xref: /sqlite-3.40.0/src/test_rtree.c (revision c56fac74)
1 /*
2 ** 2010 August 28
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Code for testing all sorts of SQLite interfaces. This code
13 ** is not included in the SQLite library.
14 */
15 
16 #include "sqlite3.h"
17 #include <tcl.h>
18 
19 /* Solely for the UNUSED_PARAMETER() macro. */
20 #include "sqliteInt.h"
21 
22 #ifdef SQLITE_ENABLE_RTREE
23 /*
24 ** Type used to cache parameter information for the "circle" r-tree geometry
25 ** callback.
26 */
27 typedef struct Circle Circle;
28 struct Circle {
29   struct Box {
30     double xmin;
31     double xmax;
32     double ymin;
33     double ymax;
34   } aBox[2];
35   double centerx;
36   double centery;
37   double radius;
38   double mxArea;
39   int eScoreType;
40 };
41 
42 /*
43 ** Destructor function for Circle objects allocated by circle_geom().
44 */
45 static void circle_del(void *p){
46   sqlite3_free(p);
47 }
48 
49 /*
50 ** Implementation of "circle" r-tree geometry callback.
51 */
52 static int circle_geom(
53   sqlite3_rtree_geometry *p,
54   int nCoord,
55   sqlite3_rtree_dbl *aCoord,
56   int *pRes
57 ){
58   int i;                          /* Iterator variable */
59   Circle *pCircle;                /* Structure defining circular region */
60   double xmin, xmax;              /* X dimensions of box being tested */
61   double ymin, ymax;              /* X dimensions of box being tested */
62 
63   xmin = aCoord[0];
64   xmax = aCoord[1];
65   ymin = aCoord[2];
66   ymax = aCoord[3];
67   pCircle = (Circle *)p->pUser;
68   if( pCircle==0 ){
69     /* If pUser is still 0, then the parameter values have not been tested
70     ** for correctness or stored into a Circle structure yet. Do this now. */
71 
72     /* This geometry callback is for use with a 2-dimensional r-tree table.
73     ** Return an error if the table does not have exactly 2 dimensions. */
74     if( nCoord!=4 ) return SQLITE_ERROR;
75 
76     /* Test that the correct number of parameters (3) have been supplied,
77     ** and that the parameters are in range (that the radius of the circle
78     ** radius is greater than zero). */
79     if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR;
80 
81     /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
82     ** if the allocation fails. */
83     pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
84     if( !pCircle ) return SQLITE_NOMEM;
85     p->xDelUser = circle_del;
86 
87     /* Record the center and radius of the circular region. One way that
88     ** tested bounding boxes that intersect the circular region are detected
89     ** is by testing if each corner of the bounding box lies within radius
90     ** units of the center of the circle. */
91     pCircle->centerx = p->aParam[0];
92     pCircle->centery = p->aParam[1];
93     pCircle->radius = p->aParam[2];
94 
95     /* Define two bounding box regions. The first, aBox[0], extends to
96     ** infinity in the X dimension. It covers the same range of the Y dimension
97     ** as the circular region. The second, aBox[1], extends to infinity in
98     ** the Y dimension and is constrained to the range of the circle in the
99     ** X dimension.
100     **
101     ** Then imagine each box is split in half along its short axis by a line
102     ** that intersects the center of the circular region. A bounding box
103     ** being tested can be said to intersect the circular region if it contains
104     ** points from each half of either of the two infinite bounding boxes.
105     */
106     pCircle->aBox[0].xmin = pCircle->centerx;
107     pCircle->aBox[0].xmax = pCircle->centerx;
108     pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
109     pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
110     pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
111     pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
112     pCircle->aBox[1].ymin = pCircle->centery;
113     pCircle->aBox[1].ymax = pCircle->centery;
114     pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0;
115   }
116 
117   /* Check if any of the 4 corners of the bounding-box being tested lie
118   ** inside the circular region. If they do, then the bounding-box does
119   ** intersect the region of interest. Set the output variable to true and
120   ** return SQLITE_OK in this case. */
121   for(i=0; i<4; i++){
122     double x = (i&0x01) ? xmax : xmin;
123     double y = (i&0x02) ? ymax : ymin;
124     double d2;
125 
126     d2  = (x-pCircle->centerx)*(x-pCircle->centerx);
127     d2 += (y-pCircle->centery)*(y-pCircle->centery);
128     if( d2<(pCircle->radius*pCircle->radius) ){
129       *pRes = 1;
130       return SQLITE_OK;
131     }
132   }
133 
134   /* Check if the bounding box covers any other part of the circular region.
135   ** See comments above for a description of how this test works. If it does
136   ** cover part of the circular region, set the output variable to true
137   ** and return SQLITE_OK. */
138   for(i=0; i<2; i++){
139     if( xmin<=pCircle->aBox[i].xmin
140      && xmax>=pCircle->aBox[i].xmax
141      && ymin<=pCircle->aBox[i].ymin
142      && ymax>=pCircle->aBox[i].ymax
143     ){
144       *pRes = 1;
145       return SQLITE_OK;
146     }
147   }
148 
149   /* The specified bounding box does not intersect the circular region. Set
150   ** the output variable to zero and return SQLITE_OK. */
151   *pRes = 0;
152   return SQLITE_OK;
153 }
154 
155 /*
156 ** Implementation of "circle" r-tree geometry callback using the
157 ** 2nd-generation interface that allows scoring.
158 **
159 ** Two calling forms:
160 **
161 **          Qcircle(X,Y,Radius,eType)        -- All values are doubles
162 **          Qcircle('x:X y:Y r:R e:ETYPE')   -- Single string parameter
163 */
164 static int circle_query_func(sqlite3_rtree_query_info *p){
165   int i;                          /* Iterator variable */
166   Circle *pCircle;                /* Structure defining circular region */
167   double xmin, xmax;              /* X dimensions of box being tested */
168   double ymin, ymax;              /* X dimensions of box being tested */
169   int nWithin = 0;                /* Number of corners inside the circle */
170 
171   xmin = p->aCoord[0];
172   xmax = p->aCoord[1];
173   ymin = p->aCoord[2];
174   ymax = p->aCoord[3];
175   pCircle = (Circle *)p->pUser;
176   if( pCircle==0 ){
177     /* If pUser is still 0, then the parameter values have not been tested
178     ** for correctness or stored into a Circle structure yet. Do this now. */
179 
180     /* This geometry callback is for use with a 2-dimensional r-tree table.
181     ** Return an error if the table does not have exactly 2 dimensions. */
182     if( p->nCoord!=4 ) return SQLITE_ERROR;
183 
184     /* Test that the correct number of parameters (1 or 4) have been supplied.
185     */
186     if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR;
187 
188     /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
189     ** if the allocation fails. */
190     pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
191     if( !pCircle ) return SQLITE_NOMEM;
192     p->xDelUser = circle_del;
193 
194     /* Record the center and radius of the circular region. One way that
195     ** tested bounding boxes that intersect the circular region are detected
196     ** is by testing if each corner of the bounding box lies within radius
197     ** units of the center of the circle. */
198     if( p->nParam==4 ){
199       pCircle->centerx = p->aParam[0];
200       pCircle->centery = p->aParam[1];
201       pCircle->radius = p->aParam[2];
202       pCircle->eScoreType = (int)p->aParam[3];
203     }else{
204       const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]);
205       pCircle->centerx = 0.0;
206       pCircle->centery = 0.0;
207       pCircle->radius = 0.0;
208       pCircle->eScoreType = 0;
209       while( z && z[0] ){
210         if( z[0]=='r' && z[1]==':' ){
211           pCircle->radius = atof(&z[2]);
212         }else if( z[0]=='x' && z[1]==':' ){
213           pCircle->centerx = atof(&z[2]);
214         }else if( z[0]=='y' && z[1]==':' ){
215           pCircle->centery = atof(&z[2]);
216         }else if( z[0]=='e' && z[1]==':' ){
217           pCircle->eScoreType = (int)atof(&z[2]);
218         }else if( z[0]==' ' ){
219           z++;
220           continue;
221         }
222         while( z[0]!=0 && z[0]!=' ' ) z++;
223         while( z[0]==' ' ) z++;
224       }
225     }
226     if( pCircle->radius<0.0 ){
227       sqlite3_free(pCircle);
228       return SQLITE_NOMEM;
229     }
230 
231     /* Define two bounding box regions. The first, aBox[0], extends to
232     ** infinity in the X dimension. It covers the same range of the Y dimension
233     ** as the circular region. The second, aBox[1], extends to infinity in
234     ** the Y dimension and is constrained to the range of the circle in the
235     ** X dimension.
236     **
237     ** Then imagine each box is split in half along its short axis by a line
238     ** that intersects the center of the circular region. A bounding box
239     ** being tested can be said to intersect the circular region if it contains
240     ** points from each half of either of the two infinite bounding boxes.
241     */
242     pCircle->aBox[0].xmin = pCircle->centerx;
243     pCircle->aBox[0].xmax = pCircle->centerx;
244     pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
245     pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
246     pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
247     pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
248     pCircle->aBox[1].ymin = pCircle->centery;
249     pCircle->aBox[1].ymax = pCircle->centery;
250     pCircle->mxArea = 200.0*200.0;
251   }
252 
253   /* Check if any of the 4 corners of the bounding-box being tested lie
254   ** inside the circular region. If they do, then the bounding-box does
255   ** intersect the region of interest. Set the output variable to true and
256   ** return SQLITE_OK in this case. */
257   for(i=0; i<4; i++){
258     double x = (i&0x01) ? xmax : xmin;
259     double y = (i&0x02) ? ymax : ymin;
260     double d2;
261 
262     d2  = (x-pCircle->centerx)*(x-pCircle->centerx);
263     d2 += (y-pCircle->centery)*(y-pCircle->centery);
264     if( d2<(pCircle->radius*pCircle->radius) ) nWithin++;
265   }
266 
267   /* Check if the bounding box covers any other part of the circular region.
268   ** See comments above for a description of how this test works. If it does
269   ** cover part of the circular region, set the output variable to true
270   ** and return SQLITE_OK. */
271   if( nWithin==0 ){
272     for(i=0; i<2; i++){
273       if( xmin<=pCircle->aBox[i].xmin
274        && xmax>=pCircle->aBox[i].xmax
275        && ymin<=pCircle->aBox[i].ymin
276        && ymax>=pCircle->aBox[i].ymax
277       ){
278         nWithin = 1;
279         break;
280       }
281     }
282   }
283 
284   if( pCircle->eScoreType==1 ){
285     /* Depth first search */
286     p->rScore = p->iLevel;
287   }else if( pCircle->eScoreType==2 ){
288     /* Breadth first search */
289     p->rScore = 100 - p->iLevel;
290   }else if( pCircle->eScoreType==3 ){
291     /* Depth-first search, except sort the leaf nodes by area with
292     ** the largest area first */
293     if( p->iLevel==1 ){
294       p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea;
295       if( p->rScore<0.01 ) p->rScore = 0.01;
296     }else{
297       p->rScore = 0.0;
298     }
299   }else if( pCircle->eScoreType==4 ){
300     /* Depth-first search, except exclude odd rowids */
301     p->rScore = p->iLevel;
302     if( p->iRowid&1 ) nWithin = 0;
303   }else{
304     /* Breadth-first search, except exclude odd rowids */
305     p->rScore = 100 - p->iLevel;
306     if( p->iRowid&1 ) nWithin = 0;
307   }
308   if( nWithin==0 ){
309     p->eWithin = NOT_WITHIN;
310   }else if( nWithin>=4 ){
311     p->eWithin = FULLY_WITHIN;
312   }else{
313     p->eWithin = PARTLY_WITHIN;
314   }
315   return SQLITE_OK;
316 }
317 /*
318 ** Implementation of "breadthfirstsearch" r-tree geometry callback using the
319 ** 2nd-generation interface that allows scoring.
320 **
321 **     ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ...
322 **
323 ** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1.
324 */
325 static int bfs_query_func(sqlite3_rtree_query_info *p){
326   double x0,x1,y0,y1;        /* Dimensions of box being tested */
327   double bx0,bx1,by0,by1;    /* Boundary of the query function */
328 
329   if( p->nParam!=4 ) return SQLITE_ERROR;
330   x0 = p->aCoord[0];
331   x1 = p->aCoord[1];
332   y0 = p->aCoord[2];
333   y1 = p->aCoord[3];
334   bx0 = p->aParam[0];
335   bx1 = p->aParam[1];
336   by0 = p->aParam[2];
337   by1 = p->aParam[3];
338   p->rScore = 100 - p->iLevel;
339   if( p->eParentWithin==FULLY_WITHIN ){
340     p->eWithin = FULLY_WITHIN;
341   }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){
342     p->eWithin = FULLY_WITHIN;
343   }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){
344     p->eWithin = PARTLY_WITHIN;
345   }else{
346     p->eWithin = NOT_WITHIN;
347   }
348   return SQLITE_OK;
349 }
350 
351 /* END of implementation of "circle" geometry callback.
352 **************************************************************************
353 *************************************************************************/
354 
355 #include <assert.h>
356 #include "tcl.h"
357 
358 typedef struct Cube Cube;
359 struct Cube {
360   double x;
361   double y;
362   double z;
363   double width;
364   double height;
365   double depth;
366 };
367 
368 static void cube_context_free(void *p){
369   sqlite3_free(p);
370 }
371 
372 /*
373 ** The context pointer registered along with the 'cube' callback is
374 ** always ((void *)&gHere). This is just to facilitate testing, it is not
375 ** actually used for anything.
376 */
377 static int gHere = 42;
378 
379 /*
380 ** Implementation of a simple r-tree geom callback to test for intersection
381 ** of r-tree rows with a "cube" shape. Cubes are defined by six scalar
382 ** coordinates as follows:
383 **
384 **   cube(x, y, z, width, height, depth)
385 **
386 ** The width, height and depth parameters must all be greater than zero.
387 */
388 static int cube_geom(
389   sqlite3_rtree_geometry *p,
390   int nCoord,
391   sqlite3_rtree_dbl *aCoord,
392   int *piRes
393 ){
394   Cube *pCube = (Cube *)p->pUser;
395 
396   assert( p->pContext==(void *)&gHere );
397 
398   if( pCube==0 ){
399     if( p->nParam!=6 || nCoord!=6
400      || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0
401     ){
402       return SQLITE_ERROR;
403     }
404     pCube = (Cube *)sqlite3_malloc(sizeof(Cube));
405     if( !pCube ){
406       return SQLITE_NOMEM;
407     }
408     pCube->x = p->aParam[0];
409     pCube->y = p->aParam[1];
410     pCube->z = p->aParam[2];
411     pCube->width = p->aParam[3];
412     pCube->height = p->aParam[4];
413     pCube->depth = p->aParam[5];
414 
415     p->pUser = (void *)pCube;
416     p->xDelUser = cube_context_free;
417   }
418 
419   assert( nCoord==6 );
420   *piRes = 0;
421   if( aCoord[0]<=(pCube->x+pCube->width)
422    && aCoord[1]>=pCube->x
423    && aCoord[2]<=(pCube->y+pCube->height)
424    && aCoord[3]>=pCube->y
425    && aCoord[4]<=(pCube->z+pCube->depth)
426    && aCoord[5]>=pCube->z
427   ){
428     *piRes = 1;
429   }
430 
431   return SQLITE_OK;
432 }
433 #endif /* SQLITE_ENABLE_RTREE */
434 
435 static int register_cube_geom(
436   void * clientData,
437   Tcl_Interp *interp,
438   int objc,
439   Tcl_Obj *CONST objv[]
440 ){
441 #ifndef SQLITE_ENABLE_RTREE
442   UNUSED_PARAMETER(clientData);
443   UNUSED_PARAMETER(interp);
444   UNUSED_PARAMETER(objc);
445   UNUSED_PARAMETER(objv);
446 #else
447   extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
448   extern const char *sqlite3ErrName(int);
449   sqlite3 *db;
450   int rc;
451 
452   if( objc!=2 ){
453     Tcl_WrongNumArgs(interp, 1, objv, "DB");
454     return TCL_ERROR;
455   }
456   if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
457   rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere);
458   Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
459 #endif
460   return TCL_OK;
461 }
462 
463 static int register_circle_geom(
464   void * clientData,
465   Tcl_Interp *interp,
466   int objc,
467   Tcl_Obj *CONST objv[]
468 ){
469 #ifndef SQLITE_ENABLE_RTREE
470   UNUSED_PARAMETER(clientData);
471   UNUSED_PARAMETER(interp);
472   UNUSED_PARAMETER(objc);
473   UNUSED_PARAMETER(objv);
474 #else
475   extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
476   extern const char *sqlite3ErrName(int);
477   sqlite3 *db;
478   int rc;
479 
480   if( objc!=2 ){
481     Tcl_WrongNumArgs(interp, 1, objv, "DB");
482     return TCL_ERROR;
483   }
484   if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
485   rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0);
486   if( rc==SQLITE_OK ){
487     rc = sqlite3_rtree_query_callback(db, "Qcircle",
488                                       circle_query_func, 0, 0);
489   }
490   if( rc==SQLITE_OK ){
491     rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch",
492                                       bfs_query_func, 0, 0);
493   }
494   Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
495 #endif
496   return TCL_OK;
497 }
498 
499 int Sqlitetestrtree_Init(Tcl_Interp *interp){
500   Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0);
501   Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0);
502   return TCL_OK;
503 }
504