1 /* 2 ** 2010 October 28 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains a VFS "shim" - a layer that sits in between the 14 ** pager and the real VFS - that breaks up a very large database file 15 ** into two or more smaller files on disk. This is useful, for example, 16 ** in order to support large, multi-gigabyte databases on older filesystems 17 ** that limit the maximum file size to 2 GiB. 18 ** 19 ** USAGE: 20 ** 21 ** Compile this source file and link it with your application. Then 22 ** at start-time, invoke the following procedure: 23 ** 24 ** int sqlite3_multiplex_initialize( 25 ** const char *zOrigVfsName, // The underlying real VFS 26 ** int makeDefault // True to make multiplex the default VFS 27 ** ); 28 ** 29 ** The procedure call above will create and register a new VFS shim named 30 ** "multiplex". The multiplex VFS will use the VFS named by zOrigVfsName to 31 ** do the actual disk I/O. (The zOrigVfsName parameter may be NULL, in 32 ** which case the default VFS at the moment sqlite3_multiplex_initialize() 33 ** is called will be used as the underlying real VFS.) 34 ** 35 ** If the makeDefault parameter is TRUE then multiplex becomes the new 36 ** default VFS. Otherwise, you can use the multiplex VFS by specifying 37 ** "multiplex" as the 4th parameter to sqlite3_open_v2() or by employing 38 ** URI filenames and adding "vfs=multiplex" as a parameter to the filename 39 ** URI. 40 ** 41 ** The multiplex VFS allows databases up to 32 GiB in size. But it splits 42 ** the files up into smaller pieces, so that they will work even on 43 ** filesystems that do not support large files. The default chunk size 44 ** is 2147418112 bytes (which is 64KiB less than 2GiB) but this can be 45 ** changed at compile-time by defining the SQLITE_MULTIPLEX_CHUNK_SIZE 46 ** macro. Use the "chunksize=NNNN" query parameter with a URI filename 47 ** in order to select an alternative chunk size for individual connections 48 ** at run-time. 49 */ 50 #include "sqlite3.h" 51 #include <string.h> 52 #include <assert.h> 53 #include <stdlib.h> 54 #include "test_multiplex.h" 55 56 #ifndef SQLITE_CORE 57 #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */ 58 #endif 59 #include "sqlite3ext.h" 60 61 /* 62 ** These should be defined to be the same as the values in 63 ** sqliteInt.h. They are defined separately here so that 64 ** the multiplex VFS shim can be built as a loadable 65 ** module. 66 */ 67 #define UNUSED_PARAMETER(x) (void)(x) 68 #define MAX_PAGE_SIZE 0x10000 69 #define DEFAULT_SECTOR_SIZE 0x1000 70 71 /* 72 ** For a build without mutexes, no-op the mutex calls. 73 */ 74 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE==0 75 #define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8) 76 #define sqlite3_mutex_free(X) 77 #define sqlite3_mutex_enter(X) 78 #define sqlite3_mutex_try(X) SQLITE_OK 79 #define sqlite3_mutex_leave(X) 80 #define sqlite3_mutex_held(X) ((void)(X),1) 81 #define sqlite3_mutex_notheld(X) ((void)(X),1) 82 #endif /* SQLITE_THREADSAFE==0 */ 83 84 /* Maximum chunk number */ 85 #define MX_CHUNK_NUMBER 299 86 87 /* First chunk for rollback journal files */ 88 #define SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET 400 89 #define SQLITE_MULTIPLEX_WAL_8_3_OFFSET 700 90 91 92 /************************ Shim Definitions ******************************/ 93 94 #ifndef SQLITE_MULTIPLEX_VFS_NAME 95 # define SQLITE_MULTIPLEX_VFS_NAME "multiplex" 96 #endif 97 98 /* This is the limit on the chunk size. It may be changed by calling 99 ** the xFileControl() interface. It will be rounded up to a 100 ** multiple of MAX_PAGE_SIZE. We default it here to 2GiB less 64KiB. 101 */ 102 #ifndef SQLITE_MULTIPLEX_CHUNK_SIZE 103 # define SQLITE_MULTIPLEX_CHUNK_SIZE 2147418112 104 #endif 105 106 /* This used to be the default limit on number of chunks, but 107 ** it is no longer enforced. There is currently no limit to the 108 ** number of chunks. 109 ** 110 ** May be changed by calling the xFileControl() interface. 111 */ 112 #ifndef SQLITE_MULTIPLEX_MAX_CHUNKS 113 # define SQLITE_MULTIPLEX_MAX_CHUNKS 12 114 #endif 115 116 /************************ Object Definitions ******************************/ 117 118 /* Forward declaration of all object types */ 119 typedef struct multiplexGroup multiplexGroup; 120 typedef struct multiplexConn multiplexConn; 121 122 /* 123 ** A "multiplex group" is a collection of files that collectively 124 ** makeup a single SQLite DB file. This allows the size of the DB 125 ** to exceed the limits imposed by the file system. 126 ** 127 ** There is an instance of the following object for each defined multiplex 128 ** group. 129 */ 130 struct multiplexGroup { 131 struct multiplexReal { /* For each chunk */ 132 sqlite3_file *p; /* Handle for the chunk */ 133 char *z; /* Name of this chunk */ 134 } *aReal; /* list of all chunks */ 135 int nReal; /* Number of chunks */ 136 char *zName; /* Base filename of this group */ 137 int nName; /* Length of base filename */ 138 int flags; /* Flags used for original opening */ 139 unsigned int szChunk; /* Chunk size used for this group */ 140 unsigned char bEnabled; /* TRUE to use Multiplex VFS for this file */ 141 unsigned char bTruncate; /* TRUE to enable truncation of databases */ 142 multiplexGroup *pNext, *pPrev; /* Doubly linked list of all group objects */ 143 }; 144 145 /* 146 ** An instance of the following object represents each open connection 147 ** to a file that is multiplex'ed. This object is a 148 ** subclass of sqlite3_file. The sqlite3_file object for the underlying 149 ** VFS is appended to this structure. 150 */ 151 struct multiplexConn { 152 sqlite3_file base; /* Base class - must be first */ 153 multiplexGroup *pGroup; /* The underlying group of files */ 154 }; 155 156 /************************* Global Variables **********************************/ 157 /* 158 ** All global variables used by this file are containing within the following 159 ** gMultiplex structure. 160 */ 161 static struct { 162 /* The pOrigVfs is the real, original underlying VFS implementation. 163 ** Most operations pass-through to the real VFS. This value is read-only 164 ** during operation. It is only modified at start-time and thus does not 165 ** require a mutex. 166 */ 167 sqlite3_vfs *pOrigVfs; 168 169 /* The sThisVfs is the VFS structure used by this shim. It is initialized 170 ** at start-time and thus does not require a mutex 171 */ 172 sqlite3_vfs sThisVfs; 173 174 /* The sIoMethods defines the methods used by sqlite3_file objects 175 ** associated with this shim. It is initialized at start-time and does 176 ** not require a mutex. 177 ** 178 ** When the underlying VFS is called to open a file, it might return 179 ** either a version 1 or a version 2 sqlite3_file object. This shim 180 ** has to create a wrapper sqlite3_file of the same version. Hence 181 ** there are two I/O method structures, one for version 1 and the other 182 ** for version 2. 183 */ 184 sqlite3_io_methods sIoMethodsV1; 185 sqlite3_io_methods sIoMethodsV2; 186 187 /* True when this shim has been initialized. 188 */ 189 int isInitialized; 190 191 /* For run-time access any of the other global data structures in this 192 ** shim, the following mutex must be held. 193 */ 194 sqlite3_mutex *pMutex; 195 196 /* List of multiplexGroup objects. 197 */ 198 multiplexGroup *pGroups; 199 } gMultiplex; 200 201 /************************* Utility Routines *********************************/ 202 /* 203 ** Acquire and release the mutex used to serialize access to the 204 ** list of multiplexGroups. 205 */ 206 static void multiplexEnter(void){ sqlite3_mutex_enter(gMultiplex.pMutex); } 207 static void multiplexLeave(void){ sqlite3_mutex_leave(gMultiplex.pMutex); } 208 209 /* 210 ** Compute a string length that is limited to what can be stored in 211 ** lower 30 bits of a 32-bit signed integer. 212 ** 213 ** The value returned will never be negative. Nor will it ever be greater 214 ** than the actual length of the string. For very long strings (greater 215 ** than 1GiB) the value returned might be less than the true string length. 216 */ 217 static int multiplexStrlen30(const char *z){ 218 const char *z2 = z; 219 if( z==0 ) return 0; 220 while( *z2 ){ z2++; } 221 return 0x3fffffff & (int)(z2 - z); 222 } 223 224 /* 225 ** Generate the file-name for chunk iChunk of the group with base name 226 ** zBase. The file-name is written to buffer zOut before returning. Buffer 227 ** zOut must be allocated by the caller so that it is at least (nBase+5) 228 ** bytes in size, where nBase is the length of zBase, not including the 229 ** nul-terminator. 230 ** 231 ** If iChunk is 0 (or 400 - the number for the first journal file chunk), 232 ** the output is a copy of the input string. Otherwise, if 233 ** SQLITE_ENABLE_8_3_NAMES is not defined or the input buffer does not contain 234 ** a "." character, then the output is a copy of the input string with the 235 ** three-digit zero-padded decimal representation if iChunk appended to it. 236 ** For example: 237 ** 238 ** zBase="test.db", iChunk=4 -> zOut="test.db004" 239 ** 240 ** Or, if SQLITE_ENABLE_8_3_NAMES is defined and the input buffer contains 241 ** a "." character, then everything after the "." is replaced by the 242 ** three-digit representation of iChunk. 243 ** 244 ** zBase="test.db", iChunk=4 -> zOut="test.004" 245 ** 246 ** The output buffer string is terminated by 2 0x00 bytes. This makes it safe 247 ** to pass to sqlite3_uri_parameter() and similar. 248 */ 249 static void multiplexFilename( 250 const char *zBase, /* Filename for chunk 0 */ 251 int nBase, /* Size of zBase in bytes (without \0) */ 252 int flags, /* Flags used to open file */ 253 int iChunk, /* Chunk to generate filename for */ 254 char *zOut /* Buffer to write generated name to */ 255 ){ 256 int n = nBase; 257 memcpy(zOut, zBase, n+1); 258 if( iChunk!=0 && iChunk<=MX_CHUNK_NUMBER ){ 259 #ifdef SQLITE_ENABLE_8_3_NAMES 260 int i; 261 for(i=n-1; i>0 && i>=n-4 && zOut[i]!='.'; i--){} 262 if( i>=n-4 ) n = i+1; 263 if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ 264 /* The extensions on overflow files for main databases are 001, 002, 265 ** 003 and so forth. To avoid name collisions, add 400 to the 266 ** extensions of journal files so that they are 401, 402, 403, .... 267 */ 268 iChunk += SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET; 269 }else if( flags & SQLITE_OPEN_WAL ){ 270 /* To avoid name collisions, add 700 to the 271 ** extensions of WAL files so that they are 701, 702, 703, .... 272 */ 273 iChunk += SQLITE_MULTIPLEX_WAL_8_3_OFFSET; 274 } 275 #endif 276 sqlite3_snprintf(4,&zOut[n],"%03d",iChunk); 277 n += 3; 278 } 279 280 assert( zOut[n]=='\0' ); 281 zOut[n+1] = '\0'; 282 } 283 284 /* Compute the filename for the iChunk-th chunk 285 */ 286 static int multiplexSubFilename(multiplexGroup *pGroup, int iChunk){ 287 if( iChunk>=pGroup->nReal ){ 288 struct multiplexReal *p; 289 p = sqlite3_realloc(pGroup->aReal, (iChunk+1)*sizeof(*p)); 290 if( p==0 ){ 291 return SQLITE_NOMEM; 292 } 293 memset(&p[pGroup->nReal], 0, sizeof(p[0])*(iChunk+1-pGroup->nReal)); 294 pGroup->aReal = p; 295 pGroup->nReal = iChunk+1; 296 } 297 if( pGroup->zName && pGroup->aReal[iChunk].z==0 ){ 298 char *z; 299 int n = pGroup->nName; 300 pGroup->aReal[iChunk].z = z = sqlite3_malloc( n+5 ); 301 if( z==0 ){ 302 return SQLITE_NOMEM; 303 } 304 multiplexFilename(pGroup->zName, pGroup->nName, pGroup->flags, iChunk, z); 305 } 306 return SQLITE_OK; 307 } 308 309 /* Translate an sqlite3_file* that is really a multiplexGroup* into 310 ** the sqlite3_file* for the underlying original VFS. 311 ** 312 ** For chunk 0, the pGroup->flags determines whether or not a new file 313 ** is created if it does not already exist. For chunks 1 and higher, the 314 ** file is created only if createFlag is 1. 315 */ 316 static sqlite3_file *multiplexSubOpen( 317 multiplexGroup *pGroup, /* The multiplexor group */ 318 int iChunk, /* Which chunk to open. 0==original file */ 319 int *rc, /* Result code in and out */ 320 int *pOutFlags, /* Output flags */ 321 int createFlag /* True to create if iChunk>0 */ 322 ){ 323 sqlite3_file *pSubOpen = 0; 324 sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ 325 326 #ifdef SQLITE_ENABLE_8_3_NAMES 327 /* If JOURNAL_8_3_OFFSET is set to (say) 400, then any overflow files are 328 ** part of a database journal are named db.401, db.402, and so on. A 329 ** database may therefore not grow to larger than 400 chunks. Attempting 330 ** to open chunk 401 indicates the database is full. */ 331 if( iChunk>=SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET ){ 332 sqlite3_log(SQLITE_FULL, "multiplexed chunk overflow: %s", pGroup->zName); 333 *rc = SQLITE_FULL; 334 return 0; 335 } 336 #endif 337 338 *rc = multiplexSubFilename(pGroup, iChunk); 339 if( (*rc)==SQLITE_OK && (pSubOpen = pGroup->aReal[iChunk].p)==0 ){ 340 int flags, bExists; 341 flags = pGroup->flags; 342 if( createFlag ){ 343 flags |= SQLITE_OPEN_CREATE; 344 }else if( iChunk==0 ){ 345 /* Fall through */ 346 }else if( pGroup->aReal[iChunk].z==0 ){ 347 return 0; 348 }else{ 349 *rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[iChunk].z, 350 SQLITE_ACCESS_EXISTS, &bExists); 351 if( *rc || !bExists ){ 352 if( *rc ){ 353 sqlite3_log(*rc, "multiplexor.xAccess failure on %s", 354 pGroup->aReal[iChunk].z); 355 } 356 return 0; 357 } 358 flags &= ~SQLITE_OPEN_CREATE; 359 } 360 pSubOpen = sqlite3_malloc( pOrigVfs->szOsFile ); 361 if( pSubOpen==0 ){ 362 *rc = SQLITE_IOERR_NOMEM; 363 return 0; 364 } 365 pGroup->aReal[iChunk].p = pSubOpen; 366 *rc = pOrigVfs->xOpen(pOrigVfs, pGroup->aReal[iChunk].z, pSubOpen, 367 flags, pOutFlags); 368 if( (*rc)!=SQLITE_OK ){ 369 sqlite3_log(*rc, "multiplexor.xOpen failure on %s", 370 pGroup->aReal[iChunk].z); 371 sqlite3_free(pSubOpen); 372 pGroup->aReal[iChunk].p = 0; 373 return 0; 374 } 375 } 376 return pSubOpen; 377 } 378 379 /* 380 ** Return the size, in bytes, of chunk number iChunk. If that chunk 381 ** does not exist, then return 0. This function does not distingish between 382 ** non-existant files and zero-length files. 383 */ 384 static sqlite3_int64 multiplexSubSize( 385 multiplexGroup *pGroup, /* The multiplexor group */ 386 int iChunk, /* Which chunk to open. 0==original file */ 387 int *rc /* Result code in and out */ 388 ){ 389 sqlite3_file *pSub; 390 sqlite3_int64 sz = 0; 391 392 if( *rc ) return 0; 393 pSub = multiplexSubOpen(pGroup, iChunk, rc, NULL, 0); 394 if( pSub==0 ) return 0; 395 *rc = pSub->pMethods->xFileSize(pSub, &sz); 396 return sz; 397 } 398 399 /* 400 ** This is the implementation of the multiplex_control() SQL function. 401 */ 402 static void multiplexControlFunc( 403 sqlite3_context *context, 404 int argc, 405 sqlite3_value **argv 406 ){ 407 int rc = SQLITE_OK; 408 sqlite3 *db = sqlite3_context_db_handle(context); 409 int op; 410 int iVal; 411 412 if( !db || argc!=2 ){ 413 rc = SQLITE_ERROR; 414 }else{ 415 /* extract params */ 416 op = sqlite3_value_int(argv[0]); 417 iVal = sqlite3_value_int(argv[1]); 418 /* map function op to file_control op */ 419 switch( op ){ 420 case 1: 421 op = MULTIPLEX_CTRL_ENABLE; 422 break; 423 case 2: 424 op = MULTIPLEX_CTRL_SET_CHUNK_SIZE; 425 break; 426 case 3: 427 op = MULTIPLEX_CTRL_SET_MAX_CHUNKS; 428 break; 429 default: 430 rc = SQLITE_NOTFOUND; 431 break; 432 } 433 } 434 if( rc==SQLITE_OK ){ 435 rc = sqlite3_file_control(db, 0, op, &iVal); 436 } 437 sqlite3_result_error_code(context, rc); 438 } 439 440 /* 441 ** This is the entry point to register the auto-extension for the 442 ** multiplex_control() function. 443 */ 444 static int multiplexFuncInit( 445 sqlite3 *db, 446 char **pzErrMsg, 447 const sqlite3_api_routines *pApi 448 ){ 449 int rc; 450 rc = sqlite3_create_function(db, "multiplex_control", 2, SQLITE_ANY, 451 0, multiplexControlFunc, 0, 0); 452 return rc; 453 } 454 455 /* 456 ** Close a single sub-file in the connection group. 457 */ 458 static void multiplexSubClose( 459 multiplexGroup *pGroup, 460 int iChunk, 461 sqlite3_vfs *pOrigVfs 462 ){ 463 sqlite3_file *pSubOpen = pGroup->aReal[iChunk].p; 464 if( pSubOpen ){ 465 pSubOpen->pMethods->xClose(pSubOpen); 466 if( pOrigVfs && pGroup->aReal[iChunk].z ){ 467 pOrigVfs->xDelete(pOrigVfs, pGroup->aReal[iChunk].z, 0); 468 } 469 sqlite3_free(pGroup->aReal[iChunk].p); 470 } 471 sqlite3_free(pGroup->aReal[iChunk].z); 472 memset(&pGroup->aReal[iChunk], 0, sizeof(pGroup->aReal[iChunk])); 473 } 474 475 /* 476 ** Deallocate memory held by a multiplexGroup 477 */ 478 static void multiplexFreeComponents(multiplexGroup *pGroup){ 479 int i; 480 for(i=0; i<pGroup->nReal; i++){ multiplexSubClose(pGroup, i, 0); } 481 sqlite3_free(pGroup->aReal); 482 pGroup->aReal = 0; 483 pGroup->nReal = 0; 484 } 485 486 487 /************************* VFS Method Wrappers *****************************/ 488 489 /* 490 ** This is the xOpen method used for the "multiplex" VFS. 491 ** 492 ** Most of the work is done by the underlying original VFS. This method 493 ** simply links the new file into the appropriate multiplex group if it is a 494 ** file that needs to be tracked. 495 */ 496 static int multiplexOpen( 497 sqlite3_vfs *pVfs, /* The multiplex VFS */ 498 const char *zName, /* Name of file to be opened */ 499 sqlite3_file *pConn, /* Fill in this file descriptor */ 500 int flags, /* Flags to control the opening */ 501 int *pOutFlags /* Flags showing results of opening */ 502 ){ 503 int rc = SQLITE_OK; /* Result code */ 504 multiplexConn *pMultiplexOpen; /* The new multiplex file descriptor */ 505 multiplexGroup *pGroup = 0; /* Corresponding multiplexGroup object */ 506 sqlite3_file *pSubOpen = 0; /* Real file descriptor */ 507 sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ 508 int nName = 0; 509 int sz = 0; 510 char *zToFree = 0; 511 512 UNUSED_PARAMETER(pVfs); 513 memset(pConn, 0, pVfs->szOsFile); 514 assert( zName || (flags & SQLITE_OPEN_DELETEONCLOSE) ); 515 516 /* We need to create a group structure and manage 517 ** access to this group of files. 518 */ 519 multiplexEnter(); 520 pMultiplexOpen = (multiplexConn*)pConn; 521 522 if( rc==SQLITE_OK ){ 523 /* allocate space for group */ 524 nName = zName ? multiplexStrlen30(zName) : 0; 525 sz = sizeof(multiplexGroup) /* multiplexGroup */ 526 + nName + 1; /* zName */ 527 pGroup = sqlite3_malloc( sz ); 528 if( pGroup==0 ){ 529 rc = SQLITE_NOMEM; 530 } 531 } 532 533 if( rc==SQLITE_OK ){ 534 const char *zUri = (flags & SQLITE_OPEN_URI) ? zName : 0; 535 /* assign pointers to extra space allocated */ 536 memset(pGroup, 0, sz); 537 pMultiplexOpen->pGroup = pGroup; 538 pGroup->bEnabled = -1; 539 pGroup->bTruncate = sqlite3_uri_boolean(zUri, "truncate", 540 (flags & SQLITE_OPEN_MAIN_DB)==0); 541 pGroup->szChunk = (int)sqlite3_uri_int64(zUri, "chunksize", 542 SQLITE_MULTIPLEX_CHUNK_SIZE); 543 pGroup->szChunk = (pGroup->szChunk+0xffff)&~0xffff; 544 if( zName ){ 545 char *p = (char *)&pGroup[1]; 546 pGroup->zName = p; 547 memcpy(pGroup->zName, zName, nName+1); 548 pGroup->nName = nName; 549 } 550 if( pGroup->bEnabled ){ 551 /* Make sure that the chunksize is such that the pending byte does not 552 ** falls at the end of a chunk. A region of up to 64K following 553 ** the pending byte is never written, so if the pending byte occurs 554 ** near the end of a chunk, that chunk will be too small. */ 555 #ifndef SQLITE_OMIT_WSD 556 extern int sqlite3PendingByte; 557 #else 558 int sqlite3PendingByte = 0x40000000; 559 #endif 560 while( (sqlite3PendingByte % pGroup->szChunk)>=(pGroup->szChunk-65536) ){ 561 pGroup->szChunk += 65536; 562 } 563 } 564 pGroup->flags = flags; 565 rc = multiplexSubFilename(pGroup, 1); 566 if( rc==SQLITE_OK ){ 567 pSubOpen = multiplexSubOpen(pGroup, 0, &rc, pOutFlags, 0); 568 if( pSubOpen==0 && rc==SQLITE_OK ) rc = SQLITE_CANTOPEN; 569 } 570 if( rc==SQLITE_OK ){ 571 sqlite3_int64 sz; 572 573 rc = pSubOpen->pMethods->xFileSize(pSubOpen, &sz); 574 if( rc==SQLITE_OK && zName ){ 575 int bExists; 576 if( sz==0 ){ 577 if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ 578 /* If opening a main journal file and the first chunk is zero 579 ** bytes in size, delete any subsequent chunks from the 580 ** file-system. */ 581 int iChunk = 1; 582 do { 583 rc = pOrigVfs->xAccess(pOrigVfs, 584 pGroup->aReal[iChunk].z, SQLITE_ACCESS_EXISTS, &bExists 585 ); 586 if( rc==SQLITE_OK && bExists ){ 587 rc = pOrigVfs->xDelete(pOrigVfs, pGroup->aReal[iChunk].z, 0); 588 if( rc==SQLITE_OK ){ 589 rc = multiplexSubFilename(pGroup, ++iChunk); 590 } 591 } 592 }while( rc==SQLITE_OK && bExists ); 593 } 594 }else{ 595 /* If the first overflow file exists and if the size of the main file 596 ** is different from the chunk size, that means the chunk size is set 597 ** set incorrectly. So fix it. 598 ** 599 ** Or, if the first overflow file does not exist and the main file is 600 ** larger than the chunk size, that means the chunk size is too small. 601 ** But we have no way of determining the intended chunk size, so 602 ** just disable the multiplexor all togethre. 603 */ 604 rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[1].z, 605 SQLITE_ACCESS_EXISTS, &bExists); 606 bExists = multiplexSubSize(pGroup, 1, &rc)>0; 607 if( rc==SQLITE_OK && bExists && sz==(sz&0xffff0000) && sz>0 608 && sz!=pGroup->szChunk ){ 609 pGroup->szChunk = (int)sz; 610 }else if( rc==SQLITE_OK && !bExists && sz>pGroup->szChunk ){ 611 pGroup->bEnabled = 0; 612 } 613 } 614 } 615 } 616 617 if( rc==SQLITE_OK ){ 618 if( pSubOpen->pMethods->iVersion==1 ){ 619 pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV1; 620 }else{ 621 pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV2; 622 } 623 /* place this group at the head of our list */ 624 pGroup->pNext = gMultiplex.pGroups; 625 if( gMultiplex.pGroups ) gMultiplex.pGroups->pPrev = pGroup; 626 gMultiplex.pGroups = pGroup; 627 }else{ 628 multiplexFreeComponents(pGroup); 629 sqlite3_free(pGroup); 630 } 631 } 632 multiplexLeave(); 633 sqlite3_free(zToFree); 634 return rc; 635 } 636 637 /* 638 ** This is the xDelete method used for the "multiplex" VFS. 639 ** It attempts to delete the filename specified. 640 */ 641 static int multiplexDelete( 642 sqlite3_vfs *pVfs, /* The multiplex VFS */ 643 const char *zName, /* Name of file to delete */ 644 int syncDir 645 ){ 646 int rc; 647 sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ 648 rc = pOrigVfs->xDelete(pOrigVfs, zName, syncDir); 649 if( rc==SQLITE_OK ){ 650 /* If the main chunk was deleted successfully, also delete any subsequent 651 ** chunks - starting with the last (highest numbered). 652 */ 653 int nName = (int)strlen(zName); 654 char *z; 655 z = sqlite3_malloc(nName + 5); 656 if( z==0 ){ 657 rc = SQLITE_IOERR_NOMEM; 658 }else{ 659 int iChunk = 0; 660 int bExists; 661 do{ 662 multiplexFilename(zName, nName, SQLITE_OPEN_MAIN_JOURNAL, ++iChunk, z); 663 rc = pOrigVfs->xAccess(pOrigVfs, z, SQLITE_ACCESS_EXISTS, &bExists); 664 }while( rc==SQLITE_OK && bExists ); 665 while( rc==SQLITE_OK && iChunk>1 ){ 666 multiplexFilename(zName, nName, SQLITE_OPEN_MAIN_JOURNAL, --iChunk, z); 667 rc = pOrigVfs->xDelete(pOrigVfs, z, syncDir); 668 } 669 if( rc==SQLITE_OK ){ 670 iChunk = 0; 671 do{ 672 multiplexFilename(zName, nName, SQLITE_OPEN_WAL, ++iChunk, z); 673 rc = pOrigVfs->xAccess(pOrigVfs, z, SQLITE_ACCESS_EXISTS, &bExists); 674 }while( rc==SQLITE_OK && bExists ); 675 while( rc==SQLITE_OK && iChunk>1 ){ 676 multiplexFilename(zName, nName, SQLITE_OPEN_WAL, --iChunk, z); 677 rc = pOrigVfs->xDelete(pOrigVfs, z, syncDir); 678 } 679 } 680 } 681 sqlite3_free(z); 682 } 683 return rc; 684 } 685 686 static int multiplexAccess(sqlite3_vfs *a, const char *b, int c, int *d){ 687 return gMultiplex.pOrigVfs->xAccess(gMultiplex.pOrigVfs, b, c, d); 688 } 689 static int multiplexFullPathname(sqlite3_vfs *a, const char *b, int c, char *d){ 690 return gMultiplex.pOrigVfs->xFullPathname(gMultiplex.pOrigVfs, b, c, d); 691 } 692 static void *multiplexDlOpen(sqlite3_vfs *a, const char *b){ 693 return gMultiplex.pOrigVfs->xDlOpen(gMultiplex.pOrigVfs, b); 694 } 695 static void multiplexDlError(sqlite3_vfs *a, int b, char *c){ 696 gMultiplex.pOrigVfs->xDlError(gMultiplex.pOrigVfs, b, c); 697 } 698 static void (*multiplexDlSym(sqlite3_vfs *a, void *b, const char *c))(void){ 699 return gMultiplex.pOrigVfs->xDlSym(gMultiplex.pOrigVfs, b, c); 700 } 701 static void multiplexDlClose(sqlite3_vfs *a, void *b){ 702 gMultiplex.pOrigVfs->xDlClose(gMultiplex.pOrigVfs, b); 703 } 704 static int multiplexRandomness(sqlite3_vfs *a, int b, char *c){ 705 return gMultiplex.pOrigVfs->xRandomness(gMultiplex.pOrigVfs, b, c); 706 } 707 static int multiplexSleep(sqlite3_vfs *a, int b){ 708 return gMultiplex.pOrigVfs->xSleep(gMultiplex.pOrigVfs, b); 709 } 710 static int multiplexCurrentTime(sqlite3_vfs *a, double *b){ 711 return gMultiplex.pOrigVfs->xCurrentTime(gMultiplex.pOrigVfs, b); 712 } 713 static int multiplexGetLastError(sqlite3_vfs *a, int b, char *c){ 714 return gMultiplex.pOrigVfs->xGetLastError(gMultiplex.pOrigVfs, b, c); 715 } 716 static int multiplexCurrentTimeInt64(sqlite3_vfs *a, sqlite3_int64 *b){ 717 return gMultiplex.pOrigVfs->xCurrentTimeInt64(gMultiplex.pOrigVfs, b); 718 } 719 720 /************************ I/O Method Wrappers *******************************/ 721 722 /* xClose requests get passed through to the original VFS. 723 ** We loop over all open chunk handles and close them. 724 ** The group structure for this file is unlinked from 725 ** our list of groups and freed. 726 */ 727 static int multiplexClose(sqlite3_file *pConn){ 728 multiplexConn *p = (multiplexConn*)pConn; 729 multiplexGroup *pGroup = p->pGroup; 730 int rc = SQLITE_OK; 731 multiplexEnter(); 732 multiplexFreeComponents(pGroup); 733 /* remove from linked list */ 734 if( pGroup->pNext ) pGroup->pNext->pPrev = pGroup->pPrev; 735 if( pGroup->pPrev ){ 736 pGroup->pPrev->pNext = pGroup->pNext; 737 }else{ 738 gMultiplex.pGroups = pGroup->pNext; 739 } 740 sqlite3_free(pGroup); 741 multiplexLeave(); 742 return rc; 743 } 744 745 /* Pass xRead requests thru to the original VFS after 746 ** determining the correct chunk to operate on. 747 ** Break up reads across chunk boundaries. 748 */ 749 static int multiplexRead( 750 sqlite3_file *pConn, 751 void *pBuf, 752 int iAmt, 753 sqlite3_int64 iOfst 754 ){ 755 multiplexConn *p = (multiplexConn*)pConn; 756 multiplexGroup *pGroup = p->pGroup; 757 int rc = SQLITE_OK; 758 int nMutex = 0; 759 multiplexEnter(); nMutex++; 760 if( !pGroup->bEnabled ){ 761 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); 762 multiplexLeave(); nMutex--; 763 if( pSubOpen==0 ){ 764 rc = SQLITE_IOERR_READ; 765 }else{ 766 rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst); 767 } 768 }else{ 769 while( iAmt > 0 ){ 770 int i = (int)(iOfst / pGroup->szChunk); 771 sqlite3_file *pSubOpen; 772 if( nMutex==0 ){ multiplexEnter(); nMutex++; } 773 pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL, 1); 774 multiplexLeave(); nMutex--; 775 if( pSubOpen ){ 776 int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - pGroup->szChunk; 777 if( extra<0 ) extra = 0; 778 iAmt -= extra; 779 rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, 780 iOfst % pGroup->szChunk); 781 if( rc!=SQLITE_OK ) break; 782 pBuf = (char *)pBuf + iAmt; 783 iOfst += iAmt; 784 iAmt = extra; 785 }else{ 786 rc = SQLITE_IOERR_READ; 787 break; 788 } 789 } 790 } 791 assert( nMutex==0 || nMutex==1 ); 792 if( nMutex ) multiplexLeave(); 793 return rc; 794 } 795 796 /* Pass xWrite requests thru to the original VFS after 797 ** determining the correct chunk to operate on. 798 ** Break up writes across chunk boundaries. 799 */ 800 static int multiplexWrite( 801 sqlite3_file *pConn, 802 const void *pBuf, 803 int iAmt, 804 sqlite3_int64 iOfst 805 ){ 806 multiplexConn *p = (multiplexConn*)pConn; 807 multiplexGroup *pGroup = p->pGroup; 808 int rc = SQLITE_OK; 809 multiplexEnter(); 810 if( !pGroup->bEnabled ){ 811 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); 812 if( pSubOpen==0 ){ 813 rc = SQLITE_IOERR_WRITE; 814 }else{ 815 rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst); 816 } 817 }else{ 818 while( rc==SQLITE_OK && iAmt>0 ){ 819 int i = (int)(iOfst / pGroup->szChunk); 820 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL, 1); 821 if( pSubOpen ){ 822 int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - 823 pGroup->szChunk; 824 if( extra<0 ) extra = 0; 825 iAmt -= extra; 826 rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, 827 iOfst % pGroup->szChunk); 828 pBuf = (char *)pBuf + iAmt; 829 iOfst += iAmt; 830 iAmt = extra; 831 } 832 } 833 } 834 multiplexLeave(); 835 return rc; 836 } 837 838 /* Pass xTruncate requests thru to the original VFS after 839 ** determining the correct chunk to operate on. Delete any 840 ** chunks above the truncate mark. 841 */ 842 static int multiplexTruncate(sqlite3_file *pConn, sqlite3_int64 size){ 843 multiplexConn *p = (multiplexConn*)pConn; 844 multiplexGroup *pGroup = p->pGroup; 845 int rc = SQLITE_OK; 846 multiplexEnter(); 847 if( !pGroup->bEnabled ){ 848 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); 849 if( pSubOpen==0 ){ 850 rc = SQLITE_IOERR_TRUNCATE; 851 }else{ 852 rc = pSubOpen->pMethods->xTruncate(pSubOpen, size); 853 } 854 }else{ 855 int i; 856 int iBaseGroup = (int)(size / pGroup->szChunk); 857 sqlite3_file *pSubOpen; 858 sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ 859 /* delete the chunks above the truncate limit */ 860 for(i = pGroup->nReal-1; i>iBaseGroup && rc==SQLITE_OK; i--){ 861 if( pGroup->bTruncate ){ 862 multiplexSubClose(pGroup, i, pOrigVfs); 863 }else{ 864 pSubOpen = multiplexSubOpen(pGroup, i, &rc, 0, 0); 865 if( pSubOpen ){ 866 rc = pSubOpen->pMethods->xTruncate(pSubOpen, 0); 867 } 868 } 869 } 870 if( rc==SQLITE_OK ){ 871 pSubOpen = multiplexSubOpen(pGroup, iBaseGroup, &rc, 0, 0); 872 if( pSubOpen ){ 873 rc = pSubOpen->pMethods->xTruncate(pSubOpen, size % pGroup->szChunk); 874 } 875 } 876 if( rc ) rc = SQLITE_IOERR_TRUNCATE; 877 } 878 multiplexLeave(); 879 return rc; 880 } 881 882 /* Pass xSync requests through to the original VFS without change 883 */ 884 static int multiplexSync(sqlite3_file *pConn, int flags){ 885 multiplexConn *p = (multiplexConn*)pConn; 886 multiplexGroup *pGroup = p->pGroup; 887 int rc = SQLITE_OK; 888 int i; 889 multiplexEnter(); 890 for(i=0; i<pGroup->nReal; i++){ 891 sqlite3_file *pSubOpen = pGroup->aReal[i].p; 892 if( pSubOpen ){ 893 int rc2 = pSubOpen->pMethods->xSync(pSubOpen, flags); 894 if( rc2!=SQLITE_OK ) rc = rc2; 895 } 896 } 897 multiplexLeave(); 898 return rc; 899 } 900 901 /* Pass xFileSize requests through to the original VFS. 902 ** Aggregate the size of all the chunks before returning. 903 */ 904 static int multiplexFileSize(sqlite3_file *pConn, sqlite3_int64 *pSize){ 905 multiplexConn *p = (multiplexConn*)pConn; 906 multiplexGroup *pGroup = p->pGroup; 907 int rc = SQLITE_OK; 908 int i; 909 multiplexEnter(); 910 if( !pGroup->bEnabled ){ 911 sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); 912 if( pSubOpen==0 ){ 913 rc = SQLITE_IOERR_FSTAT; 914 }else{ 915 rc = pSubOpen->pMethods->xFileSize(pSubOpen, pSize); 916 } 917 }else{ 918 *pSize = 0; 919 for(i=0; rc==SQLITE_OK; i++){ 920 sqlite3_int64 sz = multiplexSubSize(pGroup, i, &rc); 921 if( sz==0 ) break; 922 *pSize = i*(sqlite3_int64)pGroup->szChunk + sz; 923 } 924 } 925 multiplexLeave(); 926 return rc; 927 } 928 929 /* Pass xLock requests through to the original VFS unchanged. 930 */ 931 static int multiplexLock(sqlite3_file *pConn, int lock){ 932 multiplexConn *p = (multiplexConn*)pConn; 933 int rc; 934 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 935 if( pSubOpen ){ 936 return pSubOpen->pMethods->xLock(pSubOpen, lock); 937 } 938 return SQLITE_BUSY; 939 } 940 941 /* Pass xUnlock requests through to the original VFS unchanged. 942 */ 943 static int multiplexUnlock(sqlite3_file *pConn, int lock){ 944 multiplexConn *p = (multiplexConn*)pConn; 945 int rc; 946 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 947 if( pSubOpen ){ 948 return pSubOpen->pMethods->xUnlock(pSubOpen, lock); 949 } 950 return SQLITE_IOERR_UNLOCK; 951 } 952 953 /* Pass xCheckReservedLock requests through to the original VFS unchanged. 954 */ 955 static int multiplexCheckReservedLock(sqlite3_file *pConn, int *pResOut){ 956 multiplexConn *p = (multiplexConn*)pConn; 957 int rc; 958 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 959 if( pSubOpen ){ 960 return pSubOpen->pMethods->xCheckReservedLock(pSubOpen, pResOut); 961 } 962 return SQLITE_IOERR_CHECKRESERVEDLOCK; 963 } 964 965 /* Pass xFileControl requests through to the original VFS unchanged, 966 ** except for any MULTIPLEX_CTRL_* requests here. 967 */ 968 static int multiplexFileControl(sqlite3_file *pConn, int op, void *pArg){ 969 multiplexConn *p = (multiplexConn*)pConn; 970 multiplexGroup *pGroup = p->pGroup; 971 int rc = SQLITE_ERROR; 972 sqlite3_file *pSubOpen; 973 974 if( !gMultiplex.isInitialized ) return SQLITE_MISUSE; 975 switch( op ){ 976 case MULTIPLEX_CTRL_ENABLE: 977 if( pArg ) { 978 int bEnabled = *(int *)pArg; 979 pGroup->bEnabled = bEnabled; 980 rc = SQLITE_OK; 981 } 982 break; 983 case MULTIPLEX_CTRL_SET_CHUNK_SIZE: 984 if( pArg ) { 985 unsigned int szChunk = *(unsigned*)pArg; 986 if( szChunk<1 ){ 987 rc = SQLITE_MISUSE; 988 }else{ 989 /* Round up to nearest multiple of MAX_PAGE_SIZE. */ 990 szChunk = (szChunk + (MAX_PAGE_SIZE-1)); 991 szChunk &= ~(MAX_PAGE_SIZE-1); 992 pGroup->szChunk = szChunk; 993 rc = SQLITE_OK; 994 } 995 } 996 break; 997 case MULTIPLEX_CTRL_SET_MAX_CHUNKS: 998 rc = SQLITE_OK; 999 break; 1000 case SQLITE_FCNTL_SIZE_HINT: 1001 case SQLITE_FCNTL_CHUNK_SIZE: 1002 /* no-op these */ 1003 rc = SQLITE_OK; 1004 break; 1005 case SQLITE_FCNTL_PRAGMA: { 1006 char **aFcntl = (char**)pArg; 1007 if( aFcntl[1] && sqlite3_stricmp(aFcntl[1],"multiplex_truncate")==0 ){ 1008 if( aFcntl[2] && aFcntl[2][0] ){ 1009 if( sqlite3_stricmp(aFcntl[2], "on")==0 1010 || sqlite3_stricmp(aFcntl[2], "1")==0 ){ 1011 pGroup->bTruncate = 1; 1012 }else 1013 if( sqlite3_stricmp(aFcntl[2], "off")==0 1014 || sqlite3_stricmp(aFcntl[2], "0")==0 ){ 1015 pGroup->bTruncate = 0; 1016 } 1017 } 1018 aFcntl[0] = sqlite3_mprintf(pGroup->bTruncate ? "on" : "off"); 1019 rc = SQLITE_OK; 1020 break; 1021 } 1022 /* If the multiplexor does not handle the pragma, pass it through 1023 ** into the default case. */ 1024 } 1025 default: 1026 pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); 1027 if( pSubOpen ){ 1028 rc = pSubOpen->pMethods->xFileControl(pSubOpen, op, pArg); 1029 if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){ 1030 *(char**)pArg = sqlite3_mprintf("multiplex/%z", *(char**)pArg); 1031 } 1032 } 1033 break; 1034 } 1035 return rc; 1036 } 1037 1038 /* Pass xSectorSize requests through to the original VFS unchanged. 1039 */ 1040 static int multiplexSectorSize(sqlite3_file *pConn){ 1041 multiplexConn *p = (multiplexConn*)pConn; 1042 int rc; 1043 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1044 if( pSubOpen && pSubOpen->pMethods->xSectorSize ){ 1045 return pSubOpen->pMethods->xSectorSize(pSubOpen); 1046 } 1047 return DEFAULT_SECTOR_SIZE; 1048 } 1049 1050 /* Pass xDeviceCharacteristics requests through to the original VFS unchanged. 1051 */ 1052 static int multiplexDeviceCharacteristics(sqlite3_file *pConn){ 1053 multiplexConn *p = (multiplexConn*)pConn; 1054 int rc; 1055 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1056 if( pSubOpen ){ 1057 return pSubOpen->pMethods->xDeviceCharacteristics(pSubOpen); 1058 } 1059 return 0; 1060 } 1061 1062 /* Pass xShmMap requests through to the original VFS unchanged. 1063 */ 1064 static int multiplexShmMap( 1065 sqlite3_file *pConn, /* Handle open on database file */ 1066 int iRegion, /* Region to retrieve */ 1067 int szRegion, /* Size of regions */ 1068 int bExtend, /* True to extend file if necessary */ 1069 void volatile **pp /* OUT: Mapped memory */ 1070 ){ 1071 multiplexConn *p = (multiplexConn*)pConn; 1072 int rc; 1073 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1074 if( pSubOpen ){ 1075 return pSubOpen->pMethods->xShmMap(pSubOpen, iRegion, szRegion, bExtend,pp); 1076 } 1077 return SQLITE_IOERR; 1078 } 1079 1080 /* Pass xShmLock requests through to the original VFS unchanged. 1081 */ 1082 static int multiplexShmLock( 1083 sqlite3_file *pConn, /* Database file holding the shared memory */ 1084 int ofst, /* First lock to acquire or release */ 1085 int n, /* Number of locks to acquire or release */ 1086 int flags /* What to do with the lock */ 1087 ){ 1088 multiplexConn *p = (multiplexConn*)pConn; 1089 int rc; 1090 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1091 if( pSubOpen ){ 1092 return pSubOpen->pMethods->xShmLock(pSubOpen, ofst, n, flags); 1093 } 1094 return SQLITE_BUSY; 1095 } 1096 1097 /* Pass xShmBarrier requests through to the original VFS unchanged. 1098 */ 1099 static void multiplexShmBarrier(sqlite3_file *pConn){ 1100 multiplexConn *p = (multiplexConn*)pConn; 1101 int rc; 1102 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1103 if( pSubOpen ){ 1104 pSubOpen->pMethods->xShmBarrier(pSubOpen); 1105 } 1106 } 1107 1108 /* Pass xShmUnmap requests through to the original VFS unchanged. 1109 */ 1110 static int multiplexShmUnmap(sqlite3_file *pConn, int deleteFlag){ 1111 multiplexConn *p = (multiplexConn*)pConn; 1112 int rc; 1113 sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); 1114 if( pSubOpen ){ 1115 return pSubOpen->pMethods->xShmUnmap(pSubOpen, deleteFlag); 1116 } 1117 return SQLITE_OK; 1118 } 1119 1120 /************************** Public Interfaces *****************************/ 1121 /* 1122 ** CAPI: Initialize the multiplex VFS shim - sqlite3_multiplex_initialize() 1123 ** 1124 ** Use the VFS named zOrigVfsName as the VFS that does the actual work. 1125 ** Use the default if zOrigVfsName==NULL. 1126 ** 1127 ** The multiplex VFS shim is named "multiplex". It will become the default 1128 ** VFS if makeDefault is non-zero. 1129 ** 1130 ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once 1131 ** during start-up. 1132 */ 1133 int sqlite3_multiplex_initialize(const char *zOrigVfsName, int makeDefault){ 1134 sqlite3_vfs *pOrigVfs; 1135 if( gMultiplex.isInitialized ) return SQLITE_MISUSE; 1136 pOrigVfs = sqlite3_vfs_find(zOrigVfsName); 1137 if( pOrigVfs==0 ) return SQLITE_ERROR; 1138 assert( pOrigVfs!=&gMultiplex.sThisVfs ); 1139 gMultiplex.pMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); 1140 if( !gMultiplex.pMutex ){ 1141 return SQLITE_NOMEM; 1142 } 1143 gMultiplex.pGroups = NULL; 1144 gMultiplex.isInitialized = 1; 1145 gMultiplex.pOrigVfs = pOrigVfs; 1146 gMultiplex.sThisVfs = *pOrigVfs; 1147 gMultiplex.sThisVfs.szOsFile += sizeof(multiplexConn); 1148 gMultiplex.sThisVfs.zName = SQLITE_MULTIPLEX_VFS_NAME; 1149 gMultiplex.sThisVfs.xOpen = multiplexOpen; 1150 gMultiplex.sThisVfs.xDelete = multiplexDelete; 1151 gMultiplex.sThisVfs.xAccess = multiplexAccess; 1152 gMultiplex.sThisVfs.xFullPathname = multiplexFullPathname; 1153 gMultiplex.sThisVfs.xDlOpen = multiplexDlOpen; 1154 gMultiplex.sThisVfs.xDlError = multiplexDlError; 1155 gMultiplex.sThisVfs.xDlSym = multiplexDlSym; 1156 gMultiplex.sThisVfs.xDlClose = multiplexDlClose; 1157 gMultiplex.sThisVfs.xRandomness = multiplexRandomness; 1158 gMultiplex.sThisVfs.xSleep = multiplexSleep; 1159 gMultiplex.sThisVfs.xCurrentTime = multiplexCurrentTime; 1160 gMultiplex.sThisVfs.xGetLastError = multiplexGetLastError; 1161 gMultiplex.sThisVfs.xCurrentTimeInt64 = multiplexCurrentTimeInt64; 1162 1163 gMultiplex.sIoMethodsV1.iVersion = 1; 1164 gMultiplex.sIoMethodsV1.xClose = multiplexClose; 1165 gMultiplex.sIoMethodsV1.xRead = multiplexRead; 1166 gMultiplex.sIoMethodsV1.xWrite = multiplexWrite; 1167 gMultiplex.sIoMethodsV1.xTruncate = multiplexTruncate; 1168 gMultiplex.sIoMethodsV1.xSync = multiplexSync; 1169 gMultiplex.sIoMethodsV1.xFileSize = multiplexFileSize; 1170 gMultiplex.sIoMethodsV1.xLock = multiplexLock; 1171 gMultiplex.sIoMethodsV1.xUnlock = multiplexUnlock; 1172 gMultiplex.sIoMethodsV1.xCheckReservedLock = multiplexCheckReservedLock; 1173 gMultiplex.sIoMethodsV1.xFileControl = multiplexFileControl; 1174 gMultiplex.sIoMethodsV1.xSectorSize = multiplexSectorSize; 1175 gMultiplex.sIoMethodsV1.xDeviceCharacteristics = 1176 multiplexDeviceCharacteristics; 1177 gMultiplex.sIoMethodsV2 = gMultiplex.sIoMethodsV1; 1178 gMultiplex.sIoMethodsV2.iVersion = 2; 1179 gMultiplex.sIoMethodsV2.xShmMap = multiplexShmMap; 1180 gMultiplex.sIoMethodsV2.xShmLock = multiplexShmLock; 1181 gMultiplex.sIoMethodsV2.xShmBarrier = multiplexShmBarrier; 1182 gMultiplex.sIoMethodsV2.xShmUnmap = multiplexShmUnmap; 1183 sqlite3_vfs_register(&gMultiplex.sThisVfs, makeDefault); 1184 1185 sqlite3_auto_extension((void*)multiplexFuncInit); 1186 1187 return SQLITE_OK; 1188 } 1189 1190 /* 1191 ** CAPI: Shutdown the multiplex system - sqlite3_multiplex_shutdown() 1192 ** 1193 ** All SQLite database connections must be closed before calling this 1194 ** routine. 1195 ** 1196 ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once while 1197 ** shutting down in order to free all remaining multiplex groups. 1198 */ 1199 int sqlite3_multiplex_shutdown(int eForce){ 1200 int rc = SQLITE_OK; 1201 if( gMultiplex.isInitialized==0 ) return SQLITE_MISUSE; 1202 if( gMultiplex.pGroups ){ 1203 sqlite3_log(SQLITE_MISUSE, "sqlite3_multiplex_shutdown() called " 1204 "while database connections are still open"); 1205 if( !eForce ) return SQLITE_MISUSE; 1206 rc = SQLITE_MISUSE; 1207 } 1208 gMultiplex.isInitialized = 0; 1209 sqlite3_mutex_free(gMultiplex.pMutex); 1210 sqlite3_vfs_unregister(&gMultiplex.sThisVfs); 1211 memset(&gMultiplex, 0, sizeof(gMultiplex)); 1212 return rc; 1213 } 1214 1215 /***************************** Test Code ***********************************/ 1216 #ifdef SQLITE_TEST 1217 #include <tcl.h> 1218 extern const char *sqlite3ErrName(int); 1219 1220 1221 /* 1222 ** tclcmd: sqlite3_multiplex_initialize NAME MAKEDEFAULT 1223 */ 1224 static int test_multiplex_initialize( 1225 void * clientData, 1226 Tcl_Interp *interp, 1227 int objc, 1228 Tcl_Obj *CONST objv[] 1229 ){ 1230 const char *zName; /* Name of new multiplex VFS */ 1231 int makeDefault; /* True to make the new VFS the default */ 1232 int rc; /* Value returned by multiplex_initialize() */ 1233 1234 UNUSED_PARAMETER(clientData); 1235 1236 /* Process arguments */ 1237 if( objc!=3 ){ 1238 Tcl_WrongNumArgs(interp, 1, objv, "NAME MAKEDEFAULT"); 1239 return TCL_ERROR; 1240 } 1241 zName = Tcl_GetString(objv[1]); 1242 if( Tcl_GetBooleanFromObj(interp, objv[2], &makeDefault) ) return TCL_ERROR; 1243 if( zName[0]=='\0' ) zName = 0; 1244 1245 /* Call sqlite3_multiplex_initialize() */ 1246 rc = sqlite3_multiplex_initialize(zName, makeDefault); 1247 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); 1248 1249 return TCL_OK; 1250 } 1251 1252 /* 1253 ** tclcmd: sqlite3_multiplex_shutdown 1254 */ 1255 static int test_multiplex_shutdown( 1256 void * clientData, 1257 Tcl_Interp *interp, 1258 int objc, 1259 Tcl_Obj *CONST objv[] 1260 ){ 1261 int rc; /* Value returned by multiplex_shutdown() */ 1262 1263 UNUSED_PARAMETER(clientData); 1264 1265 if( objc==2 && strcmp(Tcl_GetString(objv[1]),"-force")!=0 ){ 1266 objc = 3; 1267 } 1268 if( (objc!=1 && objc!=2) ){ 1269 Tcl_WrongNumArgs(interp, 1, objv, "?-force?"); 1270 return TCL_ERROR; 1271 } 1272 1273 /* Call sqlite3_multiplex_shutdown() */ 1274 rc = sqlite3_multiplex_shutdown(objc==2); 1275 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); 1276 1277 return TCL_OK; 1278 } 1279 1280 /* 1281 ** tclcmd: sqlite3_multiplex_dump 1282 */ 1283 static int test_multiplex_dump( 1284 void * clientData, 1285 Tcl_Interp *interp, 1286 int objc, 1287 Tcl_Obj *CONST objv[] 1288 ){ 1289 Tcl_Obj *pResult; 1290 Tcl_Obj *pGroupTerm; 1291 multiplexGroup *pGroup; 1292 int i; 1293 int nChunks = 0; 1294 1295 UNUSED_PARAMETER(clientData); 1296 UNUSED_PARAMETER(objc); 1297 UNUSED_PARAMETER(objv); 1298 1299 pResult = Tcl_NewObj(); 1300 multiplexEnter(); 1301 for(pGroup=gMultiplex.pGroups; pGroup; pGroup=pGroup->pNext){ 1302 pGroupTerm = Tcl_NewObj(); 1303 1304 if( pGroup->zName ){ 1305 pGroup->zName[pGroup->nName] = '\0'; 1306 Tcl_ListObjAppendElement(interp, pGroupTerm, 1307 Tcl_NewStringObj(pGroup->zName, -1)); 1308 }else{ 1309 Tcl_ListObjAppendElement(interp, pGroupTerm, Tcl_NewObj()); 1310 } 1311 Tcl_ListObjAppendElement(interp, pGroupTerm, 1312 Tcl_NewIntObj(pGroup->nName)); 1313 Tcl_ListObjAppendElement(interp, pGroupTerm, 1314 Tcl_NewIntObj(pGroup->flags)); 1315 1316 /* count number of chunks with open handles */ 1317 for(i=0; i<pGroup->nReal; i++){ 1318 if( pGroup->aReal[i].p!=0 ) nChunks++; 1319 } 1320 Tcl_ListObjAppendElement(interp, pGroupTerm, 1321 Tcl_NewIntObj(nChunks)); 1322 1323 Tcl_ListObjAppendElement(interp, pGroupTerm, 1324 Tcl_NewIntObj(pGroup->szChunk)); 1325 Tcl_ListObjAppendElement(interp, pGroupTerm, 1326 Tcl_NewIntObj(pGroup->nReal)); 1327 1328 Tcl_ListObjAppendElement(interp, pResult, pGroupTerm); 1329 } 1330 multiplexLeave(); 1331 Tcl_SetObjResult(interp, pResult); 1332 return TCL_OK; 1333 } 1334 1335 /* 1336 ** Tclcmd: test_multiplex_control HANDLE DBNAME SUB-COMMAND ?INT-VALUE? 1337 */ 1338 static int test_multiplex_control( 1339 ClientData cd, 1340 Tcl_Interp *interp, 1341 int objc, 1342 Tcl_Obj *CONST objv[] 1343 ){ 1344 int rc; /* Return code from file_control() */ 1345 int idx; /* Index in aSub[] */ 1346 Tcl_CmdInfo cmdInfo; /* Command info structure for HANDLE */ 1347 sqlite3 *db; /* Underlying db handle for HANDLE */ 1348 int iValue = 0; 1349 void *pArg = 0; 1350 1351 struct SubCommand { 1352 const char *zName; 1353 int op; 1354 int argtype; 1355 } aSub[] = { 1356 { "enable", MULTIPLEX_CTRL_ENABLE, 1 }, 1357 { "chunk_size", MULTIPLEX_CTRL_SET_CHUNK_SIZE, 1 }, 1358 { "max_chunks", MULTIPLEX_CTRL_SET_MAX_CHUNKS, 1 }, 1359 { 0, 0, 0 } 1360 }; 1361 1362 if( objc!=5 ){ 1363 Tcl_WrongNumArgs(interp, 1, objv, "HANDLE DBNAME SUB-COMMAND INT-VALUE"); 1364 return TCL_ERROR; 1365 } 1366 1367 if( 0==Tcl_GetCommandInfo(interp, Tcl_GetString(objv[1]), &cmdInfo) ){ 1368 Tcl_AppendResult(interp, "expected database handle, got \"", 0); 1369 Tcl_AppendResult(interp, Tcl_GetString(objv[1]), "\"", 0); 1370 return TCL_ERROR; 1371 }else{ 1372 db = *(sqlite3 **)cmdInfo.objClientData; 1373 } 1374 1375 rc = Tcl_GetIndexFromObjStruct( 1376 interp, objv[3], aSub, sizeof(aSub[0]), "sub-command", 0, &idx 1377 ); 1378 if( rc!=TCL_OK ) return rc; 1379 1380 switch( aSub[idx].argtype ){ 1381 case 1: 1382 if( Tcl_GetIntFromObj(interp, objv[4], &iValue) ){ 1383 return TCL_ERROR; 1384 } 1385 pArg = (void *)&iValue; 1386 break; 1387 default: 1388 Tcl_WrongNumArgs(interp, 4, objv, "SUB-COMMAND"); 1389 return TCL_ERROR; 1390 } 1391 1392 rc = sqlite3_file_control(db, Tcl_GetString(objv[2]), aSub[idx].op, pArg); 1393 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); 1394 return (rc==SQLITE_OK) ? TCL_OK : TCL_ERROR; 1395 } 1396 1397 /* 1398 ** This routine registers the custom TCL commands defined in this 1399 ** module. This should be the only procedure visible from outside 1400 ** of this module. 1401 */ 1402 int Sqlitemultiplex_Init(Tcl_Interp *interp){ 1403 static struct { 1404 char *zName; 1405 Tcl_ObjCmdProc *xProc; 1406 } aCmd[] = { 1407 { "sqlite3_multiplex_initialize", test_multiplex_initialize }, 1408 { "sqlite3_multiplex_shutdown", test_multiplex_shutdown }, 1409 { "sqlite3_multiplex_dump", test_multiplex_dump }, 1410 { "sqlite3_multiplex_control", test_multiplex_control }, 1411 }; 1412 int i; 1413 1414 for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){ 1415 Tcl_CreateObjCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0); 1416 } 1417 1418 return TCL_OK; 1419 } 1420 #endif 1421