1 /* 2 ** 2013 Jan 11 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Code for testing the virtual table interfaces. This code 13 ** is not included in the SQLite library. It is used for automated 14 ** testing of the SQLite library. 15 ** 16 ** The FS virtual table is created as follows: 17 ** 18 ** CREATE VIRTUAL TABLE tbl USING fs(idx); 19 ** 20 ** where idx is the name of a table in the db with 2 columns. The virtual 21 ** table also has two columns - file path and file contents. 22 ** 23 ** The first column of table idx must be an IPK, and the second contains file 24 ** paths. For example: 25 ** 26 ** CREATE TABLE idx(id INTEGER PRIMARY KEY, path TEXT); 27 ** INSERT INTO idx VALUES(4, '/etc/passwd'); 28 ** 29 ** Adding the row to the idx table automatically creates a row in the 30 ** virtual table with rowid=4, path=/etc/passwd and a text field that 31 ** contains data read from file /etc/passwd on disk. 32 ** 33 ************************************************************************* 34 ** Virtual table module "fsdir" 35 ** 36 ** This module is designed to be used as a read-only eponymous virtual table. 37 ** Its schema is as follows: 38 ** 39 ** CREATE TABLE fsdir(dir TEXT, name TEXT); 40 ** 41 ** When queried, a WHERE term of the form "dir = $dir" must be provided. The 42 ** virtual table then appears to have one row for each entry in file-system 43 ** directory $dir. Column dir contains a copy of $dir, and column "name" 44 ** contains the name of the directory entry. 45 ** 46 ** If the specified $dir cannot be opened or is not a directory, it is not 47 ** an error. The virtual table appears to be empty in this case. 48 ** 49 ************************************************************************* 50 ** Virtual table module "fstree" 51 ** 52 ** This module is also a read-only eponymous virtual table with the 53 ** following schema: 54 ** 55 ** CREATE TABLE fstree(path TEXT, size INT, data BLOB); 56 ** 57 ** Running a "SELECT * FROM fstree" query on this table returns the entire 58 ** contents of the file-system, starting at "/". To restrict the search 59 ** space, the virtual table supports LIKE and GLOB constraints on the 60 ** 'path' column. For example: 61 ** 62 ** SELECT * FROM fstree WHERE path LIKE '/home/dan/sqlite/%' 63 */ 64 #include "sqliteInt.h" 65 #include "tcl.h" 66 67 #include <stdlib.h> 68 #include <string.h> 69 #include <sys/types.h> 70 #include <sys/stat.h> 71 #include <fcntl.h> 72 73 #if SQLITE_OS_UNIX 74 # include <unistd.h> 75 # include <dirent.h> 76 #endif 77 #if SQLITE_OS_WIN 78 # include <io.h> 79 #endif 80 81 #ifndef SQLITE_OMIT_VIRTUALTABLE 82 83 typedef struct fs_vtab fs_vtab; 84 typedef struct fs_cursor fs_cursor; 85 86 /* 87 ** A fs virtual-table object 88 */ 89 struct fs_vtab { 90 sqlite3_vtab base; 91 sqlite3 *db; 92 char *zDb; /* Name of db containing zTbl */ 93 char *zTbl; /* Name of docid->file map table */ 94 }; 95 96 /* A fs cursor object */ 97 struct fs_cursor { 98 sqlite3_vtab_cursor base; 99 sqlite3_stmt *pStmt; 100 char *zBuf; 101 int nBuf; 102 int nAlloc; 103 }; 104 105 /************************************************************************* 106 ** Start of fsdir implementation. 107 */ 108 typedef struct FsdirVtab FsdirVtab; 109 typedef struct FsdirCsr FsdirCsr; 110 struct FsdirVtab { 111 sqlite3_vtab base; 112 }; 113 114 struct FsdirCsr { 115 sqlite3_vtab_cursor base; 116 char *zDir; /* Buffer containing directory scanned */ 117 DIR *pDir; /* Open directory */ 118 sqlite3_int64 iRowid; 119 struct dirent entry; /* Current entry */ 120 }; 121 122 /* 123 ** This function is the implementation of both the xConnect and xCreate 124 ** methods of the fsdir virtual table. 125 ** 126 ** The argv[] array contains the following: 127 ** 128 ** argv[0] -> module name ("fs") 129 ** argv[1] -> database name 130 ** argv[2] -> table name 131 ** argv[...] -> other module argument fields. 132 */ 133 static int fsdirConnect( 134 sqlite3 *db, 135 void *pAux, 136 int argc, const char *const*argv, 137 sqlite3_vtab **ppVtab, 138 char **pzErr 139 ){ 140 FsdirVtab *pTab; 141 142 if( argc!=3 ){ 143 *pzErr = sqlite3_mprintf("wrong number of arguments"); 144 return SQLITE_ERROR; 145 } 146 147 pTab = (FsdirVtab *)sqlite3_malloc(sizeof(FsdirVtab)); 148 if( !pTab ) return SQLITE_NOMEM; 149 memset(pTab, 0, sizeof(FsdirVtab)); 150 151 *ppVtab = &pTab->base; 152 sqlite3_declare_vtab(db, "CREATE TABLE xyz(dir, name);"); 153 154 return SQLITE_OK; 155 } 156 157 /* 158 ** xDestroy/xDisconnect implementation. 159 */ 160 static int fsdirDisconnect(sqlite3_vtab *pVtab){ 161 sqlite3_free(pVtab); 162 return SQLITE_OK; 163 } 164 165 /* 166 ** xBestIndex implementation. The only constraint supported is: 167 ** 168 ** (dir = ?) 169 */ 170 static int fsdirBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 171 int ii; 172 173 pIdxInfo->estimatedCost = 1000000000.0; 174 175 for(ii=0; ii<pIdxInfo->nConstraint; ii++){ 176 struct sqlite3_index_constraint const *p = &pIdxInfo->aConstraint[ii]; 177 if( p->iColumn==0 && p->usable && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ 178 struct sqlite3_index_constraint_usage *pUsage; 179 pUsage = &pIdxInfo->aConstraintUsage[ii]; 180 pUsage->omit = 1; 181 pUsage->argvIndex = 1; 182 pIdxInfo->idxNum = 1; 183 pIdxInfo->estimatedCost = 1.0; 184 break; 185 } 186 } 187 188 return SQLITE_OK; 189 } 190 191 /* 192 ** xOpen implementation. 193 ** 194 ** Open a new fsdir cursor. 195 */ 196 static int fsdirOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 197 FsdirCsr *pCur; 198 pCur = (FsdirCsr*)sqlite3_malloc(sizeof(FsdirCsr)); 199 if( pCur==0 ) return SQLITE_NOMEM; 200 memset(pCur, 0, sizeof(FsdirCsr)); 201 *ppCursor = &pCur->base; 202 return SQLITE_OK; 203 } 204 205 /* 206 ** Close a fsdir cursor. 207 */ 208 static int fsdirClose(sqlite3_vtab_cursor *cur){ 209 FsdirCsr *pCur = (FsdirCsr*)cur; 210 if( pCur->pDir ) closedir(pCur->pDir); 211 sqlite3_free(pCur->zDir); 212 sqlite3_free(pCur); 213 return SQLITE_OK; 214 } 215 216 /* 217 ** Skip the cursor to the next entry. 218 */ 219 static int fsdirNext(sqlite3_vtab_cursor *cur){ 220 FsdirCsr *pCsr = (FsdirCsr*)cur; 221 222 if( pCsr->pDir ){ 223 struct dirent *pRes = 0; 224 readdir_r(pCsr->pDir, &pCsr->entry, &pRes); 225 if( pRes==0 ){ 226 closedir(pCsr->pDir); 227 pCsr->pDir = 0; 228 } 229 pCsr->iRowid++; 230 } 231 232 return SQLITE_OK; 233 } 234 235 /* 236 ** xFilter method implementation. 237 */ 238 static int fsdirFilter( 239 sqlite3_vtab_cursor *pVtabCursor, 240 int idxNum, const char *idxStr, 241 int argc, sqlite3_value **argv 242 ){ 243 FsdirCsr *pCsr = (FsdirCsr*)pVtabCursor; 244 const char *zDir; 245 int nDir; 246 247 248 if( idxNum!=1 || argc!=1 ){ 249 return SQLITE_ERROR; 250 } 251 252 pCsr->iRowid = 0; 253 sqlite3_free(pCsr->zDir); 254 if( pCsr->pDir ){ 255 closedir(pCsr->pDir); 256 pCsr->pDir = 0; 257 } 258 259 zDir = (const char*)sqlite3_value_text(argv[0]); 260 nDir = sqlite3_value_bytes(argv[0]); 261 pCsr->zDir = sqlite3_malloc(nDir+1); 262 if( pCsr->zDir==0 ) return SQLITE_NOMEM; 263 memcpy(pCsr->zDir, zDir, nDir+1); 264 265 pCsr->pDir = opendir(pCsr->zDir); 266 return fsdirNext(pVtabCursor); 267 } 268 269 /* 270 ** xEof method implementation. 271 */ 272 static int fsdirEof(sqlite3_vtab_cursor *cur){ 273 FsdirCsr *pCsr = (FsdirCsr*)cur; 274 return pCsr->pDir==0; 275 } 276 277 /* 278 ** xColumn method implementation. 279 */ 280 static int fsdirColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ 281 FsdirCsr *pCsr = (FsdirCsr*)cur; 282 switch( i ){ 283 case 0: /* dir */ 284 sqlite3_result_text(ctx, pCsr->zDir, -1, SQLITE_STATIC); 285 break; 286 287 case 1: /* name */ 288 sqlite3_result_text(ctx, pCsr->entry.d_name, -1, SQLITE_TRANSIENT); 289 break; 290 291 default: 292 assert( 0 ); 293 } 294 295 return SQLITE_OK; 296 } 297 298 /* 299 ** xRowid method implementation. 300 */ 301 static int fsdirRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ 302 FsdirCsr *pCsr = (FsdirCsr*)cur; 303 *pRowid = pCsr->iRowid; 304 return SQLITE_OK; 305 } 306 /* 307 ** End of fsdir implementation. 308 *************************************************************************/ 309 310 /************************************************************************* 311 ** Start of fstree implementation. 312 */ 313 typedef struct FstreeVtab FstreeVtab; 314 typedef struct FstreeCsr FstreeCsr; 315 struct FstreeVtab { 316 sqlite3_vtab base; 317 sqlite3 *db; 318 }; 319 320 struct FstreeCsr { 321 sqlite3_vtab_cursor base; 322 sqlite3_stmt *pStmt; /* Statement to list paths */ 323 int fd; /* File descriptor open on current path */ 324 }; 325 326 /* 327 ** This function is the implementation of both the xConnect and xCreate 328 ** methods of the fstree virtual table. 329 ** 330 ** The argv[] array contains the following: 331 ** 332 ** argv[0] -> module name ("fs") 333 ** argv[1] -> database name 334 ** argv[2] -> table name 335 ** argv[...] -> other module argument fields. 336 */ 337 static int fstreeConnect( 338 sqlite3 *db, 339 void *pAux, 340 int argc, const char *const*argv, 341 sqlite3_vtab **ppVtab, 342 char **pzErr 343 ){ 344 FstreeVtab *pTab; 345 346 if( argc!=3 ){ 347 *pzErr = sqlite3_mprintf("wrong number of arguments"); 348 return SQLITE_ERROR; 349 } 350 351 pTab = (FstreeVtab *)sqlite3_malloc(sizeof(FstreeVtab)); 352 if( !pTab ) return SQLITE_NOMEM; 353 memset(pTab, 0, sizeof(FstreeVtab)); 354 pTab->db = db; 355 356 *ppVtab = &pTab->base; 357 sqlite3_declare_vtab(db, "CREATE TABLE xyz(path, size, data);"); 358 359 return SQLITE_OK; 360 } 361 362 /* 363 ** xDestroy/xDisconnect implementation. 364 */ 365 static int fstreeDisconnect(sqlite3_vtab *pVtab){ 366 sqlite3_free(pVtab); 367 return SQLITE_OK; 368 } 369 370 /* 371 ** xBestIndex implementation. The only constraint supported is: 372 ** 373 ** (dir = ?) 374 */ 375 static int fstreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 376 int ii; 377 378 for(ii=0; ii<pIdxInfo->nConstraint; ii++){ 379 struct sqlite3_index_constraint const *p = &pIdxInfo->aConstraint[ii]; 380 if( p->iColumn==0 && p->usable && ( 381 p->op==SQLITE_INDEX_CONSTRAINT_GLOB 382 || p->op==SQLITE_INDEX_CONSTRAINT_LIKE 383 || p->op==SQLITE_INDEX_CONSTRAINT_EQ 384 )){ 385 struct sqlite3_index_constraint_usage *pUsage; 386 pUsage = &pIdxInfo->aConstraintUsage[ii]; 387 pIdxInfo->idxNum = p->op; 388 pUsage->argvIndex = 1; 389 pIdxInfo->estimatedCost = 100000.0; 390 return SQLITE_OK; 391 } 392 } 393 394 pIdxInfo->estimatedCost = 1000000000.0; 395 return SQLITE_OK; 396 } 397 398 /* 399 ** xOpen implementation. 400 ** 401 ** Open a new fstree cursor. 402 */ 403 static int fstreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 404 FstreeCsr *pCur; 405 pCur = (FstreeCsr*)sqlite3_malloc(sizeof(FstreeCsr)); 406 if( pCur==0 ) return SQLITE_NOMEM; 407 memset(pCur, 0, sizeof(FstreeCsr)); 408 pCur->fd = -1; 409 *ppCursor = &pCur->base; 410 return SQLITE_OK; 411 } 412 413 static void fstreeCloseFd(FstreeCsr *pCsr){ 414 if( pCsr->fd>=0 ){ 415 close(pCsr->fd); 416 pCsr->fd = -1; 417 } 418 } 419 420 /* 421 ** Close a fstree cursor. 422 */ 423 static int fstreeClose(sqlite3_vtab_cursor *cur){ 424 FstreeCsr *pCsr = (FstreeCsr*)cur; 425 sqlite3_finalize(pCsr->pStmt); 426 fstreeCloseFd(pCsr); 427 sqlite3_free(pCsr); 428 return SQLITE_OK; 429 } 430 431 /* 432 ** Skip the cursor to the next entry. 433 */ 434 static int fstreeNext(sqlite3_vtab_cursor *cur){ 435 FstreeCsr *pCsr = (FstreeCsr*)cur; 436 int rc; 437 438 fstreeCloseFd(pCsr); 439 rc = sqlite3_step(pCsr->pStmt); 440 if( rc!=SQLITE_ROW ){ 441 rc = sqlite3_finalize(pCsr->pStmt); 442 pCsr->pStmt = 0; 443 }else{ 444 rc = SQLITE_OK; 445 pCsr->fd = open((const char*)sqlite3_column_text(pCsr->pStmt, 0), O_RDONLY); 446 } 447 448 return rc; 449 } 450 451 /* 452 ** xFilter method implementation. 453 */ 454 static int fstreeFilter( 455 sqlite3_vtab_cursor *pVtabCursor, 456 int idxNum, const char *idxStr, 457 int argc, sqlite3_value **argv 458 ){ 459 FstreeCsr *pCsr = (FstreeCsr*)pVtabCursor; 460 FstreeVtab *pTab = (FstreeVtab*)(pCsr->base.pVtab); 461 int rc; 462 const char *zSql = 463 "WITH r(d) AS (" 464 " SELECT CASE WHEN dir='/' THEN '' ELSE dir END || '/' || name " 465 " FROM fsdir WHERE dir=? AND name NOT LIKE '.%'" 466 " UNION ALL" 467 " SELECT dir || '/' || name FROM r, fsdir WHERE dir=d AND name NOT LIKE '.%'" 468 ") SELECT d FROM r;"; 469 470 const char *zDir = "/"; 471 int nDir = 1; 472 char aWild[2] = {'\0', '\0' }; 473 474 fstreeCloseFd(pCsr); 475 sqlite3_finalize(pCsr->pStmt); 476 pCsr->pStmt = 0; 477 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0); 478 if( rc!=SQLITE_OK ) return rc; 479 480 if( idxNum ){ 481 const char *zQuery = (const char*)sqlite3_value_text(argv[0]); 482 switch( idxNum ){ 483 case SQLITE_INDEX_CONSTRAINT_GLOB: 484 aWild[0] = '*'; 485 aWild[1] = '?'; 486 break; 487 case SQLITE_INDEX_CONSTRAINT_LIKE: 488 aWild[0] = '_'; 489 aWild[1] = '%'; 490 break; 491 } 492 493 if( zQuery[0]=='/' ){ 494 int i; 495 for(i=1; zQuery[i]; i++){ 496 if( zQuery[i]==aWild[0] || zQuery[i]==aWild[1] ) break; 497 if( zQuery[i]=='/' ) nDir = i; 498 } 499 zDir = zQuery; 500 } 501 } 502 503 sqlite3_bind_text(pCsr->pStmt, 1, zDir, nDir, SQLITE_TRANSIENT); 504 505 return fstreeNext(pVtabCursor); 506 } 507 508 /* 509 ** xEof method implementation. 510 */ 511 static int fstreeEof(sqlite3_vtab_cursor *cur){ 512 FstreeCsr *pCsr = (FstreeCsr*)cur; 513 return pCsr->pStmt==0; 514 } 515 516 /* 517 ** xColumn method implementation. 518 */ 519 static int fstreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ 520 FstreeCsr *pCsr = (FstreeCsr*)cur; 521 if( i==0 ){ /* path */ 522 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pStmt, 0)); 523 }else{ 524 struct stat sBuf; 525 fstat(pCsr->fd, &sBuf); 526 527 if( S_ISREG(sBuf.st_mode) ){ 528 if( i==1 ){ 529 sqlite3_result_int64(ctx, sBuf.st_size); 530 }else{ 531 int nRead; 532 char *aBuf = sqlite3_malloc(sBuf.st_mode+1); 533 if( !aBuf ) return SQLITE_NOMEM; 534 nRead = read(pCsr->fd, aBuf, sBuf.st_mode); 535 if( nRead!=sBuf.st_mode ){ 536 return SQLITE_IOERR; 537 } 538 sqlite3_result_blob(ctx, aBuf, nRead, SQLITE_TRANSIENT); 539 sqlite3_free(aBuf); 540 } 541 } 542 } 543 544 return SQLITE_OK; 545 } 546 547 /* 548 ** xRowid method implementation. 549 */ 550 static int fstreeRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ 551 *pRowid = 0; 552 return SQLITE_OK; 553 } 554 /* 555 ** End of fstree implementation. 556 *************************************************************************/ 557 558 559 560 561 /* 562 ** This function is the implementation of both the xConnect and xCreate 563 ** methods of the fs virtual table. 564 ** 565 ** The argv[] array contains the following: 566 ** 567 ** argv[0] -> module name ("fs") 568 ** argv[1] -> database name 569 ** argv[2] -> table name 570 ** argv[...] -> other module argument fields. 571 */ 572 static int fsConnect( 573 sqlite3 *db, 574 void *pAux, 575 int argc, const char *const*argv, 576 sqlite3_vtab **ppVtab, 577 char **pzErr 578 ){ 579 fs_vtab *pVtab; 580 int nByte; 581 const char *zTbl; 582 const char *zDb = argv[1]; 583 584 if( argc!=4 ){ 585 *pzErr = sqlite3_mprintf("wrong number of arguments"); 586 return SQLITE_ERROR; 587 } 588 zTbl = argv[3]; 589 590 nByte = sizeof(fs_vtab) + (int)strlen(zTbl) + 1 + (int)strlen(zDb) + 1; 591 pVtab = (fs_vtab *)sqlite3MallocZero( nByte ); 592 if( !pVtab ) return SQLITE_NOMEM; 593 594 pVtab->zTbl = (char *)&pVtab[1]; 595 pVtab->zDb = &pVtab->zTbl[strlen(zTbl)+1]; 596 pVtab->db = db; 597 memcpy(pVtab->zTbl, zTbl, strlen(zTbl)); 598 memcpy(pVtab->zDb, zDb, strlen(zDb)); 599 *ppVtab = &pVtab->base; 600 sqlite3_declare_vtab(db, "CREATE TABLE x(path TEXT, data TEXT)"); 601 602 return SQLITE_OK; 603 } 604 /* Note that for this virtual table, the xCreate and xConnect 605 ** methods are identical. */ 606 607 static int fsDisconnect(sqlite3_vtab *pVtab){ 608 sqlite3_free(pVtab); 609 return SQLITE_OK; 610 } 611 /* The xDisconnect and xDestroy methods are also the same */ 612 613 /* 614 ** Open a new fs cursor. 615 */ 616 static int fsOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 617 fs_cursor *pCur; 618 pCur = sqlite3MallocZero(sizeof(fs_cursor)); 619 *ppCursor = &pCur->base; 620 return SQLITE_OK; 621 } 622 623 /* 624 ** Close a fs cursor. 625 */ 626 static int fsClose(sqlite3_vtab_cursor *cur){ 627 fs_cursor *pCur = (fs_cursor *)cur; 628 sqlite3_finalize(pCur->pStmt); 629 sqlite3_free(pCur->zBuf); 630 sqlite3_free(pCur); 631 return SQLITE_OK; 632 } 633 634 static int fsNext(sqlite3_vtab_cursor *cur){ 635 fs_cursor *pCur = (fs_cursor *)cur; 636 int rc; 637 638 rc = sqlite3_step(pCur->pStmt); 639 if( rc==SQLITE_ROW || rc==SQLITE_DONE ) rc = SQLITE_OK; 640 641 return rc; 642 } 643 644 static int fsFilter( 645 sqlite3_vtab_cursor *pVtabCursor, 646 int idxNum, const char *idxStr, 647 int argc, sqlite3_value **argv 648 ){ 649 int rc; 650 fs_cursor *pCur = (fs_cursor *)pVtabCursor; 651 fs_vtab *p = (fs_vtab *)(pVtabCursor->pVtab); 652 653 assert( (idxNum==0 && argc==0) || (idxNum==1 && argc==1) ); 654 if( idxNum==1 ){ 655 char *zStmt = sqlite3_mprintf( 656 "SELECT * FROM %Q.%Q WHERE rowid=?", p->zDb, p->zTbl); 657 if( !zStmt ) return SQLITE_NOMEM; 658 rc = sqlite3_prepare_v2(p->db, zStmt, -1, &pCur->pStmt, 0); 659 sqlite3_free(zStmt); 660 if( rc==SQLITE_OK ){ 661 sqlite3_bind_value(pCur->pStmt, 1, argv[0]); 662 } 663 }else{ 664 char *zStmt = sqlite3_mprintf("SELECT * FROM %Q.%Q", p->zDb, p->zTbl); 665 if( !zStmt ) return SQLITE_NOMEM; 666 rc = sqlite3_prepare_v2(p->db, zStmt, -1, &pCur->pStmt, 0); 667 sqlite3_free(zStmt); 668 } 669 670 if( rc==SQLITE_OK ){ 671 rc = fsNext(pVtabCursor); 672 } 673 return rc; 674 } 675 676 static int fsColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ 677 fs_cursor *pCur = (fs_cursor*)cur; 678 679 assert( i==0 || i==1 || i==2 ); 680 if( i==0 ){ 681 sqlite3_result_value(ctx, sqlite3_column_value(pCur->pStmt, 0)); 682 }else{ 683 const char *zFile = (const char *)sqlite3_column_text(pCur->pStmt, 1); 684 struct stat sbuf; 685 int fd; 686 687 int n; 688 fd = open(zFile, O_RDONLY); 689 if( fd<0 ) return SQLITE_IOERR; 690 fstat(fd, &sbuf); 691 692 if( sbuf.st_size>=pCur->nAlloc ){ 693 int nNew = sbuf.st_size*2; 694 char *zNew; 695 if( nNew<1024 ) nNew = 1024; 696 697 zNew = sqlite3Realloc(pCur->zBuf, nNew); 698 if( zNew==0 ){ 699 close(fd); 700 return SQLITE_NOMEM; 701 } 702 pCur->zBuf = zNew; 703 pCur->nAlloc = nNew; 704 } 705 706 n = (int)read(fd, pCur->zBuf, sbuf.st_size); 707 close(fd); 708 if( n!=sbuf.st_size ) return SQLITE_ERROR; 709 pCur->nBuf = sbuf.st_size; 710 pCur->zBuf[pCur->nBuf] = '\0'; 711 712 sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); 713 } 714 return SQLITE_OK; 715 } 716 717 static int fsRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ 718 fs_cursor *pCur = (fs_cursor*)cur; 719 *pRowid = sqlite3_column_int64(pCur->pStmt, 0); 720 return SQLITE_OK; 721 } 722 723 static int fsEof(sqlite3_vtab_cursor *cur){ 724 fs_cursor *pCur = (fs_cursor*)cur; 725 return (sqlite3_data_count(pCur->pStmt)==0); 726 } 727 728 static int fsBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 729 int ii; 730 731 for(ii=0; ii<pIdxInfo->nConstraint; ii++){ 732 struct sqlite3_index_constraint const *pCons = &pIdxInfo->aConstraint[ii]; 733 if( pCons->iColumn<0 && pCons->usable 734 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){ 735 struct sqlite3_index_constraint_usage *pUsage; 736 pUsage = &pIdxInfo->aConstraintUsage[ii]; 737 pUsage->omit = 0; 738 pUsage->argvIndex = 1; 739 pIdxInfo->idxNum = 1; 740 pIdxInfo->estimatedCost = 1.0; 741 break; 742 } 743 } 744 745 return SQLITE_OK; 746 } 747 748 /* 749 ** A virtual table module that provides read-only access to a 750 ** Tcl global variable namespace. 751 */ 752 static sqlite3_module fsModule = { 753 0, /* iVersion */ 754 fsConnect, 755 fsConnect, 756 fsBestIndex, 757 fsDisconnect, 758 fsDisconnect, 759 fsOpen, /* xOpen - open a cursor */ 760 fsClose, /* xClose - close a cursor */ 761 fsFilter, /* xFilter - configure scan constraints */ 762 fsNext, /* xNext - advance a cursor */ 763 fsEof, /* xEof - check for end of scan */ 764 fsColumn, /* xColumn - read data */ 765 fsRowid, /* xRowid - read data */ 766 0, /* xUpdate */ 767 0, /* xBegin */ 768 0, /* xSync */ 769 0, /* xCommit */ 770 0, /* xRollback */ 771 0, /* xFindMethod */ 772 0, /* xRename */ 773 }; 774 775 static sqlite3_module fsdirModule = { 776 0, /* iVersion */ 777 fsdirConnect, /* xCreate */ 778 fsdirConnect, /* xConnect */ 779 fsdirBestIndex, /* xBestIndex */ 780 fsdirDisconnect, /* xDisconnect */ 781 fsdirDisconnect, /* xDestroy */ 782 fsdirOpen, /* xOpen - open a cursor */ 783 fsdirClose, /* xClose - close a cursor */ 784 fsdirFilter, /* xFilter - configure scan constraints */ 785 fsdirNext, /* xNext - advance a cursor */ 786 fsdirEof, /* xEof - check for end of scan */ 787 fsdirColumn, /* xColumn - read data */ 788 fsdirRowid, /* xRowid - read data */ 789 0, /* xUpdate */ 790 0, /* xBegin */ 791 0, /* xSync */ 792 0, /* xCommit */ 793 0, /* xRollback */ 794 0, /* xFindMethod */ 795 0, /* xRename */ 796 }; 797 798 static sqlite3_module fstreeModule = { 799 0, /* iVersion */ 800 fstreeConnect, /* xCreate */ 801 fstreeConnect, /* xConnect */ 802 fstreeBestIndex, /* xBestIndex */ 803 fstreeDisconnect, /* xDisconnect */ 804 fstreeDisconnect, /* xDestroy */ 805 fstreeOpen, /* xOpen - open a cursor */ 806 fstreeClose, /* xClose - close a cursor */ 807 fstreeFilter, /* xFilter - configure scan constraints */ 808 fstreeNext, /* xNext - advance a cursor */ 809 fstreeEof, /* xEof - check for end of scan */ 810 fstreeColumn, /* xColumn - read data */ 811 fstreeRowid, /* xRowid - read data */ 812 0, /* xUpdate */ 813 0, /* xBegin */ 814 0, /* xSync */ 815 0, /* xCommit */ 816 0, /* xRollback */ 817 0, /* xFindMethod */ 818 0, /* xRename */ 819 }; 820 821 /* 822 ** Decode a pointer to an sqlite3 object. 823 */ 824 extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); 825 826 /* 827 ** Register the echo virtual table module. 828 */ 829 static int register_fs_module( 830 ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ 831 Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ 832 int objc, /* Number of arguments */ 833 Tcl_Obj *CONST objv[] /* Command arguments */ 834 ){ 835 sqlite3 *db; 836 if( objc!=2 ){ 837 Tcl_WrongNumArgs(interp, 1, objv, "DB"); 838 return TCL_ERROR; 839 } 840 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; 841 #ifndef SQLITE_OMIT_VIRTUALTABLE 842 sqlite3_create_module(db, "fs", &fsModule, (void *)interp); 843 sqlite3_create_module(db, "fsdir", &fsdirModule, 0); 844 sqlite3_create_module(db, "fstree", &fstreeModule, 0); 845 #endif 846 return TCL_OK; 847 } 848 849 #endif 850 851 852 /* 853 ** Register commands with the TCL interpreter. 854 */ 855 int Sqlitetestfs_Init(Tcl_Interp *interp){ 856 #ifndef SQLITE_OMIT_VIRTUALTABLE 857 static struct { 858 char *zName; 859 Tcl_ObjCmdProc *xProc; 860 void *clientData; 861 } aObjCmd[] = { 862 { "register_fs_module", register_fs_module, 0 }, 863 }; 864 int i; 865 for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ 866 Tcl_CreateObjCommand(interp, aObjCmd[i].zName, 867 aObjCmd[i].xProc, aObjCmd[i].clientData, 0); 868 } 869 #endif 870 return TCL_OK; 871 } 872