1 /* 2 ** 2004 April 13 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used to translate between UTF-8, 13 ** UTF-16, UTF-16BE, and UTF-16LE. 14 ** 15 ** $Id: utf.c,v 1.70 2008/12/10 22:30:25 shane Exp $ 16 ** 17 ** Notes on UTF-8: 18 ** 19 ** Byte-0 Byte-1 Byte-2 Byte-3 Value 20 ** 0xxxxxxx 00000000 00000000 0xxxxxxx 21 ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx 22 ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx 23 ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx 24 ** 25 ** 26 ** Notes on UTF-16: (with wwww+1==uuuuu) 27 ** 28 ** Word-0 Word-1 Value 29 ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx 30 ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx 31 ** 32 ** 33 ** BOM or Byte Order Mark: 34 ** 0xff 0xfe little-endian utf-16 follows 35 ** 0xfe 0xff big-endian utf-16 follows 36 ** 37 */ 38 #include "sqliteInt.h" 39 #include <assert.h> 40 #include "vdbeInt.h" 41 42 #ifndef SQLITE_AMALGAMATION 43 /* 44 ** The following constant value is used by the SQLITE_BIGENDIAN and 45 ** SQLITE_LITTLEENDIAN macros. 46 */ 47 const int sqlite3one = 1; 48 #endif /* SQLITE_AMALGAMATION */ 49 50 /* 51 ** This lookup table is used to help decode the first byte of 52 ** a multi-byte UTF8 character. 53 */ 54 static const unsigned char sqlite3Utf8Trans1[] = { 55 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 56 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 57 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 58 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 59 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 60 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 61 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 62 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, 63 }; 64 65 66 #define WRITE_UTF8(zOut, c) { \ 67 if( c<0x00080 ){ \ 68 *zOut++ = (u8)(c&0xFF); \ 69 } \ 70 else if( c<0x00800 ){ \ 71 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ 72 *zOut++ = 0x80 + (u8)(c & 0x3F); \ 73 } \ 74 else if( c<0x10000 ){ \ 75 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ 76 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ 77 *zOut++ = 0x80 + (u8)(c & 0x3F); \ 78 }else{ \ 79 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ 80 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ 81 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ 82 *zOut++ = 0x80 + (u8)(c & 0x3F); \ 83 } \ 84 } 85 86 #define WRITE_UTF16LE(zOut, c) { \ 87 if( c<=0xFFFF ){ \ 88 *zOut++ = (u8)(c&0x00FF); \ 89 *zOut++ = (u8)((c>>8)&0x00FF); \ 90 }else{ \ 91 *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ 92 *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ 93 *zOut++ = (u8)(c&0x00FF); \ 94 *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ 95 } \ 96 } 97 98 #define WRITE_UTF16BE(zOut, c) { \ 99 if( c<=0xFFFF ){ \ 100 *zOut++ = (u8)((c>>8)&0x00FF); \ 101 *zOut++ = (u8)(c&0x00FF); \ 102 }else{ \ 103 *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ 104 *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ 105 *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ 106 *zOut++ = (u8)(c&0x00FF); \ 107 } \ 108 } 109 110 #define READ_UTF16LE(zIn, c){ \ 111 c = (*zIn++); \ 112 c += ((*zIn++)<<8); \ 113 if( c>=0xD800 && c<0xE000 ){ \ 114 int c2 = (*zIn++); \ 115 c2 += ((*zIn++)<<8); \ 116 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ 117 if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \ 118 } \ 119 } 120 121 #define READ_UTF16BE(zIn, c){ \ 122 c = ((*zIn++)<<8); \ 123 c += (*zIn++); \ 124 if( c>=0xD800 && c<0xE000 ){ \ 125 int c2 = ((*zIn++)<<8); \ 126 c2 += (*zIn++); \ 127 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ 128 if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \ 129 } \ 130 } 131 132 /* 133 ** Translate a single UTF-8 character. Return the unicode value. 134 ** 135 ** During translation, assume that the byte that zTerm points 136 ** is a 0x00. 137 ** 138 ** Write a pointer to the next unread byte back into *pzNext. 139 ** 140 ** Notes On Invalid UTF-8: 141 ** 142 ** * This routine never allows a 7-bit character (0x00 through 0x7f) to 143 ** be encoded as a multi-byte character. Any multi-byte character that 144 ** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. 145 ** 146 ** * This routine never allows a UTF16 surrogate value to be encoded. 147 ** If a multi-byte character attempts to encode a value between 148 ** 0xd800 and 0xe000 then it is rendered as 0xfffd. 149 ** 150 ** * Bytes in the range of 0x80 through 0xbf which occur as the first 151 ** byte of a character are interpreted as single-byte characters 152 ** and rendered as themselves even though they are technically 153 ** invalid characters. 154 ** 155 ** * This routine accepts an infinite number of different UTF8 encodings 156 ** for unicode values 0x80 and greater. It do not change over-length 157 ** encodings to 0xfffd as some systems recommend. 158 */ 159 #define READ_UTF8(zIn, zTerm, c) \ 160 c = *(zIn++); \ 161 if( c>=0xc0 ){ \ 162 c = sqlite3Utf8Trans1[c-0xc0]; \ 163 while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ 164 c = (c<<6) + (0x3f & *(zIn++)); \ 165 } \ 166 if( c<0x80 \ 167 || (c&0xFFFFF800)==0xD800 \ 168 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ 169 } 170 int sqlite3Utf8Read( 171 const unsigned char *z, /* First byte of UTF-8 character */ 172 const unsigned char *zTerm, /* Pretend this byte is 0x00 */ 173 const unsigned char **pzNext /* Write first byte past UTF-8 char here */ 174 ){ 175 int c; 176 READ_UTF8(z, zTerm, c); 177 *pzNext = z; 178 return c; 179 } 180 181 182 183 184 /* 185 ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is 186 ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). 187 */ 188 /* #define TRANSLATE_TRACE 1 */ 189 190 #ifndef SQLITE_OMIT_UTF16 191 /* 192 ** This routine transforms the internal text encoding used by pMem to 193 ** desiredEnc. It is an error if the string is already of the desired 194 ** encoding, or if *pMem does not contain a string value. 195 */ 196 int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ 197 int len; /* Maximum length of output string in bytes */ 198 unsigned char *zOut; /* Output buffer */ 199 unsigned char *zIn; /* Input iterator */ 200 unsigned char *zTerm; /* End of input */ 201 unsigned char *z; /* Output iterator */ 202 unsigned int c; 203 204 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 205 assert( pMem->flags&MEM_Str ); 206 assert( pMem->enc!=desiredEnc ); 207 assert( pMem->enc!=0 ); 208 assert( pMem->n>=0 ); 209 210 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) 211 { 212 char zBuf[100]; 213 sqlite3VdbeMemPrettyPrint(pMem, zBuf); 214 fprintf(stderr, "INPUT: %s\n", zBuf); 215 } 216 #endif 217 218 /* If the translation is between UTF-16 little and big endian, then 219 ** all that is required is to swap the byte order. This case is handled 220 ** differently from the others. 221 */ 222 if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ 223 u8 temp; 224 int rc; 225 rc = sqlite3VdbeMemMakeWriteable(pMem); 226 if( rc!=SQLITE_OK ){ 227 assert( rc==SQLITE_NOMEM ); 228 return SQLITE_NOMEM; 229 } 230 zIn = (u8*)pMem->z; 231 zTerm = &zIn[pMem->n&~1]; 232 while( zIn<zTerm ){ 233 temp = *zIn; 234 *zIn = *(zIn+1); 235 zIn++; 236 *zIn++ = temp; 237 } 238 pMem->enc = desiredEnc; 239 goto translate_out; 240 } 241 242 /* Set len to the maximum number of bytes required in the output buffer. */ 243 if( desiredEnc==SQLITE_UTF8 ){ 244 /* When converting from UTF-16, the maximum growth results from 245 ** translating a 2-byte character to a 4-byte UTF-8 character. 246 ** A single byte is required for the output string 247 ** nul-terminator. 248 */ 249 pMem->n &= ~1; 250 len = pMem->n * 2 + 1; 251 }else{ 252 /* When converting from UTF-8 to UTF-16 the maximum growth is caused 253 ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 254 ** character. Two bytes are required in the output buffer for the 255 ** nul-terminator. 256 */ 257 len = pMem->n * 2 + 2; 258 } 259 260 /* Set zIn to point at the start of the input buffer and zTerm to point 1 261 ** byte past the end. 262 ** 263 ** Variable zOut is set to point at the output buffer, space obtained 264 ** from sqlite3_malloc(). 265 */ 266 zIn = (u8*)pMem->z; 267 zTerm = &zIn[pMem->n]; 268 zOut = sqlite3DbMallocRaw(pMem->db, len); 269 if( !zOut ){ 270 return SQLITE_NOMEM; 271 } 272 z = zOut; 273 274 if( pMem->enc==SQLITE_UTF8 ){ 275 if( desiredEnc==SQLITE_UTF16LE ){ 276 /* UTF-8 -> UTF-16 Little-endian */ 277 while( zIn<zTerm ){ 278 /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */ 279 READ_UTF8(zIn, zTerm, c); 280 WRITE_UTF16LE(z, c); 281 } 282 }else{ 283 assert( desiredEnc==SQLITE_UTF16BE ); 284 /* UTF-8 -> UTF-16 Big-endian */ 285 while( zIn<zTerm ){ 286 /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */ 287 READ_UTF8(zIn, zTerm, c); 288 WRITE_UTF16BE(z, c); 289 } 290 } 291 pMem->n = (int)(z - zOut); 292 *z++ = 0; 293 }else{ 294 assert( desiredEnc==SQLITE_UTF8 ); 295 if( pMem->enc==SQLITE_UTF16LE ){ 296 /* UTF-16 Little-endian -> UTF-8 */ 297 while( zIn<zTerm ){ 298 READ_UTF16LE(zIn, c); 299 WRITE_UTF8(z, c); 300 } 301 }else{ 302 /* UTF-16 Big-endian -> UTF-8 */ 303 while( zIn<zTerm ){ 304 READ_UTF16BE(zIn, c); 305 WRITE_UTF8(z, c); 306 } 307 } 308 pMem->n = (int)(z - zOut); 309 } 310 *z = 0; 311 assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); 312 313 sqlite3VdbeMemRelease(pMem); 314 pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); 315 pMem->enc = desiredEnc; 316 pMem->flags |= (MEM_Term|MEM_Dyn); 317 pMem->z = (char*)zOut; 318 pMem->zMalloc = pMem->z; 319 320 translate_out: 321 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) 322 { 323 char zBuf[100]; 324 sqlite3VdbeMemPrettyPrint(pMem, zBuf); 325 fprintf(stderr, "OUTPUT: %s\n", zBuf); 326 } 327 #endif 328 return SQLITE_OK; 329 } 330 331 /* 332 ** This routine checks for a byte-order mark at the beginning of the 333 ** UTF-16 string stored in *pMem. If one is present, it is removed and 334 ** the encoding of the Mem adjusted. This routine does not do any 335 ** byte-swapping, it just sets Mem.enc appropriately. 336 ** 337 ** The allocation (static, dynamic etc.) and encoding of the Mem may be 338 ** changed by this function. 339 */ 340 int sqlite3VdbeMemHandleBom(Mem *pMem){ 341 int rc = SQLITE_OK; 342 u8 bom = 0; 343 344 if( pMem->n<0 || pMem->n>1 ){ 345 u8 b1 = *(u8 *)pMem->z; 346 u8 b2 = *(((u8 *)pMem->z) + 1); 347 if( b1==0xFE && b2==0xFF ){ 348 bom = SQLITE_UTF16BE; 349 } 350 if( b1==0xFF && b2==0xFE ){ 351 bom = SQLITE_UTF16LE; 352 } 353 } 354 355 if( bom ){ 356 rc = sqlite3VdbeMemMakeWriteable(pMem); 357 if( rc==SQLITE_OK ){ 358 pMem->n -= 2; 359 memmove(pMem->z, &pMem->z[2], pMem->n); 360 pMem->z[pMem->n] = '\0'; 361 pMem->z[pMem->n+1] = '\0'; 362 pMem->flags |= MEM_Term; 363 pMem->enc = bom; 364 } 365 } 366 return rc; 367 } 368 #endif /* SQLITE_OMIT_UTF16 */ 369 370 /* 371 ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, 372 ** return the number of unicode characters in pZ up to (but not including) 373 ** the first 0x00 byte. If nByte is not less than zero, return the 374 ** number of unicode characters in the first nByte of pZ (or up to 375 ** the first 0x00, whichever comes first). 376 */ 377 int sqlite3Utf8CharLen(const char *zIn, int nByte){ 378 int r = 0; 379 const u8 *z = (const u8*)zIn; 380 const u8 *zTerm; 381 if( nByte>=0 ){ 382 zTerm = &z[nByte]; 383 }else{ 384 zTerm = (const u8*)(-1); 385 } 386 assert( z<=zTerm ); 387 while( *z!=0 && z<zTerm ){ 388 SQLITE_SKIP_UTF8(z); 389 r++; 390 } 391 return r; 392 } 393 394 /* This test function is not currently used by the automated test-suite. 395 ** Hence it is only available in debug builds. 396 */ 397 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 398 /* 399 ** Translate UTF-8 to UTF-8. 400 ** 401 ** This has the effect of making sure that the string is well-formed 402 ** UTF-8. Miscoded characters are removed. 403 ** 404 ** The translation is done in-place (since it is impossible for the 405 ** correct UTF-8 encoding to be longer than a malformed encoding). 406 */ 407 int sqlite3Utf8To8(unsigned char *zIn){ 408 unsigned char *zOut = zIn; 409 unsigned char *zStart = zIn; 410 unsigned char *zTerm = &zIn[sqlite3Strlen30((char *)zIn)]; 411 u32 c; 412 413 while( zIn[0] ){ 414 c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); 415 if( c!=0xfffd ){ 416 WRITE_UTF8(zOut, c); 417 } 418 } 419 *zOut = 0; 420 return zOut - zStart; 421 } 422 #endif 423 424 #ifndef SQLITE_OMIT_UTF16 425 /* 426 ** Convert a UTF-16 string in the native encoding into a UTF-8 string. 427 ** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must 428 ** be freed by the calling function. 429 ** 430 ** NULL is returned if there is an allocation error. 431 */ 432 char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){ 433 Mem m; 434 memset(&m, 0, sizeof(m)); 435 m.db = db; 436 sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC); 437 sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); 438 if( db->mallocFailed ){ 439 sqlite3VdbeMemRelease(&m); 440 m.z = 0; 441 } 442 assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); 443 assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); 444 return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z); 445 } 446 447 /* 448 ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero, 449 ** return the number of bytes up to (but not including), the first pair 450 ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero, 451 ** then return the number of bytes in the first nChar unicode characters 452 ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first). 453 */ 454 int sqlite3Utf16ByteLen(const void *zIn, int nChar){ 455 unsigned int c = 1; 456 char const *z = zIn; 457 int n = 0; 458 if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ 459 /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here 460 ** and in other parts of this file means that at one branch will 461 ** not be covered by coverage testing on any single host. But coverage 462 ** will be complete if the tests are run on both a little-endian and 463 ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE 464 ** macros are constant at compile time the compiler can determine 465 ** which branch will be followed. It is therefore assumed that no runtime 466 ** penalty is paid for this "if" statement. 467 */ 468 while( c && ((nChar<0) || n<nChar) ){ 469 READ_UTF16BE(z, c); 470 n++; 471 } 472 }else{ 473 while( c && ((nChar<0) || n<nChar) ){ 474 READ_UTF16LE(z, c); 475 n++; 476 } 477 } 478 return (int)(z-(char const *)zIn)-((c==0)?2:0); 479 } 480 481 #if defined(SQLITE_TEST) 482 /* 483 ** This routine is called from the TCL test function "translate_selftest". 484 ** It checks that the primitives for serializing and deserializing 485 ** characters in each encoding are inverses of each other. 486 */ 487 void sqlite3UtfSelfTest(void){ 488 unsigned int i, t; 489 unsigned char zBuf[20]; 490 unsigned char *z; 491 unsigned char *zTerm; 492 int n; 493 unsigned int c; 494 495 for(i=0; i<0x00110000; i++){ 496 z = zBuf; 497 WRITE_UTF8(z, i); 498 n = (int)(z-zBuf); 499 assert( n>0 && n<=4 ); 500 z[0] = 0; 501 zTerm = z; 502 z = zBuf; 503 c = sqlite3Utf8Read(z, zTerm, (const u8**)&z); 504 t = i; 505 if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD; 506 if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD; 507 assert( c==t ); 508 assert( (z-zBuf)==n ); 509 } 510 for(i=0; i<0x00110000; i++){ 511 if( i>=0xD800 && i<0xE000 ) continue; 512 z = zBuf; 513 WRITE_UTF16LE(z, i); 514 n = (int)(z-zBuf); 515 assert( n>0 && n<=4 ); 516 z[0] = 0; 517 z = zBuf; 518 READ_UTF16LE(z, c); 519 assert( c==i ); 520 assert( (z-zBuf)==n ); 521 } 522 for(i=0; i<0x00110000; i++){ 523 if( i>=0xD800 && i<0xE000 ) continue; 524 z = zBuf; 525 WRITE_UTF16BE(z, i); 526 n = (int)(z-zBuf); 527 assert( n>0 && n<=4 ); 528 z[0] = 0; 529 z = zBuf; 530 READ_UTF16BE(z, c); 531 assert( c==i ); 532 assert( (z-zBuf)==n ); 533 } 534 } 535 #endif /* SQLITE_TEST */ 536 #endif /* SQLITE_OMIT_UTF16 */ 537