1 /* 2 ** 2010 October 28 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains a VFS "shim" - a layer that sits in between the 14 ** pager and the real VFS - that breaks up a very large database file 15 ** into two or more smaller files on disk. This is useful, for example, 16 ** in order to support large, multi-gigabyte databases on older filesystems 17 ** that limit the maximum file size to 2 GiB. 18 ** 19 ** USAGE: 20 ** 21 ** Compile this source file and link it with your application. Then 22 ** at start-time, invoke the following procedure: 23 ** 24 ** int sqlite3_multiplex_initialize( 25 ** const char *zOrigVfsName, // The underlying real VFS 26 ** int makeDefault // True to make multiplex the default VFS 27 ** ); 28 ** 29 ** The procedure call above will create and register a new VFS shim named 30 ** "multiplex". The multiplex VFS will use the VFS named by zOrigVfsName to 31 ** do the actual disk I/O. (The zOrigVfsName parameter may be NULL, in 32 ** which case the default VFS at the moment sqlite3_multiplex_initialize() 33 ** is called will be used as the underlying real VFS.) 34 ** 35 ** If the makeDefault parameter is TRUE then multiplex becomes the new 36 ** default VFS. Otherwise, you can use the multiplex VFS by specifying 37 ** "multiplex" as the 4th parameter to sqlite3_open_v2() or by employing 38 ** URI filenames and adding "vfs=multiplex" as a parameter to the filename 39 ** URI. 40 ** 41 ** The multiplex VFS allows databases up to 32 GiB in size. But it splits 42 ** the files up into smaller pieces, so that they will work even on 43 ** filesystems that do not support large files. The default chunk size 44 ** is 2147418112 bytes (which is 64KiB less than 2GiB) but this can be 45 ** changed at compile-time by defining the SQLITE_MULTIPLEX_CHUNK_SIZE 46 ** macro. Use the "chunksize=NNNN" query parameter with a URI filename 47 ** in order to select an alternative chunk size for individual connections 48 ** at run-time. 49 */ 50 #include "sqlite3.h" 51 #include <string.h> 52 #include <assert.h> 53 #include <stdlib.h> 54 #include "test_multiplex.h" 55 56 #ifndef SQLITE_CORE 57 #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */ 58 #endif 59 #include "sqlite3ext.h" 60 61 /* 62 ** These should be defined to be the same as the values in 63 ** sqliteInt.h. They are defined seperately here so that 64 ** the multiplex VFS shim can be built as a loadable 65 ** module. 66 */ 67 #define UNUSED_PARAMETER(x) (void)(x) 68 #define MAX_PAGE_SIZE 0x10000 69 #define DEFAULT_SECTOR_SIZE 0x1000 70 71 /* 72 ** For a build without mutexes, no-op the mutex calls. 73 */ 74 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE==0 75 #define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8) 76 #define sqlite3_mutex_free(X) 77 #define sqlite3_mutex_enter(X) 78 #define sqlite3_mutex_try(X) SQLITE_OK 79 #define sqlite3_mutex_leave(X) 80 #define sqlite3_mutex_held(X) ((void)(X),1) 81 #define sqlite3_mutex_notheld(X) ((void)(X),1) 82 #endif /* SQLITE_THREADSAFE==0 */ 83 84 /* Maximum chunk number */ 85 #define MX_CHUNK_NUMBER 299 86 87 /* First chunk for rollback journal files */ 88 #define SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET 400 89 #define SQLITE_MULTIPLEX_WAL_8_3_OFFSET 700 90 91 92 /************************ Shim Definitions ******************************/ 93 94 #ifndef SQLITE_MULTIPLEX_VFS_NAME 95 # define SQLITE_MULTIPLEX_VFS_NAME "multiplex" 96 #endif 97 98 /* This is the limit on the chunk size. It may be changed by calling 99 ** the xFileControl() interface. It will be rounded up to a 100 ** multiple of MAX_PAGE_SIZE. We default it here to 2GiB less 64KiB. 101 */ 102 #ifndef SQLITE_MULTIPLEX_CHUNK_SIZE 103 # define SQLITE_MULTIPLEX_CHUNK_SIZE 2147418112 104 #endif 105 106 /* This used to be the default limit on number of chunks, but 107 ** it is no longer enforced. There is currently no limit to the 108 ** number of chunks. 109 ** 110 ** May be changed by calling the xFileControl() interface. 111 */ 112 #ifndef SQLITE_MULTIPLEX_MAX_CHUNKS 113 # define SQLITE_MULTIPLEX_MAX_CHUNKS 12 114 #endif 115 116 /************************ Object Definitions ******************************/ 117 118 /* Forward declaration of all object types */ 119 typedef struct multiplexGroup multiplexGroup; 120 typedef struct multiplexConn multiplexConn; 121 122 /* 123 ** A "multiplex group" is a collection of files that collectively 124 ** makeup a single SQLite DB file. This allows the size of the DB 125 ** to exceed the limits imposed by the file system. 126 ** 127 ** There is an instance of the following object for each defined multiplex 128 ** group. 129 */ 130 struct multiplexGroup { 131 struct multiplexReal { /* For each chunk */ 132 sqlite3_file *p; /* Handle for the chunk */ 133 char *z; /* Name of this chunk */ 134 } *aReal; /* list of all chunks */ 135 int nReal; /* Number of chunks */ 136 char *zName; /* Base filename of this group */ 137 int nName; /* Length of base filename */ 138 int flags; /* Flags used for original opening */ 139 unsigned int szChunk; /* Chunk size used for this group */ 140 unsigned char bEnabled; /* TRUE to use Multiplex VFS for this file */ 141 unsigned char bTruncate; /* TRUE to enable truncation of databases */ 142 multiplexGroup *pNext, *pPrev; /* Doubly linked list of all group objects */ 143 }; 144 145 /* 146 ** An instance of the following object represents each open connection 147 ** to a file that is multiplex'ed. This object is a 148 ** subclass of sqlite3_file. The sqlite3_file object for the underlying 149 ** VFS is appended to this structure. 150 */ 151 struct multiplexConn { 152 sqlite3_file base; /* Base class - must be first */ 153 multiplexGroup *pGroup; /* The underlying group of files */ 154 }; 155 156 /************************* Global Variables **********************************/ 157 /* 158 ** All global variables used by this file are containing within the following 159 ** gMultiplex structure. 160 */ 161 static struct { 162 /* The pOrigVfs is the real, original underlying VFS implementation. 163 ** Most operations pass-through to the real VFS. This value is read-only 164 ** during operation. It is only modified at start-time and thus does not 165 ** require a mutex. 166 */ 167 sqlite3_vfs *pOrigVfs; 168 169 /* The sThisVfs is the VFS structure used by this shim. It is initialized 170 ** at start-time and thus does not require a mutex 171 */ 172 sqlite3_vfs sThisVfs; 173 174 /* The sIoMethods defines the methods used by sqlite3_file objects 175 ** associated with this shim. It is initialized at start-time and does 176 ** not require a mutex. 177 ** 178 ** When the underlying VFS is called to open a file, it might return 179 ** either a version 1 or a version 2 sqlite3_file object. This shim 180 ** has to create a wrapper sqlite3_file of the same version. Hence 181 ** there are two I/O method structures, one for version 1 and the other 182 ** for version 2. 183 */ 184 sqlite3_io_methods sIoMethodsV1; 185 sqlite3_io_methods sIoMethodsV2; 186 187 /* True when this shim has been initialized. 188 */ 189 int isInitialized; 190 191 /* For run-time access any of the other global data structures in this 192 ** shim, the following mutex must be held. 193 */ 194 sqlite3_mutex *pMutex; 195 196 /* List of multiplexGroup objects. 197 */ 198 multiplexGroup *pGroups; 199 } gMultiplex; 200 201 /************************* Utility Routines *********************************/ 202 /* 203 ** Acquire and release the mutex used to serialize access to the 204 ** list of multiplexGroups. 205 */ 206 static void multiplexEnter(void){ sqlite3_mutex_enter(gMultiplex.pMutex); } 207 static void multiplexLeave(void){ sqlite3_mutex_leave(gMultiplex.pMutex); } 208 209 /* 210 ** Compute a string length that is limited to what can be stored in 211 ** lower 30 bits of a 32-bit signed integer. 212 ** 213 ** The value returned will never be negative. Nor will it ever be greater 214 ** than the actual length of the string. For very long strings (greater 215 ** than 1GiB) the value returned might be less than the true string length. 216 */ 217 static int multiplexStrlen30(const char *z){ 218 const char *z2 = z; 219 if( z==0 ) return 0; 220 while( *z2 ){ z2++; } 221 return 0x3fffffff & (int)(z2 - z); 222 } 223 224 /* 225 ** Generate the file-name for chunk iChunk of the group with base name 226 ** zBase. The file-name is written to buffer zOut before returning. Buffer 227 ** zOut must be allocated by the caller so that it is at least (nBase+5) 228 ** bytes in size, where nBase is the length of zBase, not including the 229 ** nul-terminator. 230 ** 231 ** If iChunk is 0 (or 400 - the number for the first journal file chunk), 232 ** the output is a copy of the input string. Otherwise, if 233 ** SQLITE_ENABLE_8_3_NAMES is not defined or the input buffer does not contain 234 ** a "." character, then the output is a copy of the input string with the 235 ** three-digit zero-padded decimal representation if iChunk appended to it. 236 ** For example: 237 ** 238 ** zBase="test.db", iChunk=4 -> zOut="test.db004" 239 ** 240 ** Or, if SQLITE_ENABLE_8_3_NAMES is defined and the input buffer contains 241 ** a "." character, then everything after the "." is replaced by the 242 ** three-digit representation of iChunk. 243 ** 244 ** zBase="test.db", iChunk=4 -> zOut="test.004" 245 ** 246 ** The output buffer string is terminated by 2 0x00 bytes. This makes it safe 247 ** to pass to sqlite3_uri_parameter() and similar. 248 */ 249 static void multiplexFilename( 250 const char *zBase, /* Filename for chunk 0 */ 251 int nBase, /* Size of zBase in bytes (without \0) */ 252 int flags, /* Flags used to open file */ 253 int iChunk, /* Chunk to generate filename for */ 254 char *zOut /* Buffer to write generated name to */ 255 ){ 256 int n = nBase; 257 memcpy(zOut, zBase, n+1); 258 if( iChunk!=0 && iChunk<=MX_CHUNK_NUMBER ){ 259 #ifdef SQLITE_ENABLE_8_3_NAMES 260 int i; 261 for(i=n-1; i>0 && i>=n-4 && zOut[i]!='.'; i--){} 262 if( i>=n-4 ) n = i+1; 263 if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ 264 /* The extensions on overflow files for main databases are 001, 002, 265 ** 003 and so forth. To avoid name collisions, add 400 to the 266 ** extensions of journal files so that they are 401, 402, 403, .... 267 */ 268 iChunk += SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET; 269 }else if( flags & SQLITE_OPEN_WAL ){ 270 /* To avoid name collisions, add 700 to the 271 ** extensions of WAL files so that they are 701, 702, 703, .... 272 */ 273 iChunk += SQLITE_MULTIPLEX_WAL_8_3_OFFSET; 274 } 275 #endif 276 sqlite3_snprintf(4,&zOut[n],"%03d",iChunk); 277 n += 3; 278 } 279 280 assert( zOut[n]=='\0' ); 281 zOut[n+1] = '\0'; 282 } 283 284 /* Compute the filename for the iChunk-th chunk 285 */ 286 static int multiplexSubFilename(multiplexGroup *pGroup, int iChunk){ 287 if( iChunk>=pGroup->nReal ){ 288 struct multiplexReal *p; 289 p = sqlite3_realloc(pGroup->aReal, (iChunk+1)*sizeof(*p)); 290 if( p==0 ){ 291 return SQLITE_NOMEM; 292 } 293 memset(&p[pGroup->nReal], 0, sizeof(p[0])*(iChunk+1-pGroup->nReal)); 294 pGroup->aReal = p; 295 pGroup->nReal = iChunk+1; 296 } 297 if( pGroup->zName && pGroup->aReal[iChunk].z==0 ){ 298 char *z; 299 int n = pGroup->nName; 300 pGroup->aReal[iChunk].z = z = sqlite3_malloc( n+5 ); 301 if( z==0 ){ 302 return SQLITE_NOMEM; 303 } 304 multiplexFilename(pGroup->zName, pGroup->nName, pGroup->flags, iChunk, z); 305 } 306 return SQLITE_OK; 307 } 308 309 /* Translate an sqlite3_file* that is really a multiplexGroup* into 310 ** the sqlite3_file* for the underlying original VFS. 311 ** 312 ** For chunk 0, the pGroup->flags determines whether or not a new file 313 ** is created if it does not already exist. For chunks 1 and higher, the 314 ** file is created only if createFlag is 1. 315 */ 316 static sqlite3_file *multiplexSubOpen( 317 multiplexGroup *pGroup, /* The multiplexor group */ 318 int iChunk, /* Which chunk to open. 0==original file */ 319 int *rc, /* Result code in and out */ 320 int *pOutFlags, /* Output flags */ 321 int createFlag /* True to create if iChunk>0 */ 322 ){ 323 sqlite3_file *pSubOpen = 0; 324 sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ 325 326 #ifdef SQLITE_ENABLE_8_3_NAMES 327 /* If JOURNAL_8_3_OFFSET is set to (say) 400, then any overflow files are 328 ** part of a database journal are named db.401, db.402, and so on. A 329 ** database may therefore not grow to larger than 400 chunks. Attempting 330 ** to open chunk 401 indicates the database is full. */ 331 if( iChunk>=SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET ){ 332 sqlite3_log(SQLITE_FULL, "multiplexed chunk overflow: %s", pGroup->zName); 333 *rc = SQLITE_FULL; 334 return 0; 335 } 336 #endif 337 338 *rc = multiplexSubFilename(pGroup, iChunk); 339 if( (*rc)==SQLITE_OK && (pSubOpen = pGroup->aReal[iChunk].p)==0 ){ 340 int flags, bExists; 341 flags = pGroup->flags; 342 if( createFlag ){ 343 flags |= SQLITE_OPEN_CREATE; 344 }else if( iChunk==0 ){ 345 /* Fall through */ 346 }else if( pGroup->aReal[iChunk].z==0 ){ 347 return 0; 348 }else{ 349 *rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[iChunk].z, 350 SQLITE_ACCESS_EXISTS, &bExists); 351 if( *rc || !bExists ){ 352 if( *rc ){ 353 sqlite3_log(*rc, "multiplexor.xAccess failure on %s", 354 pGroup->aReal[iChunk].z); 355 } 356 return 0; 357 } 358 flags &= ~SQLITE_OPEN_CREATE; 359 } 360 pSubOpen = sqlite3_malloc( pOrigVfs->szOsFile ); 361 if( pSubOpen==0 ){ 362 *rc = SQLITE_IOERR_NOMEM; 363 return 0; 364 } 365 pGroup->aReal[iChunk].p = pSubOpen; 366 *rc = pOrigVfs->xOpen(pOrigVfs, pGroup->aReal[iChunk].z, pSubOpen, 367 flags, pOutFlags); 368 if( (*rc)!=SQLITE_OK ){ 369 sqlite3_log(*rc, "multiplexor.xOpen failure on %s", 370 pGroup->aReal[iChunk].z); 371 sqlite3_free(pSubOpen); 372 pGroup->aReal[iChunk].p = 0; 373 return 0; 374 } 375 } 376 return pSubOpen; 377 } 378 379 /* 380 ** Return the size, in bytes, of chunk number iChunk. If that chunk 381 ** does not exist, then return 0. This function does not distingish between 382 ** non-existant files and zero-length files. 383 */ 384 static sqlite3_int64 multiplexSubSize( 385 multiplexGroup *pGroup, /* The multiplexor group */ 386 int iChunk, /* Which chunk to open. 0==original file */ 387 int *rc /* Result code in and out */ 388 ){ 389 sqlite3_file *pSub; 390 sqlite3_int64 sz = 0; 391 392 if( *rc ) return 0; 393 pSub = multiplexSubOpen(pGroup, iChunk, rc, NULL, 0); 394 if( pSub==0 ) return 0; 395 *rc = pSub->pMethods->xFileSize(pSub, &sz); 396 return sz; 397 } 398 399 /* 400 ** This is the implementation of the multiplex_control() SQL function. 401 */ 402 static void multiplexControlFunc( 403 sqlite3_context *context, 404 int argc, 405 sqlite3_value **argv 406 ){ 407 int rc = SQLITE_OK; 408 sqlite3 *db = sqlite3_context_db_handle(context); 409 int op; 410 int iVal; 411 412 if( !db || argc!=2 ){ 413 rc = SQLITE_ERROR; 414 }else{ 415 /* extract params */ 416 op = sqlite3_value_int(argv[0]); 417 iVal = sqlite3_value_int(argv[1]); 418 /* map function op to file_control op */ 419 switch( op ){ 420 case 1: 421 op = MULTIPLEX_CTRL_ENABLE; 422 break; 423 case 2: 424 op = MULTIPLEX_CTRL_SET_CHUNK_SIZE; 425 break; 426 case 3: 427 op = MULTIPLEX_CTRL_SET_MAX_CHUNKS; 428 break; 429 default: 430 rc = SQLITE_NOTFOUND; 431 break; 432 } 433 } 434 if( rc==SQLITE_OK ){ 435 rc = sqlite3_file_control(db, 0, op, &iVal); 436 } 437 sqlite3_result_error_code(context, rc); 438 } 439 440 /* 441 ** This is the entry point to register the auto-extension for the 442 ** multiplex_control() function. 443 */ 444 static int multiplexFuncInit( 445 sqlite3 *db, 446 char **pzErrMsg, 447 const sqlite3_api_routines *pApi 448 ){ 449 int rc; 450 rc = sqlite3_create_function(db, "multiplex_control", 2, SQLITE_ANY, 451 0, multiplexControlFunc, 0, 0); 452 return rc; 453 } 454 455 /* 456 ** Close a single sub-file in the connection group. 457 */ 458 static void multiplexSubClose( 459 multiplexGroup *pGroup, 460 int iChunk, 461 sqlite3_vfs *pOrigVfs 462 ){ 463 sqlite3_file *pSubOpen = pGroup->aReal[iChunk].p; 464 if( pSubOpen ){ 465 pSubOpen->pMethods->xClose(pSubOpen); 466 if( pOrigVfs && pGroup->aReal[iChunk].z ){ 467 pOrigVfs->xDelete(pOrigVfs, pGroup->aReal[iChunk].z, 0); 468 } 469 sqlite3_free(pGroup->aReal[iChunk].p); 470 } 471 sqlite3_free(pGroup->aReal[iChunk].z); 472 memset(&pGroup->aReal[iChunk], 0, sizeof(pGroup->aReal[iChunk])); 473 } 474 475 /* 476 ** Deallocate memory held by a multiplexGroup 477 */ 478 static void multiplexFreeComponents(multiplexGroup *pGroup){ 479 int i; 480 for(i=0; i<pGroup->nReal; i++){ multiplexSubClose(pGroup, i, 0); } 481 sqlite3_free(pGroup->aReal); 482 pGroup->aReal = 0; 483 pGroup->nReal = 0; 484 } 485 486 487 /************************* VFS Method Wrappers *****************************/ 488 489 /* 490 ** This is the xOpen method used for the "multiplex" VFS. 491 ** 492 ** Most of the work is done by the underlying original VFS. This method 493 ** simply links the new file into the appropriate multiplex group if it is a 494 ** file that needs to be tracked. 495 */ 496 static int multiplexOpen( 497 sqlite3_vfs *pVfs, /* The multiplex VFS */ 498 const char *zName, /* Name of file to be opened */ 499 sqlite3_file *pConn, /* Fill in this file descriptor */ 500 int flags, /* Flags to control the opening */ 501 int *pOutFlags /* Flags showing results of opening */ 502 ){ 503 int rc = SQLITE_OK; /* Result code */ 504 multiplexConn *pMultiplexOpen; /* The new multiplex file descriptor */ 505 multiplexGroup *pGroup = 0; /* Corresponding multiplexGroup object */ 506 sqlite3_file *pSubOpen = 0; /* Real file descriptor */ 507 sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ 508 int nName = 0; 509 int sz = 0; 510 char *zToFree = 0; 511 512 UNUSED_PARAMETER(pVfs); 513 memset(pConn, 0, pVfs->szOsFile); 514 assert( zName || (flags & SQLITE_OPEN_DELETEONCLOSE) ); 515 516 /* We need to create a group structure and manage 517 ** access to this group of files. 518 */ 519 multiplexEnter(); 520 pMultiplexOpen = (multiplexConn*)pConn; 521 522 if( rc==SQLITE_OK ){ 523 /* allocate space for group */ 524 nName = zName ? multiplexStrlen30(zName) : 0; 525 sz = sizeof(multiplexGroup) /* multiplexGroup */ 526 + nName + 1; /* zName */ 527 pGroup = sqlite3_malloc( sz ); 528 if( pGroup==0 ){ 529 rc = SQLITE_NOMEM; 530 } 531 } 532 533 if( rc==SQLITE_OK ){ 534 const char *zUri = (flags & SQLITE_OPEN_URI) ? zName : 0; 535 /* assign pointers to extra space allocated */ 536 memset(pGroup, 0, sz); 537 pMultiplexOpen->pGroup = pGroup; 538 pGroup->bEnabled = -1; 539 pGroup->bTruncate = sqlite3_uri_boolean(zUri, "truncate", 540 (flags & SQLITE_OPEN_MAIN_DB)==0); 541 pGroup->szChunk = (int)sqlite3_uri_int64(zUri, "chunksize", 542 SQLITE_MULTIPLEX_CHUNK_SIZE); 543 pGroup->szChunk = (pGroup->szChunk+0xffff)&~0xffff; 544 if( zName ){ 545 char *p = (char *)&pGroup[1]; 546 pGroup->zName = p; 547 memcpy(pGroup->zName, zName, nName+1); 548 pGroup->nName = nName; 549 } 550 if( pGroup->bEnabled ){ 551 /* Make sure that the chunksize is such that the pending byte does not 552 ** falls at the end of a chunk. A region of up to 64K following 553 ** the pending byte is never written, so if the pending byte occurs 554 ** near the end of a chunk, that chunk will be too small. */ 555 #ifndef SQLITE_OMIT_WSD 556 extern int sqlite3PendingByte; 557 #else 558 int sqlite3PendingByte = 0x40000000; 559 #endif 560 while( (sqlite3PendingByte % pGroup->szChunk)>=(pGroup->szChunk-65536) ){ 561 pGroup->szChunk += 65536; 562 } 563 } 564 pGroup->flags = flags; 565 rc = multiplexSubFilename(pGroup, 1); 566 if( rc==SQLITE_OK ){ 567 pSubOpen = multiplexSubOpen(pGroup, 0, &rc, pOutFlags, 0); 568 if( pSubOpen==0 && rc==SQLITE_OK ) rc = SQLITE_CANTOPEN; 569 } 570 if( rc==SQLITE_OK ){ 571 sqlite3_int64 sz; 572 573 rc = pSubOpen->pMethods->xFileSize(pSubOpen, &sz); 574 if( rc==SQLITE_OK && zName ){ 575 int bExists; 576 if( sz==0 ){ 577 if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ 578 /* If opening a main journal file and the first chunk is zero 579 ** bytes in size, delete any subsequent chunks from the 580 ** file-system. */ 581 int iChunk = 1; 582 do { 583 rc = pOrigVfs->xAccess(pOrigVfs, 584 pGroup->aReal[iChunk].z, SQLITE_ACCESS_EXISTS, &bExists 585 ); 586 if( rc==SQLITE_OK && bExists ){ 587 rc = pOrigVfs->xDelete(pOrigVfs, pGroup->aReal[iChunk].z, 0); 588 if( rc==SQLITE_OK ){ 589 rc = multiplexSubFilename(pGroup, ++iChunk); 590 } 591 } 592 }while( rc==SQLITE_OK && bExists ); 593 } 594 }else{ 595 /* If the first overflow file exists and if the size of the main file 596 ** is different from the chunk size, that means the chunk size is set 597 ** set incorrectly. So fix it. 598 ** 599 ** Or, if the first overflow file does not exist and the main file is 600 ** larger than the chunk size, that means the chunk size is too small. 601 ** But we have no way of determining the intended chunk size, so 602 ** just disable the multiplexor all togethre. 603 */ 604 rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[1].z, 605 SQLITE_ACCESS_EXISTS, &bExists); 606 bExists = multiplexSubSize(pGroup, 1, &rc)>0; 607 if( rc==SQLITE_OK && bExists && sz==(sz&0xffff0000) && sz>0 608 && sz!=pGroup->szChunk ){ 609 pGroup->szChunk = (int)sz; 610 }else if( rc==SQLITE_OK && !bExists && sz>pGroup->szChunk ){ 611 pGroup->bEnabled = 0; 612 } 613 } 614 } 615 } 616 617 if( rc==SQLITE_OK ){ 618 if( pSubOpen->pMethods->iVersion==1 ){ 619 pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV1; 620 }else{ 621 pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV2; 622 } 623 /* place this group at the head of our list */ 624 pGroup->pNext = gMultiplex.pGroups; 625 if( gMultiplex.pGroups ) gMultiplex.pGroups->pPrev = pGroup; 626 gMultiplex.pGroups = pGroup; 627 }else{ 628 multiplexFreeComponents(pGroup); 629 sqlite3_free(pGroup); 630 } 631 } 632 multiplexLeave(); 633 sqlite3_free(zToFree); 634 return rc; 635 } 636 637 /* 638 ** This is the xDelete method used for the "multiplex" VFS. 639 ** It attempts to delete the filename specified. 640 */ 641 static int multiplexDelete( 642 sqlite3_vfs *pVfs, /* The multiplex VFS */ 643 const char *zName, /* Name of file to delete */ 644 int syncDir 645 ){ 646 int rc; 647 sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ 648 rc = pOrigVfs->xDelete(pOrigVfs, zName, syncDir); 649 if( rc==SQLITE_OK ){ 650 /* If the main chunk was deleted successfully, also delete any subsequent 651 ** chunks - starting with the last (highest numbered). 652 */ 653 int nName = (int)strlen(zName); 654 char *z; 655 z = sqlite3_malloc(nName + 5); 656 if( z==0 ){ 657 rc = SQLITE_IOERR_NOMEM; 658 }else{ 659 int iChunk = 0; 660 int bExists; 661 do{ 662 multiplexFilename(zName, nName, SQLITE_OPEN_MAIN_JOURNAL, ++iChunk, z); 663 rc = pOrigVfs->xAccess(pOrigVfs, z, SQLITE_ACCESS_EXISTS, &bExists); 664 }while( rc==SQLITE_OK && bExists ); 665 while( rc==SQLITE_OK && iChunk>1 ){ 666 multiplexFilename(zName, nName, SQLITE_OPEN_MAIN_JOURNAL, --iChunk, z); 667 rc = pOrigVfs->xDelete(pOrigVfs, z, syncDir); 668 } 669 if( rc==SQLITE_OK ){ 670 iChunk = 0; 671 do{ 672 multiplexFilename(zName, nName, SQLITE_OPEN_WAL, ++iChunk, z); 673 rc = pOrigVfs->xAccess(pOrigVfs, z, SQLITE_ACCESS_EXISTS, &bExists); 674 }while( rc==SQLITE_OK && bExists ); 675 while( rc==SQLITE_OK && iChunk>1 ){ 676 multiplexFilename(zName, nName, SQLITE_OPEN_WAL, --iChunk, z); 677 rc = pOrigVfs->xDelete(pOrigVfs, z, syncDir); 678 } 679 } 680 } 681 sqlite3_free(z); 682 } 683 return rc; 684 } 685 686 static int multiplexAccess(sqlite3_vfs *a, const char *b, int c, int *d){ 687 return gMultiplex.pOrigVfs->xAccess(gMultiplex.pOrigVfs, b, c, d); 688 } 689 static int multiplexFullPathname(sqlite3_vfs *a, const char *b, int c, char *d){ 690 return gMultiplex.pOrigVfs->xFullPathname(gMultiplex.pOrigVfs, b, c, d); 691 } 692 static void *multiplexDlOpen(sqlite3_vfs *a, const char *b){ 693 return gMultiplex.pOrigVfs->xDlOpen(gMultiplex.pOrigVfs, b); 694 } 695 static void multiplexDlError(sqlite3_vfs *a, int b, char *c){ 696 gMultiplex.pOrigVfs->xDlError(gMultiplex.pOrigVfs, b, c); 697 } 698 static void (*multiplexDlSym(sqlite3_vfs *a, void *b, const char *c))(void){ 699 return gMultiplex.pOrigVfs->xDlSym(gMultiplex.pOrigVfs, b, c); 700 } 701 static void multiplexDlClose(sqlite3_vfs *a, void *b){ 702 gMultiplex.pOrigVfs->xDlClose(gMultiplex.pOrigVfs, b); 703 } 704 static int multiplexRandomness(sqlite3_vfs *a, int b, char *c){ 705 return gMultiplex.pOrigVfs->xRandomness(gMultiplex.pOrigVfs, b, c); 706 } 707 static int multiplexSleep(sqlite3_vfs *a, int b){ 708 return gMultiplex.pOrigVfs->xSleep(gMultiplex.pOrigVfs, b); 709 } 710 static int multiplexCurrentTime(sqlite3_vfs *a, double *b){ 711 return gMultiplex.pOrigVfs->xCurrentTime(gMultiplex.pOrigVfs, b); 712 } 713 static int multiplexGetLastError(sqlite3_vfs *a, int b, char *c){ 714 return gMultiplex.pOrigVfs->xGetLastError(gMultiplex.pOrigVfs, b, c); 715 } 716 static int multiplexCurrentTimeInt64(sqlite3_vfs *a, sqlite3_int64 *b){ 717 return gMultiplex.pOrigVfs->xCurrentTimeInt64(gMultiplex.pOrigVfs, b); 718 } 719 720 /************************ I/O Method Wrappers *******************************/ 721 722 /* xClose requests get passed through to the original VFS. 723 ** We loop over all open chunk handles and close them. 724 ** The group structure for this file is unlinked from 725 ** our list of groups and freed. 726 */ 727 static int multiplexClose(sqlite3_file *pConn){ 728 multiplexConn *p = (multiplexConn*)pConn; 729 multiplexGroup *pGroup = p->pGroup; 730 int rc = SQLITE_OK; 731 multiplexEnter(); 732 multiplexFreeComponents(pGroup); 733 /* remove from linked list */ 734 if( pGroup->pNext ) pGroup->pNext->pPrev = pGroup->pPrev; 735 if( pGroup->pPrev ){ 736 pGroup->pPrev->pNext = pGroup->pNext; 737 }else{ 738 gMultiplex.pGroups = pGroup->pNext; 739 } 740 sqlite3_free(pGroup); 741 multiplexLeave(); 742 return rc; 743 } 744 745 /* Pass xRead requests thru to the original VFS after 746 ** determining the correct chunk to operate on. 747 ** Break up reads across chunk boundaries. 748 */ 749 static int multiplexRead( 750 sqlite3_file *pConn, 751 void *pBuf, 752 int iAmt, 753 sqlite3_int64 iOfst 754 ){ 755 multiplexConn *p = (multiplexConn*)pConn; 756 multiplexGroup *pGroup = p->pGroup; 757 int rc = SQLITE_OK; 758 multiplexEnter(); 759 if( !pGroup->bEnabled ){ 760 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); 761 if( pSubOpen==0 ){ 762 rc = SQLITE_IOERR_READ; 763 }else{ 764 rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst); 765 } 766 }else{ 767 while( iAmt > 0 ){ 768 int i = (int)(iOfst / pGroup->szChunk); 769 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL, 1); 770 if( pSubOpen ){ 771 int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - pGroup->szChunk; 772 if( extra<0 ) extra = 0; 773 iAmt -= extra; 774 rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, 775 iOfst % pGroup->szChunk); 776 if( rc!=SQLITE_OK ) break; 777 pBuf = (char *)pBuf + iAmt; 778 iOfst += iAmt; 779 iAmt = extra; 780 }else{ 781 rc = SQLITE_IOERR_READ; 782 break; 783 } 784 } 785 } 786 multiplexLeave(); 787 return rc; 788 } 789 790 /* Pass xWrite requests thru to the original VFS after 791 ** determining the correct chunk to operate on. 792 ** Break up writes across chunk boundaries. 793 */ 794 static int multiplexWrite( 795 sqlite3_file *pConn, 796 const void *pBuf, 797 int iAmt, 798 sqlite3_int64 iOfst 799 ){ 800 multiplexConn *p = (multiplexConn*)pConn; 801 multiplexGroup *pGroup = p->pGroup; 802 int rc = SQLITE_OK; 803 multiplexEnter(); 804 if( !pGroup->bEnabled ){ 805 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); 806 if( pSubOpen==0 ){ 807 rc = SQLITE_IOERR_WRITE; 808 }else{ 809 rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst); 810 } 811 }else{ 812 while( rc==SQLITE_OK && iAmt>0 ){ 813 int i = (int)(iOfst / pGroup->szChunk); 814 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL, 1); 815 if( pSubOpen ){ 816 int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - 817 pGroup->szChunk; 818 if( extra<0 ) extra = 0; 819 iAmt -= extra; 820 rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, 821 iOfst % pGroup->szChunk); 822 pBuf = (char *)pBuf + iAmt; 823 iOfst += iAmt; 824 iAmt = extra; 825 } 826 } 827 } 828 multiplexLeave(); 829 return rc; 830 } 831 832 /* Pass xTruncate requests thru to the original VFS after 833 ** determining the correct chunk to operate on. Delete any 834 ** chunks above the truncate mark. 835 */ 836 static int multiplexTruncate(sqlite3_file *pConn, sqlite3_int64 size){ 837 multiplexConn *p = (multiplexConn*)pConn; 838 multiplexGroup *pGroup = p->pGroup; 839 int rc = SQLITE_OK; 840 multiplexEnter(); 841 if( !pGroup->bEnabled ){ 842 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); 843 if( pSubOpen==0 ){ 844 rc = SQLITE_IOERR_TRUNCATE; 845 }else{ 846 rc = pSubOpen->pMethods->xTruncate(pSubOpen, size); 847 } 848 }else{ 849 int i; 850 int iBaseGroup = (int)(size / pGroup->szChunk); 851 sqlite3_file *pSubOpen; 852 sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ 853 /* delete the chunks above the truncate limit */ 854 for(i = pGroup->nReal-1; i>iBaseGroup && rc==SQLITE_OK; i--){ 855 if( pGroup->bTruncate ){ 856 multiplexSubClose(pGroup, i, pOrigVfs); 857 }else{ 858 pSubOpen = multiplexSubOpen(pGroup, i, &rc, 0, 0); 859 if( pSubOpen ){ 860 rc = pSubOpen->pMethods->xTruncate(pSubOpen, 0); 861 } 862 } 863 } 864 if( rc==SQLITE_OK ){ 865 pSubOpen = multiplexSubOpen(pGroup, iBaseGroup, &rc, 0, 0); 866 if( pSubOpen ){ 867 rc = pSubOpen->pMethods->xTruncate(pSubOpen, size % pGroup->szChunk); 868 } 869 } 870 if( rc ) rc = SQLITE_IOERR_TRUNCATE; 871 } 872 multiplexLeave(); 873 return rc; 874 } 875 876 /* Pass xSync requests through to the original VFS without change 877 */ 878 static int multiplexSync(sqlite3_file *pConn, int flags){ 879 multiplexConn *p = (multiplexConn*)pConn; 880 multiplexGroup *pGroup = p->pGroup; 881 int rc = SQLITE_OK; 882 int i; 883 multiplexEnter(); 884 for(i=0; i<pGroup->nReal; i++){ 885 sqlite3_file *pSubOpen = pGroup->aReal[i].p; 886 if( pSubOpen ){ 887 int rc2 = pSubOpen->pMethods->xSync(pSubOpen, flags); 888 if( rc2!=SQLITE_OK ) rc = rc2; 889 } 890 } 891 multiplexLeave(); 892 return rc; 893 } 894 895 /* Pass xFileSize requests through to the original VFS. 896 ** Aggregate the size of all the chunks before returning. 897 */ 898 static int multiplexFileSize(sqlite3_file *pConn, sqlite3_int64 *pSize){ 899 multiplexConn *p = (multiplexConn*)pConn; 900 multiplexGroup *pGroup = p->pGroup; 901 int rc = SQLITE_OK; 902 int i; 903 multiplexEnter(); 904 if( !pGroup->bEnabled ){ 905 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); 906 if( pSubOpen==0 ){ 907 rc = SQLITE_IOERR_FSTAT; 908 }else{ 909 rc = pSubOpen->pMethods->xFileSize(pSubOpen, pSize); 910 } 911 }else{ 912 *pSize = 0; 913 for(i=0; rc==SQLITE_OK; i++){ 914 sqlite3_int64 sz = multiplexSubSize(pGroup, i, &rc); 915 if( sz==0 ) break; 916 *pSize = i*(sqlite3_int64)pGroup->szChunk + sz; 917 } 918 } 919 multiplexLeave(); 920 return rc; 921 } 922 923 /* Pass xLock requests through to the original VFS unchanged. 924 */ 925 static int multiplexLock(sqlite3_file *pConn, int lock){ 926 multiplexConn *p = (multiplexConn*)pConn; 927 int rc; 928 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 929 if( pSubOpen ){ 930 return pSubOpen->pMethods->xLock(pSubOpen, lock); 931 } 932 return SQLITE_BUSY; 933 } 934 935 /* Pass xUnlock requests through to the original VFS unchanged. 936 */ 937 static int multiplexUnlock(sqlite3_file *pConn, int lock){ 938 multiplexConn *p = (multiplexConn*)pConn; 939 int rc; 940 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 941 if( pSubOpen ){ 942 return pSubOpen->pMethods->xUnlock(pSubOpen, lock); 943 } 944 return SQLITE_IOERR_UNLOCK; 945 } 946 947 /* Pass xCheckReservedLock requests through to the original VFS unchanged. 948 */ 949 static int multiplexCheckReservedLock(sqlite3_file *pConn, int *pResOut){ 950 multiplexConn *p = (multiplexConn*)pConn; 951 int rc; 952 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 953 if( pSubOpen ){ 954 return pSubOpen->pMethods->xCheckReservedLock(pSubOpen, pResOut); 955 } 956 return SQLITE_IOERR_CHECKRESERVEDLOCK; 957 } 958 959 /* Pass xFileControl requests through to the original VFS unchanged, 960 ** except for any MULTIPLEX_CTRL_* requests here. 961 */ 962 static int multiplexFileControl(sqlite3_file *pConn, int op, void *pArg){ 963 multiplexConn *p = (multiplexConn*)pConn; 964 multiplexGroup *pGroup = p->pGroup; 965 int rc = SQLITE_ERROR; 966 sqlite3_file *pSubOpen; 967 968 if( !gMultiplex.isInitialized ) return SQLITE_MISUSE; 969 switch( op ){ 970 case MULTIPLEX_CTRL_ENABLE: 971 if( pArg ) { 972 int bEnabled = *(int *)pArg; 973 pGroup->bEnabled = bEnabled; 974 rc = SQLITE_OK; 975 } 976 break; 977 case MULTIPLEX_CTRL_SET_CHUNK_SIZE: 978 if( pArg ) { 979 unsigned int szChunk = *(unsigned*)pArg; 980 if( szChunk<1 ){ 981 rc = SQLITE_MISUSE; 982 }else{ 983 /* Round up to nearest multiple of MAX_PAGE_SIZE. */ 984 szChunk = (szChunk + (MAX_PAGE_SIZE-1)); 985 szChunk &= ~(MAX_PAGE_SIZE-1); 986 pGroup->szChunk = szChunk; 987 rc = SQLITE_OK; 988 } 989 } 990 break; 991 case MULTIPLEX_CTRL_SET_MAX_CHUNKS: 992 rc = SQLITE_OK; 993 break; 994 case SQLITE_FCNTL_SIZE_HINT: 995 case SQLITE_FCNTL_CHUNK_SIZE: 996 /* no-op these */ 997 rc = SQLITE_OK; 998 break; 999 default: 1000 pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); 1001 if( pSubOpen ){ 1002 rc = pSubOpen->pMethods->xFileControl(pSubOpen, op, pArg); 1003 if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){ 1004 *(char**)pArg = sqlite3_mprintf("multiplex/%z", *(char**)pArg); 1005 } 1006 } 1007 break; 1008 } 1009 return rc; 1010 } 1011 1012 /* Pass xSectorSize requests through to the original VFS unchanged. 1013 */ 1014 static int multiplexSectorSize(sqlite3_file *pConn){ 1015 multiplexConn *p = (multiplexConn*)pConn; 1016 int rc; 1017 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1018 if( pSubOpen && pSubOpen->pMethods->xSectorSize ){ 1019 return pSubOpen->pMethods->xSectorSize(pSubOpen); 1020 } 1021 return DEFAULT_SECTOR_SIZE; 1022 } 1023 1024 /* Pass xDeviceCharacteristics requests through to the original VFS unchanged. 1025 */ 1026 static int multiplexDeviceCharacteristics(sqlite3_file *pConn){ 1027 multiplexConn *p = (multiplexConn*)pConn; 1028 int rc; 1029 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1030 if( pSubOpen ){ 1031 return pSubOpen->pMethods->xDeviceCharacteristics(pSubOpen); 1032 } 1033 return 0; 1034 } 1035 1036 /* Pass xShmMap requests through to the original VFS unchanged. 1037 */ 1038 static int multiplexShmMap( 1039 sqlite3_file *pConn, /* Handle open on database file */ 1040 int iRegion, /* Region to retrieve */ 1041 int szRegion, /* Size of regions */ 1042 int bExtend, /* True to extend file if necessary */ 1043 void volatile **pp /* OUT: Mapped memory */ 1044 ){ 1045 multiplexConn *p = (multiplexConn*)pConn; 1046 int rc; 1047 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1048 if( pSubOpen ){ 1049 return pSubOpen->pMethods->xShmMap(pSubOpen, iRegion, szRegion, bExtend,pp); 1050 } 1051 return SQLITE_IOERR; 1052 } 1053 1054 /* Pass xShmLock requests through to the original VFS unchanged. 1055 */ 1056 static int multiplexShmLock( 1057 sqlite3_file *pConn, /* Database file holding the shared memory */ 1058 int ofst, /* First lock to acquire or release */ 1059 int n, /* Number of locks to acquire or release */ 1060 int flags /* What to do with the lock */ 1061 ){ 1062 multiplexConn *p = (multiplexConn*)pConn; 1063 int rc; 1064 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1065 if( pSubOpen ){ 1066 return pSubOpen->pMethods->xShmLock(pSubOpen, ofst, n, flags); 1067 } 1068 return SQLITE_BUSY; 1069 } 1070 1071 /* Pass xShmBarrier requests through to the original VFS unchanged. 1072 */ 1073 static void multiplexShmBarrier(sqlite3_file *pConn){ 1074 multiplexConn *p = (multiplexConn*)pConn; 1075 int rc; 1076 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1077 if( pSubOpen ){ 1078 pSubOpen->pMethods->xShmBarrier(pSubOpen); 1079 } 1080 } 1081 1082 /* Pass xShmUnmap requests through to the original VFS unchanged. 1083 */ 1084 static int multiplexShmUnmap(sqlite3_file *pConn, int deleteFlag){ 1085 multiplexConn *p = (multiplexConn*)pConn; 1086 int rc; 1087 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1088 if( pSubOpen ){ 1089 return pSubOpen->pMethods->xShmUnmap(pSubOpen, deleteFlag); 1090 } 1091 return SQLITE_OK; 1092 } 1093 1094 /************************** Public Interfaces *****************************/ 1095 /* 1096 ** CAPI: Initialize the multiplex VFS shim - sqlite3_multiplex_initialize() 1097 ** 1098 ** Use the VFS named zOrigVfsName as the VFS that does the actual work. 1099 ** Use the default if zOrigVfsName==NULL. 1100 ** 1101 ** The multiplex VFS shim is named "multiplex". It will become the default 1102 ** VFS if makeDefault is non-zero. 1103 ** 1104 ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once 1105 ** during start-up. 1106 */ 1107 int sqlite3_multiplex_initialize(const char *zOrigVfsName, int makeDefault){ 1108 sqlite3_vfs *pOrigVfs; 1109 if( gMultiplex.isInitialized ) return SQLITE_MISUSE; 1110 pOrigVfs = sqlite3_vfs_find(zOrigVfsName); 1111 if( pOrigVfs==0 ) return SQLITE_ERROR; 1112 assert( pOrigVfs!=&gMultiplex.sThisVfs ); 1113 gMultiplex.pMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); 1114 if( !gMultiplex.pMutex ){ 1115 return SQLITE_NOMEM; 1116 } 1117 gMultiplex.pGroups = NULL; 1118 gMultiplex.isInitialized = 1; 1119 gMultiplex.pOrigVfs = pOrigVfs; 1120 gMultiplex.sThisVfs = *pOrigVfs; 1121 gMultiplex.sThisVfs.szOsFile += sizeof(multiplexConn); 1122 gMultiplex.sThisVfs.zName = SQLITE_MULTIPLEX_VFS_NAME; 1123 gMultiplex.sThisVfs.xOpen = multiplexOpen; 1124 gMultiplex.sThisVfs.xDelete = multiplexDelete; 1125 gMultiplex.sThisVfs.xAccess = multiplexAccess; 1126 gMultiplex.sThisVfs.xFullPathname = multiplexFullPathname; 1127 gMultiplex.sThisVfs.xDlOpen = multiplexDlOpen; 1128 gMultiplex.sThisVfs.xDlError = multiplexDlError; 1129 gMultiplex.sThisVfs.xDlSym = multiplexDlSym; 1130 gMultiplex.sThisVfs.xDlClose = multiplexDlClose; 1131 gMultiplex.sThisVfs.xRandomness = multiplexRandomness; 1132 gMultiplex.sThisVfs.xSleep = multiplexSleep; 1133 gMultiplex.sThisVfs.xCurrentTime = multiplexCurrentTime; 1134 gMultiplex.sThisVfs.xGetLastError = multiplexGetLastError; 1135 gMultiplex.sThisVfs.xCurrentTimeInt64 = multiplexCurrentTimeInt64; 1136 1137 gMultiplex.sIoMethodsV1.iVersion = 1; 1138 gMultiplex.sIoMethodsV1.xClose = multiplexClose; 1139 gMultiplex.sIoMethodsV1.xRead = multiplexRead; 1140 gMultiplex.sIoMethodsV1.xWrite = multiplexWrite; 1141 gMultiplex.sIoMethodsV1.xTruncate = multiplexTruncate; 1142 gMultiplex.sIoMethodsV1.xSync = multiplexSync; 1143 gMultiplex.sIoMethodsV1.xFileSize = multiplexFileSize; 1144 gMultiplex.sIoMethodsV1.xLock = multiplexLock; 1145 gMultiplex.sIoMethodsV1.xUnlock = multiplexUnlock; 1146 gMultiplex.sIoMethodsV1.xCheckReservedLock = multiplexCheckReservedLock; 1147 gMultiplex.sIoMethodsV1.xFileControl = multiplexFileControl; 1148 gMultiplex.sIoMethodsV1.xSectorSize = multiplexSectorSize; 1149 gMultiplex.sIoMethodsV1.xDeviceCharacteristics = 1150 multiplexDeviceCharacteristics; 1151 gMultiplex.sIoMethodsV2 = gMultiplex.sIoMethodsV1; 1152 gMultiplex.sIoMethodsV2.iVersion = 2; 1153 gMultiplex.sIoMethodsV2.xShmMap = multiplexShmMap; 1154 gMultiplex.sIoMethodsV2.xShmLock = multiplexShmLock; 1155 gMultiplex.sIoMethodsV2.xShmBarrier = multiplexShmBarrier; 1156 gMultiplex.sIoMethodsV2.xShmUnmap = multiplexShmUnmap; 1157 sqlite3_vfs_register(&gMultiplex.sThisVfs, makeDefault); 1158 1159 sqlite3_auto_extension((void*)multiplexFuncInit); 1160 1161 return SQLITE_OK; 1162 } 1163 1164 /* 1165 ** CAPI: Shutdown the multiplex system - sqlite3_multiplex_shutdown() 1166 ** 1167 ** All SQLite database connections must be closed before calling this 1168 ** routine. 1169 ** 1170 ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once while 1171 ** shutting down in order to free all remaining multiplex groups. 1172 */ 1173 int sqlite3_multiplex_shutdown(void){ 1174 if( gMultiplex.isInitialized==0 ) return SQLITE_MISUSE; 1175 if( gMultiplex.pGroups ) return SQLITE_MISUSE; 1176 gMultiplex.isInitialized = 0; 1177 sqlite3_mutex_free(gMultiplex.pMutex); 1178 sqlite3_vfs_unregister(&gMultiplex.sThisVfs); 1179 memset(&gMultiplex, 0, sizeof(gMultiplex)); 1180 return SQLITE_OK; 1181 } 1182 1183 /***************************** Test Code ***********************************/ 1184 #ifdef SQLITE_TEST 1185 #include <tcl.h> 1186 extern const char *sqlite3TestErrorName(int); 1187 1188 1189 /* 1190 ** tclcmd: sqlite3_multiplex_initialize NAME MAKEDEFAULT 1191 */ 1192 static int test_multiplex_initialize( 1193 void * clientData, 1194 Tcl_Interp *interp, 1195 int objc, 1196 Tcl_Obj *CONST objv[] 1197 ){ 1198 const char *zName; /* Name of new multiplex VFS */ 1199 int makeDefault; /* True to make the new VFS the default */ 1200 int rc; /* Value returned by multiplex_initialize() */ 1201 1202 UNUSED_PARAMETER(clientData); 1203 1204 /* Process arguments */ 1205 if( objc!=3 ){ 1206 Tcl_WrongNumArgs(interp, 1, objv, "NAME MAKEDEFAULT"); 1207 return TCL_ERROR; 1208 } 1209 zName = Tcl_GetString(objv[1]); 1210 if( Tcl_GetBooleanFromObj(interp, objv[2], &makeDefault) ) return TCL_ERROR; 1211 if( zName[0]=='\0' ) zName = 0; 1212 1213 /* Call sqlite3_multiplex_initialize() */ 1214 rc = sqlite3_multiplex_initialize(zName, makeDefault); 1215 Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC); 1216 1217 return TCL_OK; 1218 } 1219 1220 /* 1221 ** tclcmd: sqlite3_multiplex_shutdown 1222 */ 1223 static int test_multiplex_shutdown( 1224 void * clientData, 1225 Tcl_Interp *interp, 1226 int objc, 1227 Tcl_Obj *CONST objv[] 1228 ){ 1229 int rc; /* Value returned by multiplex_shutdown() */ 1230 1231 UNUSED_PARAMETER(clientData); 1232 1233 if( objc!=1 ){ 1234 Tcl_WrongNumArgs(interp, 1, objv, ""); 1235 return TCL_ERROR; 1236 } 1237 1238 /* Call sqlite3_multiplex_shutdown() */ 1239 rc = sqlite3_multiplex_shutdown(); 1240 Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC); 1241 1242 return TCL_OK; 1243 } 1244 1245 /* 1246 ** tclcmd: sqlite3_multiplex_dump 1247 */ 1248 static int test_multiplex_dump( 1249 void * clientData, 1250 Tcl_Interp *interp, 1251 int objc, 1252 Tcl_Obj *CONST objv[] 1253 ){ 1254 Tcl_Obj *pResult; 1255 Tcl_Obj *pGroupTerm; 1256 multiplexGroup *pGroup; 1257 int i; 1258 int nChunks = 0; 1259 1260 UNUSED_PARAMETER(clientData); 1261 UNUSED_PARAMETER(objc); 1262 UNUSED_PARAMETER(objv); 1263 1264 pResult = Tcl_NewObj(); 1265 multiplexEnter(); 1266 for(pGroup=gMultiplex.pGroups; pGroup; pGroup=pGroup->pNext){ 1267 pGroupTerm = Tcl_NewObj(); 1268 1269 if( pGroup->zName ){ 1270 pGroup->zName[pGroup->nName] = '\0'; 1271 Tcl_ListObjAppendElement(interp, pGroupTerm, 1272 Tcl_NewStringObj(pGroup->zName, -1)); 1273 }else{ 1274 Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewObj()); 1275 } 1276 Tcl_ListObjAppendElement(interp, pGroupTerm, 1277 Tcl_NewIntObj(pGroup->nName)); 1278 Tcl_ListObjAppendElement(interp, pGroupTerm, 1279 Tcl_NewIntObj(pGroup->flags)); 1280 1281 /* count number of chunks with open handles */ 1282 for(i=0; i<pGroup->nReal; i++){ 1283 if( pGroup->aReal[i].p!=0 ) nChunks++; 1284 } 1285 Tcl_ListObjAppendElement(interp, pGroupTerm, 1286 Tcl_NewIntObj(nChunks)); 1287 1288 Tcl_ListObjAppendElement(interp, pGroupTerm, 1289 Tcl_NewIntObj(pGroup->szChunk)); 1290 Tcl_ListObjAppendElement(interp, pGroupTerm, 1291 Tcl_NewIntObj(pGroup->nReal)); 1292 1293 Tcl_ListObjAppendElement(interp, pResult, pGroupTerm); 1294 } 1295 multiplexLeave(); 1296 Tcl_SetObjResult(interp, pResult); 1297 return TCL_OK; 1298 } 1299 1300 /* 1301 ** Tclcmd: test_multiplex_control HANDLE DBNAME SUB-COMMAND ?INT-VALUE? 1302 */ 1303 static int test_multiplex_control( 1304 ClientData cd, 1305 Tcl_Interp *interp, 1306 int objc, 1307 Tcl_Obj *CONST objv[] 1308 ){ 1309 int rc; /* Return code from file_control() */ 1310 int idx; /* Index in aSub[] */ 1311 Tcl_CmdInfo cmdInfo; /* Command info structure for HANDLE */ 1312 sqlite3 *db; /* Underlying db handle for HANDLE */ 1313 int iValue = 0; 1314 void *pArg = 0; 1315 1316 struct SubCommand { 1317 const char *zName; 1318 int op; 1319 int argtype; 1320 } aSub[] = { 1321 { "enable", MULTIPLEX_CTRL_ENABLE, 1 }, 1322 { "chunk_size", MULTIPLEX_CTRL_SET_CHUNK_SIZE, 1 }, 1323 { "max_chunks", MULTIPLEX_CTRL_SET_MAX_CHUNKS, 1 }, 1324 { 0, 0, 0 } 1325 }; 1326 1327 if( objc!=5 ){ 1328 Tcl_WrongNumArgs(interp, 1, objv, "HANDLE DBNAME SUB-COMMAND INT-VALUE"); 1329 return TCL_ERROR; 1330 } 1331 1332 if( 0==Tcl_GetCommandInfo(interp, Tcl_GetString(objv[1]), &cmdInfo) ){ 1333 Tcl_AppendResult(interp, "expected database handle, got \"", 0); 1334 Tcl_AppendResult(interp, Tcl_GetString(objv[1]), "\"", 0); 1335 return TCL_ERROR; 1336 }else{ 1337 db = *(sqlite3 **)cmdInfo.objClientData; 1338 } 1339 1340 rc = Tcl_GetIndexFromObjStruct( 1341 interp, objv[3], aSub, sizeof(aSub[0]), "sub-command", 0, &idx 1342 ); 1343 if( rc!=TCL_OK ) return rc; 1344 1345 switch( aSub[idx].argtype ){ 1346 case 1: 1347 if( Tcl_GetIntFromObj(interp, objv[4], &iValue) ){ 1348 return TCL_ERROR; 1349 } 1350 pArg = (void *)&iValue; 1351 break; 1352 default: 1353 Tcl_WrongNumArgs(interp, 4, objv, "SUB-COMMAND"); 1354 return TCL_ERROR; 1355 } 1356 1357 rc = sqlite3_file_control(db, Tcl_GetString(objv[2]), aSub[idx].op, pArg); 1358 Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC); 1359 return (rc==SQLITE_OK) ? TCL_OK : TCL_ERROR; 1360 } 1361 1362 /* 1363 ** This routine registers the custom TCL commands defined in this 1364 ** module. This should be the only procedure visible from outside 1365 ** of this module. 1366 */ 1367 int Sqlitemultiplex_Init(Tcl_Interp *interp){ 1368 static struct { 1369 char *zName; 1370 Tcl_ObjCmdProc *xProc; 1371 } aCmd[] = { 1372 { "sqlite3_multiplex_initialize", test_multiplex_initialize }, 1373 { "sqlite3_multiplex_shutdown", test_multiplex_shutdown }, 1374 { "sqlite3_multiplex_dump", test_multiplex_dump }, 1375 { "sqlite3_multiplex_control", test_multiplex_control }, 1376 }; 1377 int i; 1378 1379 for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){ 1380 Tcl_CreateObjCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0); 1381 } 1382 1383 return TCL_OK; 1384 } 1385 #endif 1386