1 /* 2 ** 2008 March 19 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Code for testing all sorts of SQLite interfaces. This code 13 ** implements new SQL functions used by the test scripts. 14 */ 15 #include "sqlite3.h" 16 #include "tcl.h" 17 #include <stdlib.h> 18 #include <string.h> 19 #include <assert.h> 20 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 25 /* 26 ** Allocate nByte bytes of space using sqlite3_malloc(). If the 27 ** allocation fails, call sqlite3_result_error_nomem() to notify 28 ** the database handle that malloc() has failed. 29 */ 30 static void *testContextMalloc(sqlite3_context *context, int nByte){ 31 char *z = sqlite3_malloc(nByte); 32 if( !z && nByte>0 ){ 33 sqlite3_result_error_nomem(context); 34 } 35 return z; 36 } 37 38 /* 39 ** This function generates a string of random characters. Used for 40 ** generating test data. 41 */ 42 static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){ 43 static const unsigned char zSrc[] = 44 "abcdefghijklmnopqrstuvwxyz" 45 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 46 "0123456789" 47 ".-!,:*^+=_|?/<> "; 48 int iMin, iMax, n, r, i; 49 unsigned char zBuf[1000]; 50 51 /* It used to be possible to call randstr() with any number of arguments, 52 ** but now it is registered with SQLite as requiring exactly 2. 53 */ 54 assert(argc==2); 55 56 iMin = sqlite3_value_int(argv[0]); 57 if( iMin<0 ) iMin = 0; 58 if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1; 59 iMax = sqlite3_value_int(argv[1]); 60 if( iMax<iMin ) iMax = iMin; 61 if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1; 62 n = iMin; 63 if( iMax>iMin ){ 64 sqlite3_randomness(sizeof(r), &r); 65 r &= 0x7fffffff; 66 n += r%(iMax + 1 - iMin); 67 } 68 assert( n<sizeof(zBuf) ); 69 sqlite3_randomness(n, zBuf); 70 for(i=0; i<n; i++){ 71 zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)]; 72 } 73 zBuf[n] = 0; 74 sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT); 75 } 76 77 /* 78 ** The following two SQL functions are used to test returning a text 79 ** result with a destructor. Function 'test_destructor' takes one argument 80 ** and returns the same argument interpreted as TEXT. A destructor is 81 ** passed with the sqlite3_result_text() call. 82 ** 83 ** SQL function 'test_destructor_count' returns the number of outstanding 84 ** allocations made by 'test_destructor'; 85 ** 86 ** WARNING: Not threadsafe. 87 */ 88 static int test_destructor_count_var = 0; 89 static void destructor(void *p){ 90 char *zVal = (char *)p; 91 assert(zVal); 92 zVal--; 93 sqlite3_free(zVal); 94 test_destructor_count_var--; 95 } 96 static void test_destructor( 97 sqlite3_context *pCtx, 98 int nArg, 99 sqlite3_value **argv 100 ){ 101 char *zVal; 102 int len; 103 104 test_destructor_count_var++; 105 assert( nArg==1 ); 106 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 107 len = sqlite3_value_bytes(argv[0]); 108 zVal = testContextMalloc(pCtx, len+3); 109 if( !zVal ){ 110 return; 111 } 112 zVal[len+1] = 0; 113 zVal[len+2] = 0; 114 zVal++; 115 memcpy(zVal, sqlite3_value_text(argv[0]), len); 116 sqlite3_result_text(pCtx, zVal, -1, destructor); 117 } 118 #ifndef SQLITE_OMIT_UTF16 119 static void test_destructor16( 120 sqlite3_context *pCtx, 121 int nArg, 122 sqlite3_value **argv 123 ){ 124 char *zVal; 125 int len; 126 127 test_destructor_count_var++; 128 assert( nArg==1 ); 129 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 130 len = sqlite3_value_bytes16(argv[0]); 131 zVal = testContextMalloc(pCtx, len+3); 132 if( !zVal ){ 133 return; 134 } 135 zVal[len+1] = 0; 136 zVal[len+2] = 0; 137 zVal++; 138 memcpy(zVal, sqlite3_value_text16(argv[0]), len); 139 sqlite3_result_text16(pCtx, zVal, -1, destructor); 140 } 141 #endif 142 static void test_destructor_count( 143 sqlite3_context *pCtx, 144 int nArg, 145 sqlite3_value **argv 146 ){ 147 sqlite3_result_int(pCtx, test_destructor_count_var); 148 } 149 150 /* 151 ** The following aggregate function, test_agg_errmsg16(), takes zero 152 ** arguments. It returns the text value returned by the sqlite3_errmsg16() 153 ** API function. 154 */ 155 #ifndef SQLITE_OMIT_BUILTIN_TEST 156 void sqlite3BeginBenignMalloc(void); 157 void sqlite3EndBenignMalloc(void); 158 #else 159 #define sqlite3BeginBenignMalloc() 160 #define sqlite3EndBenignMalloc() 161 #endif 162 static void test_agg_errmsg16_step(sqlite3_context *a, int b,sqlite3_value **c){ 163 } 164 static void test_agg_errmsg16_final(sqlite3_context *ctx){ 165 #ifndef SQLITE_OMIT_UTF16 166 const void *z; 167 sqlite3 * db = sqlite3_context_db_handle(ctx); 168 sqlite3_aggregate_context(ctx, 2048); 169 z = sqlite3_errmsg16(db); 170 sqlite3_result_text16(ctx, z, -1, SQLITE_TRANSIENT); 171 #endif 172 } 173 174 /* 175 ** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata() 176 ** interface. 177 ** 178 ** The test_auxdata() SQL function attempts to register each of its arguments 179 ** as auxiliary data. If there are no prior registrations of aux data for 180 ** that argument (meaning the argument is not a constant or this is its first 181 ** call) then the result for that argument is 0. If there is a prior 182 ** registration, the result for that argument is 1. The overall result 183 ** is the individual argument results separated by spaces. 184 */ 185 static void free_test_auxdata(void *p) {sqlite3_free(p);} 186 static void test_auxdata( 187 sqlite3_context *pCtx, 188 int nArg, 189 sqlite3_value **argv 190 ){ 191 int i; 192 char *zRet = testContextMalloc(pCtx, nArg*2); 193 if( !zRet ) return; 194 memset(zRet, 0, nArg*2); 195 for(i=0; i<nArg; i++){ 196 char const *z = (char*)sqlite3_value_text(argv[i]); 197 if( z ){ 198 int n; 199 char *zAux = sqlite3_get_auxdata(pCtx, i); 200 if( zAux ){ 201 zRet[i*2] = '1'; 202 assert( strcmp(zAux,z)==0 ); 203 }else { 204 zRet[i*2] = '0'; 205 } 206 n = (int)strlen(z) + 1; 207 zAux = testContextMalloc(pCtx, n); 208 if( zAux ){ 209 memcpy(zAux, z, n); 210 sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata); 211 } 212 zRet[i*2+1] = ' '; 213 } 214 } 215 sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata); 216 } 217 218 /* 219 ** A function to test error reporting from user functions. This function 220 ** returns a copy of its first argument as the error message. If the 221 ** second argument exists, it becomes the error code. 222 */ 223 static void test_error( 224 sqlite3_context *pCtx, 225 int nArg, 226 sqlite3_value **argv 227 ){ 228 sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), -1); 229 if( nArg==2 ){ 230 sqlite3_result_error_code(pCtx, sqlite3_value_int(argv[1])); 231 } 232 } 233 234 /* 235 ** Implementation of the counter(X) function. If X is an integer 236 ** constant, then the first invocation will return X. The second X+1. 237 ** and so forth. Can be used (for example) to provide a sequence number 238 ** in a result set. 239 */ 240 static void counterFunc( 241 sqlite3_context *pCtx, /* Function context */ 242 int nArg, /* Number of function arguments */ 243 sqlite3_value **argv /* Values for all function arguments */ 244 ){ 245 int *pCounter = (int*)sqlite3_get_auxdata(pCtx, 0); 246 if( pCounter==0 ){ 247 pCounter = sqlite3_malloc( sizeof(*pCounter) ); 248 if( pCounter==0 ){ 249 sqlite3_result_error_nomem(pCtx); 250 return; 251 } 252 *pCounter = sqlite3_value_int(argv[0]); 253 sqlite3_set_auxdata(pCtx, 0, pCounter, sqlite3_free); 254 }else{ 255 ++*pCounter; 256 } 257 sqlite3_result_int(pCtx, *pCounter); 258 } 259 260 261 /* 262 ** This function takes two arguments. It performance UTF-8/16 type 263 ** conversions on the first argument then returns a copy of the second 264 ** argument. 265 ** 266 ** This function is used in cases such as the following: 267 ** 268 ** SELECT test_isolation(x,x) FROM t1; 269 ** 270 ** We want to verify that the type conversions that occur on the 271 ** first argument do not invalidate the second argument. 272 */ 273 static void test_isolation( 274 sqlite3_context *pCtx, 275 int nArg, 276 sqlite3_value **argv 277 ){ 278 #ifndef SQLITE_OMIT_UTF16 279 sqlite3_value_text16(argv[0]); 280 sqlite3_value_text(argv[0]); 281 sqlite3_value_text16(argv[0]); 282 sqlite3_value_text(argv[0]); 283 #endif 284 sqlite3_result_value(pCtx, argv[1]); 285 } 286 287 /* 288 ** Invoke an SQL statement recursively. The function result is the 289 ** first column of the first row of the result set. 290 */ 291 static void test_eval( 292 sqlite3_context *pCtx, 293 int nArg, 294 sqlite3_value **argv 295 ){ 296 sqlite3_stmt *pStmt; 297 int rc; 298 sqlite3 *db = sqlite3_context_db_handle(pCtx); 299 const char *zSql; 300 301 zSql = (char*)sqlite3_value_text(argv[0]); 302 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); 303 if( rc==SQLITE_OK ){ 304 rc = sqlite3_step(pStmt); 305 if( rc==SQLITE_ROW ){ 306 sqlite3_result_value(pCtx, sqlite3_column_value(pStmt, 0)); 307 } 308 rc = sqlite3_finalize(pStmt); 309 } 310 if( rc ){ 311 char *zErr; 312 assert( pStmt==0 ); 313 zErr = sqlite3_mprintf("sqlite3_prepare_v2() error: %s",sqlite3_errmsg(db)); 314 sqlite3_result_text(pCtx, zErr, -1, sqlite3_free); 315 sqlite3_result_error_code(pCtx, rc); 316 } 317 } 318 319 320 /* 321 ** convert one character from hex to binary 322 */ 323 static int testHexChar(char c){ 324 if( c>='0' && c<='9' ){ 325 return c - '0'; 326 }else if( c>='a' && c<='f' ){ 327 return c - 'a' + 10; 328 }else if( c>='A' && c<='F' ){ 329 return c - 'A' + 10; 330 } 331 return 0; 332 } 333 334 /* 335 ** Convert hex to binary. 336 */ 337 static void testHexToBin(const char *zIn, char *zOut){ 338 while( zIn[0] && zIn[1] ){ 339 *(zOut++) = (testHexChar(zIn[0])<<4) + testHexChar(zIn[1]); 340 zIn += 2; 341 } 342 } 343 344 /* 345 ** hex_to_utf16be(HEX) 346 ** 347 ** Convert the input string from HEX into binary. Then return the 348 ** result using sqlite3_result_text16le(). 349 */ 350 #ifndef SQLITE_OMIT_UTF16 351 static void testHexToUtf16be( 352 sqlite3_context *pCtx, 353 int nArg, 354 sqlite3_value **argv 355 ){ 356 int n; 357 const char *zIn; 358 char *zOut; 359 assert( nArg==1 ); 360 n = sqlite3_value_bytes(argv[0]); 361 zIn = (const char*)sqlite3_value_text(argv[0]); 362 zOut = sqlite3_malloc( n/2 ); 363 if( zOut==0 ){ 364 sqlite3_result_error_nomem(pCtx); 365 }else{ 366 testHexToBin(zIn, zOut); 367 sqlite3_result_text16be(pCtx, zOut, n/2, sqlite3_free); 368 } 369 } 370 #endif 371 372 /* 373 ** hex_to_utf8(HEX) 374 ** 375 ** Convert the input string from HEX into binary. Then return the 376 ** result using sqlite3_result_text16le(). 377 */ 378 static void testHexToUtf8( 379 sqlite3_context *pCtx, 380 int nArg, 381 sqlite3_value **argv 382 ){ 383 int n; 384 const char *zIn; 385 char *zOut; 386 assert( nArg==1 ); 387 n = sqlite3_value_bytes(argv[0]); 388 zIn = (const char*)sqlite3_value_text(argv[0]); 389 zOut = sqlite3_malloc( n/2 ); 390 if( zOut==0 ){ 391 sqlite3_result_error_nomem(pCtx); 392 }else{ 393 testHexToBin(zIn, zOut); 394 sqlite3_result_text(pCtx, zOut, n/2, sqlite3_free); 395 } 396 } 397 398 /* 399 ** hex_to_utf16le(HEX) 400 ** 401 ** Convert the input string from HEX into binary. Then return the 402 ** result using sqlite3_result_text16le(). 403 */ 404 #ifndef SQLITE_OMIT_UTF16 405 static void testHexToUtf16le( 406 sqlite3_context *pCtx, 407 int nArg, 408 sqlite3_value **argv 409 ){ 410 int n; 411 const char *zIn; 412 char *zOut; 413 assert( nArg==1 ); 414 n = sqlite3_value_bytes(argv[0]); 415 zIn = (const char*)sqlite3_value_text(argv[0]); 416 zOut = sqlite3_malloc( n/2 ); 417 if( zOut==0 ){ 418 sqlite3_result_error_nomem(pCtx); 419 }else{ 420 testHexToBin(zIn, zOut); 421 sqlite3_result_text16le(pCtx, zOut, n/2, sqlite3_free); 422 } 423 } 424 #endif 425 426 /* 427 ** SQL function: real2hex(X) 428 ** 429 ** If argument X is a real number, then convert it into a string which is 430 ** the big-endian hexadecimal representation of the ieee754 encoding of 431 ** that number. If X is not a real number, return NULL. 432 */ 433 static void real2hex( 434 sqlite3_context *context, 435 int argc, 436 sqlite3_value **argv 437 ){ 438 union { 439 sqlite3_uint64 i; 440 double r; 441 unsigned char x[8]; 442 } v; 443 char zOut[20]; 444 int i; 445 int bigEndian; 446 v.i = 1; 447 bigEndian = v.x[0]==0; 448 v.r = sqlite3_value_double(argv[0]); 449 for(i=0; i<8; i++){ 450 if( bigEndian ){ 451 zOut[i*2] = "0123456789abcdef"[v.x[i]>>4]; 452 zOut[i*2+1] = "0123456789abcdef"[v.x[i]&0xf]; 453 }else{ 454 zOut[14-i*2] = "0123456789abcdef"[v.x[i]>>4]; 455 zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf]; 456 } 457 } 458 zOut[16] = 0; 459 sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT); 460 } 461 462 /* 463 ** test_extract(record, field) 464 ** 465 ** This function implements an SQL user-function that accepts a blob 466 ** containing a formatted database record as the first argument. The 467 ** second argument is the index of the field within that record to 468 ** extract and return. 469 */ 470 static void test_extract( 471 sqlite3_context *context, 472 int argc, 473 sqlite3_value **argv 474 ){ 475 sqlite3 *db = sqlite3_context_db_handle(context); 476 u8 *pRec; 477 u8 *pEndHdr; /* Points to one byte past record header */ 478 u8 *pHdr; /* Current point in record header */ 479 u8 *pBody; /* Current point in record data */ 480 u64 nHdr; /* Bytes in record header */ 481 int iIdx; /* Required field */ 482 int iCurrent = 0; /* Current field */ 483 484 assert( argc==2 ); 485 pRec = (u8*)sqlite3_value_blob(argv[0]); 486 iIdx = sqlite3_value_int(argv[1]); 487 488 pHdr = pRec + sqlite3GetVarint(pRec, &nHdr); 489 pBody = pEndHdr = &pRec[nHdr]; 490 491 for(iCurrent=0; pHdr<pEndHdr && iCurrent<=iIdx; iCurrent++){ 492 u64 iSerialType; 493 Mem mem; 494 495 memset(&mem, 0, sizeof(mem)); 496 mem.db = db; 497 mem.enc = ENC(db); 498 pHdr += sqlite3GetVarint(pHdr, &iSerialType); 499 pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem); 500 501 if( iCurrent==iIdx ){ 502 sqlite3_result_value(context, &mem); 503 } 504 505 if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc); 506 } 507 } 508 509 /* 510 ** test_decode(record) 511 ** 512 ** This function implements an SQL user-function that accepts a blob 513 ** containing a formatted database record as its only argument. It returns 514 ** a tcl list (type SQLITE_TEXT) containing each of the values stored 515 ** in the record. 516 */ 517 static void test_decode( 518 sqlite3_context *context, 519 int argc, 520 sqlite3_value **argv 521 ){ 522 sqlite3 *db = sqlite3_context_db_handle(context); 523 u8 *pRec; 524 u8 *pEndHdr; /* Points to one byte past record header */ 525 u8 *pHdr; /* Current point in record header */ 526 u8 *pBody; /* Current point in record data */ 527 u64 nHdr; /* Bytes in record header */ 528 Tcl_Obj *pRet; /* Return value */ 529 530 pRet = Tcl_NewObj(); 531 Tcl_IncrRefCount(pRet); 532 533 assert( argc==1 ); 534 pRec = (u8*)sqlite3_value_blob(argv[0]); 535 536 pHdr = pRec + sqlite3GetVarint(pRec, &nHdr); 537 pBody = pEndHdr = &pRec[nHdr]; 538 while( pHdr<pEndHdr ){ 539 Tcl_Obj *pVal = 0; 540 u64 iSerialType; 541 Mem mem; 542 543 memset(&mem, 0, sizeof(mem)); 544 mem.db = db; 545 mem.enc = ENC(db); 546 pHdr += sqlite3GetVarint(pHdr, &iSerialType); 547 pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem); 548 549 switch( sqlite3_value_type(&mem) ){ 550 case SQLITE_TEXT: 551 pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1); 552 break; 553 554 case SQLITE_BLOB: { 555 char hexdigit[] = { 556 '0', '1', '2', '3', '4', '5', '6', '7', 557 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' 558 }; 559 int n = sqlite3_value_bytes(&mem); 560 u8 *z = (u8*)sqlite3_value_blob(&mem); 561 int i; 562 pVal = Tcl_NewStringObj("x'", -1); 563 for(i=0; i<n; i++){ 564 char hex[3]; 565 hex[0] = hexdigit[((z[i] >> 4) & 0x0F)]; 566 hex[1] = hexdigit[(z[i] & 0x0F)]; 567 hex[2] = '\0'; 568 Tcl_AppendStringsToObj(pVal, hex, 0); 569 } 570 Tcl_AppendStringsToObj(pVal, "'", 0); 571 break; 572 } 573 574 case SQLITE_FLOAT: 575 pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem)); 576 break; 577 578 case SQLITE_INTEGER: 579 pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem)); 580 break; 581 582 case SQLITE_NULL: 583 pVal = Tcl_NewStringObj("NULL", -1); 584 break; 585 586 default: 587 assert( 0 ); 588 } 589 590 Tcl_ListObjAppendElement(0, pRet, pVal); 591 592 if( mem.szMalloc ){ 593 sqlite3DbFree(db, mem.zMalloc); 594 } 595 } 596 597 sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT); 598 Tcl_DecrRefCount(pRet); 599 } 600 601 /* 602 ** test_zeroblob(N) 603 ** 604 ** The implementation of scalar SQL function "test_zeroblob()". This is 605 ** similar to the built-in zeroblob() function, except that it does not 606 ** check that the integer parameter is within range before passing it 607 ** to sqlite3_result_zeroblob(). 608 */ 609 static void test_zeroblob( 610 sqlite3_context *context, 611 int argc, 612 sqlite3_value **argv 613 ){ 614 int nZero = sqlite3_value_int(argv[0]); 615 sqlite3_result_zeroblob(context, nZero); 616 } 617 618 /* test_getsubtype(V) 619 ** 620 ** Return the subtype for value V. 621 */ 622 static void test_getsubtype( 623 sqlite3_context *context, 624 int argc, 625 sqlite3_value **argv 626 ){ 627 sqlite3_result_int(context, (int)sqlite3_value_subtype(argv[0])); 628 } 629 630 /* test_setsubtype(V, T) 631 ** 632 ** Return the value V with its subtype changed to T 633 */ 634 static void test_setsubtype( 635 sqlite3_context *context, 636 int argc, 637 sqlite3_value **argv 638 ){ 639 sqlite3_result_value(context, argv[0]); 640 sqlite3_result_subtype(context, (unsigned int)sqlite3_value_int(argv[1])); 641 } 642 643 static int registerTestFunctions(sqlite3 *db){ 644 static const struct { 645 char *zName; 646 signed char nArg; 647 unsigned int eTextRep; /* 1: UTF-16. 0: UTF-8 */ 648 void (*xFunc)(sqlite3_context*,int,sqlite3_value **); 649 } aFuncs[] = { 650 { "randstr", 2, SQLITE_UTF8, randStr }, 651 { "test_destructor", 1, SQLITE_UTF8, test_destructor}, 652 #ifndef SQLITE_OMIT_UTF16 653 { "test_destructor16", 1, SQLITE_UTF8, test_destructor16}, 654 { "hex_to_utf16be", 1, SQLITE_UTF8, testHexToUtf16be}, 655 { "hex_to_utf16le", 1, SQLITE_UTF8, testHexToUtf16le}, 656 #endif 657 { "hex_to_utf8", 1, SQLITE_UTF8, testHexToUtf8}, 658 { "test_destructor_count", 0, SQLITE_UTF8, test_destructor_count}, 659 { "test_auxdata", -1, SQLITE_UTF8, test_auxdata}, 660 { "test_error", 1, SQLITE_UTF8, test_error}, 661 { "test_error", 2, SQLITE_UTF8, test_error}, 662 { "test_eval", 1, SQLITE_UTF8, test_eval}, 663 { "test_isolation", 2, SQLITE_UTF8, test_isolation}, 664 { "test_counter", 1, SQLITE_UTF8, counterFunc}, 665 { "real2hex", 1, SQLITE_UTF8, real2hex}, 666 { "test_decode", 1, SQLITE_UTF8, test_decode}, 667 { "test_extract", 2, SQLITE_UTF8, test_extract}, 668 { "test_zeroblob", 1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob}, 669 { "test_getsubtype", 1, SQLITE_UTF8, test_getsubtype}, 670 { "test_setsubtype", 2, SQLITE_UTF8, test_setsubtype}, 671 }; 672 int i; 673 674 for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ 675 sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg, 676 aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0); 677 } 678 679 sqlite3_create_function(db, "test_agg_errmsg16", 0, SQLITE_ANY, 0, 0, 680 test_agg_errmsg16_step, test_agg_errmsg16_final); 681 682 return SQLITE_OK; 683 } 684 685 /* 686 ** TCLCMD: autoinstall_test_functions 687 ** 688 ** Invoke this TCL command to use sqlite3_auto_extension() to cause 689 ** the standard set of test functions to be loaded into each new 690 ** database connection. 691 */ 692 static int autoinstall_test_funcs( 693 void * clientData, 694 Tcl_Interp *interp, 695 int objc, 696 Tcl_Obj *CONST objv[] 697 ){ 698 extern int Md5_Register(sqlite3*); 699 int rc = sqlite3_auto_extension((void*)registerTestFunctions); 700 if( rc==SQLITE_OK ){ 701 rc = sqlite3_auto_extension((void*)Md5_Register); 702 } 703 Tcl_SetObjResult(interp, Tcl_NewIntObj(rc)); 704 return TCL_OK; 705 } 706 707 /* 708 ** A bogus step function and finalizer function. 709 */ 710 static void tStep(sqlite3_context *a, int b, sqlite3_value **c){} 711 static void tFinal(sqlite3_context *a){} 712 713 714 /* 715 ** tclcmd: abuse_create_function 716 ** 717 ** Make various calls to sqlite3_create_function that do not have valid 718 ** parameters. Verify that the error condition is detected and reported. 719 */ 720 static int abuse_create_function( 721 void * clientData, 722 Tcl_Interp *interp, 723 int objc, 724 Tcl_Obj *CONST objv[] 725 ){ 726 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); 727 sqlite3 *db; 728 int rc; 729 int mxArg; 730 731 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; 732 733 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep,tStep,tFinal); 734 if( rc!=SQLITE_MISUSE ) goto abuse_err; 735 736 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, tStep, 0); 737 if( rc!=SQLITE_MISUSE ) goto abuse_err; 738 739 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, 0, tFinal); 740 if( rc!=SQLITE_MISUSE) goto abuse_err; 741 742 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, 0, tFinal); 743 if( rc!=SQLITE_MISUSE ) goto abuse_err; 744 745 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, tStep, 0); 746 if( rc!=SQLITE_MISUSE ) goto abuse_err; 747 748 rc = sqlite3_create_function(db, "tx", -2, SQLITE_UTF8, 0, tStep, 0, 0); 749 if( rc!=SQLITE_MISUSE ) goto abuse_err; 750 751 rc = sqlite3_create_function(db, "tx", 128, SQLITE_UTF8, 0, tStep, 0, 0); 752 if( rc!=SQLITE_MISUSE ) goto abuse_err; 753 754 rc = sqlite3_create_function(db, "funcxx" 755 "_123456789_123456789_123456789_123456789_123456789" 756 "_123456789_123456789_123456789_123456789_123456789" 757 "_123456789_123456789_123456789_123456789_123456789" 758 "_123456789_123456789_123456789_123456789_123456789" 759 "_123456789_123456789_123456789_123456789_123456789", 760 1, SQLITE_UTF8, 0, tStep, 0, 0); 761 if( rc!=SQLITE_MISUSE ) goto abuse_err; 762 763 /* This last function registration should actually work. Generate 764 ** a no-op function (that always returns NULL) and which has the 765 ** maximum-length function name and the maximum number of parameters. 766 */ 767 sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, 10000); 768 mxArg = sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, -1); 769 rc = sqlite3_create_function(db, "nullx" 770 "_123456789_123456789_123456789_123456789_123456789" 771 "_123456789_123456789_123456789_123456789_123456789" 772 "_123456789_123456789_123456789_123456789_123456789" 773 "_123456789_123456789_123456789_123456789_123456789" 774 "_123456789_123456789_123456789_123456789_123456789", 775 mxArg, SQLITE_UTF8, 0, tStep, 0, 0); 776 if( rc!=SQLITE_OK ) goto abuse_err; 777 778 return TCL_OK; 779 780 abuse_err: 781 Tcl_AppendResult(interp, "sqlite3_create_function abused test failed", 782 (char*)0); 783 return TCL_ERROR; 784 } 785 786 /* 787 ** Register commands with the TCL interpreter. 788 */ 789 int Sqlitetest_func_Init(Tcl_Interp *interp){ 790 static struct { 791 char *zName; 792 Tcl_ObjCmdProc *xProc; 793 } aObjCmd[] = { 794 { "autoinstall_test_functions", autoinstall_test_funcs }, 795 { "abuse_create_function", abuse_create_function }, 796 }; 797 int i; 798 extern int Md5_Register(sqlite3*); 799 800 for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ 801 Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0); 802 } 803 sqlite3_initialize(); 804 sqlite3_auto_extension((void*)registerTestFunctions); 805 sqlite3_auto_extension((void*)Md5_Register); 806 return TCL_OK; 807 } 808