xref: /sqlite-3.40.0/src/util.c (revision 02267cc2)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
38 **
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
41 **
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
44 */
45 #ifndef SQLITE_OMIT_BUILTIN_TEST
46 int sqlite3FaultSim(int iTest){
47   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48   return xCallback ? xCallback(iTest) : SQLITE_OK;
49 }
50 #endif
51 
52 #ifndef SQLITE_OMIT_FLOATING_POINT
53 /*
54 ** Return true if the floating point value is Not a Number (NaN).
55 **
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
58 */
59 int sqlite3IsNaN(double x){
60   int rc;   /* The value return */
61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
62   /*
63   ** Systems that support the isnan() library function should probably
64   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
65   ** found that many systems do not have a working isnan() function so
66   ** this implementation is provided as an alternative.
67   **
68   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69   ** On the other hand, the use of -ffast-math comes with the following
70   ** warning:
71   **
72   **      This option [-ffast-math] should never be turned on by any
73   **      -O option since it can result in incorrect output for programs
74   **      which depend on an exact implementation of IEEE or ISO
75   **      rules/specifications for math functions.
76   **
77   ** Under MSVC, this NaN test may fail if compiled with a floating-
78   ** point precision mode other than /fp:precise.  From the MSDN
79   ** documentation:
80   **
81   **      The compiler [with /fp:precise] will properly handle comparisons
82   **      involving NaN. For example, x != x evaluates to true if x is NaN
83   **      ...
84   */
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88   volatile double y = x;
89   volatile double z = y;
90   rc = (y!=z);
91 #else  /* if HAVE_ISNAN */
92   rc = isnan(x);
93 #endif /* HAVE_ISNAN */
94   testcase( rc );
95   return rc;
96 }
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
98 
99 /*
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
102 **
103 ** The value returned will never be negative.  Nor will it ever be greater
104 ** than the actual length of the string.  For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
106 */
107 int sqlite3Strlen30(const char *z){
108   if( z==0 ) return 0;
109   return 0x3fffffff & (int)strlen(z);
110 }
111 
112 /*
113 ** Return the declared type of a column.  Or return zDflt if the column
114 ** has no declared type.
115 **
116 ** The column type is an extra string stored after the zero-terminator on
117 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
118 */
119 char *sqlite3ColumnType(Column *pCol, char *zDflt){
120   if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
121   return pCol->zName + strlen(pCol->zName) + 1;
122 }
123 
124 /*
125 ** Helper function for sqlite3Error() - called rarely.  Broken out into
126 ** a separate routine to avoid unnecessary register saves on entry to
127 ** sqlite3Error().
128 */
129 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
130   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
131   sqlite3SystemError(db, err_code);
132 }
133 
134 /*
135 ** Set the current error code to err_code and clear any prior error message.
136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
137 ** that would be appropriate.
138 */
139 void sqlite3Error(sqlite3 *db, int err_code){
140   assert( db!=0 );
141   db->errCode = err_code;
142   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
143 }
144 
145 /*
146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
147 ** to do based on the SQLite error code in rc.
148 */
149 void sqlite3SystemError(sqlite3 *db, int rc){
150   if( rc==SQLITE_IOERR_NOMEM ) return;
151   rc &= 0xff;
152   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
153     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
154   }
155 }
156 
157 /*
158 ** Set the most recent error code and error string for the sqlite
159 ** handle "db". The error code is set to "err_code".
160 **
161 ** If it is not NULL, string zFormat specifies the format of the
162 ** error string in the style of the printf functions: The following
163 ** format characters are allowed:
164 **
165 **      %s      Insert a string
166 **      %z      A string that should be freed after use
167 **      %d      Insert an integer
168 **      %T      Insert a token
169 **      %S      Insert the first element of a SrcList
170 **
171 ** zFormat and any string tokens that follow it are assumed to be
172 ** encoded in UTF-8.
173 **
174 ** To clear the most recent error for sqlite handle "db", sqlite3Error
175 ** should be called with err_code set to SQLITE_OK and zFormat set
176 ** to NULL.
177 */
178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
179   assert( db!=0 );
180   db->errCode = err_code;
181   sqlite3SystemError(db, err_code);
182   if( zFormat==0 ){
183     sqlite3Error(db, err_code);
184   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
185     char *z;
186     va_list ap;
187     va_start(ap, zFormat);
188     z = sqlite3VMPrintf(db, zFormat, ap);
189     va_end(ap);
190     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
191   }
192 }
193 
194 /*
195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
196 ** The following formatting characters are allowed:
197 **
198 **      %s      Insert a string
199 **      %z      A string that should be freed after use
200 **      %d      Insert an integer
201 **      %T      Insert a token
202 **      %S      Insert the first element of a SrcList
203 **
204 ** This function should be used to report any error that occurs while
205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
206 ** last thing the sqlite3_prepare() function does is copy the error
207 ** stored by this function into the database handle using sqlite3Error().
208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
209 ** during statement execution (sqlite3_step() etc.).
210 */
211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
212   char *zMsg;
213   va_list ap;
214   sqlite3 *db = pParse->db;
215   va_start(ap, zFormat);
216   zMsg = sqlite3VMPrintf(db, zFormat, ap);
217   va_end(ap);
218   if( db->suppressErr ){
219     sqlite3DbFree(db, zMsg);
220   }else{
221     pParse->nErr++;
222     sqlite3DbFree(db, pParse->zErrMsg);
223     pParse->zErrMsg = zMsg;
224     pParse->rc = SQLITE_ERROR;
225   }
226 }
227 
228 /*
229 ** Convert an SQL-style quoted string into a normal string by removing
230 ** the quote characters.  The conversion is done in-place.  If the
231 ** input does not begin with a quote character, then this routine
232 ** is a no-op.
233 **
234 ** The input string must be zero-terminated.  A new zero-terminator
235 ** is added to the dequoted string.
236 **
237 ** The return value is -1 if no dequoting occurs or the length of the
238 ** dequoted string, exclusive of the zero terminator, if dequoting does
239 ** occur.
240 **
241 ** 2002-Feb-14: This routine is extended to remove MS-Access style
242 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
243 ** "a-b-c".
244 */
245 void sqlite3Dequote(char *z){
246   char quote;
247   int i, j;
248   if( z==0 ) return;
249   quote = z[0];
250   if( !sqlite3Isquote(quote) ) return;
251   if( quote=='[' ) quote = ']';
252   for(i=1, j=0;; i++){
253     assert( z[i] );
254     if( z[i]==quote ){
255       if( z[i+1]==quote ){
256         z[j++] = quote;
257         i++;
258       }else{
259         break;
260       }
261     }else{
262       z[j++] = z[i];
263     }
264   }
265   z[j] = 0;
266 }
267 
268 /*
269 ** Generate a Token object from a string
270 */
271 void sqlite3TokenInit(Token *p, char *z){
272   p->z = z;
273   p->n = sqlite3Strlen30(z);
274 }
275 
276 /* Convenient short-hand */
277 #define UpperToLower sqlite3UpperToLower
278 
279 /*
280 ** Some systems have stricmp().  Others have strcasecmp().  Because
281 ** there is no consistency, we will define our own.
282 **
283 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
284 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
285 ** the contents of two buffers containing UTF-8 strings in a
286 ** case-independent fashion, using the same definition of "case
287 ** independence" that SQLite uses internally when comparing identifiers.
288 */
289 int sqlite3_stricmp(const char *zLeft, const char *zRight){
290   if( zLeft==0 ){
291     return zRight ? -1 : 0;
292   }else if( zRight==0 ){
293     return 1;
294   }
295   return sqlite3StrICmp(zLeft, zRight);
296 }
297 int sqlite3StrICmp(const char *zLeft, const char *zRight){
298   unsigned char *a, *b;
299   int c;
300   a = (unsigned char *)zLeft;
301   b = (unsigned char *)zRight;
302   for(;;){
303     c = (int)UpperToLower[*a] - (int)UpperToLower[*b];
304     if( c || *a==0 ) break;
305     a++;
306     b++;
307   }
308   return c;
309 }
310 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
311   register unsigned char *a, *b;
312   if( zLeft==0 ){
313     return zRight ? -1 : 0;
314   }else if( zRight==0 ){
315     return 1;
316   }
317   a = (unsigned char *)zLeft;
318   b = (unsigned char *)zRight;
319   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
320   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
321 }
322 
323 /*
324 ** The string z[] is an text representation of a real number.
325 ** Convert this string to a double and write it into *pResult.
326 **
327 ** The string z[] is length bytes in length (bytes, not characters) and
328 ** uses the encoding enc.  The string is not necessarily zero-terminated.
329 **
330 ** Return TRUE if the result is a valid real number (or integer) and FALSE
331 ** if the string is empty or contains extraneous text.  Valid numbers
332 ** are in one of these formats:
333 **
334 **    [+-]digits[E[+-]digits]
335 **    [+-]digits.[digits][E[+-]digits]
336 **    [+-].digits[E[+-]digits]
337 **
338 ** Leading and trailing whitespace is ignored for the purpose of determining
339 ** validity.
340 **
341 ** If some prefix of the input string is a valid number, this routine
342 ** returns FALSE but it still converts the prefix and writes the result
343 ** into *pResult.
344 */
345 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
346 #ifndef SQLITE_OMIT_FLOATING_POINT
347   int incr;
348   const char *zEnd = z + length;
349   /* sign * significand * (10 ^ (esign * exponent)) */
350   int sign = 1;    /* sign of significand */
351   i64 s = 0;       /* significand */
352   int d = 0;       /* adjust exponent for shifting decimal point */
353   int esign = 1;   /* sign of exponent */
354   int e = 0;       /* exponent */
355   int eValid = 1;  /* True exponent is either not used or is well-formed */
356   double result;
357   int nDigits = 0;
358   int nonNum = 0;
359 
360   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
361   *pResult = 0.0;   /* Default return value, in case of an error */
362 
363   if( enc==SQLITE_UTF8 ){
364     incr = 1;
365   }else{
366     int i;
367     incr = 2;
368     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
369     for(i=3-enc; i<length && z[i]==0; i+=2){}
370     nonNum = i<length;
371     zEnd = z+i+enc-3;
372     z += (enc&1);
373   }
374 
375   /* skip leading spaces */
376   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
377   if( z>=zEnd ) return 0;
378 
379   /* get sign of significand */
380   if( *z=='-' ){
381     sign = -1;
382     z+=incr;
383   }else if( *z=='+' ){
384     z+=incr;
385   }
386 
387   /* skip leading zeroes */
388   while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
389 
390   /* copy max significant digits to significand */
391   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
392     s = s*10 + (*z - '0');
393     z+=incr, nDigits++;
394   }
395 
396   /* skip non-significant significand digits
397   ** (increase exponent by d to shift decimal left) */
398   while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
399   if( z>=zEnd ) goto do_atof_calc;
400 
401   /* if decimal point is present */
402   if( *z=='.' ){
403     z+=incr;
404     /* copy digits from after decimal to significand
405     ** (decrease exponent by d to shift decimal right) */
406     while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
407       s = s*10 + (*z - '0');
408       z+=incr, nDigits++, d--;
409     }
410     /* skip non-significant digits */
411     while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
412   }
413   if( z>=zEnd ) goto do_atof_calc;
414 
415   /* if exponent is present */
416   if( *z=='e' || *z=='E' ){
417     z+=incr;
418     eValid = 0;
419     if( z>=zEnd ) goto do_atof_calc;
420     /* get sign of exponent */
421     if( *z=='-' ){
422       esign = -1;
423       z+=incr;
424     }else if( *z=='+' ){
425       z+=incr;
426     }
427     /* copy digits to exponent */
428     while( z<zEnd && sqlite3Isdigit(*z) ){
429       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
430       z+=incr;
431       eValid = 1;
432     }
433   }
434 
435   /* skip trailing spaces */
436   if( nDigits && eValid ){
437     while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
438   }
439 
440 do_atof_calc:
441   /* adjust exponent by d, and update sign */
442   e = (e*esign) + d;
443   if( e<0 ) {
444     esign = -1;
445     e *= -1;
446   } else {
447     esign = 1;
448   }
449 
450   /* if 0 significand */
451   if( !s ) {
452     /* In the IEEE 754 standard, zero is signed.
453     ** Add the sign if we've seen at least one digit */
454     result = (sign<0 && nDigits) ? -(double)0 : (double)0;
455   } else {
456     /* attempt to reduce exponent */
457     if( esign>0 ){
458       while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
459     }else{
460       while( !(s%10) && e>0 ) e--,s/=10;
461     }
462 
463     /* adjust the sign of significand */
464     s = sign<0 ? -s : s;
465 
466     /* if exponent, scale significand as appropriate
467     ** and store in result. */
468     if( e ){
469       LONGDOUBLE_TYPE scale = 1.0;
470       /* attempt to handle extremely small/large numbers better */
471       if( e>307 && e<342 ){
472         while( e%308 ) { scale *= 1.0e+1; e -= 1; }
473         if( esign<0 ){
474           result = s / scale;
475           result /= 1.0e+308;
476         }else{
477           result = s * scale;
478           result *= 1.0e+308;
479         }
480       }else if( e>=342 ){
481         if( esign<0 ){
482           result = 0.0*s;
483         }else{
484           result = 1e308*1e308*s;  /* Infinity */
485         }
486       }else{
487         /* 1.0e+22 is the largest power of 10 than can be
488         ** represented exactly. */
489         while( e%22 ) { scale *= 1.0e+1; e -= 1; }
490         while( e>0 ) { scale *= 1.0e+22; e -= 22; }
491         if( esign<0 ){
492           result = s / scale;
493         }else{
494           result = s * scale;
495         }
496       }
497     } else {
498       result = (double)s;
499     }
500   }
501 
502   /* store the result */
503   *pResult = result;
504 
505   /* return true if number and no extra non-whitespace chracters after */
506   return z>=zEnd && nDigits>0 && eValid && nonNum==0;
507 #else
508   return !sqlite3Atoi64(z, pResult, length, enc);
509 #endif /* SQLITE_OMIT_FLOATING_POINT */
510 }
511 
512 /*
513 ** Compare the 19-character string zNum against the text representation
514 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
515 ** if zNum is less than, equal to, or greater than the string.
516 ** Note that zNum must contain exactly 19 characters.
517 **
518 ** Unlike memcmp() this routine is guaranteed to return the difference
519 ** in the values of the last digit if the only difference is in the
520 ** last digit.  So, for example,
521 **
522 **      compare2pow63("9223372036854775800", 1)
523 **
524 ** will return -8.
525 */
526 static int compare2pow63(const char *zNum, int incr){
527   int c = 0;
528   int i;
529                     /* 012345678901234567 */
530   const char *pow63 = "922337203685477580";
531   for(i=0; c==0 && i<18; i++){
532     c = (zNum[i*incr]-pow63[i])*10;
533   }
534   if( c==0 ){
535     c = zNum[18*incr] - '8';
536     testcase( c==(-1) );
537     testcase( c==0 );
538     testcase( c==(+1) );
539   }
540   return c;
541 }
542 
543 /*
544 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
545 ** routine does *not* accept hexadecimal notation.
546 **
547 ** If the zNum value is representable as a 64-bit twos-complement
548 ** integer, then write that value into *pNum and return 0.
549 **
550 ** If zNum is exactly 9223372036854775808, return 2.  This special
551 ** case is broken out because while 9223372036854775808 cannot be a
552 ** signed 64-bit integer, its negative -9223372036854775808 can be.
553 **
554 ** If zNum is too big for a 64-bit integer and is not
555 ** 9223372036854775808  or if zNum contains any non-numeric text,
556 ** then return 1.
557 **
558 ** length is the number of bytes in the string (bytes, not characters).
559 ** The string is not necessarily zero-terminated.  The encoding is
560 ** given by enc.
561 */
562 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
563   int incr;
564   u64 u = 0;
565   int neg = 0; /* assume positive */
566   int i;
567   int c = 0;
568   int nonNum = 0;
569   const char *zStart;
570   const char *zEnd = zNum + length;
571   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
572   if( enc==SQLITE_UTF8 ){
573     incr = 1;
574   }else{
575     incr = 2;
576     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
577     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
578     nonNum = i<length;
579     zEnd = zNum+i+enc-3;
580     zNum += (enc&1);
581   }
582   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
583   if( zNum<zEnd ){
584     if( *zNum=='-' ){
585       neg = 1;
586       zNum+=incr;
587     }else if( *zNum=='+' ){
588       zNum+=incr;
589     }
590   }
591   zStart = zNum;
592   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
593   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
594     u = u*10 + c - '0';
595   }
596   if( u>LARGEST_INT64 ){
597     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
598   }else if( neg ){
599     *pNum = -(i64)u;
600   }else{
601     *pNum = (i64)u;
602   }
603   testcase( i==18 );
604   testcase( i==19 );
605   testcase( i==20 );
606   if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum)
607        || i>19*incr || nonNum ){
608     /* zNum is empty or contains non-numeric text or is longer
609     ** than 19 digits (thus guaranteeing that it is too large) */
610     return 1;
611   }else if( i<19*incr ){
612     /* Less than 19 digits, so we know that it fits in 64 bits */
613     assert( u<=LARGEST_INT64 );
614     return 0;
615   }else{
616     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
617     c = compare2pow63(zNum, incr);
618     if( c<0 ){
619       /* zNum is less than 9223372036854775808 so it fits */
620       assert( u<=LARGEST_INT64 );
621       return 0;
622     }else if( c>0 ){
623       /* zNum is greater than 9223372036854775808 so it overflows */
624       return 1;
625     }else{
626       /* zNum is exactly 9223372036854775808.  Fits if negative.  The
627       ** special case 2 overflow if positive */
628       assert( u-1==LARGEST_INT64 );
629       return neg ? 0 : 2;
630     }
631   }
632 }
633 
634 /*
635 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
636 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
637 ** whereas sqlite3Atoi64() does not.
638 **
639 ** Returns:
640 **
641 **     0    Successful transformation.  Fits in a 64-bit signed integer.
642 **     1    Integer too large for a 64-bit signed integer or is malformed
643 **     2    Special case of 9223372036854775808
644 */
645 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
646 #ifndef SQLITE_OMIT_HEX_INTEGER
647   if( z[0]=='0'
648    && (z[1]=='x' || z[1]=='X')
649    && sqlite3Isxdigit(z[2])
650   ){
651     u64 u = 0;
652     int i, k;
653     for(i=2; z[i]=='0'; i++){}
654     for(k=i; sqlite3Isxdigit(z[k]); k++){
655       u = u*16 + sqlite3HexToInt(z[k]);
656     }
657     memcpy(pOut, &u, 8);
658     return (z[k]==0 && k-i<=16) ? 0 : 1;
659   }else
660 #endif /* SQLITE_OMIT_HEX_INTEGER */
661   {
662     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
663   }
664 }
665 
666 /*
667 ** If zNum represents an integer that will fit in 32-bits, then set
668 ** *pValue to that integer and return true.  Otherwise return false.
669 **
670 ** This routine accepts both decimal and hexadecimal notation for integers.
671 **
672 ** Any non-numeric characters that following zNum are ignored.
673 ** This is different from sqlite3Atoi64() which requires the
674 ** input number to be zero-terminated.
675 */
676 int sqlite3GetInt32(const char *zNum, int *pValue){
677   sqlite_int64 v = 0;
678   int i, c;
679   int neg = 0;
680   if( zNum[0]=='-' ){
681     neg = 1;
682     zNum++;
683   }else if( zNum[0]=='+' ){
684     zNum++;
685   }
686 #ifndef SQLITE_OMIT_HEX_INTEGER
687   else if( zNum[0]=='0'
688         && (zNum[1]=='x' || zNum[1]=='X')
689         && sqlite3Isxdigit(zNum[2])
690   ){
691     u32 u = 0;
692     zNum += 2;
693     while( zNum[0]=='0' ) zNum++;
694     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
695       u = u*16 + sqlite3HexToInt(zNum[i]);
696     }
697     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
698       memcpy(pValue, &u, 4);
699       return 1;
700     }else{
701       return 0;
702     }
703   }
704 #endif
705   while( zNum[0]=='0' ) zNum++;
706   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
707     v = v*10 + c;
708   }
709 
710   /* The longest decimal representation of a 32 bit integer is 10 digits:
711   **
712   **             1234567890
713   **     2^31 -> 2147483648
714   */
715   testcase( i==10 );
716   if( i>10 ){
717     return 0;
718   }
719   testcase( v-neg==2147483647 );
720   if( v-neg>2147483647 ){
721     return 0;
722   }
723   if( neg ){
724     v = -v;
725   }
726   *pValue = (int)v;
727   return 1;
728 }
729 
730 /*
731 ** Return a 32-bit integer value extracted from a string.  If the
732 ** string is not an integer, just return 0.
733 */
734 int sqlite3Atoi(const char *z){
735   int x = 0;
736   if( z ) sqlite3GetInt32(z, &x);
737   return x;
738 }
739 
740 /*
741 ** The variable-length integer encoding is as follows:
742 **
743 ** KEY:
744 **         A = 0xxxxxxx    7 bits of data and one flag bit
745 **         B = 1xxxxxxx    7 bits of data and one flag bit
746 **         C = xxxxxxxx    8 bits of data
747 **
748 **  7 bits - A
749 ** 14 bits - BA
750 ** 21 bits - BBA
751 ** 28 bits - BBBA
752 ** 35 bits - BBBBA
753 ** 42 bits - BBBBBA
754 ** 49 bits - BBBBBBA
755 ** 56 bits - BBBBBBBA
756 ** 64 bits - BBBBBBBBC
757 */
758 
759 /*
760 ** Write a 64-bit variable-length integer to memory starting at p[0].
761 ** The length of data write will be between 1 and 9 bytes.  The number
762 ** of bytes written is returned.
763 **
764 ** A variable-length integer consists of the lower 7 bits of each byte
765 ** for all bytes that have the 8th bit set and one byte with the 8th
766 ** bit clear.  Except, if we get to the 9th byte, it stores the full
767 ** 8 bits and is the last byte.
768 */
769 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
770   int i, j, n;
771   u8 buf[10];
772   if( v & (((u64)0xff000000)<<32) ){
773     p[8] = (u8)v;
774     v >>= 8;
775     for(i=7; i>=0; i--){
776       p[i] = (u8)((v & 0x7f) | 0x80);
777       v >>= 7;
778     }
779     return 9;
780   }
781   n = 0;
782   do{
783     buf[n++] = (u8)((v & 0x7f) | 0x80);
784     v >>= 7;
785   }while( v!=0 );
786   buf[0] &= 0x7f;
787   assert( n<=9 );
788   for(i=0, j=n-1; j>=0; j--, i++){
789     p[i] = buf[j];
790   }
791   return n;
792 }
793 int sqlite3PutVarint(unsigned char *p, u64 v){
794   if( v<=0x7f ){
795     p[0] = v&0x7f;
796     return 1;
797   }
798   if( v<=0x3fff ){
799     p[0] = ((v>>7)&0x7f)|0x80;
800     p[1] = v&0x7f;
801     return 2;
802   }
803   return putVarint64(p,v);
804 }
805 
806 /*
807 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
808 ** are defined here rather than simply putting the constant expressions
809 ** inline in order to work around bugs in the RVT compiler.
810 **
811 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
812 **
813 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
814 */
815 #define SLOT_2_0     0x001fc07f
816 #define SLOT_4_2_0   0xf01fc07f
817 
818 
819 /*
820 ** Read a 64-bit variable-length integer from memory starting at p[0].
821 ** Return the number of bytes read.  The value is stored in *v.
822 */
823 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
824   u32 a,b,s;
825 
826   a = *p;
827   /* a: p0 (unmasked) */
828   if (!(a&0x80))
829   {
830     *v = a;
831     return 1;
832   }
833 
834   p++;
835   b = *p;
836   /* b: p1 (unmasked) */
837   if (!(b&0x80))
838   {
839     a &= 0x7f;
840     a = a<<7;
841     a |= b;
842     *v = a;
843     return 2;
844   }
845 
846   /* Verify that constants are precomputed correctly */
847   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
848   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
849 
850   p++;
851   a = a<<14;
852   a |= *p;
853   /* a: p0<<14 | p2 (unmasked) */
854   if (!(a&0x80))
855   {
856     a &= SLOT_2_0;
857     b &= 0x7f;
858     b = b<<7;
859     a |= b;
860     *v = a;
861     return 3;
862   }
863 
864   /* CSE1 from below */
865   a &= SLOT_2_0;
866   p++;
867   b = b<<14;
868   b |= *p;
869   /* b: p1<<14 | p3 (unmasked) */
870   if (!(b&0x80))
871   {
872     b &= SLOT_2_0;
873     /* moved CSE1 up */
874     /* a &= (0x7f<<14)|(0x7f); */
875     a = a<<7;
876     a |= b;
877     *v = a;
878     return 4;
879   }
880 
881   /* a: p0<<14 | p2 (masked) */
882   /* b: p1<<14 | p3 (unmasked) */
883   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
884   /* moved CSE1 up */
885   /* a &= (0x7f<<14)|(0x7f); */
886   b &= SLOT_2_0;
887   s = a;
888   /* s: p0<<14 | p2 (masked) */
889 
890   p++;
891   a = a<<14;
892   a |= *p;
893   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
894   if (!(a&0x80))
895   {
896     /* we can skip these cause they were (effectively) done above
897     ** while calculating s */
898     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
899     /* b &= (0x7f<<14)|(0x7f); */
900     b = b<<7;
901     a |= b;
902     s = s>>18;
903     *v = ((u64)s)<<32 | a;
904     return 5;
905   }
906 
907   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
908   s = s<<7;
909   s |= b;
910   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
911 
912   p++;
913   b = b<<14;
914   b |= *p;
915   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
916   if (!(b&0x80))
917   {
918     /* we can skip this cause it was (effectively) done above in calc'ing s */
919     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
920     a &= SLOT_2_0;
921     a = a<<7;
922     a |= b;
923     s = s>>18;
924     *v = ((u64)s)<<32 | a;
925     return 6;
926   }
927 
928   p++;
929   a = a<<14;
930   a |= *p;
931   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
932   if (!(a&0x80))
933   {
934     a &= SLOT_4_2_0;
935     b &= SLOT_2_0;
936     b = b<<7;
937     a |= b;
938     s = s>>11;
939     *v = ((u64)s)<<32 | a;
940     return 7;
941   }
942 
943   /* CSE2 from below */
944   a &= SLOT_2_0;
945   p++;
946   b = b<<14;
947   b |= *p;
948   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
949   if (!(b&0x80))
950   {
951     b &= SLOT_4_2_0;
952     /* moved CSE2 up */
953     /* a &= (0x7f<<14)|(0x7f); */
954     a = a<<7;
955     a |= b;
956     s = s>>4;
957     *v = ((u64)s)<<32 | a;
958     return 8;
959   }
960 
961   p++;
962   a = a<<15;
963   a |= *p;
964   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
965 
966   /* moved CSE2 up */
967   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
968   b &= SLOT_2_0;
969   b = b<<8;
970   a |= b;
971 
972   s = s<<4;
973   b = p[-4];
974   b &= 0x7f;
975   b = b>>3;
976   s |= b;
977 
978   *v = ((u64)s)<<32 | a;
979 
980   return 9;
981 }
982 
983 /*
984 ** Read a 32-bit variable-length integer from memory starting at p[0].
985 ** Return the number of bytes read.  The value is stored in *v.
986 **
987 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
988 ** integer, then set *v to 0xffffffff.
989 **
990 ** A MACRO version, getVarint32, is provided which inlines the
991 ** single-byte case.  All code should use the MACRO version as
992 ** this function assumes the single-byte case has already been handled.
993 */
994 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
995   u32 a,b;
996 
997   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
998   ** by the getVarin32() macro */
999   a = *p;
1000   /* a: p0 (unmasked) */
1001 #ifndef getVarint32
1002   if (!(a&0x80))
1003   {
1004     /* Values between 0 and 127 */
1005     *v = a;
1006     return 1;
1007   }
1008 #endif
1009 
1010   /* The 2-byte case */
1011   p++;
1012   b = *p;
1013   /* b: p1 (unmasked) */
1014   if (!(b&0x80))
1015   {
1016     /* Values between 128 and 16383 */
1017     a &= 0x7f;
1018     a = a<<7;
1019     *v = a | b;
1020     return 2;
1021   }
1022 
1023   /* The 3-byte case */
1024   p++;
1025   a = a<<14;
1026   a |= *p;
1027   /* a: p0<<14 | p2 (unmasked) */
1028   if (!(a&0x80))
1029   {
1030     /* Values between 16384 and 2097151 */
1031     a &= (0x7f<<14)|(0x7f);
1032     b &= 0x7f;
1033     b = b<<7;
1034     *v = a | b;
1035     return 3;
1036   }
1037 
1038   /* A 32-bit varint is used to store size information in btrees.
1039   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1040   ** A 3-byte varint is sufficient, for example, to record the size
1041   ** of a 1048569-byte BLOB or string.
1042   **
1043   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1044   ** rare larger cases can be handled by the slower 64-bit varint
1045   ** routine.
1046   */
1047 #if 1
1048   {
1049     u64 v64;
1050     u8 n;
1051 
1052     p -= 2;
1053     n = sqlite3GetVarint(p, &v64);
1054     assert( n>3 && n<=9 );
1055     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1056       *v = 0xffffffff;
1057     }else{
1058       *v = (u32)v64;
1059     }
1060     return n;
1061   }
1062 
1063 #else
1064   /* For following code (kept for historical record only) shows an
1065   ** unrolling for the 3- and 4-byte varint cases.  This code is
1066   ** slightly faster, but it is also larger and much harder to test.
1067   */
1068   p++;
1069   b = b<<14;
1070   b |= *p;
1071   /* b: p1<<14 | p3 (unmasked) */
1072   if (!(b&0x80))
1073   {
1074     /* Values between 2097152 and 268435455 */
1075     b &= (0x7f<<14)|(0x7f);
1076     a &= (0x7f<<14)|(0x7f);
1077     a = a<<7;
1078     *v = a | b;
1079     return 4;
1080   }
1081 
1082   p++;
1083   a = a<<14;
1084   a |= *p;
1085   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1086   if (!(a&0x80))
1087   {
1088     /* Values  between 268435456 and 34359738367 */
1089     a &= SLOT_4_2_0;
1090     b &= SLOT_4_2_0;
1091     b = b<<7;
1092     *v = a | b;
1093     return 5;
1094   }
1095 
1096   /* We can only reach this point when reading a corrupt database
1097   ** file.  In that case we are not in any hurry.  Use the (relatively
1098   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1099   ** value. */
1100   {
1101     u64 v64;
1102     u8 n;
1103 
1104     p -= 4;
1105     n = sqlite3GetVarint(p, &v64);
1106     assert( n>5 && n<=9 );
1107     *v = (u32)v64;
1108     return n;
1109   }
1110 #endif
1111 }
1112 
1113 /*
1114 ** Return the number of bytes that will be needed to store the given
1115 ** 64-bit integer.
1116 */
1117 int sqlite3VarintLen(u64 v){
1118   int i;
1119   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1120   return i;
1121 }
1122 
1123 
1124 /*
1125 ** Read or write a four-byte big-endian integer value.
1126 */
1127 u32 sqlite3Get4byte(const u8 *p){
1128 #if SQLITE_BYTEORDER==4321
1129   u32 x;
1130   memcpy(&x,p,4);
1131   return x;
1132 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1133     && defined(__GNUC__) && GCC_VERSION>=4003000
1134   u32 x;
1135   memcpy(&x,p,4);
1136   return __builtin_bswap32(x);
1137 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1138     && defined(_MSC_VER) && _MSC_VER>=1300
1139   u32 x;
1140   memcpy(&x,p,4);
1141   return _byteswap_ulong(x);
1142 #else
1143   testcase( p[0]&0x80 );
1144   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1145 #endif
1146 }
1147 void sqlite3Put4byte(unsigned char *p, u32 v){
1148 #if SQLITE_BYTEORDER==4321
1149   memcpy(p,&v,4);
1150 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1151     && defined(__GNUC__) && GCC_VERSION>=4003000
1152   u32 x = __builtin_bswap32(v);
1153   memcpy(p,&x,4);
1154 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1155     && defined(_MSC_VER) && _MSC_VER>=1300
1156   u32 x = _byteswap_ulong(v);
1157   memcpy(p,&x,4);
1158 #else
1159   p[0] = (u8)(v>>24);
1160   p[1] = (u8)(v>>16);
1161   p[2] = (u8)(v>>8);
1162   p[3] = (u8)v;
1163 #endif
1164 }
1165 
1166 
1167 
1168 /*
1169 ** Translate a single byte of Hex into an integer.
1170 ** This routine only works if h really is a valid hexadecimal
1171 ** character:  0..9a..fA..F
1172 */
1173 u8 sqlite3HexToInt(int h){
1174   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1175 #ifdef SQLITE_ASCII
1176   h += 9*(1&(h>>6));
1177 #endif
1178 #ifdef SQLITE_EBCDIC
1179   h += 9*(1&~(h>>4));
1180 #endif
1181   return (u8)(h & 0xf);
1182 }
1183 
1184 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1185 /*
1186 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1187 ** value.  Return a pointer to its binary value.  Space to hold the
1188 ** binary value has been obtained from malloc and must be freed by
1189 ** the calling routine.
1190 */
1191 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1192   char *zBlob;
1193   int i;
1194 
1195   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1196   n--;
1197   if( zBlob ){
1198     for(i=0; i<n; i+=2){
1199       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1200     }
1201     zBlob[i/2] = 0;
1202   }
1203   return zBlob;
1204 }
1205 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1206 
1207 /*
1208 ** Log an error that is an API call on a connection pointer that should
1209 ** not have been used.  The "type" of connection pointer is given as the
1210 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1211 */
1212 static void logBadConnection(const char *zType){
1213   sqlite3_log(SQLITE_MISUSE,
1214      "API call with %s database connection pointer",
1215      zType
1216   );
1217 }
1218 
1219 /*
1220 ** Check to make sure we have a valid db pointer.  This test is not
1221 ** foolproof but it does provide some measure of protection against
1222 ** misuse of the interface such as passing in db pointers that are
1223 ** NULL or which have been previously closed.  If this routine returns
1224 ** 1 it means that the db pointer is valid and 0 if it should not be
1225 ** dereferenced for any reason.  The calling function should invoke
1226 ** SQLITE_MISUSE immediately.
1227 **
1228 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1229 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1230 ** open properly and is not fit for general use but which can be
1231 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1232 */
1233 int sqlite3SafetyCheckOk(sqlite3 *db){
1234   u32 magic;
1235   if( db==0 ){
1236     logBadConnection("NULL");
1237     return 0;
1238   }
1239   magic = db->magic;
1240   if( magic!=SQLITE_MAGIC_OPEN ){
1241     if( sqlite3SafetyCheckSickOrOk(db) ){
1242       testcase( sqlite3GlobalConfig.xLog!=0 );
1243       logBadConnection("unopened");
1244     }
1245     return 0;
1246   }else{
1247     return 1;
1248   }
1249 }
1250 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1251   u32 magic;
1252   magic = db->magic;
1253   if( magic!=SQLITE_MAGIC_SICK &&
1254       magic!=SQLITE_MAGIC_OPEN &&
1255       magic!=SQLITE_MAGIC_BUSY ){
1256     testcase( sqlite3GlobalConfig.xLog!=0 );
1257     logBadConnection("invalid");
1258     return 0;
1259   }else{
1260     return 1;
1261   }
1262 }
1263 
1264 /*
1265 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1266 ** the other 64-bit signed integer at *pA and store the result in *pA.
1267 ** Return 0 on success.  Or if the operation would have resulted in an
1268 ** overflow, leave *pA unchanged and return 1.
1269 */
1270 int sqlite3AddInt64(i64 *pA, i64 iB){
1271   i64 iA = *pA;
1272   testcase( iA==0 ); testcase( iA==1 );
1273   testcase( iB==-1 ); testcase( iB==0 );
1274   if( iB>=0 ){
1275     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1276     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1277     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1278   }else{
1279     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1280     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1281     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1282   }
1283   *pA += iB;
1284   return 0;
1285 }
1286 int sqlite3SubInt64(i64 *pA, i64 iB){
1287   testcase( iB==SMALLEST_INT64+1 );
1288   if( iB==SMALLEST_INT64 ){
1289     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1290     if( (*pA)>=0 ) return 1;
1291     *pA -= iB;
1292     return 0;
1293   }else{
1294     return sqlite3AddInt64(pA, -iB);
1295   }
1296 }
1297 #define TWOPOWER32 (((i64)1)<<32)
1298 #define TWOPOWER31 (((i64)1)<<31)
1299 int sqlite3MulInt64(i64 *pA, i64 iB){
1300   i64 iA = *pA;
1301   i64 iA1, iA0, iB1, iB0, r;
1302 
1303   iA1 = iA/TWOPOWER32;
1304   iA0 = iA % TWOPOWER32;
1305   iB1 = iB/TWOPOWER32;
1306   iB0 = iB % TWOPOWER32;
1307   if( iA1==0 ){
1308     if( iB1==0 ){
1309       *pA *= iB;
1310       return 0;
1311     }
1312     r = iA0*iB1;
1313   }else if( iB1==0 ){
1314     r = iA1*iB0;
1315   }else{
1316     /* If both iA1 and iB1 are non-zero, overflow will result */
1317     return 1;
1318   }
1319   testcase( r==(-TWOPOWER31)-1 );
1320   testcase( r==(-TWOPOWER31) );
1321   testcase( r==TWOPOWER31 );
1322   testcase( r==TWOPOWER31-1 );
1323   if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1324   r *= TWOPOWER32;
1325   if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1326   *pA = r;
1327   return 0;
1328 }
1329 
1330 /*
1331 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1332 ** if the integer has a value of -2147483648, return +2147483647
1333 */
1334 int sqlite3AbsInt32(int x){
1335   if( x>=0 ) return x;
1336   if( x==(int)0x80000000 ) return 0x7fffffff;
1337   return -x;
1338 }
1339 
1340 #ifdef SQLITE_ENABLE_8_3_NAMES
1341 /*
1342 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1343 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1344 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1345 ** three characters, then shorten the suffix on z[] to be the last three
1346 ** characters of the original suffix.
1347 **
1348 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1349 ** do the suffix shortening regardless of URI parameter.
1350 **
1351 ** Examples:
1352 **
1353 **     test.db-journal    =>   test.nal
1354 **     test.db-wal        =>   test.wal
1355 **     test.db-shm        =>   test.shm
1356 **     test.db-mj7f3319fa =>   test.9fa
1357 */
1358 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1359 #if SQLITE_ENABLE_8_3_NAMES<2
1360   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1361 #endif
1362   {
1363     int i, sz;
1364     sz = sqlite3Strlen30(z);
1365     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1366     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1367   }
1368 }
1369 #endif
1370 
1371 /*
1372 ** Find (an approximate) sum of two LogEst values.  This computation is
1373 ** not a simple "+" operator because LogEst is stored as a logarithmic
1374 ** value.
1375 **
1376 */
1377 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1378   static const unsigned char x[] = {
1379      10, 10,                         /* 0,1 */
1380       9, 9,                          /* 2,3 */
1381       8, 8,                          /* 4,5 */
1382       7, 7, 7,                       /* 6,7,8 */
1383       6, 6, 6,                       /* 9,10,11 */
1384       5, 5, 5,                       /* 12-14 */
1385       4, 4, 4, 4,                    /* 15-18 */
1386       3, 3, 3, 3, 3, 3,              /* 19-24 */
1387       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1388   };
1389   if( a>=b ){
1390     if( a>b+49 ) return a;
1391     if( a>b+31 ) return a+1;
1392     return a+x[a-b];
1393   }else{
1394     if( b>a+49 ) return b;
1395     if( b>a+31 ) return b+1;
1396     return b+x[b-a];
1397   }
1398 }
1399 
1400 /*
1401 ** Convert an integer into a LogEst.  In other words, compute an
1402 ** approximation for 10*log2(x).
1403 */
1404 LogEst sqlite3LogEst(u64 x){
1405   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1406   LogEst y = 40;
1407   if( x<8 ){
1408     if( x<2 ) return 0;
1409     while( x<8 ){  y -= 10; x <<= 1; }
1410   }else{
1411     while( x>255 ){ y += 40; x >>= 4; }
1412     while( x>15 ){  y += 10; x >>= 1; }
1413   }
1414   return a[x&7] + y - 10;
1415 }
1416 
1417 #ifndef SQLITE_OMIT_VIRTUALTABLE
1418 /*
1419 ** Convert a double into a LogEst
1420 ** In other words, compute an approximation for 10*log2(x).
1421 */
1422 LogEst sqlite3LogEstFromDouble(double x){
1423   u64 a;
1424   LogEst e;
1425   assert( sizeof(x)==8 && sizeof(a)==8 );
1426   if( x<=1 ) return 0;
1427   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1428   memcpy(&a, &x, 8);
1429   e = (a>>52) - 1022;
1430   return e*10;
1431 }
1432 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1433 
1434 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1435     defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
1436     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1437 /*
1438 ** Convert a LogEst into an integer.
1439 **
1440 ** Note that this routine is only used when one or more of various
1441 ** non-standard compile-time options is enabled.
1442 */
1443 u64 sqlite3LogEstToInt(LogEst x){
1444   u64 n;
1445   n = x%10;
1446   x /= 10;
1447   if( n>=5 ) n -= 2;
1448   else if( n>=1 ) n -= 1;
1449 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1450     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1451   if( x>60 ) return (u64)LARGEST_INT64;
1452 #else
1453   /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input
1454   ** possible to this routine is 310, resulting in a maximum x of 31 */
1455   assert( x<=60 );
1456 #endif
1457   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1458 }
1459 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1460