xref: /sqlite-3.40.0/src/utf.c (revision d230f648)
1 /*
2 ** 2004 April 13
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used to translate between UTF-8,
13 ** UTF-16, UTF-16BE, and UTF-16LE.
14 **
15 ** $Id: utf.c,v 1.44 2007/03/31 15:28:00 drh Exp $
16 **
17 ** Notes on UTF-8:
18 **
19 **   Byte-0    Byte-1    Byte-2    Byte-3    Value
20 **  0xxxxxxx                                 00000000 00000000 0xxxxxxx
21 **  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
22 **  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx
23 **  11110uuu  10uuzzzz  10yyyyyy  10xxxxxx   000uuuuu zzzzyyyy yyxxxxxx
24 **
25 **
26 ** Notes on UTF-16:  (with wwww+1==uuuuu)
27 **
28 **      Word-0               Word-1          Value
29 **  110110ww wwzzzzyy   110111yy yyxxxxxx    000uuuuu zzzzyyyy yyxxxxxx
30 **  zzzzyyyy yyxxxxxx                        00000000 zzzzyyyy yyxxxxxx
31 **
32 **
33 ** BOM or Byte Order Mark:
34 **     0xff 0xfe   little-endian utf-16 follows
35 **     0xfe 0xff   big-endian utf-16 follows
36 **
37 **
38 ** Handling of malformed strings:
39 **
40 ** SQLite accepts and processes malformed strings without an error wherever
41 ** possible. However this is not possible when converting between UTF-8 and
42 ** UTF-16.
43 **
44 ** When converting malformed UTF-8 strings to UTF-16, one instance of the
45 ** replacement character U+FFFD for each byte that cannot be interpeted as
46 ** part of a valid unicode character.
47 **
48 ** When converting malformed UTF-16 strings to UTF-8, one instance of the
49 ** replacement character U+FFFD for each pair of bytes that cannot be
50 ** interpeted as part of a valid unicode character.
51 **
52 ** This file contains the following public routines:
53 **
54 ** sqlite3VdbeMemTranslate() - Translate the encoding used by a Mem* string.
55 ** sqlite3VdbeMemHandleBom() - Handle byte-order-marks in UTF16 Mem* strings.
56 ** sqlite3utf16ByteLen()     - Calculate byte-length of a void* UTF16 string.
57 ** sqlite3utf8CharLen()      - Calculate char-length of a char* UTF8 string.
58 ** sqlite3utf8LikeCompare()  - Do a LIKE match given two UTF8 char* strings.
59 **
60 */
61 #include "sqliteInt.h"
62 #include <assert.h>
63 #include "vdbeInt.h"
64 
65 /*
66 ** The following constant value is used by the SQLITE_BIGENDIAN and
67 ** SQLITE_LITTLEENDIAN macros.
68 */
69 const int sqlite3one = 1;
70 
71 /*
72 ** This table maps from the first byte of a UTF-8 character to the number
73 ** of trailing bytes expected. A value '4' indicates that the table key
74 ** is not a legal first byte for a UTF-8 character.
75 */
76 static const u8 xtra_utf8_bytes[256]  = {
77 /* 0xxxxxxx */
78 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
79 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
80 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
81 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
82 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
83 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
84 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
85 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
86 
87 /* 10wwwwww */
88 4, 4, 4, 4, 4, 4, 4, 4,     4, 4, 4, 4, 4, 4, 4, 4,
89 4, 4, 4, 4, 4, 4, 4, 4,     4, 4, 4, 4, 4, 4, 4, 4,
90 4, 4, 4, 4, 4, 4, 4, 4,     4, 4, 4, 4, 4, 4, 4, 4,
91 4, 4, 4, 4, 4, 4, 4, 4,     4, 4, 4, 4, 4, 4, 4, 4,
92 
93 /* 110yyyyy */
94 1, 1, 1, 1, 1, 1, 1, 1,     1, 1, 1, 1, 1, 1, 1, 1,
95 1, 1, 1, 1, 1, 1, 1, 1,     1, 1, 1, 1, 1, 1, 1, 1,
96 
97 /* 1110zzzz */
98 2, 2, 2, 2, 2, 2, 2, 2,     2, 2, 2, 2, 2, 2, 2, 2,
99 
100 /* 11110yyy */
101 3, 3, 3, 3, 3, 3, 3, 3,     4, 4, 4, 4, 4, 4, 4, 4,
102 };
103 
104 /*
105 ** This table maps from the number of trailing bytes in a UTF-8 character
106 ** to an integer constant that is effectively calculated for each character
107 ** read by a naive implementation of a UTF-8 character reader. The code
108 ** in the READ_UTF8 macro explains things best.
109 */
110 static const int xtra_utf8_bits[] =  {
111   0,
112   12416,          /* (0xC0 << 6) + (0x80) */
113   925824,         /* (0xE0 << 12) + (0x80 << 6) + (0x80) */
114   63447168        /* (0xF0 << 18) + (0x80 << 12) + (0x80 << 6) + 0x80 */
115 };
116 
117 /*
118 ** If a UTF-8 character contains N bytes extra bytes (N bytes follow
119 ** the initial byte so that the total character length is N+1) then
120 ** masking the character with utf8_mask[N] must produce a non-zero
121 ** result.  Otherwise, we have an (illegal) overlong encoding.
122 */
123 static const int utf_mask[] = {
124   0x00000000,
125   0xffffff80,
126   0xfffff800,
127   0xffff0000,
128 };
129 
130 #define READ_UTF8(zIn, c) { \
131   int xtra;                                            \
132   c = *(zIn)++;                                        \
133   xtra = xtra_utf8_bytes[c];                           \
134   switch( xtra ){                                      \
135     case 4: c = (int)0xFFFD; break;                    \
136     case 3: c = (c<<6) + *(zIn)++;                     \
137     case 2: c = (c<<6) + *(zIn)++;                     \
138     case 1: c = (c<<6) + *(zIn)++;                     \
139     c -= xtra_utf8_bits[xtra];                         \
140     if( (utf_mask[xtra]&c)==0                          \
141         || (c&0xFFFFF800)==0xD800                      \
142         || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }    \
143   }                                                    \
144 }
145 int sqlite3ReadUtf8(const unsigned char *z){
146   int c;
147   READ_UTF8(z, c);
148   return c;
149 }
150 
151 #define SKIP_UTF8(zIn) {                               \
152   zIn += (xtra_utf8_bytes[*(u8 *)zIn] + 1);            \
153 }
154 
155 #define WRITE_UTF8(zOut, c) {                          \
156   if( c<0x00080 ){                                     \
157     *zOut++ = (c&0xFF);                                \
158   }                                                    \
159   else if( c<0x00800 ){                                \
160     *zOut++ = 0xC0 + ((c>>6)&0x1F);                    \
161     *zOut++ = 0x80 + (c & 0x3F);                       \
162   }                                                    \
163   else if( c<0x10000 ){                                \
164     *zOut++ = 0xE0 + ((c>>12)&0x0F);                   \
165     *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
166     *zOut++ = 0x80 + (c & 0x3F);                       \
167   }else{                                               \
168     *zOut++ = 0xF0 + ((c>>18) & 0x07);                 \
169     *zOut++ = 0x80 + ((c>>12) & 0x3F);                 \
170     *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
171     *zOut++ = 0x80 + (c & 0x3F);                       \
172   }                                                    \
173 }
174 
175 #define WRITE_UTF16LE(zOut, c) {                                \
176   if( c<=0xFFFF ){                                              \
177     *zOut++ = (c&0x00FF);                                       \
178     *zOut++ = ((c>>8)&0x00FF);                                  \
179   }else{                                                        \
180     *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
181     *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
182     *zOut++ = (c&0x00FF);                                       \
183     *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
184   }                                                             \
185 }
186 
187 #define WRITE_UTF16BE(zOut, c) {                                \
188   if( c<=0xFFFF ){                                              \
189     *zOut++ = ((c>>8)&0x00FF);                                  \
190     *zOut++ = (c&0x00FF);                                       \
191   }else{                                                        \
192     *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
193     *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
194     *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
195     *zOut++ = (c&0x00FF);                                       \
196   }                                                             \
197 }
198 
199 #define READ_UTF16LE(zIn, c){                                         \
200   c = (*zIn++);                                                       \
201   c += ((*zIn++)<<8);                                                 \
202   if( c>=0xD800 && c<=0xE000 ){                                       \
203     int c2 = (*zIn++);                                                \
204     c2 += ((*zIn++)<<8);                                              \
205     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
206     if( (c & 0xFFFF0000)==0 ) c = 0xFFFD;                             \
207   }                                                                   \
208 }
209 
210 #define READ_UTF16BE(zIn, c){                                         \
211   c = ((*zIn++)<<8);                                                  \
212   c += (*zIn++);                                                      \
213   if( c>=0xD800 && c<=0xE000 ){                                       \
214     int c2 = ((*zIn++)<<8);                                           \
215     c2 += (*zIn++);                                                   \
216     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
217     if( (c & 0xFFFF0000)==0 ) c = 0xFFFD;                             \
218   }                                                                   \
219 }
220 
221 #define SKIP_UTF16BE(zIn){                                            \
222   if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){  \
223     zIn += 4;                                                         \
224   }else{                                                              \
225     zIn += 2;                                                         \
226   }                                                                   \
227 }
228 #define SKIP_UTF16LE(zIn){                                            \
229   zIn++;                                                              \
230   if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){  \
231     zIn += 3;                                                         \
232   }else{                                                              \
233     zIn += 1;                                                         \
234   }                                                                   \
235 }
236 
237 #define RSKIP_UTF16LE(zIn){                                            \
238   if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){  \
239     zIn -= 4;                                                         \
240   }else{                                                              \
241     zIn -= 2;                                                         \
242   }                                                                   \
243 }
244 #define RSKIP_UTF16BE(zIn){                                            \
245   zIn--;                                                              \
246   if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){  \
247     zIn -= 3;                                                         \
248   }else{                                                              \
249     zIn -= 1;                                                         \
250   }                                                                   \
251 }
252 
253 /*
254 ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
255 ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
256 */
257 /* #define TRANSLATE_TRACE 1 */
258 
259 #ifndef SQLITE_OMIT_UTF16
260 /*
261 ** This routine transforms the internal text encoding used by pMem to
262 ** desiredEnc. It is an error if the string is already of the desired
263 ** encoding, or if *pMem does not contain a string value.
264 */
265 int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
266   unsigned char zShort[NBFS]; /* Temporary short output buffer */
267   int len;                    /* Maximum length of output string in bytes */
268   unsigned char *zOut;                  /* Output buffer */
269   unsigned char *zIn;                   /* Input iterator */
270   unsigned char *zTerm;                 /* End of input */
271   unsigned char *z;                     /* Output iterator */
272   unsigned int c;
273 
274   assert( pMem->flags&MEM_Str );
275   assert( pMem->enc!=desiredEnc );
276   assert( pMem->enc!=0 );
277   assert( pMem->n>=0 );
278 
279 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
280   {
281     char zBuf[100];
282     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
283     fprintf(stderr, "INPUT:  %s\n", zBuf);
284   }
285 #endif
286 
287   /* If the translation is between UTF-16 little and big endian, then
288   ** all that is required is to swap the byte order. This case is handled
289   ** differently from the others.
290   */
291   if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
292     u8 temp;
293     int rc;
294     rc = sqlite3VdbeMemMakeWriteable(pMem);
295     if( rc!=SQLITE_OK ){
296       assert( rc==SQLITE_NOMEM );
297       return SQLITE_NOMEM;
298     }
299     zIn = (u8*)pMem->z;
300     zTerm = &zIn[pMem->n];
301     while( zIn<zTerm ){
302       temp = *zIn;
303       *zIn = *(zIn+1);
304       zIn++;
305       *zIn++ = temp;
306     }
307     pMem->enc = desiredEnc;
308     goto translate_out;
309   }
310 
311   /* Set len to the maximum number of bytes required in the output buffer. */
312   if( desiredEnc==SQLITE_UTF8 ){
313     /* When converting from UTF-16, the maximum growth results from
314     ** translating a 2-byte character to a 4-byte UTF-8 character.
315     ** A single byte is required for the output string
316     ** nul-terminator.
317     */
318     len = pMem->n * 2 + 1;
319   }else{
320     /* When converting from UTF-8 to UTF-16 the maximum growth is caused
321     ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
322     ** character. Two bytes are required in the output buffer for the
323     ** nul-terminator.
324     */
325     len = pMem->n * 2 + 2;
326   }
327 
328   /* Set zIn to point at the start of the input buffer and zTerm to point 1
329   ** byte past the end.
330   **
331   ** Variable zOut is set to point at the output buffer. This may be space
332   ** obtained from malloc(), or Mem.zShort, if it large enough and not in
333   ** use, or the zShort array on the stack (see above).
334   */
335   zIn = (u8*)pMem->z;
336   zTerm = &zIn[pMem->n];
337   if( len>NBFS ){
338     zOut = sqliteMallocRaw(len);
339     if( !zOut ) return SQLITE_NOMEM;
340   }else{
341     zOut = zShort;
342   }
343   z = zOut;
344 
345   if( pMem->enc==SQLITE_UTF8 ){
346     if( desiredEnc==SQLITE_UTF16LE ){
347       /* UTF-8 -> UTF-16 Little-endian */
348       while( zIn<zTerm ){
349         READ_UTF8(zIn, c);
350         WRITE_UTF16LE(z, c);
351       }
352     }else{
353       assert( desiredEnc==SQLITE_UTF16BE );
354       /* UTF-8 -> UTF-16 Big-endian */
355       while( zIn<zTerm ){
356         READ_UTF8(zIn, c);
357         WRITE_UTF16BE(z, c);
358       }
359     }
360     pMem->n = z - zOut;
361     *z++ = 0;
362   }else{
363     assert( desiredEnc==SQLITE_UTF8 );
364     if( pMem->enc==SQLITE_UTF16LE ){
365       /* UTF-16 Little-endian -> UTF-8 */
366       while( zIn<zTerm ){
367         READ_UTF16LE(zIn, c);
368         WRITE_UTF8(z, c);
369       }
370     }else{
371       /* UTF-16 Little-endian -> UTF-8 */
372       while( zIn<zTerm ){
373         READ_UTF16BE(zIn, c);
374         WRITE_UTF8(z, c);
375       }
376     }
377     pMem->n = z - zOut;
378   }
379   *z = 0;
380   assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
381 
382   sqlite3VdbeMemRelease(pMem);
383   pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
384   pMem->enc = desiredEnc;
385   if( zOut==zShort ){
386     memcpy(pMem->zShort, zOut, len);
387     zOut = (u8*)pMem->zShort;
388     pMem->flags |= (MEM_Term|MEM_Short);
389   }else{
390     pMem->flags |= (MEM_Term|MEM_Dyn);
391   }
392   pMem->z = (char*)zOut;
393 
394 translate_out:
395 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
396   {
397     char zBuf[100];
398     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
399     fprintf(stderr, "OUTPUT: %s\n", zBuf);
400   }
401 #endif
402   return SQLITE_OK;
403 }
404 
405 /*
406 ** This routine checks for a byte-order mark at the beginning of the
407 ** UTF-16 string stored in *pMem. If one is present, it is removed and
408 ** the encoding of the Mem adjusted. This routine does not do any
409 ** byte-swapping, it just sets Mem.enc appropriately.
410 **
411 ** The allocation (static, dynamic etc.) and encoding of the Mem may be
412 ** changed by this function.
413 */
414 int sqlite3VdbeMemHandleBom(Mem *pMem){
415   int rc = SQLITE_OK;
416   u8 bom = 0;
417 
418   if( pMem->n<0 || pMem->n>1 ){
419     u8 b1 = *(u8 *)pMem->z;
420     u8 b2 = *(((u8 *)pMem->z) + 1);
421     if( b1==0xFE && b2==0xFF ){
422       bom = SQLITE_UTF16BE;
423     }
424     if( b1==0xFF && b2==0xFE ){
425       bom = SQLITE_UTF16LE;
426     }
427   }
428 
429   if( bom ){
430     /* This function is called as soon as a string is stored in a Mem*,
431     ** from within sqlite3VdbeMemSetStr(). At that point it is not possible
432     ** for the string to be stored in Mem.zShort, or for it to be stored
433     ** in dynamic memory with no destructor.
434     */
435     assert( !(pMem->flags&MEM_Short) );
436     assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
437     if( pMem->flags & MEM_Dyn ){
438       void (*xDel)(void*) = pMem->xDel;
439       char *z = pMem->z;
440       pMem->z = 0;
441       pMem->xDel = 0;
442       rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT);
443       xDel(z);
444     }else{
445       rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom,
446           SQLITE_TRANSIENT);
447     }
448   }
449   return rc;
450 }
451 #endif /* SQLITE_OMIT_UTF16 */
452 
453 /*
454 ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
455 ** return the number of unicode characters in pZ up to (but not including)
456 ** the first 0x00 byte. If nByte is not less than zero, return the
457 ** number of unicode characters in the first nByte of pZ (or up to
458 ** the first 0x00, whichever comes first).
459 */
460 int sqlite3utf8CharLen(const char *z, int nByte){
461   int r = 0;
462   const char *zTerm;
463   if( nByte>=0 ){
464     zTerm = &z[nByte];
465   }else{
466     zTerm = (const char *)(-1);
467   }
468   assert( z<=zTerm );
469   while( *z!=0 && z<zTerm ){
470     SKIP_UTF8(z);
471     r++;
472   }
473   return r;
474 }
475 
476 #ifndef SQLITE_OMIT_UTF16
477 /*
478 ** Convert a UTF-16 string in the native encoding into a UTF-8 string.
479 ** Memory to hold the UTF-8 string is obtained from malloc and must be
480 ** freed by the calling function.
481 **
482 ** NULL is returned if there is an allocation error.
483 */
484 char *sqlite3utf16to8(const void *z, int nByte){
485   Mem m;
486   memset(&m, 0, sizeof(m));
487   sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
488   sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
489   assert( (m.flags & MEM_Term)!=0 || sqlite3MallocFailed() );
490   assert( (m.flags & MEM_Str)!=0 || sqlite3MallocFailed() );
491   return (m.flags & MEM_Dyn)!=0 ? m.z : sqliteStrDup(m.z);
492 }
493 
494 /*
495 ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
496 ** return the number of bytes up to (but not including), the first pair
497 ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
498 ** then return the number of bytes in the first nChar unicode characters
499 ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
500 */
501 int sqlite3utf16ByteLen(const void *zIn, int nChar){
502   unsigned int c = 1;
503   char const *z = zIn;
504   int n = 0;
505   if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
506     /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
507     ** and in other parts of this file means that at one branch will
508     ** not be covered by coverage testing on any single host. But coverage
509     ** will be complete if the tests are run on both a little-endian and
510     ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
511     ** macros are constant at compile time the compiler can determine
512     ** which branch will be followed. It is therefore assumed that no runtime
513     ** penalty is paid for this "if" statement.
514     */
515     while( c && ((nChar<0) || n<nChar) ){
516       READ_UTF16BE(z, c);
517       n++;
518     }
519   }else{
520     while( c && ((nChar<0) || n<nChar) ){
521       READ_UTF16LE(z, c);
522       n++;
523     }
524   }
525   return (z-(char const *)zIn)-((c==0)?2:0);
526 }
527 
528 /*
529 ** UTF-16 implementation of the substr()
530 */
531 void sqlite3utf16Substr(
532   sqlite3_context *context,
533   int argc,
534   sqlite3_value **argv
535 ){
536   int y, z;
537   unsigned char const *zStr;
538   unsigned char const *zStrEnd;
539   unsigned char const *zStart;
540   unsigned char const *zEnd;
541   int i;
542 
543   zStr = (unsigned char const *)sqlite3_value_text16(argv[0]);
544   zStrEnd = &zStr[sqlite3_value_bytes16(argv[0])];
545   y = sqlite3_value_int(argv[1]);
546   z = sqlite3_value_int(argv[2]);
547 
548   if( y>0 ){
549     y = y-1;
550     zStart = zStr;
551     if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
552       for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16BE(zStart);
553     }else{
554       for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16LE(zStart);
555     }
556   }else{
557     zStart = zStrEnd;
558     if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
559       for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16BE(zStart);
560     }else{
561       for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16LE(zStart);
562     }
563     for(; i<0; i++) z -= 1;
564   }
565 
566   zEnd = zStart;
567   if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
568     for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16BE(zEnd);
569   }else{
570     for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16LE(zEnd);
571   }
572 
573   sqlite3_result_text16(context, zStart, zEnd-zStart, SQLITE_TRANSIENT);
574 }
575 
576 #if defined(SQLITE_TEST)
577 /*
578 ** This routine is called from the TCL test function "translate_selftest".
579 ** It checks that the primitives for serializing and deserializing
580 ** characters in each encoding are inverses of each other.
581 */
582 void sqlite3utfSelfTest(){
583   unsigned int i, t;
584   unsigned char zBuf[20];
585   unsigned char *z;
586   int n;
587   unsigned int c;
588 
589   for(i=0; i<0x00110000; i++){
590     z = zBuf;
591     WRITE_UTF8(z, i);
592     n = z-zBuf;
593     z = zBuf;
594     READ_UTF8(z, c);
595     t = i;
596     if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
597     if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
598     assert( c==t );
599     assert( (z-zBuf)==n );
600   }
601   for(i=0; i<0x00110000; i++){
602     if( i>=0xD800 && i<=0xE000 ) continue;
603     z = zBuf;
604     WRITE_UTF16LE(z, i);
605     n = z-zBuf;
606     z = zBuf;
607     READ_UTF16LE(z, c);
608     assert( c==i );
609     assert( (z-zBuf)==n );
610   }
611   for(i=0; i<0x00110000; i++){
612     if( i>=0xD800 && i<=0xE000 ) continue;
613     z = zBuf;
614     WRITE_UTF16BE(z, i);
615     n = z-zBuf;
616     z = zBuf;
617     READ_UTF16BE(z, c);
618     assert( c==i );
619     assert( (z-zBuf)==n );
620   }
621 }
622 #endif /* SQLITE_TEST */
623 #endif /* SQLITE_OMIT_UTF16 */
624