xref: /sqlite-3.40.0/src/test_func.c (revision 85bd982b)
1 /*
2 ** 2008 March 19
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Code for testing all sorts of SQLite interfaces.  This code
13 ** implements new SQL functions used by the test scripts.
14 */
15 #include "sqlite3.h"
16 #if defined(INCLUDE_SQLITE_TCL_H)
17 #  include "sqlite_tcl.h"
18 #else
19 #  include "tcl.h"
20 #endif
21 #include <stdlib.h>
22 #include <string.h>
23 #include <assert.h>
24 
25 #include "sqliteInt.h"
26 #include "vdbeInt.h"
27 
28 
29 /*
30 ** Allocate nByte bytes of space using sqlite3_malloc(). If the
31 ** allocation fails, call sqlite3_result_error_nomem() to notify
32 ** the database handle that malloc() has failed.
33 */
34 static void *testContextMalloc(sqlite3_context *context, int nByte){
35   char *z = sqlite3_malloc(nByte);
36   if( !z && nByte>0 ){
37     sqlite3_result_error_nomem(context);
38   }
39   return z;
40 }
41 
42 /*
43 ** This function generates a string of random characters.  Used for
44 ** generating test data.
45 */
46 static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
47   static const unsigned char zSrc[] =
48      "abcdefghijklmnopqrstuvwxyz"
49      "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
50      "0123456789"
51      ".-!,:*^+=_|?/<> ";
52   int iMin, iMax, n, r, i;
53   unsigned char zBuf[1000];
54 
55   /* It used to be possible to call randstr() with any number of arguments,
56   ** but now it is registered with SQLite as requiring exactly 2.
57   */
58   assert(argc==2);
59 
60   iMin = sqlite3_value_int(argv[0]);
61   if( iMin<0 ) iMin = 0;
62   if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
63   iMax = sqlite3_value_int(argv[1]);
64   if( iMax<iMin ) iMax = iMin;
65   if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
66   n = iMin;
67   if( iMax>iMin ){
68     sqlite3_randomness(sizeof(r), &r);
69     r &= 0x7fffffff;
70     n += r%(iMax + 1 - iMin);
71   }
72   assert( n<sizeof(zBuf) );
73   sqlite3_randomness(n, zBuf);
74   for(i=0; i<n; i++){
75     zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
76   }
77   zBuf[n] = 0;
78   sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
79 }
80 
81 /*
82 ** The following two SQL functions are used to test returning a text
83 ** result with a destructor. Function 'test_destructor' takes one argument
84 ** and returns the same argument interpreted as TEXT. A destructor is
85 ** passed with the sqlite3_result_text() call.
86 **
87 ** SQL function 'test_destructor_count' returns the number of outstanding
88 ** allocations made by 'test_destructor';
89 **
90 ** WARNING: Not threadsafe.
91 */
92 static int test_destructor_count_var = 0;
93 static void destructor(void *p){
94   char *zVal = (char *)p;
95   assert(zVal);
96   zVal--;
97   sqlite3_free(zVal);
98   test_destructor_count_var--;
99 }
100 static void test_destructor(
101   sqlite3_context *pCtx,
102   int nArg,
103   sqlite3_value **argv
104 ){
105   char *zVal;
106   int len;
107 
108   test_destructor_count_var++;
109   assert( nArg==1 );
110   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
111   len = sqlite3_value_bytes(argv[0]);
112   zVal = testContextMalloc(pCtx, len+3);
113   if( !zVal ){
114     return;
115   }
116   zVal[len+1] = 0;
117   zVal[len+2] = 0;
118   zVal++;
119   memcpy(zVal, sqlite3_value_text(argv[0]), len);
120   sqlite3_result_text(pCtx, zVal, -1, destructor);
121 }
122 #ifndef SQLITE_OMIT_UTF16
123 static void test_destructor16(
124   sqlite3_context *pCtx,
125   int nArg,
126   sqlite3_value **argv
127 ){
128   char *zVal;
129   int len;
130 
131   test_destructor_count_var++;
132   assert( nArg==1 );
133   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
134   len = sqlite3_value_bytes16(argv[0]);
135   zVal = testContextMalloc(pCtx, len+3);
136   if( !zVal ){
137     return;
138   }
139   zVal[len+1] = 0;
140   zVal[len+2] = 0;
141   zVal++;
142   memcpy(zVal, sqlite3_value_text16(argv[0]), len);
143   sqlite3_result_text16(pCtx, zVal, -1, destructor);
144 }
145 #endif
146 static void test_destructor_count(
147   sqlite3_context *pCtx,
148   int nArg,
149   sqlite3_value **argv
150 ){
151   sqlite3_result_int(pCtx, test_destructor_count_var);
152 }
153 
154 /*
155 ** The following aggregate function, test_agg_errmsg16(), takes zero
156 ** arguments. It returns the text value returned by the sqlite3_errmsg16()
157 ** API function.
158 */
159 #ifndef SQLITE_OMIT_BUILTIN_TEST
160 void sqlite3BeginBenignMalloc(void);
161 void sqlite3EndBenignMalloc(void);
162 #else
163   #define sqlite3BeginBenignMalloc()
164   #define sqlite3EndBenignMalloc()
165 #endif
166 static void test_agg_errmsg16_step(sqlite3_context *a, int b,sqlite3_value **c){
167 }
168 static void test_agg_errmsg16_final(sqlite3_context *ctx){
169 #ifndef SQLITE_OMIT_UTF16
170   const void *z;
171   sqlite3 * db = sqlite3_context_db_handle(ctx);
172   sqlite3_aggregate_context(ctx, 2048);
173   z = sqlite3_errmsg16(db);
174   sqlite3_result_text16(ctx, z, -1, SQLITE_TRANSIENT);
175 #endif
176 }
177 
178 /*
179 ** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
180 ** interface.
181 **
182 ** The test_auxdata() SQL function attempts to register each of its arguments
183 ** as auxiliary data.  If there are no prior registrations of aux data for
184 ** that argument (meaning the argument is not a constant or this is its first
185 ** call) then the result for that argument is 0.  If there is a prior
186 ** registration, the result for that argument is 1.  The overall result
187 ** is the individual argument results separated by spaces.
188 */
189 static void free_test_auxdata(void *p) {sqlite3_free(p);}
190 static void test_auxdata(
191   sqlite3_context *pCtx,
192   int nArg,
193   sqlite3_value **argv
194 ){
195   int i;
196   char *zRet = testContextMalloc(pCtx, nArg*2);
197   if( !zRet ) return;
198   memset(zRet, 0, nArg*2);
199   for(i=0; i<nArg; i++){
200     char const *z = (char*)sqlite3_value_text(argv[i]);
201     if( z ){
202       int n;
203       char *zAux = sqlite3_get_auxdata(pCtx, i);
204       if( zAux ){
205         zRet[i*2] = '1';
206         assert( strcmp(zAux,z)==0 );
207       }else {
208         zRet[i*2] = '0';
209       }
210       n = (int)strlen(z) + 1;
211       zAux = testContextMalloc(pCtx, n);
212       if( zAux ){
213         memcpy(zAux, z, n);
214         sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
215       }
216       zRet[i*2+1] = ' ';
217     }
218   }
219   sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
220 }
221 
222 /*
223 ** A function to test error reporting from user functions. This function
224 ** returns a copy of its first argument as the error message.  If the
225 ** second argument exists, it becomes the error code.
226 */
227 static void test_error(
228   sqlite3_context *pCtx,
229   int nArg,
230   sqlite3_value **argv
231 ){
232   sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), -1);
233   if( nArg==2 ){
234     sqlite3_result_error_code(pCtx, sqlite3_value_int(argv[1]));
235   }
236 }
237 
238 /*
239 ** Implementation of the counter(X) function.  If X is an integer
240 ** constant, then the first invocation will return X.  The second X+1.
241 ** and so forth.  Can be used (for example) to provide a sequence number
242 ** in a result set.
243 */
244 static void counterFunc(
245   sqlite3_context *pCtx,   /* Function context */
246   int nArg,                /* Number of function arguments */
247   sqlite3_value **argv     /* Values for all function arguments */
248 ){
249   int *pCounter = (int*)sqlite3_get_auxdata(pCtx, 0);
250   if( pCounter==0 ){
251     pCounter = sqlite3_malloc( sizeof(*pCounter) );
252     if( pCounter==0 ){
253       sqlite3_result_error_nomem(pCtx);
254       return;
255     }
256     *pCounter = sqlite3_value_int(argv[0]);
257     sqlite3_set_auxdata(pCtx, 0, pCounter, sqlite3_free);
258   }else{
259     ++*pCounter;
260   }
261   sqlite3_result_int(pCtx, *pCounter);
262 }
263 
264 
265 /*
266 ** This function takes two arguments.  It performance UTF-8/16 type
267 ** conversions on the first argument then returns a copy of the second
268 ** argument.
269 **
270 ** This function is used in cases such as the following:
271 **
272 **      SELECT test_isolation(x,x) FROM t1;
273 **
274 ** We want to verify that the type conversions that occur on the
275 ** first argument do not invalidate the second argument.
276 */
277 static void test_isolation(
278   sqlite3_context *pCtx,
279   int nArg,
280   sqlite3_value **argv
281 ){
282 #ifndef SQLITE_OMIT_UTF16
283   sqlite3_value_text16(argv[0]);
284   sqlite3_value_text(argv[0]);
285   sqlite3_value_text16(argv[0]);
286   sqlite3_value_text(argv[0]);
287 #endif
288   sqlite3_result_value(pCtx, argv[1]);
289 }
290 
291 /*
292 ** Invoke an SQL statement recursively.  The function result is the
293 ** first column of the first row of the result set.
294 */
295 static void test_eval(
296   sqlite3_context *pCtx,
297   int nArg,
298   sqlite3_value **argv
299 ){
300   sqlite3_stmt *pStmt;
301   int rc;
302   sqlite3 *db = sqlite3_context_db_handle(pCtx);
303   const char *zSql;
304 
305   zSql = (char*)sqlite3_value_text(argv[0]);
306   rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
307   if( rc==SQLITE_OK ){
308     rc = sqlite3_step(pStmt);
309     if( rc==SQLITE_ROW ){
310       sqlite3_result_value(pCtx, sqlite3_column_value(pStmt, 0));
311     }
312     rc = sqlite3_finalize(pStmt);
313   }
314   if( rc ){
315     char *zErr;
316     assert( pStmt==0 );
317     zErr = sqlite3_mprintf("sqlite3_prepare_v2() error: %s",sqlite3_errmsg(db));
318     sqlite3_result_text(pCtx, zErr, -1, sqlite3_free);
319     sqlite3_result_error_code(pCtx, rc);
320   }
321 }
322 
323 
324 /*
325 ** convert one character from hex to binary
326 */
327 static int testHexChar(char c){
328   if( c>='0' && c<='9' ){
329     return c - '0';
330   }else if( c>='a' && c<='f' ){
331     return c - 'a' + 10;
332   }else if( c>='A' && c<='F' ){
333     return c - 'A' + 10;
334   }
335   return 0;
336 }
337 
338 /*
339 ** Convert hex to binary.
340 */
341 static void testHexToBin(const char *zIn, char *zOut){
342   while( zIn[0] && zIn[1] ){
343     *(zOut++) = (testHexChar(zIn[0])<<4) + testHexChar(zIn[1]);
344     zIn += 2;
345   }
346 }
347 
348 /*
349 **      hex_to_utf16be(HEX)
350 **
351 ** Convert the input string from HEX into binary.  Then return the
352 ** result using sqlite3_result_text16le().
353 */
354 #ifndef SQLITE_OMIT_UTF16
355 static void testHexToUtf16be(
356   sqlite3_context *pCtx,
357   int nArg,
358   sqlite3_value **argv
359 ){
360   int n;
361   const char *zIn;
362   char *zOut;
363   assert( nArg==1 );
364   n = sqlite3_value_bytes(argv[0]);
365   zIn = (const char*)sqlite3_value_text(argv[0]);
366   zOut = sqlite3_malloc( n/2 );
367   if( zOut==0 ){
368     sqlite3_result_error_nomem(pCtx);
369   }else{
370     testHexToBin(zIn, zOut);
371     sqlite3_result_text16be(pCtx, zOut, n/2, sqlite3_free);
372   }
373 }
374 #endif
375 
376 /*
377 **      hex_to_utf8(HEX)
378 **
379 ** Convert the input string from HEX into binary.  Then return the
380 ** result using sqlite3_result_text16le().
381 */
382 static void testHexToUtf8(
383   sqlite3_context *pCtx,
384   int nArg,
385   sqlite3_value **argv
386 ){
387   int n;
388   const char *zIn;
389   char *zOut;
390   assert( nArg==1 );
391   n = sqlite3_value_bytes(argv[0]);
392   zIn = (const char*)sqlite3_value_text(argv[0]);
393   zOut = sqlite3_malloc( n/2 );
394   if( zOut==0 ){
395     sqlite3_result_error_nomem(pCtx);
396   }else{
397     testHexToBin(zIn, zOut);
398     sqlite3_result_text(pCtx, zOut, n/2, sqlite3_free);
399   }
400 }
401 
402 /*
403 **      hex_to_utf16le(HEX)
404 **
405 ** Convert the input string from HEX into binary.  Then return the
406 ** result using sqlite3_result_text16le().
407 */
408 #ifndef SQLITE_OMIT_UTF16
409 static void testHexToUtf16le(
410   sqlite3_context *pCtx,
411   int nArg,
412   sqlite3_value **argv
413 ){
414   int n;
415   const char *zIn;
416   char *zOut;
417   assert( nArg==1 );
418   n = sqlite3_value_bytes(argv[0]);
419   zIn = (const char*)sqlite3_value_text(argv[0]);
420   zOut = sqlite3_malloc( n/2 );
421   if( zOut==0 ){
422     sqlite3_result_error_nomem(pCtx);
423   }else{
424     testHexToBin(zIn, zOut);
425     sqlite3_result_text16le(pCtx, zOut, n/2, sqlite3_free);
426   }
427 }
428 #endif
429 
430 /*
431 ** SQL function:   real2hex(X)
432 **
433 ** If argument X is a real number, then convert it into a string which is
434 ** the big-endian hexadecimal representation of the ieee754 encoding of
435 ** that number.  If X is not a real number, return NULL.
436 */
437 static void real2hex(
438   sqlite3_context *context,
439   int argc,
440   sqlite3_value **argv
441 ){
442   union {
443     sqlite3_uint64 i;
444     double r;
445     unsigned char x[8];
446   } v;
447   char zOut[20];
448   int i;
449   int bigEndian;
450   v.i = 1;
451   bigEndian = v.x[0]==0;
452   v.r = sqlite3_value_double(argv[0]);
453   for(i=0; i<8; i++){
454     if( bigEndian ){
455       zOut[i*2]   = "0123456789abcdef"[v.x[i]>>4];
456       zOut[i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
457     }else{
458       zOut[14-i*2]   = "0123456789abcdef"[v.x[i]>>4];
459       zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
460     }
461   }
462   zOut[16] = 0;
463   sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
464 }
465 
466 /*
467 **     test_extract(record, field)
468 **
469 ** This function implements an SQL user-function that accepts a blob
470 ** containing a formatted database record as the first argument. The
471 ** second argument is the index of the field within that record to
472 ** extract and return.
473 */
474 static void test_extract(
475   sqlite3_context *context,
476   int argc,
477   sqlite3_value **argv
478 ){
479   sqlite3 *db = sqlite3_context_db_handle(context);
480   u8 *pRec;
481   u8 *pEndHdr;                    /* Points to one byte past record header */
482   u8 *pHdr;                       /* Current point in record header */
483   u8 *pBody;                      /* Current point in record data */
484   u64 nHdr;                       /* Bytes in record header */
485   int iIdx;                       /* Required field */
486   int iCurrent = 0;               /* Current field */
487 
488   assert( argc==2 );
489   pRec = (u8*)sqlite3_value_blob(argv[0]);
490   iIdx = sqlite3_value_int(argv[1]);
491 
492   pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
493   pBody = pEndHdr = &pRec[nHdr];
494 
495   for(iCurrent=0; pHdr<pEndHdr && iCurrent<=iIdx; iCurrent++){
496     u64 iSerialType;
497     Mem mem;
498 
499     memset(&mem, 0, sizeof(mem));
500     mem.db = db;
501     mem.enc = ENC(db);
502     pHdr += sqlite3GetVarint(pHdr, &iSerialType);
503     pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
504 
505     if( iCurrent==iIdx ){
506       sqlite3_result_value(context, &mem);
507     }
508 
509     if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc);
510   }
511 }
512 
513 /*
514 **      test_decode(record)
515 **
516 ** This function implements an SQL user-function that accepts a blob
517 ** containing a formatted database record as its only argument. It returns
518 ** a tcl list (type SQLITE_TEXT) containing each of the values stored
519 ** in the record.
520 */
521 static void test_decode(
522   sqlite3_context *context,
523   int argc,
524   sqlite3_value **argv
525 ){
526   sqlite3 *db = sqlite3_context_db_handle(context);
527   u8 *pRec;
528   u8 *pEndHdr;                    /* Points to one byte past record header */
529   u8 *pHdr;                       /* Current point in record header */
530   u8 *pBody;                      /* Current point in record data */
531   u64 nHdr;                       /* Bytes in record header */
532   Tcl_Obj *pRet;                  /* Return value */
533 
534   pRet = Tcl_NewObj();
535   Tcl_IncrRefCount(pRet);
536 
537   assert( argc==1 );
538   pRec = (u8*)sqlite3_value_blob(argv[0]);
539 
540   pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
541   pBody = pEndHdr = &pRec[nHdr];
542   while( pHdr<pEndHdr ){
543     Tcl_Obj *pVal = 0;
544     u64 iSerialType;
545     Mem mem;
546 
547     memset(&mem, 0, sizeof(mem));
548     mem.db = db;
549     mem.enc = ENC(db);
550     pHdr += sqlite3GetVarint(pHdr, &iSerialType);
551     pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
552 
553     switch( sqlite3_value_type(&mem) ){
554       case SQLITE_TEXT:
555         pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1);
556         break;
557 
558       case SQLITE_BLOB: {
559         char hexdigit[] = {
560           '0', '1', '2', '3', '4', '5', '6', '7',
561           '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
562         };
563         int n = sqlite3_value_bytes(&mem);
564         u8 *z = (u8*)sqlite3_value_blob(&mem);
565         int i;
566         pVal = Tcl_NewStringObj("x'", -1);
567         for(i=0; i<n; i++){
568           char hex[3];
569           hex[0] = hexdigit[((z[i] >> 4) & 0x0F)];
570           hex[1] = hexdigit[(z[i] & 0x0F)];
571           hex[2] = '\0';
572           Tcl_AppendStringsToObj(pVal, hex, 0);
573         }
574         Tcl_AppendStringsToObj(pVal, "'", 0);
575         break;
576       }
577 
578       case SQLITE_FLOAT:
579         pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem));
580         break;
581 
582       case SQLITE_INTEGER:
583         pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem));
584         break;
585 
586       case SQLITE_NULL:
587         pVal = Tcl_NewStringObj("NULL", -1);
588         break;
589 
590       default:
591         assert( 0 );
592     }
593 
594     Tcl_ListObjAppendElement(0, pRet, pVal);
595 
596     if( mem.szMalloc ){
597       sqlite3DbFree(db, mem.zMalloc);
598     }
599   }
600 
601   sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
602   Tcl_DecrRefCount(pRet);
603 }
604 
605 /*
606 **       test_zeroblob(N)
607 **
608 ** The implementation of scalar SQL function "test_zeroblob()". This is
609 ** similar to the built-in zeroblob() function, except that it does not
610 ** check that the integer parameter is within range before passing it
611 ** to sqlite3_result_zeroblob().
612 */
613 static void test_zeroblob(
614   sqlite3_context *context,
615   int argc,
616   sqlite3_value **argv
617 ){
618   int nZero = sqlite3_value_int(argv[0]);
619   sqlite3_result_zeroblob(context, nZero);
620 }
621 
622 /*         test_getsubtype(V)
623 **
624 ** Return the subtype for value V.
625 */
626 static void test_getsubtype(
627   sqlite3_context *context,
628   int argc,
629   sqlite3_value **argv
630 ){
631   sqlite3_result_int(context, (int)sqlite3_value_subtype(argv[0]));
632 }
633 
634 /*         test_setsubtype(V, T)
635 **
636 ** Return the value V with its subtype changed to T
637 */
638 static void test_setsubtype(
639   sqlite3_context *context,
640   int argc,
641   sqlite3_value **argv
642 ){
643   sqlite3_result_value(context, argv[0]);
644   sqlite3_result_subtype(context, (unsigned int)sqlite3_value_int(argv[1]));
645 }
646 
647 static int registerTestFunctions(
648   sqlite3 *db,
649   char **pzErrMsg,
650   const sqlite3_api_routines *pThunk
651 ){
652   static const struct {
653      char *zName;
654      signed char nArg;
655      unsigned int eTextRep; /* 1: UTF-16.  0: UTF-8 */
656      void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
657   } aFuncs[] = {
658     { "randstr",               2, SQLITE_UTF8, randStr    },
659     { "test_destructor",       1, SQLITE_UTF8, test_destructor},
660 #ifndef SQLITE_OMIT_UTF16
661     { "test_destructor16",     1, SQLITE_UTF8, test_destructor16},
662     { "hex_to_utf16be",        1, SQLITE_UTF8, testHexToUtf16be},
663     { "hex_to_utf16le",        1, SQLITE_UTF8, testHexToUtf16le},
664 #endif
665     { "hex_to_utf8",           1, SQLITE_UTF8, testHexToUtf8},
666     { "test_destructor_count", 0, SQLITE_UTF8, test_destructor_count},
667     { "test_auxdata",         -1, SQLITE_UTF8, test_auxdata},
668     { "test_error",            1, SQLITE_UTF8, test_error},
669     { "test_error",            2, SQLITE_UTF8, test_error},
670     { "test_eval",             1, SQLITE_UTF8, test_eval},
671     { "test_isolation",        2, SQLITE_UTF8, test_isolation},
672     { "test_counter",          1, SQLITE_UTF8, counterFunc},
673     { "real2hex",              1, SQLITE_UTF8, real2hex},
674     { "test_decode",           1, SQLITE_UTF8, test_decode},
675     { "test_extract",          2, SQLITE_UTF8, test_extract},
676     { "test_zeroblob",  1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob},
677     { "test_getsubtype",       1, SQLITE_UTF8, test_getsubtype},
678     { "test_setsubtype",       2, SQLITE_UTF8, test_setsubtype},
679   };
680   int i;
681 
682   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
683     sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
684         aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
685   }
686 
687   sqlite3_create_function(db, "test_agg_errmsg16", 0, SQLITE_ANY, 0, 0,
688       test_agg_errmsg16_step, test_agg_errmsg16_final);
689 
690   return SQLITE_OK;
691 }
692 
693 /*
694 ** TCLCMD:  autoinstall_test_functions
695 **
696 ** Invoke this TCL command to use sqlite3_auto_extension() to cause
697 ** the standard set of test functions to be loaded into each new
698 ** database connection.
699 */
700 static int SQLITE_TCLAPI autoinstall_test_funcs(
701   void * clientData,
702   Tcl_Interp *interp,
703   int objc,
704   Tcl_Obj *CONST objv[]
705 ){
706   extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *);
707   int rc = sqlite3_auto_extension(registerTestFunctions);
708   if( rc==SQLITE_OK ){
709     rc = sqlite3_auto_extension(Md5_Register);
710   }
711   Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
712   return TCL_OK;
713 }
714 
715 /*
716 ** A bogus step function and finalizer function.
717 */
718 static void tStep(sqlite3_context *a, int b, sqlite3_value **c){}
719 static void tFinal(sqlite3_context *a){}
720 
721 
722 /*
723 ** tclcmd:  abuse_create_function
724 **
725 ** Make various calls to sqlite3_create_function that do not have valid
726 ** parameters.  Verify that the error condition is detected and reported.
727 */
728 static int SQLITE_TCLAPI abuse_create_function(
729   void * clientData,
730   Tcl_Interp *interp,
731   int objc,
732   Tcl_Obj *CONST objv[]
733 ){
734   extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
735   sqlite3 *db;
736   int rc;
737   int mxArg;
738 
739   if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
740 
741   rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep,tStep,tFinal);
742   if( rc!=SQLITE_MISUSE ) goto abuse_err;
743 
744   rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, tStep, 0);
745   if( rc!=SQLITE_MISUSE ) goto abuse_err;
746 
747   rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, 0, tFinal);
748   if( rc!=SQLITE_MISUSE) goto abuse_err;
749 
750   rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, 0, tFinal);
751   if( rc!=SQLITE_MISUSE ) goto abuse_err;
752 
753   rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, tStep, 0);
754   if( rc!=SQLITE_MISUSE ) goto abuse_err;
755 
756   rc = sqlite3_create_function(db, "tx", -2, SQLITE_UTF8, 0, tStep, 0, 0);
757   if( rc!=SQLITE_MISUSE ) goto abuse_err;
758 
759   rc = sqlite3_create_function(db, "tx", 128, SQLITE_UTF8, 0, tStep, 0, 0);
760   if( rc!=SQLITE_MISUSE ) goto abuse_err;
761 
762   rc = sqlite3_create_function(db, "funcxx"
763        "_123456789_123456789_123456789_123456789_123456789"
764        "_123456789_123456789_123456789_123456789_123456789"
765        "_123456789_123456789_123456789_123456789_123456789"
766        "_123456789_123456789_123456789_123456789_123456789"
767        "_123456789_123456789_123456789_123456789_123456789",
768        1, SQLITE_UTF8, 0, tStep, 0, 0);
769   if( rc!=SQLITE_MISUSE ) goto abuse_err;
770 
771   /* This last function registration should actually work.  Generate
772   ** a no-op function (that always returns NULL) and which has the
773   ** maximum-length function name and the maximum number of parameters.
774   */
775   sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, 10000);
776   mxArg = sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, -1);
777   rc = sqlite3_create_function(db, "nullx"
778        "_123456789_123456789_123456789_123456789_123456789"
779        "_123456789_123456789_123456789_123456789_123456789"
780        "_123456789_123456789_123456789_123456789_123456789"
781        "_123456789_123456789_123456789_123456789_123456789"
782        "_123456789_123456789_123456789_123456789_123456789",
783        mxArg, SQLITE_UTF8, 0, tStep, 0, 0);
784   if( rc!=SQLITE_OK ) goto abuse_err;
785 
786   return TCL_OK;
787 
788 abuse_err:
789   Tcl_AppendResult(interp, "sqlite3_create_function abused test failed",
790                    (char*)0);
791   return TCL_ERROR;
792 }
793 
794 /*
795 ** Register commands with the TCL interpreter.
796 */
797 int Sqlitetest_func_Init(Tcl_Interp *interp){
798   static struct {
799      char *zName;
800      Tcl_ObjCmdProc *xProc;
801   } aObjCmd[] = {
802      { "autoinstall_test_functions",    autoinstall_test_funcs },
803      { "abuse_create_function",         abuse_create_function  },
804   };
805   int i;
806   extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *);
807 
808   for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
809     Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0);
810   }
811   sqlite3_initialize();
812   sqlite3_auto_extension(registerTestFunctions);
813   sqlite3_auto_extension(Md5_Register);
814   return TCL_OK;
815 }
816