of the 238 ** dequoted string, exclusive of the zero terminator, if dequoting does 239 ** occur. 240 ** 241 ** 2002-Feb-14: This routine is extended to remove MS-Access style 242 ** brackets from around identifiers. For example: "[a-b-c]" becomes 243 ** "a-b-c". 244 */ 245 void sqlite3Dequote(char *z){ 246 char quote; 247 int i, j; 248 if( z==0 ) return; 249 quote = z[0]; 250 if( !sqlite3Isquote(quote) ) return; 251 if( quote=='[' ) quote = ']'; 252 for(i=1, j=0;; i++){ 253 assert( z[i] ); 254 if( z[i]==quote ){ 255 if( z[i+1]==quote ){ 256 z[j++] = quote; 257 i++; 258 }else{ 259 break; 260 } 261 }else{ 262 z[j++] = z[i]; 263 } 264 } 265 z[j] = 0; 266 } 267 268 /* 269 ** Generate a Token object from a string 270 */ 271 void sqlite3TokenInit(Token *p, char *z){ 272 p->z = z; 273 p->n = sqlite3Strlen30(z); 274 } 275 276 /* Convenient short-hand */ 277 #define UpperToLower sqlite3UpperToLower 278 279 /* 280 ** Some systems have stricmp(). Others have strcasecmp(). Because 281 ** there is no consistency, we will define our own. 282 ** 283 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 284 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 285 ** the contents of two buffers containing UTF-8 strings in a 286 ** case-independent fashion, using the same definition of "case 287 ** independence" that SQLite uses internally when comparing identifiers. 288 */ 289 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 290 if( zLeft==0 ){ 291 return zRight ? -1 : 0; 292 }else if( zRight==0 ){ 293 return 1; 294 } 295 return sqlite3StrICmp(zLeft, zRight); 296 } 297 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 298 unsigned char *a, *b; 299 int c; 300 a = (unsigned char *)zLeft; 301 b = (unsigned char *)zRight; 302 for(;;){ 303 c = (int)UpperToLower[*a] - (int)UpperToLower[*b]; 304 if( c || *a==0 ) break; 305 a++; 306 b++; 307 } 308 return c; 309 } 310 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 311 register unsigned char *a, *b; 312 if( zLeft==0 ){ 313 return zRight ? -1 : 0; 314 }else if( zRight==0 ){ 315 return 1; 316 } 317 a = (unsigned char *)zLeft; 318 b = (unsigned char *)zRight; 319 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 320 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 321 } 322 323 /* 324 ** The string z[] is an text representation of a real number. 325 ** Convert this string to a double and write it into *pResult. 326 ** 327 ** The string z[] is length bytes in length (bytes, not characters) and 328 ** uses the encoding enc. The string is not necessarily zero-terminated. 329 ** 330 ** Return TRUE if the result is a valid real number (or integer) and FALSE 331 ** if the string is empty or contains extraneous text. Valid numbers 332 ** are in one of these formats: 333 ** 334 ** [+-]digits[E[+-]digits] 335 ** [+-]digits.[digits][E[+-]digits] 336 ** [+-].digits[E[+-]digits] 337 ** 338 ** Leading and trailing whitespace is ignored for the purpose of determining 339 ** validity. 340 ** 341 ** If some prefix of the input string is a valid number, this routine 342 ** returns FALSE but it still converts the prefix and writes the result 343 ** into *pResult. 344 */ 345 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 346 #ifndef SQLITE_OMIT_FLOATING_POINT 347 int incr; 348 const char *zEnd = z + length; 349 /* sign * significand * (10 ^ (esign * exponent)) */ 350 int sign = 1; /* sign of significand */ 351 i64 s = 0; /* significand */ 352 int d = 0; /* adjust exponent for shifting decimal point */ 353 int esign = 1; /* sign of exponent */ 354 int e = 0; /* exponent */ 355 int eValid = 1; /* True exponent is either not used or is well-formed */ 356 double result; 357 int nDigits = 0; 358 int nonNum = 0; 359 360 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 361 *pResult = 0.0; /* Default return value, in case of an error */ 362 363 if( enc==SQLITE_UTF8 ){ 364 incr = 1; 365 }else{ 366 int i; 367 incr = 2; 368 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 369 for(i=3-enc; i<length && z[i]==0; i+=2){} 370 nonNum = i<length; 371 zEnd = z+i+enc-3; 372 z += (enc&1); 373 } 374 375 /* skip leading spaces */ 376 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 377 if( z>=zEnd ) return 0; 378 379 /* get sign of significand */ 380 if( *z=='-' ){ 381 sign = -1; 382 z+=incr; 383 }else if( *z=='+' ){ 384 z+=incr; 385 } 386 387 /* skip leading zeroes */ 388 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 389 390 /* copy max significant digits to significand */ 391 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 392 s = s*10 + (*z - '0'); 393 z+=incr, nDigits++; 394 } 395 396 /* skip non-significant significand digits 397 ** (increase exponent by d to shift decimal left) */ 398 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 399 if( z>=zEnd ) goto do_atof_calc; 400 401 /* if decimal point is present */ 402 if( *z=='.' ){ 403 z+=incr; 404 /* copy digits from after decimal to significand 405 ** (decrease exponent by d to shift decimal right) */ 406 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 407 s = s*10 + (*z - '0'); 408 z+=incr, nDigits++, d--; 409 } 410 /* skip non-significant digits */ 411 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 412 } 413 if( z>=zEnd ) goto do_atof_calc; 414 415 /* if exponent is present */ 416 if( *z=='e' || *z=='E' ){ 417 z+=incr; 418 eValid = 0; 419 if( z>=zEnd ) goto do_atof_calc; 420 /* get sign of exponent */ 421 if( *z=='-' ){ 422 esign = -1; 423 z+=incr; 424 }else if( *z=='+' ){ 425 z+=incr; 426 } 427 /* copy digits to exponent */ 428 while( z<zEnd && sqlite3Isdigit(*z) ){ 429 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 430 z+=incr; 431 eValid = 1; 432 } 433 } 434 435 /* skip trailing spaces */ 436 if( nDigits && eValid ){ 437 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 438 } 439 440 do_atof_calc: 441 /* adjust exponent by d, and update sign */ 442 e = (e*esign) + d; 443 if( e<0 ) { 444 esign = -1; 445 e *= -1; 446 } else { 447 esign = 1; 448 } 449 450 /* if 0 significand */ 451 if( !s ) { 452 /* In the IEEE 754 standard, zero is signed. 453 ** Add the sign if we've seen at least one digit */ 454 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 455 } else { 456 /* attempt to reduce exponent */ 457 if( esign>0 ){ 458 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 459 }else{ 460 while( !(s%10) && e>0 ) e--,s/=10; 461 } 462 463 /* adjust the sign of significand */ 464 s = sign<0 ? -s : s; 465 466 /* if exponent, scale significand as appropriate 467 ** and store in result. */ 468 if( e ){ 469 LONGDOUBLE_TYPE scale = 1.0; 470 /* attempt to handle extremely small/large numbers better */ 471 if( e>307 && e<342 ){ 472 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 473 if( esign<0 ){ 474 result = s / scale; 475 result /= 1.0e+308; 476 }else{ 477 result = s * scale; 478 result *= 1.0e+308; 479 } 480 }else if( e>=342 ){ 481 if( esign<0 ){ 482 result = 0.0*s; 483 }else{ 484 result = 1e308*1e308*s; /* Infinity */ 485 } 486 }else{ 487 /* 1.0e+22 is the largest power of 10 than can be 488 ** represented exactly. */ 489 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 490 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 491 if( esign<0 ){ 492 result = s / scale; 493 }else{ 494 result = s * scale; 495 } 496 } 497 } else { 498 result = (double)s; 499 } 500 } 501 502 /* store the result */ 503 *pResult = result; 504 505 /* return true if number and no extra non-whitespace chracters after */ 506 return z>=zEnd && nDigits>0 && eValid && nonNum==0; 507 #else 508 return !sqlite3Atoi64(z, pResult, length, enc); 509 #endif /* SQLITE_OMIT_FLOATING_POINT */ 510 } 511 512 /* 513 ** Compare the 19-character string zNum against the text representation 514 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 515 ** if zNum is less than, equal to, or greater than the string. 516 ** Note that zNum must contain exactly 19 characters. 517 ** 518 ** Unlike memcmp() this routine is guaranteed to return the difference 519 ** in the values of the last digit if the only difference is in the 520 ** last digit. So, for example, 521 ** 522 ** compare2pow63("9223372036854775800", 1) 523 ** 524 ** will return -8. 525 */ 526 static int compare2pow63(const char *zNum, int incr){ 527 int c = 0; 528 int i; 529 /* 012345678901234567 */ 530 const char *pow63 = "922337203685477580"; 531 for(i=0; c==0 && i<18; i++){ 532 c = (zNum[i*incr]-pow63[i])*10; 533 } 534 if( c==0 ){ 535 c = zNum[18*incr] - '8'; 536 testcase( c==(-1) ); 537 testcase( c==0 ); 538 testcase( c==(+1) ); 539 } 540 return c; 541 } 542 543 /* 544 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 545 ** routine does *not* accept hexadecimal notation. 546 ** 547 ** If the zNum value is representable as a 64-bit twos-complement 548 ** integer, then write that value into *pNum and return 0. 549 ** 550 ** If zNum is exactly 9223372036854775808, return 2. This special 551 ** case is broken out because while 9223372036854775808 cannot be a 552 ** signed 64-bit integer, its negative -9223372036854775808 can be. 553 ** 554 ** If zNum is too big for a 64-bit integer and is not 555 ** 9223372036854775808 or if zNum contains any non-numeric text, 556 ** then return 1. 557 ** 558 ** length is the number of bytes in the string (bytes, not characters). 559 ** The string is not necessarily zero-terminated. The encoding is 560 ** given by enc. 561 */ 562 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 563 int incr; 564 u64 u = 0; 565 int neg = 0; /* assume positive */ 566 int i; 567 int c = 0; 568 int nonNum = 0; 569 const char *zStart; 570 const char *zEnd = zNum + length; 571 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 572 if( enc==SQLITE_UTF8 ){ 573 incr = 1; 574 }else{ 575 incr = 2; 576 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 577 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 578 nonNum = i<length; 579 zEnd = zNum+i+enc-3; 580 zNum += (enc&1); 581 } 582 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 583 if( zNum<zEnd ){ 584 if( *zNum=='-' ){ 585 neg = 1; 586 zNum+=incr; 587 }else if( *zNum=='+' ){ 588 zNum+=incr; 589 } 590 } 591 zStart = zNum; 592 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 593 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 594 u = u*10 + c - '0'; 595 } 596 if( u>LARGEST_INT64 ){ 597 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 598 }else if( neg ){ 599 *pNum = -(i64)u; 600 }else{ 601 *pNum = (i64)u; 602 } 603 testcase( i==18 ); 604 testcase( i==19 ); 605 testcase( i==20 ); 606 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) 607 || i>19*incr || nonNum ){ 608 /* zNum is empty or contains non-numeric text or is longer 609 ** than 19 digits (thus guaranteeing that it is too large) */ 610 return 1; 611 }else if( i<19*incr ){ 612 /* Less than 19 digits, so we know that it fits in 64 bits */ 613 assert( u<=LARGEST_INT64 ); 614 return 0; 615 }else{ 616 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 617 c = compare2pow63(zNum, incr); 618 if( c<0 ){ 619 /* zNum is less than 9223372036854775808 so it fits */ 620 assert( u<=LARGEST_INT64 ); 621 return 0; 622 }else if( c>0 ){ 623 /* zNum is greater than 9223372036854775808 so it overflows */ 624 return 1; 625 }else{ 626 /* zNum is exactly 9223372036854775808. Fits if negative. The 627 ** special case 2 overflow if positive */ 628 assert( u-1==LARGEST_INT64 ); 629 return neg ? 0 : 2; 630 } 631 } 632 } 633 634 /* 635 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 636 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 637 ** whereas sqlite3Atoi64() does not. 638 ** 639 ** Returns: 640 ** 641 ** 0 Successful transformation. Fits in a 64-bit signed integer. 642 ** 1 Integer too large for a 64-bit signed integer or is malformed 643 ** 2 Special case of 9223372036854775808 644 */ 645 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 646 #ifndef SQLITE_OMIT_HEX_INTEGER 647 if( z[0]=='0' 648 && (z[1]=='x' || z[1]=='X') 649 && sqlite3Isxdigit(z[2]) 650 ){ 651 u64 u = 0; 652 int i, k; 653 for(i=2; z[i]=='0'; i++){} 654 for(k=i; sqlite3Isxdigit(z[k]); k++){ 655 u = u*16 + sqlite3HexToInt(z[k]); 656 } 657 memcpy(pOut, &u, 8); 658 return (z[k]==0 && k-i<=16) ? 0 : 1; 659 }else 660 #endif /* SQLITE_OMIT_HEX_INTEGER */ 661 { 662 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 663 } 664 } 665 666 /* 667 ** If zNum represents an integer that will fit in 32-bits, then set 668 ** *pValue to that integer and return true. Otherwise return false. 669 ** 670 ** This routine accepts both decimal and hexadecimal notation for integers. 671 ** 672 ** Any non-numeric characters that following zNum are ignored. 673 ** This is different from sqlite3Atoi64() which requires the 674 ** input number to be zero-terminated. 675 */ 676 int sqlite3GetInt32(const char *zNum, int *pValue){ 677 sqlite_int64 v = 0; 678 int i, c; 679 int neg = 0; 680 if( zNum[0]=='-' ){ 681 neg = 1; 682 zNum++; 683 }else if( zNum[0]=='+' ){ 684 zNum++; 685 } 686 #ifndef SQLITE_OMIT_HEX_INTEGER 687 else if( zNum[0]=='0' 688 && (zNum[1]=='x' || zNum[1]=='X') 689 && sqlite3Isxdigit(zNum[2]) 690 ){ 691 u32 u = 0; 692 zNum += 2; 693 while( zNum[0]=='0' ) zNum++; 694 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 695 u = u*16 + sqlite3HexToInt(zNum[i]); 696 } 697 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 698 memcpy(pValue, &u, 4); 699 return 1; 700 }else{ 701 return 0; 702 } 703 } 704 #endif 705 while( zNum[0]=='0' ) zNum++; 706 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 707 v = v*10 + c; 708 } 709 710 /* The longest decimal representation of a 32 bit integer is 10 digits: 711 ** 712 ** 1234567890 713 ** 2^31 -> 2147483648 714 */ 715 testcase( i==10 ); 716 if( i>10 ){ 717 return 0; 718 } 719 testcase( v-neg==2147483647 ); 720 if( v-neg>2147483647 ){ 721 return 0; 722 } 723 if( neg ){ 724 v = -v; 725 } 726 *pValue = (int)v; 727 return 1; 728 } 729 730 /* 731 ** Return a 32-bit integer value extracted from a string. If the 732 ** string is not an integer, just return 0. 733 */ 734 int sqlite3Atoi(const char *z){ 735 int x = 0; 736 if( z ) sqlite3GetInt32(z, &x); 737 return x; 738 } 739 740 /* 741 ** The variable-length integer encoding is as follows: 742 ** 743 ** KEY: 744 ** A = 0xxxxxxx 7 bits of data and one flag bit 745 ** B = 1xxxxxxx 7 bits of data and one flag bit 746 ** C = xxxxxxxx 8 bits of data 747 ** 748 ** 7 bits - A 749 ** 14 bits - BA 750 ** 21 bits - BBA 751 ** 28 bits - BBBA 752 ** 35 bits - BBBBA 753 ** 42 bits - BBBBBA 754 ** 49 bits - BBBBBBA 755 ** 56 bits - BBBBBBBA 756 ** 64 bits - BBBBBBBBC 757 */ 758 759 /* 760 ** Write a 64-bit variable-length integer to memory starting at p[0]. 761 ** The length of data write will be between 1 and 9 bytes. The number 762 ** of bytes written is returned. 763 ** 764 ** A variable-length integer consists of the lower 7 bits of each byte 765 ** for all bytes that have the 8th bit set and one byte with the 8th 766 ** bit clear. Except, if we get to the 9th byte, it stores the full 767 ** 8 bits and is the last byte. 768 */ 769 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 770 int i, j, n; 771 u8 buf[10]; 772 if( v & (((u64)0xff000000)<<32) ){ 773 p[8] = (u8)v; 774 v >>= 8; 775 for(i=7; i>=0; i--){ 776 p[i] = (u8)((v & 0x7f) | 0x80); 777 v >>= 7; 778 } 779 return 9; 780 } 781 n = 0; 782 do{ 783 buf[n++] = (u8)((v & 0x7f) | 0x80); 784 v >>= 7; 785 }while( v!=0 ); 786 buf[0] &= 0x7f; 787 assert( n<=9 ); 788 for(i=0, j=n-1; j>=0; j--, i++){ 789 p[i] = buf[j]; 790 } 791 return n; 792 } 793 int sqlite3PutVarint(unsigned char *p, u64 v){ 794 if( v<=0x7f ){ 795 p[0] = v&0x7f; 796 return 1; 797 } 798 if( v<=0x3fff ){ 799 p[0] = ((v>>7)&0x7f)|0x80; 800 p[1] = v&0x7f; 801 return 2; 802 } 803 return putVarint64(p,v); 804 } 805 806 /* 807 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 808 ** are defined here rather than simply putting the constant expressions 809 ** inline in order to work around bugs in the RVT compiler. 810 ** 811 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 812 ** 813 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 814 */ 815 #define SLOT_2_0 0x001fc07f 816 #define SLOT_4_2_0 0xf01fc07f 817 818 819 /* 820 ** Read a 64-bit variable-length integer from memory starting at p[0]. 821 ** Return the number of bytes read. The value is stored in *v. 822 */ 823 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 824 u32 a,b,s; 825 826 a = *p; 827 /* a: p0 (unmasked) */ 828 if (!(a&0x80)) 829 { 830 *v = a; 831 return 1; 832 } 833 834 p++; 835 b = *p; 836 /* b: p1 (unmasked) */ 837 if (!(b&0x80)) 838 { 839 a &= 0x7f; 840 a = a<<7; 841 a |= b; 842 *v = a; 843 return 2; 844 } 845 846 /* Verify that constants are precomputed correctly */ 847 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 848 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 849 850 p++; 851 a = a<<14; 852 a |= *p; 853 /* a: p0<<14 | p2 (unmasked) */ 854 if (!(a&0x80)) 855 { 856 a &= SLOT_2_0; 857 b &= 0x7f; 858 b = b<<7; 859 a |= b; 860 *v = a; 861 return 3; 862 } 863 864 /* CSE1 from below */ 865 a &= SLOT_2_0; 866 p++; 867 b = b<<14; 868 b |= *p; 869 /* b: p1<<14 | p3 (unmasked) */ 870 if (!(b&0x80)) 871 { 872 b &= SLOT_2_0; 873 /* moved CSE1 up */ 874 /* a &= (0x7f<<14)|(0x7f); */ 875 a = a<<7; 876 a |= b; 877 *v = a; 878 return 4; 879 } 880 881 /* a: p0<<14 | p2 (masked) */ 882 /* b: p1<<14 | p3 (unmasked) */ 883 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 884 /* moved CSE1 up */ 885 /* a &= (0x7f<<14)|(0x7f); */ 886 b &= SLOT_2_0; 887 s = a; 888 /* s: p0<<14 | p2 (masked) */ 889 890 p++; 891 a = a<<14; 892 a |= *p; 893 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 894 if (!(a&0x80)) 895 { 896 /* we can skip these cause they were (effectively) done above 897 ** while calculating s */ 898 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 899 /* b &= (0x7f<<14)|(0x7f); */ 900 b = b<<7; 901 a |= b; 902 s = s>>18; 903 *v = ((u64)s)<<32 | a; 904 return 5; 905 } 906 907 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 908 s = s<<7; 909 s |= b; 910 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 911 912 p++; 913 b = b<<14; 914 b |= *p; 915 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 916 if (!(b&0x80)) 917 { 918 /* we can skip this cause it was (effectively) done above in calc'ing s */ 919 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 920 a &= SLOT_2_0; 921 a = a<<7; 922 a |= b; 923 s = s>>18; 924 *v = ((u64)s)<<32 | a; 925 return 6; 926 } 927 928 p++; 929 a = a<<14; 930 a |= *p; 931 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 932 if (!(a&0x80)) 933 { 934 a &= SLOT_4_2_0; 935 b &= SLOT_2_0; 936 b = b<<7; 937 a |= b; 938 s = s>>11; 939 *v = ((u64)s)<<32 | a; 940 return 7; 941 } 942 943 /* CSE2 from below */ 944 a &= SLOT_2_0; 945 p++; 946 b = b<<14; 947 b |= *p; 948 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 949 if (!(b&0x80)) 950 { 951 b &= SLOT_4_2_0; 952 /* moved CSE2 up */ 953 /* a &= (0x7f<<14)|(0x7f); */ 954 a = a<<7; 955 a |= b; 956 s = s>>4; 957 *v = ((u64)s)<<32 | a; 958 return 8; 959 } 960 961 p++; 962 a = a<<15; 963 a |= *p; 964 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 965 966 /* moved CSE2 up */ 967 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 968 b &= SLOT_2_0; 969 b = b<<8; 970 a |= b; 971 972 s = s<<4; 973 b = p[-4]; 974 b &= 0x7f; 975 b = b>>3; 976 s |= b; 977 978 *v = ((u64)s)<<32 | a; 979 980 return 9; 981 } 982 983 /* 984 ** Read a 32-bit variable-length integer from memory starting at p[0]. 985 ** Return the number of bytes read. The value is stored in *v. 986 ** 987 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 988 ** integer, then set *v to 0xffffffff. 989 ** 990 ** A MACRO version, getVarint32, is provided which inlines the 991 ** single-byte case. All code should use the MACRO version as 992 ** this function assumes the single-byte case has already been handled. 993 */ 994 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 995 u32 a,b; 996 997 /* The 1-byte case. Overwhelmingly the most common. Handled inline 998 ** by the getVarin32() macro */ 999 a = *p; 1000 /* a: p0 (unmasked) */ 1001 #ifndef getVarint32 1002 if (!(a&0x80)) 1003 { 1004 /* Values between 0 and 127 */ 1005 *v = a; 1006 return 1; 1007 } 1008 #endif 1009 1010 /* The 2-byte case */ 1011 p++; 1012 b = *p; 1013 /* b: p1 (unmasked) */ 1014 if (!(b&0x80)) 1015 { 1016 /* Values between 128 and 16383 */ 1017 a &= 0x7f; 1018 a = a<<7; 1019 *v = a | b; 1020 return 2; 1021 } 1022 1023 /* The 3-byte case */ 1024 p++; 1025 a = a<<14; 1026 a |= *p; 1027 /* a: p0<<14 | p2 (unmasked) */ 1028 if (!(a&0x80)) 1029 { 1030 /* Values between 16384 and 2097151 */ 1031 a &= (0x7f<<14)|(0x7f); 1032 b &= 0x7f; 1033 b = b<<7; 1034 *v = a | b; 1035 return 3; 1036 } 1037 1038 /* A 32-bit varint is used to store size information in btrees. 1039 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1040 ** A 3-byte varint is sufficient, for example, to record the size 1041 ** of a 1048569-byte BLOB or string. 1042 ** 1043 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1044 ** rare larger cases can be handled by the slower 64-bit varint 1045 ** routine. 1046 */ 1047 #if 1 1048 { 1049 u64 v64; 1050 u8 n; 1051 1052 p -= 2; 1053 n = sqlite3GetVarint(p, &v64); 1054 assert( n>3 && n<=9 ); 1055 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1056 *v = 0xffffffff; 1057 }else{ 1058 *v = (u32)v64; 1059 } 1060 return n; 1061 } 1062 1063 #else 1064 /* For following code (kept for historical record only) shows an 1065 ** unrolling for the 3- and 4-byte varint cases. This code is 1066 ** slightly faster, but it is also larger and much harder to test. 1067 */ 1068 p++; 1069 b = b<<14; 1070 b |= *p; 1071 /* b: p1<<14 | p3 (unmasked) */ 1072 if (!(b&0x80)) 1073 { 1074 /* Values between 2097152 and 268435455 */ 1075 b &= (0x7f<<14)|(0x7f); 1076 a &= (0x7f<<14)|(0x7f); 1077 a = a<<7; 1078 *v = a | b; 1079 return 4; 1080 } 1081 1082 p++; 1083 a = a<<14; 1084 a |= *p; 1085 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1086 if (!(a&0x80)) 1087 { 1088 /* Values between 268435456 and 34359738367 */ 1089 a &= SLOT_4_2_0; 1090 b &= SLOT_4_2_0; 1091 b = b<<7; 1092 *v = a | b; 1093 return 5; 1094 } 1095 1096 /* We can only reach this point when reading a corrupt database 1097 ** file. In that case we are not in any hurry. Use the (relatively 1098 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1099 ** value. */ 1100 { 1101 u64 v64; 1102 u8 n; 1103 1104 p -= 4; 1105 n = sqlite3GetVarint(p, &v64); 1106 assert( n>5 && n<=9 ); 1107 *v = (u32)v64; 1108 return n; 1109 } 1110 #endif 1111 } 1112 1113 /* 1114 ** Return the number of bytes that will be needed to store the given 1115 ** 64-bit integer. 1116 */ 1117 int sqlite3VarintLen(u64 v){ 1118 int i; 1119 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1120 return i; 1121 } 1122 1123 1124 /* 1125 ** Read or write a four-byte big-endian integer value. 1126 */ 1127 u32 sqlite3Get4byte(const u8 *p){ 1128 #if SQLITE_BYTEORDER==4321 1129 u32 x; 1130 memcpy(&x,p,4); 1131 return x; 1132 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1133 && defined(__GNUC__) && GCC_VERSION>=4003000 1134 u32 x; 1135 memcpy(&x,p,4); 1136 return __builtin_bswap32(x); 1137 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1138 && defined(_MSC_VER) && _MSC_VER>=1300 1139 u32 x; 1140 memcpy(&x,p,4); 1141 return _byteswap_ulong(x); 1142 #else 1143 testcase( p[0]&0x80 ); 1144 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1145 #endif 1146 } 1147 void sqlite3Put4byte(unsigned char *p, u32 v){ 1148 #if SQLITE_BYTEORDER==4321 1149 memcpy(p,&v,4); 1150 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1151 && defined(__GNUC__) && GCC_VERSION>=4003000 1152 u32 x = __builtin_bswap32(v); 1153 memcpy(p,&x,4); 1154 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1155 && defined(_MSC_VER) && _MSC_VER>=1300 1156 u32 x = _byteswap_ulong(v); 1157 memcpy(p,&x,4); 1158 #else 1159 p[0] = (u8)(v>>24); 1160 p[1] = (u8)(v>>16); 1161 p[2] = (u8)(v>>8); 1162 p[3] = (u8)v; 1163 #endif 1164 } 1165 1166 1167 1168 /* 1169 ** Translate a single byte of Hex into an integer. 1170 ** This routine only works if h really is a valid hexadecimal 1171 ** character: 0..9a..fA..F 1172 */ 1173 u8 sqlite3HexToInt(int h){ 1174 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1175 #ifdef SQLITE_ASCII 1176 h += 9*(1&(h>>6)); 1177 #endif 1178 #ifdef SQLITE_EBCDIC 1179 h += 9*(1&~(h>>4)); 1180 #endif 1181 return (u8)(h & 0xf); 1182 } 1183 1184 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1185 /* 1186 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1187 ** value. Return a pointer to its binary value. Space to hold the 1188 ** binary value has been obtained from malloc and must be freed by 1189 ** the calling routine. 1190 */ 1191 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1192 char *zBlob; 1193 int i; 1194 1195 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1196 n--; 1197 if( zBlob ){ 1198 for(i=0; i<n; i+=2){ 1199 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1200 } 1201 zBlob[i/2] = 0; 1202 } 1203 return zBlob; 1204 } 1205 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1206 1207 /* 1208 ** Log an error that is an API call on a connection pointer that should 1209 ** not have been used. The "type" of connection pointer is given as the 1210 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1211 */ 1212 static void logBadConnection(const char *zType){ 1213 sqlite3_log(SQLITE_MISUSE, 1214 "API call with %s database connection pointer", 1215 zType 1216 ); 1217 } 1218 1219 /* 1220 ** Check to make sure we have a valid db pointer. This test is not 1221 ** foolproof but it does provide some measure of protection against 1222 ** misuse of the interface such as passing in db pointers that are 1223 ** NULL or which have been previously closed. If this routine returns 1224 ** 1 it means that the db pointer is valid and 0 if it should not be 1225 ** dereferenced for any reason. The calling function should invoke 1226 ** SQLITE_MISUSE immediately. 1227 ** 1228 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1229 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1230 ** open properly and is not fit for general use but which can be 1231 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1232 */ 1233 int sqlite3SafetyCheckOk(sqlite3 *db){ 1234 u32 magic; 1235 if( db==0 ){ 1236 logBadConnection("NULL"); 1237 return 0; 1238 } 1239 magic = db->magic; 1240 if( magic!=SQLITE_MAGIC_OPEN ){ 1241 if( sqlite3SafetyCheckSickOrOk(db) ){ 1242 testcase( sqlite3GlobalConfig.xLog!=0 ); 1243 logBadConnection("unopened"); 1244 } 1245 return 0; 1246 }else{ 1247 return 1; 1248 } 1249 } 1250 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1251 u32 magic; 1252 magic = db->magic; 1253 if( magic!=SQLITE_MAGIC_SICK && 1254 magic!=SQLITE_MAGIC_OPEN && 1255 magic!=SQLITE_MAGIC_BUSY ){ 1256 testcase( sqlite3GlobalConfig.xLog!=0 ); 1257 logBadConnection("invalid"); 1258 return 0; 1259 }else{ 1260 return 1; 1261 } 1262 } 1263 1264 /* 1265 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1266 ** the other 64-bit signed integer at *pA and store the result in *pA. 1267 ** Return 0 on success. Or if the operation would have resulted in an 1268 ** overflow, leave *pA unchanged and return 1. 1269 */ 1270 int sqlite3AddInt64(i64 *pA, i64 iB){ 1271 i64 iA = *pA; 1272 testcase( iA==0 ); testcase( iA==1 ); 1273 testcase( iB==-1 ); testcase( iB==0 ); 1274 if( iB>=0 ){ 1275 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1276 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1277 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1278 }else{ 1279 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1280 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1281 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1282 } 1283 *pA += iB; 1284 return 0; 1285 } 1286 int sqlite3SubInt64(i64 *pA, i64 iB){ 1287 testcase( iB==SMALLEST_INT64+1 ); 1288 if( iB==SMALLEST_INT64 ){ 1289 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1290 if( (*pA)>=0 ) return 1; 1291 *pA -= iB; 1292 return 0; 1293 }else{ 1294 return sqlite3AddInt64(pA, -iB); 1295 } 1296 } 1297 #define TWOPOWER32 (((i64)1)<<32) 1298 #define TWOPOWER31 (((i64)1)<<31) 1299 int sqlite3MulInt64(i64 *pA, i64 iB){ 1300 i64 iA = *pA; 1301 i64 iA1, iA0, iB1, iB0, r; 1302 1303 iA1 = iA/TWOPOWER32; 1304 iA0 = iA % TWOPOWER32; 1305 iB1 = iB/TWOPOWER32; 1306 iB0 = iB % TWOPOWER32; 1307 if( iA1==0 ){ 1308 if( iB1==0 ){ 1309 *pA *= iB; 1310 return 0; 1311 } 1312 r = iA0*iB1; 1313 }else if( iB1==0 ){ 1314 r = iA1*iB0; 1315 }else{ 1316 /* If both iA1 and iB1 are non-zero, overflow will result */ 1317 return 1; 1318 } 1319 testcase( r==(-TWOPOWER31)-1 ); 1320 testcase( r==(-TWOPOWER31) ); 1321 testcase( r==TWOPOWER31 ); 1322 testcase( r==TWOPOWER31-1 ); 1323 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1324 r *= TWOPOWER32; 1325 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1326 *pA = r; 1327 return 0; 1328 } 1329 1330 /* 1331 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1332 ** if the integer has a value of -2147483648, return +2147483647 1333 */ 1334 int sqlite3AbsInt32(int x){ 1335 if( x>=0 ) return x; 1336 if( x==(int)0x80000000 ) return 0x7fffffff; 1337 return -x; 1338 } 1339 1340 #ifdef SQLITE_ENABLE_8_3_NAMES 1341 /* 1342 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1343 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1344 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1345 ** three characters, then shorten the suffix on z[] to be the last three 1346 ** characters of the original suffix. 1347 ** 1348 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1349 ** do the suffix shortening regardless of URI parameter. 1350 ** 1351 ** Examples: 1352 ** 1353 ** test.db-journal => test.nal 1354 ** test.db-wal => test.wal 1355 ** test.db-shm => test.shm 1356 ** test.db-mj7f3319fa => test.9fa 1357 */ 1358 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1359 #if SQLITE_ENABLE_8_3_NAMES<2 1360 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1361 #endif 1362 { 1363 int i, sz; 1364 sz = sqlite3Strlen30(z); 1365 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1366 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1367 } 1368 } 1369 #endif 1370 1371 /* 1372 ** Find (an approximate) sum of two LogEst values. This computation is 1373 ** not a simple "+" operator because LogEst is stored as a logarithmic 1374 ** value. 1375 ** 1376 */ 1377 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1378 static const unsigned char x[] = { 1379 10, 10, /* 0,1 */ 1380 9, 9, /* 2,3 */ 1381 8, 8, /* 4,5 */ 1382 7, 7, 7, /* 6,7,8 */ 1383 6, 6, 6, /* 9,10,11 */ 1384 5, 5, 5, /* 12-14 */ 1385 4, 4, 4, 4, /* 15-18 */ 1386 3, 3, 3, 3, 3, 3, /* 19-24 */ 1387 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1388 }; 1389 if( a>=b ){ 1390 if( a>b+49 ) return a; 1391 if( a>b+31 ) return a+1; 1392 return a+x[a-b]; 1393 }else{ 1394 if( b>a+49 ) return b; 1395 if( b>a+31 ) return b+1; 1396 return b+x[b-a]; 1397 } 1398 } 1399 1400 /* 1401 ** Convert an integer into a LogEst. In other words, compute an 1402 ** approximation for 10*log2(x). 1403 */ 1404 LogEst sqlite3LogEst(u64 x){ 1405 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1406 LogEst y = 40; 1407 if( x<8 ){ 1408 if( x<2 ) return 0; 1409 while( x<8 ){ y -= 10; x <<= 1; } 1410 }else{ 1411 while( x>255 ){ y += 40; x >>= 4; } 1412 while( x>15 ){ y += 10; x >>= 1; } 1413 } 1414 return a[x&7] + y - 10; 1415 } 1416 1417 #ifndef SQLITE_OMIT_VIRTUALTABLE 1418 /* 1419 ** Convert a double into a LogEst 1420 ** In other words, compute an approximation for 10*log2(x). 1421 */ 1422 LogEst sqlite3LogEstFromDouble(double x){ 1423 u64 a; 1424 LogEst e; 1425 assert( sizeof(x)==8 && sizeof(a)==8 ); 1426 if( x<=1 ) return 0; 1427 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1428 memcpy(&a, &x, 8); 1429 e = (a>>52) - 1022; 1430 return e*10; 1431 } 1432 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1433 1434 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1435 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 1436 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1437 /* 1438 ** Convert a LogEst into an integer. 1439 ** 1440 ** Note that this routine is only used when one or more of various 1441 ** non-standard compile-time options is enabled. 1442 */ 1443 u64 sqlite3LogEstToInt(LogEst x){ 1444 u64 n; 1445 n = x%10; 1446 x /= 10; 1447 if( n>=5 ) n -= 2; 1448 else if( n>=1 ) n -= 1; 1449 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1450 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1451 if( x>60 ) return (u64)LARGEST_INT64; 1452 #else 1453 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input 1454 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1455 assert( x<=60 ); 1456 #endif 1457 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1458 } 1459 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1460