xref: /sqlite-3.40.0/src/utf.c (revision 74217cc0)
1 /*
2 ** 2004 April 13
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used to translate between UTF-8,
13 ** UTF-16, UTF-16BE, and UTF-16LE.
14 **
15 ** $Id: utf.c,v 1.32 2005/01/28 01:29:08 drh Exp $
16 **
17 ** Notes on UTF-8:
18 **
19 **   Byte-0    Byte-1    Byte-2    Byte-3    Value
20 **  0xxxxxxx                                 00000000 00000000 0xxxxxxx
21 **  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
22 **  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx
23 **  11110uuu  10uuzzzz  10yyyyyy  10xxxxxx   000uuuuu zzzzyyyy yyxxxxxx
24 **
25 **
26 ** Notes on UTF-16:  (with wwww+1==uuuuu)
27 **
28 **      Word-0               Word-1          Value
29 **  110110ww wwzzzzyy   110111yy yyxxxxxx    000uuuuu zzzzyyyy yyxxxxxx
30 **  zzzzyyyy yyxxxxxx                        00000000 zzzzyyyy yyxxxxxx
31 **
32 **
33 ** BOM or Byte Order Mark:
34 **     0xff 0xfe   little-endian utf-16 follows
35 **     0xfe 0xff   big-endian utf-16 follows
36 **
37 **
38 ** Handling of malformed strings:
39 **
40 ** SQLite accepts and processes malformed strings without an error wherever
41 ** possible. However this is not possible when converting between UTF-8 and
42 ** UTF-16.
43 **
44 ** When converting malformed UTF-8 strings to UTF-16, one instance of the
45 ** replacement character U+FFFD for each byte that cannot be interpeted as
46 ** part of a valid unicode character.
47 **
48 ** When converting malformed UTF-16 strings to UTF-8, one instance of the
49 ** replacement character U+FFFD for each pair of bytes that cannot be
50 ** interpeted as part of a valid unicode character.
51 **
52 ** This file contains the following public routines:
53 **
54 ** sqlite3VdbeMemTranslate() - Translate the encoding used by a Mem* string.
55 ** sqlite3VdbeMemHandleBom() - Handle byte-order-marks in UTF16 Mem* strings.
56 ** sqlite3utf16ByteLen()     - Calculate byte-length of a void* UTF16 string.
57 ** sqlite3utf8CharLen()      - Calculate char-length of a char* UTF8 string.
58 ** sqlite3utf8LikeCompare()  - Do a LIKE match given two UTF8 char* strings.
59 **
60 */
61 #include "sqliteInt.h"
62 #include <assert.h>
63 #include "vdbeInt.h"
64 
65 /*
66 ** This table maps from the first byte of a UTF-8 character to the number
67 ** of trailing bytes expected. A value '255' indicates that the table key
68 ** is not a legal first byte for a UTF-8 character.
69 */
70 static const u8 xtra_utf8_bytes[256]  = {
71 /* 0xxxxxxx */
72 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
73 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
74 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
75 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
76 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
77 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
78 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
79 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
80 
81 /* 10wwwwww */
82 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
83 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
84 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
85 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
86 
87 /* 110yyyyy */
88 1, 1, 1, 1, 1, 1, 1, 1,     1, 1, 1, 1, 1, 1, 1, 1,
89 1, 1, 1, 1, 1, 1, 1, 1,     1, 1, 1, 1, 1, 1, 1, 1,
90 
91 /* 1110zzzz */
92 2, 2, 2, 2, 2, 2, 2, 2,     2, 2, 2, 2, 2, 2, 2, 2,
93 
94 /* 11110yyy */
95 3, 3, 3, 3, 3, 3, 3, 3,     255, 255, 255, 255, 255, 255, 255, 255,
96 };
97 
98 /*
99 ** This table maps from the number of trailing bytes in a UTF-8 character
100 ** to an integer constant that is effectively calculated for each character
101 ** read by a naive implementation of a UTF-8 character reader. The code
102 ** in the READ_UTF8 macro explains things best.
103 */
104 static const int xtra_utf8_bits[4] =  {
105 0,
106 12416,          /* (0xC0 << 6) + (0x80) */
107 925824,         /* (0xE0 << 12) + (0x80 << 6) + (0x80) */
108 63447168        /* (0xF0 << 18) + (0x80 << 12) + (0x80 << 6) + 0x80 */
109 };
110 
111 #define READ_UTF8(zIn, c) { \
112   int xtra;                                            \
113   c = *(zIn)++;                                        \
114   xtra = xtra_utf8_bytes[c];                           \
115   switch( xtra ){                                      \
116     case 255: c = (int)0xFFFD; break;                  \
117     case 3: c = (c<<6) + *(zIn)++;                     \
118     case 2: c = (c<<6) + *(zIn)++;                     \
119     case 1: c = (c<<6) + *(zIn)++;                     \
120     c -= xtra_utf8_bits[xtra];                         \
121   }                                                    \
122 }
123 int sqlite3ReadUtf8(const unsigned char *z){
124   int c;
125   READ_UTF8(z, c);
126   return c;
127 }
128 
129 #define SKIP_UTF8(zIn) {                               \
130   zIn += (xtra_utf8_bytes[*(u8 *)zIn] + 1);            \
131 }
132 
133 #define WRITE_UTF8(zOut, c) {                          \
134   if( c<0x00080 ){                                     \
135     *zOut++ = (c&0xFF);                                \
136   }                                                    \
137   else if( c<0x00800 ){                                \
138     *zOut++ = 0xC0 + ((c>>6)&0x1F);                    \
139     *zOut++ = 0x80 + (c & 0x3F);                       \
140   }                                                    \
141   else if( c<0x10000 ){                                \
142     *zOut++ = 0xE0 + ((c>>12)&0x0F);                   \
143     *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
144     *zOut++ = 0x80 + (c & 0x3F);                       \
145   }else{                                               \
146     *zOut++ = 0xF0 + ((c>>18) & 0x07);                 \
147     *zOut++ = 0x80 + ((c>>12) & 0x3F);                 \
148     *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
149     *zOut++ = 0x80 + (c & 0x3F);                       \
150   }                                                    \
151 }
152 
153 #define WRITE_UTF16LE(zOut, c) {                                \
154   if( c<=0xFFFF ){                                              \
155     *zOut++ = (c&0x00FF);                                       \
156     *zOut++ = ((c>>8)&0x00FF);                                  \
157   }else{                                                        \
158     *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
159     *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
160     *zOut++ = (c&0x00FF);                                       \
161     *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
162   }                                                             \
163 }
164 
165 #define WRITE_UTF16BE(zOut, c) {                                \
166   if( c<=0xFFFF ){                                              \
167     *zOut++ = ((c>>8)&0x00FF);                                  \
168     *zOut++ = (c&0x00FF);                                       \
169   }else{                                                        \
170     *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
171     *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
172     *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
173     *zOut++ = (c&0x00FF);                                       \
174   }                                                             \
175 }
176 
177 #define READ_UTF16LE(zIn, c){                                         \
178   c = (*zIn++);                                                       \
179   c += ((*zIn++)<<8);                                                 \
180   if( c>=0xD800 && c<=0xE000 ){                                       \
181     int c2 = (*zIn++);                                                \
182     c2 += ((*zIn++)<<8);                                              \
183     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
184   }                                                                   \
185 }
186 
187 #define READ_UTF16BE(zIn, c){                                         \
188   c = ((*zIn++)<<8);                                                  \
189   c += (*zIn++);                                                      \
190   if( c>=0xD800 && c<=0xE000 ){                                       \
191     int c2 = ((*zIn++)<<8);                                           \
192     c2 += (*zIn++);                                                   \
193     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
194   }                                                                   \
195 }
196 
197 #define SKIP_UTF16BE(zIn){                                            \
198   if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){  \
199     zIn += 4;                                                         \
200   }else{                                                              \
201     zIn += 2;                                                         \
202   }                                                                   \
203 }
204 #define SKIP_UTF16LE(zIn){                                            \
205   zIn++;                                                              \
206   if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){  \
207     zIn += 3;                                                         \
208   }else{                                                              \
209     zIn += 1;                                                         \
210   }                                                                   \
211 }
212 
213 #define RSKIP_UTF16LE(zIn){                                            \
214   if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){  \
215     zIn -= 4;                                                         \
216   }else{                                                              \
217     zIn -= 2;                                                         \
218   }                                                                   \
219 }
220 #define RSKIP_UTF16BE(zIn){                                            \
221   zIn--;                                                              \
222   if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){  \
223     zIn -= 3;                                                         \
224   }else{                                                              \
225     zIn -= 1;                                                         \
226   }                                                                   \
227 }
228 
229 /*
230 ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
231 ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
232 */
233 /* #define TRANSLATE_TRACE 1 */
234 
235 #ifndef SQLITE_OMIT_UTF16
236 /*
237 ** This routine transforms the internal text encoding used by pMem to
238 ** desiredEnc. It is an error if the string is already of the desired
239 ** encoding, or if *pMem does not contain a string value.
240 */
241 int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
242   unsigned char zShort[NBFS]; /* Temporary short output buffer */
243   int len;                    /* Maximum length of output string in bytes */
244   unsigned char *zOut;                  /* Output buffer */
245   unsigned char *zIn;                   /* Input iterator */
246   unsigned char *zTerm;                 /* End of input */
247   unsigned char *z;                     /* Output iterator */
248   int c;
249 
250   assert( pMem->flags&MEM_Str );
251   assert( pMem->enc!=desiredEnc );
252   assert( pMem->enc!=0 );
253   assert( pMem->n>=0 );
254 
255 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
256   {
257     char zBuf[100];
258     sqlite3VdbeMemPrettyPrint(pMem, zBuf, 100);
259     fprintf(stderr, "INPUT:  %s\n", zBuf);
260   }
261 #endif
262 
263   /* If the translation is between UTF-16 little and big endian, then
264   ** all that is required is to swap the byte order. This case is handled
265   ** differently from the others.
266   */
267   if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
268     u8 temp;
269     int rc;
270     rc = sqlite3VdbeMemMakeWriteable(pMem);
271     if( rc!=SQLITE_OK ){
272       assert( rc==SQLITE_NOMEM );
273       return SQLITE_NOMEM;
274     }
275     zIn = pMem->z;
276     zTerm = &zIn[pMem->n];
277     while( zIn<zTerm ){
278       temp = *zIn;
279       *zIn = *(zIn+1);
280       zIn++;
281       *zIn++ = temp;
282     }
283     pMem->enc = desiredEnc;
284     goto translate_out;
285   }
286 
287   /* Set len to the maximum number of bytes required in the output buffer. */
288   if( desiredEnc==SQLITE_UTF8 ){
289     /* When converting from UTF-16, the maximum growth results from
290     ** translating a 2-byte character to a 3-byte UTF-8 character (i.e.
291     ** code-point 0xFFFC). A single byte is required for the output string
292     ** nul-terminator.
293     */
294     len = (pMem->n/2) * 3 + 1;
295   }else{
296     /* When converting from UTF-8 to UTF-16 the maximum growth is caused
297     ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
298     ** character. Two bytes are required in the output buffer for the
299     ** nul-terminator.
300     */
301     len = pMem->n * 2 + 2;
302   }
303 
304   /* Set zIn to point at the start of the input buffer and zTerm to point 1
305   ** byte past the end.
306   **
307   ** Variable zOut is set to point at the output buffer. This may be space
308   ** obtained from malloc(), or Mem.zShort, if it large enough and not in
309   ** use, or the zShort array on the stack (see above).
310   */
311   zIn = pMem->z;
312   zTerm = &zIn[pMem->n];
313   if( len>NBFS ){
314     zOut = sqliteMallocRaw(len);
315     if( !zOut ) return SQLITE_NOMEM;
316   }else{
317     zOut = zShort;
318   }
319   z = zOut;
320 
321   if( pMem->enc==SQLITE_UTF8 ){
322     if( desiredEnc==SQLITE_UTF16LE ){
323       /* UTF-8 -> UTF-16 Little-endian */
324       while( zIn<zTerm ){
325         READ_UTF8(zIn, c);
326         WRITE_UTF16LE(z, c);
327       }
328     }else{
329       assert( desiredEnc==SQLITE_UTF16BE );
330       /* UTF-8 -> UTF-16 Big-endian */
331       while( zIn<zTerm ){
332         READ_UTF8(zIn, c);
333         WRITE_UTF16BE(z, c);
334       }
335     }
336     pMem->n = z - zOut;
337     *z++ = 0;
338   }else{
339     assert( desiredEnc==SQLITE_UTF8 );
340     if( pMem->enc==SQLITE_UTF16LE ){
341       /* UTF-16 Little-endian -> UTF-8 */
342       while( zIn<zTerm ){
343         READ_UTF16LE(zIn, c);
344         WRITE_UTF8(z, c);
345       }
346     }else{
347       /* UTF-16 Little-endian -> UTF-8 */
348       while( zIn<zTerm ){
349         READ_UTF16BE(zIn, c);
350         WRITE_UTF8(z, c);
351       }
352     }
353     pMem->n = z - zOut;
354   }
355   *z = 0;
356   assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
357 
358   sqlite3VdbeMemRelease(pMem);
359   pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
360   pMem->enc = desiredEnc;
361   if( zOut==zShort ){
362     memcpy(pMem->zShort, zOut, len);
363     zOut = pMem->zShort;
364     pMem->flags |= (MEM_Term|MEM_Short);
365   }else{
366     pMem->flags |= (MEM_Term|MEM_Dyn);
367   }
368   pMem->z = zOut;
369 
370 translate_out:
371 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
372   {
373     char zBuf[100];
374     sqlite3VdbeMemPrettyPrint(pMem, zBuf, 100);
375     fprintf(stderr, "OUTPUT: %s\n", zBuf);
376   }
377 #endif
378   return SQLITE_OK;
379 }
380 
381 /*
382 ** This routine checks for a byte-order mark at the beginning of the
383 ** UTF-16 string stored in *pMem. If one is present, it is removed and
384 ** the encoding of the Mem adjusted. This routine does not do any
385 ** byte-swapping, it just sets Mem.enc appropriately.
386 **
387 ** The allocation (static, dynamic etc.) and encoding of the Mem may be
388 ** changed by this function.
389 */
390 int sqlite3VdbeMemHandleBom(Mem *pMem){
391   int rc = SQLITE_OK;
392   u8 bom = 0;
393 
394   if( pMem->n<0 || pMem->n>1 ){
395     u8 b1 = *(u8 *)pMem->z;
396     u8 b2 = *(((u8 *)pMem->z) + 1);
397     if( b1==0xFE && b2==0xFF ){
398       bom = SQLITE_UTF16BE;
399     }
400     if( b1==0xFF && b2==0xFE ){
401       bom = SQLITE_UTF16LE;
402     }
403   }
404 
405   if( bom ){
406     /* This function is called as soon as a string is stored in a Mem*,
407     ** from within sqlite3VdbeMemSetStr(). At that point it is not possible
408     ** for the string to be stored in Mem.zShort, or for it to be stored
409     ** in dynamic memory with no destructor.
410     */
411     assert( !(pMem->flags&MEM_Short) );
412     assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
413     if( pMem->flags & MEM_Dyn ){
414       void (*xDel)(void*) = pMem->xDel;
415       char *z = pMem->z;
416       pMem->z = 0;
417       pMem->xDel = 0;
418       rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT);
419       xDel(z);
420     }else{
421       rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom,
422           SQLITE_TRANSIENT);
423     }
424   }
425   return rc;
426 }
427 #endif /* SQLITE_OMIT_UTF16 */
428 
429 /*
430 ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
431 ** return the number of unicode characters in pZ up to (but not including)
432 ** the first 0x00 byte. If nByte is not less than zero, return the
433 ** number of unicode characters in the first nByte of pZ (or up to
434 ** the first 0x00, whichever comes first).
435 */
436 int sqlite3utf8CharLen(const char *z, int nByte){
437   int r = 0;
438   const char *zTerm;
439   if( nByte>=0 ){
440     zTerm = &z[nByte];
441   }else{
442     zTerm = (const char *)(-1);
443   }
444   assert( z<=zTerm );
445   while( *z!=0 && z<zTerm ){
446     SKIP_UTF8(z);
447     r++;
448   }
449   return r;
450 }
451 
452 #ifndef SQLITE_OMIT_UTF16
453 /*
454 ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
455 ** return the number of bytes up to (but not including), the first pair
456 ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
457 ** then return the number of bytes in the first nChar unicode characters
458 ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
459 */
460 int sqlite3utf16ByteLen(const void *zIn, int nChar){
461   int c = 1;
462   char const *z = zIn;
463   int n = 0;
464   if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
465     while( c && ((nChar<0) || n<nChar) ){
466       READ_UTF16BE(z, c);
467       n++;
468     }
469   }else{
470     while( c && ((nChar<0) || n<nChar) ){
471       READ_UTF16LE(z, c);
472       n++;
473     }
474   }
475   return (z-(char const *)zIn)-((c==0)?2:0);
476 }
477 
478 /*
479 ** UTF-16 implementation of the substr()
480 */
481 void sqlite3utf16Substr(
482   sqlite3_context *context,
483   int argc,
484   sqlite3_value **argv
485 ){
486   int y, z;
487   unsigned char const *zStr;
488   unsigned char const *zStrEnd;
489   unsigned char const *zStart;
490   unsigned char const *zEnd;
491   int i;
492 
493   zStr = (unsigned char const *)sqlite3_value_text16(argv[0]);
494   zStrEnd = &zStr[sqlite3_value_bytes16(argv[0])];
495   y = sqlite3_value_int(argv[1]);
496   z = sqlite3_value_int(argv[2]);
497 
498   if( y>0 ){
499     y = y-1;
500     zStart = zStr;
501     if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
502       for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16BE(zStart);
503     }else{
504       for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16LE(zStart);
505     }
506   }else{
507     zStart = zStrEnd;
508     if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
509       for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16BE(zStart);
510     }else{
511       for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16LE(zStart);
512     }
513     for(; i<0; i++) z -= 1;
514   }
515 
516   zEnd = zStart;
517   if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
518     for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16BE(zEnd);
519   }else{
520     for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16LE(zEnd);
521   }
522 
523   sqlite3_result_text16(context, zStart, zEnd-zStart, SQLITE_TRANSIENT);
524 }
525 
526 #if defined(SQLITE_TEST)
527 /*
528 ** This routine is called from the TCL test function "translate_selftest".
529 ** It checks that the primitives for serializing and deserializing
530 ** characters in each encoding are inverses of each other.
531 */
532 void sqlite3utfSelfTest(){
533   int i;
534   unsigned char zBuf[20];
535   unsigned char *z;
536   int n;
537   int c;
538 
539   for(i=0; i<0x00110000; i++){
540     z = zBuf;
541     WRITE_UTF8(z, i);
542     n = z-zBuf;
543     z = zBuf;
544     READ_UTF8(z, c);
545     assert( c==i );
546     assert( (z-zBuf)==n );
547   }
548   for(i=0; i<0x00110000; i++){
549     if( i>=0xD800 && i<=0xE000 ) continue;
550     z = zBuf;
551     WRITE_UTF16LE(z, i);
552     n = z-zBuf;
553     z = zBuf;
554     READ_UTF16LE(z, c);
555     assert( c==i );
556     assert( (z-zBuf)==n );
557   }
558   for(i=0; i<0x00110000; i++){
559     if( i>=0xD800 && i<=0xE000 ) continue;
560     z = zBuf;
561     WRITE_UTF16BE(z, i);
562     n = z-zBuf;
563     z = zBuf;
564     READ_UTF16BE(z, c);
565     assert( c==i );
566     assert( (z-zBuf)==n );
567   }
568 }
569 #endif /* SQLITE_TEST */
570 #endif /* SQLITE_OMIT_UTF16 */
571