1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 70 # define _BSD_SOURCE 71 #endif 72 73 /* 74 ** Include standard header files as necessary 75 */ 76 #ifdef HAVE_STDINT_H 77 #include <stdint.h> 78 #endif 79 #ifdef HAVE_INTTYPES_H 80 #include <inttypes.h> 81 #endif 82 83 /* 84 ** The following macros are used to cast pointers to integers and 85 ** integers to pointers. The way you do this varies from one compiler 86 ** to the next, so we have developed the following set of #if statements 87 ** to generate appropriate macros for a wide range of compilers. 88 ** 89 ** The correct "ANSI" way to do this is to use the intptr_t type. 90 ** Unfortunately, that typedef is not available on all compilers, or 91 ** if it is available, it requires an #include of specific headers 92 ** that vary from one machine to the next. 93 ** 94 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 95 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 96 ** So we have to define the macros in different ways depending on the 97 ** compiler. 98 */ 99 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 100 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 101 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 102 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 103 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 104 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 105 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 106 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 107 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 108 #else /* Generates a warning - but it always works */ 109 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 110 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 111 #endif 112 113 /* 114 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 115 ** 0 means mutexes are permanently disable and the library is never 116 ** threadsafe. 1 means the library is serialized which is the highest 117 ** level of threadsafety. 2 means the libary is multithreaded - multiple 118 ** threads can use SQLite as long as no two threads try to use the same 119 ** database connection at the same time. 120 ** 121 ** Older versions of SQLite used an optional THREADSAFE macro. 122 ** We support that for legacy. 123 */ 124 #if !defined(SQLITE_THREADSAFE) 125 # if defined(THREADSAFE) 126 # define SQLITE_THREADSAFE THREADSAFE 127 # else 128 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 129 # endif 130 #endif 131 132 /* 133 ** Powersafe overwrite is on by default. But can be turned off using 134 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 135 */ 136 #ifndef SQLITE_POWERSAFE_OVERWRITE 137 # define SQLITE_POWERSAFE_OVERWRITE 1 138 #endif 139 140 /* 141 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 142 ** It determines whether or not the features related to 143 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 144 ** be overridden at runtime using the sqlite3_config() API. 145 */ 146 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 147 # define SQLITE_DEFAULT_MEMSTATUS 1 148 #endif 149 150 /* 151 ** Exactly one of the following macros must be defined in order to 152 ** specify which memory allocation subsystem to use. 153 ** 154 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 155 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 156 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 157 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 158 ** 159 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 160 ** assert() macro is enabled, each call into the Win32 native heap subsystem 161 ** will cause HeapValidate to be called. If heap validation should fail, an 162 ** assertion will be triggered. 163 ** 164 ** (Historical note: There used to be several other options, but we've 165 ** pared it down to just these three.) 166 ** 167 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 168 ** the default. 169 */ 170 #if defined(SQLITE_SYSTEM_MALLOC) \ 171 + defined(SQLITE_WIN32_MALLOC) \ 172 + defined(SQLITE_ZERO_MALLOC) \ 173 + defined(SQLITE_MEMDEBUG)>1 174 # error "Two or more of the following compile-time configuration options\ 175 are defined but at most one is allowed:\ 176 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 177 SQLITE_ZERO_MALLOC" 178 #endif 179 #if defined(SQLITE_SYSTEM_MALLOC) \ 180 + defined(SQLITE_WIN32_MALLOC) \ 181 + defined(SQLITE_ZERO_MALLOC) \ 182 + defined(SQLITE_MEMDEBUG)==0 183 # define SQLITE_SYSTEM_MALLOC 1 184 #endif 185 186 /* 187 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 188 ** sizes of memory allocations below this value where possible. 189 */ 190 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 191 # define SQLITE_MALLOC_SOFT_LIMIT 1024 192 #endif 193 194 /* 195 ** We need to define _XOPEN_SOURCE as follows in order to enable 196 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 197 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 198 ** it. 199 */ 200 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 201 # define _XOPEN_SOURCE 600 202 #endif 203 204 /* 205 ** The TCL headers are only needed when compiling the TCL bindings. 206 */ 207 #if defined(SQLITE_TCL) || defined(TCLSH) 208 # include <tcl.h> 209 #endif 210 211 /* 212 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 213 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 214 ** make it true by defining or undefining NDEBUG. 215 ** 216 ** Setting NDEBUG makes the code smaller and run faster by disabling the 217 ** number assert() statements in the code. So we want the default action 218 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 219 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 220 ** feature. 221 */ 222 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 223 # define NDEBUG 1 224 #endif 225 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 226 # undef NDEBUG 227 #endif 228 229 /* 230 ** The testcase() macro is used to aid in coverage testing. When 231 ** doing coverage testing, the condition inside the argument to 232 ** testcase() must be evaluated both true and false in order to 233 ** get full branch coverage. The testcase() macro is inserted 234 ** to help ensure adequate test coverage in places where simple 235 ** condition/decision coverage is inadequate. For example, testcase() 236 ** can be used to make sure boundary values are tested. For 237 ** bitmask tests, testcase() can be used to make sure each bit 238 ** is significant and used at least once. On switch statements 239 ** where multiple cases go to the same block of code, testcase() 240 ** can insure that all cases are evaluated. 241 ** 242 */ 243 #ifdef SQLITE_COVERAGE_TEST 244 void sqlite3Coverage(int); 245 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 246 #else 247 # define testcase(X) 248 #endif 249 250 /* 251 ** The TESTONLY macro is used to enclose variable declarations or 252 ** other bits of code that are needed to support the arguments 253 ** within testcase() and assert() macros. 254 */ 255 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 256 # define TESTONLY(X) X 257 #else 258 # define TESTONLY(X) 259 #endif 260 261 /* 262 ** Sometimes we need a small amount of code such as a variable initialization 263 ** to setup for a later assert() statement. We do not want this code to 264 ** appear when assert() is disabled. The following macro is therefore 265 ** used to contain that setup code. The "VVA" acronym stands for 266 ** "Verification, Validation, and Accreditation". In other words, the 267 ** code within VVA_ONLY() will only run during verification processes. 268 */ 269 #ifndef NDEBUG 270 # define VVA_ONLY(X) X 271 #else 272 # define VVA_ONLY(X) 273 #endif 274 275 /* 276 ** The ALWAYS and NEVER macros surround boolean expressions which 277 ** are intended to always be true or false, respectively. Such 278 ** expressions could be omitted from the code completely. But they 279 ** are included in a few cases in order to enhance the resilience 280 ** of SQLite to unexpected behavior - to make the code "self-healing" 281 ** or "ductile" rather than being "brittle" and crashing at the first 282 ** hint of unplanned behavior. 283 ** 284 ** In other words, ALWAYS and NEVER are added for defensive code. 285 ** 286 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 287 ** be true and false so that the unreachable code then specify will 288 ** not be counted as untested code. 289 */ 290 #if defined(SQLITE_COVERAGE_TEST) 291 # define ALWAYS(X) (1) 292 # define NEVER(X) (0) 293 #elif !defined(NDEBUG) 294 # define ALWAYS(X) ((X)?1:(assert(0),0)) 295 # define NEVER(X) ((X)?(assert(0),1):0) 296 #else 297 # define ALWAYS(X) (X) 298 # define NEVER(X) (X) 299 #endif 300 301 /* 302 ** Return true (non-zero) if the input is a integer that is too large 303 ** to fit in 32-bits. This macro is used inside of various testcase() 304 ** macros to verify that we have tested SQLite for large-file support. 305 */ 306 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 307 308 /* 309 ** The macro unlikely() is a hint that surrounds a boolean 310 ** expression that is usually false. Macro likely() surrounds 311 ** a boolean expression that is usually true. GCC is able to 312 ** use these hints to generate better code, sometimes. 313 */ 314 #if defined(__GNUC__) && 0 315 # define likely(X) __builtin_expect((X),1) 316 # define unlikely(X) __builtin_expect((X),0) 317 #else 318 # define likely(X) !!(X) 319 # define unlikely(X) !!(X) 320 #endif 321 322 #include "sqlite3.h" 323 #include "hash.h" 324 #include "parse.h" 325 #include <stdio.h> 326 #include <stdlib.h> 327 #include <string.h> 328 #include <assert.h> 329 #include <stddef.h> 330 331 /* 332 ** If compiling for a processor that lacks floating point support, 333 ** substitute integer for floating-point 334 */ 335 #ifdef SQLITE_OMIT_FLOATING_POINT 336 # define double sqlite_int64 337 # define float sqlite_int64 338 # define LONGDOUBLE_TYPE sqlite_int64 339 # ifndef SQLITE_BIG_DBL 340 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 341 # endif 342 # define SQLITE_OMIT_DATETIME_FUNCS 1 343 # define SQLITE_OMIT_TRACE 1 344 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 345 # undef SQLITE_HAVE_ISNAN 346 #endif 347 #ifndef SQLITE_BIG_DBL 348 # define SQLITE_BIG_DBL (1e99) 349 #endif 350 351 /* 352 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 353 ** afterward. Having this macro allows us to cause the C compiler 354 ** to omit code used by TEMP tables without messy #ifndef statements. 355 */ 356 #ifdef SQLITE_OMIT_TEMPDB 357 #define OMIT_TEMPDB 1 358 #else 359 #define OMIT_TEMPDB 0 360 #endif 361 362 /* 363 ** The "file format" number is an integer that is incremented whenever 364 ** the VDBE-level file format changes. The following macros define the 365 ** the default file format for new databases and the maximum file format 366 ** that the library can read. 367 */ 368 #define SQLITE_MAX_FILE_FORMAT 4 369 #ifndef SQLITE_DEFAULT_FILE_FORMAT 370 # define SQLITE_DEFAULT_FILE_FORMAT 4 371 #endif 372 373 /* 374 ** Determine whether triggers are recursive by default. This can be 375 ** changed at run-time using a pragma. 376 */ 377 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 378 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 379 #endif 380 381 /* 382 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 383 ** on the command-line 384 */ 385 #ifndef SQLITE_TEMP_STORE 386 # define SQLITE_TEMP_STORE 1 387 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 388 #endif 389 390 /* 391 ** GCC does not define the offsetof() macro so we'll have to do it 392 ** ourselves. 393 */ 394 #ifndef offsetof 395 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 396 #endif 397 398 /* 399 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 400 ** not, there are still machines out there that use EBCDIC.) 401 */ 402 #if 'A' == '\301' 403 # define SQLITE_EBCDIC 1 404 #else 405 # define SQLITE_ASCII 1 406 #endif 407 408 /* 409 ** Integers of known sizes. These typedefs might change for architectures 410 ** where the sizes very. Preprocessor macros are available so that the 411 ** types can be conveniently redefined at compile-type. Like this: 412 ** 413 ** cc '-DUINTPTR_TYPE=long long int' ... 414 */ 415 #ifndef UINT32_TYPE 416 # ifdef HAVE_UINT32_T 417 # define UINT32_TYPE uint32_t 418 # else 419 # define UINT32_TYPE unsigned int 420 # endif 421 #endif 422 #ifndef UINT16_TYPE 423 # ifdef HAVE_UINT16_T 424 # define UINT16_TYPE uint16_t 425 # else 426 # define UINT16_TYPE unsigned short int 427 # endif 428 #endif 429 #ifndef INT16_TYPE 430 # ifdef HAVE_INT16_T 431 # define INT16_TYPE int16_t 432 # else 433 # define INT16_TYPE short int 434 # endif 435 #endif 436 #ifndef UINT8_TYPE 437 # ifdef HAVE_UINT8_T 438 # define UINT8_TYPE uint8_t 439 # else 440 # define UINT8_TYPE unsigned char 441 # endif 442 #endif 443 #ifndef INT8_TYPE 444 # ifdef HAVE_INT8_T 445 # define INT8_TYPE int8_t 446 # else 447 # define INT8_TYPE signed char 448 # endif 449 #endif 450 #ifndef LONGDOUBLE_TYPE 451 # define LONGDOUBLE_TYPE long double 452 #endif 453 typedef sqlite_int64 i64; /* 8-byte signed integer */ 454 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 455 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 456 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 457 typedef INT16_TYPE i16; /* 2-byte signed integer */ 458 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 459 typedef INT8_TYPE i8; /* 1-byte signed integer */ 460 461 /* 462 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 463 ** that can be stored in a u32 without loss of data. The value 464 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 465 ** have to specify the value in the less intuitive manner shown: 466 */ 467 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 468 469 /* 470 ** The datatype used to store estimates of the number of rows in a 471 ** table or index. This is an unsigned integer type. For 99.9% of 472 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 473 ** can be used at compile-time if desired. 474 */ 475 #ifdef SQLITE_64BIT_STATS 476 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 477 #else 478 typedef u32 tRowcnt; /* 32-bit is the default */ 479 #endif 480 481 /* 482 ** Macros to determine whether the machine is big or little endian, 483 ** evaluated at runtime. 484 */ 485 #ifdef SQLITE_AMALGAMATION 486 const int sqlite3one = 1; 487 #else 488 extern const int sqlite3one; 489 #endif 490 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 491 || defined(__x86_64) || defined(__x86_64__) 492 # define SQLITE_BIGENDIAN 0 493 # define SQLITE_LITTLEENDIAN 1 494 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 495 #else 496 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 497 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 498 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 499 #endif 500 501 /* 502 ** Constants for the largest and smallest possible 64-bit signed integers. 503 ** These macros are designed to work correctly on both 32-bit and 64-bit 504 ** compilers. 505 */ 506 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 507 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 508 509 /* 510 ** Round up a number to the next larger multiple of 8. This is used 511 ** to force 8-byte alignment on 64-bit architectures. 512 */ 513 #define ROUND8(x) (((x)+7)&~7) 514 515 /* 516 ** Round down to the nearest multiple of 8 517 */ 518 #define ROUNDDOWN8(x) ((x)&~7) 519 520 /* 521 ** Assert that the pointer X is aligned to an 8-byte boundary. This 522 ** macro is used only within assert() to verify that the code gets 523 ** all alignment restrictions correct. 524 ** 525 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 526 ** underlying malloc() implemention might return us 4-byte aligned 527 ** pointers. In that case, only verify 4-byte alignment. 528 */ 529 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 530 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 531 #else 532 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 533 #endif 534 535 /* 536 ** Disable MMAP on platforms where it is known to not work 537 */ 538 #if defined(__OpenBSD__) || defined(__QNXNTO__) 539 # undef SQLITE_MAX_MMAP_SIZE 540 # define SQLITE_MAX_MMAP_SIZE 0 541 #endif 542 543 /* 544 ** Default maximum size of memory used by memory-mapped I/O in the VFS 545 */ 546 #ifdef __APPLE__ 547 # include <TargetConditionals.h> 548 # if TARGET_OS_IPHONE 549 # undef SQLITE_MAX_MMAP_SIZE 550 # define SQLITE_MAX_MMAP_SIZE 0 551 # endif 552 #endif 553 #ifndef SQLITE_MAX_MMAP_SIZE 554 # if defined(__linux__) \ 555 || defined(_WIN32) \ 556 || (defined(__APPLE__) && defined(__MACH__)) \ 557 || defined(__sun) 558 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 559 # else 560 # define SQLITE_MAX_MMAP_SIZE 0 561 # endif 562 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 563 #endif 564 565 /* 566 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 567 ** default MMAP_SIZE is specified at compile-time, make sure that it does 568 ** not exceed the maximum mmap size. 569 */ 570 #ifndef SQLITE_DEFAULT_MMAP_SIZE 571 # define SQLITE_DEFAULT_MMAP_SIZE 0 572 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 573 #endif 574 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 575 # undef SQLITE_DEFAULT_MMAP_SIZE 576 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 577 #endif 578 579 /* 580 ** An instance of the following structure is used to store the busy-handler 581 ** callback for a given sqlite handle. 582 ** 583 ** The sqlite.busyHandler member of the sqlite struct contains the busy 584 ** callback for the database handle. Each pager opened via the sqlite 585 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 586 ** callback is currently invoked only from within pager.c. 587 */ 588 typedef struct BusyHandler BusyHandler; 589 struct BusyHandler { 590 int (*xFunc)(void *,int); /* The busy callback */ 591 void *pArg; /* First arg to busy callback */ 592 int nBusy; /* Incremented with each busy call */ 593 }; 594 595 /* 596 ** Name of the master database table. The master database table 597 ** is a special table that holds the names and attributes of all 598 ** user tables and indices. 599 */ 600 #define MASTER_NAME "sqlite_master" 601 #define TEMP_MASTER_NAME "sqlite_temp_master" 602 603 /* 604 ** The root-page of the master database table. 605 */ 606 #define MASTER_ROOT 1 607 608 /* 609 ** The name of the schema table. 610 */ 611 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 612 613 /* 614 ** A convenience macro that returns the number of elements in 615 ** an array. 616 */ 617 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 618 619 /* 620 ** Determine if the argument is a power of two 621 */ 622 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 623 624 /* 625 ** The following value as a destructor means to use sqlite3DbFree(). 626 ** The sqlite3DbFree() routine requires two parameters instead of the 627 ** one parameter that destructors normally want. So we have to introduce 628 ** this magic value that the code knows to handle differently. Any 629 ** pointer will work here as long as it is distinct from SQLITE_STATIC 630 ** and SQLITE_TRANSIENT. 631 */ 632 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 633 634 /* 635 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 636 ** not support Writable Static Data (WSD) such as global and static variables. 637 ** All variables must either be on the stack or dynamically allocated from 638 ** the heap. When WSD is unsupported, the variable declarations scattered 639 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 640 ** macro is used for this purpose. And instead of referencing the variable 641 ** directly, we use its constant as a key to lookup the run-time allocated 642 ** buffer that holds real variable. The constant is also the initializer 643 ** for the run-time allocated buffer. 644 ** 645 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 646 ** macros become no-ops and have zero performance impact. 647 */ 648 #ifdef SQLITE_OMIT_WSD 649 #define SQLITE_WSD const 650 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 651 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 652 int sqlite3_wsd_init(int N, int J); 653 void *sqlite3_wsd_find(void *K, int L); 654 #else 655 #define SQLITE_WSD 656 #define GLOBAL(t,v) v 657 #define sqlite3GlobalConfig sqlite3Config 658 #endif 659 660 /* 661 ** The following macros are used to suppress compiler warnings and to 662 ** make it clear to human readers when a function parameter is deliberately 663 ** left unused within the body of a function. This usually happens when 664 ** a function is called via a function pointer. For example the 665 ** implementation of an SQL aggregate step callback may not use the 666 ** parameter indicating the number of arguments passed to the aggregate, 667 ** if it knows that this is enforced elsewhere. 668 ** 669 ** When a function parameter is not used at all within the body of a function, 670 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 671 ** However, these macros may also be used to suppress warnings related to 672 ** parameters that may or may not be used depending on compilation options. 673 ** For example those parameters only used in assert() statements. In these 674 ** cases the parameters are named as per the usual conventions. 675 */ 676 #define UNUSED_PARAMETER(x) (void)(x) 677 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 678 679 /* 680 ** Forward references to structures 681 */ 682 typedef struct AggInfo AggInfo; 683 typedef struct AuthContext AuthContext; 684 typedef struct AutoincInfo AutoincInfo; 685 typedef struct Bitvec Bitvec; 686 typedef struct CollSeq CollSeq; 687 typedef struct Column Column; 688 typedef struct Db Db; 689 typedef struct Schema Schema; 690 typedef struct Expr Expr; 691 typedef struct ExprList ExprList; 692 typedef struct ExprSpan ExprSpan; 693 typedef struct FKey FKey; 694 typedef struct FuncDestructor FuncDestructor; 695 typedef struct FuncDef FuncDef; 696 typedef struct FuncDefHash FuncDefHash; 697 typedef struct IdList IdList; 698 typedef struct Index Index; 699 typedef struct IndexSample IndexSample; 700 typedef struct KeyClass KeyClass; 701 typedef struct KeyInfo KeyInfo; 702 typedef struct Lookaside Lookaside; 703 typedef struct LookasideSlot LookasideSlot; 704 typedef struct Module Module; 705 typedef struct NameContext NameContext; 706 typedef struct Parse Parse; 707 typedef struct RowSet RowSet; 708 typedef struct Savepoint Savepoint; 709 typedef struct Select Select; 710 typedef struct SelectDest SelectDest; 711 typedef struct SrcList SrcList; 712 typedef struct StrAccum StrAccum; 713 typedef struct Table Table; 714 typedef struct TableLock TableLock; 715 typedef struct Token Token; 716 typedef struct Trigger Trigger; 717 typedef struct TriggerPrg TriggerPrg; 718 typedef struct TriggerStep TriggerStep; 719 typedef struct UnpackedRecord UnpackedRecord; 720 typedef struct VTable VTable; 721 typedef struct VtabCtx VtabCtx; 722 typedef struct Walker Walker; 723 typedef struct WherePlan WherePlan; 724 typedef struct WhereInfo WhereInfo; 725 typedef struct WhereLevel WhereLevel; 726 727 /* 728 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 729 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 730 ** pointer types (i.e. FuncDef) defined above. 731 */ 732 #include "btree.h" 733 #include "vdbe.h" 734 #include "pager.h" 735 #include "pcache.h" 736 737 #include "os.h" 738 #include "mutex.h" 739 740 741 /* 742 ** Each database file to be accessed by the system is an instance 743 ** of the following structure. There are normally two of these structures 744 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 745 ** aDb[1] is the database file used to hold temporary tables. Additional 746 ** databases may be attached. 747 */ 748 struct Db { 749 char *zName; /* Name of this database */ 750 Btree *pBt; /* The B*Tree structure for this database file */ 751 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 752 u8 safety_level; /* How aggressive at syncing data to disk */ 753 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 754 }; 755 756 /* 757 ** An instance of the following structure stores a database schema. 758 ** 759 ** Most Schema objects are associated with a Btree. The exception is 760 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 761 ** In shared cache mode, a single Schema object can be shared by multiple 762 ** Btrees that refer to the same underlying BtShared object. 763 ** 764 ** Schema objects are automatically deallocated when the last Btree that 765 ** references them is destroyed. The TEMP Schema is manually freed by 766 ** sqlite3_close(). 767 * 768 ** A thread must be holding a mutex on the corresponding Btree in order 769 ** to access Schema content. This implies that the thread must also be 770 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 771 ** For a TEMP Schema, only the connection mutex is required. 772 */ 773 struct Schema { 774 int schema_cookie; /* Database schema version number for this file */ 775 int iGeneration; /* Generation counter. Incremented with each change */ 776 Hash tblHash; /* All tables indexed by name */ 777 Hash idxHash; /* All (named) indices indexed by name */ 778 Hash trigHash; /* All triggers indexed by name */ 779 Hash fkeyHash; /* All foreign keys by referenced table name */ 780 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 781 u8 file_format; /* Schema format version for this file */ 782 u8 enc; /* Text encoding used by this database */ 783 u16 flags; /* Flags associated with this schema */ 784 int cache_size; /* Number of pages to use in the cache */ 785 }; 786 787 /* 788 ** These macros can be used to test, set, or clear bits in the 789 ** Db.pSchema->flags field. 790 */ 791 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 792 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 793 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 794 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 795 796 /* 797 ** Allowed values for the DB.pSchema->flags field. 798 ** 799 ** The DB_SchemaLoaded flag is set after the database schema has been 800 ** read into internal hash tables. 801 ** 802 ** DB_UnresetViews means that one or more views have column names that 803 ** have been filled out. If the schema changes, these column names might 804 ** changes and so the view will need to be reset. 805 */ 806 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 807 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 808 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 809 810 /* 811 ** The number of different kinds of things that can be limited 812 ** using the sqlite3_limit() interface. 813 */ 814 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 815 816 /* 817 ** Lookaside malloc is a set of fixed-size buffers that can be used 818 ** to satisfy small transient memory allocation requests for objects 819 ** associated with a particular database connection. The use of 820 ** lookaside malloc provides a significant performance enhancement 821 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 822 ** SQL statements. 823 ** 824 ** The Lookaside structure holds configuration information about the 825 ** lookaside malloc subsystem. Each available memory allocation in 826 ** the lookaside subsystem is stored on a linked list of LookasideSlot 827 ** objects. 828 ** 829 ** Lookaside allocations are only allowed for objects that are associated 830 ** with a particular database connection. Hence, schema information cannot 831 ** be stored in lookaside because in shared cache mode the schema information 832 ** is shared by multiple database connections. Therefore, while parsing 833 ** schema information, the Lookaside.bEnabled flag is cleared so that 834 ** lookaside allocations are not used to construct the schema objects. 835 */ 836 struct Lookaside { 837 u16 sz; /* Size of each buffer in bytes */ 838 u8 bEnabled; /* False to disable new lookaside allocations */ 839 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 840 int nOut; /* Number of buffers currently checked out */ 841 int mxOut; /* Highwater mark for nOut */ 842 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 843 LookasideSlot *pFree; /* List of available buffers */ 844 void *pStart; /* First byte of available memory space */ 845 void *pEnd; /* First byte past end of available space */ 846 }; 847 struct LookasideSlot { 848 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 849 }; 850 851 /* 852 ** A hash table for function definitions. 853 ** 854 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 855 ** Collisions are on the FuncDef.pHash chain. 856 */ 857 struct FuncDefHash { 858 FuncDef *a[23]; /* Hash table for functions */ 859 }; 860 861 /* 862 ** Each database connection is an instance of the following structure. 863 */ 864 struct sqlite3 { 865 sqlite3_vfs *pVfs; /* OS Interface */ 866 struct Vdbe *pVdbe; /* List of active virtual machines */ 867 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 868 sqlite3_mutex *mutex; /* Connection mutex */ 869 Db *aDb; /* All backends */ 870 int nDb; /* Number of backends currently in use */ 871 int flags; /* Miscellaneous flags. See below */ 872 i64 lastRowid; /* ROWID of most recent insert (see above) */ 873 i64 szMmap; /* Default mmap_size setting */ 874 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 875 int errCode; /* Most recent error code (SQLITE_*) */ 876 int errMask; /* & result codes with this before returning */ 877 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 878 u8 autoCommit; /* The auto-commit flag. */ 879 u8 temp_store; /* 1: file 2: memory 0: default */ 880 u8 mallocFailed; /* True if we have seen a malloc failure */ 881 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 882 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 883 u8 suppressErr; /* Do not issue error messages if true */ 884 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 885 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 886 int nextPagesize; /* Pagesize after VACUUM if >0 */ 887 u32 magic; /* Magic number for detect library misuse */ 888 int nChange; /* Value returned by sqlite3_changes() */ 889 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 890 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 891 struct sqlite3InitInfo { /* Information used during initialization */ 892 int newTnum; /* Rootpage of table being initialized */ 893 u8 iDb; /* Which db file is being initialized */ 894 u8 busy; /* TRUE if currently initializing */ 895 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 896 } init; 897 int activeVdbeCnt; /* Number of VDBEs currently executing */ 898 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 899 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ 900 int nExtension; /* Number of loaded extensions */ 901 void **aExtension; /* Array of shared library handles */ 902 void (*xTrace)(void*,const char*); /* Trace function */ 903 void *pTraceArg; /* Argument to the trace function */ 904 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 905 void *pProfileArg; /* Argument to profile function */ 906 void *pCommitArg; /* Argument to xCommitCallback() */ 907 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 908 void *pRollbackArg; /* Argument to xRollbackCallback() */ 909 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 910 void *pUpdateArg; 911 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 912 #ifndef SQLITE_OMIT_WAL 913 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 914 void *pWalArg; 915 #endif 916 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 917 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 918 void *pCollNeededArg; 919 sqlite3_value *pErr; /* Most recent error message */ 920 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 921 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 922 union { 923 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 924 double notUsed1; /* Spacer */ 925 } u1; 926 Lookaside lookaside; /* Lookaside malloc configuration */ 927 #ifndef SQLITE_OMIT_AUTHORIZATION 928 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 929 /* Access authorization function */ 930 void *pAuthArg; /* 1st argument to the access auth function */ 931 #endif 932 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 933 int (*xProgress)(void *); /* The progress callback */ 934 void *pProgressArg; /* Argument to the progress callback */ 935 int nProgressOps; /* Number of opcodes for progress callback */ 936 #endif 937 #ifndef SQLITE_OMIT_VIRTUALTABLE 938 int nVTrans; /* Allocated size of aVTrans */ 939 Hash aModule; /* populated by sqlite3_create_module() */ 940 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 941 VTable **aVTrans; /* Virtual tables with open transactions */ 942 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 943 #endif 944 FuncDefHash aFunc; /* Hash table of connection functions */ 945 Hash aCollSeq; /* All collating sequences */ 946 BusyHandler busyHandler; /* Busy callback */ 947 Db aDbStatic[2]; /* Static space for the 2 default backends */ 948 Savepoint *pSavepoint; /* List of active savepoints */ 949 int busyTimeout; /* Busy handler timeout, in msec */ 950 int nSavepoint; /* Number of non-transaction savepoints */ 951 int nStatement; /* Number of nested statement-transactions */ 952 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 953 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 954 955 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 956 /* The following variables are all protected by the STATIC_MASTER 957 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 958 ** 959 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 960 ** unlock so that it can proceed. 961 ** 962 ** When X.pBlockingConnection==Y, that means that something that X tried 963 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 964 ** held by Y. 965 */ 966 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 967 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 968 void *pUnlockArg; /* Argument to xUnlockNotify */ 969 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 970 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 971 #endif 972 }; 973 974 /* 975 ** A macro to discover the encoding of a database. 976 */ 977 #define ENC(db) ((db)->aDb[0].pSchema->enc) 978 979 /* 980 ** Possible values for the sqlite3.flags. 981 */ 982 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 983 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 984 #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ 985 #define SQLITE_ShortColNames 0x00000008 /* Show short columns names */ 986 #define SQLITE_CountRows 0x00000010 /* Count rows changed by INSERT, */ 987 /* DELETE, or UPDATE and return */ 988 /* the count using a callback. */ 989 #define SQLITE_NullCallback 0x00000020 /* Invoke the callback once if the */ 990 /* result set is empty */ 991 #define SQLITE_SqlTrace 0x00000040 /* Debug print SQL as it executes */ 992 #define SQLITE_VdbeListing 0x00000080 /* Debug listings of VDBE programs */ 993 #define SQLITE_WriteSchema 0x00000100 /* OK to update SQLITE_MASTER */ 994 #define SQLITE_VdbeAddopTrace 0x00000200 /* Trace sqlite3VdbeAddOp() calls */ 995 #define SQLITE_IgnoreChecks 0x00000400 /* Do not enforce check constraints */ 996 #define SQLITE_ReadUncommitted 0x0000800 /* For shared-cache mode */ 997 #define SQLITE_LegacyFileFmt 0x00001000 /* Create new databases in format 1 */ 998 #define SQLITE_FullFSync 0x00002000 /* Use full fsync on the backend */ 999 #define SQLITE_CkptFullFSync 0x00004000 /* Use full fsync for checkpoint */ 1000 #define SQLITE_RecoveryMode 0x00008000 /* Ignore schema errors */ 1001 #define SQLITE_ReverseOrder 0x00010000 /* Reverse unordered SELECTs */ 1002 #define SQLITE_RecTriggers 0x00020000 /* Enable recursive triggers */ 1003 #define SQLITE_ForeignKeys 0x00040000 /* Enforce foreign key constraints */ 1004 #define SQLITE_AutoIndex 0x00080000 /* Enable automatic indexes */ 1005 #define SQLITE_PreferBuiltin 0x00100000 /* Preference to built-in funcs */ 1006 #define SQLITE_LoadExtension 0x00200000 /* Enable load_extension */ 1007 #define SQLITE_EnableTrigger 0x00400000 /* True to enable triggers */ 1008 1009 /* 1010 ** Bits of the sqlite3.dbOptFlags field that are used by the 1011 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1012 ** selectively disable various optimizations. 1013 */ 1014 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1015 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1016 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1017 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1018 #define SQLITE_IdxRealAsInt 0x0010 /* Store REAL as INT in indices */ 1019 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1020 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1021 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1022 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1023 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1024 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1025 1026 /* 1027 ** Macros for testing whether or not optimizations are enabled or disabled. 1028 */ 1029 #ifndef SQLITE_OMIT_BUILTIN_TEST 1030 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1031 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1032 #else 1033 #define OptimizationDisabled(db, mask) 0 1034 #define OptimizationEnabled(db, mask) 1 1035 #endif 1036 1037 /* 1038 ** Possible values for the sqlite.magic field. 1039 ** The numbers are obtained at random and have no special meaning, other 1040 ** than being distinct from one another. 1041 */ 1042 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1043 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1044 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1045 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1046 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1047 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1048 1049 /* 1050 ** Each SQL function is defined by an instance of the following 1051 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1052 ** hash table. When multiple functions have the same name, the hash table 1053 ** points to a linked list of these structures. 1054 */ 1055 struct FuncDef { 1056 i16 nArg; /* Number of arguments. -1 means unlimited */ 1057 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 1058 u8 flags; /* Some combination of SQLITE_FUNC_* */ 1059 void *pUserData; /* User data parameter */ 1060 FuncDef *pNext; /* Next function with same name */ 1061 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1062 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1063 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1064 char *zName; /* SQL name of the function. */ 1065 FuncDef *pHash; /* Next with a different name but the same hash */ 1066 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1067 }; 1068 1069 /* 1070 ** This structure encapsulates a user-function destructor callback (as 1071 ** configured using create_function_v2()) and a reference counter. When 1072 ** create_function_v2() is called to create a function with a destructor, 1073 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1074 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1075 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1076 ** member of each of the new FuncDef objects is set to point to the allocated 1077 ** FuncDestructor. 1078 ** 1079 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1080 ** count on this object is decremented. When it reaches 0, the destructor 1081 ** is invoked and the FuncDestructor structure freed. 1082 */ 1083 struct FuncDestructor { 1084 int nRef; 1085 void (*xDestroy)(void *); 1086 void *pUserData; 1087 }; 1088 1089 /* 1090 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1091 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1092 ** are assert() statements in the code to verify this. 1093 */ 1094 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 1095 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 1096 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 1097 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 1098 #define SQLITE_FUNC_COUNT 0x10 /* Built-in count(*) aggregate */ 1099 #define SQLITE_FUNC_COALESCE 0x20 /* Built-in coalesce() or ifnull() function */ 1100 #define SQLITE_FUNC_LENGTH 0x40 /* Built-in length() function */ 1101 #define SQLITE_FUNC_TYPEOF 0x80 /* Built-in typeof() function */ 1102 1103 /* 1104 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1105 ** used to create the initializers for the FuncDef structures. 1106 ** 1107 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1108 ** Used to create a scalar function definition of a function zName 1109 ** implemented by C function xFunc that accepts nArg arguments. The 1110 ** value passed as iArg is cast to a (void*) and made available 1111 ** as the user-data (sqlite3_user_data()) for the function. If 1112 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1113 ** 1114 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1115 ** Used to create an aggregate function definition implemented by 1116 ** the C functions xStep and xFinal. The first four parameters 1117 ** are interpreted in the same way as the first 4 parameters to 1118 ** FUNCTION(). 1119 ** 1120 ** LIKEFUNC(zName, nArg, pArg, flags) 1121 ** Used to create a scalar function definition of a function zName 1122 ** that accepts nArg arguments and is implemented by a call to C 1123 ** function likeFunc. Argument pArg is cast to a (void *) and made 1124 ** available as the function user-data (sqlite3_user_data()). The 1125 ** FuncDef.flags variable is set to the value passed as the flags 1126 ** parameter. 1127 */ 1128 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1129 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL), \ 1130 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1131 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1132 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1133 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1134 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1135 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1136 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1137 #define LIKEFUNC(zName, nArg, arg, flags) \ 1138 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1139 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1140 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1141 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1142 1143 /* 1144 ** All current savepoints are stored in a linked list starting at 1145 ** sqlite3.pSavepoint. The first element in the list is the most recently 1146 ** opened savepoint. Savepoints are added to the list by the vdbe 1147 ** OP_Savepoint instruction. 1148 */ 1149 struct Savepoint { 1150 char *zName; /* Savepoint name (nul-terminated) */ 1151 i64 nDeferredCons; /* Number of deferred fk violations */ 1152 Savepoint *pNext; /* Parent savepoint (if any) */ 1153 }; 1154 1155 /* 1156 ** The following are used as the second parameter to sqlite3Savepoint(), 1157 ** and as the P1 argument to the OP_Savepoint instruction. 1158 */ 1159 #define SAVEPOINT_BEGIN 0 1160 #define SAVEPOINT_RELEASE 1 1161 #define SAVEPOINT_ROLLBACK 2 1162 1163 1164 /* 1165 ** Each SQLite module (virtual table definition) is defined by an 1166 ** instance of the following structure, stored in the sqlite3.aModule 1167 ** hash table. 1168 */ 1169 struct Module { 1170 const sqlite3_module *pModule; /* Callback pointers */ 1171 const char *zName; /* Name passed to create_module() */ 1172 void *pAux; /* pAux passed to create_module() */ 1173 void (*xDestroy)(void *); /* Module destructor function */ 1174 }; 1175 1176 /* 1177 ** information about each column of an SQL table is held in an instance 1178 ** of this structure. 1179 */ 1180 struct Column { 1181 char *zName; /* Name of this column */ 1182 Expr *pDflt; /* Default value of this column */ 1183 char *zDflt; /* Original text of the default value */ 1184 char *zType; /* Data type for this column */ 1185 char *zColl; /* Collating sequence. If NULL, use the default */ 1186 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1187 char affinity; /* One of the SQLITE_AFF_... values */ 1188 u16 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1189 }; 1190 1191 /* Allowed values for Column.colFlags: 1192 */ 1193 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1194 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1195 1196 /* 1197 ** A "Collating Sequence" is defined by an instance of the following 1198 ** structure. Conceptually, a collating sequence consists of a name and 1199 ** a comparison routine that defines the order of that sequence. 1200 ** 1201 ** If CollSeq.xCmp is NULL, it means that the 1202 ** collating sequence is undefined. Indices built on an undefined 1203 ** collating sequence may not be read or written. 1204 */ 1205 struct CollSeq { 1206 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1207 u8 enc; /* Text encoding handled by xCmp() */ 1208 void *pUser; /* First argument to xCmp() */ 1209 int (*xCmp)(void*,int, const void*, int, const void*); 1210 void (*xDel)(void*); /* Destructor for pUser */ 1211 }; 1212 1213 /* 1214 ** A sort order can be either ASC or DESC. 1215 */ 1216 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1217 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1218 1219 /* 1220 ** Column affinity types. 1221 ** 1222 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1223 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1224 ** the speed a little by numbering the values consecutively. 1225 ** 1226 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1227 ** when multiple affinity types are concatenated into a string and 1228 ** used as the P4 operand, they will be more readable. 1229 ** 1230 ** Note also that the numeric types are grouped together so that testing 1231 ** for a numeric type is a single comparison. 1232 */ 1233 #define SQLITE_AFF_TEXT 'a' 1234 #define SQLITE_AFF_NONE 'b' 1235 #define SQLITE_AFF_NUMERIC 'c' 1236 #define SQLITE_AFF_INTEGER 'd' 1237 #define SQLITE_AFF_REAL 'e' 1238 1239 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1240 1241 /* 1242 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1243 ** affinity value. 1244 */ 1245 #define SQLITE_AFF_MASK 0x67 1246 1247 /* 1248 ** Additional bit values that can be ORed with an affinity without 1249 ** changing the affinity. 1250 */ 1251 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1252 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1253 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1254 1255 /* 1256 ** An object of this type is created for each virtual table present in 1257 ** the database schema. 1258 ** 1259 ** If the database schema is shared, then there is one instance of this 1260 ** structure for each database connection (sqlite3*) that uses the shared 1261 ** schema. This is because each database connection requires its own unique 1262 ** instance of the sqlite3_vtab* handle used to access the virtual table 1263 ** implementation. sqlite3_vtab* handles can not be shared between 1264 ** database connections, even when the rest of the in-memory database 1265 ** schema is shared, as the implementation often stores the database 1266 ** connection handle passed to it via the xConnect() or xCreate() method 1267 ** during initialization internally. This database connection handle may 1268 ** then be used by the virtual table implementation to access real tables 1269 ** within the database. So that they appear as part of the callers 1270 ** transaction, these accesses need to be made via the same database 1271 ** connection as that used to execute SQL operations on the virtual table. 1272 ** 1273 ** All VTable objects that correspond to a single table in a shared 1274 ** database schema are initially stored in a linked-list pointed to by 1275 ** the Table.pVTable member variable of the corresponding Table object. 1276 ** When an sqlite3_prepare() operation is required to access the virtual 1277 ** table, it searches the list for the VTable that corresponds to the 1278 ** database connection doing the preparing so as to use the correct 1279 ** sqlite3_vtab* handle in the compiled query. 1280 ** 1281 ** When an in-memory Table object is deleted (for example when the 1282 ** schema is being reloaded for some reason), the VTable objects are not 1283 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1284 ** immediately. Instead, they are moved from the Table.pVTable list to 1285 ** another linked list headed by the sqlite3.pDisconnect member of the 1286 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1287 ** next time a statement is prepared using said sqlite3*. This is done 1288 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1289 ** Refer to comments above function sqlite3VtabUnlockList() for an 1290 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1291 ** list without holding the corresponding sqlite3.mutex mutex. 1292 ** 1293 ** The memory for objects of this type is always allocated by 1294 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1295 ** the first argument. 1296 */ 1297 struct VTable { 1298 sqlite3 *db; /* Database connection associated with this table */ 1299 Module *pMod; /* Pointer to module implementation */ 1300 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1301 int nRef; /* Number of pointers to this structure */ 1302 u8 bConstraint; /* True if constraints are supported */ 1303 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1304 VTable *pNext; /* Next in linked list (see above) */ 1305 }; 1306 1307 /* 1308 ** Each SQL table is represented in memory by an instance of the 1309 ** following structure. 1310 ** 1311 ** Table.zName is the name of the table. The case of the original 1312 ** CREATE TABLE statement is stored, but case is not significant for 1313 ** comparisons. 1314 ** 1315 ** Table.nCol is the number of columns in this table. Table.aCol is a 1316 ** pointer to an array of Column structures, one for each column. 1317 ** 1318 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1319 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1320 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1321 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1322 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1323 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1324 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1325 ** 1326 ** Table.tnum is the page number for the root BTree page of the table in the 1327 ** database file. If Table.iDb is the index of the database table backend 1328 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1329 ** holds temporary tables and indices. If TF_Ephemeral is set 1330 ** then the table is stored in a file that is automatically deleted 1331 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1332 ** refers VDBE cursor number that holds the table open, not to the root 1333 ** page number. Transient tables are used to hold the results of a 1334 ** sub-query that appears instead of a real table name in the FROM clause 1335 ** of a SELECT statement. 1336 */ 1337 struct Table { 1338 char *zName; /* Name of the table or view */ 1339 Column *aCol; /* Information about each column */ 1340 Index *pIndex; /* List of SQL indexes on this table. */ 1341 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1342 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1343 char *zColAff; /* String defining the affinity of each column */ 1344 #ifndef SQLITE_OMIT_CHECK 1345 ExprList *pCheck; /* All CHECK constraints */ 1346 #endif 1347 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1348 int tnum; /* Root BTree node for this table (see note above) */ 1349 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1350 i16 nCol; /* Number of columns in this table */ 1351 u16 nRef; /* Number of pointers to this Table */ 1352 u8 tabFlags; /* Mask of TF_* values */ 1353 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1354 #ifndef SQLITE_OMIT_ALTERTABLE 1355 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1356 #endif 1357 #ifndef SQLITE_OMIT_VIRTUALTABLE 1358 int nModuleArg; /* Number of arguments to the module */ 1359 char **azModuleArg; /* Text of all module args. [0] is module name */ 1360 VTable *pVTable; /* List of VTable objects. */ 1361 #endif 1362 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1363 Schema *pSchema; /* Schema that contains this table */ 1364 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1365 }; 1366 1367 /* 1368 ** Allowed values for Tabe.tabFlags. 1369 */ 1370 #define TF_Readonly 0x01 /* Read-only system table */ 1371 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1372 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1373 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1374 #define TF_Virtual 0x10 /* Is a virtual table */ 1375 1376 1377 /* 1378 ** Test to see whether or not a table is a virtual table. This is 1379 ** done as a macro so that it will be optimized out when virtual 1380 ** table support is omitted from the build. 1381 */ 1382 #ifndef SQLITE_OMIT_VIRTUALTABLE 1383 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1384 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1385 #else 1386 # define IsVirtual(X) 0 1387 # define IsHiddenColumn(X) 0 1388 #endif 1389 1390 /* 1391 ** Each foreign key constraint is an instance of the following structure. 1392 ** 1393 ** A foreign key is associated with two tables. The "from" table is 1394 ** the table that contains the REFERENCES clause that creates the foreign 1395 ** key. The "to" table is the table that is named in the REFERENCES clause. 1396 ** Consider this example: 1397 ** 1398 ** CREATE TABLE ex1( 1399 ** a INTEGER PRIMARY KEY, 1400 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1401 ** ); 1402 ** 1403 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1404 ** 1405 ** Each REFERENCES clause generates an instance of the following structure 1406 ** which is attached to the from-table. The to-table need not exist when 1407 ** the from-table is created. The existence of the to-table is not checked. 1408 */ 1409 struct FKey { 1410 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1411 FKey *pNextFrom; /* Next foreign key in pFrom */ 1412 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1413 FKey *pNextTo; /* Next foreign key on table named zTo */ 1414 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1415 int nCol; /* Number of columns in this key */ 1416 /* EV: R-30323-21917 */ 1417 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1418 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1419 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1420 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1421 int iFrom; /* Index of column in pFrom */ 1422 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1423 } aCol[1]; /* One entry for each of nCol column s */ 1424 }; 1425 1426 /* 1427 ** SQLite supports many different ways to resolve a constraint 1428 ** error. ROLLBACK processing means that a constraint violation 1429 ** causes the operation in process to fail and for the current transaction 1430 ** to be rolled back. ABORT processing means the operation in process 1431 ** fails and any prior changes from that one operation are backed out, 1432 ** but the transaction is not rolled back. FAIL processing means that 1433 ** the operation in progress stops and returns an error code. But prior 1434 ** changes due to the same operation are not backed out and no rollback 1435 ** occurs. IGNORE means that the particular row that caused the constraint 1436 ** error is not inserted or updated. Processing continues and no error 1437 ** is returned. REPLACE means that preexisting database rows that caused 1438 ** a UNIQUE constraint violation are removed so that the new insert or 1439 ** update can proceed. Processing continues and no error is reported. 1440 ** 1441 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1442 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1443 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1444 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1445 ** referenced table row is propagated into the row that holds the 1446 ** foreign key. 1447 ** 1448 ** The following symbolic values are used to record which type 1449 ** of action to take. 1450 */ 1451 #define OE_None 0 /* There is no constraint to check */ 1452 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1453 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1454 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1455 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1456 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1457 1458 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1459 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1460 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1461 #define OE_Cascade 9 /* Cascade the changes */ 1462 1463 #define OE_Default 99 /* Do whatever the default action is */ 1464 1465 1466 /* 1467 ** An instance of the following structure is passed as the first 1468 ** argument to sqlite3VdbeKeyCompare and is used to control the 1469 ** comparison of the two index keys. 1470 */ 1471 struct KeyInfo { 1472 sqlite3 *db; /* The database connection */ 1473 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1474 u16 nField; /* Number of entries in aColl[] */ 1475 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1476 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1477 }; 1478 1479 /* 1480 ** An instance of the following structure holds information about a 1481 ** single index record that has already been parsed out into individual 1482 ** values. 1483 ** 1484 ** A record is an object that contains one or more fields of data. 1485 ** Records are used to store the content of a table row and to store 1486 ** the key of an index. A blob encoding of a record is created by 1487 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1488 ** OP_Column opcode. 1489 ** 1490 ** This structure holds a record that has already been disassembled 1491 ** into its constituent fields. 1492 */ 1493 struct UnpackedRecord { 1494 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1495 u16 nField; /* Number of entries in apMem[] */ 1496 u8 flags; /* Boolean settings. UNPACKED_... below */ 1497 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1498 Mem *aMem; /* Values */ 1499 }; 1500 1501 /* 1502 ** Allowed values of UnpackedRecord.flags 1503 */ 1504 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1505 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1506 #define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */ 1507 1508 /* 1509 ** Each SQL index is represented in memory by an 1510 ** instance of the following structure. 1511 ** 1512 ** The columns of the table that are to be indexed are described 1513 ** by the aiColumn[] field of this structure. For example, suppose 1514 ** we have the following table and index: 1515 ** 1516 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1517 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1518 ** 1519 ** In the Table structure describing Ex1, nCol==3 because there are 1520 ** three columns in the table. In the Index structure describing 1521 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1522 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1523 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1524 ** The second column to be indexed (c1) has an index of 0 in 1525 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1526 ** 1527 ** The Index.onError field determines whether or not the indexed columns 1528 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1529 ** it means this is not a unique index. Otherwise it is a unique index 1530 ** and the value of Index.onError indicate the which conflict resolution 1531 ** algorithm to employ whenever an attempt is made to insert a non-unique 1532 ** element. 1533 */ 1534 struct Index { 1535 char *zName; /* Name of this index */ 1536 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1537 tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ 1538 Table *pTable; /* The SQL table being indexed */ 1539 char *zColAff; /* String defining the affinity of each column */ 1540 Index *pNext; /* The next index associated with the same table */ 1541 Schema *pSchema; /* Schema containing this index */ 1542 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1543 char **azColl; /* Array of collation sequence names for index */ 1544 int tnum; /* DB Page containing root of this index */ 1545 u16 nColumn; /* Number of columns in table used by this index */ 1546 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1547 unsigned autoIndex:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1548 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1549 #ifdef SQLITE_ENABLE_STAT3 1550 int nSample; /* Number of elements in aSample[] */ 1551 tRowcnt avgEq; /* Average nEq value for key values not in aSample */ 1552 IndexSample *aSample; /* Samples of the left-most key */ 1553 #endif 1554 }; 1555 1556 /* 1557 ** Each sample stored in the sqlite_stat3 table is represented in memory 1558 ** using a structure of this type. See documentation at the top of the 1559 ** analyze.c source file for additional information. 1560 */ 1561 struct IndexSample { 1562 union { 1563 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1564 double r; /* Value if eType is SQLITE_FLOAT */ 1565 i64 i; /* Value if eType is SQLITE_INTEGER */ 1566 } u; 1567 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1568 int nByte; /* Size in byte of text or blob. */ 1569 tRowcnt nEq; /* Est. number of rows where the key equals this sample */ 1570 tRowcnt nLt; /* Est. number of rows where key is less than this sample */ 1571 tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ 1572 }; 1573 1574 /* 1575 ** Each token coming out of the lexer is an instance of 1576 ** this structure. Tokens are also used as part of an expression. 1577 ** 1578 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1579 ** may contain random values. Do not make any assumptions about Token.dyn 1580 ** and Token.n when Token.z==0. 1581 */ 1582 struct Token { 1583 const char *z; /* Text of the token. Not NULL-terminated! */ 1584 unsigned int n; /* Number of characters in this token */ 1585 }; 1586 1587 /* 1588 ** An instance of this structure contains information needed to generate 1589 ** code for a SELECT that contains aggregate functions. 1590 ** 1591 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1592 ** pointer to this structure. The Expr.iColumn field is the index in 1593 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1594 ** code for that node. 1595 ** 1596 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1597 ** original Select structure that describes the SELECT statement. These 1598 ** fields do not need to be freed when deallocating the AggInfo structure. 1599 */ 1600 struct AggInfo { 1601 u8 directMode; /* Direct rendering mode means take data directly 1602 ** from source tables rather than from accumulators */ 1603 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1604 ** than the source table */ 1605 int sortingIdx; /* Cursor number of the sorting index */ 1606 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1607 int nSortingColumn; /* Number of columns in the sorting index */ 1608 ExprList *pGroupBy; /* The group by clause */ 1609 struct AggInfo_col { /* For each column used in source tables */ 1610 Table *pTab; /* Source table */ 1611 int iTable; /* Cursor number of the source table */ 1612 int iColumn; /* Column number within the source table */ 1613 int iSorterColumn; /* Column number in the sorting index */ 1614 int iMem; /* Memory location that acts as accumulator */ 1615 Expr *pExpr; /* The original expression */ 1616 } *aCol; 1617 int nColumn; /* Number of used entries in aCol[] */ 1618 int nAccumulator; /* Number of columns that show through to the output. 1619 ** Additional columns are used only as parameters to 1620 ** aggregate functions */ 1621 struct AggInfo_func { /* For each aggregate function */ 1622 Expr *pExpr; /* Expression encoding the function */ 1623 FuncDef *pFunc; /* The aggregate function implementation */ 1624 int iMem; /* Memory location that acts as accumulator */ 1625 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1626 } *aFunc; 1627 int nFunc; /* Number of entries in aFunc[] */ 1628 }; 1629 1630 /* 1631 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1632 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1633 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1634 ** it uses less memory in the Expr object, which is a big memory user 1635 ** in systems with lots of prepared statements. And few applications 1636 ** need more than about 10 or 20 variables. But some extreme users want 1637 ** to have prepared statements with over 32767 variables, and for them 1638 ** the option is available (at compile-time). 1639 */ 1640 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1641 typedef i16 ynVar; 1642 #else 1643 typedef int ynVar; 1644 #endif 1645 1646 /* 1647 ** Each node of an expression in the parse tree is an instance 1648 ** of this structure. 1649 ** 1650 ** Expr.op is the opcode. The integer parser token codes are reused 1651 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1652 ** code representing the ">=" operator. This same integer code is reused 1653 ** to represent the greater-than-or-equal-to operator in the expression 1654 ** tree. 1655 ** 1656 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1657 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1658 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1659 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1660 ** then Expr.token contains the name of the function. 1661 ** 1662 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1663 ** binary operator. Either or both may be NULL. 1664 ** 1665 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1666 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1667 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1668 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1669 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1670 ** valid. 1671 ** 1672 ** An expression of the form ID or ID.ID refers to a column in a table. 1673 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1674 ** the integer cursor number of a VDBE cursor pointing to that table and 1675 ** Expr.iColumn is the column number for the specific column. If the 1676 ** expression is used as a result in an aggregate SELECT, then the 1677 ** value is also stored in the Expr.iAgg column in the aggregate so that 1678 ** it can be accessed after all aggregates are computed. 1679 ** 1680 ** If the expression is an unbound variable marker (a question mark 1681 ** character '?' in the original SQL) then the Expr.iTable holds the index 1682 ** number for that variable. 1683 ** 1684 ** If the expression is a subquery then Expr.iColumn holds an integer 1685 ** register number containing the result of the subquery. If the 1686 ** subquery gives a constant result, then iTable is -1. If the subquery 1687 ** gives a different answer at different times during statement processing 1688 ** then iTable is the address of a subroutine that computes the subquery. 1689 ** 1690 ** If the Expr is of type OP_Column, and the table it is selecting from 1691 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1692 ** corresponding table definition. 1693 ** 1694 ** ALLOCATION NOTES: 1695 ** 1696 ** Expr objects can use a lot of memory space in database schema. To 1697 ** help reduce memory requirements, sometimes an Expr object will be 1698 ** truncated. And to reduce the number of memory allocations, sometimes 1699 ** two or more Expr objects will be stored in a single memory allocation, 1700 ** together with Expr.zToken strings. 1701 ** 1702 ** If the EP_Reduced and EP_TokenOnly flags are set when 1703 ** an Expr object is truncated. When EP_Reduced is set, then all 1704 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1705 ** are contained within the same memory allocation. Note, however, that 1706 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1707 ** allocated, regardless of whether or not EP_Reduced is set. 1708 */ 1709 struct Expr { 1710 u8 op; /* Operation performed by this node */ 1711 char affinity; /* The affinity of the column or 0 if not a column */ 1712 u16 flags; /* Various flags. EP_* See below */ 1713 union { 1714 char *zToken; /* Token value. Zero terminated and dequoted */ 1715 int iValue; /* Non-negative integer value if EP_IntValue */ 1716 } u; 1717 1718 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1719 ** space is allocated for the fields below this point. An attempt to 1720 ** access them will result in a segfault or malfunction. 1721 *********************************************************************/ 1722 1723 Expr *pLeft; /* Left subnode */ 1724 Expr *pRight; /* Right subnode */ 1725 union { 1726 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1727 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1728 } x; 1729 1730 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1731 ** space is allocated for the fields below this point. An attempt to 1732 ** access them will result in a segfault or malfunction. 1733 *********************************************************************/ 1734 1735 #if SQLITE_MAX_EXPR_DEPTH>0 1736 int nHeight; /* Height of the tree headed by this node */ 1737 #endif 1738 int iTable; /* TK_COLUMN: cursor number of table holding column 1739 ** TK_REGISTER: register number 1740 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1741 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1742 ** TK_VARIABLE: variable number (always >= 1). */ 1743 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1744 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1745 u8 flags2; /* Second set of flags. EP2_... */ 1746 u8 op2; /* TK_REGISTER: original value of Expr.op 1747 ** TK_COLUMN: the value of p5 for OP_Column 1748 ** TK_AGG_FUNCTION: nesting depth */ 1749 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1750 Table *pTab; /* Table for TK_COLUMN expressions. */ 1751 }; 1752 1753 /* 1754 ** The following are the meanings of bits in the Expr.flags field. 1755 */ 1756 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1757 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1758 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1759 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1760 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1761 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1762 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1763 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1764 #define EP_Collate 0x0100 /* Tree contains a TK_COLLATE opeartor */ 1765 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1766 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1767 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1768 #define EP_Hint 0x1000 /* Not used */ 1769 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1770 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1771 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1772 1773 /* 1774 ** The following are the meanings of bits in the Expr.flags2 field. 1775 */ 1776 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1777 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1778 1779 /* 1780 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1781 ** flag on an expression structure. This flag is used for VV&A only. The 1782 ** routine is implemented as a macro that only works when in debugging mode, 1783 ** so as not to burden production code. 1784 */ 1785 #ifdef SQLITE_DEBUG 1786 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1787 #else 1788 # define ExprSetIrreducible(X) 1789 #endif 1790 1791 /* 1792 ** These macros can be used to test, set, or clear bits in the 1793 ** Expr.flags field. 1794 */ 1795 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1796 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1797 #define ExprSetProperty(E,P) (E)->flags|=(P) 1798 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1799 1800 /* 1801 ** Macros to determine the number of bytes required by a normal Expr 1802 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1803 ** and an Expr struct with the EP_TokenOnly flag set. 1804 */ 1805 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1806 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1807 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1808 1809 /* 1810 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1811 ** above sqlite3ExprDup() for details. 1812 */ 1813 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1814 1815 /* 1816 ** A list of expressions. Each expression may optionally have a 1817 ** name. An expr/name combination can be used in several ways, such 1818 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1819 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1820 ** also be used as the argument to a function, in which case the a.zName 1821 ** field is not used. 1822 ** 1823 ** By default the Expr.zSpan field holds a human-readable description of 1824 ** the expression that is used in the generation of error messages and 1825 ** column labels. In this case, Expr.zSpan is typically the text of a 1826 ** column expression as it exists in a SELECT statement. However, if 1827 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 1828 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 1829 ** form is used for name resolution with nested FROM clauses. 1830 */ 1831 struct ExprList { 1832 int nExpr; /* Number of expressions on the list */ 1833 int iECursor; /* VDBE Cursor associated with this ExprList */ 1834 struct ExprList_item { /* For each expression in the list */ 1835 Expr *pExpr; /* The list of expressions */ 1836 char *zName; /* Token associated with this expression */ 1837 char *zSpan; /* Original text of the expression */ 1838 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1839 unsigned done :1; /* A flag to indicate when processing is finished */ 1840 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 1841 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1842 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1843 } *a; /* Alloc a power of two greater or equal to nExpr */ 1844 }; 1845 1846 /* 1847 ** An instance of this structure is used by the parser to record both 1848 ** the parse tree for an expression and the span of input text for an 1849 ** expression. 1850 */ 1851 struct ExprSpan { 1852 Expr *pExpr; /* The expression parse tree */ 1853 const char *zStart; /* First character of input text */ 1854 const char *zEnd; /* One character past the end of input text */ 1855 }; 1856 1857 /* 1858 ** An instance of this structure can hold a simple list of identifiers, 1859 ** such as the list "a,b,c" in the following statements: 1860 ** 1861 ** INSERT INTO t(a,b,c) VALUES ...; 1862 ** CREATE INDEX idx ON t(a,b,c); 1863 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1864 ** 1865 ** The IdList.a.idx field is used when the IdList represents the list of 1866 ** column names after a table name in an INSERT statement. In the statement 1867 ** 1868 ** INSERT INTO t(a,b,c) ... 1869 ** 1870 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1871 */ 1872 struct IdList { 1873 struct IdList_item { 1874 char *zName; /* Name of the identifier */ 1875 int idx; /* Index in some Table.aCol[] of a column named zName */ 1876 } *a; 1877 int nId; /* Number of identifiers on the list */ 1878 }; 1879 1880 /* 1881 ** The bitmask datatype defined below is used for various optimizations. 1882 ** 1883 ** Changing this from a 64-bit to a 32-bit type limits the number of 1884 ** tables in a join to 32 instead of 64. But it also reduces the size 1885 ** of the library by 738 bytes on ix86. 1886 */ 1887 typedef u64 Bitmask; 1888 1889 /* 1890 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1891 */ 1892 #define BMS ((int)(sizeof(Bitmask)*8)) 1893 1894 /* 1895 ** The following structure describes the FROM clause of a SELECT statement. 1896 ** Each table or subquery in the FROM clause is a separate element of 1897 ** the SrcList.a[] array. 1898 ** 1899 ** With the addition of multiple database support, the following structure 1900 ** can also be used to describe a particular table such as the table that 1901 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1902 ** such a table must be a simple name: ID. But in SQLite, the table can 1903 ** now be identified by a database name, a dot, then the table name: ID.ID. 1904 ** 1905 ** The jointype starts out showing the join type between the current table 1906 ** and the next table on the list. The parser builds the list this way. 1907 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1908 ** jointype expresses the join between the table and the previous table. 1909 ** 1910 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1911 ** contains more than 63 columns and the 64-th or later column is used. 1912 */ 1913 struct SrcList { 1914 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1915 i16 nAlloc; /* Number of entries allocated in a[] below */ 1916 struct SrcList_item { 1917 Schema *pSchema; /* Schema to which this item is fixed */ 1918 char *zDatabase; /* Name of database holding this table */ 1919 char *zName; /* Name of the table */ 1920 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1921 Table *pTab; /* An SQL table corresponding to zName */ 1922 Select *pSelect; /* A SELECT statement used in place of a table name */ 1923 int addrFillSub; /* Address of subroutine to manifest a subquery */ 1924 int regReturn; /* Register holding return address of addrFillSub */ 1925 u8 jointype; /* Type of join between this able and the previous */ 1926 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 1927 unsigned isCorrelated :1; /* True if sub-query is correlated */ 1928 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 1929 #ifndef SQLITE_OMIT_EXPLAIN 1930 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 1931 #endif 1932 int iCursor; /* The VDBE cursor number used to access this table */ 1933 Expr *pOn; /* The ON clause of a join */ 1934 IdList *pUsing; /* The USING clause of a join */ 1935 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1936 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1937 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1938 } a[1]; /* One entry for each identifier on the list */ 1939 }; 1940 1941 /* 1942 ** Permitted values of the SrcList.a.jointype field 1943 */ 1944 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1945 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1946 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1947 #define JT_LEFT 0x0008 /* Left outer join */ 1948 #define JT_RIGHT 0x0010 /* Right outer join */ 1949 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1950 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1951 1952 1953 /* 1954 ** A WherePlan object holds information that describes a lookup 1955 ** strategy. 1956 ** 1957 ** This object is intended to be opaque outside of the where.c module. 1958 ** It is included here only so that that compiler will know how big it 1959 ** is. None of the fields in this object should be used outside of 1960 ** the where.c module. 1961 ** 1962 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1963 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1964 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1965 ** case that more than one of these conditions is true. 1966 */ 1967 struct WherePlan { 1968 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1969 u16 nEq; /* Number of == constraints */ 1970 u16 nOBSat; /* Number of ORDER BY terms satisfied */ 1971 double nRow; /* Estimated number of rows (for EQP) */ 1972 union { 1973 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1974 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1975 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1976 } u; 1977 }; 1978 1979 /* 1980 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1981 ** structure contains a single instance of this structure. This structure 1982 ** is intended to be private to the where.c module and should not be 1983 ** access or modified by other modules. 1984 ** 1985 ** The pIdxInfo field is used to help pick the best index on a 1986 ** virtual table. The pIdxInfo pointer contains indexing 1987 ** information for the i-th table in the FROM clause before reordering. 1988 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1989 ** All other information in the i-th WhereLevel object for the i-th table 1990 ** after FROM clause ordering. 1991 */ 1992 struct WhereLevel { 1993 WherePlan plan; /* query plan for this element of the FROM clause */ 1994 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1995 int iTabCur; /* The VDBE cursor used to access the table */ 1996 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1997 int addrBrk; /* Jump here to break out of the loop */ 1998 int addrNxt; /* Jump here to start the next IN combination */ 1999 int addrCont; /* Jump here to continue with the next loop cycle */ 2000 int addrFirst; /* First instruction of interior of the loop */ 2001 u8 iFrom; /* Which entry in the FROM clause */ 2002 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 2003 int p1, p2; /* Operands of the opcode used to ends the loop */ 2004 union { /* Information that depends on plan.wsFlags */ 2005 struct { 2006 int nIn; /* Number of entries in aInLoop[] */ 2007 struct InLoop { 2008 int iCur; /* The VDBE cursor used by this IN operator */ 2009 int addrInTop; /* Top of the IN loop */ 2010 u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ 2011 } *aInLoop; /* Information about each nested IN operator */ 2012 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 2013 Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ 2014 } u; 2015 double rOptCost; /* "Optimal" cost for this level */ 2016 2017 /* The following field is really not part of the current level. But 2018 ** we need a place to cache virtual table index information for each 2019 ** virtual table in the FROM clause and the WhereLevel structure is 2020 ** a convenient place since there is one WhereLevel for each FROM clause 2021 ** element. 2022 */ 2023 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 2024 }; 2025 2026 /* 2027 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2028 ** and the WhereInfo.wctrlFlags member. 2029 */ 2030 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2031 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2032 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2033 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2034 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2035 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2036 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2037 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2038 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 2039 2040 /* 2041 ** The WHERE clause processing routine has two halves. The 2042 ** first part does the start of the WHERE loop and the second 2043 ** half does the tail of the WHERE loop. An instance of 2044 ** this structure is returned by the first half and passed 2045 ** into the second half to give some continuity. 2046 */ 2047 struct WhereInfo { 2048 Parse *pParse; /* Parsing and code generating context */ 2049 SrcList *pTabList; /* List of tables in the join */ 2050 u16 nOBSat; /* Number of ORDER BY terms satisfied by indices */ 2051 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 2052 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE/DELETE */ 2053 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 2054 u8 eDistinct; /* One of the WHERE_DISTINCT_* values below */ 2055 int iTop; /* The very beginning of the WHERE loop */ 2056 int iContinue; /* Jump here to continue with next record */ 2057 int iBreak; /* Jump here to break out of the loop */ 2058 int nLevel; /* Number of nested loop */ 2059 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 2060 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 2061 double nRowOut; /* Estimated number of output rows */ 2062 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 2063 }; 2064 2065 /* Allowed values for WhereInfo.eDistinct and DistinctCtx.eTnctType */ 2066 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2067 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2068 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2069 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2070 2071 /* 2072 ** A NameContext defines a context in which to resolve table and column 2073 ** names. The context consists of a list of tables (the pSrcList) field and 2074 ** a list of named expression (pEList). The named expression list may 2075 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2076 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2077 ** pEList corresponds to the result set of a SELECT and is NULL for 2078 ** other statements. 2079 ** 2080 ** NameContexts can be nested. When resolving names, the inner-most 2081 ** context is searched first. If no match is found, the next outer 2082 ** context is checked. If there is still no match, the next context 2083 ** is checked. This process continues until either a match is found 2084 ** or all contexts are check. When a match is found, the nRef member of 2085 ** the context containing the match is incremented. 2086 ** 2087 ** Each subquery gets a new NameContext. The pNext field points to the 2088 ** NameContext in the parent query. Thus the process of scanning the 2089 ** NameContext list corresponds to searching through successively outer 2090 ** subqueries looking for a match. 2091 */ 2092 struct NameContext { 2093 Parse *pParse; /* The parser */ 2094 SrcList *pSrcList; /* One or more tables used to resolve names */ 2095 ExprList *pEList; /* Optional list of named expressions */ 2096 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2097 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2098 int nRef; /* Number of names resolved by this context */ 2099 int nErr; /* Number of errors encountered while resolving names */ 2100 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2101 }; 2102 2103 /* 2104 ** Allowed values for the NameContext, ncFlags field. 2105 */ 2106 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2107 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2108 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2109 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2110 #define NC_AsMaybe 0x10 /* Resolve to AS terms of the result set only 2111 ** if no other resolution is available */ 2112 2113 /* 2114 ** An instance of the following structure contains all information 2115 ** needed to generate code for a single SELECT statement. 2116 ** 2117 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2118 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2119 ** limit and nOffset to the value of the offset (or 0 if there is not 2120 ** offset). But later on, nLimit and nOffset become the memory locations 2121 ** in the VDBE that record the limit and offset counters. 2122 ** 2123 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2124 ** These addresses must be stored so that we can go back and fill in 2125 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2126 ** the number of columns in P2 can be computed at the same time 2127 ** as the OP_OpenEphm instruction is coded because not 2128 ** enough information about the compound query is known at that point. 2129 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2130 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2131 ** sequences for the ORDER BY clause. 2132 */ 2133 struct Select { 2134 ExprList *pEList; /* The fields of the result */ 2135 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2136 u16 selFlags; /* Various SF_* values */ 2137 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2138 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2139 double nSelectRow; /* Estimated number of result rows */ 2140 SrcList *pSrc; /* The FROM clause */ 2141 Expr *pWhere; /* The WHERE clause */ 2142 ExprList *pGroupBy; /* The GROUP BY clause */ 2143 Expr *pHaving; /* The HAVING clause */ 2144 ExprList *pOrderBy; /* The ORDER BY clause */ 2145 Select *pPrior; /* Prior select in a compound select statement */ 2146 Select *pNext; /* Next select to the left in a compound */ 2147 Select *pRightmost; /* Right-most select in a compound select statement */ 2148 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2149 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2150 }; 2151 2152 /* 2153 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2154 ** "Select Flag". 2155 */ 2156 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2157 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2158 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2159 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2160 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2161 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2162 #define SF_UseSorter 0x0040 /* Sort using a sorter */ 2163 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2164 #define SF_Materialize 0x0100 /* Force materialization of views */ 2165 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2166 2167 2168 /* 2169 ** The results of a select can be distributed in several ways. The 2170 ** "SRT" prefix means "SELECT Result Type". 2171 */ 2172 #define SRT_Union 1 /* Store result as keys in an index */ 2173 #define SRT_Except 2 /* Remove result from a UNION index */ 2174 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2175 #define SRT_Discard 4 /* Do not save the results anywhere */ 2176 2177 /* The ORDER BY clause is ignored for all of the above */ 2178 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2179 2180 #define SRT_Output 5 /* Output each row of result */ 2181 #define SRT_Mem 6 /* Store result in a memory cell */ 2182 #define SRT_Set 7 /* Store results as keys in an index */ 2183 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2184 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2185 #define SRT_Coroutine 10 /* Generate a single row of result */ 2186 2187 /* 2188 ** An instance of this object describes where to put of the results of 2189 ** a SELECT statement. 2190 */ 2191 struct SelectDest { 2192 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2193 char affSdst; /* Affinity used when eDest==SRT_Set */ 2194 int iSDParm; /* A parameter used by the eDest disposal method */ 2195 int iSdst; /* Base register where results are written */ 2196 int nSdst; /* Number of registers allocated */ 2197 }; 2198 2199 /* 2200 ** During code generation of statements that do inserts into AUTOINCREMENT 2201 ** tables, the following information is attached to the Table.u.autoInc.p 2202 ** pointer of each autoincrement table to record some side information that 2203 ** the code generator needs. We have to keep per-table autoincrement 2204 ** information in case inserts are down within triggers. Triggers do not 2205 ** normally coordinate their activities, but we do need to coordinate the 2206 ** loading and saving of autoincrement information. 2207 */ 2208 struct AutoincInfo { 2209 AutoincInfo *pNext; /* Next info block in a list of them all */ 2210 Table *pTab; /* Table this info block refers to */ 2211 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2212 int regCtr; /* Memory register holding the rowid counter */ 2213 }; 2214 2215 /* 2216 ** Size of the column cache 2217 */ 2218 #ifndef SQLITE_N_COLCACHE 2219 # define SQLITE_N_COLCACHE 10 2220 #endif 2221 2222 /* 2223 ** At least one instance of the following structure is created for each 2224 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2225 ** statement. All such objects are stored in the linked list headed at 2226 ** Parse.pTriggerPrg and deleted once statement compilation has been 2227 ** completed. 2228 ** 2229 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2230 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2231 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2232 ** The Parse.pTriggerPrg list never contains two entries with the same 2233 ** values for both pTrigger and orconf. 2234 ** 2235 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2236 ** accessed (or set to 0 for triggers fired as a result of INSERT 2237 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2238 ** a mask of new.* columns used by the program. 2239 */ 2240 struct TriggerPrg { 2241 Trigger *pTrigger; /* Trigger this program was coded from */ 2242 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2243 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2244 int orconf; /* Default ON CONFLICT policy */ 2245 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2246 }; 2247 2248 /* 2249 ** The yDbMask datatype for the bitmask of all attached databases. 2250 */ 2251 #if SQLITE_MAX_ATTACHED>30 2252 typedef sqlite3_uint64 yDbMask; 2253 #else 2254 typedef unsigned int yDbMask; 2255 #endif 2256 2257 /* 2258 ** An SQL parser context. A copy of this structure is passed through 2259 ** the parser and down into all the parser action routine in order to 2260 ** carry around information that is global to the entire parse. 2261 ** 2262 ** The structure is divided into two parts. When the parser and code 2263 ** generate call themselves recursively, the first part of the structure 2264 ** is constant but the second part is reset at the beginning and end of 2265 ** each recursion. 2266 ** 2267 ** The nTableLock and aTableLock variables are only used if the shared-cache 2268 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2269 ** used to store the set of table-locks required by the statement being 2270 ** compiled. Function sqlite3TableLock() is used to add entries to the 2271 ** list. 2272 */ 2273 struct Parse { 2274 sqlite3 *db; /* The main database structure */ 2275 char *zErrMsg; /* An error message */ 2276 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2277 int rc; /* Return code from execution */ 2278 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2279 u8 checkSchema; /* Causes schema cookie check after an error */ 2280 u8 nested; /* Number of nested calls to the parser/code generator */ 2281 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2282 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2283 u8 nColCache; /* Number of entries in aColCache[] */ 2284 u8 iColCache; /* Next entry in aColCache[] to replace */ 2285 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2286 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2287 int aTempReg[8]; /* Holding area for temporary registers */ 2288 int nRangeReg; /* Size of the temporary register block */ 2289 int iRangeReg; /* First register in temporary register block */ 2290 int nErr; /* Number of errors seen */ 2291 int nTab; /* Number of previously allocated VDBE cursors */ 2292 int nMem; /* Number of memory cells used so far */ 2293 int nSet; /* Number of sets used so far */ 2294 int nOnce; /* Number of OP_Once instructions so far */ 2295 int ckBase; /* Base register of data during check constraints */ 2296 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2297 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2298 struct yColCache { 2299 int iTable; /* Table cursor number */ 2300 int iColumn; /* Table column number */ 2301 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2302 int iLevel; /* Nesting level */ 2303 int iReg; /* Reg with value of this column. 0 means none. */ 2304 int lru; /* Least recently used entry has the smallest value */ 2305 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2306 yDbMask writeMask; /* Start a write transaction on these databases */ 2307 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2308 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2309 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2310 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2311 int regRoot; /* Register holding root page number for new objects */ 2312 int nMaxArg; /* Max args passed to user function by sub-program */ 2313 Token constraintName;/* Name of the constraint currently being parsed */ 2314 #ifndef SQLITE_OMIT_SHARED_CACHE 2315 int nTableLock; /* Number of locks in aTableLock */ 2316 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2317 #endif 2318 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2319 2320 /* Information used while coding trigger programs. */ 2321 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2322 Table *pTriggerTab; /* Table triggers are being coded for */ 2323 double nQueryLoop; /* Estimated number of iterations of a query */ 2324 u32 oldmask; /* Mask of old.* columns referenced */ 2325 u32 newmask; /* Mask of new.* columns referenced */ 2326 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2327 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2328 u8 disableTriggers; /* True to disable triggers */ 2329 2330 /* Above is constant between recursions. Below is reset before and after 2331 ** each recursion */ 2332 2333 int nVar; /* Number of '?' variables seen in the SQL so far */ 2334 int nzVar; /* Number of available slots in azVar[] */ 2335 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2336 #ifndef SQLITE_OMIT_VIRTUALTABLE 2337 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2338 int nVtabLock; /* Number of virtual tables to lock */ 2339 #endif 2340 int nAlias; /* Number of aliased result set columns */ 2341 int nHeight; /* Expression tree height of current sub-select */ 2342 #ifndef SQLITE_OMIT_EXPLAIN 2343 int iSelectId; /* ID of current select for EXPLAIN output */ 2344 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2345 #endif 2346 char **azVar; /* Pointers to names of parameters */ 2347 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2348 int *aAlias; /* Register used to hold aliased result */ 2349 const char *zTail; /* All SQL text past the last semicolon parsed */ 2350 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2351 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2352 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2353 Token sNameToken; /* Token with unqualified schema object name */ 2354 Token sLastToken; /* The last token parsed */ 2355 #ifndef SQLITE_OMIT_VIRTUALTABLE 2356 Token sArg; /* Complete text of a module argument */ 2357 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2358 #endif 2359 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2360 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2361 }; 2362 2363 /* 2364 ** Return true if currently inside an sqlite3_declare_vtab() call. 2365 */ 2366 #ifdef SQLITE_OMIT_VIRTUALTABLE 2367 #define IN_DECLARE_VTAB 0 2368 #else 2369 #define IN_DECLARE_VTAB (pParse->declareVtab) 2370 #endif 2371 2372 /* 2373 ** An instance of the following structure can be declared on a stack and used 2374 ** to save the Parse.zAuthContext value so that it can be restored later. 2375 */ 2376 struct AuthContext { 2377 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2378 Parse *pParse; /* The Parse structure */ 2379 }; 2380 2381 /* 2382 ** Bitfield flags for P5 value in various opcodes. 2383 */ 2384 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2385 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2386 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2387 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2388 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2389 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2390 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2391 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2392 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2393 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2394 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2395 2396 /* 2397 * Each trigger present in the database schema is stored as an instance of 2398 * struct Trigger. 2399 * 2400 * Pointers to instances of struct Trigger are stored in two ways. 2401 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2402 * database). This allows Trigger structures to be retrieved by name. 2403 * 2. All triggers associated with a single table form a linked list, using the 2404 * pNext member of struct Trigger. A pointer to the first element of the 2405 * linked list is stored as the "pTrigger" member of the associated 2406 * struct Table. 2407 * 2408 * The "step_list" member points to the first element of a linked list 2409 * containing the SQL statements specified as the trigger program. 2410 */ 2411 struct Trigger { 2412 char *zName; /* The name of the trigger */ 2413 char *table; /* The table or view to which the trigger applies */ 2414 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2415 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2416 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2417 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2418 the <column-list> is stored here */ 2419 Schema *pSchema; /* Schema containing the trigger */ 2420 Schema *pTabSchema; /* Schema containing the table */ 2421 TriggerStep *step_list; /* Link list of trigger program steps */ 2422 Trigger *pNext; /* Next trigger associated with the table */ 2423 }; 2424 2425 /* 2426 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2427 ** determine which. 2428 ** 2429 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2430 ** In that cases, the constants below can be ORed together. 2431 */ 2432 #define TRIGGER_BEFORE 1 2433 #define TRIGGER_AFTER 2 2434 2435 /* 2436 * An instance of struct TriggerStep is used to store a single SQL statement 2437 * that is a part of a trigger-program. 2438 * 2439 * Instances of struct TriggerStep are stored in a singly linked list (linked 2440 * using the "pNext" member) referenced by the "step_list" member of the 2441 * associated struct Trigger instance. The first element of the linked list is 2442 * the first step of the trigger-program. 2443 * 2444 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2445 * "SELECT" statement. The meanings of the other members is determined by the 2446 * value of "op" as follows: 2447 * 2448 * (op == TK_INSERT) 2449 * orconf -> stores the ON CONFLICT algorithm 2450 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2451 * this stores a pointer to the SELECT statement. Otherwise NULL. 2452 * target -> A token holding the quoted name of the table to insert into. 2453 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2454 * this stores values to be inserted. Otherwise NULL. 2455 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2456 * statement, then this stores the column-names to be 2457 * inserted into. 2458 * 2459 * (op == TK_DELETE) 2460 * target -> A token holding the quoted name of the table to delete from. 2461 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2462 * Otherwise NULL. 2463 * 2464 * (op == TK_UPDATE) 2465 * target -> A token holding the quoted name of the table to update rows of. 2466 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2467 * Otherwise NULL. 2468 * pExprList -> A list of the columns to update and the expressions to update 2469 * them to. See sqlite3Update() documentation of "pChanges" 2470 * argument. 2471 * 2472 */ 2473 struct TriggerStep { 2474 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2475 u8 orconf; /* OE_Rollback etc. */ 2476 Trigger *pTrig; /* The trigger that this step is a part of */ 2477 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2478 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2479 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2480 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2481 IdList *pIdList; /* Column names for INSERT */ 2482 TriggerStep *pNext; /* Next in the link-list */ 2483 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2484 }; 2485 2486 /* 2487 ** The following structure contains information used by the sqliteFix... 2488 ** routines as they walk the parse tree to make database references 2489 ** explicit. 2490 */ 2491 typedef struct DbFixer DbFixer; 2492 struct DbFixer { 2493 Parse *pParse; /* The parsing context. Error messages written here */ 2494 Schema *pSchema; /* Fix items to this schema */ 2495 const char *zDb; /* Make sure all objects are contained in this database */ 2496 const char *zType; /* Type of the container - used for error messages */ 2497 const Token *pName; /* Name of the container - used for error messages */ 2498 }; 2499 2500 /* 2501 ** An objected used to accumulate the text of a string where we 2502 ** do not necessarily know how big the string will be in the end. 2503 */ 2504 struct StrAccum { 2505 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2506 char *zBase; /* A base allocation. Not from malloc. */ 2507 char *zText; /* The string collected so far */ 2508 int nChar; /* Length of the string so far */ 2509 int nAlloc; /* Amount of space allocated in zText */ 2510 int mxAlloc; /* Maximum allowed string length */ 2511 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2512 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2513 u8 tooBig; /* Becomes true if string size exceeds limits */ 2514 }; 2515 2516 /* 2517 ** A pointer to this structure is used to communicate information 2518 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2519 */ 2520 typedef struct { 2521 sqlite3 *db; /* The database being initialized */ 2522 char **pzErrMsg; /* Error message stored here */ 2523 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2524 int rc; /* Result code stored here */ 2525 } InitData; 2526 2527 /* 2528 ** Structure containing global configuration data for the SQLite library. 2529 ** 2530 ** This structure also contains some state information. 2531 */ 2532 struct Sqlite3Config { 2533 int bMemstat; /* True to enable memory status */ 2534 int bCoreMutex; /* True to enable core mutexing */ 2535 int bFullMutex; /* True to enable full mutexing */ 2536 int bOpenUri; /* True to interpret filenames as URIs */ 2537 int bUseCis; /* Use covering indices for full-scans */ 2538 int mxStrlen; /* Maximum string length */ 2539 int szLookaside; /* Default lookaside buffer size */ 2540 int nLookaside; /* Default lookaside buffer count */ 2541 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2542 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2543 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2544 void *pHeap; /* Heap storage space */ 2545 int nHeap; /* Size of pHeap[] */ 2546 int mnReq, mxReq; /* Min and max heap requests sizes */ 2547 sqlite3_int64 szMmap; /* mmap() space per open file */ 2548 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2549 void *pScratch; /* Scratch memory */ 2550 int szScratch; /* Size of each scratch buffer */ 2551 int nScratch; /* Number of scratch buffers */ 2552 void *pPage; /* Page cache memory */ 2553 int szPage; /* Size of each page in pPage[] */ 2554 int nPage; /* Number of pages in pPage[] */ 2555 int mxParserStack; /* maximum depth of the parser stack */ 2556 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2557 /* The above might be initialized to non-zero. The following need to always 2558 ** initially be zero, however. */ 2559 int isInit; /* True after initialization has finished */ 2560 int inProgress; /* True while initialization in progress */ 2561 int isMutexInit; /* True after mutexes are initialized */ 2562 int isMallocInit; /* True after malloc is initialized */ 2563 int isPCacheInit; /* True after malloc is initialized */ 2564 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2565 int nRefInitMutex; /* Number of users of pInitMutex */ 2566 void (*xLog)(void*,int,const char*); /* Function for logging */ 2567 void *pLogArg; /* First argument to xLog() */ 2568 int bLocaltimeFault; /* True to fail localtime() calls */ 2569 #ifdef SQLITE_ENABLE_SQLLOG 2570 void(*xSqllog)(void*,sqlite3*,const char*, int); 2571 void *pSqllogArg; 2572 #endif 2573 }; 2574 2575 /* 2576 ** Context pointer passed down through the tree-walk. 2577 */ 2578 struct Walker { 2579 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2580 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2581 Parse *pParse; /* Parser context. */ 2582 int walkerDepth; /* Number of subqueries */ 2583 u8 bSelectDepthFirst; /* Do subqueries first */ 2584 union { /* Extra data for callback */ 2585 NameContext *pNC; /* Naming context */ 2586 int i; /* Integer value */ 2587 SrcList *pSrcList; /* FROM clause */ 2588 struct SrcCount *pSrcCount; /* Counting column references */ 2589 } u; 2590 }; 2591 2592 /* Forward declarations */ 2593 int sqlite3WalkExpr(Walker*, Expr*); 2594 int sqlite3WalkExprList(Walker*, ExprList*); 2595 int sqlite3WalkSelect(Walker*, Select*); 2596 int sqlite3WalkSelectExpr(Walker*, Select*); 2597 int sqlite3WalkSelectFrom(Walker*, Select*); 2598 2599 /* 2600 ** Return code from the parse-tree walking primitives and their 2601 ** callbacks. 2602 */ 2603 #define WRC_Continue 0 /* Continue down into children */ 2604 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2605 #define WRC_Abort 2 /* Abandon the tree walk */ 2606 2607 /* 2608 ** Assuming zIn points to the first byte of a UTF-8 character, 2609 ** advance zIn to point to the first byte of the next UTF-8 character. 2610 */ 2611 #define SQLITE_SKIP_UTF8(zIn) { \ 2612 if( (*(zIn++))>=0xc0 ){ \ 2613 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2614 } \ 2615 } 2616 2617 /* 2618 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2619 ** the same name but without the _BKPT suffix. These macros invoke 2620 ** routines that report the line-number on which the error originated 2621 ** using sqlite3_log(). The routines also provide a convenient place 2622 ** to set a debugger breakpoint. 2623 */ 2624 int sqlite3CorruptError(int); 2625 int sqlite3MisuseError(int); 2626 int sqlite3CantopenError(int); 2627 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2628 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2629 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2630 2631 2632 /* 2633 ** FTS4 is really an extension for FTS3. It is enabled using the 2634 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2635 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2636 */ 2637 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2638 # define SQLITE_ENABLE_FTS3 2639 #endif 2640 2641 /* 2642 ** The ctype.h header is needed for non-ASCII systems. It is also 2643 ** needed by FTS3 when FTS3 is included in the amalgamation. 2644 */ 2645 #if !defined(SQLITE_ASCII) || \ 2646 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2647 # include <ctype.h> 2648 #endif 2649 2650 /* 2651 ** The following macros mimic the standard library functions toupper(), 2652 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2653 ** sqlite versions only work for ASCII characters, regardless of locale. 2654 */ 2655 #ifdef SQLITE_ASCII 2656 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2657 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2658 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2659 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2660 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2661 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2662 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2663 #else 2664 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2665 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2666 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2667 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2668 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2669 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2670 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2671 #endif 2672 2673 /* 2674 ** Internal function prototypes 2675 */ 2676 #define sqlite3StrICmp sqlite3_stricmp 2677 int sqlite3Strlen30(const char*); 2678 #define sqlite3StrNICmp sqlite3_strnicmp 2679 2680 int sqlite3MallocInit(void); 2681 void sqlite3MallocEnd(void); 2682 void *sqlite3Malloc(int); 2683 void *sqlite3MallocZero(int); 2684 void *sqlite3DbMallocZero(sqlite3*, int); 2685 void *sqlite3DbMallocRaw(sqlite3*, int); 2686 char *sqlite3DbStrDup(sqlite3*,const char*); 2687 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2688 void *sqlite3Realloc(void*, int); 2689 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2690 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2691 void sqlite3DbFree(sqlite3*, void*); 2692 int sqlite3MallocSize(void*); 2693 int sqlite3DbMallocSize(sqlite3*, void*); 2694 void *sqlite3ScratchMalloc(int); 2695 void sqlite3ScratchFree(void*); 2696 void *sqlite3PageMalloc(int); 2697 void sqlite3PageFree(void*); 2698 void sqlite3MemSetDefault(void); 2699 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2700 int sqlite3HeapNearlyFull(void); 2701 2702 /* 2703 ** On systems with ample stack space and that support alloca(), make 2704 ** use of alloca() to obtain space for large automatic objects. By default, 2705 ** obtain space from malloc(). 2706 ** 2707 ** The alloca() routine never returns NULL. This will cause code paths 2708 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2709 */ 2710 #ifdef SQLITE_USE_ALLOCA 2711 # define sqlite3StackAllocRaw(D,N) alloca(N) 2712 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2713 # define sqlite3StackFree(D,P) 2714 #else 2715 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2716 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2717 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2718 #endif 2719 2720 #ifdef SQLITE_ENABLE_MEMSYS3 2721 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2722 #endif 2723 #ifdef SQLITE_ENABLE_MEMSYS5 2724 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2725 #endif 2726 2727 2728 #ifndef SQLITE_MUTEX_OMIT 2729 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2730 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2731 sqlite3_mutex *sqlite3MutexAlloc(int); 2732 int sqlite3MutexInit(void); 2733 int sqlite3MutexEnd(void); 2734 #endif 2735 2736 int sqlite3StatusValue(int); 2737 void sqlite3StatusAdd(int, int); 2738 void sqlite3StatusSet(int, int); 2739 2740 #ifndef SQLITE_OMIT_FLOATING_POINT 2741 int sqlite3IsNaN(double); 2742 #else 2743 # define sqlite3IsNaN(X) 0 2744 #endif 2745 2746 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2747 #ifndef SQLITE_OMIT_TRACE 2748 void sqlite3XPrintf(StrAccum*, const char*, ...); 2749 #endif 2750 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2751 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2752 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2753 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2754 void sqlite3DebugPrintf(const char*, ...); 2755 #endif 2756 #if defined(SQLITE_TEST) 2757 void *sqlite3TestTextToPtr(const char*); 2758 #endif 2759 2760 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2761 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2762 void sqlite3ExplainBegin(Vdbe*); 2763 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2764 void sqlite3ExplainNL(Vdbe*); 2765 void sqlite3ExplainPush(Vdbe*); 2766 void sqlite3ExplainPop(Vdbe*); 2767 void sqlite3ExplainFinish(Vdbe*); 2768 void sqlite3ExplainSelect(Vdbe*, Select*); 2769 void sqlite3ExplainExpr(Vdbe*, Expr*); 2770 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2771 const char *sqlite3VdbeExplanation(Vdbe*); 2772 #else 2773 # define sqlite3ExplainBegin(X) 2774 # define sqlite3ExplainSelect(A,B) 2775 # define sqlite3ExplainExpr(A,B) 2776 # define sqlite3ExplainExprList(A,B) 2777 # define sqlite3ExplainFinish(X) 2778 # define sqlite3VdbeExplanation(X) 0 2779 #endif 2780 2781 2782 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2783 void sqlite3ErrorMsg(Parse*, const char*, ...); 2784 int sqlite3Dequote(char*); 2785 int sqlite3KeywordCode(const unsigned char*, int); 2786 int sqlite3RunParser(Parse*, const char*, char **); 2787 void sqlite3FinishCoding(Parse*); 2788 int sqlite3GetTempReg(Parse*); 2789 void sqlite3ReleaseTempReg(Parse*,int); 2790 int sqlite3GetTempRange(Parse*,int); 2791 void sqlite3ReleaseTempRange(Parse*,int,int); 2792 void sqlite3ClearTempRegCache(Parse*); 2793 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2794 Expr *sqlite3Expr(sqlite3*,int,const char*); 2795 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2796 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2797 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2798 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2799 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2800 void sqlite3ExprDelete(sqlite3*, Expr*); 2801 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2802 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2803 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2804 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2805 int sqlite3Init(sqlite3*, char**); 2806 int sqlite3InitCallback(void*, int, char**, char**); 2807 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2808 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 2809 void sqlite3ResetOneSchema(sqlite3*,int); 2810 void sqlite3CollapseDatabaseArray(sqlite3*); 2811 void sqlite3BeginParse(Parse*,int); 2812 void sqlite3CommitInternalChanges(sqlite3*); 2813 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2814 void sqlite3OpenMasterTable(Parse *, int); 2815 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2816 void sqlite3AddColumn(Parse*,Token*); 2817 void sqlite3AddNotNull(Parse*, int); 2818 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2819 void sqlite3AddCheckConstraint(Parse*, Expr*); 2820 void sqlite3AddColumnType(Parse*,Token*); 2821 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2822 void sqlite3AddCollateType(Parse*, Token*); 2823 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2824 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2825 sqlite3_vfs**,char**,char **); 2826 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 2827 int sqlite3CodeOnce(Parse *); 2828 2829 Bitvec *sqlite3BitvecCreate(u32); 2830 int sqlite3BitvecTest(Bitvec*, u32); 2831 int sqlite3BitvecSet(Bitvec*, u32); 2832 void sqlite3BitvecClear(Bitvec*, u32, void*); 2833 void sqlite3BitvecDestroy(Bitvec*); 2834 u32 sqlite3BitvecSize(Bitvec*); 2835 int sqlite3BitvecBuiltinTest(int,int*); 2836 2837 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2838 void sqlite3RowSetClear(RowSet*); 2839 void sqlite3RowSetInsert(RowSet*, i64); 2840 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2841 int sqlite3RowSetNext(RowSet*, i64*); 2842 2843 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2844 2845 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2846 int sqlite3ViewGetColumnNames(Parse*,Table*); 2847 #else 2848 # define sqlite3ViewGetColumnNames(A,B) 0 2849 #endif 2850 2851 void sqlite3DropTable(Parse*, SrcList*, int, int); 2852 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2853 void sqlite3DeleteTable(sqlite3*, Table*); 2854 #ifndef SQLITE_OMIT_AUTOINCREMENT 2855 void sqlite3AutoincrementBegin(Parse *pParse); 2856 void sqlite3AutoincrementEnd(Parse *pParse); 2857 #else 2858 # define sqlite3AutoincrementBegin(X) 2859 # define sqlite3AutoincrementEnd(X) 2860 #endif 2861 int sqlite3CodeCoroutine(Parse*, Select*, SelectDest*); 2862 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2863 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 2864 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2865 int sqlite3IdListIndex(IdList*,const char*); 2866 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2867 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2868 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2869 Token*, Select*, Expr*, IdList*); 2870 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2871 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2872 void sqlite3SrcListShiftJoinType(SrcList*); 2873 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2874 void sqlite3IdListDelete(sqlite3*, IdList*); 2875 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2876 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2877 Token*, int, int); 2878 void sqlite3DropIndex(Parse*, SrcList*, int); 2879 int sqlite3Select(Parse*, Select*, SelectDest*); 2880 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2881 Expr*,ExprList*,u16,Expr*,Expr*); 2882 void sqlite3SelectDelete(sqlite3*, Select*); 2883 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2884 int sqlite3IsReadOnly(Parse*, Table*, int); 2885 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2886 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2887 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 2888 #endif 2889 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2890 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2891 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 2892 void sqlite3WhereEnd(WhereInfo*); 2893 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 2894 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2895 void sqlite3ExprCodeMove(Parse*, int, int, int); 2896 void sqlite3ExprCacheStore(Parse*, int, int, int); 2897 void sqlite3ExprCachePush(Parse*); 2898 void sqlite3ExprCachePop(Parse*, int); 2899 void sqlite3ExprCacheRemove(Parse*, int, int); 2900 void sqlite3ExprCacheClear(Parse*); 2901 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2902 int sqlite3ExprCode(Parse*, Expr*, int); 2903 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2904 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2905 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2906 void sqlite3ExprCodeConstants(Parse*, Expr*); 2907 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2908 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2909 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2910 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2911 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2912 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 2913 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2914 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2915 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2916 void sqlite3Vacuum(Parse*); 2917 int sqlite3RunVacuum(char**, sqlite3*); 2918 char *sqlite3NameFromToken(sqlite3*, Token*); 2919 int sqlite3ExprCompare(Expr*, Expr*); 2920 int sqlite3ExprListCompare(ExprList*, ExprList*); 2921 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2922 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2923 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 2924 Vdbe *sqlite3GetVdbe(Parse*); 2925 void sqlite3PrngSaveState(void); 2926 void sqlite3PrngRestoreState(void); 2927 void sqlite3PrngResetState(void); 2928 void sqlite3RollbackAll(sqlite3*,int); 2929 void sqlite3CodeVerifySchema(Parse*, int); 2930 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 2931 void sqlite3BeginTransaction(Parse*, int); 2932 void sqlite3CommitTransaction(Parse*); 2933 void sqlite3RollbackTransaction(Parse*); 2934 void sqlite3Savepoint(Parse*, int, Token*); 2935 void sqlite3CloseSavepoints(sqlite3 *); 2936 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 2937 int sqlite3ExprIsConstant(Expr*); 2938 int sqlite3ExprIsConstantNotJoin(Expr*); 2939 int sqlite3ExprIsConstantOrFunction(Expr*); 2940 int sqlite3ExprIsInteger(Expr*, int*); 2941 int sqlite3ExprCanBeNull(const Expr*); 2942 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2943 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2944 int sqlite3IsRowid(const char*); 2945 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2946 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2947 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2948 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2949 int*,int,int,int,int,int*); 2950 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2951 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2952 void sqlite3BeginWriteOperation(Parse*, int, int); 2953 void sqlite3MultiWrite(Parse*); 2954 void sqlite3MayAbort(Parse*); 2955 void sqlite3HaltConstraint(Parse*, int, int, char*, int); 2956 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2957 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2958 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2959 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2960 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2961 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2962 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 2963 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2964 void sqlite3RegisterDateTimeFunctions(void); 2965 void sqlite3RegisterGlobalFunctions(void); 2966 int sqlite3SafetyCheckOk(sqlite3*); 2967 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2968 void sqlite3ChangeCookie(Parse*, int); 2969 2970 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2971 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2972 #endif 2973 2974 #ifndef SQLITE_OMIT_TRIGGER 2975 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2976 Expr*,int, int); 2977 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2978 void sqlite3DropTrigger(Parse*, SrcList*, int); 2979 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2980 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2981 Trigger *sqlite3TriggerList(Parse *, Table *); 2982 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2983 int, int, int); 2984 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2985 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2986 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2987 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2988 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2989 ExprList*,Select*,u8); 2990 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2991 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2992 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2993 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2994 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2995 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2996 #else 2997 # define sqlite3TriggersExist(B,C,D,E,F) 0 2998 # define sqlite3DeleteTrigger(A,B) 2999 # define sqlite3DropTriggerPtr(A,B) 3000 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3001 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3002 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3003 # define sqlite3TriggerList(X, Y) 0 3004 # define sqlite3ParseToplevel(p) p 3005 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3006 #endif 3007 3008 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3009 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3010 void sqlite3DeferForeignKey(Parse*, int); 3011 #ifndef SQLITE_OMIT_AUTHORIZATION 3012 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3013 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3014 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3015 void sqlite3AuthContextPop(AuthContext*); 3016 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3017 #else 3018 # define sqlite3AuthRead(a,b,c,d) 3019 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3020 # define sqlite3AuthContextPush(a,b,c) 3021 # define sqlite3AuthContextPop(a) ((void)(a)) 3022 #endif 3023 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3024 void sqlite3Detach(Parse*, Expr*); 3025 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3026 int sqlite3FixSrcList(DbFixer*, SrcList*); 3027 int sqlite3FixSelect(DbFixer*, Select*); 3028 int sqlite3FixExpr(DbFixer*, Expr*); 3029 int sqlite3FixExprList(DbFixer*, ExprList*); 3030 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3031 int sqlite3AtoF(const char *z, double*, int, u8); 3032 int sqlite3GetInt32(const char *, int*); 3033 int sqlite3Atoi(const char*); 3034 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3035 int sqlite3Utf8CharLen(const char *pData, int nByte); 3036 u32 sqlite3Utf8Read(const u8**); 3037 3038 /* 3039 ** Routines to read and write variable-length integers. These used to 3040 ** be defined locally, but now we use the varint routines in the util.c 3041 ** file. Code should use the MACRO forms below, as the Varint32 versions 3042 ** are coded to assume the single byte case is already handled (which 3043 ** the MACRO form does). 3044 */ 3045 int sqlite3PutVarint(unsigned char*, u64); 3046 int sqlite3PutVarint32(unsigned char*, u32); 3047 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3048 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3049 int sqlite3VarintLen(u64 v); 3050 3051 /* 3052 ** The header of a record consists of a sequence variable-length integers. 3053 ** These integers are almost always small and are encoded as a single byte. 3054 ** The following macros take advantage this fact to provide a fast encode 3055 ** and decode of the integers in a record header. It is faster for the common 3056 ** case where the integer is a single byte. It is a little slower when the 3057 ** integer is two or more bytes. But overall it is faster. 3058 ** 3059 ** The following expressions are equivalent: 3060 ** 3061 ** x = sqlite3GetVarint32( A, &B ); 3062 ** x = sqlite3PutVarint32( A, B ); 3063 ** 3064 ** x = getVarint32( A, B ); 3065 ** x = putVarint32( A, B ); 3066 ** 3067 */ 3068 #define getVarint32(A,B) \ 3069 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3070 #define putVarint32(A,B) \ 3071 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3072 sqlite3PutVarint32((A),(B))) 3073 #define getVarint sqlite3GetVarint 3074 #define putVarint sqlite3PutVarint 3075 3076 3077 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3078 void sqlite3TableAffinityStr(Vdbe *, Table *); 3079 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3080 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3081 char sqlite3ExprAffinity(Expr *pExpr); 3082 int sqlite3Atoi64(const char*, i64*, int, u8); 3083 void sqlite3Error(sqlite3*, int, const char*,...); 3084 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3085 u8 sqlite3HexToInt(int h); 3086 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3087 3088 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) || \ 3089 defined(SQLITE_DEBUG_OS_TRACE) 3090 const char *sqlite3ErrName(int); 3091 #endif 3092 3093 const char *sqlite3ErrStr(int); 3094 int sqlite3ReadSchema(Parse *pParse); 3095 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3096 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3097 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3098 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*); 3099 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3100 Expr *sqlite3ExprSkipCollate(Expr*); 3101 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3102 int sqlite3CheckObjectName(Parse *, const char *); 3103 void sqlite3VdbeSetChanges(sqlite3 *, int); 3104 int sqlite3AddInt64(i64*,i64); 3105 int sqlite3SubInt64(i64*,i64); 3106 int sqlite3MulInt64(i64*,i64); 3107 int sqlite3AbsInt32(int); 3108 #ifdef SQLITE_ENABLE_8_3_NAMES 3109 void sqlite3FileSuffix3(const char*, char*); 3110 #else 3111 # define sqlite3FileSuffix3(X,Y) 3112 #endif 3113 u8 sqlite3GetBoolean(const char *z,int); 3114 3115 const void *sqlite3ValueText(sqlite3_value*, u8); 3116 int sqlite3ValueBytes(sqlite3_value*, u8); 3117 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3118 void(*)(void*)); 3119 void sqlite3ValueFree(sqlite3_value*); 3120 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3121 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3122 #ifdef SQLITE_ENABLE_STAT3 3123 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 3124 #endif 3125 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3126 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3127 #ifndef SQLITE_AMALGAMATION 3128 extern const unsigned char sqlite3OpcodeProperty[]; 3129 extern const unsigned char sqlite3UpperToLower[]; 3130 extern const unsigned char sqlite3CtypeMap[]; 3131 extern const Token sqlite3IntTokens[]; 3132 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3133 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3134 #ifndef SQLITE_OMIT_WSD 3135 extern int sqlite3PendingByte; 3136 #endif 3137 #endif 3138 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3139 void sqlite3Reindex(Parse*, Token*, Token*); 3140 void sqlite3AlterFunctions(void); 3141 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3142 int sqlite3GetToken(const unsigned char *, int *); 3143 void sqlite3NestedParse(Parse*, const char*, ...); 3144 void sqlite3ExpirePreparedStatements(sqlite3*); 3145 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3146 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3147 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3148 int sqlite3ResolveExprNames(NameContext*, Expr*); 3149 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3150 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3151 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3152 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3153 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3154 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3155 char sqlite3AffinityType(const char*); 3156 void sqlite3Analyze(Parse*, Token*, Token*); 3157 int sqlite3InvokeBusyHandler(BusyHandler*); 3158 int sqlite3FindDb(sqlite3*, Token*); 3159 int sqlite3FindDbName(sqlite3 *, const char *); 3160 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3161 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3162 void sqlite3DefaultRowEst(Index*); 3163 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3164 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3165 void sqlite3MinimumFileFormat(Parse*, int, int); 3166 void sqlite3SchemaClear(void *); 3167 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3168 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3169 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 3170 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3171 void (*)(sqlite3_context*,int,sqlite3_value **), 3172 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3173 FuncDestructor *pDestructor 3174 ); 3175 int sqlite3ApiExit(sqlite3 *db, int); 3176 int sqlite3OpenTempDatabase(Parse *); 3177 3178 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3179 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3180 void sqlite3AppendSpace(StrAccum*,int); 3181 char *sqlite3StrAccumFinish(StrAccum*); 3182 void sqlite3StrAccumReset(StrAccum*); 3183 void sqlite3SelectDestInit(SelectDest*,int,int); 3184 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3185 3186 void sqlite3BackupRestart(sqlite3_backup *); 3187 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3188 3189 /* 3190 ** The interface to the LEMON-generated parser 3191 */ 3192 void *sqlite3ParserAlloc(void*(*)(size_t)); 3193 void sqlite3ParserFree(void*, void(*)(void*)); 3194 void sqlite3Parser(void*, int, Token, Parse*); 3195 #ifdef YYTRACKMAXSTACKDEPTH 3196 int sqlite3ParserStackPeak(void*); 3197 #endif 3198 3199 void sqlite3AutoLoadExtensions(sqlite3*); 3200 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3201 void sqlite3CloseExtensions(sqlite3*); 3202 #else 3203 # define sqlite3CloseExtensions(X) 3204 #endif 3205 3206 #ifndef SQLITE_OMIT_SHARED_CACHE 3207 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3208 #else 3209 #define sqlite3TableLock(v,w,x,y,z) 3210 #endif 3211 3212 #ifdef SQLITE_TEST 3213 int sqlite3Utf8To8(unsigned char*); 3214 #endif 3215 3216 #ifdef SQLITE_OMIT_VIRTUALTABLE 3217 # define sqlite3VtabClear(Y) 3218 # define sqlite3VtabSync(X,Y) SQLITE_OK 3219 # define sqlite3VtabRollback(X) 3220 # define sqlite3VtabCommit(X) 3221 # define sqlite3VtabInSync(db) 0 3222 # define sqlite3VtabLock(X) 3223 # define sqlite3VtabUnlock(X) 3224 # define sqlite3VtabUnlockList(X) 3225 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3226 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3227 #else 3228 void sqlite3VtabClear(sqlite3 *db, Table*); 3229 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3230 int sqlite3VtabSync(sqlite3 *db, char **); 3231 int sqlite3VtabRollback(sqlite3 *db); 3232 int sqlite3VtabCommit(sqlite3 *db); 3233 void sqlite3VtabLock(VTable *); 3234 void sqlite3VtabUnlock(VTable *); 3235 void sqlite3VtabUnlockList(sqlite3*); 3236 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3237 VTable *sqlite3GetVTable(sqlite3*, Table*); 3238 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3239 #endif 3240 void sqlite3VtabMakeWritable(Parse*,Table*); 3241 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3242 void sqlite3VtabFinishParse(Parse*, Token*); 3243 void sqlite3VtabArgInit(Parse*); 3244 void sqlite3VtabArgExtend(Parse*, Token*); 3245 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3246 int sqlite3VtabCallConnect(Parse*, Table*); 3247 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3248 int sqlite3VtabBegin(sqlite3 *, VTable *); 3249 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3250 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3251 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3252 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3253 int sqlite3Reprepare(Vdbe*); 3254 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3255 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3256 int sqlite3TempInMemory(const sqlite3*); 3257 const char *sqlite3JournalModename(int); 3258 #ifndef SQLITE_OMIT_WAL 3259 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3260 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3261 #endif 3262 3263 /* Declarations for functions in fkey.c. All of these are replaced by 3264 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3265 ** key functionality is available. If OMIT_TRIGGER is defined but 3266 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3267 ** this case foreign keys are parsed, but no other functionality is 3268 ** provided (enforcement of FK constraints requires the triggers sub-system). 3269 */ 3270 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3271 void sqlite3FkCheck(Parse*, Table*, int, int); 3272 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3273 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3274 int sqlite3FkRequired(Parse*, Table*, int*, int); 3275 u32 sqlite3FkOldmask(Parse*, Table*); 3276 FKey *sqlite3FkReferences(Table *); 3277 #else 3278 #define sqlite3FkActions(a,b,c,d) 3279 #define sqlite3FkCheck(a,b,c,d) 3280 #define sqlite3FkDropTable(a,b,c) 3281 #define sqlite3FkOldmask(a,b) 0 3282 #define sqlite3FkRequired(a,b,c,d) 0 3283 #endif 3284 #ifndef SQLITE_OMIT_FOREIGN_KEY 3285 void sqlite3FkDelete(sqlite3 *, Table*); 3286 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3287 #else 3288 #define sqlite3FkDelete(a,b) 3289 #define sqlite3FkLocateIndex(a,b,c,d,e) 3290 #endif 3291 3292 3293 /* 3294 ** Available fault injectors. Should be numbered beginning with 0. 3295 */ 3296 #define SQLITE_FAULTINJECTOR_MALLOC 0 3297 #define SQLITE_FAULTINJECTOR_COUNT 1 3298 3299 /* 3300 ** The interface to the code in fault.c used for identifying "benign" 3301 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3302 ** is not defined. 3303 */ 3304 #ifndef SQLITE_OMIT_BUILTIN_TEST 3305 void sqlite3BeginBenignMalloc(void); 3306 void sqlite3EndBenignMalloc(void); 3307 #else 3308 #define sqlite3BeginBenignMalloc() 3309 #define sqlite3EndBenignMalloc() 3310 #endif 3311 3312 #define IN_INDEX_ROWID 1 3313 #define IN_INDEX_EPH 2 3314 #define IN_INDEX_INDEX_ASC 3 3315 #define IN_INDEX_INDEX_DESC 4 3316 int sqlite3FindInIndex(Parse *, Expr *, int*); 3317 3318 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3319 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3320 int sqlite3JournalSize(sqlite3_vfs *); 3321 int sqlite3JournalCreate(sqlite3_file *); 3322 int sqlite3JournalExists(sqlite3_file *p); 3323 #else 3324 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3325 #define sqlite3JournalExists(p) 1 3326 #endif 3327 3328 void sqlite3MemJournalOpen(sqlite3_file *); 3329 int sqlite3MemJournalSize(void); 3330 int sqlite3IsMemJournal(sqlite3_file *); 3331 3332 #if SQLITE_MAX_EXPR_DEPTH>0 3333 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3334 int sqlite3SelectExprHeight(Select *); 3335 int sqlite3ExprCheckHeight(Parse*, int); 3336 #else 3337 #define sqlite3ExprSetHeight(x,y) 3338 #define sqlite3SelectExprHeight(x) 0 3339 #define sqlite3ExprCheckHeight(x,y) 3340 #endif 3341 3342 u32 sqlite3Get4byte(const u8*); 3343 void sqlite3Put4byte(u8*, u32); 3344 3345 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3346 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3347 void sqlite3ConnectionUnlocked(sqlite3 *db); 3348 void sqlite3ConnectionClosed(sqlite3 *db); 3349 #else 3350 #define sqlite3ConnectionBlocked(x,y) 3351 #define sqlite3ConnectionUnlocked(x) 3352 #define sqlite3ConnectionClosed(x) 3353 #endif 3354 3355 #ifdef SQLITE_DEBUG 3356 void sqlite3ParserTrace(FILE*, char *); 3357 #endif 3358 3359 /* 3360 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3361 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3362 ** print I/O tracing messages. 3363 */ 3364 #ifdef SQLITE_ENABLE_IOTRACE 3365 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3366 void sqlite3VdbeIOTraceSql(Vdbe*); 3367 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3368 #else 3369 # define IOTRACE(A) 3370 # define sqlite3VdbeIOTraceSql(X) 3371 #endif 3372 3373 /* 3374 ** These routines are available for the mem2.c debugging memory allocator 3375 ** only. They are used to verify that different "types" of memory 3376 ** allocations are properly tracked by the system. 3377 ** 3378 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3379 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3380 ** a single bit set. 3381 ** 3382 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3383 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3384 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3385 ** 3386 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3387 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3388 ** 3389 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3390 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3391 ** it might have been allocated by lookaside, except the allocation was 3392 ** too large or lookaside was already full. It is important to verify 3393 ** that allocations that might have been satisfied by lookaside are not 3394 ** passed back to non-lookaside free() routines. Asserts such as the 3395 ** example above are placed on the non-lookaside free() routines to verify 3396 ** this constraint. 3397 ** 3398 ** All of this is no-op for a production build. It only comes into 3399 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3400 */ 3401 #ifdef SQLITE_MEMDEBUG 3402 void sqlite3MemdebugSetType(void*,u8); 3403 int sqlite3MemdebugHasType(void*,u8); 3404 int sqlite3MemdebugNoType(void*,u8); 3405 #else 3406 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3407 # define sqlite3MemdebugHasType(X,Y) 1 3408 # define sqlite3MemdebugNoType(X,Y) 1 3409 #endif 3410 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3411 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3412 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3413 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3414 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3415 3416 #endif /* _SQLITEINT_H_ */ 3417