1 /* 2 ** 2005 December 14 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains an example implementation of an asynchronous IO 14 ** backend for SQLite. 15 ** 16 ** WHAT IS ASYNCHRONOUS I/O? 17 ** 18 ** With asynchronous I/O, write requests are handled by a separate thread 19 ** running in the background. This means that the thread that initiates 20 ** a database write does not have to wait for (sometimes slow) disk I/O 21 ** to occur. The write seems to happen very quickly, though in reality 22 ** it is happening at its usual slow pace in the background. 23 ** 24 ** Asynchronous I/O appears to give better responsiveness, but at a price. 25 ** You lose the Durable property. With the default I/O backend of SQLite, 26 ** once a write completes, you know that the information you wrote is 27 ** safely on disk. With the asynchronous I/O, this is no the case. If 28 ** your program crashes or if you take a power lose after the database 29 ** write but before the asynchronous write thread has completed, then the 30 ** database change might never make it to disk and the next user of the 31 ** database might not see your change. 32 ** 33 ** You lose Durability with asynchronous I/O, but you still retain the 34 ** other parts of ACID: Atomic, Consistent, and Isolated. Many 35 ** appliations get along fine without the Durablity. 36 ** 37 ** HOW IT WORKS 38 ** 39 ** Asynchronous I/O works by overloading the OS-layer disk I/O routines 40 ** with modified versions that store the data to be written in queue of 41 ** pending write operations. Look at the asyncEnable() subroutine to see 42 ** how overloading works. Six os-layer routines are overloaded: 43 ** 44 ** sqlite3OsOpenReadWrite; 45 ** sqlite3OsOpenReadOnly; 46 ** sqlite3OsOpenExclusive; 47 ** sqlite3OsDelete; 48 ** sqlite3OsFileExists; 49 ** sqlite3OsSyncDirectory; 50 ** 51 ** The original implementations of these routines are saved and are 52 ** used by the writer thread to do the real I/O. The substitute 53 ** implementations typically put the I/O operation on a queue 54 ** to be handled later by the writer thread, though read operations 55 ** must be handled right away, obviously. 56 ** 57 ** Asynchronous I/O is disabled by setting the os-layer interface routines 58 ** back to their original values. 59 ** 60 ** LIMITATIONS 61 ** 62 ** This demonstration code is deliberately kept simple in order to keep 63 ** the main ideas clear and easy to understand. Real applications that 64 ** want to do asynchronous I/O might want to add additional capabilities. 65 ** For example, in this demonstration if writes are happening at a steady 66 ** stream that exceeds the I/O capability of the background writer thread, 67 ** the queue of pending write operations will grow without bound until we 68 ** run out of memory. Users of this technique may want to keep track of 69 ** the quantity of pending writes and stop accepting new write requests 70 ** when the buffer gets to be too big. 71 */ 72 73 #include "sqliteInt.h" 74 #include "os.h" 75 #include <tcl.h> 76 77 /* If the THREADSAFE macro is not set, assume that it is turned off. */ 78 #ifndef THREADSAFE 79 # define THREADSAFE 0 80 #endif 81 82 /* 83 ** This test uses pthreads and hence only works on unix and with 84 ** a threadsafe build of SQLite. It also requires that the redefinable 85 ** I/O feature of SQLite be turned on. This feature is turned off by 86 ** default. If a required element is missing, almost all of the code 87 ** in this file is commented out. 88 */ 89 #if OS_UNIX && THREADSAFE && defined(SQLITE_ENABLE_REDEF_IO) 90 91 /* 92 ** This demo uses pthreads. If you do not have a pthreads implementation 93 ** for your operating system, you will need to recode the threading 94 ** logic. 95 */ 96 #include <pthread.h> 97 #include <sched.h> 98 99 /* Useful macros used in several places */ 100 #define MIN(x,y) ((x)<(y)?(x):(y)) 101 #define MAX(x,y) ((x)>(y)?(x):(y)) 102 103 /* Forward references */ 104 typedef struct AsyncWrite AsyncWrite; 105 typedef struct AsyncFile AsyncFile; 106 107 /* Enable for debugging */ 108 static int sqlite3async_trace = 0; 109 # define TRACE(X) if( sqlite3async_trace ) asyncTrace X 110 static void asyncTrace(const char *zFormat, ...){ 111 char *z; 112 va_list ap; 113 va_start(ap, zFormat); 114 z = sqlite3_vmprintf(zFormat, ap); 115 va_end(ap); 116 fprintf(stderr, "[%d] %s", (int)pthread_self(), z); 117 free(z); 118 } 119 120 /* 121 ** THREAD SAFETY NOTES 122 ** 123 ** Basic rules: 124 ** 125 ** * Both read and write access to the global write-op queue must be 126 ** protected by the async.queueMutex. 127 ** 128 ** * The file handles from the underlying system are assumed not to 129 ** be thread safe. 130 ** 131 ** * See the last two paragraphs under "The Writer Thread" for 132 ** an assumption to do with file-handle synchronization by the Os. 133 ** 134 ** File system operations (invoked by SQLite thread): 135 ** 136 ** xOpenXXX (three versions) 137 ** xDelete 138 ** xFileExists 139 ** xSyncDirectory 140 ** 141 ** File handle operations (invoked by SQLite thread): 142 ** 143 ** asyncWrite, asyncClose, asyncTruncate, asyncSync, 144 ** asyncSetFullSync, asyncOpenDirectory. 145 ** 146 ** The operations above add an entry to the global write-op list. They 147 ** prepare the entry, acquire the async.queueMutex momentarily while 148 ** list pointers are manipulated to insert the new entry, then release 149 ** the mutex and signal the writer thread to wake up in case it happens 150 ** to be asleep. 151 ** 152 ** 153 ** asyncRead, asyncFileSize. 154 ** 155 ** Read operations. Both of these read from both the underlying file 156 ** first then adjust their result based on pending writes in the 157 ** write-op queue. So async.queueMutex is held for the duration 158 ** of these operations to prevent other threads from changing the 159 ** queue in mid operation. 160 ** 161 ** 162 ** asyncLock, asyncUnlock, asyncLockState, asyncCheckReservedLock 163 ** 164 ** These primitives implement in-process locking using a hash table 165 ** on the file name. Files are locked correctly for connections coming 166 ** from the same process. But other processes cannot see these locks 167 ** and will therefore not honor them. 168 ** 169 ** 170 ** asyncFileHandle. 171 ** 172 ** The sqlite3OsFileHandle() function is currently only used when 173 ** debugging the pager module. Unless sqlite3OsClose() is called on the 174 ** file (shouldn't be possible for other reasons), the underlying 175 ** implementations are safe to call without grabbing any mutex. So we just 176 ** go ahead and call it no matter what any other threads are doing. 177 ** 178 ** 179 ** asyncSeek. 180 ** 181 ** Calling this method just manipulates the AsyncFile.iOffset variable. 182 ** Since this variable is never accessed by writer thread, this 183 ** function does not require the mutex. Actual calls to OsSeek() take 184 ** place just before OsWrite() or OsRead(), which are always protected by 185 ** the mutex. 186 ** 187 ** The writer thread: 188 ** 189 ** The async.writerMutex is used to make sure only there is only 190 ** a single writer thread running at a time. 191 ** 192 ** Inside the writer thread is a loop that works like this: 193 ** 194 ** WHILE (write-op list is not empty) 195 ** Do IO operation at head of write-op list 196 ** Remove entry from head of write-op list 197 ** END WHILE 198 ** 199 ** The async.queueMutex is always held during the <write-op list is 200 ** not empty> test, and when the entry is removed from the head 201 ** of the write-op list. Sometimes it is held for the interim 202 ** period (while the IO is performed), and sometimes it is 203 ** relinquished. It is relinquished if (a) the IO op is an 204 ** ASYNC_CLOSE or (b) when the file handle was opened, two of 205 ** the underlying systems handles were opened on the same 206 ** file-system entry. 207 ** 208 ** If condition (b) above is true, then one file-handle 209 ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the 210 ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() 211 ** threads to perform write() operations. This means that read 212 ** operations are not blocked by asynchronous writes (although 213 ** asynchronous writes may still be blocked by reads). 214 ** 215 ** This assumes that the OS keeps two handles open on the same file 216 ** properly in sync. That is, any read operation that starts after a 217 ** write operation on the same file system entry has completed returns 218 ** data consistent with the write. We also assume that if one thread 219 ** reads a file while another is writing it all bytes other than the 220 ** ones actually being written contain valid data. 221 ** 222 ** If the above assumptions are not true, set the preprocessor symbol 223 ** SQLITE_ASYNC_TWO_FILEHANDLES to 0. 224 */ 225 226 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES 227 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ 228 #define SQLITE_ASYNC_TWO_FILEHANDLES 1 229 #endif 230 231 /* 232 ** State information is held in the static variable "async" defined 233 ** as follows: 234 */ 235 static struct TestAsyncStaticData { 236 pthread_mutex_t queueMutex; /* Mutex for access to write operation queue */ 237 pthread_mutex_t writerMutex; /* Prevents multiple writer threads */ 238 pthread_mutex_t lockMutex; /* For access to aLock hash table */ 239 pthread_cond_t queueSignal; /* For waking up sleeping writer thread */ 240 pthread_cond_t emptySignal; /* Notify when the write queue is empty */ 241 AsyncWrite *pQueueFirst; /* Next write operation to be processed */ 242 AsyncWrite *pQueueLast; /* Last write operation on the list */ 243 Hash aLock; /* Files locked */ 244 volatile int ioDelay; /* Extra delay between write operations */ 245 volatile int writerHaltWhenIdle; /* Writer thread halts when queue empty */ 246 volatile int writerHaltNow; /* Writer thread halts after next op */ 247 int ioError; /* True if an IO error has occured */ 248 int nFile; /* Number of open files (from sqlite pov) */ 249 } async = { 250 PTHREAD_MUTEX_INITIALIZER, 251 PTHREAD_MUTEX_INITIALIZER, 252 PTHREAD_MUTEX_INITIALIZER, 253 PTHREAD_COND_INITIALIZER, 254 PTHREAD_COND_INITIALIZER, 255 }; 256 257 /* Possible values of AsyncWrite.op */ 258 #define ASYNC_NOOP 0 259 #define ASYNC_WRITE 1 260 #define ASYNC_SYNC 2 261 #define ASYNC_TRUNCATE 3 262 #define ASYNC_CLOSE 4 263 #define ASYNC_OPENDIRECTORY 5 264 #define ASYNC_SETFULLSYNC 6 265 #define ASYNC_DELETE 7 266 #define ASYNC_OPENEXCLUSIVE 8 267 #define ASYNC_SYNCDIRECTORY 9 268 269 /* Names of opcodes. Used for debugging only. 270 ** Make sure these stay in sync with the macros above! 271 */ 272 static const char *azOpcodeName[] = { 273 "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", 274 "OPENDIR", "SETFULLSYNC", "DELETE", "OPENEX", "SYNCDIR", 275 }; 276 277 /* 278 ** Entries on the write-op queue are instances of the AsyncWrite 279 ** structure, defined here. 280 ** 281 ** The interpretation of the iOffset and nByte variables varies depending 282 ** on the value of AsyncWrite.op: 283 ** 284 ** ASYNC_WRITE: 285 ** iOffset -> Offset in file to write to. 286 ** nByte -> Number of bytes of data to write (pointed to by zBuf). 287 ** 288 ** ASYNC_SYNC: 289 ** iOffset -> Unused. 290 ** nByte -> Value of "fullsync" flag to pass to sqlite3OsSync(). 291 ** 292 ** ASYNC_TRUNCATE: 293 ** iOffset -> Size to truncate file to. 294 ** nByte -> Unused. 295 ** 296 ** ASYNC_CLOSE: 297 ** iOffset -> Unused. 298 ** nByte -> Unused. 299 ** 300 ** ASYNC_OPENDIRECTORY: 301 ** iOffset -> Unused. 302 ** nByte -> Number of bytes of zBuf points to (directory name). 303 ** 304 ** ASYNC_SETFULLSYNC: 305 ** iOffset -> Unused. 306 ** nByte -> New value for the full-sync flag. 307 ** 308 ** 309 ** ASYNC_DELETE: 310 ** iOffset -> Unused. 311 ** nByte -> Number of bytes of zBuf points to (file name). 312 ** 313 ** ASYNC_OPENEXCLUSIVE: 314 ** iOffset -> Value of "delflag". 315 ** nByte -> Number of bytes of zBuf points to (file name). 316 ** 317 ** 318 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. 319 ** This space is sqliteMalloc()d along with the AsyncWrite structure in a 320 ** single blob, so is deleted when sqliteFree() is called on the parent 321 ** structure. 322 */ 323 struct AsyncWrite { 324 AsyncFile *pFile; /* File to write data to or sync */ 325 int op; /* One of ASYNC_xxx etc. */ 326 i64 iOffset; /* See above */ 327 int nByte; /* See above */ 328 char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ 329 AsyncWrite *pNext; /* Next write operation (to any file) */ 330 }; 331 332 /* 333 ** The AsyncFile structure is a subclass of OsFile used for asynchronous IO. 334 */ 335 struct AsyncFile { 336 IoMethod *pMethod; /* Must be first */ 337 i64 iOffset; /* Current seek() offset in file */ 338 char *zName; /* Underlying OS filename - used for debugging */ 339 int nName; /* Number of characters in zName */ 340 OsFile *pBaseRead; /* Read handle to the underlying Os file */ 341 OsFile *pBaseWrite; /* Write handle to the underlying Os file */ 342 }; 343 344 /* 345 ** Add an entry to the end of the global write-op list. pWrite should point 346 ** to an AsyncWrite structure allocated using sqlite3OsMalloc(). The writer 347 ** thread will call sqlite3OsFree() to free the structure after the specified 348 ** operation has been completed. 349 ** 350 ** Once an AsyncWrite structure has been added to the list, it becomes the 351 ** property of the writer thread and must not be read or modified by the 352 ** caller. 353 */ 354 static void addAsyncWrite(AsyncWrite *pWrite){ 355 /* We must hold the queue mutex in order to modify the queue pointers */ 356 pthread_mutex_lock(&async.queueMutex); 357 358 /* Add the record to the end of the write-op queue */ 359 assert( !pWrite->pNext ); 360 if( async.pQueueLast ){ 361 assert( async.pQueueFirst ); 362 async.pQueueLast->pNext = pWrite; 363 }else{ 364 async.pQueueFirst = pWrite; 365 } 366 async.pQueueLast = pWrite; 367 TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op], 368 pWrite->pFile ? pWrite->pFile->zName : "-", pWrite->iOffset)); 369 370 if( pWrite->op==ASYNC_CLOSE ){ 371 async.nFile--; 372 if( async.nFile==0 ){ 373 async.ioError = SQLITE_OK; 374 } 375 } 376 377 /* Drop the queue mutex */ 378 pthread_mutex_unlock(&async.queueMutex); 379 380 /* The writer thread might have been idle because there was nothing 381 ** on the write-op queue for it to do. So wake it up. */ 382 pthread_cond_signal(&async.queueSignal); 383 } 384 385 /* 386 ** Increment async.nFile in a thread-safe manner. 387 */ 388 static void incrOpenFileCount(){ 389 /* We must hold the queue mutex in order to modify async.nFile */ 390 pthread_mutex_lock(&async.queueMutex); 391 if( async.nFile==0 ){ 392 async.ioError = SQLITE_OK; 393 } 394 async.nFile++; 395 pthread_mutex_unlock(&async.queueMutex); 396 } 397 398 /* 399 ** This is a utility function to allocate and populate a new AsyncWrite 400 ** structure and insert it (via addAsyncWrite() ) into the global list. 401 */ 402 static int addNewAsyncWrite( 403 AsyncFile *pFile, 404 int op, 405 i64 iOffset, 406 int nByte, 407 const char *zByte 408 ){ 409 AsyncWrite *p; 410 if( op!=ASYNC_CLOSE && async.ioError ){ 411 return async.ioError; 412 } 413 p = sqlite3OsMalloc(sizeof(AsyncWrite) + (zByte?nByte:0)); 414 if( !p ){ 415 return SQLITE_NOMEM; 416 } 417 p->op = op; 418 p->iOffset = iOffset; 419 p->nByte = nByte; 420 p->pFile = pFile; 421 p->pNext = 0; 422 if( zByte ){ 423 p->zBuf = (char *)&p[1]; 424 memcpy(p->zBuf, zByte, nByte); 425 }else{ 426 p->zBuf = 0; 427 } 428 addAsyncWrite(p); 429 return SQLITE_OK; 430 } 431 432 /* 433 ** Close the file. This just adds an entry to the write-op list, the file is 434 ** not actually closed. 435 */ 436 static int asyncClose(OsFile **pId){ 437 return addNewAsyncWrite((AsyncFile *)*pId, ASYNC_CLOSE, 0, 0, 0); 438 } 439 440 /* 441 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of 442 ** writing to the underlying file, this function adds an entry to the end of 443 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be 444 ** returned. 445 */ 446 static int asyncWrite(OsFile *id, const void *pBuf, int amt){ 447 AsyncFile *pFile = (AsyncFile *)id; 448 int rc = addNewAsyncWrite(pFile, ASYNC_WRITE, pFile->iOffset, amt, pBuf); 449 pFile->iOffset += (i64)amt; 450 return rc; 451 } 452 453 /* 454 ** Truncate the file to nByte bytes in length. This just adds an entry to 455 ** the write-op list, no IO actually takes place. 456 */ 457 static int asyncTruncate(OsFile *id, i64 nByte){ 458 return addNewAsyncWrite((AsyncFile *)id, ASYNC_TRUNCATE, nByte, 0, 0); 459 } 460 461 /* 462 ** Open the directory identified by zName and associate it with the 463 ** specified file. This just adds an entry to the write-op list, the 464 ** directory is opened later by sqlite3_async_flush(). 465 */ 466 static int asyncOpenDirectory(OsFile *id, const char *zName){ 467 AsyncFile *pFile = (AsyncFile *)id; 468 return addNewAsyncWrite(pFile, ASYNC_OPENDIRECTORY, 0, strlen(zName)+1,zName); 469 } 470 471 /* 472 ** Sync the file. This just adds an entry to the write-op list, the 473 ** sync() is done later by sqlite3_async_flush(). 474 */ 475 static int asyncSync(OsFile *id, int fullsync){ 476 return addNewAsyncWrite((AsyncFile *)id, ASYNC_SYNC, 0, fullsync, 0); 477 } 478 479 /* 480 ** Set (or clear) the full-sync flag on the underlying file. This operation 481 ** is queued and performed later by sqlite3_async_flush(). 482 */ 483 static void asyncSetFullSync(OsFile *id, int value){ 484 addNewAsyncWrite((AsyncFile *)id, ASYNC_SETFULLSYNC, 0, value, 0); 485 } 486 487 /* 488 ** Read data from the file. First we read from the filesystem, then adjust 489 ** the contents of the buffer based on ASYNC_WRITE operations in the 490 ** write-op queue. 491 ** 492 ** This method holds the mutex from start to finish. 493 */ 494 static int asyncRead(OsFile *id, void *obuf, int amt){ 495 int rc = SQLITE_OK; 496 i64 filesize; 497 int nRead; 498 AsyncFile *pFile = (AsyncFile *)id; 499 OsFile *pBase = pFile->pBaseRead; 500 501 /* If an I/O error has previously occurred on this file, then all 502 ** subsequent operations fail. 503 */ 504 if( async.ioError!=SQLITE_OK ){ 505 return async.ioError; 506 } 507 508 /* Grab the write queue mutex for the duration of the call */ 509 pthread_mutex_lock(&async.queueMutex); 510 511 if( pBase ){ 512 rc = sqlite3OsFileSize(pBase, &filesize); 513 if( rc!=SQLITE_OK ){ 514 goto asyncread_out; 515 } 516 rc = sqlite3OsSeek(pBase, pFile->iOffset); 517 if( rc!=SQLITE_OK ){ 518 goto asyncread_out; 519 } 520 nRead = MIN(filesize - pFile->iOffset, amt); 521 if( nRead>0 ){ 522 rc = sqlite3OsRead(pBase, obuf, nRead); 523 TRACE(("READ %s %d bytes at %d\n", pFile->zName, nRead, pFile->iOffset)); 524 } 525 } 526 527 if( rc==SQLITE_OK ){ 528 AsyncWrite *p; 529 i64 iOffset = pFile->iOffset; /* Current seek offset */ 530 531 for(p=async.pQueueFirst; p; p = p->pNext){ 532 if( p->pFile==pFile && p->op==ASYNC_WRITE ){ 533 int iBeginOut = (p->iOffset - iOffset); 534 int iBeginIn = -iBeginOut; 535 int nCopy; 536 537 if( iBeginIn<0 ) iBeginIn = 0; 538 if( iBeginOut<0 ) iBeginOut = 0; 539 nCopy = MIN(p->nByte-iBeginIn, amt-iBeginOut); 540 541 if( nCopy>0 ){ 542 memcpy(&((char *)obuf)[iBeginOut], &p->zBuf[iBeginIn], nCopy); 543 TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset)); 544 } 545 } 546 } 547 548 pFile->iOffset += (i64)amt; 549 } 550 551 asyncread_out: 552 pthread_mutex_unlock(&async.queueMutex); 553 return rc; 554 } 555 556 /* 557 ** Seek to the specified offset. This just adjusts the AsyncFile.iOffset 558 ** variable - calling seek() on the underlying file is defered until the 559 ** next read() or write() operation. 560 */ 561 static int asyncSeek(OsFile *id, i64 offset){ 562 AsyncFile *pFile = (AsyncFile *)id; 563 pFile->iOffset = offset; 564 return SQLITE_OK; 565 } 566 567 /* 568 ** Read the size of the file. First we read the size of the file system 569 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations 570 ** currently in the write-op list. 571 ** 572 ** This method holds the mutex from start to finish. 573 */ 574 int asyncFileSize(OsFile *id, i64 *pSize){ 575 int rc = SQLITE_OK; 576 i64 s = 0; 577 OsFile *pBase; 578 579 pthread_mutex_lock(&async.queueMutex); 580 581 /* Read the filesystem size from the base file. If pBaseRead is NULL, this 582 ** means the file hasn't been opened yet. In this case all relevant data 583 ** must be in the write-op queue anyway, so we can omit reading from the 584 ** file-system. 585 */ 586 pBase = ((AsyncFile *)id)->pBaseRead; 587 if( pBase ){ 588 rc = sqlite3OsFileSize(pBase, &s); 589 } 590 591 if( rc==SQLITE_OK ){ 592 AsyncWrite *p; 593 for(p=async.pQueueFirst; p; p = p->pNext){ 594 if( p->pFile==(AsyncFile *)id ){ 595 switch( p->op ){ 596 case ASYNC_WRITE: 597 s = MAX(p->iOffset + (i64)(p->nByte), s); 598 break; 599 case ASYNC_TRUNCATE: 600 s = MIN(s, p->iOffset); 601 break; 602 } 603 } 604 } 605 *pSize = s; 606 } 607 pthread_mutex_unlock(&async.queueMutex); 608 return rc; 609 } 610 611 /* 612 ** Return the operating system file handle. This is only used for debugging 613 ** at the moment anyway. 614 */ 615 static int asyncFileHandle(OsFile *id){ 616 return sqlite3OsFileHandle(((AsyncFile *)id)->pBaseRead); 617 } 618 619 /* 620 ** No disk locking is performed. We keep track of locks locally in 621 ** the async.aLock hash table. Locking should appear to work the same 622 ** as with standard (unmodified) SQLite as long as all connections 623 ** come from this one process. Connections from external processes 624 ** cannot see our internal hash table (obviously) and will thus not 625 ** honor our locks. 626 */ 627 static int asyncLock(OsFile *id, int lockType){ 628 AsyncFile *pFile = (AsyncFile*)id; 629 TRACE(("LOCK %d (%s)\n", lockType, pFile->zName)); 630 pthread_mutex_lock(&async.lockMutex); 631 sqlite3HashInsert(&async.aLock, pFile->zName, pFile->nName, (void*)lockType); 632 pthread_mutex_unlock(&async.lockMutex); 633 return SQLITE_OK; 634 } 635 static int asyncUnlock(OsFile *id, int lockType){ 636 return asyncLock(id, lockType); 637 } 638 639 /* 640 ** This function is called when the pager layer first opens a database file 641 ** and is checking for a hot-journal. 642 */ 643 static int asyncCheckReservedLock(OsFile *id){ 644 AsyncFile *pFile = (AsyncFile*)id; 645 int rc; 646 pthread_mutex_lock(&async.lockMutex); 647 rc = (int)sqlite3HashFind(&async.aLock, pFile->zName, pFile->nName); 648 pthread_mutex_unlock(&async.lockMutex); 649 TRACE(("CHECK-LOCK %d (%s)\n", rc, pFile->zName)); 650 return rc>SHARED_LOCK; 651 } 652 653 /* 654 ** This is broken. But sqlite3OsLockState() is only used for testing anyway. 655 */ 656 static int asyncLockState(OsFile *id){ 657 return SQLITE_OK; 658 } 659 660 /* 661 ** The following variables hold pointers to the original versions of 662 ** OS-layer interface routines that are overloaded in order to create 663 ** the asynchronous I/O backend. 664 */ 665 static int (*xOrigOpenReadWrite)(const char*, OsFile**, int*) = 0; 666 static int (*xOrigOpenExclusive)(const char*, OsFile**, int) = 0; 667 static int (*xOrigOpenReadOnly)(const char*, OsFile**) = 0; 668 static int (*xOrigDelete)(const char*) = 0; 669 static int (*xOrigFileExists)(const char*) = 0; 670 static int (*xOrigSyncDirectory)(const char*) = 0; 671 672 /* 673 ** This routine does most of the work of opening a file and building 674 ** the OsFile structure. 675 */ 676 static int asyncOpenFile( 677 const char *zName, /* The name of the file to be opened */ 678 OsFile **pFile, /* Put the OsFile structure here */ 679 OsFile *pBaseRead, /* The real OsFile from the real I/O routine */ 680 int openForWriting /* Open a second file handle for writing if true */ 681 ){ 682 int rc, i, n; 683 AsyncFile *p; 684 OsFile *pBaseWrite = 0; 685 686 static IoMethod iomethod = { 687 asyncClose, 688 asyncOpenDirectory, 689 asyncRead, 690 asyncWrite, 691 asyncSeek, 692 asyncTruncate, 693 asyncSync, 694 asyncSetFullSync, 695 asyncFileHandle, 696 asyncFileSize, 697 asyncLock, 698 asyncUnlock, 699 asyncLockState, 700 asyncCheckReservedLock 701 }; 702 703 if( openForWriting && SQLITE_ASYNC_TWO_FILEHANDLES ){ 704 int dummy; 705 rc = xOrigOpenReadWrite(zName, &pBaseWrite, &dummy); 706 if( rc!=SQLITE_OK ){ 707 goto error_out; 708 } 709 } 710 711 n = strlen(zName); 712 for(i=n-1; i>=0 && zName[i]!='/'; i--){} 713 p = (AsyncFile *)sqlite3OsMalloc(sizeof(AsyncFile) + n - i); 714 if( !p ){ 715 rc = SQLITE_NOMEM; 716 goto error_out; 717 } 718 memset(p, 0, sizeof(AsyncFile)); 719 p->zName = (char*)&p[1]; 720 strcpy(p->zName, &zName[i+1]); 721 p->nName = n - i; 722 p->pMethod = &iomethod; 723 p->pBaseRead = pBaseRead; 724 p->pBaseWrite = pBaseWrite; 725 726 *pFile = (OsFile *)p; 727 return SQLITE_OK; 728 729 error_out: 730 assert(!p); 731 sqlite3OsClose(&pBaseRead); 732 sqlite3OsClose(&pBaseWrite); 733 *pFile = 0; 734 return rc; 735 } 736 737 /* 738 ** The async-IO backends implementation of the three functions used to open 739 ** a file (xOpenExclusive, xOpenReadWrite and xOpenReadOnly). Most of the 740 ** work is done in function asyncOpenFile() - see above. 741 */ 742 static int asyncOpenExclusive(const char *z, OsFile **ppFile, int delFlag){ 743 int rc = asyncOpenFile(z, ppFile, 0, 0); 744 if( rc==SQLITE_OK ){ 745 AsyncFile *pFile = (AsyncFile *)(*ppFile); 746 int nByte = strlen(z)+1; 747 i64 i = (i64)(delFlag); 748 rc = addNewAsyncWrite(pFile, ASYNC_OPENEXCLUSIVE, i, nByte, z); 749 if( rc!=SQLITE_OK ){ 750 sqlite3OsFree(pFile); 751 *ppFile = 0; 752 } 753 } 754 if( rc==SQLITE_OK ){ 755 incrOpenFileCount(); 756 } 757 return rc; 758 } 759 static int asyncOpenReadOnly(const char *z, OsFile **ppFile){ 760 OsFile *pBase = 0; 761 int rc = xOrigOpenReadOnly(z, &pBase); 762 if( rc==SQLITE_OK ){ 763 rc = asyncOpenFile(z, ppFile, pBase, 0); 764 } 765 if( rc==SQLITE_OK ){ 766 incrOpenFileCount(); 767 } 768 return rc; 769 } 770 static int asyncOpenReadWrite(const char *z, OsFile **ppFile, int *pReadOnly){ 771 OsFile *pBase = 0; 772 int rc = xOrigOpenReadWrite(z, &pBase, pReadOnly); 773 if( rc==SQLITE_OK ){ 774 rc = asyncOpenFile(z, ppFile, pBase, (*pReadOnly ? 0 : 1)); 775 } 776 if( rc==SQLITE_OK ){ 777 incrOpenFileCount(); 778 } 779 return rc; 780 } 781 782 /* 783 ** Implementation of sqlite3OsDelete. Add an entry to the end of the 784 ** write-op queue to perform the delete. 785 */ 786 static int asyncDelete(const char *z){ 787 return addNewAsyncWrite(0, ASYNC_DELETE, 0, strlen(z)+1, z); 788 } 789 790 /* 791 ** Implementation of sqlite3OsSyncDirectory. Add an entry to the end of the 792 ** write-op queue to perform the directory sync. 793 */ 794 static int asyncSyncDirectory(const char *z){ 795 return addNewAsyncWrite(0, ASYNC_SYNCDIRECTORY, 0, strlen(z)+1, z); 796 } 797 798 /* 799 ** Implementation of sqlite3OsFileExists. Return true if file 'z' exists 800 ** in the file system. 801 ** 802 ** This method holds the mutex from start to finish. 803 */ 804 static int asyncFileExists(const char *z){ 805 int ret; 806 AsyncWrite *p; 807 808 pthread_mutex_lock(&async.queueMutex); 809 810 /* See if the real file system contains the specified file. */ 811 ret = xOrigFileExists(z); 812 813 for(p=async.pQueueFirst; p; p = p->pNext){ 814 if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, z) ){ 815 ret = 0; 816 }else if( p->op==ASYNC_OPENEXCLUSIVE && 0==strcmp(p->zBuf, z) ){ 817 ret = 1; 818 } 819 } 820 821 TRACE(("EXISTS: %s = %d\n", z, ret)); 822 pthread_mutex_unlock(&async.queueMutex); 823 return ret; 824 } 825 826 /* 827 ** Call this routine to enable or disable the 828 ** asynchronous IO features implemented in this file. 829 ** 830 ** This routine is not even remotely threadsafe. Do not call 831 ** this routine while any SQLite database connections are open. 832 */ 833 static void asyncEnable(int enable){ 834 if( enable && xOrigOpenReadWrite==0 ){ 835 assert(sqlite3Os.xOpenReadWrite); 836 sqlite3HashInit(&async.aLock, SQLITE_HASH_BINARY, 1); 837 xOrigOpenReadWrite = sqlite3Os.xOpenReadWrite; 838 xOrigOpenReadOnly = sqlite3Os.xOpenReadOnly; 839 xOrigOpenExclusive = sqlite3Os.xOpenExclusive; 840 xOrigDelete = sqlite3Os.xDelete; 841 xOrigFileExists = sqlite3Os.xFileExists; 842 xOrigSyncDirectory = sqlite3Os.xSyncDirectory; 843 844 sqlite3Os.xOpenReadWrite = asyncOpenReadWrite; 845 sqlite3Os.xOpenReadOnly = asyncOpenReadOnly; 846 sqlite3Os.xOpenExclusive = asyncOpenExclusive; 847 sqlite3Os.xDelete = asyncDelete; 848 sqlite3Os.xFileExists = asyncFileExists; 849 sqlite3Os.xSyncDirectory = asyncSyncDirectory; 850 assert(sqlite3Os.xOpenReadWrite); 851 } 852 if( !enable && xOrigOpenReadWrite!=0 ){ 853 assert(sqlite3Os.xOpenReadWrite); 854 sqlite3HashClear(&async.aLock); 855 sqlite3Os.xOpenReadWrite = xOrigOpenReadWrite; 856 sqlite3Os.xOpenReadOnly = xOrigOpenReadOnly; 857 sqlite3Os.xOpenExclusive = xOrigOpenExclusive; 858 sqlite3Os.xDelete = xOrigDelete; 859 sqlite3Os.xFileExists = xOrigFileExists; 860 sqlite3Os.xSyncDirectory = xOrigSyncDirectory; 861 862 xOrigOpenReadWrite = 0; 863 xOrigOpenReadOnly = 0; 864 xOrigOpenExclusive = 0; 865 xOrigDelete = 0; 866 xOrigFileExists = 0; 867 xOrigSyncDirectory = 0; 868 assert(sqlite3Os.xOpenReadWrite); 869 } 870 } 871 872 /* 873 ** This procedure runs in a separate thread, reading messages off of the 874 ** write queue and processing them one by one. 875 ** 876 ** If async.writerHaltNow is true, then this procedure exits 877 ** after processing a single message. 878 ** 879 ** If async.writerHaltWhenIdle is true, then this procedure exits when 880 ** the write queue is empty. 881 ** 882 ** If both of the above variables are false, this procedure runs 883 ** indefinately, waiting for operations to be added to the write queue 884 ** and processing them in the order in which they arrive. 885 ** 886 ** An artifical delay of async.ioDelay milliseconds is inserted before 887 ** each write operation in order to simulate the effect of a slow disk. 888 ** 889 ** Only one instance of this procedure may be running at a time. 890 */ 891 static void *asyncWriterThread(void *NotUsed){ 892 AsyncWrite *p = 0; 893 int rc = SQLITE_OK; 894 int holdingMutex = 0; 895 896 if( pthread_mutex_trylock(&async.writerMutex) ){ 897 return 0; 898 } 899 while( async.writerHaltNow==0 ){ 900 OsFile *pBase = 0; 901 902 if( !holdingMutex ){ 903 pthread_mutex_lock(&async.queueMutex); 904 } 905 while( (p = async.pQueueFirst)==0 ){ 906 pthread_cond_broadcast(&async.emptySignal); 907 if( async.writerHaltWhenIdle ){ 908 pthread_mutex_unlock(&async.queueMutex); 909 break; 910 }else{ 911 TRACE(("IDLE\n")); 912 pthread_cond_wait(&async.queueSignal, &async.queueMutex); 913 TRACE(("WAKEUP\n")); 914 } 915 } 916 if( p==0 ) break; 917 holdingMutex = 1; 918 919 /* Right now this thread is holding the mutex on the write-op queue. 920 ** Variable 'p' points to the first entry in the write-op queue. In 921 ** the general case, we hold on to the mutex for the entire body of 922 ** the loop. 923 ** 924 ** However in the cases enumerated below, we relinquish the mutex, 925 ** perform the IO, and then re-request the mutex before removing 'p' from 926 ** the head of the write-op queue. The idea is to increase concurrency with 927 ** sqlite threads. 928 ** 929 ** * An ASYNC_CLOSE operation. 930 ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish 931 ** the mutex, call the underlying xOpenExclusive() function, then 932 ** re-aquire the mutex before seting the AsyncFile.pBaseRead 933 ** variable. 934 ** * ASYNC_SYNC and ASYNC_WRITE operations, if 935 ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two 936 ** file-handles are open for the particular file being "synced". 937 */ 938 if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){ 939 p->op = ASYNC_NOOP; 940 } 941 if( p->pFile ){ 942 pBase = p->pFile->pBaseWrite; 943 if( 944 p->op==ASYNC_CLOSE || 945 p->op==ASYNC_OPENEXCLUSIVE || 946 (pBase && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) 947 ){ 948 pthread_mutex_unlock(&async.queueMutex); 949 holdingMutex = 0; 950 } 951 if( !pBase ){ 952 pBase = p->pFile->pBaseRead; 953 } 954 } 955 956 switch( p->op ){ 957 case ASYNC_NOOP: 958 break; 959 960 case ASYNC_WRITE: 961 assert( pBase ); 962 TRACE(("WRITE %s %d bytes at %d\n", 963 p->pFile->zName, p->nByte, p->iOffset)); 964 rc = sqlite3OsSeek(pBase, p->iOffset); 965 if( rc==SQLITE_OK ){ 966 rc = sqlite3OsWrite(pBase, (const void *)(p->zBuf), p->nByte); 967 } 968 break; 969 970 case ASYNC_SYNC: 971 assert( pBase ); 972 TRACE(("SYNC %s\n", p->pFile->zName)); 973 rc = sqlite3OsSync(pBase, p->nByte); 974 break; 975 976 case ASYNC_TRUNCATE: 977 assert( pBase ); 978 TRACE(("TRUNCATE %s to %d bytes\n", p->pFile->zName, p->iOffset)); 979 rc = sqlite3OsTruncate(pBase, p->iOffset); 980 break; 981 982 case ASYNC_CLOSE: 983 TRACE(("CLOSE %s\n", p->pFile->zName)); 984 sqlite3OsClose(&p->pFile->pBaseWrite); 985 sqlite3OsClose(&p->pFile->pBaseRead); 986 sqlite3OsFree(p->pFile); 987 break; 988 989 case ASYNC_OPENDIRECTORY: 990 assert( pBase ); 991 TRACE(("OPENDIR %s\n", p->zBuf)); 992 sqlite3OsOpenDirectory(pBase, p->zBuf); 993 break; 994 995 case ASYNC_SETFULLSYNC: 996 assert( pBase ); 997 TRACE(("SETFULLSYNC %s %d\n", p->pFile->zName, p->nByte)); 998 sqlite3OsSetFullSync(pBase, p->nByte); 999 break; 1000 1001 case ASYNC_DELETE: 1002 TRACE(("DELETE %s\n", p->zBuf)); 1003 rc = xOrigDelete(p->zBuf); 1004 break; 1005 1006 case ASYNC_SYNCDIRECTORY: 1007 TRACE(("SYNCDIR %s\n", p->zBuf)); 1008 rc = xOrigSyncDirectory(p->zBuf); 1009 break; 1010 1011 case ASYNC_OPENEXCLUSIVE: { 1012 AsyncFile *pFile = p->pFile; 1013 int delFlag = ((p->iOffset)?1:0); 1014 OsFile *pBase = 0; 1015 TRACE(("OPEN %s delFlag=%d\n", p->zBuf, delFlag)); 1016 assert(pFile->pBaseRead==0 && pFile->pBaseWrite==0); 1017 rc = xOrigOpenExclusive(p->zBuf, &pBase, delFlag); 1018 assert( holdingMutex==0 ); 1019 pthread_mutex_lock(&async.queueMutex); 1020 holdingMutex = 1; 1021 if( rc==SQLITE_OK ){ 1022 pFile->pBaseRead = pBase; 1023 } 1024 break; 1025 } 1026 1027 default: assert(!"Illegal value for AsyncWrite.op"); 1028 } 1029 1030 /* If we didn't hang on to the mutex during the IO op, obtain it now 1031 ** so that the AsyncWrite structure can be safely removed from the 1032 ** global write-op queue. 1033 */ 1034 if( !holdingMutex ){ 1035 pthread_mutex_lock(&async.queueMutex); 1036 holdingMutex = 1; 1037 } 1038 /* TRACE(("UNLINK %p\n", p)); */ 1039 if( p==async.pQueueLast ){ 1040 async.pQueueLast = 0; 1041 } 1042 async.pQueueFirst = p->pNext; 1043 sqlite3OsFree(p); 1044 assert( holdingMutex ); 1045 1046 /* An IO error has occured. We cannot report the error back to the 1047 ** connection that requested the I/O since the error happened 1048 ** asynchronously. The connection has already moved on. There 1049 ** really is nobody to report the error to. 1050 ** 1051 ** The file for which the error occured may have been a database or 1052 ** journal file. Regardless, none of the currently queued operations 1053 ** associated with the same database should now be performed. Nor should 1054 ** any subsequently requested IO on either a database or journal file 1055 ** handle for the same database be accepted until the main database 1056 ** file handle has been closed and reopened. 1057 ** 1058 ** Furthermore, no further IO should be queued or performed on any file 1059 ** handle associated with a database that may have been part of a 1060 ** multi-file transaction that included the database associated with 1061 ** the IO error (i.e. a database ATTACHed to the same handle at some 1062 ** point in time). 1063 */ 1064 if( rc!=SQLITE_OK ){ 1065 async.ioError = rc; 1066 } 1067 1068 /* Drop the queue mutex before continuing to the next write operation 1069 ** in order to give other threads a chance to work with the write queue. 1070 */ 1071 if( !async.pQueueFirst || !async.ioError ){ 1072 sqlite3ApiExit(0, 0); 1073 pthread_mutex_unlock(&async.queueMutex); 1074 holdingMutex = 0; 1075 if( async.ioDelay>0 ){ 1076 sqlite3OsSleep(async.ioDelay); 1077 }else{ 1078 sched_yield(); 1079 } 1080 } 1081 } 1082 1083 pthread_mutex_unlock(&async.writerMutex); 1084 return 0; 1085 } 1086 1087 /************************************************************************** 1088 ** The remaining code defines a Tcl interface for testing the asynchronous 1089 ** IO implementation in this file. 1090 ** 1091 ** To adapt the code to a non-TCL environment, delete or comment out 1092 ** the code that follows. 1093 */ 1094 1095 /* 1096 ** sqlite3async_enable ?YES/NO? 1097 ** 1098 ** Enable or disable the asynchronous I/O backend. This command is 1099 ** not thread-safe. Do not call it while any database connections 1100 ** are open. 1101 */ 1102 static int testAsyncEnable( 1103 void * clientData, 1104 Tcl_Interp *interp, 1105 int objc, 1106 Tcl_Obj *CONST objv[] 1107 ){ 1108 if( objc!=1 && objc!=2 ){ 1109 Tcl_WrongNumArgs(interp, 1, objv, "?YES/NO?"); 1110 return TCL_ERROR; 1111 } 1112 if( objc==1 ){ 1113 Tcl_SetObjResult(interp, Tcl_NewBooleanObj(xOrigOpenReadWrite!=0)); 1114 }else{ 1115 int en; 1116 if( Tcl_GetBooleanFromObj(interp, objv[1], &en) ) return TCL_ERROR; 1117 asyncEnable(en); 1118 } 1119 return TCL_OK; 1120 } 1121 1122 /* 1123 ** sqlite3async_halt "now"|"idle"|"never" 1124 ** 1125 ** Set the conditions at which the writer thread will halt. 1126 */ 1127 static int testAsyncHalt( 1128 void * clientData, 1129 Tcl_Interp *interp, 1130 int objc, 1131 Tcl_Obj *CONST objv[] 1132 ){ 1133 const char *zCond; 1134 if( objc!=2 ){ 1135 Tcl_WrongNumArgs(interp, 1, objv, "\"now\"|\"idle\"|\"never\""); 1136 return TCL_ERROR; 1137 } 1138 zCond = Tcl_GetString(objv[1]); 1139 if( strcmp(zCond, "now")==0 ){ 1140 async.writerHaltNow = 1; 1141 pthread_cond_broadcast(&async.queueSignal); 1142 }else if( strcmp(zCond, "idle")==0 ){ 1143 async.writerHaltWhenIdle = 1; 1144 async.writerHaltNow = 0; 1145 pthread_cond_broadcast(&async.queueSignal); 1146 }else if( strcmp(zCond, "never")==0 ){ 1147 async.writerHaltWhenIdle = 0; 1148 async.writerHaltNow = 0; 1149 }else{ 1150 Tcl_AppendResult(interp, 1151 "should be one of: \"now\", \"idle\", or \"never\"", (char*)0); 1152 return TCL_ERROR; 1153 } 1154 return TCL_OK; 1155 } 1156 1157 /* 1158 ** sqlite3async_delay ?MS? 1159 ** 1160 ** Query or set the number of milliseconds of delay in the writer 1161 ** thread after each write operation. The default is 0. By increasing 1162 ** the memory delay we can simulate the effect of slow disk I/O. 1163 */ 1164 static int testAsyncDelay( 1165 void * clientData, 1166 Tcl_Interp *interp, 1167 int objc, 1168 Tcl_Obj *CONST objv[] 1169 ){ 1170 if( objc!=1 && objc!=2 ){ 1171 Tcl_WrongNumArgs(interp, 1, objv, "?MS?"); 1172 return TCL_ERROR; 1173 } 1174 if( objc==1 ){ 1175 Tcl_SetObjResult(interp, Tcl_NewIntObj(async.ioDelay)); 1176 }else{ 1177 int ioDelay; 1178 if( Tcl_GetIntFromObj(interp, objv[1], &ioDelay) ) return TCL_ERROR; 1179 async.ioDelay = ioDelay; 1180 } 1181 return TCL_OK; 1182 } 1183 1184 /* 1185 ** sqlite3async_start 1186 ** 1187 ** Start a new writer thread. 1188 */ 1189 static int testAsyncStart( 1190 void * clientData, 1191 Tcl_Interp *interp, 1192 int objc, 1193 Tcl_Obj *CONST objv[] 1194 ){ 1195 pthread_t x; 1196 int rc; 1197 rc = pthread_create(&x, 0, asyncWriterThread, 0); 1198 if( rc ){ 1199 Tcl_AppendResult(interp, "failed to create the thread", 0); 1200 return TCL_ERROR; 1201 } 1202 pthread_detach(x); 1203 return TCL_OK; 1204 } 1205 1206 /* 1207 ** sqlite3async_wait 1208 ** 1209 ** Wait for the current writer thread to terminate. 1210 ** 1211 ** If the current writer thread is set to run forever then this 1212 ** command would block forever. To prevent that, an error is returned. 1213 */ 1214 static int testAsyncWait( 1215 void * clientData, 1216 Tcl_Interp *interp, 1217 int objc, 1218 Tcl_Obj *CONST objv[] 1219 ){ 1220 int cnt = 10; 1221 if( async.writerHaltNow==0 && async.writerHaltWhenIdle==0 ){ 1222 Tcl_AppendResult(interp, "would block forever", (char*)0); 1223 return TCL_ERROR; 1224 } 1225 1226 while( cnt-- && !pthread_mutex_trylock(&async.writerMutex) ){ 1227 pthread_mutex_unlock(&async.writerMutex); 1228 sched_yield(); 1229 } 1230 if( cnt>=0 ){ 1231 TRACE(("WAIT\n")); 1232 pthread_mutex_lock(&async.queueMutex); 1233 pthread_cond_broadcast(&async.queueSignal); 1234 pthread_mutex_unlock(&async.queueMutex); 1235 pthread_mutex_lock(&async.writerMutex); 1236 pthread_mutex_unlock(&async.writerMutex); 1237 }else{ 1238 TRACE(("NO-WAIT\n")); 1239 } 1240 return TCL_OK; 1241 } 1242 1243 1244 #endif /* OS_UNIX and THREADSAFE and defined(SQLITE_ENABLE_REDEF_IO) */ 1245 1246 /* 1247 ** This routine registers the custom TCL commands defined in this 1248 ** module. This should be the only procedure visible from outside 1249 ** of this module. 1250 */ 1251 int Sqlitetestasync_Init(Tcl_Interp *interp){ 1252 #if OS_UNIX && THREADSAFE && defined(SQLITE_ENABLE_REDEF_IO) 1253 Tcl_CreateObjCommand(interp,"sqlite3async_enable",testAsyncEnable,0,0); 1254 Tcl_CreateObjCommand(interp,"sqlite3async_halt",testAsyncHalt,0,0); 1255 Tcl_CreateObjCommand(interp,"sqlite3async_delay",testAsyncDelay,0,0); 1256 Tcl_CreateObjCommand(interp,"sqlite3async_start",testAsyncStart,0,0); 1257 Tcl_CreateObjCommand(interp,"sqlite3async_wait",testAsyncWait,0,0); 1258 Tcl_LinkVar(interp, "sqlite3async_trace", 1259 (char*)&sqlite3async_trace, TCL_LINK_INT); 1260 #endif /* OS_UNIX and THREADSAFE and defined(SQLITE_ENABLE_REDEF_IO) */ 1261 return TCL_OK; 1262 } 1263