1 /* 2 ** 2010 August 28 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Code for testing all sorts of SQLite interfaces. This code 13 ** is not included in the SQLite library. 14 */ 15 16 #include "sqlite3.h" 17 #include <tcl.h> 18 19 /* Solely for the UNUSED_PARAMETER() macro. */ 20 #include "sqliteInt.h" 21 22 #ifdef SQLITE_ENABLE_RTREE 23 /* 24 ** Type used to cache parameter information for the "circle" r-tree geometry 25 ** callback. 26 */ 27 typedef struct Circle Circle; 28 struct Circle { 29 struct Box { 30 double xmin; 31 double xmax; 32 double ymin; 33 double ymax; 34 } aBox[2]; 35 double centerx; 36 double centery; 37 double radius; 38 double mxArea; 39 int eScoreType; 40 }; 41 42 /* 43 ** Destructor function for Circle objects allocated by circle_geom(). 44 */ 45 static void circle_del(void *p){ 46 sqlite3_free(p); 47 } 48 49 /* 50 ** Implementation of "circle" r-tree geometry callback. 51 */ 52 static int circle_geom( 53 sqlite3_rtree_geometry *p, 54 int nCoord, 55 sqlite3_rtree_dbl *aCoord, 56 int *pRes 57 ){ 58 int i; /* Iterator variable */ 59 Circle *pCircle; /* Structure defining circular region */ 60 double xmin, xmax; /* X dimensions of box being tested */ 61 double ymin, ymax; /* X dimensions of box being tested */ 62 63 xmin = aCoord[0]; 64 xmax = aCoord[1]; 65 ymin = aCoord[2]; 66 ymax = aCoord[3]; 67 pCircle = (Circle *)p->pUser; 68 if( pCircle==0 ){ 69 /* If pUser is still 0, then the parameter values have not been tested 70 ** for correctness or stored into a Circle structure yet. Do this now. */ 71 72 /* This geometry callback is for use with a 2-dimensional r-tree table. 73 ** Return an error if the table does not have exactly 2 dimensions. */ 74 if( nCoord!=4 ) return SQLITE_ERROR; 75 76 /* Test that the correct number of parameters (3) have been supplied, 77 ** and that the parameters are in range (that the radius of the circle 78 ** radius is greater than zero). */ 79 if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR; 80 81 /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM 82 ** if the allocation fails. */ 83 pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); 84 if( !pCircle ) return SQLITE_NOMEM; 85 p->xDelUser = circle_del; 86 87 /* Record the center and radius of the circular region. One way that 88 ** tested bounding boxes that intersect the circular region are detected 89 ** is by testing if each corner of the bounding box lies within radius 90 ** units of the center of the circle. */ 91 pCircle->centerx = p->aParam[0]; 92 pCircle->centery = p->aParam[1]; 93 pCircle->radius = p->aParam[2]; 94 95 /* Define two bounding box regions. The first, aBox[0], extends to 96 ** infinity in the X dimension. It covers the same range of the Y dimension 97 ** as the circular region. The second, aBox[1], extends to infinity in 98 ** the Y dimension and is constrained to the range of the circle in the 99 ** X dimension. 100 ** 101 ** Then imagine each box is split in half along its short axis by a line 102 ** that intersects the center of the circular region. A bounding box 103 ** being tested can be said to intersect the circular region if it contains 104 ** points from each half of either of the two infinite bounding boxes. 105 */ 106 pCircle->aBox[0].xmin = pCircle->centerx; 107 pCircle->aBox[0].xmax = pCircle->centerx; 108 pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; 109 pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; 110 pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; 111 pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; 112 pCircle->aBox[1].ymin = pCircle->centery; 113 pCircle->aBox[1].ymax = pCircle->centery; 114 pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; 115 } 116 117 /* Check if any of the 4 corners of the bounding-box being tested lie 118 ** inside the circular region. If they do, then the bounding-box does 119 ** intersect the region of interest. Set the output variable to true and 120 ** return SQLITE_OK in this case. */ 121 for(i=0; i<4; i++){ 122 double x = (i&0x01) ? xmax : xmin; 123 double y = (i&0x02) ? ymax : ymin; 124 double d2; 125 126 d2 = (x-pCircle->centerx)*(x-pCircle->centerx); 127 d2 += (y-pCircle->centery)*(y-pCircle->centery); 128 if( d2<(pCircle->radius*pCircle->radius) ){ 129 *pRes = 1; 130 return SQLITE_OK; 131 } 132 } 133 134 /* Check if the bounding box covers any other part of the circular region. 135 ** See comments above for a description of how this test works. If it does 136 ** cover part of the circular region, set the output variable to true 137 ** and return SQLITE_OK. */ 138 for(i=0; i<2; i++){ 139 if( xmin<=pCircle->aBox[i].xmin 140 && xmax>=pCircle->aBox[i].xmax 141 && ymin<=pCircle->aBox[i].ymin 142 && ymax>=pCircle->aBox[i].ymax 143 ){ 144 *pRes = 1; 145 return SQLITE_OK; 146 } 147 } 148 149 /* The specified bounding box does not intersect the circular region. Set 150 ** the output variable to zero and return SQLITE_OK. */ 151 *pRes = 0; 152 return SQLITE_OK; 153 } 154 155 /* 156 ** Implementation of "circle" r-tree geometry callback using the 157 ** 2nd-generation interface that allows scoring. 158 ** 159 ** Two calling forms: 160 ** 161 ** Qcircle(X,Y,Radius,eType) -- All values are doubles 162 ** Qcircle('x:X y:Y r:R e:ETYPE') -- Single string parameter 163 */ 164 static int circle_query_func(sqlite3_rtree_query_info *p){ 165 int i; /* Iterator variable */ 166 Circle *pCircle; /* Structure defining circular region */ 167 double xmin, xmax; /* X dimensions of box being tested */ 168 double ymin, ymax; /* X dimensions of box being tested */ 169 int nWithin = 0; /* Number of corners inside the circle */ 170 171 xmin = p->aCoord[0]; 172 xmax = p->aCoord[1]; 173 ymin = p->aCoord[2]; 174 ymax = p->aCoord[3]; 175 pCircle = (Circle *)p->pUser; 176 if( pCircle==0 ){ 177 /* If pUser is still 0, then the parameter values have not been tested 178 ** for correctness or stored into a Circle structure yet. Do this now. */ 179 180 /* This geometry callback is for use with a 2-dimensional r-tree table. 181 ** Return an error if the table does not have exactly 2 dimensions. */ 182 if( p->nCoord!=4 ) return SQLITE_ERROR; 183 184 /* Test that the correct number of parameters (1 or 4) have been supplied. 185 */ 186 if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR; 187 188 /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM 189 ** if the allocation fails. */ 190 pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); 191 if( !pCircle ) return SQLITE_NOMEM; 192 p->xDelUser = circle_del; 193 194 /* Record the center and radius of the circular region. One way that 195 ** tested bounding boxes that intersect the circular region are detected 196 ** is by testing if each corner of the bounding box lies within radius 197 ** units of the center of the circle. */ 198 if( p->nParam==4 ){ 199 pCircle->centerx = p->aParam[0]; 200 pCircle->centery = p->aParam[1]; 201 pCircle->radius = p->aParam[2]; 202 pCircle->eScoreType = (int)p->aParam[3]; 203 }else{ 204 const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]); 205 pCircle->centerx = 0.0; 206 pCircle->centery = 0.0; 207 pCircle->radius = 0.0; 208 pCircle->eScoreType = 0; 209 while( z && z[0] ){ 210 if( z[0]=='r' && z[1]==':' ){ 211 pCircle->radius = atof(&z[2]); 212 }else if( z[0]=='x' && z[1]==':' ){ 213 pCircle->centerx = atof(&z[2]); 214 }else if( z[0]=='y' && z[1]==':' ){ 215 pCircle->centery = atof(&z[2]); 216 }else if( z[0]=='e' && z[1]==':' ){ 217 pCircle->eScoreType = (int)atof(&z[2]); 218 }else if( z[0]==' ' ){ 219 z++; 220 continue; 221 } 222 while( z[0]!=0 && z[0]!=' ' ) z++; 223 while( z[0]==' ' ) z++; 224 } 225 } 226 if( pCircle->radius<0.0 ){ 227 sqlite3_free(pCircle); 228 return SQLITE_NOMEM; 229 } 230 231 /* Define two bounding box regions. The first, aBox[0], extends to 232 ** infinity in the X dimension. It covers the same range of the Y dimension 233 ** as the circular region. The second, aBox[1], extends to infinity in 234 ** the Y dimension and is constrained to the range of the circle in the 235 ** X dimension. 236 ** 237 ** Then imagine each box is split in half along its short axis by a line 238 ** that intersects the center of the circular region. A bounding box 239 ** being tested can be said to intersect the circular region if it contains 240 ** points from each half of either of the two infinite bounding boxes. 241 */ 242 pCircle->aBox[0].xmin = pCircle->centerx; 243 pCircle->aBox[0].xmax = pCircle->centerx; 244 pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; 245 pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; 246 pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; 247 pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; 248 pCircle->aBox[1].ymin = pCircle->centery; 249 pCircle->aBox[1].ymax = pCircle->centery; 250 pCircle->mxArea = 200.0*200.0; 251 } 252 253 /* Check if any of the 4 corners of the bounding-box being tested lie 254 ** inside the circular region. If they do, then the bounding-box does 255 ** intersect the region of interest. Set the output variable to true and 256 ** return SQLITE_OK in this case. */ 257 for(i=0; i<4; i++){ 258 double x = (i&0x01) ? xmax : xmin; 259 double y = (i&0x02) ? ymax : ymin; 260 double d2; 261 262 d2 = (x-pCircle->centerx)*(x-pCircle->centerx); 263 d2 += (y-pCircle->centery)*(y-pCircle->centery); 264 if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; 265 } 266 267 /* Check if the bounding box covers any other part of the circular region. 268 ** See comments above for a description of how this test works. If it does 269 ** cover part of the circular region, set the output variable to true 270 ** and return SQLITE_OK. */ 271 if( nWithin==0 ){ 272 for(i=0; i<2; i++){ 273 if( xmin<=pCircle->aBox[i].xmin 274 && xmax>=pCircle->aBox[i].xmax 275 && ymin<=pCircle->aBox[i].ymin 276 && ymax>=pCircle->aBox[i].ymax 277 ){ 278 nWithin = 1; 279 break; 280 } 281 } 282 } 283 284 if( pCircle->eScoreType==1 ){ 285 /* Depth first search */ 286 p->rScore = p->iLevel; 287 }else if( pCircle->eScoreType==2 ){ 288 /* Breadth first search */ 289 p->rScore = 100 - p->iLevel; 290 }else if( pCircle->eScoreType==3 ){ 291 /* Depth-first search, except sort the leaf nodes by area with 292 ** the largest area first */ 293 if( p->iLevel==1 ){ 294 p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; 295 if( p->rScore<0.01 ) p->rScore = 0.01; 296 }else{ 297 p->rScore = 0.0; 298 } 299 }else if( pCircle->eScoreType==4 ){ 300 /* Depth-first search, except exclude odd rowids */ 301 p->rScore = p->iLevel; 302 if( p->iRowid&1 ) nWithin = 0; 303 }else{ 304 /* Breadth-first search, except exclude odd rowids */ 305 p->rScore = 100 - p->iLevel; 306 if( p->iRowid&1 ) nWithin = 0; 307 } 308 if( nWithin==0 ){ 309 p->eWithin = NOT_WITHIN; 310 }else if( nWithin>=4 ){ 311 p->eWithin = FULLY_WITHIN; 312 }else{ 313 p->eWithin = PARTLY_WITHIN; 314 } 315 return SQLITE_OK; 316 } 317 /* 318 ** Implementation of "breadthfirstsearch" r-tree geometry callback using the 319 ** 2nd-generation interface that allows scoring. 320 ** 321 ** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... 322 ** 323 ** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. 324 */ 325 static int bfs_query_func(sqlite3_rtree_query_info *p){ 326 double x0,x1,y0,y1; /* Dimensions of box being tested */ 327 double bx0,bx1,by0,by1; /* Boundary of the query function */ 328 329 if( p->nParam!=4 ) return SQLITE_ERROR; 330 x0 = p->aCoord[0]; 331 x1 = p->aCoord[1]; 332 y0 = p->aCoord[2]; 333 y1 = p->aCoord[3]; 334 bx0 = p->aParam[0]; 335 bx1 = p->aParam[1]; 336 by0 = p->aParam[2]; 337 by1 = p->aParam[3]; 338 p->rScore = 100 - p->iLevel; 339 if( p->eParentWithin==FULLY_WITHIN ){ 340 p->eWithin = FULLY_WITHIN; 341 }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ 342 p->eWithin = FULLY_WITHIN; 343 }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ 344 p->eWithin = PARTLY_WITHIN; 345 }else{ 346 p->eWithin = NOT_WITHIN; 347 } 348 return SQLITE_OK; 349 } 350 351 /* END of implementation of "circle" geometry callback. 352 ************************************************************************** 353 *************************************************************************/ 354 355 #include <assert.h> 356 #include "tcl.h" 357 358 typedef struct Cube Cube; 359 struct Cube { 360 double x; 361 double y; 362 double z; 363 double width; 364 double height; 365 double depth; 366 }; 367 368 static void cube_context_free(void *p){ 369 sqlite3_free(p); 370 } 371 372 /* 373 ** The context pointer registered along with the 'cube' callback is 374 ** always ((void *)&gHere). This is just to facilitate testing, it is not 375 ** actually used for anything. 376 */ 377 static int gHere = 42; 378 379 /* 380 ** Implementation of a simple r-tree geom callback to test for intersection 381 ** of r-tree rows with a "cube" shape. Cubes are defined by six scalar 382 ** coordinates as follows: 383 ** 384 ** cube(x, y, z, width, height, depth) 385 ** 386 ** The width, height and depth parameters must all be greater than zero. 387 */ 388 static int cube_geom( 389 sqlite3_rtree_geometry *p, 390 int nCoord, 391 sqlite3_rtree_dbl *aCoord, 392 int *piRes 393 ){ 394 Cube *pCube = (Cube *)p->pUser; 395 396 assert( p->pContext==(void *)&gHere ); 397 398 if( pCube==0 ){ 399 if( p->nParam!=6 || nCoord!=6 400 || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0 401 ){ 402 return SQLITE_ERROR; 403 } 404 pCube = (Cube *)sqlite3_malloc(sizeof(Cube)); 405 if( !pCube ){ 406 return SQLITE_NOMEM; 407 } 408 pCube->x = p->aParam[0]; 409 pCube->y = p->aParam[1]; 410 pCube->z = p->aParam[2]; 411 pCube->width = p->aParam[3]; 412 pCube->height = p->aParam[4]; 413 pCube->depth = p->aParam[5]; 414 415 p->pUser = (void *)pCube; 416 p->xDelUser = cube_context_free; 417 } 418 419 assert( nCoord==6 ); 420 *piRes = 0; 421 if( aCoord[0]<=(pCube->x+pCube->width) 422 && aCoord[1]>=pCube->x 423 && aCoord[2]<=(pCube->y+pCube->height) 424 && aCoord[3]>=pCube->y 425 && aCoord[4]<=(pCube->z+pCube->depth) 426 && aCoord[5]>=pCube->z 427 ){ 428 *piRes = 1; 429 } 430 431 return SQLITE_OK; 432 } 433 #endif /* SQLITE_ENABLE_RTREE */ 434 435 static int register_cube_geom( 436 void * clientData, 437 Tcl_Interp *interp, 438 int objc, 439 Tcl_Obj *CONST objv[] 440 ){ 441 #ifndef SQLITE_ENABLE_RTREE 442 UNUSED_PARAMETER(clientData); 443 UNUSED_PARAMETER(interp); 444 UNUSED_PARAMETER(objc); 445 UNUSED_PARAMETER(objv); 446 #else 447 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); 448 extern const char *sqlite3ErrName(int); 449 sqlite3 *db; 450 int rc; 451 452 if( objc!=2 ){ 453 Tcl_WrongNumArgs(interp, 1, objv, "DB"); 454 return TCL_ERROR; 455 } 456 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; 457 rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); 458 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); 459 #endif 460 return TCL_OK; 461 } 462 463 static int register_circle_geom( 464 void * clientData, 465 Tcl_Interp *interp, 466 int objc, 467 Tcl_Obj *CONST objv[] 468 ){ 469 #ifndef SQLITE_ENABLE_RTREE 470 UNUSED_PARAMETER(clientData); 471 UNUSED_PARAMETER(interp); 472 UNUSED_PARAMETER(objc); 473 UNUSED_PARAMETER(objv); 474 #else 475 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); 476 extern const char *sqlite3ErrName(int); 477 sqlite3 *db; 478 int rc; 479 480 if( objc!=2 ){ 481 Tcl_WrongNumArgs(interp, 1, objv, "DB"); 482 return TCL_ERROR; 483 } 484 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; 485 rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); 486 if( rc==SQLITE_OK ){ 487 rc = sqlite3_rtree_query_callback(db, "Qcircle", 488 circle_query_func, 0, 0); 489 } 490 if( rc==SQLITE_OK ){ 491 rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", 492 bfs_query_func, 0, 0); 493 } 494 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); 495 #endif 496 return TCL_OK; 497 } 498 499 int Sqlitetestrtree_Init(Tcl_Interp *interp){ 500 Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0); 501 Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0); 502 return TCL_OK; 503 } 504