xref: /sqlite-3.40.0/src/test_func.c (revision cb6acda9)
1 /*
2 ** 2008 March 19
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Code for testing all sorts of SQLite interfaces.  This code
13 ** implements new SQL functions used by the test scripts.
14 */
15 #include "sqlite3.h"
16 #if defined(INCLUDE_SQLITE_TCL_H)
17 #  include "sqlite_tcl.h"
18 #else
19 #  include "tcl.h"
20 #endif
21 #include <stdlib.h>
22 #include <string.h>
23 #include <assert.h>
24 
25 #include "sqliteInt.h"
26 #include "vdbeInt.h"
27 
28 /*
29 ** Allocate nByte bytes of space using sqlite3_malloc(). If the
30 ** allocation fails, call sqlite3_result_error_nomem() to notify
31 ** the database handle that malloc() has failed.
32 */
33 static void *testContextMalloc(sqlite3_context *context, int nByte){
34   char *z = sqlite3_malloc(nByte);
35   if( !z && nByte>0 ){
36     sqlite3_result_error_nomem(context);
37   }
38   return z;
39 }
40 
41 /*
42 ** This function generates a string of random characters.  Used for
43 ** generating test data.
44 */
45 static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
46   static const unsigned char zSrc[] =
47      "abcdefghijklmnopqrstuvwxyz"
48      "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
49      "0123456789"
50      ".-!,:*^+=_|?/<> ";
51   int iMin, iMax, n, r, i;
52   unsigned char zBuf[1000];
53 
54   /* It used to be possible to call randstr() with any number of arguments,
55   ** but now it is registered with SQLite as requiring exactly 2.
56   */
57   assert(argc==2);
58 
59   iMin = sqlite3_value_int(argv[0]);
60   if( iMin<0 ) iMin = 0;
61   if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
62   iMax = sqlite3_value_int(argv[1]);
63   if( iMax<iMin ) iMax = iMin;
64   if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
65   n = iMin;
66   if( iMax>iMin ){
67     sqlite3_randomness(sizeof(r), &r);
68     r &= 0x7fffffff;
69     n += r%(iMax + 1 - iMin);
70   }
71   assert( n<sizeof(zBuf) );
72   sqlite3_randomness(n, zBuf);
73   for(i=0; i<n; i++){
74     zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
75   }
76   zBuf[n] = 0;
77   sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
78 }
79 
80 /*
81 ** The following two SQL functions are used to test returning a text
82 ** result with a destructor. Function 'test_destructor' takes one argument
83 ** and returns the same argument interpreted as TEXT. A destructor is
84 ** passed with the sqlite3_result_text() call.
85 **
86 ** SQL function 'test_destructor_count' returns the number of outstanding
87 ** allocations made by 'test_destructor';
88 **
89 ** WARNING: Not threadsafe.
90 */
91 static int test_destructor_count_var = 0;
92 static void destructor(void *p){
93   char *zVal = (char *)p;
94   assert(zVal);
95   zVal--;
96   sqlite3_free(zVal);
97   test_destructor_count_var--;
98 }
99 static void test_destructor(
100   sqlite3_context *pCtx,
101   int nArg,
102   sqlite3_value **argv
103 ){
104   char *zVal;
105   int len;
106 
107   test_destructor_count_var++;
108   assert( nArg==1 );
109   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
110   len = sqlite3_value_bytes(argv[0]);
111   zVal = testContextMalloc(pCtx, len+3);
112   if( !zVal ){
113     return;
114   }
115   zVal[len+1] = 0;
116   zVal[len+2] = 0;
117   zVal++;
118   memcpy(zVal, sqlite3_value_text(argv[0]), len);
119   sqlite3_result_text(pCtx, zVal, -1, destructor);
120 }
121 #ifndef SQLITE_OMIT_UTF16
122 static void test_destructor16(
123   sqlite3_context *pCtx,
124   int nArg,
125   sqlite3_value **argv
126 ){
127   char *zVal;
128   int len;
129 
130   test_destructor_count_var++;
131   assert( nArg==1 );
132   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
133   len = sqlite3_value_bytes16(argv[0]);
134   zVal = testContextMalloc(pCtx, len+3);
135   if( !zVal ){
136     return;
137   }
138   zVal[len+1] = 0;
139   zVal[len+2] = 0;
140   zVal++;
141   memcpy(zVal, sqlite3_value_text16(argv[0]), len);
142   sqlite3_result_text16(pCtx, zVal, -1, destructor);
143 }
144 #endif
145 static void test_destructor_count(
146   sqlite3_context *pCtx,
147   int nArg,
148   sqlite3_value **argv
149 ){
150   sqlite3_result_int(pCtx, test_destructor_count_var);
151 }
152 
153 /*
154 ** The following aggregate function, test_agg_errmsg16(), takes zero
155 ** arguments. It returns the text value returned by the sqlite3_errmsg16()
156 ** API function.
157 */
158 #ifndef SQLITE_UNTESTABLE
159 void sqlite3BeginBenignMalloc(void);
160 void sqlite3EndBenignMalloc(void);
161 #else
162   #define sqlite3BeginBenignMalloc()
163   #define sqlite3EndBenignMalloc()
164 #endif
165 static void test_agg_errmsg16_step(sqlite3_context *a, int b,sqlite3_value **c){
166 }
167 static void test_agg_errmsg16_final(sqlite3_context *ctx){
168 #ifndef SQLITE_OMIT_UTF16
169   const void *z;
170   sqlite3 * db = sqlite3_context_db_handle(ctx);
171   sqlite3_aggregate_context(ctx, 2048);
172   z = sqlite3_errmsg16(db);
173   sqlite3_result_text16(ctx, z, -1, SQLITE_TRANSIENT);
174 #endif
175 }
176 
177 /*
178 ** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
179 ** interface.
180 **
181 ** The test_auxdata() SQL function attempts to register each of its arguments
182 ** as auxiliary data.  If there are no prior registrations of aux data for
183 ** that argument (meaning the argument is not a constant or this is its first
184 ** call) then the result for that argument is 0.  If there is a prior
185 ** registration, the result for that argument is 1.  The overall result
186 ** is the individual argument results separated by spaces.
187 */
188 static void free_test_auxdata(void *p) {sqlite3_free(p);}
189 static void test_auxdata(
190   sqlite3_context *pCtx,
191   int nArg,
192   sqlite3_value **argv
193 ){
194   int i;
195   char *zRet = testContextMalloc(pCtx, nArg*2);
196   if( !zRet ) return;
197   memset(zRet, 0, nArg*2);
198   for(i=0; i<nArg; i++){
199     char const *z = (char*)sqlite3_value_text(argv[i]);
200     if( z ){
201       int n;
202       char *zAux = sqlite3_get_auxdata(pCtx, i);
203       if( zAux ){
204         zRet[i*2] = '1';
205         assert( strcmp(zAux,z)==0 );
206       }else {
207         zRet[i*2] = '0';
208       }
209       n = (int)strlen(z) + 1;
210       zAux = testContextMalloc(pCtx, n);
211       if( zAux ){
212         memcpy(zAux, z, n);
213         sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
214       }
215       zRet[i*2+1] = ' ';
216     }
217   }
218   sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
219 }
220 
221 /*
222 ** A function to test error reporting from user functions. This function
223 ** returns a copy of its first argument as the error message.  If the
224 ** second argument exists, it becomes the error code.
225 */
226 static void test_error(
227   sqlite3_context *pCtx,
228   int nArg,
229   sqlite3_value **argv
230 ){
231   sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), -1);
232   if( nArg==2 ){
233     sqlite3_result_error_code(pCtx, sqlite3_value_int(argv[1]));
234   }
235 }
236 
237 /*
238 ** Implementation of the counter(X) function.  If X is an integer
239 ** constant, then the first invocation will return X.  The second X+1.
240 ** and so forth.  Can be used (for example) to provide a sequence number
241 ** in a result set.
242 */
243 static void counterFunc(
244   sqlite3_context *pCtx,   /* Function context */
245   int nArg,                /* Number of function arguments */
246   sqlite3_value **argv     /* Values for all function arguments */
247 ){
248   int *pCounter = (int*)sqlite3_get_auxdata(pCtx, 0);
249   if( pCounter==0 ){
250     pCounter = sqlite3_malloc( sizeof(*pCounter) );
251     if( pCounter==0 ){
252       sqlite3_result_error_nomem(pCtx);
253       return;
254     }
255     *pCounter = sqlite3_value_int(argv[0]);
256     sqlite3_set_auxdata(pCtx, 0, pCounter, sqlite3_free);
257   }else{
258     ++*pCounter;
259   }
260   sqlite3_result_int(pCtx, *pCounter);
261 }
262 
263 
264 /*
265 ** This function takes two arguments.  It performance UTF-8/16 type
266 ** conversions on the first argument then returns a copy of the second
267 ** argument.
268 **
269 ** This function is used in cases such as the following:
270 **
271 **      SELECT test_isolation(x,x) FROM t1;
272 **
273 ** We want to verify that the type conversions that occur on the
274 ** first argument do not invalidate the second argument.
275 */
276 static void test_isolation(
277   sqlite3_context *pCtx,
278   int nArg,
279   sqlite3_value **argv
280 ){
281 #ifndef SQLITE_OMIT_UTF16
282   sqlite3_value_text16(argv[0]);
283   sqlite3_value_text(argv[0]);
284   sqlite3_value_text16(argv[0]);
285   sqlite3_value_text(argv[0]);
286 #endif
287   sqlite3_result_value(pCtx, argv[1]);
288 }
289 
290 /*
291 ** Invoke an SQL statement recursively.  The function result is the
292 ** first column of the first row of the result set.
293 */
294 static void test_eval(
295   sqlite3_context *pCtx,
296   int nArg,
297   sqlite3_value **argv
298 ){
299   sqlite3_stmt *pStmt;
300   int rc;
301   sqlite3 *db = sqlite3_context_db_handle(pCtx);
302   const char *zSql;
303 
304   zSql = (char*)sqlite3_value_text(argv[0]);
305   rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
306   if( rc==SQLITE_OK ){
307     rc = sqlite3_step(pStmt);
308     if( rc==SQLITE_ROW ){
309       sqlite3_result_value(pCtx, sqlite3_column_value(pStmt, 0));
310     }
311     rc = sqlite3_finalize(pStmt);
312   }
313   if( rc ){
314     char *zErr;
315     assert( pStmt==0 );
316     zErr = sqlite3_mprintf("sqlite3_prepare_v2() error: %s",sqlite3_errmsg(db));
317     sqlite3_result_text(pCtx, zErr, -1, sqlite3_free);
318     sqlite3_result_error_code(pCtx, rc);
319   }
320 }
321 
322 
323 /*
324 ** convert one character from hex to binary
325 */
326 static int testHexChar(char c){
327   if( c>='0' && c<='9' ){
328     return c - '0';
329   }else if( c>='a' && c<='f' ){
330     return c - 'a' + 10;
331   }else if( c>='A' && c<='F' ){
332     return c - 'A' + 10;
333   }
334   return 0;
335 }
336 
337 /*
338 ** Convert hex to binary.
339 */
340 static void testHexToBin(const char *zIn, char *zOut){
341   while( zIn[0] && zIn[1] ){
342     *(zOut++) = (testHexChar(zIn[0])<<4) + testHexChar(zIn[1]);
343     zIn += 2;
344   }
345 }
346 
347 /*
348 **      hex_to_utf16be(HEX)
349 **
350 ** Convert the input string from HEX into binary.  Then return the
351 ** result using sqlite3_result_text16le().
352 */
353 #ifndef SQLITE_OMIT_UTF16
354 static void testHexToUtf16be(
355   sqlite3_context *pCtx,
356   int nArg,
357   sqlite3_value **argv
358 ){
359   int n;
360   const char *zIn;
361   char *zOut;
362   assert( nArg==1 );
363   n = sqlite3_value_bytes(argv[0]);
364   zIn = (const char*)sqlite3_value_text(argv[0]);
365   zOut = sqlite3_malloc( n/2 );
366   if( zOut==0 ){
367     sqlite3_result_error_nomem(pCtx);
368   }else{
369     testHexToBin(zIn, zOut);
370     sqlite3_result_text16be(pCtx, zOut, n/2, sqlite3_free);
371   }
372 }
373 #endif
374 
375 /*
376 **      hex_to_utf8(HEX)
377 **
378 ** Convert the input string from HEX into binary.  Then return the
379 ** result using sqlite3_result_text16le().
380 */
381 static void testHexToUtf8(
382   sqlite3_context *pCtx,
383   int nArg,
384   sqlite3_value **argv
385 ){
386   int n;
387   const char *zIn;
388   char *zOut;
389   assert( nArg==1 );
390   n = sqlite3_value_bytes(argv[0]);
391   zIn = (const char*)sqlite3_value_text(argv[0]);
392   zOut = sqlite3_malloc( n/2 );
393   if( zOut==0 ){
394     sqlite3_result_error_nomem(pCtx);
395   }else{
396     testHexToBin(zIn, zOut);
397     sqlite3_result_text(pCtx, zOut, n/2, sqlite3_free);
398   }
399 }
400 
401 /*
402 **      hex_to_utf16le(HEX)
403 **
404 ** Convert the input string from HEX into binary.  Then return the
405 ** result using sqlite3_result_text16le().
406 */
407 #ifndef SQLITE_OMIT_UTF16
408 static void testHexToUtf16le(
409   sqlite3_context *pCtx,
410   int nArg,
411   sqlite3_value **argv
412 ){
413   int n;
414   const char *zIn;
415   char *zOut;
416   assert( nArg==1 );
417   n = sqlite3_value_bytes(argv[0]);
418   zIn = (const char*)sqlite3_value_text(argv[0]);
419   zOut = sqlite3_malloc( n/2 );
420   if( zOut==0 ){
421     sqlite3_result_error_nomem(pCtx);
422   }else{
423     testHexToBin(zIn, zOut);
424     sqlite3_result_text16le(pCtx, zOut, n/2, sqlite3_free);
425   }
426 }
427 #endif
428 
429 /*
430 ** SQL function:   real2hex(X)
431 **
432 ** If argument X is a real number, then convert it into a string which is
433 ** the big-endian hexadecimal representation of the ieee754 encoding of
434 ** that number.  If X is not a real number, return NULL.
435 */
436 static void real2hex(
437   sqlite3_context *context,
438   int argc,
439   sqlite3_value **argv
440 ){
441   union {
442     sqlite3_uint64 i;
443     double r;
444     unsigned char x[8];
445   } v;
446   char zOut[20];
447   int i;
448   int bigEndian;
449   v.i = 1;
450   bigEndian = v.x[0]==0;
451   v.r = sqlite3_value_double(argv[0]);
452   for(i=0; i<8; i++){
453     if( bigEndian ){
454       zOut[i*2]   = "0123456789abcdef"[v.x[i]>>4];
455       zOut[i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
456     }else{
457       zOut[14-i*2]   = "0123456789abcdef"[v.x[i]>>4];
458       zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
459     }
460   }
461   zOut[16] = 0;
462   sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
463 }
464 
465 /*
466 **     test_extract(record, field)
467 **
468 ** This function implements an SQL user-function that accepts a blob
469 ** containing a formatted database record as the first argument. The
470 ** second argument is the index of the field within that record to
471 ** extract and return.
472 */
473 static void test_extract(
474   sqlite3_context *context,
475   int argc,
476   sqlite3_value **argv
477 ){
478   sqlite3 *db = sqlite3_context_db_handle(context);
479   u8 *pRec;
480   u8 *pEndHdr;                    /* Points to one byte past record header */
481   u8 *pHdr;                       /* Current point in record header */
482   u8 *pBody;                      /* Current point in record data */
483   u64 nHdr;                       /* Bytes in record header */
484   int iIdx;                       /* Required field */
485   int iCurrent = 0;               /* Current field */
486 
487   assert( argc==2 );
488   pRec = (u8*)sqlite3_value_blob(argv[0]);
489   iIdx = sqlite3_value_int(argv[1]);
490 
491   pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
492   pBody = pEndHdr = &pRec[nHdr];
493 
494   for(iCurrent=0; pHdr<pEndHdr && iCurrent<=iIdx; iCurrent++){
495     u64 iSerialType;
496     Mem mem;
497 
498     memset(&mem, 0, sizeof(mem));
499     mem.db = db;
500     mem.enc = ENC(db);
501     pHdr += sqlite3GetVarint(pHdr, &iSerialType);
502     pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
503 
504     if( iCurrent==iIdx ){
505       sqlite3_result_value(context, &mem);
506     }
507 
508     if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc);
509   }
510 }
511 
512 /*
513 **      test_decode(record)
514 **
515 ** This function implements an SQL user-function that accepts a blob
516 ** containing a formatted database record as its only argument. It returns
517 ** a tcl list (type SQLITE_TEXT) containing each of the values stored
518 ** in the record.
519 */
520 static void test_decode(
521   sqlite3_context *context,
522   int argc,
523   sqlite3_value **argv
524 ){
525   sqlite3 *db = sqlite3_context_db_handle(context);
526   u8 *pRec;
527   u8 *pEndHdr;                    /* Points to one byte past record header */
528   u8 *pHdr;                       /* Current point in record header */
529   u8 *pBody;                      /* Current point in record data */
530   u64 nHdr;                       /* Bytes in record header */
531   Tcl_Obj *pRet;                  /* Return value */
532 
533   pRet = Tcl_NewObj();
534   Tcl_IncrRefCount(pRet);
535 
536   assert( argc==1 );
537   pRec = (u8*)sqlite3_value_blob(argv[0]);
538 
539   pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
540   pBody = pEndHdr = &pRec[nHdr];
541   while( pHdr<pEndHdr ){
542     Tcl_Obj *pVal = 0;
543     u64 iSerialType;
544     Mem mem;
545 
546     memset(&mem, 0, sizeof(mem));
547     mem.db = db;
548     mem.enc = ENC(db);
549     pHdr += sqlite3GetVarint(pHdr, &iSerialType);
550     pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
551 
552     switch( sqlite3_value_type(&mem) ){
553       case SQLITE_TEXT:
554         pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1);
555         break;
556 
557       case SQLITE_BLOB: {
558         char hexdigit[] = {
559           '0', '1', '2', '3', '4', '5', '6', '7',
560           '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
561         };
562         int n = sqlite3_value_bytes(&mem);
563         u8 *z = (u8*)sqlite3_value_blob(&mem);
564         int i;
565         pVal = Tcl_NewStringObj("x'", -1);
566         for(i=0; i<n; i++){
567           char hex[3];
568           hex[0] = hexdigit[((z[i] >> 4) & 0x0F)];
569           hex[1] = hexdigit[(z[i] & 0x0F)];
570           hex[2] = '\0';
571           Tcl_AppendStringsToObj(pVal, hex, 0);
572         }
573         Tcl_AppendStringsToObj(pVal, "'", 0);
574         break;
575       }
576 
577       case SQLITE_FLOAT:
578         pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem));
579         break;
580 
581       case SQLITE_INTEGER:
582         pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem));
583         break;
584 
585       case SQLITE_NULL:
586         pVal = Tcl_NewStringObj("NULL", -1);
587         break;
588 
589       default:
590         assert( 0 );
591     }
592 
593     Tcl_ListObjAppendElement(0, pRet, pVal);
594 
595     if( mem.szMalloc ){
596       sqlite3DbFree(db, mem.zMalloc);
597     }
598   }
599 
600   sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
601   Tcl_DecrRefCount(pRet);
602 }
603 
604 /*
605 **       test_zeroblob(N)
606 **
607 ** The implementation of scalar SQL function "test_zeroblob()". This is
608 ** similar to the built-in zeroblob() function, except that it does not
609 ** check that the integer parameter is within range before passing it
610 ** to sqlite3_result_zeroblob().
611 */
612 static void test_zeroblob(
613   sqlite3_context *context,
614   int argc,
615   sqlite3_value **argv
616 ){
617   int nZero = sqlite3_value_int(argv[0]);
618   sqlite3_result_zeroblob(context, nZero);
619 }
620 
621 /*         test_getsubtype(V)
622 **
623 ** Return the subtype for value V.
624 */
625 static void test_getsubtype(
626   sqlite3_context *context,
627   int argc,
628   sqlite3_value **argv
629 ){
630   sqlite3_result_int(context, (int)sqlite3_value_subtype(argv[0]));
631 }
632 
633 /*         test_setsubtype(V, T)
634 **
635 ** Return the value V with its subtype changed to T
636 */
637 static void test_setsubtype(
638   sqlite3_context *context,
639   int argc,
640   sqlite3_value **argv
641 ){
642   sqlite3_result_value(context, argv[0]);
643   sqlite3_result_subtype(context, (unsigned int)sqlite3_value_int(argv[1]));
644 }
645 
646 static int registerTestFunctions(
647   sqlite3 *db,
648   char **pzErrMsg,
649   const sqlite3_api_routines *pThunk
650 ){
651   static const struct {
652      char *zName;
653      signed char nArg;
654      unsigned int eTextRep; /* 1: UTF-16.  0: UTF-8 */
655      void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
656   } aFuncs[] = {
657     { "randstr",               2, SQLITE_UTF8, randStr    },
658     { "test_destructor",       1, SQLITE_UTF8, test_destructor},
659 #ifndef SQLITE_OMIT_UTF16
660     { "test_destructor16",     1, SQLITE_UTF8, test_destructor16},
661     { "hex_to_utf16be",        1, SQLITE_UTF8, testHexToUtf16be},
662     { "hex_to_utf16le",        1, SQLITE_UTF8, testHexToUtf16le},
663 #endif
664     { "hex_to_utf8",           1, SQLITE_UTF8, testHexToUtf8},
665     { "test_destructor_count", 0, SQLITE_UTF8, test_destructor_count},
666     { "test_auxdata",         -1, SQLITE_UTF8, test_auxdata},
667     { "test_error",            1, SQLITE_UTF8, test_error},
668     { "test_error",            2, SQLITE_UTF8, test_error},
669     { "test_eval",             1, SQLITE_UTF8, test_eval},
670     { "test_isolation",        2, SQLITE_UTF8, test_isolation},
671     { "test_counter",          1, SQLITE_UTF8, counterFunc},
672     { "real2hex",              1, SQLITE_UTF8, real2hex},
673     { "test_decode",           1, SQLITE_UTF8, test_decode},
674     { "test_extract",          2, SQLITE_UTF8, test_extract},
675     { "test_zeroblob",  1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob},
676     { "test_getsubtype",       1, SQLITE_UTF8, test_getsubtype},
677     { "test_setsubtype",       2, SQLITE_UTF8, test_setsubtype},
678   };
679   int i;
680 
681   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
682     sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
683         aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
684   }
685 
686   sqlite3_create_function(db, "test_agg_errmsg16", 0, SQLITE_ANY, 0, 0,
687       test_agg_errmsg16_step, test_agg_errmsg16_final);
688 
689   return SQLITE_OK;
690 }
691 
692 /*
693 ** TCLCMD:  autoinstall_test_functions
694 **
695 ** Invoke this TCL command to use sqlite3_auto_extension() to cause
696 ** the standard set of test functions to be loaded into each new
697 ** database connection.
698 */
699 static int SQLITE_TCLAPI autoinstall_test_funcs(
700   void * clientData,
701   Tcl_Interp *interp,
702   int objc,
703   Tcl_Obj *CONST objv[]
704 ){
705   extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *);
706   int rc = sqlite3_auto_extension((void(*)(void))registerTestFunctions);
707   if( rc==SQLITE_OK ){
708     rc = sqlite3_auto_extension((void(*)(void))Md5_Register);
709   }
710   Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
711   return TCL_OK;
712 }
713 
714 /*
715 ** A bogus step function and finalizer function.
716 */
717 static void tStep(sqlite3_context *a, int b, sqlite3_value **c){}
718 static void tFinal(sqlite3_context *a){}
719 
720 
721 /*
722 ** tclcmd:  abuse_create_function
723 **
724 ** Make various calls to sqlite3_create_function that do not have valid
725 ** parameters.  Verify that the error condition is detected and reported.
726 */
727 static int SQLITE_TCLAPI abuse_create_function(
728   void * clientData,
729   Tcl_Interp *interp,
730   int objc,
731   Tcl_Obj *CONST objv[]
732 ){
733   extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
734   sqlite3 *db;
735   int rc;
736   int mxArg;
737 
738   if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
739 
740   rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep,tStep,tFinal);
741   if( rc!=SQLITE_MISUSE ) goto abuse_err;
742 
743   rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, tStep, 0);
744   if( rc!=SQLITE_MISUSE ) goto abuse_err;
745 
746   rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, 0, tFinal);
747   if( rc!=SQLITE_MISUSE) goto abuse_err;
748 
749   rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, 0, tFinal);
750   if( rc!=SQLITE_MISUSE ) goto abuse_err;
751 
752   rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, tStep, 0);
753   if( rc!=SQLITE_MISUSE ) goto abuse_err;
754 
755   rc = sqlite3_create_function(db, "tx", -2, SQLITE_UTF8, 0, tStep, 0, 0);
756   if( rc!=SQLITE_MISUSE ) goto abuse_err;
757 
758   rc = sqlite3_create_function(db, "tx", 128, SQLITE_UTF8, 0, tStep, 0, 0);
759   if( rc!=SQLITE_MISUSE ) goto abuse_err;
760 
761   rc = sqlite3_create_function(db, "funcxx"
762        "_123456789_123456789_123456789_123456789_123456789"
763        "_123456789_123456789_123456789_123456789_123456789"
764        "_123456789_123456789_123456789_123456789_123456789"
765        "_123456789_123456789_123456789_123456789_123456789"
766        "_123456789_123456789_123456789_123456789_123456789",
767        1, SQLITE_UTF8, 0, tStep, 0, 0);
768   if( rc!=SQLITE_MISUSE ) goto abuse_err;
769 
770   /* This last function registration should actually work.  Generate
771   ** a no-op function (that always returns NULL) and which has the
772   ** maximum-length function name and the maximum number of parameters.
773   */
774   sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, 10000);
775   mxArg = sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, -1);
776   rc = sqlite3_create_function(db, "nullx"
777        "_123456789_123456789_123456789_123456789_123456789"
778        "_123456789_123456789_123456789_123456789_123456789"
779        "_123456789_123456789_123456789_123456789_123456789"
780        "_123456789_123456789_123456789_123456789_123456789"
781        "_123456789_123456789_123456789_123456789_123456789",
782        mxArg, SQLITE_UTF8, 0, tStep, 0, 0);
783   if( rc!=SQLITE_OK ) goto abuse_err;
784 
785   return TCL_OK;
786 
787 abuse_err:
788   Tcl_AppendResult(interp, "sqlite3_create_function abused test failed",
789                    (char*)0);
790   return TCL_ERROR;
791 }
792 
793 
794 /*
795 ** SQLite user defined function to use with matchinfo() to calculate the
796 ** relevancy of an FTS match. The value returned is the relevancy score
797 ** (a real value greater than or equal to zero). A larger value indicates
798 ** a more relevant document.
799 **
800 ** The overall relevancy returned is the sum of the relevancies of each
801 ** column value in the FTS table. The relevancy of a column value is the
802 ** sum of the following for each reportable phrase in the FTS query:
803 **
804 **   (<hit count> / <global hit count>) * <column weight>
805 **
806 ** where <hit count> is the number of instances of the phrase in the
807 ** column value of the current row and <global hit count> is the number
808 ** of instances of the phrase in the same column of all rows in the FTS
809 ** table. The <column weight> is a weighting factor assigned to each
810 ** column by the caller (see below).
811 **
812 ** The first argument to this function must be the return value of the FTS
813 ** matchinfo() function. Following this must be one argument for each column
814 ** of the FTS table containing a numeric weight factor for the corresponding
815 ** column. Example:
816 **
817 **     CREATE VIRTUAL TABLE documents USING fts3(title, content)
818 **
819 ** The following query returns the docids of documents that match the full-text
820 ** query <query> sorted from most to least relevant. When calculating
821 ** relevance, query term instances in the 'title' column are given twice the
822 ** weighting of those in the 'content' column.
823 **
824 **     SELECT docid FROM documents
825 **     WHERE documents MATCH <query>
826 **     ORDER BY rank(matchinfo(documents), 1.0, 0.5) DESC
827 */
828 static void rankfunc(sqlite3_context *pCtx, int nVal, sqlite3_value **apVal){
829   int *aMatchinfo;                /* Return value of matchinfo() */
830   int nMatchinfo;                 /* Number of elements in aMatchinfo[] */
831   int nCol = 0;                   /* Number of columns in the table */
832   int nPhrase = 0;                /* Number of phrases in the query */
833   int iPhrase;                    /* Current phrase */
834   double score = 0.0;             /* Value to return */
835 
836   assert( sizeof(int)==4 );
837 
838   /* Check that the number of arguments passed to this function is correct.
839   ** If not, jump to wrong_number_args. Set aMatchinfo to point to the array
840   ** of unsigned integer values returned by FTS function matchinfo. Set
841   ** nPhrase to contain the number of reportable phrases in the users full-text
842   ** query, and nCol to the number of columns in the table. Then check that the
843   ** size of the matchinfo blob is as expected. Return an error if it is not.
844   */
845   if( nVal<1 ) goto wrong_number_args;
846   aMatchinfo = (int*)sqlite3_value_blob(apVal[0]);
847   nMatchinfo = sqlite3_value_bytes(apVal[0]) / sizeof(int);
848   if( nMatchinfo>=2 ){
849     nPhrase = aMatchinfo[0];
850     nCol = aMatchinfo[1];
851   }
852   if( nMatchinfo!=(2+3*nCol*nPhrase) ){
853     sqlite3_result_error(pCtx,
854         "invalid matchinfo blob passed to function rank()", -1);
855     return;
856   }
857   if( nVal!=(1+nCol) ) goto wrong_number_args;
858 
859   /* Iterate through each phrase in the users query. */
860   for(iPhrase=0; iPhrase<nPhrase; iPhrase++){
861     int iCol;                     /* Current column */
862 
863     /* Now iterate through each column in the users query. For each column,
864     ** increment the relevancy score by:
865     **
866     **   (<hit count> / <global hit count>) * <column weight>
867     **
868     ** aPhraseinfo[] points to the start of the data for phrase iPhrase. So
869     ** the hit count and global hit counts for each column are found in
870     ** aPhraseinfo[iCol*3] and aPhraseinfo[iCol*3+1], respectively.
871     */
872     int *aPhraseinfo = &aMatchinfo[2 + iPhrase*nCol*3];
873     for(iCol=0; iCol<nCol; iCol++){
874       int nHitCount = aPhraseinfo[3*iCol];
875       int nGlobalHitCount = aPhraseinfo[3*iCol+1];
876       double weight = sqlite3_value_double(apVal[iCol+1]);
877       if( nHitCount>0 ){
878         score += ((double)nHitCount / (double)nGlobalHitCount) * weight;
879       }
880     }
881   }
882 
883   sqlite3_result_double(pCtx, score);
884   return;
885 
886   /* Jump here if the wrong number of arguments are passed to this function */
887 wrong_number_args:
888   sqlite3_result_error(pCtx, "wrong number of arguments to function rank()", -1);
889 }
890 
891 static int SQLITE_TCLAPI install_fts3_rank_function(
892   void * clientData,
893   Tcl_Interp *interp,
894   int objc,
895   Tcl_Obj *CONST objv[]
896 ){
897   extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
898   sqlite3 *db;
899 
900   if( objc!=2 ){
901     Tcl_WrongNumArgs(interp, 1, objv, "DB");
902     return TCL_ERROR;
903   }
904 
905   if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
906   sqlite3_create_function(db, "rank", -1, SQLITE_UTF8, 0, rankfunc, 0, 0);
907   return TCL_OK;
908 }
909 
910 
911 /*
912 ** Register commands with the TCL interpreter.
913 */
914 int Sqlitetest_func_Init(Tcl_Interp *interp){
915   static struct {
916      char *zName;
917      Tcl_ObjCmdProc *xProc;
918   } aObjCmd[] = {
919      { "autoinstall_test_functions",    autoinstall_test_funcs },
920      { "abuse_create_function",         abuse_create_function  },
921      { "install_fts3_rank_function",    install_fts3_rank_function  },
922   };
923   int i;
924   extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *);
925 
926   for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
927     Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0);
928   }
929   sqlite3_initialize();
930   sqlite3_auto_extension((void(*)(void))registerTestFunctions);
931   sqlite3_auto_extension((void(*)(void))Md5_Register);
932   return TCL_OK;
933 }
934