1 /* 2 ** 2010 August 28 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Code for testing all sorts of SQLite interfaces. This code 13 ** is not included in the SQLite library. 14 */ 15 16 #include <sqlite3.h> 17 #include <tcl.h> 18 19 /* Solely for the UNUSED_PARAMETER() macro. */ 20 #include "sqliteInt.h" 21 22 #ifdef SQLITE_ENABLE_RTREE 23 /* 24 ** Type used to cache parameter information for the "circle" r-tree geometry 25 ** callback. 26 */ 27 typedef struct Circle Circle; 28 struct Circle { 29 struct Box { 30 double xmin; 31 double xmax; 32 double ymin; 33 double ymax; 34 } aBox[2]; 35 double centerx; 36 double centery; 37 double radius; 38 double mxArea; 39 int eScoreType; 40 }; 41 42 /* 43 ** Destructor function for Circle objects allocated by circle_geom(). 44 */ 45 static void circle_del(void *p){ 46 sqlite3_free(p); 47 } 48 49 /* 50 ** Implementation of "circle" r-tree geometry callback. 51 */ 52 static int circle_geom( 53 sqlite3_rtree_geometry *p, 54 int nCoord, 55 sqlite3_rtree_dbl *aCoord, 56 int *pRes 57 ){ 58 int i; /* Iterator variable */ 59 Circle *pCircle; /* Structure defining circular region */ 60 double xmin, xmax; /* X dimensions of box being tested */ 61 double ymin, ymax; /* X dimensions of box being tested */ 62 63 xmin = aCoord[0]; 64 xmax = aCoord[1]; 65 ymin = aCoord[2]; 66 ymax = aCoord[3]; 67 pCircle = (Circle *)p->pUser; 68 if( pCircle==0 ){ 69 /* If pUser is still 0, then the parameter values have not been tested 70 ** for correctness or stored into a Circle structure yet. Do this now. */ 71 72 /* This geometry callback is for use with a 2-dimensional r-tree table. 73 ** Return an error if the table does not have exactly 2 dimensions. */ 74 if( nCoord!=4 ) return SQLITE_ERROR; 75 76 /* Test that the correct number of parameters (3) have been supplied, 77 ** and that the parameters are in range (that the radius of the circle 78 ** radius is greater than zero). */ 79 if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR; 80 81 /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM 82 ** if the allocation fails. */ 83 pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); 84 if( !pCircle ) return SQLITE_NOMEM; 85 p->xDelUser = circle_del; 86 87 /* Record the center and radius of the circular region. One way that 88 ** tested bounding boxes that intersect the circular region are detected 89 ** is by testing if each corner of the bounding box lies within radius 90 ** units of the center of the circle. */ 91 pCircle->centerx = p->aParam[0]; 92 pCircle->centery = p->aParam[1]; 93 pCircle->radius = p->aParam[2]; 94 95 /* Define two bounding box regions. The first, aBox[0], extends to 96 ** infinity in the X dimension. It covers the same range of the Y dimension 97 ** as the circular region. The second, aBox[1], extends to infinity in 98 ** the Y dimension and is constrained to the range of the circle in the 99 ** X dimension. 100 ** 101 ** Then imagine each box is split in half along its short axis by a line 102 ** that intersects the center of the circular region. A bounding box 103 ** being tested can be said to intersect the circular region if it contains 104 ** points from each half of either of the two infinite bounding boxes. 105 */ 106 pCircle->aBox[0].xmin = pCircle->centerx; 107 pCircle->aBox[0].xmax = pCircle->centerx; 108 pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; 109 pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; 110 pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; 111 pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; 112 pCircle->aBox[1].ymin = pCircle->centery; 113 pCircle->aBox[1].ymax = pCircle->centery; 114 pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; 115 } 116 117 /* Check if any of the 4 corners of the bounding-box being tested lie 118 ** inside the circular region. If they do, then the bounding-box does 119 ** intersect the region of interest. Set the output variable to true and 120 ** return SQLITE_OK in this case. */ 121 for(i=0; i<4; i++){ 122 double x = (i&0x01) ? xmax : xmin; 123 double y = (i&0x02) ? ymax : ymin; 124 double d2; 125 126 d2 = (x-pCircle->centerx)*(x-pCircle->centerx); 127 d2 += (y-pCircle->centery)*(y-pCircle->centery); 128 if( d2<(pCircle->radius*pCircle->radius) ){ 129 *pRes = 1; 130 return SQLITE_OK; 131 } 132 } 133 134 /* Check if the bounding box covers any other part of the circular region. 135 ** See comments above for a description of how this test works. If it does 136 ** cover part of the circular region, set the output variable to true 137 ** and return SQLITE_OK. */ 138 for(i=0; i<2; i++){ 139 if( xmin<=pCircle->aBox[i].xmin 140 && xmax>=pCircle->aBox[i].xmax 141 && ymin<=pCircle->aBox[i].ymin 142 && ymax>=pCircle->aBox[i].ymax 143 ){ 144 *pRes = 1; 145 return SQLITE_OK; 146 } 147 } 148 149 /* The specified bounding box does not intersect the circular region. Set 150 ** the output variable to zero and return SQLITE_OK. */ 151 *pRes = 0; 152 return SQLITE_OK; 153 } 154 155 /* 156 ** Implementation of "circle" r-tree geometry callback using the 157 ** 2nd-generation interface that allows scoring. 158 */ 159 static int circle_query_func(sqlite3_rtree_query_info *p){ 160 int i; /* Iterator variable */ 161 Circle *pCircle; /* Structure defining circular region */ 162 double xmin, xmax; /* X dimensions of box being tested */ 163 double ymin, ymax; /* X dimensions of box being tested */ 164 int nWithin = 0; /* Number of corners inside the circle */ 165 166 xmin = p->aCoord[0]; 167 xmax = p->aCoord[1]; 168 ymin = p->aCoord[2]; 169 ymax = p->aCoord[3]; 170 pCircle = (Circle *)p->pUser; 171 if( pCircle==0 ){ 172 /* If pUser is still 0, then the parameter values have not been tested 173 ** for correctness or stored into a Circle structure yet. Do this now. */ 174 175 /* This geometry callback is for use with a 2-dimensional r-tree table. 176 ** Return an error if the table does not have exactly 2 dimensions. */ 177 if( p->nCoord!=4 ) return SQLITE_ERROR; 178 179 /* Test that the correct number of parameters (4) have been supplied, 180 ** and that the parameters are in range (that the radius of the circle 181 ** radius is greater than zero). */ 182 if( p->nParam!=4 || p->aParam[2]<0.0 ) return SQLITE_ERROR; 183 184 /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM 185 ** if the allocation fails. */ 186 pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); 187 if( !pCircle ) return SQLITE_NOMEM; 188 p->xDelUser = circle_del; 189 190 /* Record the center and radius of the circular region. One way that 191 ** tested bounding boxes that intersect the circular region are detected 192 ** is by testing if each corner of the bounding box lies within radius 193 ** units of the center of the circle. */ 194 pCircle->centerx = p->aParam[0]; 195 pCircle->centery = p->aParam[1]; 196 pCircle->radius = p->aParam[2]; 197 pCircle->eScoreType = (int)p->aParam[3]; 198 199 /* Define two bounding box regions. The first, aBox[0], extends to 200 ** infinity in the X dimension. It covers the same range of the Y dimension 201 ** as the circular region. The second, aBox[1], extends to infinity in 202 ** the Y dimension and is constrained to the range of the circle in the 203 ** X dimension. 204 ** 205 ** Then imagine each box is split in half along its short axis by a line 206 ** that intersects the center of the circular region. A bounding box 207 ** being tested can be said to intersect the circular region if it contains 208 ** points from each half of either of the two infinite bounding boxes. 209 */ 210 pCircle->aBox[0].xmin = pCircle->centerx; 211 pCircle->aBox[0].xmax = pCircle->centerx; 212 pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; 213 pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; 214 pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; 215 pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; 216 pCircle->aBox[1].ymin = pCircle->centery; 217 pCircle->aBox[1].ymax = pCircle->centery; 218 pCircle->mxArea = 200.0*200.0; 219 } 220 221 /* Check if any of the 4 corners of the bounding-box being tested lie 222 ** inside the circular region. If they do, then the bounding-box does 223 ** intersect the region of interest. Set the output variable to true and 224 ** return SQLITE_OK in this case. */ 225 for(i=0; i<4; i++){ 226 double x = (i&0x01) ? xmax : xmin; 227 double y = (i&0x02) ? ymax : ymin; 228 double d2; 229 230 d2 = (x-pCircle->centerx)*(x-pCircle->centerx); 231 d2 += (y-pCircle->centery)*(y-pCircle->centery); 232 if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; 233 } 234 235 /* Check if the bounding box covers any other part of the circular region. 236 ** See comments above for a description of how this test works. If it does 237 ** cover part of the circular region, set the output variable to true 238 ** and return SQLITE_OK. */ 239 if( nWithin==0 ){ 240 for(i=0; i<2; i++){ 241 if( xmin<=pCircle->aBox[i].xmin 242 && xmax>=pCircle->aBox[i].xmax 243 && ymin<=pCircle->aBox[i].ymin 244 && ymax>=pCircle->aBox[i].ymax 245 ){ 246 nWithin = 1; 247 break; 248 } 249 } 250 } 251 252 if( pCircle->eScoreType==1 ){ 253 /* Depth first search */ 254 p->rScore = p->iLevel; 255 }else if( pCircle->eScoreType==2 ){ 256 /* Breadth first search */ 257 p->rScore = 100 - p->iLevel; 258 }else if( pCircle->eScoreType==3 ){ 259 /* Depth-first search, except sort the leaf nodes by area with 260 ** the largest area first */ 261 if( p->iLevel==1 ){ 262 p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; 263 if( p->rScore<0.01 ) p->rScore = 0.01; 264 }else{ 265 p->rScore = 0.0; 266 } 267 }else if( pCircle->eScoreType==4 ){ 268 /* Depth-first search, except exclude odd rowids */ 269 p->rScore = p->iLevel; 270 if( p->iRowid&1 ) nWithin = 0; 271 }else{ 272 /* Breadth-first search, except exclude odd rowids */ 273 p->rScore = 100 - p->iLevel; 274 if( p->iRowid&1 ) nWithin = 0; 275 } 276 if( nWithin==0 ){ 277 p->eWithin = NOT_WITHIN; 278 }else if( nWithin>=4 ){ 279 p->eWithin = FULLY_WITHIN; 280 }else{ 281 p->eWithin = PARTLY_WITHIN; 282 } 283 return SQLITE_OK; 284 } 285 /* 286 ** Implementation of "breadthfirstsearch" r-tree geometry callback using the 287 ** 2nd-generation interface that allows scoring. 288 ** 289 ** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... 290 ** 291 ** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. 292 */ 293 static int bfs_query_func(sqlite3_rtree_query_info *p){ 294 double x0,x1,y0,y1; /* Dimensions of box being tested */ 295 double bx0,bx1,by0,by1; /* Boundary of the query function */ 296 297 if( p->nParam!=4 ) return SQLITE_ERROR; 298 x0 = p->aCoord[0]; 299 x1 = p->aCoord[1]; 300 y0 = p->aCoord[2]; 301 y1 = p->aCoord[3]; 302 bx0 = p->aParam[0]; 303 bx1 = p->aParam[1]; 304 by0 = p->aParam[2]; 305 by1 = p->aParam[3]; 306 p->rScore = 100 - p->iLevel; 307 if( p->eParentWithin==FULLY_WITHIN ){ 308 p->eWithin = FULLY_WITHIN; 309 }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ 310 p->eWithin = FULLY_WITHIN; 311 }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ 312 p->eWithin = PARTLY_WITHIN; 313 }else{ 314 p->eWithin = NOT_WITHIN; 315 } 316 return SQLITE_OK; 317 } 318 319 /* END of implementation of "circle" geometry callback. 320 ************************************************************************** 321 *************************************************************************/ 322 323 #include <assert.h> 324 #include "tcl.h" 325 326 typedef struct Cube Cube; 327 struct Cube { 328 double x; 329 double y; 330 double z; 331 double width; 332 double height; 333 double depth; 334 }; 335 336 static void cube_context_free(void *p){ 337 sqlite3_free(p); 338 } 339 340 /* 341 ** The context pointer registered along with the 'cube' callback is 342 ** always ((void *)&gHere). This is just to facilitate testing, it is not 343 ** actually used for anything. 344 */ 345 static int gHere = 42; 346 347 /* 348 ** Implementation of a simple r-tree geom callback to test for intersection 349 ** of r-tree rows with a "cube" shape. Cubes are defined by six scalar 350 ** coordinates as follows: 351 ** 352 ** cube(x, y, z, width, height, depth) 353 ** 354 ** The width, height and depth parameters must all be greater than zero. 355 */ 356 static int cube_geom( 357 sqlite3_rtree_geometry *p, 358 int nCoord, 359 sqlite3_rtree_dbl *aCoord, 360 int *piRes 361 ){ 362 Cube *pCube = (Cube *)p->pUser; 363 364 assert( p->pContext==(void *)&gHere ); 365 366 if( pCube==0 ){ 367 if( p->nParam!=6 || nCoord!=6 368 || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0 369 ){ 370 return SQLITE_ERROR; 371 } 372 pCube = (Cube *)sqlite3_malloc(sizeof(Cube)); 373 if( !pCube ){ 374 return SQLITE_NOMEM; 375 } 376 pCube->x = p->aParam[0]; 377 pCube->y = p->aParam[1]; 378 pCube->z = p->aParam[2]; 379 pCube->width = p->aParam[3]; 380 pCube->height = p->aParam[4]; 381 pCube->depth = p->aParam[5]; 382 383 p->pUser = (void *)pCube; 384 p->xDelUser = cube_context_free; 385 } 386 387 assert( nCoord==6 ); 388 *piRes = 0; 389 if( aCoord[0]<=(pCube->x+pCube->width) 390 && aCoord[1]>=pCube->x 391 && aCoord[2]<=(pCube->y+pCube->height) 392 && aCoord[3]>=pCube->y 393 && aCoord[4]<=(pCube->z+pCube->depth) 394 && aCoord[5]>=pCube->z 395 ){ 396 *piRes = 1; 397 } 398 399 return SQLITE_OK; 400 } 401 #endif /* SQLITE_ENABLE_RTREE */ 402 403 static int register_cube_geom( 404 void * clientData, 405 Tcl_Interp *interp, 406 int objc, 407 Tcl_Obj *CONST objv[] 408 ){ 409 #ifndef SQLITE_ENABLE_RTREE 410 UNUSED_PARAMETER(clientData); 411 UNUSED_PARAMETER(interp); 412 UNUSED_PARAMETER(objc); 413 UNUSED_PARAMETER(objv); 414 #else 415 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); 416 extern const char *sqlite3ErrName(int); 417 sqlite3 *db; 418 int rc; 419 420 if( objc!=2 ){ 421 Tcl_WrongNumArgs(interp, 1, objv, "DB"); 422 return TCL_ERROR; 423 } 424 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; 425 rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); 426 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); 427 #endif 428 return TCL_OK; 429 } 430 431 static int register_circle_geom( 432 void * clientData, 433 Tcl_Interp *interp, 434 int objc, 435 Tcl_Obj *CONST objv[] 436 ){ 437 #ifndef SQLITE_ENABLE_RTREE 438 UNUSED_PARAMETER(clientData); 439 UNUSED_PARAMETER(interp); 440 UNUSED_PARAMETER(objc); 441 UNUSED_PARAMETER(objv); 442 #else 443 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); 444 extern const char *sqlite3ErrName(int); 445 sqlite3 *db; 446 int rc; 447 448 if( objc!=2 ){ 449 Tcl_WrongNumArgs(interp, 1, objv, "DB"); 450 return TCL_ERROR; 451 } 452 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; 453 rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); 454 if( rc==SQLITE_OK ){ 455 rc = sqlite3_rtree_query_callback(db, "Qcircle", 456 circle_query_func, 0, 0); 457 } 458 if( rc==SQLITE_OK ){ 459 rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", 460 bfs_query_func, 0, 0); 461 } 462 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); 463 #endif 464 return TCL_OK; 465 } 466 467 int Sqlitetestrtree_Init(Tcl_Interp *interp){ 468 Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0); 469 Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0); 470 return TCL_OK; 471 } 472