1 /* 2 ** 2008 March 19 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Code for testing all sorts of SQLite interfaces. This code 13 ** implements new SQL functions used by the test scripts. 14 */ 15 #include "sqlite3.h" 16 #if defined(INCLUDE_SQLITE_TCL_H) 17 # include "sqlite_tcl.h" 18 #else 19 # include "tcl.h" 20 #endif 21 #include <stdlib.h> 22 #include <string.h> 23 #include <assert.h> 24 25 #include "sqliteInt.h" 26 #include "vdbeInt.h" 27 28 /* 29 ** Allocate nByte bytes of space using sqlite3_malloc(). If the 30 ** allocation fails, call sqlite3_result_error_nomem() to notify 31 ** the database handle that malloc() has failed. 32 */ 33 static void *testContextMalloc(sqlite3_context *context, int nByte){ 34 char *z = sqlite3_malloc(nByte); 35 if( !z && nByte>0 ){ 36 sqlite3_result_error_nomem(context); 37 } 38 return z; 39 } 40 41 /* 42 ** This function generates a string of random characters. Used for 43 ** generating test data. 44 */ 45 static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){ 46 static const unsigned char zSrc[] = 47 "abcdefghijklmnopqrstuvwxyz" 48 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 49 "0123456789" 50 ".-!,:*^+=_|?/<> "; 51 int iMin, iMax, n, r, i; 52 unsigned char zBuf[1000]; 53 54 /* It used to be possible to call randstr() with any number of arguments, 55 ** but now it is registered with SQLite as requiring exactly 2. 56 */ 57 assert(argc==2); 58 59 iMin = sqlite3_value_int(argv[0]); 60 if( iMin<0 ) iMin = 0; 61 if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1; 62 iMax = sqlite3_value_int(argv[1]); 63 if( iMax<iMin ) iMax = iMin; 64 if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1; 65 n = iMin; 66 if( iMax>iMin ){ 67 sqlite3_randomness(sizeof(r), &r); 68 r &= 0x7fffffff; 69 n += r%(iMax + 1 - iMin); 70 } 71 assert( n<sizeof(zBuf) ); 72 sqlite3_randomness(n, zBuf); 73 for(i=0; i<n; i++){ 74 zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)]; 75 } 76 zBuf[n] = 0; 77 sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT); 78 } 79 80 /* 81 ** The following two SQL functions are used to test returning a text 82 ** result with a destructor. Function 'test_destructor' takes one argument 83 ** and returns the same argument interpreted as TEXT. A destructor is 84 ** passed with the sqlite3_result_text() call. 85 ** 86 ** SQL function 'test_destructor_count' returns the number of outstanding 87 ** allocations made by 'test_destructor'; 88 ** 89 ** WARNING: Not threadsafe. 90 */ 91 static int test_destructor_count_var = 0; 92 static void destructor(void *p){ 93 char *zVal = (char *)p; 94 assert(zVal); 95 zVal--; 96 sqlite3_free(zVal); 97 test_destructor_count_var--; 98 } 99 static void test_destructor( 100 sqlite3_context *pCtx, 101 int nArg, 102 sqlite3_value **argv 103 ){ 104 char *zVal; 105 int len; 106 107 test_destructor_count_var++; 108 assert( nArg==1 ); 109 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 110 len = sqlite3_value_bytes(argv[0]); 111 zVal = testContextMalloc(pCtx, len+3); 112 if( !zVal ){ 113 return; 114 } 115 zVal[len+1] = 0; 116 zVal[len+2] = 0; 117 zVal++; 118 memcpy(zVal, sqlite3_value_text(argv[0]), len); 119 sqlite3_result_text(pCtx, zVal, -1, destructor); 120 } 121 #ifndef SQLITE_OMIT_UTF16 122 static void test_destructor16( 123 sqlite3_context *pCtx, 124 int nArg, 125 sqlite3_value **argv 126 ){ 127 char *zVal; 128 int len; 129 130 test_destructor_count_var++; 131 assert( nArg==1 ); 132 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 133 len = sqlite3_value_bytes16(argv[0]); 134 zVal = testContextMalloc(pCtx, len+3); 135 if( !zVal ){ 136 return; 137 } 138 zVal[len+1] = 0; 139 zVal[len+2] = 0; 140 zVal++; 141 memcpy(zVal, sqlite3_value_text16(argv[0]), len); 142 sqlite3_result_text16(pCtx, zVal, -1, destructor); 143 } 144 #endif 145 static void test_destructor_count( 146 sqlite3_context *pCtx, 147 int nArg, 148 sqlite3_value **argv 149 ){ 150 sqlite3_result_int(pCtx, test_destructor_count_var); 151 } 152 153 /* 154 ** The following aggregate function, test_agg_errmsg16(), takes zero 155 ** arguments. It returns the text value returned by the sqlite3_errmsg16() 156 ** API function. 157 */ 158 #ifndef SQLITE_UNTESTABLE 159 void sqlite3BeginBenignMalloc(void); 160 void sqlite3EndBenignMalloc(void); 161 #else 162 #define sqlite3BeginBenignMalloc() 163 #define sqlite3EndBenignMalloc() 164 #endif 165 static void test_agg_errmsg16_step(sqlite3_context *a, int b,sqlite3_value **c){ 166 } 167 static void test_agg_errmsg16_final(sqlite3_context *ctx){ 168 #ifndef SQLITE_OMIT_UTF16 169 const void *z; 170 sqlite3 * db = sqlite3_context_db_handle(ctx); 171 sqlite3_aggregate_context(ctx, 2048); 172 z = sqlite3_errmsg16(db); 173 sqlite3_result_text16(ctx, z, -1, SQLITE_TRANSIENT); 174 #endif 175 } 176 177 /* 178 ** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata() 179 ** interface. 180 ** 181 ** The test_auxdata() SQL function attempts to register each of its arguments 182 ** as auxiliary data. If there are no prior registrations of aux data for 183 ** that argument (meaning the argument is not a constant or this is its first 184 ** call) then the result for that argument is 0. If there is a prior 185 ** registration, the result for that argument is 1. The overall result 186 ** is the individual argument results separated by spaces. 187 */ 188 static void free_test_auxdata(void *p) {sqlite3_free(p);} 189 static void test_auxdata( 190 sqlite3_context *pCtx, 191 int nArg, 192 sqlite3_value **argv 193 ){ 194 int i; 195 char *zRet = testContextMalloc(pCtx, nArg*2); 196 if( !zRet ) return; 197 memset(zRet, 0, nArg*2); 198 for(i=0; i<nArg; i++){ 199 char const *z = (char*)sqlite3_value_text(argv[i]); 200 if( z ){ 201 int n; 202 char *zAux = sqlite3_get_auxdata(pCtx, i); 203 if( zAux ){ 204 zRet[i*2] = '1'; 205 assert( strcmp(zAux,z)==0 ); 206 }else { 207 zRet[i*2] = '0'; 208 } 209 n = (int)strlen(z) + 1; 210 zAux = testContextMalloc(pCtx, n); 211 if( zAux ){ 212 memcpy(zAux, z, n); 213 sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata); 214 } 215 zRet[i*2+1] = ' '; 216 } 217 } 218 sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata); 219 } 220 221 /* 222 ** A function to test error reporting from user functions. This function 223 ** returns a copy of its first argument as the error message. If the 224 ** second argument exists, it becomes the error code. 225 */ 226 static void test_error( 227 sqlite3_context *pCtx, 228 int nArg, 229 sqlite3_value **argv 230 ){ 231 sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), -1); 232 if( nArg==2 ){ 233 sqlite3_result_error_code(pCtx, sqlite3_value_int(argv[1])); 234 } 235 } 236 237 /* 238 ** Implementation of the counter(X) function. If X is an integer 239 ** constant, then the first invocation will return X. The second X+1. 240 ** and so forth. Can be used (for example) to provide a sequence number 241 ** in a result set. 242 */ 243 static void counterFunc( 244 sqlite3_context *pCtx, /* Function context */ 245 int nArg, /* Number of function arguments */ 246 sqlite3_value **argv /* Values for all function arguments */ 247 ){ 248 int *pCounter = (int*)sqlite3_get_auxdata(pCtx, 0); 249 if( pCounter==0 ){ 250 pCounter = sqlite3_malloc( sizeof(*pCounter) ); 251 if( pCounter==0 ){ 252 sqlite3_result_error_nomem(pCtx); 253 return; 254 } 255 *pCounter = sqlite3_value_int(argv[0]); 256 sqlite3_set_auxdata(pCtx, 0, pCounter, sqlite3_free); 257 }else{ 258 ++*pCounter; 259 } 260 sqlite3_result_int(pCtx, *pCounter); 261 } 262 263 264 /* 265 ** This function takes two arguments. It performance UTF-8/16 type 266 ** conversions on the first argument then returns a copy of the second 267 ** argument. 268 ** 269 ** This function is used in cases such as the following: 270 ** 271 ** SELECT test_isolation(x,x) FROM t1; 272 ** 273 ** We want to verify that the type conversions that occur on the 274 ** first argument do not invalidate the second argument. 275 */ 276 static void test_isolation( 277 sqlite3_context *pCtx, 278 int nArg, 279 sqlite3_value **argv 280 ){ 281 #ifndef SQLITE_OMIT_UTF16 282 sqlite3_value_text16(argv[0]); 283 sqlite3_value_text(argv[0]); 284 sqlite3_value_text16(argv[0]); 285 sqlite3_value_text(argv[0]); 286 #endif 287 sqlite3_result_value(pCtx, argv[1]); 288 } 289 290 /* 291 ** Invoke an SQL statement recursively. The function result is the 292 ** first column of the first row of the result set. 293 */ 294 static void test_eval( 295 sqlite3_context *pCtx, 296 int nArg, 297 sqlite3_value **argv 298 ){ 299 sqlite3_stmt *pStmt; 300 int rc; 301 sqlite3 *db = sqlite3_context_db_handle(pCtx); 302 const char *zSql; 303 304 zSql = (char*)sqlite3_value_text(argv[0]); 305 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); 306 if( rc==SQLITE_OK ){ 307 rc = sqlite3_step(pStmt); 308 if( rc==SQLITE_ROW ){ 309 sqlite3_result_value(pCtx, sqlite3_column_value(pStmt, 0)); 310 } 311 rc = sqlite3_finalize(pStmt); 312 } 313 if( rc ){ 314 char *zErr; 315 assert( pStmt==0 ); 316 zErr = sqlite3_mprintf("sqlite3_prepare_v2() error: %s",sqlite3_errmsg(db)); 317 sqlite3_result_text(pCtx, zErr, -1, sqlite3_free); 318 sqlite3_result_error_code(pCtx, rc); 319 } 320 } 321 322 323 /* 324 ** convert one character from hex to binary 325 */ 326 static int testHexChar(char c){ 327 if( c>='0' && c<='9' ){ 328 return c - '0'; 329 }else if( c>='a' && c<='f' ){ 330 return c - 'a' + 10; 331 }else if( c>='A' && c<='F' ){ 332 return c - 'A' + 10; 333 } 334 return 0; 335 } 336 337 /* 338 ** Convert hex to binary. 339 */ 340 static void testHexToBin(const char *zIn, char *zOut){ 341 while( zIn[0] && zIn[1] ){ 342 *(zOut++) = (testHexChar(zIn[0])<<4) + testHexChar(zIn[1]); 343 zIn += 2; 344 } 345 } 346 347 /* 348 ** hex_to_utf16be(HEX) 349 ** 350 ** Convert the input string from HEX into binary. Then return the 351 ** result using sqlite3_result_text16le(). 352 */ 353 #ifndef SQLITE_OMIT_UTF16 354 static void testHexToUtf16be( 355 sqlite3_context *pCtx, 356 int nArg, 357 sqlite3_value **argv 358 ){ 359 int n; 360 const char *zIn; 361 char *zOut; 362 assert( nArg==1 ); 363 n = sqlite3_value_bytes(argv[0]); 364 zIn = (const char*)sqlite3_value_text(argv[0]); 365 zOut = sqlite3_malloc( n/2 ); 366 if( zOut==0 ){ 367 sqlite3_result_error_nomem(pCtx); 368 }else{ 369 testHexToBin(zIn, zOut); 370 sqlite3_result_text16be(pCtx, zOut, n/2, sqlite3_free); 371 } 372 } 373 #endif 374 375 /* 376 ** hex_to_utf8(HEX) 377 ** 378 ** Convert the input string from HEX into binary. Then return the 379 ** result using sqlite3_result_text16le(). 380 */ 381 static void testHexToUtf8( 382 sqlite3_context *pCtx, 383 int nArg, 384 sqlite3_value **argv 385 ){ 386 int n; 387 const char *zIn; 388 char *zOut; 389 assert( nArg==1 ); 390 n = sqlite3_value_bytes(argv[0]); 391 zIn = (const char*)sqlite3_value_text(argv[0]); 392 zOut = sqlite3_malloc( n/2 ); 393 if( zOut==0 ){ 394 sqlite3_result_error_nomem(pCtx); 395 }else{ 396 testHexToBin(zIn, zOut); 397 sqlite3_result_text(pCtx, zOut, n/2, sqlite3_free); 398 } 399 } 400 401 /* 402 ** hex_to_utf16le(HEX) 403 ** 404 ** Convert the input string from HEX into binary. Then return the 405 ** result using sqlite3_result_text16le(). 406 */ 407 #ifndef SQLITE_OMIT_UTF16 408 static void testHexToUtf16le( 409 sqlite3_context *pCtx, 410 int nArg, 411 sqlite3_value **argv 412 ){ 413 int n; 414 const char *zIn; 415 char *zOut; 416 assert( nArg==1 ); 417 n = sqlite3_value_bytes(argv[0]); 418 zIn = (const char*)sqlite3_value_text(argv[0]); 419 zOut = sqlite3_malloc( n/2 ); 420 if( zOut==0 ){ 421 sqlite3_result_error_nomem(pCtx); 422 }else{ 423 testHexToBin(zIn, zOut); 424 sqlite3_result_text16le(pCtx, zOut, n/2, sqlite3_free); 425 } 426 } 427 #endif 428 429 /* 430 ** SQL function: real2hex(X) 431 ** 432 ** If argument X is a real number, then convert it into a string which is 433 ** the big-endian hexadecimal representation of the ieee754 encoding of 434 ** that number. If X is not a real number, return NULL. 435 */ 436 static void real2hex( 437 sqlite3_context *context, 438 int argc, 439 sqlite3_value **argv 440 ){ 441 union { 442 sqlite3_uint64 i; 443 double r; 444 unsigned char x[8]; 445 } v; 446 char zOut[20]; 447 int i; 448 int bigEndian; 449 v.i = 1; 450 bigEndian = v.x[0]==0; 451 v.r = sqlite3_value_double(argv[0]); 452 for(i=0; i<8; i++){ 453 if( bigEndian ){ 454 zOut[i*2] = "0123456789abcdef"[v.x[i]>>4]; 455 zOut[i*2+1] = "0123456789abcdef"[v.x[i]&0xf]; 456 }else{ 457 zOut[14-i*2] = "0123456789abcdef"[v.x[i]>>4]; 458 zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf]; 459 } 460 } 461 zOut[16] = 0; 462 sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT); 463 } 464 465 /* 466 ** test_extract(record, field) 467 ** 468 ** This function implements an SQL user-function that accepts a blob 469 ** containing a formatted database record as the first argument. The 470 ** second argument is the index of the field within that record to 471 ** extract and return. 472 */ 473 static void test_extract( 474 sqlite3_context *context, 475 int argc, 476 sqlite3_value **argv 477 ){ 478 sqlite3 *db = sqlite3_context_db_handle(context); 479 u8 *pRec; 480 u8 *pEndHdr; /* Points to one byte past record header */ 481 u8 *pHdr; /* Current point in record header */ 482 u8 *pBody; /* Current point in record data */ 483 u64 nHdr; /* Bytes in record header */ 484 int iIdx; /* Required field */ 485 int iCurrent = 0; /* Current field */ 486 487 assert( argc==2 ); 488 pRec = (u8*)sqlite3_value_blob(argv[0]); 489 iIdx = sqlite3_value_int(argv[1]); 490 491 pHdr = pRec + sqlite3GetVarint(pRec, &nHdr); 492 pBody = pEndHdr = &pRec[nHdr]; 493 494 for(iCurrent=0; pHdr<pEndHdr && iCurrent<=iIdx; iCurrent++){ 495 u64 iSerialType; 496 Mem mem; 497 498 memset(&mem, 0, sizeof(mem)); 499 mem.db = db; 500 mem.enc = ENC(db); 501 pHdr += sqlite3GetVarint(pHdr, &iSerialType); 502 pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem); 503 504 if( iCurrent==iIdx ){ 505 sqlite3_result_value(context, &mem); 506 } 507 508 if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc); 509 } 510 } 511 512 /* 513 ** test_decode(record) 514 ** 515 ** This function implements an SQL user-function that accepts a blob 516 ** containing a formatted database record as its only argument. It returns 517 ** a tcl list (type SQLITE_TEXT) containing each of the values stored 518 ** in the record. 519 */ 520 static void test_decode( 521 sqlite3_context *context, 522 int argc, 523 sqlite3_value **argv 524 ){ 525 sqlite3 *db = sqlite3_context_db_handle(context); 526 u8 *pRec; 527 u8 *pEndHdr; /* Points to one byte past record header */ 528 u8 *pHdr; /* Current point in record header */ 529 u8 *pBody; /* Current point in record data */ 530 u64 nHdr; /* Bytes in record header */ 531 Tcl_Obj *pRet; /* Return value */ 532 533 pRet = Tcl_NewObj(); 534 Tcl_IncrRefCount(pRet); 535 536 assert( argc==1 ); 537 pRec = (u8*)sqlite3_value_blob(argv[0]); 538 539 pHdr = pRec + sqlite3GetVarint(pRec, &nHdr); 540 pBody = pEndHdr = &pRec[nHdr]; 541 while( pHdr<pEndHdr ){ 542 Tcl_Obj *pVal = 0; 543 u64 iSerialType; 544 Mem mem; 545 546 memset(&mem, 0, sizeof(mem)); 547 mem.db = db; 548 mem.enc = ENC(db); 549 pHdr += sqlite3GetVarint(pHdr, &iSerialType); 550 pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem); 551 552 switch( sqlite3_value_type(&mem) ){ 553 case SQLITE_TEXT: 554 pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1); 555 break; 556 557 case SQLITE_BLOB: { 558 char hexdigit[] = { 559 '0', '1', '2', '3', '4', '5', '6', '7', 560 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' 561 }; 562 int n = sqlite3_value_bytes(&mem); 563 u8 *z = (u8*)sqlite3_value_blob(&mem); 564 int i; 565 pVal = Tcl_NewStringObj("x'", -1); 566 for(i=0; i<n; i++){ 567 char hex[3]; 568 hex[0] = hexdigit[((z[i] >> 4) & 0x0F)]; 569 hex[1] = hexdigit[(z[i] & 0x0F)]; 570 hex[2] = '\0'; 571 Tcl_AppendStringsToObj(pVal, hex, 0); 572 } 573 Tcl_AppendStringsToObj(pVal, "'", 0); 574 break; 575 } 576 577 case SQLITE_FLOAT: 578 pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem)); 579 break; 580 581 case SQLITE_INTEGER: 582 pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem)); 583 break; 584 585 case SQLITE_NULL: 586 pVal = Tcl_NewStringObj("NULL", -1); 587 break; 588 589 default: 590 assert( 0 ); 591 } 592 593 Tcl_ListObjAppendElement(0, pRet, pVal); 594 595 if( mem.szMalloc ){ 596 sqlite3DbFree(db, mem.zMalloc); 597 } 598 } 599 600 sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT); 601 Tcl_DecrRefCount(pRet); 602 } 603 604 /* 605 ** test_zeroblob(N) 606 ** 607 ** The implementation of scalar SQL function "test_zeroblob()". This is 608 ** similar to the built-in zeroblob() function, except that it does not 609 ** check that the integer parameter is within range before passing it 610 ** to sqlite3_result_zeroblob(). 611 */ 612 static void test_zeroblob( 613 sqlite3_context *context, 614 int argc, 615 sqlite3_value **argv 616 ){ 617 int nZero = sqlite3_value_int(argv[0]); 618 sqlite3_result_zeroblob(context, nZero); 619 } 620 621 /* test_getsubtype(V) 622 ** 623 ** Return the subtype for value V. 624 */ 625 static void test_getsubtype( 626 sqlite3_context *context, 627 int argc, 628 sqlite3_value **argv 629 ){ 630 sqlite3_result_int(context, (int)sqlite3_value_subtype(argv[0])); 631 } 632 633 /* test_setsubtype(V, T) 634 ** 635 ** Return the value V with its subtype changed to T 636 */ 637 static void test_setsubtype( 638 sqlite3_context *context, 639 int argc, 640 sqlite3_value **argv 641 ){ 642 sqlite3_result_value(context, argv[0]); 643 sqlite3_result_subtype(context, (unsigned int)sqlite3_value_int(argv[1])); 644 } 645 646 static int registerTestFunctions( 647 sqlite3 *db, 648 char **pzErrMsg, 649 const sqlite3_api_routines *pThunk 650 ){ 651 static const struct { 652 char *zName; 653 signed char nArg; 654 unsigned int eTextRep; /* 1: UTF-16. 0: UTF-8 */ 655 void (*xFunc)(sqlite3_context*,int,sqlite3_value **); 656 } aFuncs[] = { 657 { "randstr", 2, SQLITE_UTF8, randStr }, 658 { "test_destructor", 1, SQLITE_UTF8, test_destructor}, 659 #ifndef SQLITE_OMIT_UTF16 660 { "test_destructor16", 1, SQLITE_UTF8, test_destructor16}, 661 { "hex_to_utf16be", 1, SQLITE_UTF8, testHexToUtf16be}, 662 { "hex_to_utf16le", 1, SQLITE_UTF8, testHexToUtf16le}, 663 #endif 664 { "hex_to_utf8", 1, SQLITE_UTF8, testHexToUtf8}, 665 { "test_destructor_count", 0, SQLITE_UTF8, test_destructor_count}, 666 { "test_auxdata", -1, SQLITE_UTF8, test_auxdata}, 667 { "test_error", 1, SQLITE_UTF8, test_error}, 668 { "test_error", 2, SQLITE_UTF8, test_error}, 669 { "test_eval", 1, SQLITE_UTF8, test_eval}, 670 { "test_isolation", 2, SQLITE_UTF8, test_isolation}, 671 { "test_counter", 1, SQLITE_UTF8, counterFunc}, 672 { "real2hex", 1, SQLITE_UTF8, real2hex}, 673 { "test_decode", 1, SQLITE_UTF8, test_decode}, 674 { "test_extract", 2, SQLITE_UTF8, test_extract}, 675 { "test_zeroblob", 1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob}, 676 { "test_getsubtype", 1, SQLITE_UTF8, test_getsubtype}, 677 { "test_setsubtype", 2, SQLITE_UTF8, test_setsubtype}, 678 }; 679 int i; 680 681 for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ 682 sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg, 683 aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0); 684 } 685 686 sqlite3_create_function(db, "test_agg_errmsg16", 0, SQLITE_ANY, 0, 0, 687 test_agg_errmsg16_step, test_agg_errmsg16_final); 688 689 return SQLITE_OK; 690 } 691 692 /* 693 ** TCLCMD: autoinstall_test_functions 694 ** 695 ** Invoke this TCL command to use sqlite3_auto_extension() to cause 696 ** the standard set of test functions to be loaded into each new 697 ** database connection. 698 */ 699 static int SQLITE_TCLAPI autoinstall_test_funcs( 700 void * clientData, 701 Tcl_Interp *interp, 702 int objc, 703 Tcl_Obj *CONST objv[] 704 ){ 705 extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *); 706 int rc = sqlite3_auto_extension((void(*)(void))registerTestFunctions); 707 if( rc==SQLITE_OK ){ 708 rc = sqlite3_auto_extension((void(*)(void))Md5_Register); 709 } 710 Tcl_SetObjResult(interp, Tcl_NewIntObj(rc)); 711 return TCL_OK; 712 } 713 714 /* 715 ** A bogus step function and finalizer function. 716 */ 717 static void tStep(sqlite3_context *a, int b, sqlite3_value **c){} 718 static void tFinal(sqlite3_context *a){} 719 720 721 /* 722 ** tclcmd: abuse_create_function 723 ** 724 ** Make various calls to sqlite3_create_function that do not have valid 725 ** parameters. Verify that the error condition is detected and reported. 726 */ 727 static int SQLITE_TCLAPI abuse_create_function( 728 void * clientData, 729 Tcl_Interp *interp, 730 int objc, 731 Tcl_Obj *CONST objv[] 732 ){ 733 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); 734 sqlite3 *db; 735 int rc; 736 int mxArg; 737 738 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; 739 740 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep,tStep,tFinal); 741 if( rc!=SQLITE_MISUSE ) goto abuse_err; 742 743 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, tStep, 0); 744 if( rc!=SQLITE_MISUSE ) goto abuse_err; 745 746 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, 0, tFinal); 747 if( rc!=SQLITE_MISUSE) goto abuse_err; 748 749 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, 0, tFinal); 750 if( rc!=SQLITE_MISUSE ) goto abuse_err; 751 752 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, tStep, 0); 753 if( rc!=SQLITE_MISUSE ) goto abuse_err; 754 755 rc = sqlite3_create_function(db, "tx", -2, SQLITE_UTF8, 0, tStep, 0, 0); 756 if( rc!=SQLITE_MISUSE ) goto abuse_err; 757 758 rc = sqlite3_create_function(db, "tx", 128, SQLITE_UTF8, 0, tStep, 0, 0); 759 if( rc!=SQLITE_MISUSE ) goto abuse_err; 760 761 rc = sqlite3_create_function(db, "funcxx" 762 "_123456789_123456789_123456789_123456789_123456789" 763 "_123456789_123456789_123456789_123456789_123456789" 764 "_123456789_123456789_123456789_123456789_123456789" 765 "_123456789_123456789_123456789_123456789_123456789" 766 "_123456789_123456789_123456789_123456789_123456789", 767 1, SQLITE_UTF8, 0, tStep, 0, 0); 768 if( rc!=SQLITE_MISUSE ) goto abuse_err; 769 770 /* This last function registration should actually work. Generate 771 ** a no-op function (that always returns NULL) and which has the 772 ** maximum-length function name and the maximum number of parameters. 773 */ 774 sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, 10000); 775 mxArg = sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, -1); 776 rc = sqlite3_create_function(db, "nullx" 777 "_123456789_123456789_123456789_123456789_123456789" 778 "_123456789_123456789_123456789_123456789_123456789" 779 "_123456789_123456789_123456789_123456789_123456789" 780 "_123456789_123456789_123456789_123456789_123456789" 781 "_123456789_123456789_123456789_123456789_123456789", 782 mxArg, SQLITE_UTF8, 0, tStep, 0, 0); 783 if( rc!=SQLITE_OK ) goto abuse_err; 784 785 return TCL_OK; 786 787 abuse_err: 788 Tcl_AppendResult(interp, "sqlite3_create_function abused test failed", 789 (char*)0); 790 return TCL_ERROR; 791 } 792 793 794 /* 795 ** SQLite user defined function to use with matchinfo() to calculate the 796 ** relevancy of an FTS match. The value returned is the relevancy score 797 ** (a real value greater than or equal to zero). A larger value indicates 798 ** a more relevant document. 799 ** 800 ** The overall relevancy returned is the sum of the relevancies of each 801 ** column value in the FTS table. The relevancy of a column value is the 802 ** sum of the following for each reportable phrase in the FTS query: 803 ** 804 ** (<hit count> / <global hit count>) * <column weight> 805 ** 806 ** where <hit count> is the number of instances of the phrase in the 807 ** column value of the current row and <global hit count> is the number 808 ** of instances of the phrase in the same column of all rows in the FTS 809 ** table. The <column weight> is a weighting factor assigned to each 810 ** column by the caller (see below). 811 ** 812 ** The first argument to this function must be the return value of the FTS 813 ** matchinfo() function. Following this must be one argument for each column 814 ** of the FTS table containing a numeric weight factor for the corresponding 815 ** column. Example: 816 ** 817 ** CREATE VIRTUAL TABLE documents USING fts3(title, content) 818 ** 819 ** The following query returns the docids of documents that match the full-text 820 ** query <query> sorted from most to least relevant. When calculating 821 ** relevance, query term instances in the 'title' column are given twice the 822 ** weighting of those in the 'content' column. 823 ** 824 ** SELECT docid FROM documents 825 ** WHERE documents MATCH <query> 826 ** ORDER BY rank(matchinfo(documents), 1.0, 0.5) DESC 827 */ 828 static void rankfunc(sqlite3_context *pCtx, int nVal, sqlite3_value **apVal){ 829 int *aMatchinfo; /* Return value of matchinfo() */ 830 int nMatchinfo; /* Number of elements in aMatchinfo[] */ 831 int nCol = 0; /* Number of columns in the table */ 832 int nPhrase = 0; /* Number of phrases in the query */ 833 int iPhrase; /* Current phrase */ 834 double score = 0.0; /* Value to return */ 835 836 assert( sizeof(int)==4 ); 837 838 /* Check that the number of arguments passed to this function is correct. 839 ** If not, jump to wrong_number_args. Set aMatchinfo to point to the array 840 ** of unsigned integer values returned by FTS function matchinfo. Set 841 ** nPhrase to contain the number of reportable phrases in the users full-text 842 ** query, and nCol to the number of columns in the table. Then check that the 843 ** size of the matchinfo blob is as expected. Return an error if it is not. 844 */ 845 if( nVal<1 ) goto wrong_number_args; 846 aMatchinfo = (int*)sqlite3_value_blob(apVal[0]); 847 nMatchinfo = sqlite3_value_bytes(apVal[0]) / sizeof(int); 848 if( nMatchinfo>=2 ){ 849 nPhrase = aMatchinfo[0]; 850 nCol = aMatchinfo[1]; 851 } 852 if( nMatchinfo!=(2+3*nCol*nPhrase) ){ 853 sqlite3_result_error(pCtx, 854 "invalid matchinfo blob passed to function rank()", -1); 855 return; 856 } 857 if( nVal!=(1+nCol) ) goto wrong_number_args; 858 859 /* Iterate through each phrase in the users query. */ 860 for(iPhrase=0; iPhrase<nPhrase; iPhrase++){ 861 int iCol; /* Current column */ 862 863 /* Now iterate through each column in the users query. For each column, 864 ** increment the relevancy score by: 865 ** 866 ** (<hit count> / <global hit count>) * <column weight> 867 ** 868 ** aPhraseinfo[] points to the start of the data for phrase iPhrase. So 869 ** the hit count and global hit counts for each column are found in 870 ** aPhraseinfo[iCol*3] and aPhraseinfo[iCol*3+1], respectively. 871 */ 872 int *aPhraseinfo = &aMatchinfo[2 + iPhrase*nCol*3]; 873 for(iCol=0; iCol<nCol; iCol++){ 874 int nHitCount = aPhraseinfo[3*iCol]; 875 int nGlobalHitCount = aPhraseinfo[3*iCol+1]; 876 double weight = sqlite3_value_double(apVal[iCol+1]); 877 if( nHitCount>0 ){ 878 score += ((double)nHitCount / (double)nGlobalHitCount) * weight; 879 } 880 } 881 } 882 883 sqlite3_result_double(pCtx, score); 884 return; 885 886 /* Jump here if the wrong number of arguments are passed to this function */ 887 wrong_number_args: 888 sqlite3_result_error(pCtx, "wrong number of arguments to function rank()", -1); 889 } 890 891 static int SQLITE_TCLAPI install_fts3_rank_function( 892 void * clientData, 893 Tcl_Interp *interp, 894 int objc, 895 Tcl_Obj *CONST objv[] 896 ){ 897 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); 898 sqlite3 *db; 899 900 if( objc!=2 ){ 901 Tcl_WrongNumArgs(interp, 1, objv, "DB"); 902 return TCL_ERROR; 903 } 904 905 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; 906 sqlite3_create_function(db, "rank", -1, SQLITE_UTF8, 0, rankfunc, 0, 0); 907 return TCL_OK; 908 } 909 910 911 /* 912 ** Register commands with the TCL interpreter. 913 */ 914 int Sqlitetest_func_Init(Tcl_Interp *interp){ 915 static struct { 916 char *zName; 917 Tcl_ObjCmdProc *xProc; 918 } aObjCmd[] = { 919 { "autoinstall_test_functions", autoinstall_test_funcs }, 920 { "abuse_create_function", abuse_create_function }, 921 { "install_fts3_rank_function", install_fts3_rank_function }, 922 }; 923 int i; 924 extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *); 925 926 for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ 927 Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0); 928 } 929 sqlite3_initialize(); 930 sqlite3_auto_extension((void(*)(void))registerTestFunctions); 931 sqlite3_auto_extension((void(*)(void))Md5_Register); 932 return TCL_OK; 933 } 934