1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Include the header file used to customize the compiler options for MSVC. 20 ** This should be done first so that it can successfully prevent spurious 21 ** compiler warnings due to subsequent content in this file and other files 22 ** that are included by this file. 23 */ 24 #include "msvc.h" 25 26 /* 27 ** Special setup for VxWorks 28 */ 29 #include "vxworks.h" 30 31 /* 32 ** These #defines should enable >2GB file support on POSIX if the 33 ** underlying operating system supports it. If the OS lacks 34 ** large file support, or if the OS is windows, these should be no-ops. 35 ** 36 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 37 ** system #includes. Hence, this block of code must be the very first 38 ** code in all source files. 39 ** 40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 41 ** on the compiler command line. This is necessary if you are compiling 42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 43 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 44 ** without this option, LFS is enable. But LFS does not exist in the kernel 45 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 46 ** portability you should omit LFS. 47 ** 48 ** The previous paragraph was written in 2005. (This paragraph is written 49 ** on 2008-11-28.) These days, all Linux kernels support large files, so 50 ** you should probably leave LFS enabled. But some embedded platforms might 51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 52 ** 53 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 54 */ 55 #ifndef SQLITE_DISABLE_LFS 56 # define _LARGE_FILE 1 57 # ifndef _FILE_OFFSET_BITS 58 # define _FILE_OFFSET_BITS 64 59 # endif 60 # define _LARGEFILE_SOURCE 1 61 #endif 62 63 /* What version of GCC is being used. 0 means GCC is not being used */ 64 #ifdef __GNUC__ 65 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 66 #else 67 # define GCC_VERSION 0 68 #endif 69 70 /* Needed for various definitions... */ 71 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 72 # define _GNU_SOURCE 73 #endif 74 75 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 76 # define _BSD_SOURCE 77 #endif 78 79 /* 80 ** For MinGW, check to see if we can include the header file containing its 81 ** version information, among other things. Normally, this internal MinGW 82 ** header file would [only] be included automatically by other MinGW header 83 ** files; however, the contained version information is now required by this 84 ** header file to work around binary compatibility issues (see below) and 85 ** this is the only known way to reliably obtain it. This entire #if block 86 ** would be completely unnecessary if there was any other way of detecting 87 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 88 ** some MinGW-specific macros). When compiling for MinGW, either the 89 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 90 ** defined; otherwise, detection of conditions specific to MinGW will be 91 ** disabled. 92 */ 93 #if defined(_HAVE_MINGW_H) 94 # include "mingw.h" 95 #elif defined(_HAVE__MINGW_H) 96 # include "_mingw.h" 97 #endif 98 99 /* 100 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 101 ** define is required to maintain binary compatibility with the MSVC runtime 102 ** library in use (e.g. for Windows XP). 103 */ 104 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 105 defined(_WIN32) && !defined(_WIN64) && \ 106 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 107 defined(__MSVCRT__) 108 # define _USE_32BIT_TIME_T 109 #endif 110 111 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 112 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 113 ** MinGW. 114 */ 115 #include "sqlite3.h" 116 117 /* 118 ** Include the configuration header output by 'configure' if we're using the 119 ** autoconf-based build 120 */ 121 #ifdef _HAVE_SQLITE_CONFIG_H 122 #include "config.h" 123 #endif 124 125 #include "sqliteLimit.h" 126 127 /* Disable nuisance warnings on Borland compilers */ 128 #if defined(__BORLANDC__) 129 #pragma warn -rch /* unreachable code */ 130 #pragma warn -ccc /* Condition is always true or false */ 131 #pragma warn -aus /* Assigned value is never used */ 132 #pragma warn -csu /* Comparing signed and unsigned */ 133 #pragma warn -spa /* Suspicious pointer arithmetic */ 134 #endif 135 136 /* 137 ** Include standard header files as necessary 138 */ 139 #ifdef HAVE_STDINT_H 140 #include <stdint.h> 141 #endif 142 #ifdef HAVE_INTTYPES_H 143 #include <inttypes.h> 144 #endif 145 146 /* 147 ** The following macros are used to cast pointers to integers and 148 ** integers to pointers. The way you do this varies from one compiler 149 ** to the next, so we have developed the following set of #if statements 150 ** to generate appropriate macros for a wide range of compilers. 151 ** 152 ** The correct "ANSI" way to do this is to use the intptr_t type. 153 ** Unfortunately, that typedef is not available on all compilers, or 154 ** if it is available, it requires an #include of specific headers 155 ** that vary from one machine to the next. 156 ** 157 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 158 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 159 ** So we have to define the macros in different ways depending on the 160 ** compiler. 161 */ 162 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 163 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 164 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 165 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 166 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 167 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 168 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 169 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 170 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 171 #else /* Generates a warning - but it always works */ 172 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 173 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 174 #endif 175 176 /* 177 ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to 178 ** something between S (inclusive) and E (exclusive). 179 ** 180 ** In other words, S is a buffer and E is a pointer to the first byte after 181 ** the end of buffer S. This macro returns true if P points to something 182 ** contained within the buffer S. 183 */ 184 #if defined(HAVE_STDINT_H) 185 # define SQLITE_WITHIN(P,S,E) \ 186 ((uintptr_t)(P)>=(uintptr_t)(S) && (uintptr_t)(P)<(uintptr_t)(E)) 187 #else 188 # define SQLITE_WITHIN(P,S,E) ((P)>=(S) && (P)<(E)) 189 #endif 190 191 /* 192 ** A macro to hint to the compiler that a function should not be 193 ** inlined. 194 */ 195 #if defined(__GNUC__) 196 # define SQLITE_NOINLINE __attribute__((noinline)) 197 #elif defined(_MSC_VER) && _MSC_VER>=1310 198 # define SQLITE_NOINLINE __declspec(noinline) 199 #else 200 # define SQLITE_NOINLINE 201 #endif 202 203 /* 204 ** Make sure that the compiler intrinsics we desire are enabled when 205 ** compiling with an appropriate version of MSVC unless prevented by 206 ** the SQLITE_DISABLE_INTRINSIC define. 207 */ 208 #if !defined(SQLITE_DISABLE_INTRINSIC) 209 # if defined(_MSC_VER) && _MSC_VER>=1300 210 # if !defined(_WIN32_WCE) 211 # include <intrin.h> 212 # pragma intrinsic(_byteswap_ushort) 213 # pragma intrinsic(_byteswap_ulong) 214 # pragma intrinsic(_ReadWriteBarrier) 215 # else 216 # include <cmnintrin.h> 217 # endif 218 # endif 219 #endif 220 221 /* 222 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 223 ** 0 means mutexes are permanently disable and the library is never 224 ** threadsafe. 1 means the library is serialized which is the highest 225 ** level of threadsafety. 2 means the library is multithreaded - multiple 226 ** threads can use SQLite as long as no two threads try to use the same 227 ** database connection at the same time. 228 ** 229 ** Older versions of SQLite used an optional THREADSAFE macro. 230 ** We support that for legacy. 231 */ 232 #if !defined(SQLITE_THREADSAFE) 233 # if defined(THREADSAFE) 234 # define SQLITE_THREADSAFE THREADSAFE 235 # else 236 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 237 # endif 238 #endif 239 240 /* 241 ** Powersafe overwrite is on by default. But can be turned off using 242 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 243 */ 244 #ifndef SQLITE_POWERSAFE_OVERWRITE 245 # define SQLITE_POWERSAFE_OVERWRITE 1 246 #endif 247 248 /* 249 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 250 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 251 ** which case memory allocation statistics are disabled by default. 252 */ 253 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 254 # define SQLITE_DEFAULT_MEMSTATUS 1 255 #endif 256 257 /* 258 ** Exactly one of the following macros must be defined in order to 259 ** specify which memory allocation subsystem to use. 260 ** 261 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 262 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 263 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 264 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 265 ** 266 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 267 ** assert() macro is enabled, each call into the Win32 native heap subsystem 268 ** will cause HeapValidate to be called. If heap validation should fail, an 269 ** assertion will be triggered. 270 ** 271 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 272 ** the default. 273 */ 274 #if defined(SQLITE_SYSTEM_MALLOC) \ 275 + defined(SQLITE_WIN32_MALLOC) \ 276 + defined(SQLITE_ZERO_MALLOC) \ 277 + defined(SQLITE_MEMDEBUG)>1 278 # error "Two or more of the following compile-time configuration options\ 279 are defined but at most one is allowed:\ 280 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 281 SQLITE_ZERO_MALLOC" 282 #endif 283 #if defined(SQLITE_SYSTEM_MALLOC) \ 284 + defined(SQLITE_WIN32_MALLOC) \ 285 + defined(SQLITE_ZERO_MALLOC) \ 286 + defined(SQLITE_MEMDEBUG)==0 287 # define SQLITE_SYSTEM_MALLOC 1 288 #endif 289 290 /* 291 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 292 ** sizes of memory allocations below this value where possible. 293 */ 294 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 295 # define SQLITE_MALLOC_SOFT_LIMIT 1024 296 #endif 297 298 /* 299 ** We need to define _XOPEN_SOURCE as follows in order to enable 300 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 301 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 302 ** it. 303 */ 304 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 305 # define _XOPEN_SOURCE 600 306 #endif 307 308 /* 309 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 310 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 311 ** make it true by defining or undefining NDEBUG. 312 ** 313 ** Setting NDEBUG makes the code smaller and faster by disabling the 314 ** assert() statements in the code. So we want the default action 315 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 316 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 317 ** feature. 318 */ 319 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 320 # define NDEBUG 1 321 #endif 322 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 323 # undef NDEBUG 324 #endif 325 326 /* 327 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 328 */ 329 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 330 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 331 #endif 332 333 /* 334 ** The testcase() macro is used to aid in coverage testing. When 335 ** doing coverage testing, the condition inside the argument to 336 ** testcase() must be evaluated both true and false in order to 337 ** get full branch coverage. The testcase() macro is inserted 338 ** to help ensure adequate test coverage in places where simple 339 ** condition/decision coverage is inadequate. For example, testcase() 340 ** can be used to make sure boundary values are tested. For 341 ** bitmask tests, testcase() can be used to make sure each bit 342 ** is significant and used at least once. On switch statements 343 ** where multiple cases go to the same block of code, testcase() 344 ** can insure that all cases are evaluated. 345 ** 346 */ 347 #ifdef SQLITE_COVERAGE_TEST 348 void sqlite3Coverage(int); 349 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 350 #else 351 # define testcase(X) 352 #endif 353 354 /* 355 ** The TESTONLY macro is used to enclose variable declarations or 356 ** other bits of code that are needed to support the arguments 357 ** within testcase() and assert() macros. 358 */ 359 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 360 # define TESTONLY(X) X 361 #else 362 # define TESTONLY(X) 363 #endif 364 365 /* 366 ** Sometimes we need a small amount of code such as a variable initialization 367 ** to setup for a later assert() statement. We do not want this code to 368 ** appear when assert() is disabled. The following macro is therefore 369 ** used to contain that setup code. The "VVA" acronym stands for 370 ** "Verification, Validation, and Accreditation". In other words, the 371 ** code within VVA_ONLY() will only run during verification processes. 372 */ 373 #ifndef NDEBUG 374 # define VVA_ONLY(X) X 375 #else 376 # define VVA_ONLY(X) 377 #endif 378 379 /* 380 ** The ALWAYS and NEVER macros surround boolean expressions which 381 ** are intended to always be true or false, respectively. Such 382 ** expressions could be omitted from the code completely. But they 383 ** are included in a few cases in order to enhance the resilience 384 ** of SQLite to unexpected behavior - to make the code "self-healing" 385 ** or "ductile" rather than being "brittle" and crashing at the first 386 ** hint of unplanned behavior. 387 ** 388 ** In other words, ALWAYS and NEVER are added for defensive code. 389 ** 390 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 391 ** be true and false so that the unreachable code they specify will 392 ** not be counted as untested code. 393 */ 394 #if defined(SQLITE_COVERAGE_TEST) 395 # define ALWAYS(X) (1) 396 # define NEVER(X) (0) 397 #elif !defined(NDEBUG) 398 # define ALWAYS(X) ((X)?1:(assert(0),0)) 399 # define NEVER(X) ((X)?(assert(0),1):0) 400 #else 401 # define ALWAYS(X) (X) 402 # define NEVER(X) (X) 403 #endif 404 405 /* 406 ** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is 407 ** defined. We need to defend against those failures when testing with 408 ** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches 409 ** during a normal build. The following macro can be used to disable tests 410 ** that are always false except when SQLITE_TEST_REALLOC_STRESS is set. 411 */ 412 #if defined(SQLITE_TEST_REALLOC_STRESS) 413 # define ONLY_IF_REALLOC_STRESS(X) (X) 414 #elif !defined(NDEBUG) 415 # define ONLY_IF_REALLOC_STRESS(X) ((X)?(assert(0),1):0) 416 #else 417 # define ONLY_IF_REALLOC_STRESS(X) (0) 418 #endif 419 420 /* 421 ** Declarations used for tracing the operating system interfaces. 422 */ 423 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 424 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 425 extern int sqlite3OSTrace; 426 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 427 # define SQLITE_HAVE_OS_TRACE 428 #else 429 # define OSTRACE(X) 430 # undef SQLITE_HAVE_OS_TRACE 431 #endif 432 433 /* 434 ** Is the sqlite3ErrName() function needed in the build? Currently, 435 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 436 ** OSTRACE is enabled), and by several "test*.c" files (which are 437 ** compiled using SQLITE_TEST). 438 */ 439 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 440 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 441 # define SQLITE_NEED_ERR_NAME 442 #else 443 # undef SQLITE_NEED_ERR_NAME 444 #endif 445 446 /* 447 ** Return true (non-zero) if the input is an integer that is too large 448 ** to fit in 32-bits. This macro is used inside of various testcase() 449 ** macros to verify that we have tested SQLite for large-file support. 450 */ 451 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 452 453 /* 454 ** The macro unlikely() is a hint that surrounds a boolean 455 ** expression that is usually false. Macro likely() surrounds 456 ** a boolean expression that is usually true. These hints could, 457 ** in theory, be used by the compiler to generate better code, but 458 ** currently they are just comments for human readers. 459 */ 460 #define likely(X) (X) 461 #define unlikely(X) (X) 462 463 #include "hash.h" 464 #include "parse.h" 465 #include <stdio.h> 466 #include <stdlib.h> 467 #include <string.h> 468 #include <assert.h> 469 #include <stddef.h> 470 471 /* 472 ** If compiling for a processor that lacks floating point support, 473 ** substitute integer for floating-point 474 */ 475 #ifdef SQLITE_OMIT_FLOATING_POINT 476 # define double sqlite_int64 477 # define float sqlite_int64 478 # define LONGDOUBLE_TYPE sqlite_int64 479 # ifndef SQLITE_BIG_DBL 480 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 481 # endif 482 # define SQLITE_OMIT_DATETIME_FUNCS 1 483 # define SQLITE_OMIT_TRACE 1 484 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 485 # undef SQLITE_HAVE_ISNAN 486 #endif 487 #ifndef SQLITE_BIG_DBL 488 # define SQLITE_BIG_DBL (1e99) 489 #endif 490 491 /* 492 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 493 ** afterward. Having this macro allows us to cause the C compiler 494 ** to omit code used by TEMP tables without messy #ifndef statements. 495 */ 496 #ifdef SQLITE_OMIT_TEMPDB 497 #define OMIT_TEMPDB 1 498 #else 499 #define OMIT_TEMPDB 0 500 #endif 501 502 /* 503 ** The "file format" number is an integer that is incremented whenever 504 ** the VDBE-level file format changes. The following macros define the 505 ** the default file format for new databases and the maximum file format 506 ** that the library can read. 507 */ 508 #define SQLITE_MAX_FILE_FORMAT 4 509 #ifndef SQLITE_DEFAULT_FILE_FORMAT 510 # define SQLITE_DEFAULT_FILE_FORMAT 4 511 #endif 512 513 /* 514 ** Determine whether triggers are recursive by default. This can be 515 ** changed at run-time using a pragma. 516 */ 517 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 518 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 519 #endif 520 521 /* 522 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 523 ** on the command-line 524 */ 525 #ifndef SQLITE_TEMP_STORE 526 # define SQLITE_TEMP_STORE 1 527 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 528 #endif 529 530 /* 531 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 532 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 533 ** to zero. 534 */ 535 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 536 # undef SQLITE_MAX_WORKER_THREADS 537 # define SQLITE_MAX_WORKER_THREADS 0 538 #endif 539 #ifndef SQLITE_MAX_WORKER_THREADS 540 # define SQLITE_MAX_WORKER_THREADS 8 541 #endif 542 #ifndef SQLITE_DEFAULT_WORKER_THREADS 543 # define SQLITE_DEFAULT_WORKER_THREADS 0 544 #endif 545 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 546 # undef SQLITE_MAX_WORKER_THREADS 547 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 548 #endif 549 550 /* 551 ** The default initial allocation for the pagecache when using separate 552 ** pagecaches for each database connection. A positive number is the 553 ** number of pages. A negative number N translations means that a buffer 554 ** of -1024*N bytes is allocated and used for as many pages as it will hold. 555 */ 556 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ 557 # define SQLITE_DEFAULT_PCACHE_INITSZ 100 558 #endif 559 560 /* 561 ** GCC does not define the offsetof() macro so we'll have to do it 562 ** ourselves. 563 */ 564 #ifndef offsetof 565 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 566 #endif 567 568 /* 569 ** Macros to compute minimum and maximum of two numbers. 570 */ 571 #define MIN(A,B) ((A)<(B)?(A):(B)) 572 #define MAX(A,B) ((A)>(B)?(A):(B)) 573 574 /* 575 ** Swap two objects of type TYPE. 576 */ 577 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 578 579 /* 580 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 581 ** not, there are still machines out there that use EBCDIC.) 582 */ 583 #if 'A' == '\301' 584 # define SQLITE_EBCDIC 1 585 #else 586 # define SQLITE_ASCII 1 587 #endif 588 589 /* 590 ** Integers of known sizes. These typedefs might change for architectures 591 ** where the sizes very. Preprocessor macros are available so that the 592 ** types can be conveniently redefined at compile-type. Like this: 593 ** 594 ** cc '-DUINTPTR_TYPE=long long int' ... 595 */ 596 #ifndef UINT32_TYPE 597 # ifdef HAVE_UINT32_T 598 # define UINT32_TYPE uint32_t 599 # else 600 # define UINT32_TYPE unsigned int 601 # endif 602 #endif 603 #ifndef UINT16_TYPE 604 # ifdef HAVE_UINT16_T 605 # define UINT16_TYPE uint16_t 606 # else 607 # define UINT16_TYPE unsigned short int 608 # endif 609 #endif 610 #ifndef INT16_TYPE 611 # ifdef HAVE_INT16_T 612 # define INT16_TYPE int16_t 613 # else 614 # define INT16_TYPE short int 615 # endif 616 #endif 617 #ifndef UINT8_TYPE 618 # ifdef HAVE_UINT8_T 619 # define UINT8_TYPE uint8_t 620 # else 621 # define UINT8_TYPE unsigned char 622 # endif 623 #endif 624 #ifndef INT8_TYPE 625 # ifdef HAVE_INT8_T 626 # define INT8_TYPE int8_t 627 # else 628 # define INT8_TYPE signed char 629 # endif 630 #endif 631 #ifndef LONGDOUBLE_TYPE 632 # define LONGDOUBLE_TYPE long double 633 #endif 634 typedef sqlite_int64 i64; /* 8-byte signed integer */ 635 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 636 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 637 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 638 typedef INT16_TYPE i16; /* 2-byte signed integer */ 639 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 640 typedef INT8_TYPE i8; /* 1-byte signed integer */ 641 642 /* 643 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 644 ** that can be stored in a u32 without loss of data. The value 645 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 646 ** have to specify the value in the less intuitive manner shown: 647 */ 648 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 649 650 /* 651 ** The datatype used to store estimates of the number of rows in a 652 ** table or index. This is an unsigned integer type. For 99.9% of 653 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 654 ** can be used at compile-time if desired. 655 */ 656 #ifdef SQLITE_64BIT_STATS 657 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 658 #else 659 typedef u32 tRowcnt; /* 32-bit is the default */ 660 #endif 661 662 /* 663 ** Estimated quantities used for query planning are stored as 16-bit 664 ** logarithms. For quantity X, the value stored is 10*log2(X). This 665 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 666 ** But the allowed values are "grainy". Not every value is representable. 667 ** For example, quantities 16 and 17 are both represented by a LogEst 668 ** of 40. However, since LogEst quantities are suppose to be estimates, 669 ** not exact values, this imprecision is not a problem. 670 ** 671 ** "LogEst" is short for "Logarithmic Estimate". 672 ** 673 ** Examples: 674 ** 1 -> 0 20 -> 43 10000 -> 132 675 ** 2 -> 10 25 -> 46 25000 -> 146 676 ** 3 -> 16 100 -> 66 1000000 -> 199 677 ** 4 -> 20 1000 -> 99 1048576 -> 200 678 ** 10 -> 33 1024 -> 100 4294967296 -> 320 679 ** 680 ** The LogEst can be negative to indicate fractional values. 681 ** Examples: 682 ** 683 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 684 */ 685 typedef INT16_TYPE LogEst; 686 687 /* 688 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 689 */ 690 #ifndef SQLITE_PTRSIZE 691 # if defined(__SIZEOF_POINTER__) 692 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 693 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 694 defined(_M_ARM) || defined(__arm__) || defined(__x86) 695 # define SQLITE_PTRSIZE 4 696 # else 697 # define SQLITE_PTRSIZE 8 698 # endif 699 #endif 700 701 /* 702 ** Macros to determine whether the machine is big or little endian, 703 ** and whether or not that determination is run-time or compile-time. 704 ** 705 ** For best performance, an attempt is made to guess at the byte-order 706 ** using C-preprocessor macros. If that is unsuccessful, or if 707 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 708 ** at run-time. 709 */ 710 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 711 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 712 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 713 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 714 # define SQLITE_BYTEORDER 1234 715 # define SQLITE_BIGENDIAN 0 716 # define SQLITE_LITTLEENDIAN 1 717 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 718 #endif 719 #if (defined(sparc) || defined(__ppc__)) \ 720 && !defined(SQLITE_RUNTIME_BYTEORDER) 721 # define SQLITE_BYTEORDER 4321 722 # define SQLITE_BIGENDIAN 1 723 # define SQLITE_LITTLEENDIAN 0 724 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 725 #endif 726 #if !defined(SQLITE_BYTEORDER) 727 # ifdef SQLITE_AMALGAMATION 728 const int sqlite3one = 1; 729 # else 730 extern const int sqlite3one; 731 # endif 732 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 733 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 734 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 735 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 736 #endif 737 738 /* 739 ** Constants for the largest and smallest possible 64-bit signed integers. 740 ** These macros are designed to work correctly on both 32-bit and 64-bit 741 ** compilers. 742 */ 743 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 744 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 745 746 /* 747 ** Round up a number to the next larger multiple of 8. This is used 748 ** to force 8-byte alignment on 64-bit architectures. 749 */ 750 #define ROUND8(x) (((x)+7)&~7) 751 752 /* 753 ** Round down to the nearest multiple of 8 754 */ 755 #define ROUNDDOWN8(x) ((x)&~7) 756 757 /* 758 ** Assert that the pointer X is aligned to an 8-byte boundary. This 759 ** macro is used only within assert() to verify that the code gets 760 ** all alignment restrictions correct. 761 ** 762 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 763 ** underlying malloc() implementation might return us 4-byte aligned 764 ** pointers. In that case, only verify 4-byte alignment. 765 */ 766 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 767 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 768 #else 769 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 770 #endif 771 772 /* 773 ** Disable MMAP on platforms where it is known to not work 774 */ 775 #if defined(__OpenBSD__) || defined(__QNXNTO__) 776 # undef SQLITE_MAX_MMAP_SIZE 777 # define SQLITE_MAX_MMAP_SIZE 0 778 #endif 779 780 /* 781 ** Default maximum size of memory used by memory-mapped I/O in the VFS 782 */ 783 #ifdef __APPLE__ 784 # include <TargetConditionals.h> 785 #endif 786 #ifndef SQLITE_MAX_MMAP_SIZE 787 # if defined(__linux__) \ 788 || defined(_WIN32) \ 789 || (defined(__APPLE__) && defined(__MACH__)) \ 790 || defined(__sun) \ 791 || defined(__FreeBSD__) \ 792 || defined(__DragonFly__) 793 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 794 # else 795 # define SQLITE_MAX_MMAP_SIZE 0 796 # endif 797 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 798 #endif 799 800 /* 801 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 802 ** default MMAP_SIZE is specified at compile-time, make sure that it does 803 ** not exceed the maximum mmap size. 804 */ 805 #ifndef SQLITE_DEFAULT_MMAP_SIZE 806 # define SQLITE_DEFAULT_MMAP_SIZE 0 807 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 808 #endif 809 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 810 # undef SQLITE_DEFAULT_MMAP_SIZE 811 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 812 #endif 813 814 /* 815 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 816 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 817 ** define SQLITE_ENABLE_STAT3_OR_STAT4 818 */ 819 #ifdef SQLITE_ENABLE_STAT4 820 # undef SQLITE_ENABLE_STAT3 821 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 822 #elif SQLITE_ENABLE_STAT3 823 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 824 #elif SQLITE_ENABLE_STAT3_OR_STAT4 825 # undef SQLITE_ENABLE_STAT3_OR_STAT4 826 #endif 827 828 /* 829 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 830 ** the Select query generator tracing logic is turned on. 831 */ 832 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 833 # define SELECTTRACE_ENABLED 1 834 #else 835 # define SELECTTRACE_ENABLED 0 836 #endif 837 838 /* 839 ** An instance of the following structure is used to store the busy-handler 840 ** callback for a given sqlite handle. 841 ** 842 ** The sqlite.busyHandler member of the sqlite struct contains the busy 843 ** callback for the database handle. Each pager opened via the sqlite 844 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 845 ** callback is currently invoked only from within pager.c. 846 */ 847 typedef struct BusyHandler BusyHandler; 848 struct BusyHandler { 849 int (*xFunc)(void *,int); /* The busy callback */ 850 void *pArg; /* First arg to busy callback */ 851 int nBusy; /* Incremented with each busy call */ 852 }; 853 854 /* 855 ** Name of the master database table. The master database table 856 ** is a special table that holds the names and attributes of all 857 ** user tables and indices. 858 */ 859 #define MASTER_NAME "sqlite_master" 860 #define TEMP_MASTER_NAME "sqlite_temp_master" 861 862 /* 863 ** The root-page of the master database table. 864 */ 865 #define MASTER_ROOT 1 866 867 /* 868 ** The name of the schema table. 869 */ 870 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 871 872 /* 873 ** A convenience macro that returns the number of elements in 874 ** an array. 875 */ 876 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 877 878 /* 879 ** Determine if the argument is a power of two 880 */ 881 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 882 883 /* 884 ** The following value as a destructor means to use sqlite3DbFree(). 885 ** The sqlite3DbFree() routine requires two parameters instead of the 886 ** one parameter that destructors normally want. So we have to introduce 887 ** this magic value that the code knows to handle differently. Any 888 ** pointer will work here as long as it is distinct from SQLITE_STATIC 889 ** and SQLITE_TRANSIENT. 890 */ 891 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 892 893 /* 894 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 895 ** not support Writable Static Data (WSD) such as global and static variables. 896 ** All variables must either be on the stack or dynamically allocated from 897 ** the heap. When WSD is unsupported, the variable declarations scattered 898 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 899 ** macro is used for this purpose. And instead of referencing the variable 900 ** directly, we use its constant as a key to lookup the run-time allocated 901 ** buffer that holds real variable. The constant is also the initializer 902 ** for the run-time allocated buffer. 903 ** 904 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 905 ** macros become no-ops and have zero performance impact. 906 */ 907 #ifdef SQLITE_OMIT_WSD 908 #define SQLITE_WSD const 909 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 910 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 911 int sqlite3_wsd_init(int N, int J); 912 void *sqlite3_wsd_find(void *K, int L); 913 #else 914 #define SQLITE_WSD 915 #define GLOBAL(t,v) v 916 #define sqlite3GlobalConfig sqlite3Config 917 #endif 918 919 /* 920 ** The following macros are used to suppress compiler warnings and to 921 ** make it clear to human readers when a function parameter is deliberately 922 ** left unused within the body of a function. This usually happens when 923 ** a function is called via a function pointer. For example the 924 ** implementation of an SQL aggregate step callback may not use the 925 ** parameter indicating the number of arguments passed to the aggregate, 926 ** if it knows that this is enforced elsewhere. 927 ** 928 ** When a function parameter is not used at all within the body of a function, 929 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 930 ** However, these macros may also be used to suppress warnings related to 931 ** parameters that may or may not be used depending on compilation options. 932 ** For example those parameters only used in assert() statements. In these 933 ** cases the parameters are named as per the usual conventions. 934 */ 935 #define UNUSED_PARAMETER(x) (void)(x) 936 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 937 938 /* 939 ** Forward references to structures 940 */ 941 typedef struct AggInfo AggInfo; 942 typedef struct AuthContext AuthContext; 943 typedef struct AutoincInfo AutoincInfo; 944 typedef struct Bitvec Bitvec; 945 typedef struct CollSeq CollSeq; 946 typedef struct Column Column; 947 typedef struct Db Db; 948 typedef struct Schema Schema; 949 typedef struct Expr Expr; 950 typedef struct ExprList ExprList; 951 typedef struct ExprSpan ExprSpan; 952 typedef struct FKey FKey; 953 typedef struct FuncDestructor FuncDestructor; 954 typedef struct FuncDef FuncDef; 955 typedef struct FuncDefHash FuncDefHash; 956 typedef struct IdList IdList; 957 typedef struct Index Index; 958 typedef struct IndexSample IndexSample; 959 typedef struct KeyClass KeyClass; 960 typedef struct KeyInfo KeyInfo; 961 typedef struct Lookaside Lookaside; 962 typedef struct LookasideSlot LookasideSlot; 963 typedef struct Module Module; 964 typedef struct NameContext NameContext; 965 typedef struct Parse Parse; 966 typedef struct PrintfArguments PrintfArguments; 967 typedef struct RowSet RowSet; 968 typedef struct Savepoint Savepoint; 969 typedef struct Select Select; 970 typedef struct SQLiteThread SQLiteThread; 971 typedef struct SelectDest SelectDest; 972 typedef struct SrcList SrcList; 973 typedef struct StrAccum StrAccum; 974 typedef struct Table Table; 975 typedef struct TableLock TableLock; 976 typedef struct Token Token; 977 typedef struct TreeView TreeView; 978 typedef struct Trigger Trigger; 979 typedef struct TriggerPrg TriggerPrg; 980 typedef struct TriggerStep TriggerStep; 981 typedef struct UnpackedRecord UnpackedRecord; 982 typedef struct VTable VTable; 983 typedef struct VtabCtx VtabCtx; 984 typedef struct Walker Walker; 985 typedef struct WhereInfo WhereInfo; 986 typedef struct With With; 987 988 /* 989 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 990 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 991 ** pointer types (i.e. FuncDef) defined above. 992 */ 993 #include "btree.h" 994 #include "vdbe.h" 995 #include "pager.h" 996 #include "pcache.h" 997 998 #include "os.h" 999 #include "mutex.h" 1000 1001 1002 /* 1003 ** Each database file to be accessed by the system is an instance 1004 ** of the following structure. There are normally two of these structures 1005 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 1006 ** aDb[1] is the database file used to hold temporary tables. Additional 1007 ** databases may be attached. 1008 */ 1009 struct Db { 1010 char *zName; /* Name of this database */ 1011 Btree *pBt; /* The B*Tree structure for this database file */ 1012 u8 safety_level; /* How aggressive at syncing data to disk */ 1013 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 1014 }; 1015 1016 /* 1017 ** An instance of the following structure stores a database schema. 1018 ** 1019 ** Most Schema objects are associated with a Btree. The exception is 1020 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 1021 ** In shared cache mode, a single Schema object can be shared by multiple 1022 ** Btrees that refer to the same underlying BtShared object. 1023 ** 1024 ** Schema objects are automatically deallocated when the last Btree that 1025 ** references them is destroyed. The TEMP Schema is manually freed by 1026 ** sqlite3_close(). 1027 * 1028 ** A thread must be holding a mutex on the corresponding Btree in order 1029 ** to access Schema content. This implies that the thread must also be 1030 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 1031 ** For a TEMP Schema, only the connection mutex is required. 1032 */ 1033 struct Schema { 1034 int schema_cookie; /* Database schema version number for this file */ 1035 int iGeneration; /* Generation counter. Incremented with each change */ 1036 Hash tblHash; /* All tables indexed by name */ 1037 Hash idxHash; /* All (named) indices indexed by name */ 1038 Hash trigHash; /* All triggers indexed by name */ 1039 Hash fkeyHash; /* All foreign keys by referenced table name */ 1040 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 1041 u8 file_format; /* Schema format version for this file */ 1042 u8 enc; /* Text encoding used by this database */ 1043 u16 schemaFlags; /* Flags associated with this schema */ 1044 int cache_size; /* Number of pages to use in the cache */ 1045 }; 1046 1047 /* 1048 ** These macros can be used to test, set, or clear bits in the 1049 ** Db.pSchema->flags field. 1050 */ 1051 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 1052 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 1053 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 1054 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 1055 1056 /* 1057 ** Allowed values for the DB.pSchema->flags field. 1058 ** 1059 ** The DB_SchemaLoaded flag is set after the database schema has been 1060 ** read into internal hash tables. 1061 ** 1062 ** DB_UnresetViews means that one or more views have column names that 1063 ** have been filled out. If the schema changes, these column names might 1064 ** changes and so the view will need to be reset. 1065 */ 1066 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1067 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1068 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1069 1070 /* 1071 ** The number of different kinds of things that can be limited 1072 ** using the sqlite3_limit() interface. 1073 */ 1074 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1075 1076 /* 1077 ** Lookaside malloc is a set of fixed-size buffers that can be used 1078 ** to satisfy small transient memory allocation requests for objects 1079 ** associated with a particular database connection. The use of 1080 ** lookaside malloc provides a significant performance enhancement 1081 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1082 ** SQL statements. 1083 ** 1084 ** The Lookaside structure holds configuration information about the 1085 ** lookaside malloc subsystem. Each available memory allocation in 1086 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1087 ** objects. 1088 ** 1089 ** Lookaside allocations are only allowed for objects that are associated 1090 ** with a particular database connection. Hence, schema information cannot 1091 ** be stored in lookaside because in shared cache mode the schema information 1092 ** is shared by multiple database connections. Therefore, while parsing 1093 ** schema information, the Lookaside.bEnabled flag is cleared so that 1094 ** lookaside allocations are not used to construct the schema objects. 1095 */ 1096 struct Lookaside { 1097 u16 sz; /* Size of each buffer in bytes */ 1098 u8 bEnabled; /* False to disable new lookaside allocations */ 1099 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1100 int nOut; /* Number of buffers currently checked out */ 1101 int mxOut; /* Highwater mark for nOut */ 1102 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1103 LookasideSlot *pFree; /* List of available buffers */ 1104 void *pStart; /* First byte of available memory space */ 1105 void *pEnd; /* First byte past end of available space */ 1106 }; 1107 struct LookasideSlot { 1108 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1109 }; 1110 1111 /* 1112 ** A hash table for function definitions. 1113 ** 1114 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1115 ** Collisions are on the FuncDef.pHash chain. 1116 */ 1117 struct FuncDefHash { 1118 FuncDef *a[23]; /* Hash table for functions */ 1119 }; 1120 1121 #ifdef SQLITE_USER_AUTHENTICATION 1122 /* 1123 ** Information held in the "sqlite3" database connection object and used 1124 ** to manage user authentication. 1125 */ 1126 typedef struct sqlite3_userauth sqlite3_userauth; 1127 struct sqlite3_userauth { 1128 u8 authLevel; /* Current authentication level */ 1129 int nAuthPW; /* Size of the zAuthPW in bytes */ 1130 char *zAuthPW; /* Password used to authenticate */ 1131 char *zAuthUser; /* User name used to authenticate */ 1132 }; 1133 1134 /* Allowed values for sqlite3_userauth.authLevel */ 1135 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1136 #define UAUTH_Fail 1 /* User authentication failed */ 1137 #define UAUTH_User 2 /* Authenticated as a normal user */ 1138 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1139 1140 /* Functions used only by user authorization logic */ 1141 int sqlite3UserAuthTable(const char*); 1142 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1143 void sqlite3UserAuthInit(sqlite3*); 1144 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1145 1146 #endif /* SQLITE_USER_AUTHENTICATION */ 1147 1148 /* 1149 ** typedef for the authorization callback function. 1150 */ 1151 #ifdef SQLITE_USER_AUTHENTICATION 1152 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1153 const char*, const char*); 1154 #else 1155 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1156 const char*); 1157 #endif 1158 1159 1160 /* 1161 ** Each database connection is an instance of the following structure. 1162 */ 1163 struct sqlite3 { 1164 sqlite3_vfs *pVfs; /* OS Interface */ 1165 struct Vdbe *pVdbe; /* List of active virtual machines */ 1166 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1167 sqlite3_mutex *mutex; /* Connection mutex */ 1168 Db *aDb; /* All backends */ 1169 int nDb; /* Number of backends currently in use */ 1170 int flags; /* Miscellaneous flags. See below */ 1171 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1172 i64 szMmap; /* Default mmap_size setting */ 1173 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1174 int errCode; /* Most recent error code (SQLITE_*) */ 1175 int errMask; /* & result codes with this before returning */ 1176 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1177 u8 enc; /* Text encoding */ 1178 u8 autoCommit; /* The auto-commit flag. */ 1179 u8 temp_store; /* 1: file 2: memory 0: default */ 1180 u8 mallocFailed; /* True if we have seen a malloc failure */ 1181 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1182 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1183 u8 suppressErr; /* Do not issue error messages if true */ 1184 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1185 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1186 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1187 u32 magic; /* Magic number for detect library misuse */ 1188 int nChange; /* Value returned by sqlite3_changes() */ 1189 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1190 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1191 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1192 struct sqlite3InitInfo { /* Information used during initialization */ 1193 int newTnum; /* Rootpage of table being initialized */ 1194 u8 iDb; /* Which db file is being initialized */ 1195 u8 busy; /* TRUE if currently initializing */ 1196 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1197 u8 imposterTable; /* Building an imposter table */ 1198 } init; 1199 int nVdbeActive; /* Number of VDBEs currently running */ 1200 int nVdbeRead; /* Number of active VDBEs that read or write */ 1201 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1202 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1203 int nVDestroy; /* Number of active OP_VDestroy operations */ 1204 int nExtension; /* Number of loaded extensions */ 1205 void **aExtension; /* Array of shared library handles */ 1206 void (*xTrace)(void*,const char*); /* Trace function */ 1207 void *pTraceArg; /* Argument to the trace function */ 1208 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1209 void *pProfileArg; /* Argument to profile function */ 1210 void *pCommitArg; /* Argument to xCommitCallback() */ 1211 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1212 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1213 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1214 void *pUpdateArg; 1215 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1216 #ifndef SQLITE_OMIT_WAL 1217 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1218 void *pWalArg; 1219 #endif 1220 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1221 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1222 void *pCollNeededArg; 1223 sqlite3_value *pErr; /* Most recent error message */ 1224 union { 1225 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1226 double notUsed1; /* Spacer */ 1227 } u1; 1228 Lookaside lookaside; /* Lookaside malloc configuration */ 1229 #ifndef SQLITE_OMIT_AUTHORIZATION 1230 sqlite3_xauth xAuth; /* Access authorization function */ 1231 void *pAuthArg; /* 1st argument to the access auth function */ 1232 #endif 1233 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1234 int (*xProgress)(void *); /* The progress callback */ 1235 void *pProgressArg; /* Argument to the progress callback */ 1236 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1237 #endif 1238 #ifndef SQLITE_OMIT_VIRTUALTABLE 1239 int nVTrans; /* Allocated size of aVTrans */ 1240 Hash aModule; /* populated by sqlite3_create_module() */ 1241 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1242 VTable **aVTrans; /* Virtual tables with open transactions */ 1243 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1244 #endif 1245 FuncDefHash aFunc; /* Hash table of connection functions */ 1246 Hash aCollSeq; /* All collating sequences */ 1247 BusyHandler busyHandler; /* Busy callback */ 1248 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1249 Savepoint *pSavepoint; /* List of active savepoints */ 1250 int busyTimeout; /* Busy handler timeout, in msec */ 1251 int nSavepoint; /* Number of non-transaction savepoints */ 1252 int nStatement; /* Number of nested statement-transactions */ 1253 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1254 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1255 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1256 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1257 /* The following variables are all protected by the STATIC_MASTER 1258 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1259 ** 1260 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1261 ** unlock so that it can proceed. 1262 ** 1263 ** When X.pBlockingConnection==Y, that means that something that X tried 1264 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1265 ** held by Y. 1266 */ 1267 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1268 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1269 void *pUnlockArg; /* Argument to xUnlockNotify */ 1270 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1271 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1272 #endif 1273 #ifdef SQLITE_USER_AUTHENTICATION 1274 sqlite3_userauth auth; /* User authentication information */ 1275 #endif 1276 }; 1277 1278 /* 1279 ** A macro to discover the encoding of a database. 1280 */ 1281 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1282 #define ENC(db) ((db)->enc) 1283 1284 /* 1285 ** Possible values for the sqlite3.flags. 1286 */ 1287 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1288 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1289 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1290 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1291 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1292 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1293 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1294 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1295 /* DELETE, or UPDATE and return */ 1296 /* the count using a callback. */ 1297 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1298 /* result set is empty */ 1299 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1300 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1301 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1302 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1303 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1304 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1305 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1306 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1307 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1308 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1309 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1310 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1311 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1312 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1313 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1314 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1315 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1316 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1317 #define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */ 1318 #define SQLITE_CellSizeCk 0x10000000 /* Check btree cell sizes on load */ 1319 1320 1321 /* 1322 ** Bits of the sqlite3.dbOptFlags field that are used by the 1323 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1324 ** selectively disable various optimizations. 1325 */ 1326 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1327 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1328 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1329 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1330 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1331 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1332 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1333 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1334 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1335 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1336 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1337 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1338 #define SQLITE_CursorHints 0x2000 /* Add OP_CursorHint opcodes */ 1339 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1340 1341 /* 1342 ** Macros for testing whether or not optimizations are enabled or disabled. 1343 */ 1344 #ifndef SQLITE_OMIT_BUILTIN_TEST 1345 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1346 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1347 #else 1348 #define OptimizationDisabled(db, mask) 0 1349 #define OptimizationEnabled(db, mask) 1 1350 #endif 1351 1352 /* 1353 ** Return true if it OK to factor constant expressions into the initialization 1354 ** code. The argument is a Parse object for the code generator. 1355 */ 1356 #define ConstFactorOk(P) ((P)->okConstFactor) 1357 1358 /* 1359 ** Possible values for the sqlite.magic field. 1360 ** The numbers are obtained at random and have no special meaning, other 1361 ** than being distinct from one another. 1362 */ 1363 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1364 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1365 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1366 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1367 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1368 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1369 1370 /* 1371 ** Each SQL function is defined by an instance of the following 1372 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1373 ** hash table. When multiple functions have the same name, the hash table 1374 ** points to a linked list of these structures. 1375 */ 1376 struct FuncDef { 1377 i16 nArg; /* Number of arguments. -1 means unlimited */ 1378 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1379 void *pUserData; /* User data parameter */ 1380 FuncDef *pNext; /* Next function with same name */ 1381 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */ 1382 void (*xFinalize)(sqlite3_context*); /* Agg finalizer */ 1383 char *zName; /* SQL name of the function. */ 1384 FuncDef *pHash; /* Next with a different name but the same hash */ 1385 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1386 }; 1387 1388 /* 1389 ** This structure encapsulates a user-function destructor callback (as 1390 ** configured using create_function_v2()) and a reference counter. When 1391 ** create_function_v2() is called to create a function with a destructor, 1392 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1393 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1394 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1395 ** member of each of the new FuncDef objects is set to point to the allocated 1396 ** FuncDestructor. 1397 ** 1398 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1399 ** count on this object is decremented. When it reaches 0, the destructor 1400 ** is invoked and the FuncDestructor structure freed. 1401 */ 1402 struct FuncDestructor { 1403 int nRef; 1404 void (*xDestroy)(void *); 1405 void *pUserData; 1406 }; 1407 1408 /* 1409 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1410 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And 1411 ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There 1412 ** are assert() statements in the code to verify this. 1413 */ 1414 #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1415 #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ 1416 #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ 1417 #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ 1418 #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ 1419 #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ 1420 #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ 1421 #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ 1422 #define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */ 1423 #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ 1424 #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ 1425 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1426 #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a 1427 ** single query - might change over time */ 1428 1429 /* 1430 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1431 ** used to create the initializers for the FuncDef structures. 1432 ** 1433 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1434 ** Used to create a scalar function definition of a function zName 1435 ** implemented by C function xFunc that accepts nArg arguments. The 1436 ** value passed as iArg is cast to a (void*) and made available 1437 ** as the user-data (sqlite3_user_data()) for the function. If 1438 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1439 ** 1440 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1441 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1442 ** 1443 ** DFUNCTION(zName, nArg, iArg, bNC, xFunc) 1444 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and 1445 ** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions 1446 ** and functions like sqlite_version() that can change, but not during 1447 ** a single query. 1448 ** 1449 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1450 ** Used to create an aggregate function definition implemented by 1451 ** the C functions xStep and xFinal. The first four parameters 1452 ** are interpreted in the same way as the first 4 parameters to 1453 ** FUNCTION(). 1454 ** 1455 ** LIKEFUNC(zName, nArg, pArg, flags) 1456 ** Used to create a scalar function definition of a function zName 1457 ** that accepts nArg arguments and is implemented by a call to C 1458 ** function likeFunc. Argument pArg is cast to a (void *) and made 1459 ** available as the function user-data (sqlite3_user_data()). The 1460 ** FuncDef.flags variable is set to the value passed as the flags 1461 ** parameter. 1462 */ 1463 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1464 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1465 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, 0, 0} 1466 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1467 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1468 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, 0, 0} 1469 #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1470 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1471 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, 0, 0} 1472 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1473 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1474 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, 0, 0} 1475 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1476 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1477 pArg, 0, xFunc, 0, #zName, 0, 0} 1478 #define LIKEFUNC(zName, nArg, arg, flags) \ 1479 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1480 (void *)arg, 0, likeFunc, 0, #zName, 0, 0} 1481 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1482 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1483 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName,0,0} 1484 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1485 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1486 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName,0,0} 1487 1488 /* 1489 ** All current savepoints are stored in a linked list starting at 1490 ** sqlite3.pSavepoint. The first element in the list is the most recently 1491 ** opened savepoint. Savepoints are added to the list by the vdbe 1492 ** OP_Savepoint instruction. 1493 */ 1494 struct Savepoint { 1495 char *zName; /* Savepoint name (nul-terminated) */ 1496 i64 nDeferredCons; /* Number of deferred fk violations */ 1497 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1498 Savepoint *pNext; /* Parent savepoint (if any) */ 1499 }; 1500 1501 /* 1502 ** The following are used as the second parameter to sqlite3Savepoint(), 1503 ** and as the P1 argument to the OP_Savepoint instruction. 1504 */ 1505 #define SAVEPOINT_BEGIN 0 1506 #define SAVEPOINT_RELEASE 1 1507 #define SAVEPOINT_ROLLBACK 2 1508 1509 1510 /* 1511 ** Each SQLite module (virtual table definition) is defined by an 1512 ** instance of the following structure, stored in the sqlite3.aModule 1513 ** hash table. 1514 */ 1515 struct Module { 1516 const sqlite3_module *pModule; /* Callback pointers */ 1517 const char *zName; /* Name passed to create_module() */ 1518 void *pAux; /* pAux passed to create_module() */ 1519 void (*xDestroy)(void *); /* Module destructor function */ 1520 Table *pEpoTab; /* Eponymous table for this module */ 1521 }; 1522 1523 /* 1524 ** information about each column of an SQL table is held in an instance 1525 ** of this structure. 1526 */ 1527 struct Column { 1528 char *zName; /* Name of this column */ 1529 Expr *pDflt; /* Default value of this column */ 1530 char *zDflt; /* Original text of the default value */ 1531 char *zType; /* Data type for this column */ 1532 char *zColl; /* Collating sequence. If NULL, use the default */ 1533 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1534 char affinity; /* One of the SQLITE_AFF_... values */ 1535 u8 szEst; /* Estimated size of value in this column. sizeof(INT)==1 */ 1536 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1537 }; 1538 1539 /* Allowed values for Column.colFlags: 1540 */ 1541 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1542 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1543 1544 /* 1545 ** A "Collating Sequence" is defined by an instance of the following 1546 ** structure. Conceptually, a collating sequence consists of a name and 1547 ** a comparison routine that defines the order of that sequence. 1548 ** 1549 ** If CollSeq.xCmp is NULL, it means that the 1550 ** collating sequence is undefined. Indices built on an undefined 1551 ** collating sequence may not be read or written. 1552 */ 1553 struct CollSeq { 1554 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1555 u8 enc; /* Text encoding handled by xCmp() */ 1556 void *pUser; /* First argument to xCmp() */ 1557 int (*xCmp)(void*,int, const void*, int, const void*); 1558 void (*xDel)(void*); /* Destructor for pUser */ 1559 }; 1560 1561 /* 1562 ** A sort order can be either ASC or DESC. 1563 */ 1564 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1565 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1566 #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */ 1567 1568 /* 1569 ** Column affinity types. 1570 ** 1571 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1572 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1573 ** the speed a little by numbering the values consecutively. 1574 ** 1575 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1576 ** when multiple affinity types are concatenated into a string and 1577 ** used as the P4 operand, they will be more readable. 1578 ** 1579 ** Note also that the numeric types are grouped together so that testing 1580 ** for a numeric type is a single comparison. And the BLOB type is first. 1581 */ 1582 #define SQLITE_AFF_BLOB 'A' 1583 #define SQLITE_AFF_TEXT 'B' 1584 #define SQLITE_AFF_NUMERIC 'C' 1585 #define SQLITE_AFF_INTEGER 'D' 1586 #define SQLITE_AFF_REAL 'E' 1587 1588 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1589 1590 /* 1591 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1592 ** affinity value. 1593 */ 1594 #define SQLITE_AFF_MASK 0x47 1595 1596 /* 1597 ** Additional bit values that can be ORed with an affinity without 1598 ** changing the affinity. 1599 ** 1600 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1601 ** It causes an assert() to fire if either operand to a comparison 1602 ** operator is NULL. It is added to certain comparison operators to 1603 ** prove that the operands are always NOT NULL. 1604 */ 1605 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1606 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1607 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1608 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1609 1610 /* 1611 ** An object of this type is created for each virtual table present in 1612 ** the database schema. 1613 ** 1614 ** If the database schema is shared, then there is one instance of this 1615 ** structure for each database connection (sqlite3*) that uses the shared 1616 ** schema. This is because each database connection requires its own unique 1617 ** instance of the sqlite3_vtab* handle used to access the virtual table 1618 ** implementation. sqlite3_vtab* handles can not be shared between 1619 ** database connections, even when the rest of the in-memory database 1620 ** schema is shared, as the implementation often stores the database 1621 ** connection handle passed to it via the xConnect() or xCreate() method 1622 ** during initialization internally. This database connection handle may 1623 ** then be used by the virtual table implementation to access real tables 1624 ** within the database. So that they appear as part of the callers 1625 ** transaction, these accesses need to be made via the same database 1626 ** connection as that used to execute SQL operations on the virtual table. 1627 ** 1628 ** All VTable objects that correspond to a single table in a shared 1629 ** database schema are initially stored in a linked-list pointed to by 1630 ** the Table.pVTable member variable of the corresponding Table object. 1631 ** When an sqlite3_prepare() operation is required to access the virtual 1632 ** table, it searches the list for the VTable that corresponds to the 1633 ** database connection doing the preparing so as to use the correct 1634 ** sqlite3_vtab* handle in the compiled query. 1635 ** 1636 ** When an in-memory Table object is deleted (for example when the 1637 ** schema is being reloaded for some reason), the VTable objects are not 1638 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1639 ** immediately. Instead, they are moved from the Table.pVTable list to 1640 ** another linked list headed by the sqlite3.pDisconnect member of the 1641 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1642 ** next time a statement is prepared using said sqlite3*. This is done 1643 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1644 ** Refer to comments above function sqlite3VtabUnlockList() for an 1645 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1646 ** list without holding the corresponding sqlite3.mutex mutex. 1647 ** 1648 ** The memory for objects of this type is always allocated by 1649 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1650 ** the first argument. 1651 */ 1652 struct VTable { 1653 sqlite3 *db; /* Database connection associated with this table */ 1654 Module *pMod; /* Pointer to module implementation */ 1655 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1656 int nRef; /* Number of pointers to this structure */ 1657 u8 bConstraint; /* True if constraints are supported */ 1658 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1659 VTable *pNext; /* Next in linked list (see above) */ 1660 }; 1661 1662 /* 1663 ** The schema for each SQL table and view is represented in memory 1664 ** by an instance of the following structure. 1665 */ 1666 struct Table { 1667 char *zName; /* Name of the table or view */ 1668 Column *aCol; /* Information about each column */ 1669 Index *pIndex; /* List of SQL indexes on this table. */ 1670 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1671 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1672 char *zColAff; /* String defining the affinity of each column */ 1673 ExprList *pCheck; /* All CHECK constraints */ 1674 /* ... also used as column name list in a VIEW */ 1675 int tnum; /* Root BTree page for this table */ 1676 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1677 i16 nCol; /* Number of columns in this table */ 1678 u16 nRef; /* Number of pointers to this Table */ 1679 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1680 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1681 #ifdef SQLITE_ENABLE_COSTMULT 1682 LogEst costMult; /* Cost multiplier for using this table */ 1683 #endif 1684 u8 tabFlags; /* Mask of TF_* values */ 1685 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1686 #ifndef SQLITE_OMIT_ALTERTABLE 1687 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1688 #endif 1689 #ifndef SQLITE_OMIT_VIRTUALTABLE 1690 int nModuleArg; /* Number of arguments to the module */ 1691 char **azModuleArg; /* 0: module 1: schema 2: vtab name 3...: args */ 1692 VTable *pVTable; /* List of VTable objects. */ 1693 #endif 1694 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1695 Schema *pSchema; /* Schema that contains this table */ 1696 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1697 }; 1698 1699 /* 1700 ** Allowed values for Table.tabFlags. 1701 ** 1702 ** TF_OOOHidden applies to tables or view that have hidden columns that are 1703 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1704 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1705 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1706 ** special handling during INSERT processing. 1707 */ 1708 #define TF_Readonly 0x01 /* Read-only system table */ 1709 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1710 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1711 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1712 #define TF_Virtual 0x10 /* Is a virtual table */ 1713 #define TF_WithoutRowid 0x20 /* No rowid. PRIMARY KEY is the key */ 1714 #define TF_NoVisibleRowid 0x40 /* No user-visible "rowid" column */ 1715 #define TF_OOOHidden 0x80 /* Out-of-Order hidden columns */ 1716 1717 1718 /* 1719 ** Test to see whether or not a table is a virtual table. This is 1720 ** done as a macro so that it will be optimized out when virtual 1721 ** table support is omitted from the build. 1722 */ 1723 #ifndef SQLITE_OMIT_VIRTUALTABLE 1724 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1725 #else 1726 # define IsVirtual(X) 0 1727 #endif 1728 1729 /* 1730 ** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn() 1731 ** only works for non-virtual tables (ordinary tables and views) and is 1732 ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The 1733 ** IsHiddenColumn() macro is general purpose. 1734 */ 1735 #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS) 1736 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1737 # define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1738 #elif !defined(SQLITE_OMIT_VIRTUALTABLE) 1739 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1740 # define IsOrdinaryHiddenColumn(X) 0 1741 #else 1742 # define IsHiddenColumn(X) 0 1743 # define IsOrdinaryHiddenColumn(X) 0 1744 #endif 1745 1746 1747 /* Does the table have a rowid */ 1748 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1749 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 1750 1751 /* 1752 ** Each foreign key constraint is an instance of the following structure. 1753 ** 1754 ** A foreign key is associated with two tables. The "from" table is 1755 ** the table that contains the REFERENCES clause that creates the foreign 1756 ** key. The "to" table is the table that is named in the REFERENCES clause. 1757 ** Consider this example: 1758 ** 1759 ** CREATE TABLE ex1( 1760 ** a INTEGER PRIMARY KEY, 1761 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1762 ** ); 1763 ** 1764 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1765 ** Equivalent names: 1766 ** 1767 ** from-table == child-table 1768 ** to-table == parent-table 1769 ** 1770 ** Each REFERENCES clause generates an instance of the following structure 1771 ** which is attached to the from-table. The to-table need not exist when 1772 ** the from-table is created. The existence of the to-table is not checked. 1773 ** 1774 ** The list of all parents for child Table X is held at X.pFKey. 1775 ** 1776 ** A list of all children for a table named Z (which might not even exist) 1777 ** is held in Schema.fkeyHash with a hash key of Z. 1778 */ 1779 struct FKey { 1780 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1781 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1782 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1783 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1784 FKey *pPrevTo; /* Previous with the same zTo */ 1785 int nCol; /* Number of columns in this key */ 1786 /* EV: R-30323-21917 */ 1787 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1788 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1789 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1790 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1791 int iFrom; /* Index of column in pFrom */ 1792 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1793 } aCol[1]; /* One entry for each of nCol columns */ 1794 }; 1795 1796 /* 1797 ** SQLite supports many different ways to resolve a constraint 1798 ** error. ROLLBACK processing means that a constraint violation 1799 ** causes the operation in process to fail and for the current transaction 1800 ** to be rolled back. ABORT processing means the operation in process 1801 ** fails and any prior changes from that one operation are backed out, 1802 ** but the transaction is not rolled back. FAIL processing means that 1803 ** the operation in progress stops and returns an error code. But prior 1804 ** changes due to the same operation are not backed out and no rollback 1805 ** occurs. IGNORE means that the particular row that caused the constraint 1806 ** error is not inserted or updated. Processing continues and no error 1807 ** is returned. REPLACE means that preexisting database rows that caused 1808 ** a UNIQUE constraint violation are removed so that the new insert or 1809 ** update can proceed. Processing continues and no error is reported. 1810 ** 1811 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1812 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1813 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1814 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1815 ** referenced table row is propagated into the row that holds the 1816 ** foreign key. 1817 ** 1818 ** The following symbolic values are used to record which type 1819 ** of action to take. 1820 */ 1821 #define OE_None 0 /* There is no constraint to check */ 1822 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1823 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1824 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1825 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1826 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1827 1828 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1829 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1830 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1831 #define OE_Cascade 9 /* Cascade the changes */ 1832 1833 #define OE_Default 10 /* Do whatever the default action is */ 1834 1835 1836 /* 1837 ** An instance of the following structure is passed as the first 1838 ** argument to sqlite3VdbeKeyCompare and is used to control the 1839 ** comparison of the two index keys. 1840 ** 1841 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1842 ** are nField slots for the columns of an index then one extra slot 1843 ** for the rowid at the end. 1844 */ 1845 struct KeyInfo { 1846 u32 nRef; /* Number of references to this KeyInfo object */ 1847 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1848 u16 nField; /* Number of key columns in the index */ 1849 u16 nXField; /* Number of columns beyond the key columns */ 1850 sqlite3 *db; /* The database connection */ 1851 u8 *aSortOrder; /* Sort order for each column. */ 1852 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1853 }; 1854 1855 /* 1856 ** This object holds a record which has been parsed out into individual 1857 ** fields, for the purposes of doing a comparison. 1858 ** 1859 ** A record is an object that contains one or more fields of data. 1860 ** Records are used to store the content of a table row and to store 1861 ** the key of an index. A blob encoding of a record is created by 1862 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1863 ** OP_Column opcode. 1864 ** 1865 ** An instance of this object serves as a "key" for doing a search on 1866 ** an index b+tree. The goal of the search is to find the entry that 1867 ** is closed to the key described by this object. This object might hold 1868 ** just a prefix of the key. The number of fields is given by 1869 ** pKeyInfo->nField. 1870 ** 1871 ** The r1 and r2 fields are the values to return if this key is less than 1872 ** or greater than a key in the btree, respectively. These are normally 1873 ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree 1874 ** is in DESC order. 1875 ** 1876 ** The key comparison functions actually return default_rc when they find 1877 ** an equals comparison. default_rc can be -1, 0, or +1. If there are 1878 ** multiple entries in the b-tree with the same key (when only looking 1879 ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to 1880 ** cause the search to find the last match, or +1 to cause the search to 1881 ** find the first match. 1882 ** 1883 ** The key comparison functions will set eqSeen to true if they ever 1884 ** get and equal results when comparing this structure to a b-tree record. 1885 ** When default_rc!=0, the search might end up on the record immediately 1886 ** before the first match or immediately after the last match. The 1887 ** eqSeen field will indicate whether or not an exact match exists in the 1888 ** b-tree. 1889 */ 1890 struct UnpackedRecord { 1891 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1892 Mem *aMem; /* Values */ 1893 u16 nField; /* Number of entries in apMem[] */ 1894 i8 default_rc; /* Comparison result if keys are equal */ 1895 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1896 i8 r1; /* Value to return if (lhs > rhs) */ 1897 i8 r2; /* Value to return if (rhs < lhs) */ 1898 u8 eqSeen; /* True if an equality comparison has been seen */ 1899 }; 1900 1901 1902 /* 1903 ** Each SQL index is represented in memory by an 1904 ** instance of the following structure. 1905 ** 1906 ** The columns of the table that are to be indexed are described 1907 ** by the aiColumn[] field of this structure. For example, suppose 1908 ** we have the following table and index: 1909 ** 1910 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1911 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1912 ** 1913 ** In the Table structure describing Ex1, nCol==3 because there are 1914 ** three columns in the table. In the Index structure describing 1915 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1916 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1917 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1918 ** The second column to be indexed (c1) has an index of 0 in 1919 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1920 ** 1921 ** The Index.onError field determines whether or not the indexed columns 1922 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1923 ** it means this is not a unique index. Otherwise it is a unique index 1924 ** and the value of Index.onError indicate the which conflict resolution 1925 ** algorithm to employ whenever an attempt is made to insert a non-unique 1926 ** element. 1927 ** 1928 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 1929 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 1930 ** table as part of parsing an existing database schema), transient instances 1931 ** of this structure may be created. In this case the Index.tnum variable is 1932 ** used to store the address of a VDBE instruction, not a database page 1933 ** number (it cannot - the database page is not allocated until the VDBE 1934 ** program is executed). See convertToWithoutRowidTable() for details. 1935 */ 1936 struct Index { 1937 char *zName; /* Name of this index */ 1938 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1939 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1940 Table *pTable; /* The SQL table being indexed */ 1941 char *zColAff; /* String defining the affinity of each column */ 1942 Index *pNext; /* The next index associated with the same table */ 1943 Schema *pSchema; /* Schema containing this index */ 1944 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1945 const char **azColl; /* Array of collation sequence names for index */ 1946 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1947 ExprList *aColExpr; /* Column expressions */ 1948 int tnum; /* DB Page containing root of this index */ 1949 LogEst szIdxRow; /* Estimated average row size in bytes */ 1950 u16 nKeyCol; /* Number of columns forming the key */ 1951 u16 nColumn; /* Number of columns stored in the index */ 1952 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1953 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1954 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1955 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1956 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1957 unsigned isCovering:1; /* True if this is a covering index */ 1958 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1959 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1960 int nSample; /* Number of elements in aSample[] */ 1961 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1962 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1963 IndexSample *aSample; /* Samples of the left-most key */ 1964 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1965 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1966 #endif 1967 }; 1968 1969 /* 1970 ** Allowed values for Index.idxType 1971 */ 1972 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1973 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1974 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1975 1976 /* Return true if index X is a PRIMARY KEY index */ 1977 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1978 1979 /* Return true if index X is a UNIQUE index */ 1980 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1981 1982 /* The Index.aiColumn[] values are normally positive integer. But 1983 ** there are some negative values that have special meaning: 1984 */ 1985 #define XN_ROWID (-1) /* Indexed column is the rowid */ 1986 #define XN_EXPR (-2) /* Indexed column is an expression */ 1987 1988 /* 1989 ** Each sample stored in the sqlite_stat3 table is represented in memory 1990 ** using a structure of this type. See documentation at the top of the 1991 ** analyze.c source file for additional information. 1992 */ 1993 struct IndexSample { 1994 void *p; /* Pointer to sampled record */ 1995 int n; /* Size of record in bytes */ 1996 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1997 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1998 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1999 }; 2000 2001 /* 2002 ** Each token coming out of the lexer is an instance of 2003 ** this structure. Tokens are also used as part of an expression. 2004 ** 2005 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 2006 ** may contain random values. Do not make any assumptions about Token.dyn 2007 ** and Token.n when Token.z==0. 2008 */ 2009 struct Token { 2010 const char *z; /* Text of the token. Not NULL-terminated! */ 2011 unsigned int n; /* Number of characters in this token */ 2012 }; 2013 2014 /* 2015 ** An instance of this structure contains information needed to generate 2016 ** code for a SELECT that contains aggregate functions. 2017 ** 2018 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 2019 ** pointer to this structure. The Expr.iColumn field is the index in 2020 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 2021 ** code for that node. 2022 ** 2023 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 2024 ** original Select structure that describes the SELECT statement. These 2025 ** fields do not need to be freed when deallocating the AggInfo structure. 2026 */ 2027 struct AggInfo { 2028 u8 directMode; /* Direct rendering mode means take data directly 2029 ** from source tables rather than from accumulators */ 2030 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 2031 ** than the source table */ 2032 int sortingIdx; /* Cursor number of the sorting index */ 2033 int sortingIdxPTab; /* Cursor number of pseudo-table */ 2034 int nSortingColumn; /* Number of columns in the sorting index */ 2035 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 2036 ExprList *pGroupBy; /* The group by clause */ 2037 struct AggInfo_col { /* For each column used in source tables */ 2038 Table *pTab; /* Source table */ 2039 int iTable; /* Cursor number of the source table */ 2040 int iColumn; /* Column number within the source table */ 2041 int iSorterColumn; /* Column number in the sorting index */ 2042 int iMem; /* Memory location that acts as accumulator */ 2043 Expr *pExpr; /* The original expression */ 2044 } *aCol; 2045 int nColumn; /* Number of used entries in aCol[] */ 2046 int nAccumulator; /* Number of columns that show through to the output. 2047 ** Additional columns are used only as parameters to 2048 ** aggregate functions */ 2049 struct AggInfo_func { /* For each aggregate function */ 2050 Expr *pExpr; /* Expression encoding the function */ 2051 FuncDef *pFunc; /* The aggregate function implementation */ 2052 int iMem; /* Memory location that acts as accumulator */ 2053 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 2054 } *aFunc; 2055 int nFunc; /* Number of entries in aFunc[] */ 2056 }; 2057 2058 /* 2059 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 2060 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 2061 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 2062 ** it uses less memory in the Expr object, which is a big memory user 2063 ** in systems with lots of prepared statements. And few applications 2064 ** need more than about 10 or 20 variables. But some extreme users want 2065 ** to have prepared statements with over 32767 variables, and for them 2066 ** the option is available (at compile-time). 2067 */ 2068 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 2069 typedef i16 ynVar; 2070 #else 2071 typedef int ynVar; 2072 #endif 2073 2074 /* 2075 ** Each node of an expression in the parse tree is an instance 2076 ** of this structure. 2077 ** 2078 ** Expr.op is the opcode. The integer parser token codes are reused 2079 ** as opcodes here. For example, the parser defines TK_GE to be an integer 2080 ** code representing the ">=" operator. This same integer code is reused 2081 ** to represent the greater-than-or-equal-to operator in the expression 2082 ** tree. 2083 ** 2084 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 2085 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 2086 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 2087 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 2088 ** then Expr.token contains the name of the function. 2089 ** 2090 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 2091 ** binary operator. Either or both may be NULL. 2092 ** 2093 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 2094 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 2095 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 2096 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 2097 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 2098 ** valid. 2099 ** 2100 ** An expression of the form ID or ID.ID refers to a column in a table. 2101 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 2102 ** the integer cursor number of a VDBE cursor pointing to that table and 2103 ** Expr.iColumn is the column number for the specific column. If the 2104 ** expression is used as a result in an aggregate SELECT, then the 2105 ** value is also stored in the Expr.iAgg column in the aggregate so that 2106 ** it can be accessed after all aggregates are computed. 2107 ** 2108 ** If the expression is an unbound variable marker (a question mark 2109 ** character '?' in the original SQL) then the Expr.iTable holds the index 2110 ** number for that variable. 2111 ** 2112 ** If the expression is a subquery then Expr.iColumn holds an integer 2113 ** register number containing the result of the subquery. If the 2114 ** subquery gives a constant result, then iTable is -1. If the subquery 2115 ** gives a different answer at different times during statement processing 2116 ** then iTable is the address of a subroutine that computes the subquery. 2117 ** 2118 ** If the Expr is of type OP_Column, and the table it is selecting from 2119 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 2120 ** corresponding table definition. 2121 ** 2122 ** ALLOCATION NOTES: 2123 ** 2124 ** Expr objects can use a lot of memory space in database schema. To 2125 ** help reduce memory requirements, sometimes an Expr object will be 2126 ** truncated. And to reduce the number of memory allocations, sometimes 2127 ** two or more Expr objects will be stored in a single memory allocation, 2128 ** together with Expr.zToken strings. 2129 ** 2130 ** If the EP_Reduced and EP_TokenOnly flags are set when 2131 ** an Expr object is truncated. When EP_Reduced is set, then all 2132 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2133 ** are contained within the same memory allocation. Note, however, that 2134 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2135 ** allocated, regardless of whether or not EP_Reduced is set. 2136 */ 2137 struct Expr { 2138 u8 op; /* Operation performed by this node */ 2139 char affinity; /* The affinity of the column or 0 if not a column */ 2140 u32 flags; /* Various flags. EP_* See below */ 2141 union { 2142 char *zToken; /* Token value. Zero terminated and dequoted */ 2143 int iValue; /* Non-negative integer value if EP_IntValue */ 2144 } u; 2145 2146 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2147 ** space is allocated for the fields below this point. An attempt to 2148 ** access them will result in a segfault or malfunction. 2149 *********************************************************************/ 2150 2151 Expr *pLeft; /* Left subnode */ 2152 Expr *pRight; /* Right subnode */ 2153 union { 2154 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2155 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2156 } x; 2157 2158 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2159 ** space is allocated for the fields below this point. An attempt to 2160 ** access them will result in a segfault or malfunction. 2161 *********************************************************************/ 2162 2163 #if SQLITE_MAX_EXPR_DEPTH>0 2164 int nHeight; /* Height of the tree headed by this node */ 2165 #endif 2166 int iTable; /* TK_COLUMN: cursor number of table holding column 2167 ** TK_REGISTER: register number 2168 ** TK_TRIGGER: 1 -> new, 0 -> old 2169 ** EP_Unlikely: 134217728 times likelihood */ 2170 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2171 ** TK_VARIABLE: variable number (always >= 1). */ 2172 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2173 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2174 u8 op2; /* TK_REGISTER: original value of Expr.op 2175 ** TK_COLUMN: the value of p5 for OP_Column 2176 ** TK_AGG_FUNCTION: nesting depth */ 2177 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2178 Table *pTab; /* Table for TK_COLUMN expressions. */ 2179 }; 2180 2181 /* 2182 ** The following are the meanings of bits in the Expr.flags field. 2183 */ 2184 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2185 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2186 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2187 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2188 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2189 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2190 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2191 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2192 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2193 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2194 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2195 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2196 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2197 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2198 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2199 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2200 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2201 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2202 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2203 #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ 2204 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2205 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2206 #define EP_Alias 0x400000 /* Is an alias for a result set column */ 2207 2208 /* 2209 ** Combinations of two or more EP_* flags 2210 */ 2211 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2212 2213 /* 2214 ** These macros can be used to test, set, or clear bits in the 2215 ** Expr.flags field. 2216 */ 2217 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2218 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2219 #define ExprSetProperty(E,P) (E)->flags|=(P) 2220 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2221 2222 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2223 ** and Accreditation only. It works like ExprSetProperty() during VVA 2224 ** processes but is a no-op for delivery. 2225 */ 2226 #ifdef SQLITE_DEBUG 2227 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2228 #else 2229 # define ExprSetVVAProperty(E,P) 2230 #endif 2231 2232 /* 2233 ** Macros to determine the number of bytes required by a normal Expr 2234 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2235 ** and an Expr struct with the EP_TokenOnly flag set. 2236 */ 2237 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2238 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2239 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2240 2241 /* 2242 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2243 ** above sqlite3ExprDup() for details. 2244 */ 2245 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2246 2247 /* 2248 ** A list of expressions. Each expression may optionally have a 2249 ** name. An expr/name combination can be used in several ways, such 2250 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2251 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2252 ** also be used as the argument to a function, in which case the a.zName 2253 ** field is not used. 2254 ** 2255 ** By default the Expr.zSpan field holds a human-readable description of 2256 ** the expression that is used in the generation of error messages and 2257 ** column labels. In this case, Expr.zSpan is typically the text of a 2258 ** column expression as it exists in a SELECT statement. However, if 2259 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2260 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2261 ** form is used for name resolution with nested FROM clauses. 2262 */ 2263 struct ExprList { 2264 int nExpr; /* Number of expressions on the list */ 2265 struct ExprList_item { /* For each expression in the list */ 2266 Expr *pExpr; /* The list of expressions */ 2267 char *zName; /* Token associated with this expression */ 2268 char *zSpan; /* Original text of the expression */ 2269 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2270 unsigned done :1; /* A flag to indicate when processing is finished */ 2271 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2272 unsigned reusable :1; /* Constant expression is reusable */ 2273 union { 2274 struct { 2275 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2276 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2277 } x; 2278 int iConstExprReg; /* Register in which Expr value is cached */ 2279 } u; 2280 } *a; /* Alloc a power of two greater or equal to nExpr */ 2281 }; 2282 2283 /* 2284 ** An instance of this structure is used by the parser to record both 2285 ** the parse tree for an expression and the span of input text for an 2286 ** expression. 2287 */ 2288 struct ExprSpan { 2289 Expr *pExpr; /* The expression parse tree */ 2290 const char *zStart; /* First character of input text */ 2291 const char *zEnd; /* One character past the end of input text */ 2292 }; 2293 2294 /* 2295 ** An instance of this structure can hold a simple list of identifiers, 2296 ** such as the list "a,b,c" in the following statements: 2297 ** 2298 ** INSERT INTO t(a,b,c) VALUES ...; 2299 ** CREATE INDEX idx ON t(a,b,c); 2300 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2301 ** 2302 ** The IdList.a.idx field is used when the IdList represents the list of 2303 ** column names after a table name in an INSERT statement. In the statement 2304 ** 2305 ** INSERT INTO t(a,b,c) ... 2306 ** 2307 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2308 */ 2309 struct IdList { 2310 struct IdList_item { 2311 char *zName; /* Name of the identifier */ 2312 int idx; /* Index in some Table.aCol[] of a column named zName */ 2313 } *a; 2314 int nId; /* Number of identifiers on the list */ 2315 }; 2316 2317 /* 2318 ** The bitmask datatype defined below is used for various optimizations. 2319 ** 2320 ** Changing this from a 64-bit to a 32-bit type limits the number of 2321 ** tables in a join to 32 instead of 64. But it also reduces the size 2322 ** of the library by 738 bytes on ix86. 2323 */ 2324 typedef u64 Bitmask; 2325 2326 /* 2327 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2328 */ 2329 #define BMS ((int)(sizeof(Bitmask)*8)) 2330 2331 /* 2332 ** A bit in a Bitmask 2333 */ 2334 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2335 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2336 2337 /* 2338 ** The following structure describes the FROM clause of a SELECT statement. 2339 ** Each table or subquery in the FROM clause is a separate element of 2340 ** the SrcList.a[] array. 2341 ** 2342 ** With the addition of multiple database support, the following structure 2343 ** can also be used to describe a particular table such as the table that 2344 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2345 ** such a table must be a simple name: ID. But in SQLite, the table can 2346 ** now be identified by a database name, a dot, then the table name: ID.ID. 2347 ** 2348 ** The jointype starts out showing the join type between the current table 2349 ** and the next table on the list. The parser builds the list this way. 2350 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2351 ** jointype expresses the join between the table and the previous table. 2352 ** 2353 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2354 ** contains more than 63 columns and the 64-th or later column is used. 2355 */ 2356 struct SrcList { 2357 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2358 u32 nAlloc; /* Number of entries allocated in a[] below */ 2359 struct SrcList_item { 2360 Schema *pSchema; /* Schema to which this item is fixed */ 2361 char *zDatabase; /* Name of database holding this table */ 2362 char *zName; /* Name of the table */ 2363 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2364 Table *pTab; /* An SQL table corresponding to zName */ 2365 Select *pSelect; /* A SELECT statement used in place of a table name */ 2366 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2367 int regReturn; /* Register holding return address of addrFillSub */ 2368 int regResult; /* Registers holding results of a co-routine */ 2369 struct { 2370 u8 jointype; /* Type of join between this able and the previous */ 2371 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2372 unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ 2373 unsigned isTabFunc :1; /* True if table-valued-function syntax */ 2374 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2375 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2376 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2377 } fg; 2378 #ifndef SQLITE_OMIT_EXPLAIN 2379 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2380 #endif 2381 int iCursor; /* The VDBE cursor number used to access this table */ 2382 Expr *pOn; /* The ON clause of a join */ 2383 IdList *pUsing; /* The USING clause of a join */ 2384 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2385 union { 2386 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 2387 ExprList *pFuncArg; /* Arguments to table-valued-function */ 2388 } u1; 2389 Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */ 2390 } a[1]; /* One entry for each identifier on the list */ 2391 }; 2392 2393 /* 2394 ** Permitted values of the SrcList.a.jointype field 2395 */ 2396 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2397 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2398 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2399 #define JT_LEFT 0x0008 /* Left outer join */ 2400 #define JT_RIGHT 0x0010 /* Right outer join */ 2401 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2402 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2403 2404 2405 /* 2406 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2407 ** and the WhereInfo.wctrlFlags member. 2408 */ 2409 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2410 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2411 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2412 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2413 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2414 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2415 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2416 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2417 #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ 2418 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2419 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2420 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2421 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2422 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2423 #define WHERE_ONEPASS_MULTIROW 0x2000 /* ONEPASS is ok with multiple rows */ 2424 2425 /* Allowed return values from sqlite3WhereIsDistinct() 2426 */ 2427 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2428 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2429 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2430 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2431 2432 /* 2433 ** A NameContext defines a context in which to resolve table and column 2434 ** names. The context consists of a list of tables (the pSrcList) field and 2435 ** a list of named expression (pEList). The named expression list may 2436 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2437 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2438 ** pEList corresponds to the result set of a SELECT and is NULL for 2439 ** other statements. 2440 ** 2441 ** NameContexts can be nested. When resolving names, the inner-most 2442 ** context is searched first. If no match is found, the next outer 2443 ** context is checked. If there is still no match, the next context 2444 ** is checked. This process continues until either a match is found 2445 ** or all contexts are check. When a match is found, the nRef member of 2446 ** the context containing the match is incremented. 2447 ** 2448 ** Each subquery gets a new NameContext. The pNext field points to the 2449 ** NameContext in the parent query. Thus the process of scanning the 2450 ** NameContext list corresponds to searching through successively outer 2451 ** subqueries looking for a match. 2452 */ 2453 struct NameContext { 2454 Parse *pParse; /* The parser */ 2455 SrcList *pSrcList; /* One or more tables used to resolve names */ 2456 ExprList *pEList; /* Optional list of result-set columns */ 2457 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2458 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2459 int nRef; /* Number of names resolved by this context */ 2460 int nErr; /* Number of errors encountered while resolving names */ 2461 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2462 }; 2463 2464 /* 2465 ** Allowed values for the NameContext, ncFlags field. 2466 ** 2467 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2468 ** SQLITE_FUNC_MINMAX. 2469 ** 2470 */ 2471 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2472 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2473 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2474 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2475 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2476 #define NC_IdxExpr 0x0020 /* True if resolving columns of CREATE INDEX */ 2477 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2478 2479 /* 2480 ** An instance of the following structure contains all information 2481 ** needed to generate code for a single SELECT statement. 2482 ** 2483 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2484 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2485 ** limit and nOffset to the value of the offset (or 0 if there is not 2486 ** offset). But later on, nLimit and nOffset become the memory locations 2487 ** in the VDBE that record the limit and offset counters. 2488 ** 2489 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2490 ** These addresses must be stored so that we can go back and fill in 2491 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2492 ** the number of columns in P2 can be computed at the same time 2493 ** as the OP_OpenEphm instruction is coded because not 2494 ** enough information about the compound query is known at that point. 2495 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2496 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2497 ** sequences for the ORDER BY clause. 2498 */ 2499 struct Select { 2500 ExprList *pEList; /* The fields of the result */ 2501 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2502 u16 selFlags; /* Various SF_* values */ 2503 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2504 #if SELECTTRACE_ENABLED 2505 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2506 #endif 2507 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2508 u64 nSelectRow; /* Estimated number of result rows */ 2509 SrcList *pSrc; /* The FROM clause */ 2510 Expr *pWhere; /* The WHERE clause */ 2511 ExprList *pGroupBy; /* The GROUP BY clause */ 2512 Expr *pHaving; /* The HAVING clause */ 2513 ExprList *pOrderBy; /* The ORDER BY clause */ 2514 Select *pPrior; /* Prior select in a compound select statement */ 2515 Select *pNext; /* Next select to the left in a compound */ 2516 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2517 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2518 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2519 }; 2520 2521 /* 2522 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2523 ** "Select Flag". 2524 */ 2525 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2526 #define SF_All 0x0002 /* Includes the ALL keyword */ 2527 #define SF_Resolved 0x0004 /* Identifiers have been resolved */ 2528 #define SF_Aggregate 0x0008 /* Contains aggregate functions */ 2529 #define SF_UsesEphemeral 0x0010 /* Uses the OpenEphemeral opcode */ 2530 #define SF_Expanded 0x0020 /* sqlite3SelectExpand() called on this */ 2531 #define SF_HasTypeInfo 0x0040 /* FROM subqueries have Table metadata */ 2532 #define SF_Compound 0x0080 /* Part of a compound query */ 2533 #define SF_Values 0x0100 /* Synthesized from VALUES clause */ 2534 #define SF_MultiValue 0x0200 /* Single VALUES term with multiple rows */ 2535 #define SF_NestedFrom 0x0400 /* Part of a parenthesized FROM clause */ 2536 #define SF_MaybeConvert 0x0800 /* Need convertCompoundSelectToSubquery() */ 2537 #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ 2538 #define SF_Recursive 0x2000 /* The recursive part of a recursive CTE */ 2539 #define SF_Converted 0x4000 /* By convertCompoundSelectToSubquery() */ 2540 #define SF_IncludeHidden 0x8000 /* Include hidden columns in output */ 2541 2542 2543 /* 2544 ** The results of a SELECT can be distributed in several ways, as defined 2545 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2546 ** Type". 2547 ** 2548 ** SRT_Union Store results as a key in a temporary index 2549 ** identified by pDest->iSDParm. 2550 ** 2551 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2552 ** 2553 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2554 ** set is not empty. 2555 ** 2556 ** SRT_Discard Throw the results away. This is used by SELECT 2557 ** statements within triggers whose only purpose is 2558 ** the side-effects of functions. 2559 ** 2560 ** All of the above are free to ignore their ORDER BY clause. Those that 2561 ** follow must honor the ORDER BY clause. 2562 ** 2563 ** SRT_Output Generate a row of output (using the OP_ResultRow 2564 ** opcode) for each row in the result set. 2565 ** 2566 ** SRT_Mem Only valid if the result is a single column. 2567 ** Store the first column of the first result row 2568 ** in register pDest->iSDParm then abandon the rest 2569 ** of the query. This destination implies "LIMIT 1". 2570 ** 2571 ** SRT_Set The result must be a single column. Store each 2572 ** row of result as the key in table pDest->iSDParm. 2573 ** Apply the affinity pDest->affSdst before storing 2574 ** results. Used to implement "IN (SELECT ...)". 2575 ** 2576 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2577 ** the result there. The cursor is left open after 2578 ** returning. This is like SRT_Table except that 2579 ** this destination uses OP_OpenEphemeral to create 2580 ** the table first. 2581 ** 2582 ** SRT_Coroutine Generate a co-routine that returns a new row of 2583 ** results each time it is invoked. The entry point 2584 ** of the co-routine is stored in register pDest->iSDParm 2585 ** and the result row is stored in pDest->nDest registers 2586 ** starting with pDest->iSdst. 2587 ** 2588 ** SRT_Table Store results in temporary table pDest->iSDParm. 2589 ** SRT_Fifo This is like SRT_EphemTab except that the table 2590 ** is assumed to already be open. SRT_Fifo has 2591 ** the additional property of being able to ignore 2592 ** the ORDER BY clause. 2593 ** 2594 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2595 ** But also use temporary table pDest->iSDParm+1 as 2596 ** a record of all prior results and ignore any duplicate 2597 ** rows. Name means: "Distinct Fifo". 2598 ** 2599 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2600 ** an index). Append a sequence number so that all entries 2601 ** are distinct. 2602 ** 2603 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2604 ** the same record has never been stored before. The 2605 ** index at pDest->iSDParm+1 hold all prior stores. 2606 */ 2607 #define SRT_Union 1 /* Store result as keys in an index */ 2608 #define SRT_Except 2 /* Remove result from a UNION index */ 2609 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2610 #define SRT_Discard 4 /* Do not save the results anywhere */ 2611 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2612 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2613 #define SRT_Queue 7 /* Store result in an queue */ 2614 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2615 2616 /* The ORDER BY clause is ignored for all of the above */ 2617 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2618 2619 #define SRT_Output 9 /* Output each row of result */ 2620 #define SRT_Mem 10 /* Store result in a memory cell */ 2621 #define SRT_Set 11 /* Store results as keys in an index */ 2622 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2623 #define SRT_Coroutine 13 /* Generate a single row of result */ 2624 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2625 2626 /* 2627 ** An instance of this object describes where to put of the results of 2628 ** a SELECT statement. 2629 */ 2630 struct SelectDest { 2631 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2632 char affSdst; /* Affinity used when eDest==SRT_Set */ 2633 int iSDParm; /* A parameter used by the eDest disposal method */ 2634 int iSdst; /* Base register where results are written */ 2635 int nSdst; /* Number of registers allocated */ 2636 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2637 }; 2638 2639 /* 2640 ** During code generation of statements that do inserts into AUTOINCREMENT 2641 ** tables, the following information is attached to the Table.u.autoInc.p 2642 ** pointer of each autoincrement table to record some side information that 2643 ** the code generator needs. We have to keep per-table autoincrement 2644 ** information in case inserts are down within triggers. Triggers do not 2645 ** normally coordinate their activities, but we do need to coordinate the 2646 ** loading and saving of autoincrement information. 2647 */ 2648 struct AutoincInfo { 2649 AutoincInfo *pNext; /* Next info block in a list of them all */ 2650 Table *pTab; /* Table this info block refers to */ 2651 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2652 int regCtr; /* Memory register holding the rowid counter */ 2653 }; 2654 2655 /* 2656 ** Size of the column cache 2657 */ 2658 #ifndef SQLITE_N_COLCACHE 2659 # define SQLITE_N_COLCACHE 10 2660 #endif 2661 2662 /* 2663 ** At least one instance of the following structure is created for each 2664 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2665 ** statement. All such objects are stored in the linked list headed at 2666 ** Parse.pTriggerPrg and deleted once statement compilation has been 2667 ** completed. 2668 ** 2669 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2670 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2671 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2672 ** The Parse.pTriggerPrg list never contains two entries with the same 2673 ** values for both pTrigger and orconf. 2674 ** 2675 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2676 ** accessed (or set to 0 for triggers fired as a result of INSERT 2677 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2678 ** a mask of new.* columns used by the program. 2679 */ 2680 struct TriggerPrg { 2681 Trigger *pTrigger; /* Trigger this program was coded from */ 2682 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2683 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2684 int orconf; /* Default ON CONFLICT policy */ 2685 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2686 }; 2687 2688 /* 2689 ** The yDbMask datatype for the bitmask of all attached databases. 2690 */ 2691 #if SQLITE_MAX_ATTACHED>30 2692 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2693 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2694 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2695 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2696 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2697 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2698 #else 2699 typedef unsigned int yDbMask; 2700 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2701 # define DbMaskZero(M) (M)=0 2702 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2703 # define DbMaskAllZero(M) (M)==0 2704 # define DbMaskNonZero(M) (M)!=0 2705 #endif 2706 2707 /* 2708 ** An SQL parser context. A copy of this structure is passed through 2709 ** the parser and down into all the parser action routine in order to 2710 ** carry around information that is global to the entire parse. 2711 ** 2712 ** The structure is divided into two parts. When the parser and code 2713 ** generate call themselves recursively, the first part of the structure 2714 ** is constant but the second part is reset at the beginning and end of 2715 ** each recursion. 2716 ** 2717 ** The nTableLock and aTableLock variables are only used if the shared-cache 2718 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2719 ** used to store the set of table-locks required by the statement being 2720 ** compiled. Function sqlite3TableLock() is used to add entries to the 2721 ** list. 2722 */ 2723 struct Parse { 2724 sqlite3 *db; /* The main database structure */ 2725 char *zErrMsg; /* An error message */ 2726 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2727 int rc; /* Return code from execution */ 2728 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2729 u8 checkSchema; /* Causes schema cookie check after an error */ 2730 u8 nested; /* Number of nested calls to the parser/code generator */ 2731 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2732 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2733 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2734 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2735 u8 okConstFactor; /* OK to factor out constants */ 2736 int aTempReg[8]; /* Holding area for temporary registers */ 2737 int nRangeReg; /* Size of the temporary register block */ 2738 int iRangeReg; /* First register in temporary register block */ 2739 int nErr; /* Number of errors seen */ 2740 int nTab; /* Number of previously allocated VDBE cursors */ 2741 int nMem; /* Number of memory cells used so far */ 2742 int nSet; /* Number of sets used so far */ 2743 int nOnce; /* Number of OP_Once instructions so far */ 2744 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2745 int szOpAlloc; /* Bytes of memory space allocated for Vdbe.aOp[] */ 2746 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2747 int ckBase; /* Base register of data during check constraints */ 2748 int iSelfTab; /* Table of an index whose exprs are being coded */ 2749 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2750 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2751 int nLabel; /* Number of labels used */ 2752 int *aLabel; /* Space to hold the labels */ 2753 struct yColCache { 2754 int iTable; /* Table cursor number */ 2755 i16 iColumn; /* Table column number */ 2756 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2757 int iLevel; /* Nesting level */ 2758 int iReg; /* Reg with value of this column. 0 means none. */ 2759 int lru; /* Least recently used entry has the smallest value */ 2760 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2761 ExprList *pConstExpr;/* Constant expressions */ 2762 Token constraintName;/* Name of the constraint currently being parsed */ 2763 yDbMask writeMask; /* Start a write transaction on these databases */ 2764 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2765 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2766 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2767 int regRoot; /* Register holding root page number for new objects */ 2768 int nMaxArg; /* Max args passed to user function by sub-program */ 2769 #if SELECTTRACE_ENABLED 2770 int nSelect; /* Number of SELECT statements seen */ 2771 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2772 #endif 2773 #ifndef SQLITE_OMIT_SHARED_CACHE 2774 int nTableLock; /* Number of locks in aTableLock */ 2775 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2776 #endif 2777 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2778 2779 /* Information used while coding trigger programs. */ 2780 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2781 Table *pTriggerTab; /* Table triggers are being coded for */ 2782 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2783 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2784 u32 oldmask; /* Mask of old.* columns referenced */ 2785 u32 newmask; /* Mask of new.* columns referenced */ 2786 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2787 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2788 u8 disableTriggers; /* True to disable triggers */ 2789 2790 /************************************************************************ 2791 ** Above is constant between recursions. Below is reset before and after 2792 ** each recursion. The boundary between these two regions is determined 2793 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2794 ** in the recursive region. 2795 ************************************************************************/ 2796 2797 ynVar nVar; /* Number of '?' variables seen in the SQL so far */ 2798 int nzVar; /* Number of available slots in azVar[] */ 2799 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2800 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2801 #ifndef SQLITE_OMIT_VIRTUALTABLE 2802 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2803 int nVtabLock; /* Number of virtual tables to lock */ 2804 #endif 2805 int nAlias; /* Number of aliased result set columns */ 2806 int nHeight; /* Expression tree height of current sub-select */ 2807 #ifndef SQLITE_OMIT_EXPLAIN 2808 int iSelectId; /* ID of current select for EXPLAIN output */ 2809 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2810 #endif 2811 char **azVar; /* Pointers to names of parameters */ 2812 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2813 const char *zTail; /* All SQL text past the last semicolon parsed */ 2814 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2815 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2816 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2817 Token sNameToken; /* Token with unqualified schema object name */ 2818 Token sLastToken; /* The last token parsed */ 2819 #ifndef SQLITE_OMIT_VIRTUALTABLE 2820 Token sArg; /* Complete text of a module argument */ 2821 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2822 #endif 2823 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2824 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2825 With *pWith; /* Current WITH clause, or NULL */ 2826 With *pWithToFree; /* Free this WITH object at the end of the parse */ 2827 }; 2828 2829 /* 2830 ** Return true if currently inside an sqlite3_declare_vtab() call. 2831 */ 2832 #ifdef SQLITE_OMIT_VIRTUALTABLE 2833 #define IN_DECLARE_VTAB 0 2834 #else 2835 #define IN_DECLARE_VTAB (pParse->declareVtab) 2836 #endif 2837 2838 /* 2839 ** An instance of the following structure can be declared on a stack and used 2840 ** to save the Parse.zAuthContext value so that it can be restored later. 2841 */ 2842 struct AuthContext { 2843 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2844 Parse *pParse; /* The Parse structure */ 2845 }; 2846 2847 /* 2848 ** Bitfield flags for P5 value in various opcodes. 2849 */ 2850 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2851 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2852 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2853 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2854 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2855 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2856 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2857 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2858 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2859 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 2860 #define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */ 2861 #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ 2862 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2863 2864 /* 2865 * Each trigger present in the database schema is stored as an instance of 2866 * struct Trigger. 2867 * 2868 * Pointers to instances of struct Trigger are stored in two ways. 2869 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2870 * database). This allows Trigger structures to be retrieved by name. 2871 * 2. All triggers associated with a single table form a linked list, using the 2872 * pNext member of struct Trigger. A pointer to the first element of the 2873 * linked list is stored as the "pTrigger" member of the associated 2874 * struct Table. 2875 * 2876 * The "step_list" member points to the first element of a linked list 2877 * containing the SQL statements specified as the trigger program. 2878 */ 2879 struct Trigger { 2880 char *zName; /* The name of the trigger */ 2881 char *table; /* The table or view to which the trigger applies */ 2882 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2883 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2884 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2885 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2886 the <column-list> is stored here */ 2887 Schema *pSchema; /* Schema containing the trigger */ 2888 Schema *pTabSchema; /* Schema containing the table */ 2889 TriggerStep *step_list; /* Link list of trigger program steps */ 2890 Trigger *pNext; /* Next trigger associated with the table */ 2891 }; 2892 2893 /* 2894 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2895 ** determine which. 2896 ** 2897 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2898 ** In that cases, the constants below can be ORed together. 2899 */ 2900 #define TRIGGER_BEFORE 1 2901 #define TRIGGER_AFTER 2 2902 2903 /* 2904 * An instance of struct TriggerStep is used to store a single SQL statement 2905 * that is a part of a trigger-program. 2906 * 2907 * Instances of struct TriggerStep are stored in a singly linked list (linked 2908 * using the "pNext" member) referenced by the "step_list" member of the 2909 * associated struct Trigger instance. The first element of the linked list is 2910 * the first step of the trigger-program. 2911 * 2912 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2913 * "SELECT" statement. The meanings of the other members is determined by the 2914 * value of "op" as follows: 2915 * 2916 * (op == TK_INSERT) 2917 * orconf -> stores the ON CONFLICT algorithm 2918 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2919 * this stores a pointer to the SELECT statement. Otherwise NULL. 2920 * zTarget -> Dequoted name of the table to insert into. 2921 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2922 * this stores values to be inserted. Otherwise NULL. 2923 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2924 * statement, then this stores the column-names to be 2925 * inserted into. 2926 * 2927 * (op == TK_DELETE) 2928 * zTarget -> Dequoted name of the table to delete from. 2929 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2930 * Otherwise NULL. 2931 * 2932 * (op == TK_UPDATE) 2933 * zTarget -> Dequoted name of the table to update. 2934 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2935 * Otherwise NULL. 2936 * pExprList -> A list of the columns to update and the expressions to update 2937 * them to. See sqlite3Update() documentation of "pChanges" 2938 * argument. 2939 * 2940 */ 2941 struct TriggerStep { 2942 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2943 u8 orconf; /* OE_Rollback etc. */ 2944 Trigger *pTrig; /* The trigger that this step is a part of */ 2945 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 2946 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 2947 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2948 ExprList *pExprList; /* SET clause for UPDATE. */ 2949 IdList *pIdList; /* Column names for INSERT */ 2950 TriggerStep *pNext; /* Next in the link-list */ 2951 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2952 }; 2953 2954 /* 2955 ** The following structure contains information used by the sqliteFix... 2956 ** routines as they walk the parse tree to make database references 2957 ** explicit. 2958 */ 2959 typedef struct DbFixer DbFixer; 2960 struct DbFixer { 2961 Parse *pParse; /* The parsing context. Error messages written here */ 2962 Schema *pSchema; /* Fix items to this schema */ 2963 int bVarOnly; /* Check for variable references only */ 2964 const char *zDb; /* Make sure all objects are contained in this database */ 2965 const char *zType; /* Type of the container - used for error messages */ 2966 const Token *pName; /* Name of the container - used for error messages */ 2967 }; 2968 2969 /* 2970 ** An objected used to accumulate the text of a string where we 2971 ** do not necessarily know how big the string will be in the end. 2972 */ 2973 struct StrAccum { 2974 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2975 char *zBase; /* A base allocation. Not from malloc. */ 2976 char *zText; /* The string collected so far */ 2977 u32 nChar; /* Length of the string so far */ 2978 u32 nAlloc; /* Amount of space allocated in zText */ 2979 u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 2980 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2981 u8 bMalloced; /* zText points to allocated space */ 2982 }; 2983 #define STRACCUM_NOMEM 1 2984 #define STRACCUM_TOOBIG 2 2985 2986 /* 2987 ** A pointer to this structure is used to communicate information 2988 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2989 */ 2990 typedef struct { 2991 sqlite3 *db; /* The database being initialized */ 2992 char **pzErrMsg; /* Error message stored here */ 2993 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2994 int rc; /* Result code stored here */ 2995 } InitData; 2996 2997 /* 2998 ** Structure containing global configuration data for the SQLite library. 2999 ** 3000 ** This structure also contains some state information. 3001 */ 3002 struct Sqlite3Config { 3003 int bMemstat; /* True to enable memory status */ 3004 int bCoreMutex; /* True to enable core mutexing */ 3005 int bFullMutex; /* True to enable full mutexing */ 3006 int bOpenUri; /* True to interpret filenames as URIs */ 3007 int bUseCis; /* Use covering indices for full-scans */ 3008 int mxStrlen; /* Maximum string length */ 3009 int neverCorrupt; /* Database is always well-formed */ 3010 int szLookaside; /* Default lookaside buffer size */ 3011 int nLookaside; /* Default lookaside buffer count */ 3012 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 3013 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 3014 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 3015 void *pHeap; /* Heap storage space */ 3016 int nHeap; /* Size of pHeap[] */ 3017 int mnReq, mxReq; /* Min and max heap requests sizes */ 3018 sqlite3_int64 szMmap; /* mmap() space per open file */ 3019 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 3020 void *pScratch; /* Scratch memory */ 3021 int szScratch; /* Size of each scratch buffer */ 3022 int nScratch; /* Number of scratch buffers */ 3023 void *pPage; /* Page cache memory */ 3024 int szPage; /* Size of each page in pPage[] */ 3025 int nPage; /* Number of pages in pPage[] */ 3026 int mxParserStack; /* maximum depth of the parser stack */ 3027 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 3028 u32 szPma; /* Maximum Sorter PMA size */ 3029 /* The above might be initialized to non-zero. The following need to always 3030 ** initially be zero, however. */ 3031 int isInit; /* True after initialization has finished */ 3032 int inProgress; /* True while initialization in progress */ 3033 int isMutexInit; /* True after mutexes are initialized */ 3034 int isMallocInit; /* True after malloc is initialized */ 3035 int isPCacheInit; /* True after malloc is initialized */ 3036 int nRefInitMutex; /* Number of users of pInitMutex */ 3037 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 3038 void (*xLog)(void*,int,const char*); /* Function for logging */ 3039 void *pLogArg; /* First argument to xLog() */ 3040 #ifdef SQLITE_ENABLE_SQLLOG 3041 void(*xSqllog)(void*,sqlite3*,const char*, int); 3042 void *pSqllogArg; 3043 #endif 3044 #ifdef SQLITE_VDBE_COVERAGE 3045 /* The following callback (if not NULL) is invoked on every VDBE branch 3046 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 3047 */ 3048 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 3049 void *pVdbeBranchArg; /* 1st argument */ 3050 #endif 3051 #ifndef SQLITE_OMIT_BUILTIN_TEST 3052 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 3053 #endif 3054 int bLocaltimeFault; /* True to fail localtime() calls */ 3055 }; 3056 3057 /* 3058 ** This macro is used inside of assert() statements to indicate that 3059 ** the assert is only valid on a well-formed database. Instead of: 3060 ** 3061 ** assert( X ); 3062 ** 3063 ** One writes: 3064 ** 3065 ** assert( X || CORRUPT_DB ); 3066 ** 3067 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 3068 ** that the database is definitely corrupt, only that it might be corrupt. 3069 ** For most test cases, CORRUPT_DB is set to false using a special 3070 ** sqlite3_test_control(). This enables assert() statements to prove 3071 ** things that are always true for well-formed databases. 3072 */ 3073 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 3074 3075 /* 3076 ** Context pointer passed down through the tree-walk. 3077 */ 3078 struct Walker { 3079 Parse *pParse; /* Parser context. */ 3080 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 3081 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 3082 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 3083 int walkerDepth; /* Number of subqueries */ 3084 u8 eCode; /* A small processing code */ 3085 union { /* Extra data for callback */ 3086 NameContext *pNC; /* Naming context */ 3087 int n; /* A counter */ 3088 int iCur; /* A cursor number */ 3089 SrcList *pSrcList; /* FROM clause */ 3090 struct SrcCount *pSrcCount; /* Counting column references */ 3091 struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ 3092 } u; 3093 }; 3094 3095 /* Forward declarations */ 3096 int sqlite3WalkExpr(Walker*, Expr*); 3097 int sqlite3WalkExprList(Walker*, ExprList*); 3098 int sqlite3WalkSelect(Walker*, Select*); 3099 int sqlite3WalkSelectExpr(Walker*, Select*); 3100 int sqlite3WalkSelectFrom(Walker*, Select*); 3101 int sqlite3ExprWalkNoop(Walker*, Expr*); 3102 3103 /* 3104 ** Return code from the parse-tree walking primitives and their 3105 ** callbacks. 3106 */ 3107 #define WRC_Continue 0 /* Continue down into children */ 3108 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 3109 #define WRC_Abort 2 /* Abandon the tree walk */ 3110 3111 /* 3112 ** An instance of this structure represents a set of one or more CTEs 3113 ** (common table expressions) created by a single WITH clause. 3114 */ 3115 struct With { 3116 int nCte; /* Number of CTEs in the WITH clause */ 3117 With *pOuter; /* Containing WITH clause, or NULL */ 3118 struct Cte { /* For each CTE in the WITH clause.... */ 3119 char *zName; /* Name of this CTE */ 3120 ExprList *pCols; /* List of explicit column names, or NULL */ 3121 Select *pSelect; /* The definition of this CTE */ 3122 const char *zCteErr; /* Error message for circular references */ 3123 } a[1]; 3124 }; 3125 3126 #ifdef SQLITE_DEBUG 3127 /* 3128 ** An instance of the TreeView object is used for printing the content of 3129 ** data structures on sqlite3DebugPrintf() using a tree-like view. 3130 */ 3131 struct TreeView { 3132 int iLevel; /* Which level of the tree we are on */ 3133 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 3134 }; 3135 #endif /* SQLITE_DEBUG */ 3136 3137 /* 3138 ** Assuming zIn points to the first byte of a UTF-8 character, 3139 ** advance zIn to point to the first byte of the next UTF-8 character. 3140 */ 3141 #define SQLITE_SKIP_UTF8(zIn) { \ 3142 if( (*(zIn++))>=0xc0 ){ \ 3143 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3144 } \ 3145 } 3146 3147 /* 3148 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3149 ** the same name but without the _BKPT suffix. These macros invoke 3150 ** routines that report the line-number on which the error originated 3151 ** using sqlite3_log(). The routines also provide a convenient place 3152 ** to set a debugger breakpoint. 3153 */ 3154 int sqlite3CorruptError(int); 3155 int sqlite3MisuseError(int); 3156 int sqlite3CantopenError(int); 3157 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3158 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3159 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3160 3161 3162 /* 3163 ** FTS4 is really an extension for FTS3. It is enabled using the 3164 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3165 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3166 */ 3167 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3168 # define SQLITE_ENABLE_FTS3 1 3169 #endif 3170 3171 /* 3172 ** The ctype.h header is needed for non-ASCII systems. It is also 3173 ** needed by FTS3 when FTS3 is included in the amalgamation. 3174 */ 3175 #if !defined(SQLITE_ASCII) || \ 3176 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3177 # include <ctype.h> 3178 #endif 3179 3180 /* 3181 ** The following macros mimic the standard library functions toupper(), 3182 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3183 ** sqlite versions only work for ASCII characters, regardless of locale. 3184 */ 3185 #ifdef SQLITE_ASCII 3186 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3187 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3188 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3189 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3190 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3191 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3192 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3193 #else 3194 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3195 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3196 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3197 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3198 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3199 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3200 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3201 #endif 3202 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 3203 int sqlite3IsIdChar(u8); 3204 #endif 3205 3206 /* 3207 ** Internal function prototypes 3208 */ 3209 #define sqlite3StrICmp sqlite3_stricmp 3210 int sqlite3Strlen30(const char*); 3211 #define sqlite3StrNICmp sqlite3_strnicmp 3212 3213 int sqlite3MallocInit(void); 3214 void sqlite3MallocEnd(void); 3215 void *sqlite3Malloc(u64); 3216 void *sqlite3MallocZero(u64); 3217 void *sqlite3DbMallocZero(sqlite3*, u64); 3218 void *sqlite3DbMallocRaw(sqlite3*, u64); 3219 char *sqlite3DbStrDup(sqlite3*,const char*); 3220 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3221 void *sqlite3Realloc(void*, u64); 3222 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3223 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3224 void sqlite3DbFree(sqlite3*, void*); 3225 int sqlite3MallocSize(void*); 3226 int sqlite3DbMallocSize(sqlite3*, void*); 3227 void *sqlite3ScratchMalloc(int); 3228 void sqlite3ScratchFree(void*); 3229 void *sqlite3PageMalloc(int); 3230 void sqlite3PageFree(void*); 3231 void sqlite3MemSetDefault(void); 3232 #ifndef SQLITE_OMIT_BUILTIN_TEST 3233 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3234 #endif 3235 int sqlite3HeapNearlyFull(void); 3236 3237 /* 3238 ** On systems with ample stack space and that support alloca(), make 3239 ** use of alloca() to obtain space for large automatic objects. By default, 3240 ** obtain space from malloc(). 3241 ** 3242 ** The alloca() routine never returns NULL. This will cause code paths 3243 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3244 */ 3245 #ifdef SQLITE_USE_ALLOCA 3246 # define sqlite3StackAllocRaw(D,N) alloca(N) 3247 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3248 # define sqlite3StackFree(D,P) 3249 #else 3250 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3251 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3252 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3253 #endif 3254 3255 #ifdef SQLITE_ENABLE_MEMSYS3 3256 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3257 #endif 3258 #ifdef SQLITE_ENABLE_MEMSYS5 3259 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3260 #endif 3261 3262 3263 #ifndef SQLITE_MUTEX_OMIT 3264 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3265 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3266 sqlite3_mutex *sqlite3MutexAlloc(int); 3267 int sqlite3MutexInit(void); 3268 int sqlite3MutexEnd(void); 3269 #endif 3270 #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP) 3271 void sqlite3MemoryBarrier(void); 3272 #else 3273 # define sqlite3MemoryBarrier() 3274 #endif 3275 3276 sqlite3_int64 sqlite3StatusValue(int); 3277 void sqlite3StatusUp(int, int); 3278 void sqlite3StatusDown(int, int); 3279 void sqlite3StatusHighwater(int, int); 3280 3281 /* Access to mutexes used by sqlite3_status() */ 3282 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3283 sqlite3_mutex *sqlite3MallocMutex(void); 3284 3285 #ifndef SQLITE_OMIT_FLOATING_POINT 3286 int sqlite3IsNaN(double); 3287 #else 3288 # define sqlite3IsNaN(X) 0 3289 #endif 3290 3291 /* 3292 ** An instance of the following structure holds information about SQL 3293 ** functions arguments that are the parameters to the printf() function. 3294 */ 3295 struct PrintfArguments { 3296 int nArg; /* Total number of arguments */ 3297 int nUsed; /* Number of arguments used so far */ 3298 sqlite3_value **apArg; /* The argument values */ 3299 }; 3300 3301 #define SQLITE_PRINTF_INTERNAL 0x01 3302 #define SQLITE_PRINTF_SQLFUNC 0x02 3303 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3304 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3305 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3306 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3307 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3308 void sqlite3DebugPrintf(const char*, ...); 3309 #endif 3310 #if defined(SQLITE_TEST) 3311 void *sqlite3TestTextToPtr(const char*); 3312 #endif 3313 3314 #if defined(SQLITE_DEBUG) 3315 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3316 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3317 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3318 void sqlite3TreeViewWith(TreeView*, const With*, u8); 3319 #endif 3320 3321 3322 void sqlite3SetString(char **, sqlite3*, const char*); 3323 void sqlite3ErrorMsg(Parse*, const char*, ...); 3324 int sqlite3Dequote(char*); 3325 void sqlite3TokenInit(Token*,char*); 3326 int sqlite3KeywordCode(const unsigned char*, int); 3327 int sqlite3RunParser(Parse*, const char*, char **); 3328 void sqlite3FinishCoding(Parse*); 3329 int sqlite3GetTempReg(Parse*); 3330 void sqlite3ReleaseTempReg(Parse*,int); 3331 int sqlite3GetTempRange(Parse*,int); 3332 void sqlite3ReleaseTempRange(Parse*,int,int); 3333 void sqlite3ClearTempRegCache(Parse*); 3334 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3335 Expr *sqlite3Expr(sqlite3*,int,const char*); 3336 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3337 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3338 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3339 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3340 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3341 void sqlite3ExprDelete(sqlite3*, Expr*); 3342 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3343 void sqlite3ExprListSetSortOrder(ExprList*,int); 3344 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3345 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3346 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3347 u32 sqlite3ExprListFlags(const ExprList*); 3348 int sqlite3Init(sqlite3*, char**); 3349 int sqlite3InitCallback(void*, int, char**, char**); 3350 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3351 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3352 void sqlite3ResetOneSchema(sqlite3*,int); 3353 void sqlite3CollapseDatabaseArray(sqlite3*); 3354 void sqlite3CommitInternalChanges(sqlite3*); 3355 void sqlite3DeleteColumnNames(sqlite3*,Table*); 3356 int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**); 3357 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3358 void sqlite3OpenMasterTable(Parse *, int); 3359 Index *sqlite3PrimaryKeyIndex(Table*); 3360 i16 sqlite3ColumnOfIndex(Index*, i16); 3361 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3362 #if SQLITE_ENABLE_HIDDEN_COLUMNS 3363 void sqlite3ColumnPropertiesFromName(Table*, Column*); 3364 #else 3365 # define sqlite3ColumnPropertiesFromName(T,C) /* no-op */ 3366 #endif 3367 void sqlite3AddColumn(Parse*,Token*); 3368 void sqlite3AddNotNull(Parse*, int); 3369 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3370 void sqlite3AddCheckConstraint(Parse*, Expr*); 3371 void sqlite3AddColumnType(Parse*,Token*); 3372 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3373 void sqlite3AddCollateType(Parse*, Token*); 3374 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3375 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3376 sqlite3_vfs**,char**,char **); 3377 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3378 int sqlite3CodeOnce(Parse *); 3379 3380 #ifdef SQLITE_OMIT_BUILTIN_TEST 3381 # define sqlite3FaultSim(X) SQLITE_OK 3382 #else 3383 int sqlite3FaultSim(int); 3384 #endif 3385 3386 Bitvec *sqlite3BitvecCreate(u32); 3387 int sqlite3BitvecTest(Bitvec*, u32); 3388 int sqlite3BitvecTestNotNull(Bitvec*, u32); 3389 int sqlite3BitvecSet(Bitvec*, u32); 3390 void sqlite3BitvecClear(Bitvec*, u32, void*); 3391 void sqlite3BitvecDestroy(Bitvec*); 3392 u32 sqlite3BitvecSize(Bitvec*); 3393 #ifndef SQLITE_OMIT_BUILTIN_TEST 3394 int sqlite3BitvecBuiltinTest(int,int*); 3395 #endif 3396 3397 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3398 void sqlite3RowSetClear(RowSet*); 3399 void sqlite3RowSetInsert(RowSet*, i64); 3400 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3401 int sqlite3RowSetNext(RowSet*, i64*); 3402 3403 void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int); 3404 3405 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3406 int sqlite3ViewGetColumnNames(Parse*,Table*); 3407 #else 3408 # define sqlite3ViewGetColumnNames(A,B) 0 3409 #endif 3410 3411 #if SQLITE_MAX_ATTACHED>30 3412 int sqlite3DbMaskAllZero(yDbMask); 3413 #endif 3414 void sqlite3DropTable(Parse*, SrcList*, int, int); 3415 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3416 void sqlite3DeleteTable(sqlite3*, Table*); 3417 #ifndef SQLITE_OMIT_AUTOINCREMENT 3418 void sqlite3AutoincrementBegin(Parse *pParse); 3419 void sqlite3AutoincrementEnd(Parse *pParse); 3420 #else 3421 # define sqlite3AutoincrementBegin(X) 3422 # define sqlite3AutoincrementEnd(X) 3423 #endif 3424 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3425 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3426 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3427 int sqlite3IdListIndex(IdList*,const char*); 3428 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3429 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3430 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3431 Token*, Select*, Expr*, IdList*); 3432 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3433 void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*); 3434 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3435 void sqlite3SrcListShiftJoinType(SrcList*); 3436 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3437 void sqlite3IdListDelete(sqlite3*, IdList*); 3438 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3439 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3440 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3441 Expr*, int, int); 3442 void sqlite3DropIndex(Parse*, SrcList*, int); 3443 int sqlite3Select(Parse*, Select*, SelectDest*); 3444 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3445 Expr*,ExprList*,u16,Expr*,Expr*); 3446 void sqlite3SelectDelete(sqlite3*, Select*); 3447 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3448 int sqlite3IsReadOnly(Parse*, Table*, int); 3449 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3450 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3451 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3452 #endif 3453 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3454 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3455 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3456 void sqlite3WhereEnd(WhereInfo*); 3457 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3458 int sqlite3WhereIsDistinct(WhereInfo*); 3459 int sqlite3WhereIsOrdered(WhereInfo*); 3460 int sqlite3WhereIsSorted(WhereInfo*); 3461 int sqlite3WhereContinueLabel(WhereInfo*); 3462 int sqlite3WhereBreakLabel(WhereInfo*); 3463 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3464 #define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */ 3465 #define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */ 3466 #define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */ 3467 void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int); 3468 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3469 void sqlite3ExprCodeGetColumnToReg(Parse*, Table*, int, int, int); 3470 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3471 void sqlite3ExprCodeMove(Parse*, int, int, int); 3472 void sqlite3ExprCacheStore(Parse*, int, int, int); 3473 void sqlite3ExprCachePush(Parse*); 3474 void sqlite3ExprCachePop(Parse*); 3475 void sqlite3ExprCacheRemove(Parse*, int, int); 3476 void sqlite3ExprCacheClear(Parse*); 3477 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3478 void sqlite3ExprCode(Parse*, Expr*, int); 3479 void sqlite3ExprCodeCopy(Parse*, Expr*, int); 3480 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3481 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3482 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3483 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3484 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3485 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8); 3486 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3487 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3488 #define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */ 3489 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3490 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3491 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 3492 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3493 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3494 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3495 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3496 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3497 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3498 void sqlite3Vacuum(Parse*); 3499 int sqlite3RunVacuum(char**, sqlite3*); 3500 char *sqlite3NameFromToken(sqlite3*, Token*); 3501 int sqlite3ExprCompare(Expr*, Expr*, int); 3502 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3503 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3504 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3505 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3506 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3507 Vdbe *sqlite3GetVdbe(Parse*); 3508 #ifndef SQLITE_OMIT_BUILTIN_TEST 3509 void sqlite3PrngSaveState(void); 3510 void sqlite3PrngRestoreState(void); 3511 #endif 3512 void sqlite3RollbackAll(sqlite3*,int); 3513 void sqlite3CodeVerifySchema(Parse*, int); 3514 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3515 void sqlite3BeginTransaction(Parse*, int); 3516 void sqlite3CommitTransaction(Parse*); 3517 void sqlite3RollbackTransaction(Parse*); 3518 void sqlite3Savepoint(Parse*, int, Token*); 3519 void sqlite3CloseSavepoints(sqlite3 *); 3520 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3521 int sqlite3ExprIsConstant(Expr*); 3522 int sqlite3ExprIsConstantNotJoin(Expr*); 3523 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3524 int sqlite3ExprIsTableConstant(Expr*,int); 3525 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3526 int sqlite3ExprContainsSubquery(Expr*); 3527 #endif 3528 int sqlite3ExprIsInteger(Expr*, int*); 3529 int sqlite3ExprCanBeNull(const Expr*); 3530 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3531 int sqlite3IsRowid(const char*); 3532 void sqlite3GenerateRowDelete( 3533 Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); 3534 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); 3535 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3536 void sqlite3ResolvePartIdxLabel(Parse*,int); 3537 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3538 u8,u8,int,int*); 3539 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3540 int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); 3541 void sqlite3BeginWriteOperation(Parse*, int, int); 3542 void sqlite3MultiWrite(Parse*); 3543 void sqlite3MayAbort(Parse*); 3544 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3545 void sqlite3UniqueConstraint(Parse*, int, Index*); 3546 void sqlite3RowidConstraint(Parse*, int, Table*); 3547 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3548 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3549 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3550 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3551 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3552 #if SELECTTRACE_ENABLED 3553 void sqlite3SelectSetName(Select*,const char*); 3554 #else 3555 # define sqlite3SelectSetName(A,B) 3556 #endif 3557 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3558 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3559 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3560 void sqlite3RegisterDateTimeFunctions(void); 3561 void sqlite3RegisterGlobalFunctions(void); 3562 int sqlite3SafetyCheckOk(sqlite3*); 3563 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3564 void sqlite3ChangeCookie(Parse*, int); 3565 3566 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3567 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3568 #endif 3569 3570 #ifndef SQLITE_OMIT_TRIGGER 3571 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3572 Expr*,int, int); 3573 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3574 void sqlite3DropTrigger(Parse*, SrcList*, int); 3575 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3576 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3577 Trigger *sqlite3TriggerList(Parse *, Table *); 3578 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3579 int, int, int); 3580 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3581 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3582 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3583 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3584 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3585 Select*,u8); 3586 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3587 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3588 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3589 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3590 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3591 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3592 # define sqlite3IsToplevel(p) ((p)->pToplevel==0) 3593 #else 3594 # define sqlite3TriggersExist(B,C,D,E,F) 0 3595 # define sqlite3DeleteTrigger(A,B) 3596 # define sqlite3DropTriggerPtr(A,B) 3597 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3598 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3599 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3600 # define sqlite3TriggerList(X, Y) 0 3601 # define sqlite3ParseToplevel(p) p 3602 # define sqlite3IsToplevel(p) 1 3603 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3604 #endif 3605 3606 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3607 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3608 void sqlite3DeferForeignKey(Parse*, int); 3609 #ifndef SQLITE_OMIT_AUTHORIZATION 3610 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3611 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3612 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3613 void sqlite3AuthContextPop(AuthContext*); 3614 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3615 #else 3616 # define sqlite3AuthRead(a,b,c,d) 3617 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3618 # define sqlite3AuthContextPush(a,b,c) 3619 # define sqlite3AuthContextPop(a) ((void)(a)) 3620 #endif 3621 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3622 void sqlite3Detach(Parse*, Expr*); 3623 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3624 int sqlite3FixSrcList(DbFixer*, SrcList*); 3625 int sqlite3FixSelect(DbFixer*, Select*); 3626 int sqlite3FixExpr(DbFixer*, Expr*); 3627 int sqlite3FixExprList(DbFixer*, ExprList*); 3628 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3629 int sqlite3AtoF(const char *z, double*, int, u8); 3630 int sqlite3GetInt32(const char *, int*); 3631 int sqlite3Atoi(const char*); 3632 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3633 int sqlite3Utf8CharLen(const char *pData, int nByte); 3634 u32 sqlite3Utf8Read(const u8**); 3635 LogEst sqlite3LogEst(u64); 3636 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3637 #ifndef SQLITE_OMIT_VIRTUALTABLE 3638 LogEst sqlite3LogEstFromDouble(double); 3639 #endif 3640 u64 sqlite3LogEstToInt(LogEst); 3641 3642 /* 3643 ** Routines to read and write variable-length integers. These used to 3644 ** be defined locally, but now we use the varint routines in the util.c 3645 ** file. 3646 */ 3647 int sqlite3PutVarint(unsigned char*, u64); 3648 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3649 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3650 int sqlite3VarintLen(u64 v); 3651 3652 /* 3653 ** The common case is for a varint to be a single byte. They following 3654 ** macros handle the common case without a procedure call, but then call 3655 ** the procedure for larger varints. 3656 */ 3657 #define getVarint32(A,B) \ 3658 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3659 #define putVarint32(A,B) \ 3660 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3661 sqlite3PutVarint((A),(B))) 3662 #define getVarint sqlite3GetVarint 3663 #define putVarint sqlite3PutVarint 3664 3665 3666 const char *sqlite3IndexAffinityStr(sqlite3*, Index*); 3667 void sqlite3TableAffinity(Vdbe*, Table*, int); 3668 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3669 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3670 char sqlite3ExprAffinity(Expr *pExpr); 3671 int sqlite3Atoi64(const char*, i64*, int, u8); 3672 int sqlite3DecOrHexToI64(const char*, i64*); 3673 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3674 void sqlite3Error(sqlite3*,int); 3675 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3676 u8 sqlite3HexToInt(int h); 3677 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3678 3679 #if defined(SQLITE_NEED_ERR_NAME) 3680 const char *sqlite3ErrName(int); 3681 #endif 3682 3683 const char *sqlite3ErrStr(int); 3684 int sqlite3ReadSchema(Parse *pParse); 3685 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3686 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3687 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3688 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3689 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3690 Expr *sqlite3ExprSkipCollate(Expr*); 3691 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3692 int sqlite3CheckObjectName(Parse *, const char *); 3693 void sqlite3VdbeSetChanges(sqlite3 *, int); 3694 int sqlite3AddInt64(i64*,i64); 3695 int sqlite3SubInt64(i64*,i64); 3696 int sqlite3MulInt64(i64*,i64); 3697 int sqlite3AbsInt32(int); 3698 #ifdef SQLITE_ENABLE_8_3_NAMES 3699 void sqlite3FileSuffix3(const char*, char*); 3700 #else 3701 # define sqlite3FileSuffix3(X,Y) 3702 #endif 3703 u8 sqlite3GetBoolean(const char *z,u8); 3704 3705 const void *sqlite3ValueText(sqlite3_value*, u8); 3706 int sqlite3ValueBytes(sqlite3_value*, u8); 3707 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3708 void(*)(void*)); 3709 void sqlite3ValueSetNull(sqlite3_value*); 3710 void sqlite3ValueFree(sqlite3_value*); 3711 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3712 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3713 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3714 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3715 #ifndef SQLITE_AMALGAMATION 3716 extern const unsigned char sqlite3OpcodeProperty[]; 3717 extern const char sqlite3StrBINARY[]; 3718 extern const unsigned char sqlite3UpperToLower[]; 3719 extern const unsigned char sqlite3CtypeMap[]; 3720 extern const Token sqlite3IntTokens[]; 3721 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3722 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3723 #ifndef SQLITE_OMIT_WSD 3724 extern int sqlite3PendingByte; 3725 #endif 3726 #endif 3727 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3728 void sqlite3Reindex(Parse*, Token*, Token*); 3729 void sqlite3AlterFunctions(void); 3730 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3731 int sqlite3GetToken(const unsigned char *, int *); 3732 void sqlite3NestedParse(Parse*, const char*, ...); 3733 void sqlite3ExpirePreparedStatements(sqlite3*); 3734 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3735 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3736 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 3737 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3738 int sqlite3ResolveExprNames(NameContext*, Expr*); 3739 int sqlite3ResolveExprListNames(NameContext*, ExprList*); 3740 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3741 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3742 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3743 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3744 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3745 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3746 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3747 char sqlite3AffinityType(const char*, u8*); 3748 void sqlite3Analyze(Parse*, Token*, Token*); 3749 int sqlite3InvokeBusyHandler(BusyHandler*); 3750 int sqlite3FindDb(sqlite3*, Token*); 3751 int sqlite3FindDbName(sqlite3 *, const char *); 3752 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3753 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3754 void sqlite3DefaultRowEst(Index*); 3755 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3756 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3757 void sqlite3MinimumFileFormat(Parse*, int, int); 3758 void sqlite3SchemaClear(void *); 3759 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3760 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3761 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3762 void sqlite3KeyInfoUnref(KeyInfo*); 3763 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3764 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3765 #ifdef SQLITE_DEBUG 3766 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3767 #endif 3768 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3769 void (*)(sqlite3_context*,int,sqlite3_value **), 3770 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3771 FuncDestructor *pDestructor 3772 ); 3773 int sqlite3ApiExit(sqlite3 *db, int); 3774 int sqlite3OpenTempDatabase(Parse *); 3775 3776 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 3777 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3778 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3779 void sqlite3AppendChar(StrAccum*,int,char); 3780 char *sqlite3StrAccumFinish(StrAccum*); 3781 void sqlite3StrAccumReset(StrAccum*); 3782 void sqlite3SelectDestInit(SelectDest*,int,int); 3783 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3784 3785 void sqlite3BackupRestart(sqlite3_backup *); 3786 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3787 3788 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3789 void sqlite3AnalyzeFunctions(void); 3790 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3791 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3792 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3793 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3794 #endif 3795 3796 /* 3797 ** The interface to the LEMON-generated parser 3798 */ 3799 void *sqlite3ParserAlloc(void*(*)(u64)); 3800 void sqlite3ParserFree(void*, void(*)(void*)); 3801 void sqlite3Parser(void*, int, Token, Parse*); 3802 #ifdef YYTRACKMAXSTACKDEPTH 3803 int sqlite3ParserStackPeak(void*); 3804 #endif 3805 3806 void sqlite3AutoLoadExtensions(sqlite3*); 3807 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3808 void sqlite3CloseExtensions(sqlite3*); 3809 #else 3810 # define sqlite3CloseExtensions(X) 3811 #endif 3812 3813 #ifndef SQLITE_OMIT_SHARED_CACHE 3814 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3815 #else 3816 #define sqlite3TableLock(v,w,x,y,z) 3817 #endif 3818 3819 #ifdef SQLITE_TEST 3820 int sqlite3Utf8To8(unsigned char*); 3821 #endif 3822 3823 #ifdef SQLITE_OMIT_VIRTUALTABLE 3824 # define sqlite3VtabClear(Y) 3825 # define sqlite3VtabSync(X,Y) SQLITE_OK 3826 # define sqlite3VtabRollback(X) 3827 # define sqlite3VtabCommit(X) 3828 # define sqlite3VtabInSync(db) 0 3829 # define sqlite3VtabLock(X) 3830 # define sqlite3VtabUnlock(X) 3831 # define sqlite3VtabUnlockList(X) 3832 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3833 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3834 #else 3835 void sqlite3VtabClear(sqlite3 *db, Table*); 3836 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3837 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3838 int sqlite3VtabRollback(sqlite3 *db); 3839 int sqlite3VtabCommit(sqlite3 *db); 3840 void sqlite3VtabLock(VTable *); 3841 void sqlite3VtabUnlock(VTable *); 3842 void sqlite3VtabUnlockList(sqlite3*); 3843 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3844 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3845 VTable *sqlite3GetVTable(sqlite3*, Table*); 3846 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3847 #endif 3848 int sqlite3VtabEponymousTableInit(Parse*,Module*); 3849 void sqlite3VtabEponymousTableClear(sqlite3*,Module*); 3850 void sqlite3VtabMakeWritable(Parse*,Table*); 3851 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3852 void sqlite3VtabFinishParse(Parse*, Token*); 3853 void sqlite3VtabArgInit(Parse*); 3854 void sqlite3VtabArgExtend(Parse*, Token*); 3855 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3856 int sqlite3VtabCallConnect(Parse*, Table*); 3857 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3858 int sqlite3VtabBegin(sqlite3 *, VTable *); 3859 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3860 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3861 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3862 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3863 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3864 void sqlite3ParserReset(Parse*); 3865 int sqlite3Reprepare(Vdbe*); 3866 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3867 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3868 int sqlite3TempInMemory(const sqlite3*); 3869 const char *sqlite3JournalModename(int); 3870 #ifndef SQLITE_OMIT_WAL 3871 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3872 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3873 #endif 3874 #ifndef SQLITE_OMIT_CTE 3875 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3876 void sqlite3WithDelete(sqlite3*,With*); 3877 void sqlite3WithPush(Parse*, With*, u8); 3878 #else 3879 #define sqlite3WithPush(x,y,z) 3880 #define sqlite3WithDelete(x,y) 3881 #endif 3882 3883 /* Declarations for functions in fkey.c. All of these are replaced by 3884 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3885 ** key functionality is available. If OMIT_TRIGGER is defined but 3886 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3887 ** this case foreign keys are parsed, but no other functionality is 3888 ** provided (enforcement of FK constraints requires the triggers sub-system). 3889 */ 3890 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3891 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3892 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3893 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3894 int sqlite3FkRequired(Parse*, Table*, int*, int); 3895 u32 sqlite3FkOldmask(Parse*, Table*); 3896 FKey *sqlite3FkReferences(Table *); 3897 #else 3898 #define sqlite3FkActions(a,b,c,d,e,f) 3899 #define sqlite3FkCheck(a,b,c,d,e,f) 3900 #define sqlite3FkDropTable(a,b,c) 3901 #define sqlite3FkOldmask(a,b) 0 3902 #define sqlite3FkRequired(a,b,c,d) 0 3903 #endif 3904 #ifndef SQLITE_OMIT_FOREIGN_KEY 3905 void sqlite3FkDelete(sqlite3 *, Table*); 3906 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3907 #else 3908 #define sqlite3FkDelete(a,b) 3909 #define sqlite3FkLocateIndex(a,b,c,d,e) 3910 #endif 3911 3912 3913 /* 3914 ** Available fault injectors. Should be numbered beginning with 0. 3915 */ 3916 #define SQLITE_FAULTINJECTOR_MALLOC 0 3917 #define SQLITE_FAULTINJECTOR_COUNT 1 3918 3919 /* 3920 ** The interface to the code in fault.c used for identifying "benign" 3921 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3922 ** is not defined. 3923 */ 3924 #ifndef SQLITE_OMIT_BUILTIN_TEST 3925 void sqlite3BeginBenignMalloc(void); 3926 void sqlite3EndBenignMalloc(void); 3927 #else 3928 #define sqlite3BeginBenignMalloc() 3929 #define sqlite3EndBenignMalloc() 3930 #endif 3931 3932 /* 3933 ** Allowed return values from sqlite3FindInIndex() 3934 */ 3935 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3936 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3937 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3938 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3939 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3940 /* 3941 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3942 */ 3943 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3944 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3945 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3946 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3947 3948 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3949 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3950 int sqlite3JournalSize(sqlite3_vfs *); 3951 int sqlite3JournalCreate(sqlite3_file *); 3952 int sqlite3JournalExists(sqlite3_file *p); 3953 #else 3954 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3955 #define sqlite3JournalExists(p) 1 3956 #endif 3957 3958 void sqlite3MemJournalOpen(sqlite3_file *); 3959 int sqlite3MemJournalSize(void); 3960 int sqlite3IsMemJournal(sqlite3_file *); 3961 3962 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 3963 #if SQLITE_MAX_EXPR_DEPTH>0 3964 int sqlite3SelectExprHeight(Select *); 3965 int sqlite3ExprCheckHeight(Parse*, int); 3966 #else 3967 #define sqlite3SelectExprHeight(x) 0 3968 #define sqlite3ExprCheckHeight(x,y) 3969 #endif 3970 3971 u32 sqlite3Get4byte(const u8*); 3972 void sqlite3Put4byte(u8*, u32); 3973 3974 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3975 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3976 void sqlite3ConnectionUnlocked(sqlite3 *db); 3977 void sqlite3ConnectionClosed(sqlite3 *db); 3978 #else 3979 #define sqlite3ConnectionBlocked(x,y) 3980 #define sqlite3ConnectionUnlocked(x) 3981 #define sqlite3ConnectionClosed(x) 3982 #endif 3983 3984 #ifdef SQLITE_DEBUG 3985 void sqlite3ParserTrace(FILE*, char *); 3986 #endif 3987 3988 /* 3989 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3990 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3991 ** print I/O tracing messages. 3992 */ 3993 #ifdef SQLITE_ENABLE_IOTRACE 3994 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3995 void sqlite3VdbeIOTraceSql(Vdbe*); 3996 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 3997 #else 3998 # define IOTRACE(A) 3999 # define sqlite3VdbeIOTraceSql(X) 4000 #endif 4001 4002 /* 4003 ** These routines are available for the mem2.c debugging memory allocator 4004 ** only. They are used to verify that different "types" of memory 4005 ** allocations are properly tracked by the system. 4006 ** 4007 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 4008 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 4009 ** a single bit set. 4010 ** 4011 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 4012 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4013 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 4014 ** 4015 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 4016 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4017 ** 4018 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 4019 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 4020 ** it might have been allocated by lookaside, except the allocation was 4021 ** too large or lookaside was already full. It is important to verify 4022 ** that allocations that might have been satisfied by lookaside are not 4023 ** passed back to non-lookaside free() routines. Asserts such as the 4024 ** example above are placed on the non-lookaside free() routines to verify 4025 ** this constraint. 4026 ** 4027 ** All of this is no-op for a production build. It only comes into 4028 ** play when the SQLITE_MEMDEBUG compile-time option is used. 4029 */ 4030 #ifdef SQLITE_MEMDEBUG 4031 void sqlite3MemdebugSetType(void*,u8); 4032 int sqlite3MemdebugHasType(void*,u8); 4033 int sqlite3MemdebugNoType(void*,u8); 4034 #else 4035 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 4036 # define sqlite3MemdebugHasType(X,Y) 1 4037 # define sqlite3MemdebugNoType(X,Y) 1 4038 #endif 4039 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 4040 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 4041 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 4042 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 4043 4044 /* 4045 ** Threading interface 4046 */ 4047 #if SQLITE_MAX_WORKER_THREADS>0 4048 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 4049 int sqlite3ThreadJoin(SQLiteThread*, void**); 4050 #endif 4051 4052 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 4053 int sqlite3DbstatRegister(sqlite3*); 4054 #endif 4055 4056 #endif /* _SQLITEINT_H_ */ 4057