xref: /sqlite-3.40.0/src/test_async.c (revision dcc1f440)
1 /*
2 ** 2005 December 14
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** $Id: test_async.c,v 1.58 2009/04/21 18:20:45 danielk1977 Exp $
14 **
15 ** This file contains an example implementation of an asynchronous IO
16 ** backend for SQLite.
17 **
18 ** WHAT IS ASYNCHRONOUS I/O?
19 **
20 ** With asynchronous I/O, write requests are handled by a separate thread
21 ** running in the background.  This means that the thread that initiates
22 ** a database write does not have to wait for (sometimes slow) disk I/O
23 ** to occur.  The write seems to happen very quickly, though in reality
24 ** it is happening at its usual slow pace in the background.
25 **
26 ** Asynchronous I/O appears to give better responsiveness, but at a price.
27 ** You lose the Durable property.  With the default I/O backend of SQLite,
28 ** once a write completes, you know that the information you wrote is
29 ** safely on disk.  With the asynchronous I/O, this is not the case.  If
30 ** your program crashes or if a power loss occurs after the database
31 ** write but before the asynchronous write thread has completed, then the
32 ** database change might never make it to disk and the next user of the
33 ** database might not see your change.
34 **
35 ** You lose Durability with asynchronous I/O, but you still retain the
36 ** other parts of ACID:  Atomic,  Consistent, and Isolated.  Many
37 ** appliations get along fine without the Durablity.
38 **
39 ** HOW IT WORKS
40 **
41 ** Asynchronous I/O works by creating a special SQLite "vfs" structure
42 ** and registering it with sqlite3_vfs_register(). When files opened via
43 ** this vfs are written to (using sqlite3OsWrite()), the data is not
44 ** written directly to disk, but is placed in the "write-queue" to be
45 ** handled by the background thread.
46 **
47 ** When files opened with the asynchronous vfs are read from
48 ** (using sqlite3OsRead()), the data is read from the file on
49 ** disk and the write-queue, so that from the point of view of
50 ** the vfs reader the OsWrite() appears to have already completed.
51 **
52 ** The special vfs is registered (and unregistered) by calls to
53 ** function asyncEnable() (see below).
54 **
55 ** LIMITATIONS
56 **
57 ** This demonstration code is deliberately kept simple in order to keep
58 ** the main ideas clear and easy to understand.  Real applications that
59 ** want to do asynchronous I/O might want to add additional capabilities.
60 ** For example, in this demonstration if writes are happening at a steady
61 ** stream that exceeds the I/O capability of the background writer thread,
62 ** the queue of pending write operations will grow without bound until we
63 ** run out of memory.  Users of this technique may want to keep track of
64 ** the quantity of pending writes and stop accepting new write requests
65 ** when the buffer gets to be too big.
66 **
67 ** LOCKING + CONCURRENCY
68 **
69 ** Multiple connections from within a single process that use this
70 ** implementation of asynchronous IO may access a single database
71 ** file concurrently. From the point of view of the user, if all
72 ** connections are from within a single process, there is no difference
73 ** between the concurrency offered by "normal" SQLite and SQLite
74 ** using the asynchronous backend.
75 **
76 ** If connections from within multiple processes may access the
77 ** database file, the ENABLE_FILE_LOCKING symbol (see below) must be
78 ** defined. If it is not defined, then no locks are established on
79 ** the database file. In this case, if multiple processes access
80 ** the database file, corruption will quickly result.
81 **
82 ** If ENABLE_FILE_LOCKING is defined (the default), then connections
83 ** from within multiple processes may access a single database file
84 ** without risking corruption. However concurrency is reduced as
85 ** follows:
86 **
87 **   * When a connection using asynchronous IO begins a database
88 **     transaction, the database is locked immediately. However the
89 **     lock is not released until after all relevant operations
90 **     in the write-queue have been flushed to disk. This means
91 **     (for example) that the database may remain locked for some
92 **     time after a "COMMIT" or "ROLLBACK" is issued.
93 **
94 **   * If an application using asynchronous IO executes transactions
95 **     in quick succession, other database users may be effectively
96 **     locked out of the database. This is because when a BEGIN
97 **     is executed, a database lock is established immediately. But
98 **     when the corresponding COMMIT or ROLLBACK occurs, the lock
99 **     is not released until the relevant part of the write-queue
100 **     has been flushed through. As a result, if a COMMIT is followed
101 **     by a BEGIN before the write-queue is flushed through, the database
102 **     is never unlocked,preventing other processes from accessing
103 **     the database.
104 **
105 ** Defining ENABLE_FILE_LOCKING when using an NFS or other remote
106 ** file-system may slow things down, as synchronous round-trips to the
107 ** server may be required to establish database file locks.
108 */
109 #define ENABLE_FILE_LOCKING
110 
111 #ifndef SQLITE_AMALGAMATION
112 # include "sqliteInt.h"
113 # include <assert.h>
114 # include <string.h>
115 #endif
116 #include <tcl.h>
117 
118 /*
119 ** This test uses pthreads and hence only works on unix and with
120 ** a threadsafe build of SQLite.
121 */
122 #if SQLITE_OS_UNIX && SQLITE_THREADSAFE
123 
124 /*
125 ** This demo uses pthreads.  If you do not have a pthreads implementation
126 ** for your operating system, you will need to recode the threading
127 ** logic.
128 */
129 #include <pthread.h>
130 #include <sched.h>
131 
132 /* Useful macros used in several places */
133 #define MIN(x,y) ((x)<(y)?(x):(y))
134 #define MAX(x,y) ((x)>(y)?(x):(y))
135 
136 /* Forward references */
137 typedef struct AsyncWrite AsyncWrite;
138 typedef struct AsyncFile AsyncFile;
139 typedef struct AsyncFileData AsyncFileData;
140 typedef struct AsyncFileLock AsyncFileLock;
141 typedef struct AsyncLock AsyncLock;
142 
143 /* Enable for debugging */
144 static int sqlite3async_trace = 0;
145 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
146 static void asyncTrace(const char *zFormat, ...){
147   char *z;
148   va_list ap;
149   va_start(ap, zFormat);
150   z = sqlite3_vmprintf(zFormat, ap);
151   va_end(ap);
152   fprintf(stderr, "[%d] %s", (int)pthread_self(), z);
153   sqlite3_free(z);
154 }
155 
156 /*
157 ** THREAD SAFETY NOTES
158 **
159 ** Basic rules:
160 **
161 **     * Both read and write access to the global write-op queue must be
162 **       protected by the async.queueMutex. As are the async.ioError and
163 **       async.nFile variables.
164 **
165 **     * The async.pLock list and all AsyncLock and AsyncFileLock
166 **       structures must be protected by the async.lockMutex mutex.
167 **
168 **     * The file handles from the underlying system are not assumed to
169 **       be thread safe.
170 **
171 **     * See the last two paragraphs under "The Writer Thread" for
172 **       an assumption to do with file-handle synchronization by the Os.
173 **
174 ** Deadlock prevention:
175 **
176 **     There are three mutex used by the system: the "writer" mutex,
177 **     the "queue" mutex and the "lock" mutex. Rules are:
178 **
179 **     * It is illegal to block on the writer mutex when any other mutex
180 **       are held, and
181 **
182 **     * It is illegal to block on the queue mutex when the lock mutex
183 **       is held.
184 **
185 **     i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
186 **
187 ** File system operations (invoked by SQLite thread):
188 **
189 **     xOpen
190 **     xDelete
191 **     xFileExists
192 **
193 ** File handle operations (invoked by SQLite thread):
194 **
195 **         asyncWrite, asyncClose, asyncTruncate, asyncSync
196 **
197 **     The operations above add an entry to the global write-op list. They
198 **     prepare the entry, acquire the async.queueMutex momentarily while
199 **     list pointers are  manipulated to insert the new entry, then release
200 **     the mutex and signal the writer thread to wake up in case it happens
201 **     to be asleep.
202 **
203 **
204 **         asyncRead, asyncFileSize.
205 **
206 **     Read operations. Both of these read from both the underlying file
207 **     first then adjust their result based on pending writes in the
208 **     write-op queue.   So async.queueMutex is held for the duration
209 **     of these operations to prevent other threads from changing the
210 **     queue in mid operation.
211 **
212 **
213 **         asyncLock, asyncUnlock, asyncCheckReservedLock
214 **
215 **     These primitives implement in-process locking using a hash table
216 **     on the file name.  Files are locked correctly for connections coming
217 **     from the same process.  But other processes cannot see these locks
218 **     and will therefore not honor them.
219 **
220 **
221 ** The writer thread:
222 **
223 **     The async.writerMutex is used to make sure only there is only
224 **     a single writer thread running at a time.
225 **
226 **     Inside the writer thread is a loop that works like this:
227 **
228 **         WHILE (write-op list is not empty)
229 **             Do IO operation at head of write-op list
230 **             Remove entry from head of write-op list
231 **         END WHILE
232 **
233 **     The async.queueMutex is always held during the <write-op list is
234 **     not empty> test, and when the entry is removed from the head
235 **     of the write-op list. Sometimes it is held for the interim
236 **     period (while the IO is performed), and sometimes it is
237 **     relinquished. It is relinquished if (a) the IO op is an
238 **     ASYNC_CLOSE or (b) when the file handle was opened, two of
239 **     the underlying systems handles were opened on the same
240 **     file-system entry.
241 **
242 **     If condition (b) above is true, then one file-handle
243 **     (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
244 **     file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush()
245 **     threads to perform write() operations. This means that read
246 **     operations are not blocked by asynchronous writes (although
247 **     asynchronous writes may still be blocked by reads).
248 **
249 **     This assumes that the OS keeps two handles open on the same file
250 **     properly in sync. That is, any read operation that starts after a
251 **     write operation on the same file system entry has completed returns
252 **     data consistent with the write. We also assume that if one thread
253 **     reads a file while another is writing it all bytes other than the
254 **     ones actually being written contain valid data.
255 **
256 **     If the above assumptions are not true, set the preprocessor symbol
257 **     SQLITE_ASYNC_TWO_FILEHANDLES to 0.
258 */
259 
260 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES
261 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
262 #define SQLITE_ASYNC_TWO_FILEHANDLES 1
263 #endif
264 
265 /*
266 ** State information is held in the static variable "async" defined
267 ** as the following structure.
268 **
269 ** Both async.ioError and async.nFile are protected by async.queueMutex.
270 */
271 static struct TestAsyncStaticData {
272   pthread_mutex_t lockMutex;   /* For access to aLock hash table */
273   pthread_mutex_t queueMutex;  /* Mutex for access to write operation queue */
274   pthread_mutex_t writerMutex; /* Prevents multiple writer threads */
275   pthread_cond_t queueSignal;  /* For waking up sleeping writer thread */
276   pthread_cond_t emptySignal;  /* Notify when the write queue is empty */
277   AsyncWrite *pQueueFirst;     /* Next write operation to be processed */
278   AsyncWrite *pQueueLast;      /* Last write operation on the list */
279   AsyncLock *pLock;            /* Linked list of all AsyncLock structures */
280   volatile int ioDelay;             /* Extra delay between write operations */
281   volatile int writerHaltWhenIdle;  /* Writer thread halts when queue empty */
282   volatile int writerHaltNow;       /* Writer thread halts after next op */
283   int ioError;                 /* True if an IO error has occurred */
284   int nFile;                   /* Number of open files (from sqlite pov) */
285 } async = {
286   PTHREAD_MUTEX_INITIALIZER,
287   PTHREAD_MUTEX_INITIALIZER,
288   PTHREAD_MUTEX_INITIALIZER,
289   PTHREAD_COND_INITIALIZER,
290   PTHREAD_COND_INITIALIZER,
291 };
292 
293 /* Possible values of AsyncWrite.op */
294 #define ASYNC_NOOP          0
295 #define ASYNC_WRITE         1
296 #define ASYNC_SYNC          2
297 #define ASYNC_TRUNCATE      3
298 #define ASYNC_CLOSE         4
299 #define ASYNC_DELETE        5
300 #define ASYNC_OPENEXCLUSIVE 6
301 #define ASYNC_UNLOCK        7
302 
303 /* Names of opcodes.  Used for debugging only.
304 ** Make sure these stay in sync with the macros above!
305 */
306 static const char *azOpcodeName[] = {
307   "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
308 };
309 
310 /*
311 ** Entries on the write-op queue are instances of the AsyncWrite
312 ** structure, defined here.
313 **
314 ** The interpretation of the iOffset and nByte variables varies depending
315 ** on the value of AsyncWrite.op:
316 **
317 ** ASYNC_NOOP:
318 **     No values used.
319 **
320 ** ASYNC_WRITE:
321 **     iOffset -> Offset in file to write to.
322 **     nByte   -> Number of bytes of data to write (pointed to by zBuf).
323 **
324 ** ASYNC_SYNC:
325 **     nByte   -> flags to pass to sqlite3OsSync().
326 **
327 ** ASYNC_TRUNCATE:
328 **     iOffset -> Size to truncate file to.
329 **     nByte   -> Unused.
330 **
331 ** ASYNC_CLOSE:
332 **     iOffset -> Unused.
333 **     nByte   -> Unused.
334 **
335 ** ASYNC_DELETE:
336 **     iOffset -> Contains the "syncDir" flag.
337 **     nByte   -> Number of bytes of zBuf points to (file name).
338 **
339 ** ASYNC_OPENEXCLUSIVE:
340 **     iOffset -> Value of "delflag".
341 **     nByte   -> Number of bytes of zBuf points to (file name).
342 **
343 ** ASYNC_UNLOCK:
344 **     nByte   -> Argument to sqlite3OsUnlock().
345 **
346 **
347 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file.
348 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
349 ** single blob, so is deleted when sqlite3_free() is called on the parent
350 ** structure.
351 */
352 struct AsyncWrite {
353   AsyncFileData *pFileData;    /* File to write data to or sync */
354   int op;                      /* One of ASYNC_xxx etc. */
355   sqlite_int64 iOffset;        /* See above */
356   int nByte;          /* See above */
357   char *zBuf;         /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
358   AsyncWrite *pNext;  /* Next write operation (to any file) */
359 };
360 
361 /*
362 ** An instance of this structure is created for each distinct open file
363 ** (i.e. if two handles are opened on the one file, only one of these
364 ** structures is allocated) and stored in the async.aLock hash table. The
365 ** keys for async.aLock are the full pathnames of the opened files.
366 **
367 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock
368 ** structures, one for each handle currently open on the file.
369 **
370 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
371 ** not passed to the sqlite3OsOpen() call), or if ENABLE_FILE_LOCKING is
372 ** not defined at compile time, variables AsyncLock.pFile and
373 ** AsyncLock.eLock are never used. Otherwise, pFile is a file handle
374 ** opened on the file in question and used to obtain the file-system
375 ** locks required by database connections within this process.
376 **
377 ** See comments above the asyncLock() function for more details on
378 ** the implementation of database locking used by this backend.
379 */
380 struct AsyncLock {
381   char *zFile;
382   int nFile;
383   sqlite3_file *pFile;
384   int eLock;
385   AsyncFileLock *pList;
386   AsyncLock *pNext;           /* Next in linked list headed by async.pLock */
387 };
388 
389 /*
390 ** An instance of the following structure is allocated along with each
391 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
392 ** file was opened with the SQLITE_OPEN_MAIN_DB.
393 */
394 struct AsyncFileLock {
395   int eLock;                /* Internally visible lock state (sqlite pov) */
396   int eAsyncLock;           /* Lock-state with write-queue unlock */
397   AsyncFileLock *pNext;
398 };
399 
400 /*
401 ** The AsyncFile structure is a subclass of sqlite3_file used for
402 ** asynchronous IO.
403 **
404 ** All of the actual data for the structure is stored in the structure
405 ** pointed to by AsyncFile.pData, which is allocated as part of the
406 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
407 ** lifetime of the AsyncFile structure is ended by the caller after OsClose()
408 ** is called, but the data in AsyncFileData may be required by the
409 ** writer thread after that point.
410 */
411 struct AsyncFile {
412   sqlite3_io_methods *pMethod;
413   AsyncFileData *pData;
414 };
415 struct AsyncFileData {
416   char *zName;               /* Underlying OS filename - used for debugging */
417   int nName;                 /* Number of characters in zName */
418   sqlite3_file *pBaseRead;   /* Read handle to the underlying Os file */
419   sqlite3_file *pBaseWrite;  /* Write handle to the underlying Os file */
420   AsyncFileLock lock;        /* Lock state for this handle */
421   AsyncLock *pLock;          /* AsyncLock object for this file system entry */
422   AsyncWrite closeOp;        /* Preallocated close operation */
423 };
424 
425 /*
426 ** The following async_XXX functions are debugging wrappers around the
427 ** corresponding pthread_XXX functions:
428 **
429 **     pthread_mutex_lock();
430 **     pthread_mutex_unlock();
431 **     pthread_mutex_trylock();
432 **     pthread_cond_wait();
433 **
434 ** It is illegal to pass any mutex other than those stored in the
435 ** following global variables of these functions.
436 **
437 **     async.queueMutex
438 **     async.writerMutex
439 **     async.lockMutex
440 **
441 ** If NDEBUG is defined, these wrappers do nothing except call the
442 ** corresponding pthreads function. If NDEBUG is not defined, then the
443 ** following variables are used to store the thread-id (as returned
444 ** by pthread_self()) currently holding the mutex, or 0 otherwise:
445 **
446 **     asyncdebug.queueMutexHolder
447 **     asyncdebug.writerMutexHolder
448 **     asyncdebug.lockMutexHolder
449 **
450 ** These variables are used by some assert() statements that verify
451 ** the statements made in the "Deadlock Prevention" notes earlier
452 ** in this file.
453 */
454 #ifndef NDEBUG
455 
456 static struct TestAsyncDebugData {
457   pthread_t lockMutexHolder;
458   pthread_t queueMutexHolder;
459   pthread_t writerMutexHolder;
460 } asyncdebug = {0, 0, 0};
461 
462 /*
463 ** Wrapper around pthread_mutex_lock(). Checks that we have not violated
464 ** the anti-deadlock rules (see "Deadlock prevention" above).
465 */
466 static int async_mutex_lock(pthread_mutex_t *pMutex){
467   int iIdx;
468   int rc;
469   pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
470   pthread_t *aHolder = (pthread_t *)(&asyncdebug);
471 
472   /* The code in this 'ifndef NDEBUG' block depends on a certain alignment
473    * of the variables in TestAsyncStaticData and TestAsyncDebugData. The
474    * following assert() statements check that this has not been changed.
475    *
476    * Really, these only need to be run once at startup time.
477    */
478   assert(&(aMutex[0])==&async.lockMutex);
479   assert(&(aMutex[1])==&async.queueMutex);
480   assert(&(aMutex[2])==&async.writerMutex);
481   assert(&(aHolder[0])==&asyncdebug.lockMutexHolder);
482   assert(&(aHolder[1])==&asyncdebug.queueMutexHolder);
483   assert(&(aHolder[2])==&asyncdebug.writerMutexHolder);
484 
485   assert( pthread_self()!=0 );
486   for(iIdx=0; iIdx<3; iIdx++){
487     if( pMutex==&aMutex[iIdx] ) break;
488 
489     /* This is the key assert(). Here we are checking that if the caller
490      * is trying to block on async.writerMutex, neither of the other two
491      * mutex are held. If the caller is trying to block on async.queueMutex,
492      * lockMutex is not held.
493      */
494     assert(!pthread_equal(aHolder[iIdx], pthread_self()));
495   }
496   assert(iIdx<3);
497 
498   rc = pthread_mutex_lock(pMutex);
499   if( rc==0 ){
500     assert(aHolder[iIdx]==0);
501     aHolder[iIdx] = pthread_self();
502   }
503   return rc;
504 }
505 
506 /*
507 ** Wrapper around pthread_mutex_unlock().
508 */
509 static int async_mutex_unlock(pthread_mutex_t *pMutex){
510   int iIdx;
511   int rc;
512   pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
513   pthread_t *aHolder = (pthread_t *)(&asyncdebug);
514 
515   for(iIdx=0; iIdx<3; iIdx++){
516     if( pMutex==&aMutex[iIdx] ) break;
517   }
518   assert(iIdx<3);
519 
520   assert(pthread_equal(aHolder[iIdx], pthread_self()));
521   aHolder[iIdx] = 0;
522   rc = pthread_mutex_unlock(pMutex);
523   assert(rc==0);
524 
525   return 0;
526 }
527 
528 /*
529 ** Wrapper around pthread_mutex_trylock().
530 */
531 static int async_mutex_trylock(pthread_mutex_t *pMutex){
532   int iIdx;
533   int rc;
534   pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
535   pthread_t *aHolder = (pthread_t *)(&asyncdebug);
536 
537   for(iIdx=0; iIdx<3; iIdx++){
538     if( pMutex==&aMutex[iIdx] ) break;
539   }
540   assert(iIdx<3);
541 
542   rc = pthread_mutex_trylock(pMutex);
543   if( rc==0 ){
544     assert(aHolder[iIdx]==0);
545     aHolder[iIdx] = pthread_self();
546   }
547   return rc;
548 }
549 
550 /*
551 ** Wrapper around pthread_cond_wait().
552 */
553 static int async_cond_wait(pthread_cond_t *pCond, pthread_mutex_t *pMutex){
554   int iIdx;
555   int rc;
556   pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
557   pthread_t *aHolder = (pthread_t *)(&asyncdebug);
558 
559   for(iIdx=0; iIdx<3; iIdx++){
560     if( pMutex==&aMutex[iIdx] ) break;
561   }
562   assert(iIdx<3);
563 
564   assert(pthread_equal(aHolder[iIdx],pthread_self()));
565   aHolder[iIdx] = 0;
566   rc = pthread_cond_wait(pCond, pMutex);
567   if( rc==0 ){
568     aHolder[iIdx] = pthread_self();
569   }
570   return rc;
571 }
572 
573 /*
574 ** Assert that the mutex is held by the current thread.
575 */
576 static void assert_mutex_is_held(pthread_mutex_t *pMutex){
577   int iIdx;
578   pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
579   pthread_t *aHolder = (pthread_t *)(&asyncdebug);
580 
581   for(iIdx=0; iIdx<3; iIdx++){
582     if( pMutex==&aMutex[iIdx] ) break;
583   }
584   assert(iIdx<3);
585   assert( aHolder[iIdx]==pthread_self() );
586 }
587 
588 /* Call our async_XX wrappers instead of selected pthread_XX functions */
589 #define pthread_mutex_lock    async_mutex_lock
590 #define pthread_mutex_unlock  async_mutex_unlock
591 #define pthread_mutex_trylock async_mutex_trylock
592 #define pthread_cond_wait     async_cond_wait
593 
594 #else    /* if defined(NDEBUG) */
595 
596 #define assert_mutex_is_held(X)    /* A no-op when not debugging */
597 
598 #endif   /* !defined(NDEBUG) */
599 
600 /*
601 ** Add an entry to the end of the global write-op list. pWrite should point
602 ** to an AsyncWrite structure allocated using sqlite3_malloc().  The writer
603 ** thread will call sqlite3_free() to free the structure after the specified
604 ** operation has been completed.
605 **
606 ** Once an AsyncWrite structure has been added to the list, it becomes the
607 ** property of the writer thread and must not be read or modified by the
608 ** caller.
609 */
610 static void addAsyncWrite(AsyncWrite *pWrite){
611   /* We must hold the queue mutex in order to modify the queue pointers */
612   if( pWrite->op!=ASYNC_UNLOCK ){
613     pthread_mutex_lock(&async.queueMutex);
614   }
615 
616   /* Add the record to the end of the write-op queue */
617   assert( !pWrite->pNext );
618   if( async.pQueueLast ){
619     assert( async.pQueueFirst );
620     async.pQueueLast->pNext = pWrite;
621   }else{
622     async.pQueueFirst = pWrite;
623   }
624   async.pQueueLast = pWrite;
625   ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op],
626          pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset));
627 
628   if( pWrite->op==ASYNC_CLOSE ){
629     async.nFile--;
630   }
631 
632   /* Drop the queue mutex */
633   if( pWrite->op!=ASYNC_UNLOCK ){
634     pthread_mutex_unlock(&async.queueMutex);
635   }
636 
637   /* The writer thread might have been idle because there was nothing
638   ** on the write-op queue for it to do.  So wake it up. */
639   pthread_cond_signal(&async.queueSignal);
640 }
641 
642 /*
643 ** Increment async.nFile in a thread-safe manner.
644 */
645 static void incrOpenFileCount(void){
646   /* We must hold the queue mutex in order to modify async.nFile */
647   pthread_mutex_lock(&async.queueMutex);
648   if( async.nFile==0 ){
649     async.ioError = SQLITE_OK;
650   }
651   async.nFile++;
652   pthread_mutex_unlock(&async.queueMutex);
653 }
654 
655 /*
656 ** This is a utility function to allocate and populate a new AsyncWrite
657 ** structure and insert it (via addAsyncWrite() ) into the global list.
658 */
659 static int addNewAsyncWrite(
660   AsyncFileData *pFileData,
661   int op,
662   sqlite3_int64 iOffset,
663   int nByte,
664   const char *zByte
665 ){
666   AsyncWrite *p;
667   if( op!=ASYNC_CLOSE && async.ioError ){
668     return async.ioError;
669   }
670   p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0));
671   if( !p ){
672     /* The upper layer does not expect operations like OsWrite() to
673     ** return SQLITE_NOMEM. This is partly because under normal conditions
674     ** SQLite is required to do rollback without calling malloc(). So
675     ** if malloc() fails here, treat it as an I/O error. The above
676     ** layer knows how to handle that.
677     */
678     return SQLITE_IOERR;
679   }
680   p->op = op;
681   p->iOffset = iOffset;
682   p->nByte = nByte;
683   p->pFileData = pFileData;
684   p->pNext = 0;
685   if( zByte ){
686     p->zBuf = (char *)&p[1];
687     memcpy(p->zBuf, zByte, nByte);
688   }else{
689     p->zBuf = 0;
690   }
691   addAsyncWrite(p);
692   return SQLITE_OK;
693 }
694 
695 /*
696 ** Close the file. This just adds an entry to the write-op list, the file is
697 ** not actually closed.
698 */
699 static int asyncClose(sqlite3_file *pFile){
700   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
701 
702   /* Unlock the file, if it is locked */
703   pthread_mutex_lock(&async.lockMutex);
704   p->lock.eLock = 0;
705   pthread_mutex_unlock(&async.lockMutex);
706 
707   addAsyncWrite(&p->closeOp);
708   return SQLITE_OK;
709 }
710 
711 /*
712 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of
713 ** writing to the underlying file, this function adds an entry to the end of
714 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
715 ** returned.
716 */
717 static int asyncWrite(
718   sqlite3_file *pFile,
719   const void *pBuf,
720   int amt,
721   sqlite3_int64 iOff
722 ){
723   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
724   return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf);
725 }
726 
727 /*
728 ** Read data from the file. First we read from the filesystem, then adjust
729 ** the contents of the buffer based on ASYNC_WRITE operations in the
730 ** write-op queue.
731 **
732 ** This method holds the mutex from start to finish.
733 */
734 static int asyncRead(
735   sqlite3_file *pFile,
736   void *zOut,
737   int iAmt,
738   sqlite3_int64 iOffset
739 ){
740   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
741   int rc = SQLITE_OK;
742   sqlite3_int64 filesize;
743   int nRead;
744   sqlite3_file *pBase = p->pBaseRead;
745 
746   /* Grab the write queue mutex for the duration of the call */
747   pthread_mutex_lock(&async.queueMutex);
748 
749   /* If an I/O error has previously occurred in this virtual file
750   ** system, then all subsequent operations fail.
751   */
752   if( async.ioError!=SQLITE_OK ){
753     rc = async.ioError;
754     goto asyncread_out;
755   }
756 
757   if( pBase->pMethods ){
758     rc = pBase->pMethods->xFileSize(pBase, &filesize);
759     if( rc!=SQLITE_OK ){
760       goto asyncread_out;
761     }
762     nRead = MIN(filesize - iOffset, iAmt);
763     if( nRead>0 ){
764       rc = pBase->pMethods->xRead(pBase, zOut, nRead, iOffset);
765       ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset));
766     }
767   }
768 
769   if( rc==SQLITE_OK ){
770     AsyncWrite *pWrite;
771     char *zName = p->zName;
772 
773     for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
774       if( pWrite->op==ASYNC_WRITE && (
775         (pWrite->pFileData==p) ||
776         (zName && pWrite->pFileData->zName==zName)
777       )){
778         int iBeginOut = (pWrite->iOffset-iOffset);
779         int iBeginIn = -iBeginOut;
780         int nCopy;
781 
782         if( iBeginIn<0 ) iBeginIn = 0;
783         if( iBeginOut<0 ) iBeginOut = 0;
784         nCopy = MIN(pWrite->nByte-iBeginIn, iAmt-iBeginOut);
785 
786         if( nCopy>0 ){
787           memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], nCopy);
788           ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset));
789         }
790       }
791     }
792   }
793 
794 asyncread_out:
795   pthread_mutex_unlock(&async.queueMutex);
796   return rc;
797 }
798 
799 /*
800 ** Truncate the file to nByte bytes in length. This just adds an entry to
801 ** the write-op list, no IO actually takes place.
802 */
803 static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){
804   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
805   return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0);
806 }
807 
808 /*
809 ** Sync the file. This just adds an entry to the write-op list, the
810 ** sync() is done later by sqlite3_async_flush().
811 */
812 static int asyncSync(sqlite3_file *pFile, int flags){
813   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
814   return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0);
815 }
816 
817 /*
818 ** Read the size of the file. First we read the size of the file system
819 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations
820 ** currently in the write-op list.
821 **
822 ** This method holds the mutex from start to finish.
823 */
824 int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){
825   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
826   int rc = SQLITE_OK;
827   sqlite3_int64 s = 0;
828   sqlite3_file *pBase;
829 
830   pthread_mutex_lock(&async.queueMutex);
831 
832   /* Read the filesystem size from the base file. If pBaseRead is NULL, this
833   ** means the file hasn't been opened yet. In this case all relevant data
834   ** must be in the write-op queue anyway, so we can omit reading from the
835   ** file-system.
836   */
837   pBase = p->pBaseRead;
838   if( pBase->pMethods ){
839     rc = pBase->pMethods->xFileSize(pBase, &s);
840   }
841 
842   if( rc==SQLITE_OK ){
843     AsyncWrite *pWrite;
844     for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
845       if( pWrite->op==ASYNC_DELETE
846        && p->zName
847        && strcmp(p->zName, pWrite->zBuf)==0
848       ){
849         s = 0;
850       }else if( pWrite->pFileData && (
851           (pWrite->pFileData==p)
852        || (p->zName && pWrite->pFileData->zName==p->zName)
853       )){
854         switch( pWrite->op ){
855           case ASYNC_WRITE:
856             s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s);
857             break;
858           case ASYNC_TRUNCATE:
859             s = MIN(s, pWrite->iOffset);
860             break;
861         }
862       }
863     }
864     *piSize = s;
865   }
866   pthread_mutex_unlock(&async.queueMutex);
867   return rc;
868 }
869 
870 /*
871 ** Lock or unlock the actual file-system entry.
872 */
873 static int getFileLock(AsyncLock *pLock){
874   int rc = SQLITE_OK;
875   AsyncFileLock *pIter;
876   int eRequired = 0;
877 
878   if( pLock->pFile ){
879     for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
880       assert(pIter->eAsyncLock>=pIter->eLock);
881       if( pIter->eAsyncLock>eRequired ){
882         eRequired = pIter->eAsyncLock;
883         assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE);
884       }
885     }
886 
887     if( eRequired>pLock->eLock ){
888       rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired);
889       if( rc==SQLITE_OK ){
890         pLock->eLock = eRequired;
891       }
892     }
893     else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){
894       rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired);
895       if( rc==SQLITE_OK ){
896         pLock->eLock = eRequired;
897       }
898     }
899   }
900 
901   return rc;
902 }
903 
904 /*
905 ** Return the AsyncLock structure from the global async.pLock list
906 ** associated with the file-system entry identified by path zName
907 ** (a string of nName bytes). If no such structure exists, return 0.
908 */
909 static AsyncLock *findLock(const char *zName, int nName){
910   AsyncLock *p = async.pLock;
911   while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){
912     p = p->pNext;
913   }
914   return p;
915 }
916 
917 /*
918 ** The following two methods - asyncLock() and asyncUnlock() - are used
919 ** to obtain and release locks on database files opened with the
920 ** asynchronous backend.
921 */
922 static int asyncLock(sqlite3_file *pFile, int eLock){
923   int rc = SQLITE_OK;
924   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
925 
926   if( p->zName ){
927     pthread_mutex_lock(&async.lockMutex);
928     if( p->lock.eLock<eLock ){
929       AsyncLock *pLock = p->pLock;
930       AsyncFileLock *pIter;
931       assert(pLock && pLock->pList);
932       for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
933         if( pIter!=&p->lock && (
934           (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) ||
935           (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
936           (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
937           (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING)
938         )){
939           rc = SQLITE_BUSY;
940         }
941       }
942       if( rc==SQLITE_OK ){
943         p->lock.eLock = eLock;
944         p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock);
945       }
946       assert(p->lock.eAsyncLock>=p->lock.eLock);
947       if( rc==SQLITE_OK ){
948         rc = getFileLock(pLock);
949       }
950     }
951     pthread_mutex_unlock(&async.lockMutex);
952   }
953 
954   ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc));
955   return rc;
956 }
957 static int asyncUnlock(sqlite3_file *pFile, int eLock){
958   int rc = SQLITE_OK;
959   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
960   if( p->zName ){
961     AsyncFileLock *pLock = &p->lock;
962     pthread_mutex_lock(&async.queueMutex);
963     pthread_mutex_lock(&async.lockMutex);
964     pLock->eLock = MIN(pLock->eLock, eLock);
965     rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0);
966     pthread_mutex_unlock(&async.lockMutex);
967     pthread_mutex_unlock(&async.queueMutex);
968   }
969   return rc;
970 }
971 
972 /*
973 ** This function is called when the pager layer first opens a database file
974 ** and is checking for a hot-journal.
975 */
976 static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){
977   int ret = 0;
978   AsyncFileLock *pIter;
979   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
980 
981   pthread_mutex_lock(&async.lockMutex);
982   for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){
983     if( pIter->eLock>=SQLITE_LOCK_RESERVED ){
984       ret = 1;
985     }
986   }
987   pthread_mutex_unlock(&async.lockMutex);
988 
989   ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName));
990   *pResOut = ret;
991   return SQLITE_OK;
992 }
993 
994 /*
995 ** sqlite3_file_control() implementation.
996 */
997 static int asyncFileControl(sqlite3_file *id, int op, void *pArg){
998   switch( op ){
999     case SQLITE_FCNTL_LOCKSTATE: {
1000       pthread_mutex_lock(&async.lockMutex);
1001       *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock;
1002       pthread_mutex_unlock(&async.lockMutex);
1003       return SQLITE_OK;
1004     }
1005   }
1006   return SQLITE_ERROR;
1007 }
1008 
1009 /*
1010 ** Return the device characteristics and sector-size of the device. It
1011 ** is not tricky to implement these correctly, as this backend might
1012 ** not have an open file handle at this point.
1013 */
1014 static int asyncSectorSize(sqlite3_file *pFile){
1015   return 512;
1016 }
1017 static int asyncDeviceCharacteristics(sqlite3_file *pFile){
1018   return 0;
1019 }
1020 
1021 static int unlinkAsyncFile(AsyncFileData *pData){
1022   AsyncFileLock **ppIter;
1023   int rc = SQLITE_OK;
1024 
1025   if( pData->zName ){
1026     AsyncLock *pLock = pData->pLock;
1027     for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){
1028       if( (*ppIter)==&pData->lock ){
1029         *ppIter = pData->lock.pNext;
1030         break;
1031       }
1032     }
1033     if( !pLock->pList ){
1034       AsyncLock **pp;
1035       if( pLock->pFile ){
1036         pLock->pFile->pMethods->xClose(pLock->pFile);
1037       }
1038       for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext));
1039       *pp = pLock->pNext;
1040       sqlite3_free(pLock);
1041     }else{
1042       rc = getFileLock(pLock);
1043     }
1044   }
1045 
1046   return rc;
1047 }
1048 
1049 /*
1050 ** The parameter passed to this function is a copy of a 'flags' parameter
1051 ** passed to this modules xOpen() method. This function returns true
1052 ** if the file should be opened asynchronously, or false if it should
1053 ** be opened immediately.
1054 **
1055 ** If the file is to be opened asynchronously, then asyncOpen() will add
1056 ** an entry to the event queue and the file will not actually be opened
1057 ** until the event is processed. Otherwise, the file is opened directly
1058 ** by the caller.
1059 */
1060 static int doAsynchronousOpen(int flags){
1061   return (flags&SQLITE_OPEN_CREATE) && (
1062       (flags&SQLITE_OPEN_MAIN_JOURNAL) ||
1063       (flags&SQLITE_OPEN_TEMP_JOURNAL) ||
1064       (flags&SQLITE_OPEN_DELETEONCLOSE)
1065   );
1066 }
1067 
1068 /*
1069 ** Open a file.
1070 */
1071 static int asyncOpen(
1072   sqlite3_vfs *pAsyncVfs,
1073   const char *zName,
1074   sqlite3_file *pFile,
1075   int flags,
1076   int *pOutFlags
1077 ){
1078   static sqlite3_io_methods async_methods = {
1079     1,                               /* iVersion */
1080     asyncClose,                      /* xClose */
1081     asyncRead,                       /* xRead */
1082     asyncWrite,                      /* xWrite */
1083     asyncTruncate,                   /* xTruncate */
1084     asyncSync,                       /* xSync */
1085     asyncFileSize,                   /* xFileSize */
1086     asyncLock,                       /* xLock */
1087     asyncUnlock,                     /* xUnlock */
1088     asyncCheckReservedLock,          /* xCheckReservedLock */
1089     asyncFileControl,                /* xFileControl */
1090     asyncSectorSize,                 /* xSectorSize */
1091     asyncDeviceCharacteristics       /* xDeviceCharacteristics */
1092   };
1093 
1094   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1095   AsyncFile *p = (AsyncFile *)pFile;
1096   int nName = 0;
1097   int rc = SQLITE_OK;
1098   int nByte;
1099   AsyncFileData *pData;
1100   AsyncLock *pLock = 0;
1101   char *z;
1102   int isAsyncOpen = doAsynchronousOpen(flags);
1103 
1104   /* If zName is NULL, then the upper layer is requesting an anonymous file */
1105   if( zName ){
1106     nName = strlen(zName)+1;
1107   }
1108 
1109   nByte = (
1110     sizeof(AsyncFileData) +        /* AsyncFileData structure */
1111     2 * pVfs->szOsFile +           /* AsyncFileData.pBaseRead and pBaseWrite */
1112     nName                          /* AsyncFileData.zName */
1113   );
1114   z = sqlite3_malloc(nByte);
1115   if( !z ){
1116     return SQLITE_NOMEM;
1117   }
1118   memset(z, 0, nByte);
1119   pData = (AsyncFileData*)z;
1120   z += sizeof(pData[0]);
1121   pData->pBaseRead = (sqlite3_file*)z;
1122   z += pVfs->szOsFile;
1123   pData->pBaseWrite = (sqlite3_file*)z;
1124   pData->closeOp.pFileData = pData;
1125   pData->closeOp.op = ASYNC_CLOSE;
1126 
1127   if( zName ){
1128     z += pVfs->szOsFile;
1129     pData->zName = z;
1130     pData->nName = nName;
1131     memcpy(pData->zName, zName, nName);
1132   }
1133 
1134   if( !isAsyncOpen ){
1135     int flagsout;
1136     rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout);
1137     if( rc==SQLITE_OK && (flagsout&SQLITE_OPEN_READWRITE) ){
1138       rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0);
1139     }
1140     if( pOutFlags ){
1141       *pOutFlags = flagsout;
1142     }
1143   }
1144 
1145   pthread_mutex_lock(&async.lockMutex);
1146 
1147   if( zName && rc==SQLITE_OK ){
1148     pLock = findLock(pData->zName, pData->nName);
1149     if( !pLock ){
1150       int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1;
1151       pLock = (AsyncLock *)sqlite3_malloc(nByte);
1152       if( pLock ){
1153         memset(pLock, 0, nByte);
1154 #ifdef ENABLE_FILE_LOCKING
1155         if( flags&SQLITE_OPEN_MAIN_DB ){
1156           pLock->pFile = (sqlite3_file *)&pLock[1];
1157           rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0);
1158           if( rc!=SQLITE_OK ){
1159             sqlite3_free(pLock);
1160             pLock = 0;
1161           }
1162         }
1163 #endif
1164         if( pLock ){
1165           pLock->nFile = pData->nName;
1166           pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile];
1167           memcpy(pLock->zFile, pData->zName, pLock->nFile);
1168           pLock->pNext = async.pLock;
1169           async.pLock = pLock;
1170         }
1171       }else{
1172         rc = SQLITE_NOMEM;
1173       }
1174     }
1175   }
1176 
1177   if( rc==SQLITE_OK ){
1178     p->pMethod = &async_methods;
1179     p->pData = pData;
1180 
1181     /* Link AsyncFileData.lock into the linked list of
1182     ** AsyncFileLock structures for this file.
1183     */
1184     if( zName ){
1185       pData->lock.pNext = pLock->pList;
1186       pLock->pList = &pData->lock;
1187       pData->zName = pLock->zFile;
1188     }
1189   }else{
1190     if( pData->pBaseRead->pMethods ){
1191       pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
1192     }
1193     if( pData->pBaseWrite->pMethods ){
1194       pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
1195     }
1196     sqlite3_free(pData);
1197   }
1198 
1199   pthread_mutex_unlock(&async.lockMutex);
1200 
1201   if( rc==SQLITE_OK ){
1202     incrOpenFileCount();
1203     pData->pLock = pLock;
1204   }
1205 
1206   if( rc==SQLITE_OK && isAsyncOpen ){
1207     rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0);
1208     if( rc==SQLITE_OK ){
1209       if( pOutFlags ) *pOutFlags = flags;
1210     }else{
1211       pthread_mutex_lock(&async.lockMutex);
1212       unlinkAsyncFile(pData);
1213       pthread_mutex_unlock(&async.lockMutex);
1214       sqlite3_free(pData);
1215     }
1216   }
1217   if( rc!=SQLITE_OK ){
1218     p->pMethod = 0;
1219   }
1220   return rc;
1221 }
1222 
1223 /*
1224 ** Implementation of sqlite3OsDelete. Add an entry to the end of the
1225 ** write-op queue to perform the delete.
1226 */
1227 static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){
1228   return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, strlen(z)+1, z);
1229 }
1230 
1231 /*
1232 ** Implementation of sqlite3OsAccess. This method holds the mutex from
1233 ** start to finish.
1234 */
1235 static int asyncAccess(
1236   sqlite3_vfs *pAsyncVfs,
1237   const char *zName,
1238   int flags,
1239   int *pResOut
1240 ){
1241   int rc;
1242   int ret;
1243   AsyncWrite *p;
1244   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1245 
1246   assert(flags==SQLITE_ACCESS_READWRITE
1247       || flags==SQLITE_ACCESS_READ
1248       || flags==SQLITE_ACCESS_EXISTS
1249   );
1250 
1251   pthread_mutex_lock(&async.queueMutex);
1252   rc = pVfs->xAccess(pVfs, zName, flags, &ret);
1253   if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
1254     for(p=async.pQueueFirst; p; p = p->pNext){
1255       if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){
1256         ret = 0;
1257       }else if( p->op==ASYNC_OPENEXCLUSIVE
1258              && p->pFileData->zName
1259              && 0==strcmp(p->pFileData->zName, zName)
1260       ){
1261         ret = 1;
1262       }
1263     }
1264   }
1265   ASYNC_TRACE(("ACCESS(%s): %s = %d\n",
1266     flags==SQLITE_ACCESS_READWRITE?"read-write":
1267     flags==SQLITE_ACCESS_READ?"read":"exists"
1268     , zName, ret)
1269   );
1270   pthread_mutex_unlock(&async.queueMutex);
1271   *pResOut = ret;
1272   return rc;
1273 }
1274 
1275 /*
1276 ** Fill in zPathOut with the full path to the file identified by zPath.
1277 */
1278 static int asyncFullPathname(
1279   sqlite3_vfs *pAsyncVfs,
1280   const char *zPath,
1281   int nPathOut,
1282   char *zPathOut
1283 ){
1284   int rc;
1285   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1286   rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
1287 
1288   /* Because of the way intra-process file locking works, this backend
1289   ** needs to return a canonical path. The following block assumes the
1290   ** file-system uses unix style paths.
1291   */
1292   if( rc==SQLITE_OK ){
1293     int i, j;
1294     int n = nPathOut;
1295     char *z = zPathOut;
1296     while( n>1 && z[n-1]=='/' ){ n--; }
1297     for(i=j=0; i<n; i++){
1298       if( z[i]=='/' ){
1299         if( z[i+1]=='/' ) continue;
1300         if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
1301           i += 1;
1302           continue;
1303         }
1304         if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
1305           while( j>0 && z[j-1]!='/' ){ j--; }
1306           if( j>0 ){ j--; }
1307           i += 2;
1308           continue;
1309         }
1310       }
1311       z[j++] = z[i];
1312     }
1313     z[j] = 0;
1314   }
1315 
1316   return rc;
1317 }
1318 static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){
1319   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1320   return pVfs->xDlOpen(pVfs, zPath);
1321 }
1322 static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){
1323   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1324   pVfs->xDlError(pVfs, nByte, zErrMsg);
1325 }
1326 static void (*asyncDlSym(
1327   sqlite3_vfs *pAsyncVfs,
1328   void *pHandle,
1329   const char *zSymbol
1330 ))(void){
1331   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1332   return pVfs->xDlSym(pVfs, pHandle, zSymbol);
1333 }
1334 static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){
1335   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1336   pVfs->xDlClose(pVfs, pHandle);
1337 }
1338 static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){
1339   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1340   return pVfs->xRandomness(pVfs, nByte, zBufOut);
1341 }
1342 static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){
1343   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1344   return pVfs->xSleep(pVfs, nMicro);
1345 }
1346 static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){
1347   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1348   return pVfs->xCurrentTime(pVfs, pTimeOut);
1349 }
1350 
1351 static sqlite3_vfs async_vfs = {
1352   1,                    /* iVersion */
1353   sizeof(AsyncFile),    /* szOsFile */
1354   0,                    /* mxPathname */
1355   0,                    /* pNext */
1356   "async",              /* zName */
1357   0,                    /* pAppData */
1358   asyncOpen,            /* xOpen */
1359   asyncDelete,          /* xDelete */
1360   asyncAccess,          /* xAccess */
1361   asyncFullPathname,    /* xFullPathname */
1362   asyncDlOpen,          /* xDlOpen */
1363   asyncDlError,         /* xDlError */
1364   asyncDlSym,           /* xDlSym */
1365   asyncDlClose,         /* xDlClose */
1366   asyncRandomness,      /* xDlError */
1367   asyncSleep,           /* xDlSym */
1368   asyncCurrentTime      /* xDlClose */
1369 };
1370 
1371 /*
1372 ** Call this routine to enable or disable the
1373 ** asynchronous IO features implemented in this file.
1374 **
1375 ** This routine is not even remotely threadsafe.  Do not call
1376 ** this routine while any SQLite database connections are open.
1377 */
1378 static void asyncEnable(int enable){
1379   if( enable ){
1380     if( !async_vfs.pAppData ){
1381       async_vfs.pAppData = (void *)sqlite3_vfs_find(0);
1382       async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname;
1383       sqlite3_vfs_register(&async_vfs, 1);
1384     }
1385   }else{
1386     if( async_vfs.pAppData ){
1387       sqlite3_vfs_unregister(&async_vfs);
1388       async_vfs.pAppData = 0;
1389     }
1390   }
1391 }
1392 
1393 /*
1394 ** This procedure runs in a separate thread, reading messages off of the
1395 ** write queue and processing them one by one.
1396 **
1397 ** If async.writerHaltNow is true, then this procedure exits
1398 ** after processing a single message.
1399 **
1400 ** If async.writerHaltWhenIdle is true, then this procedure exits when
1401 ** the write queue is empty.
1402 **
1403 ** If both of the above variables are false, this procedure runs
1404 ** indefinately, waiting for operations to be added to the write queue
1405 ** and processing them in the order in which they arrive.
1406 **
1407 ** An artifical delay of async.ioDelay milliseconds is inserted before
1408 ** each write operation in order to simulate the effect of a slow disk.
1409 **
1410 ** Only one instance of this procedure may be running at a time.
1411 */
1412 static void *asyncWriterThread(void *pIsStarted){
1413   sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData);
1414   AsyncWrite *p = 0;
1415   int rc = SQLITE_OK;
1416   int holdingMutex = 0;
1417 
1418   if( pthread_mutex_trylock(&async.writerMutex) ){
1419     return 0;
1420   }
1421   (*(int *)pIsStarted) = 1;
1422   while( async.writerHaltNow==0 ){
1423     int doNotFree = 0;
1424     sqlite3_file *pBase = 0;
1425 
1426     if( !holdingMutex ){
1427       pthread_mutex_lock(&async.queueMutex);
1428     }
1429     while( (p = async.pQueueFirst)==0 ){
1430       pthread_cond_broadcast(&async.emptySignal);
1431       if( async.writerHaltWhenIdle ){
1432         pthread_mutex_unlock(&async.queueMutex);
1433         break;
1434       }else{
1435         ASYNC_TRACE(("IDLE\n"));
1436         pthread_cond_wait(&async.queueSignal, &async.queueMutex);
1437         ASYNC_TRACE(("WAKEUP\n"));
1438       }
1439     }
1440     if( p==0 ) break;
1441     holdingMutex = 1;
1442 
1443     /* Right now this thread is holding the mutex on the write-op queue.
1444     ** Variable 'p' points to the first entry in the write-op queue. In
1445     ** the general case, we hold on to the mutex for the entire body of
1446     ** the loop.
1447     **
1448     ** However in the cases enumerated below, we relinquish the mutex,
1449     ** perform the IO, and then re-request the mutex before removing 'p' from
1450     ** the head of the write-op queue. The idea is to increase concurrency with
1451     ** sqlite threads.
1452     **
1453     **     * An ASYNC_CLOSE operation.
1454     **     * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish
1455     **       the mutex, call the underlying xOpenExclusive() function, then
1456     **       re-aquire the mutex before seting the AsyncFile.pBaseRead
1457     **       variable.
1458     **     * ASYNC_SYNC and ASYNC_WRITE operations, if
1459     **       SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
1460     **       file-handles are open for the particular file being "synced".
1461     */
1462     if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){
1463       p->op = ASYNC_NOOP;
1464     }
1465     if( p->pFileData ){
1466       pBase = p->pFileData->pBaseWrite;
1467       if(
1468         p->op==ASYNC_CLOSE ||
1469         p->op==ASYNC_OPENEXCLUSIVE ||
1470         (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) )
1471       ){
1472         pthread_mutex_unlock(&async.queueMutex);
1473         holdingMutex = 0;
1474       }
1475       if( !pBase->pMethods ){
1476         pBase = p->pFileData->pBaseRead;
1477       }
1478     }
1479 
1480     switch( p->op ){
1481       case ASYNC_NOOP:
1482         break;
1483 
1484       case ASYNC_WRITE:
1485         assert( pBase );
1486         ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
1487                 p->pFileData->zName, p->nByte, p->iOffset));
1488         rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset);
1489         break;
1490 
1491       case ASYNC_SYNC:
1492         assert( pBase );
1493         ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName));
1494         rc = pBase->pMethods->xSync(pBase, p->nByte);
1495         break;
1496 
1497       case ASYNC_TRUNCATE:
1498         assert( pBase );
1499         ASYNC_TRACE(("TRUNCATE %s to %d bytes\n",
1500                 p->pFileData->zName, p->iOffset));
1501         rc = pBase->pMethods->xTruncate(pBase, p->iOffset);
1502         break;
1503 
1504       case ASYNC_CLOSE: {
1505         AsyncFileData *pData = p->pFileData;
1506         ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName));
1507         if( pData->pBaseWrite->pMethods ){
1508           pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
1509         }
1510         if( pData->pBaseRead->pMethods ){
1511           pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
1512         }
1513 
1514         /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock
1515         ** structures for this file. Obtain the async.lockMutex mutex
1516         ** before doing so.
1517         */
1518         pthread_mutex_lock(&async.lockMutex);
1519         rc = unlinkAsyncFile(pData);
1520         pthread_mutex_unlock(&async.lockMutex);
1521 
1522         if( !holdingMutex ){
1523           pthread_mutex_lock(&async.queueMutex);
1524           holdingMutex = 1;
1525         }
1526         assert_mutex_is_held(&async.queueMutex);
1527         async.pQueueFirst = p->pNext;
1528         sqlite3_free(pData);
1529         doNotFree = 1;
1530         break;
1531       }
1532 
1533       case ASYNC_UNLOCK: {
1534         AsyncWrite *pIter;
1535         AsyncFileData *pData = p->pFileData;
1536         int eLock = p->nByte;
1537 
1538         /* When a file is locked by SQLite using the async backend, it is
1539         ** locked within the 'real' file-system synchronously. When it is
1540         ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to
1541         ** unlock the file asynchronously. The design of the async backend
1542         ** requires that the 'real' file-system file be locked from the
1543         ** time that SQLite first locks it (and probably reads from it)
1544         ** until all asynchronous write events that were scheduled before
1545         ** SQLite unlocked the file have been processed.
1546         **
1547         ** This is more complex if SQLite locks and unlocks the file multiple
1548         ** times in quick succession. For example, if SQLite does:
1549         **
1550         **   lock, write, unlock, lock, write, unlock
1551         **
1552         ** Each "lock" operation locks the file immediately. Each "write"
1553         ** and "unlock" operation adds an event to the event queue. If the
1554         ** second "lock" operation is performed before the first "unlock"
1555         ** operation has been processed asynchronously, then the first
1556         ** "unlock" cannot be safely processed as is, since this would mean
1557         ** the file was unlocked when the second "write" operation is
1558         ** processed. To work around this, when processing an ASYNC_UNLOCK
1559         ** operation, SQLite:
1560         **
1561         **   1) Unlocks the file to the minimum of the argument passed to
1562         **      the xUnlock() call and the current lock from SQLite's point
1563         **      of view, and
1564         **
1565         **   2) Only unlocks the file at all if this event is the last
1566         **      ASYNC_UNLOCK event on this file in the write-queue.
1567         */
1568         assert( holdingMutex==1 );
1569         assert( async.pQueueFirst==p );
1570         for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){
1571           if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break;
1572         }
1573         if( !pIter ){
1574           pthread_mutex_lock(&async.lockMutex);
1575           pData->lock.eAsyncLock = MIN(
1576               pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock)
1577           );
1578           assert(pData->lock.eAsyncLock>=pData->lock.eLock);
1579           rc = getFileLock(pData->pLock);
1580           pthread_mutex_unlock(&async.lockMutex);
1581         }
1582         break;
1583       }
1584 
1585       case ASYNC_DELETE:
1586         ASYNC_TRACE(("DELETE %s\n", p->zBuf));
1587         rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset);
1588         break;
1589 
1590       case ASYNC_OPENEXCLUSIVE: {
1591         int flags = (int)p->iOffset;
1592         AsyncFileData *pData = p->pFileData;
1593         ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset));
1594         assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0);
1595         rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0);
1596         assert( holdingMutex==0 );
1597         pthread_mutex_lock(&async.queueMutex);
1598         holdingMutex = 1;
1599         break;
1600       }
1601 
1602       default: assert(!"Illegal value for AsyncWrite.op");
1603     }
1604 
1605     /* If we didn't hang on to the mutex during the IO op, obtain it now
1606     ** so that the AsyncWrite structure can be safely removed from the
1607     ** global write-op queue.
1608     */
1609     if( !holdingMutex ){
1610       pthread_mutex_lock(&async.queueMutex);
1611       holdingMutex = 1;
1612     }
1613     /* ASYNC_TRACE(("UNLINK %p\n", p)); */
1614     if( p==async.pQueueLast ){
1615       async.pQueueLast = 0;
1616     }
1617     if( !doNotFree ){
1618       assert_mutex_is_held(&async.queueMutex);
1619       async.pQueueFirst = p->pNext;
1620       sqlite3_free(p);
1621     }
1622     assert( holdingMutex );
1623 
1624     /* An IO error has occurred. We cannot report the error back to the
1625     ** connection that requested the I/O since the error happened
1626     ** asynchronously.  The connection has already moved on.  There
1627     ** really is nobody to report the error to.
1628     **
1629     ** The file for which the error occurred may have been a database or
1630     ** journal file. Regardless, none of the currently queued operations
1631     ** associated with the same database should now be performed. Nor should
1632     ** any subsequently requested IO on either a database or journal file
1633     ** handle for the same database be accepted until the main database
1634     ** file handle has been closed and reopened.
1635     **
1636     ** Furthermore, no further IO should be queued or performed on any file
1637     ** handle associated with a database that may have been part of a
1638     ** multi-file transaction that included the database associated with
1639     ** the IO error (i.e. a database ATTACHed to the same handle at some
1640     ** point in time).
1641     */
1642     if( rc!=SQLITE_OK ){
1643       async.ioError = rc;
1644     }
1645 
1646     if( async.ioError && !async.pQueueFirst ){
1647       pthread_mutex_lock(&async.lockMutex);
1648       if( 0==async.pLock ){
1649         async.ioError = SQLITE_OK;
1650       }
1651       pthread_mutex_unlock(&async.lockMutex);
1652     }
1653 
1654     /* Drop the queue mutex before continuing to the next write operation
1655     ** in order to give other threads a chance to work with the write queue.
1656     */
1657     if( !async.pQueueFirst || !async.ioError ){
1658       pthread_mutex_unlock(&async.queueMutex);
1659       holdingMutex = 0;
1660       if( async.ioDelay>0 ){
1661         pVfs->xSleep(pVfs, async.ioDelay);
1662       }else{
1663         sched_yield();
1664       }
1665     }
1666   }
1667 
1668   pthread_mutex_unlock(&async.writerMutex);
1669   return 0;
1670 }
1671 
1672 /**************************************************************************
1673 ** The remaining code defines a Tcl interface for testing the asynchronous
1674 ** IO implementation in this file.
1675 **
1676 ** To adapt the code to a non-TCL environment, delete or comment out
1677 ** the code that follows.
1678 */
1679 
1680 /*
1681 ** sqlite3async_enable ?YES/NO?
1682 **
1683 ** Enable or disable the asynchronous I/O backend.  This command is
1684 ** not thread-safe.  Do not call it while any database connections
1685 ** are open.
1686 */
1687 static int testAsyncEnable(
1688   void * clientData,
1689   Tcl_Interp *interp,
1690   int objc,
1691   Tcl_Obj *CONST objv[]
1692 ){
1693   if( objc!=1 && objc!=2 ){
1694     Tcl_WrongNumArgs(interp, 1, objv, "?YES/NO?");
1695     return TCL_ERROR;
1696   }
1697   if( objc==1 ){
1698     Tcl_SetObjResult(interp, Tcl_NewBooleanObj(async_vfs.pAppData!=0));
1699   }else{
1700     int en;
1701     if( Tcl_GetBooleanFromObj(interp, objv[1], &en) ) return TCL_ERROR;
1702     asyncEnable(en);
1703   }
1704   return TCL_OK;
1705 }
1706 
1707 /*
1708 ** sqlite3async_halt  "now"|"idle"|"never"
1709 **
1710 ** Set the conditions at which the writer thread will halt.
1711 */
1712 static int testAsyncHalt(
1713   void * clientData,
1714   Tcl_Interp *interp,
1715   int objc,
1716   Tcl_Obj *CONST objv[]
1717 ){
1718   const char *zCond;
1719   if( objc!=2 ){
1720     Tcl_WrongNumArgs(interp, 1, objv, "\"now\"|\"idle\"|\"never\"");
1721     return TCL_ERROR;
1722   }
1723   zCond = Tcl_GetString(objv[1]);
1724   if( strcmp(zCond, "now")==0 ){
1725     async.writerHaltNow = 1;
1726     pthread_cond_broadcast(&async.queueSignal);
1727   }else if( strcmp(zCond, "idle")==0 ){
1728     async.writerHaltWhenIdle = 1;
1729     async.writerHaltNow = 0;
1730     pthread_cond_broadcast(&async.queueSignal);
1731   }else if( strcmp(zCond, "never")==0 ){
1732     async.writerHaltWhenIdle = 0;
1733     async.writerHaltNow = 0;
1734   }else{
1735     Tcl_AppendResult(interp,
1736       "should be one of: \"now\", \"idle\", or \"never\"", (char*)0);
1737     return TCL_ERROR;
1738   }
1739   return TCL_OK;
1740 }
1741 
1742 /*
1743 ** sqlite3async_delay ?MS?
1744 **
1745 ** Query or set the number of milliseconds of delay in the writer
1746 ** thread after each write operation.  The default is 0.  By increasing
1747 ** the memory delay we can simulate the effect of slow disk I/O.
1748 */
1749 static int testAsyncDelay(
1750   void * clientData,
1751   Tcl_Interp *interp,
1752   int objc,
1753   Tcl_Obj *CONST objv[]
1754 ){
1755   if( objc!=1 && objc!=2 ){
1756     Tcl_WrongNumArgs(interp, 1, objv, "?MS?");
1757     return TCL_ERROR;
1758   }
1759   if( objc==1 ){
1760     Tcl_SetObjResult(interp, Tcl_NewIntObj(async.ioDelay));
1761   }else{
1762     int ioDelay;
1763     if( Tcl_GetIntFromObj(interp, objv[1], &ioDelay) ) return TCL_ERROR;
1764     async.ioDelay = ioDelay;
1765   }
1766   return TCL_OK;
1767 }
1768 
1769 /*
1770 ** sqlite3async_start
1771 **
1772 ** Start a new writer thread.
1773 */
1774 static int testAsyncStart(
1775   void * clientData,
1776   Tcl_Interp *interp,
1777   int objc,
1778   Tcl_Obj *CONST objv[]
1779 ){
1780   pthread_t x;
1781   int rc;
1782   volatile int isStarted = 0;
1783   rc = pthread_create(&x, 0, asyncWriterThread, (void *)&isStarted);
1784   if( rc ){
1785     Tcl_AppendResult(interp, "failed to create the thread", 0);
1786     return TCL_ERROR;
1787   }
1788   pthread_detach(x);
1789   while( isStarted==0 ){
1790     sched_yield();
1791   }
1792   return TCL_OK;
1793 }
1794 
1795 /*
1796 ** sqlite3async_wait
1797 **
1798 ** Wait for the current writer thread to terminate.
1799 **
1800 ** If the current writer thread is set to run forever then this
1801 ** command would block forever.  To prevent that, an error is returned.
1802 */
1803 static int testAsyncWait(
1804   void * clientData,
1805   Tcl_Interp *interp,
1806   int objc,
1807   Tcl_Obj *CONST objv[]
1808 ){
1809   int cnt = 10;
1810   if( async.writerHaltNow==0 && async.writerHaltWhenIdle==0 ){
1811     Tcl_AppendResult(interp, "would block forever", (char*)0);
1812     return TCL_ERROR;
1813   }
1814 
1815   while( cnt-- && !pthread_mutex_trylock(&async.writerMutex) ){
1816     pthread_mutex_unlock(&async.writerMutex);
1817     sched_yield();
1818   }
1819   if( cnt>=0 ){
1820     ASYNC_TRACE(("WAIT\n"));
1821     pthread_mutex_lock(&async.queueMutex);
1822     pthread_cond_broadcast(&async.queueSignal);
1823     pthread_mutex_unlock(&async.queueMutex);
1824     pthread_mutex_lock(&async.writerMutex);
1825     pthread_mutex_unlock(&async.writerMutex);
1826   }else{
1827     ASYNC_TRACE(("NO-WAIT\n"));
1828   }
1829   return TCL_OK;
1830 }
1831 
1832 
1833 #endif  /* SQLITE_OS_UNIX and SQLITE_THREADSAFE */
1834 
1835 /*
1836 ** This routine registers the custom TCL commands defined in this
1837 ** module.  This should be the only procedure visible from outside
1838 ** of this module.
1839 */
1840 int Sqlitetestasync_Init(Tcl_Interp *interp){
1841 #if SQLITE_OS_UNIX && SQLITE_THREADSAFE
1842   Tcl_CreateObjCommand(interp,"sqlite3async_enable",testAsyncEnable,0,0);
1843   Tcl_CreateObjCommand(interp,"sqlite3async_halt",testAsyncHalt,0,0);
1844   Tcl_CreateObjCommand(interp,"sqlite3async_delay",testAsyncDelay,0,0);
1845   Tcl_CreateObjCommand(interp,"sqlite3async_start",testAsyncStart,0,0);
1846   Tcl_CreateObjCommand(interp,"sqlite3async_wait",testAsyncWait,0,0);
1847   Tcl_LinkVar(interp, "sqlite3async_trace",
1848       (char*)&sqlite3async_trace, TCL_LINK_INT);
1849 #endif  /* SQLITE_OS_UNIX and SQLITE_THREADSAFE */
1850   return TCL_OK;
1851 }
1852