xref: /sqlite-3.40.0/src/sqliteInt.h (revision f2fcd075)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17 
18 /*
19 ** These #defines should enable >2GB file support on POSIX if the
20 ** underlying operating system supports it.  If the OS lacks
21 ** large file support, or if the OS is windows, these should be no-ops.
22 **
23 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
24 ** system #includes.  Hence, this block of code must be the very first
25 ** code in all source files.
26 **
27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
28 ** on the compiler command line.  This is necessary if you are compiling
29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
30 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
31 ** without this option, LFS is enable.  But LFS does not exist in the kernel
32 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
33 ** portability you should omit LFS.
34 **
35 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
36 */
37 #ifndef SQLITE_DISABLE_LFS
38 # define _LARGE_FILE       1
39 # ifndef _FILE_OFFSET_BITS
40 #   define _FILE_OFFSET_BITS 64
41 # endif
42 # define _LARGEFILE_SOURCE 1
43 #endif
44 
45 /*
46 ** Include the configuration header output by 'configure' if we're using the
47 ** autoconf-based build
48 */
49 #ifdef _HAVE_SQLITE_CONFIG_H
50 #include "config.h"
51 #endif
52 
53 #include "sqliteLimit.h"
54 
55 /* Disable nuisance warnings on Borland compilers */
56 #if defined(__BORLANDC__)
57 #pragma warn -rch /* unreachable code */
58 #pragma warn -ccc /* Condition is always true or false */
59 #pragma warn -aus /* Assigned value is never used */
60 #pragma warn -csu /* Comparing signed and unsigned */
61 #pragma warn -spa /* Suspicious pointer arithmetic */
62 #endif
63 
64 /* Needed for various definitions... */
65 #ifndef _GNU_SOURCE
66 # define _GNU_SOURCE
67 #endif
68 
69 /*
70 ** Include standard header files as necessary
71 */
72 #ifdef HAVE_STDINT_H
73 #include <stdint.h>
74 #endif
75 #ifdef HAVE_INTTYPES_H
76 #include <inttypes.h>
77 #endif
78 
79 /*
80 ** The number of samples of an index that SQLite takes in order to
81 ** construct a histogram of the table content when running ANALYZE
82 ** and with SQLITE_ENABLE_STAT2
83 */
84 #define SQLITE_INDEX_SAMPLES 10
85 
86 /*
87 ** The following macros are used to cast pointers to integers and
88 ** integers to pointers.  The way you do this varies from one compiler
89 ** to the next, so we have developed the following set of #if statements
90 ** to generate appropriate macros for a wide range of compilers.
91 **
92 ** The correct "ANSI" way to do this is to use the intptr_t type.
93 ** Unfortunately, that typedef is not available on all compilers, or
94 ** if it is available, it requires an #include of specific headers
95 ** that vary from one machine to the next.
96 **
97 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
98 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
99 ** So we have to define the macros in different ways depending on the
100 ** compiler.
101 */
102 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
103 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
104 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
105 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
106 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
107 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
108 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
109 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
110 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
111 #else                          /* Generates a warning - but it always works */
112 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
113 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
114 #endif
115 
116 /*
117 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
118 ** 0 means mutexes are permanently disable and the library is never
119 ** threadsafe.  1 means the library is serialized which is the highest
120 ** level of threadsafety.  2 means the libary is multithreaded - multiple
121 ** threads can use SQLite as long as no two threads try to use the same
122 ** database connection at the same time.
123 **
124 ** Older versions of SQLite used an optional THREADSAFE macro.
125 ** We support that for legacy.
126 */
127 #if !defined(SQLITE_THREADSAFE)
128 #if defined(THREADSAFE)
129 # define SQLITE_THREADSAFE THREADSAFE
130 #else
131 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
132 #endif
133 #endif
134 
135 /*
136 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
137 ** It determines whether or not the features related to
138 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
139 ** be overridden at runtime using the sqlite3_config() API.
140 */
141 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
142 # define SQLITE_DEFAULT_MEMSTATUS 1
143 #endif
144 
145 /*
146 ** Exactly one of the following macros must be defined in order to
147 ** specify which memory allocation subsystem to use.
148 **
149 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
150 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
151 **
152 ** (Historical note:  There used to be several other options, but we've
153 ** pared it down to just these two.)
154 **
155 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
156 ** the default.
157 */
158 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)>1
159 # error "At most one of the following compile-time configuration options\
160  is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG"
161 #endif
162 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)==0
163 # define SQLITE_SYSTEM_MALLOC 1
164 #endif
165 
166 /*
167 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
168 ** sizes of memory allocations below this value where possible.
169 */
170 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
171 # define SQLITE_MALLOC_SOFT_LIMIT 1024
172 #endif
173 
174 /*
175 ** We need to define _XOPEN_SOURCE as follows in order to enable
176 ** recursive mutexes on most Unix systems.  But Mac OS X is different.
177 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
178 ** so it is omitted there.  See ticket #2673.
179 **
180 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
181 ** implemented on some systems.  So we avoid defining it at all
182 ** if it is already defined or if it is unneeded because we are
183 ** not doing a threadsafe build.  Ticket #2681.
184 **
185 ** See also ticket #2741.
186 */
187 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
188 #  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
189 #endif
190 
191 /*
192 ** The TCL headers are only needed when compiling the TCL bindings.
193 */
194 #if defined(SQLITE_TCL) || defined(TCLSH)
195 # include <tcl.h>
196 #endif
197 
198 /*
199 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
200 ** Setting NDEBUG makes the code smaller and run faster.  So the following
201 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
202 ** option is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
203 ** feature.
204 */
205 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
206 # define NDEBUG 1
207 #endif
208 
209 /*
210 ** The testcase() macro is used to aid in coverage testing.  When
211 ** doing coverage testing, the condition inside the argument to
212 ** testcase() must be evaluated both true and false in order to
213 ** get full branch coverage.  The testcase() macro is inserted
214 ** to help ensure adequate test coverage in places where simple
215 ** condition/decision coverage is inadequate.  For example, testcase()
216 ** can be used to make sure boundary values are tested.  For
217 ** bitmask tests, testcase() can be used to make sure each bit
218 ** is significant and used at least once.  On switch statements
219 ** where multiple cases go to the same block of code, testcase()
220 ** can insure that all cases are evaluated.
221 **
222 */
223 #ifdef SQLITE_COVERAGE_TEST
224   void sqlite3Coverage(int);
225 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
226 #else
227 # define testcase(X)
228 #endif
229 
230 /*
231 ** The TESTONLY macro is used to enclose variable declarations or
232 ** other bits of code that are needed to support the arguments
233 ** within testcase() and assert() macros.
234 */
235 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
236 # define TESTONLY(X)  X
237 #else
238 # define TESTONLY(X)
239 #endif
240 
241 /*
242 ** Sometimes we need a small amount of code such as a variable initialization
243 ** to setup for a later assert() statement.  We do not want this code to
244 ** appear when assert() is disabled.  The following macro is therefore
245 ** used to contain that setup code.  The "VVA" acronym stands for
246 ** "Verification, Validation, and Accreditation".  In other words, the
247 ** code within VVA_ONLY() will only run during verification processes.
248 */
249 #ifndef NDEBUG
250 # define VVA_ONLY(X)  X
251 #else
252 # define VVA_ONLY(X)
253 #endif
254 
255 /*
256 ** The ALWAYS and NEVER macros surround boolean expressions which
257 ** are intended to always be true or false, respectively.  Such
258 ** expressions could be omitted from the code completely.  But they
259 ** are included in a few cases in order to enhance the resilience
260 ** of SQLite to unexpected behavior - to make the code "self-healing"
261 ** or "ductile" rather than being "brittle" and crashing at the first
262 ** hint of unplanned behavior.
263 **
264 ** In other words, ALWAYS and NEVER are added for defensive code.
265 **
266 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
267 ** be true and false so that the unreachable code then specify will
268 ** not be counted as untested code.
269 */
270 #if defined(SQLITE_COVERAGE_TEST)
271 # define ALWAYS(X)      (1)
272 # define NEVER(X)       (0)
273 #elif !defined(NDEBUG)
274 # define ALWAYS(X)      ((X)?1:(assert(0),0))
275 # define NEVER(X)       ((X)?(assert(0),1):0)
276 #else
277 # define ALWAYS(X)      (X)
278 # define NEVER(X)       (X)
279 #endif
280 
281 /*
282 ** Return true (non-zero) if the input is a integer that is too large
283 ** to fit in 32-bits.  This macro is used inside of various testcase()
284 ** macros to verify that we have tested SQLite for large-file support.
285 */
286 #define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
287 
288 /*
289 ** The macro unlikely() is a hint that surrounds a boolean
290 ** expression that is usually false.  Macro likely() surrounds
291 ** a boolean expression that is usually true.  GCC is able to
292 ** use these hints to generate better code, sometimes.
293 */
294 #if defined(__GNUC__) && 0
295 # define likely(X)    __builtin_expect((X),1)
296 # define unlikely(X)  __builtin_expect((X),0)
297 #else
298 # define likely(X)    !!(X)
299 # define unlikely(X)  !!(X)
300 #endif
301 
302 #include "sqlite3.h"
303 #include "hash.h"
304 #include "parse.h"
305 #include <stdio.h>
306 #include <stdlib.h>
307 #include <string.h>
308 #include <assert.h>
309 #include <stddef.h>
310 
311 /*
312 ** If compiling for a processor that lacks floating point support,
313 ** substitute integer for floating-point
314 */
315 #ifdef SQLITE_OMIT_FLOATING_POINT
316 # define double sqlite_int64
317 # define float sqlite_int64
318 # define LONGDOUBLE_TYPE sqlite_int64
319 # ifndef SQLITE_BIG_DBL
320 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
321 # endif
322 # define SQLITE_OMIT_DATETIME_FUNCS 1
323 # define SQLITE_OMIT_TRACE 1
324 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
325 # undef SQLITE_HAVE_ISNAN
326 #endif
327 #ifndef SQLITE_BIG_DBL
328 # define SQLITE_BIG_DBL (1e99)
329 #endif
330 
331 /*
332 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
333 ** afterward. Having this macro allows us to cause the C compiler
334 ** to omit code used by TEMP tables without messy #ifndef statements.
335 */
336 #ifdef SQLITE_OMIT_TEMPDB
337 #define OMIT_TEMPDB 1
338 #else
339 #define OMIT_TEMPDB 0
340 #endif
341 
342 /*
343 ** The "file format" number is an integer that is incremented whenever
344 ** the VDBE-level file format changes.  The following macros define the
345 ** the default file format for new databases and the maximum file format
346 ** that the library can read.
347 */
348 #define SQLITE_MAX_FILE_FORMAT 4
349 #ifndef SQLITE_DEFAULT_FILE_FORMAT
350 # define SQLITE_DEFAULT_FILE_FORMAT 1
351 #endif
352 
353 /*
354 ** Determine whether triggers are recursive by default.  This can be
355 ** changed at run-time using a pragma.
356 */
357 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
358 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
359 #endif
360 
361 /*
362 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
363 ** on the command-line
364 */
365 #ifndef SQLITE_TEMP_STORE
366 # define SQLITE_TEMP_STORE 1
367 #endif
368 
369 /*
370 ** GCC does not define the offsetof() macro so we'll have to do it
371 ** ourselves.
372 */
373 #ifndef offsetof
374 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
375 #endif
376 
377 /*
378 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
379 ** not, there are still machines out there that use EBCDIC.)
380 */
381 #if 'A' == '\301'
382 # define SQLITE_EBCDIC 1
383 #else
384 # define SQLITE_ASCII 1
385 #endif
386 
387 /*
388 ** Integers of known sizes.  These typedefs might change for architectures
389 ** where the sizes very.  Preprocessor macros are available so that the
390 ** types can be conveniently redefined at compile-type.  Like this:
391 **
392 **         cc '-DUINTPTR_TYPE=long long int' ...
393 */
394 #ifndef UINT32_TYPE
395 # ifdef HAVE_UINT32_T
396 #  define UINT32_TYPE uint32_t
397 # else
398 #  define UINT32_TYPE unsigned int
399 # endif
400 #endif
401 #ifndef UINT16_TYPE
402 # ifdef HAVE_UINT16_T
403 #  define UINT16_TYPE uint16_t
404 # else
405 #  define UINT16_TYPE unsigned short int
406 # endif
407 #endif
408 #ifndef INT16_TYPE
409 # ifdef HAVE_INT16_T
410 #  define INT16_TYPE int16_t
411 # else
412 #  define INT16_TYPE short int
413 # endif
414 #endif
415 #ifndef UINT8_TYPE
416 # ifdef HAVE_UINT8_T
417 #  define UINT8_TYPE uint8_t
418 # else
419 #  define UINT8_TYPE unsigned char
420 # endif
421 #endif
422 #ifndef INT8_TYPE
423 # ifdef HAVE_INT8_T
424 #  define INT8_TYPE int8_t
425 # else
426 #  define INT8_TYPE signed char
427 # endif
428 #endif
429 #ifndef LONGDOUBLE_TYPE
430 # define LONGDOUBLE_TYPE long double
431 #endif
432 typedef sqlite_int64 i64;          /* 8-byte signed integer */
433 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
434 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
435 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
436 typedef INT16_TYPE i16;            /* 2-byte signed integer */
437 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
438 typedef INT8_TYPE i8;              /* 1-byte signed integer */
439 
440 /*
441 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
442 ** that can be stored in a u32 without loss of data.  The value
443 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
444 ** have to specify the value in the less intuitive manner shown:
445 */
446 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
447 
448 /*
449 ** Macros to determine whether the machine is big or little endian,
450 ** evaluated at runtime.
451 */
452 #ifdef SQLITE_AMALGAMATION
453 const int sqlite3one = 1;
454 #else
455 extern const int sqlite3one;
456 #endif
457 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\
458                              || defined(__x86_64) || defined(__x86_64__)
459 # define SQLITE_BIGENDIAN    0
460 # define SQLITE_LITTLEENDIAN 1
461 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
462 #else
463 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
464 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
465 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
466 #endif
467 
468 /*
469 ** Constants for the largest and smallest possible 64-bit signed integers.
470 ** These macros are designed to work correctly on both 32-bit and 64-bit
471 ** compilers.
472 */
473 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
474 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
475 
476 /*
477 ** Round up a number to the next larger multiple of 8.  This is used
478 ** to force 8-byte alignment on 64-bit architectures.
479 */
480 #define ROUND8(x)     (((x)+7)&~7)
481 
482 /*
483 ** Round down to the nearest multiple of 8
484 */
485 #define ROUNDDOWN8(x) ((x)&~7)
486 
487 /*
488 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
489 ** macro is used only within assert() to verify that the code gets
490 ** all alignment restrictions correct.
491 **
492 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
493 ** underlying malloc() implemention might return us 4-byte aligned
494 ** pointers.  In that case, only verify 4-byte alignment.
495 */
496 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
497 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
498 #else
499 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
500 #endif
501 
502 
503 /*
504 ** An instance of the following structure is used to store the busy-handler
505 ** callback for a given sqlite handle.
506 **
507 ** The sqlite.busyHandler member of the sqlite struct contains the busy
508 ** callback for the database handle. Each pager opened via the sqlite
509 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
510 ** callback is currently invoked only from within pager.c.
511 */
512 typedef struct BusyHandler BusyHandler;
513 struct BusyHandler {
514   int (*xFunc)(void *,int);  /* The busy callback */
515   void *pArg;                /* First arg to busy callback */
516   int nBusy;                 /* Incremented with each busy call */
517 };
518 
519 /*
520 ** Name of the master database table.  The master database table
521 ** is a special table that holds the names and attributes of all
522 ** user tables and indices.
523 */
524 #define MASTER_NAME       "sqlite_master"
525 #define TEMP_MASTER_NAME  "sqlite_temp_master"
526 
527 /*
528 ** The root-page of the master database table.
529 */
530 #define MASTER_ROOT       1
531 
532 /*
533 ** The name of the schema table.
534 */
535 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
536 
537 /*
538 ** A convenience macro that returns the number of elements in
539 ** an array.
540 */
541 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
542 
543 /*
544 ** The following value as a destructor means to use sqlite3DbFree().
545 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
546 */
547 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3DbFree)
548 
549 /*
550 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
551 ** not support Writable Static Data (WSD) such as global and static variables.
552 ** All variables must either be on the stack or dynamically allocated from
553 ** the heap.  When WSD is unsupported, the variable declarations scattered
554 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
555 ** macro is used for this purpose.  And instead of referencing the variable
556 ** directly, we use its constant as a key to lookup the run-time allocated
557 ** buffer that holds real variable.  The constant is also the initializer
558 ** for the run-time allocated buffer.
559 **
560 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
561 ** macros become no-ops and have zero performance impact.
562 */
563 #ifdef SQLITE_OMIT_WSD
564   #define SQLITE_WSD const
565   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
566   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
567   int sqlite3_wsd_init(int N, int J);
568   void *sqlite3_wsd_find(void *K, int L);
569 #else
570   #define SQLITE_WSD
571   #define GLOBAL(t,v) v
572   #define sqlite3GlobalConfig sqlite3Config
573 #endif
574 
575 /*
576 ** The following macros are used to suppress compiler warnings and to
577 ** make it clear to human readers when a function parameter is deliberately
578 ** left unused within the body of a function. This usually happens when
579 ** a function is called via a function pointer. For example the
580 ** implementation of an SQL aggregate step callback may not use the
581 ** parameter indicating the number of arguments passed to the aggregate,
582 ** if it knows that this is enforced elsewhere.
583 **
584 ** When a function parameter is not used at all within the body of a function,
585 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
586 ** However, these macros may also be used to suppress warnings related to
587 ** parameters that may or may not be used depending on compilation options.
588 ** For example those parameters only used in assert() statements. In these
589 ** cases the parameters are named as per the usual conventions.
590 */
591 #define UNUSED_PARAMETER(x) (void)(x)
592 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
593 
594 /*
595 ** Forward references to structures
596 */
597 typedef struct AggInfo AggInfo;
598 typedef struct AuthContext AuthContext;
599 typedef struct AutoincInfo AutoincInfo;
600 typedef struct Bitvec Bitvec;
601 typedef struct CollSeq CollSeq;
602 typedef struct Column Column;
603 typedef struct Db Db;
604 typedef struct Schema Schema;
605 typedef struct Expr Expr;
606 typedef struct ExprList ExprList;
607 typedef struct ExprSpan ExprSpan;
608 typedef struct FKey FKey;
609 typedef struct FuncDestructor FuncDestructor;
610 typedef struct FuncDef FuncDef;
611 typedef struct FuncDefHash FuncDefHash;
612 typedef struct IdList IdList;
613 typedef struct Index Index;
614 typedef struct IndexSample IndexSample;
615 typedef struct KeyClass KeyClass;
616 typedef struct KeyInfo KeyInfo;
617 typedef struct Lookaside Lookaside;
618 typedef struct LookasideSlot LookasideSlot;
619 typedef struct Module Module;
620 typedef struct NameContext NameContext;
621 typedef struct Parse Parse;
622 typedef struct RowSet RowSet;
623 typedef struct Savepoint Savepoint;
624 typedef struct Select Select;
625 typedef struct SrcList SrcList;
626 typedef struct StrAccum StrAccum;
627 typedef struct Table Table;
628 typedef struct TableLock TableLock;
629 typedef struct Token Token;
630 typedef struct Trigger Trigger;
631 typedef struct TriggerPrg TriggerPrg;
632 typedef struct TriggerStep TriggerStep;
633 typedef struct UnpackedRecord UnpackedRecord;
634 typedef struct VTable VTable;
635 typedef struct Walker Walker;
636 typedef struct WherePlan WherePlan;
637 typedef struct WhereInfo WhereInfo;
638 typedef struct WhereLevel WhereLevel;
639 
640 /*
641 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
642 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
643 ** pointer types (i.e. FuncDef) defined above.
644 */
645 #include "btree.h"
646 #include "vdbe.h"
647 #include "pager.h"
648 #include "pcache.h"
649 
650 #include "os.h"
651 #include "mutex.h"
652 
653 
654 /*
655 ** Each database file to be accessed by the system is an instance
656 ** of the following structure.  There are normally two of these structures
657 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
658 ** aDb[1] is the database file used to hold temporary tables.  Additional
659 ** databases may be attached.
660 */
661 struct Db {
662   char *zName;         /* Name of this database */
663   Btree *pBt;          /* The B*Tree structure for this database file */
664   u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
665   u8 safety_level;     /* How aggressive at syncing data to disk */
666   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
667 };
668 
669 /*
670 ** An instance of the following structure stores a database schema.
671 */
672 struct Schema {
673   int schema_cookie;   /* Database schema version number for this file */
674   Hash tblHash;        /* All tables indexed by name */
675   Hash idxHash;        /* All (named) indices indexed by name */
676   Hash trigHash;       /* All triggers indexed by name */
677   Hash fkeyHash;       /* All foreign keys by referenced table name */
678   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
679   u8 file_format;      /* Schema format version for this file */
680   u8 enc;              /* Text encoding used by this database */
681   u16 flags;           /* Flags associated with this schema */
682   int cache_size;      /* Number of pages to use in the cache */
683 };
684 
685 /*
686 ** These macros can be used to test, set, or clear bits in the
687 ** Db.pSchema->flags field.
688 */
689 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
690 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
691 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
692 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)
693 
694 /*
695 ** Allowed values for the DB.pSchema->flags field.
696 **
697 ** The DB_SchemaLoaded flag is set after the database schema has been
698 ** read into internal hash tables.
699 **
700 ** DB_UnresetViews means that one or more views have column names that
701 ** have been filled out.  If the schema changes, these column names might
702 ** changes and so the view will need to be reset.
703 */
704 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
705 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
706 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
707 
708 /*
709 ** The number of different kinds of things that can be limited
710 ** using the sqlite3_limit() interface.
711 */
712 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1)
713 
714 /*
715 ** Lookaside malloc is a set of fixed-size buffers that can be used
716 ** to satisfy small transient memory allocation requests for objects
717 ** associated with a particular database connection.  The use of
718 ** lookaside malloc provides a significant performance enhancement
719 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
720 ** SQL statements.
721 **
722 ** The Lookaside structure holds configuration information about the
723 ** lookaside malloc subsystem.  Each available memory allocation in
724 ** the lookaside subsystem is stored on a linked list of LookasideSlot
725 ** objects.
726 **
727 ** Lookaside allocations are only allowed for objects that are associated
728 ** with a particular database connection.  Hence, schema information cannot
729 ** be stored in lookaside because in shared cache mode the schema information
730 ** is shared by multiple database connections.  Therefore, while parsing
731 ** schema information, the Lookaside.bEnabled flag is cleared so that
732 ** lookaside allocations are not used to construct the schema objects.
733 */
734 struct Lookaside {
735   u16 sz;                 /* Size of each buffer in bytes */
736   u8 bEnabled;            /* False to disable new lookaside allocations */
737   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
738   int nOut;               /* Number of buffers currently checked out */
739   int mxOut;              /* Highwater mark for nOut */
740   LookasideSlot *pFree;   /* List of available buffers */
741   void *pStart;           /* First byte of available memory space */
742   void *pEnd;             /* First byte past end of available space */
743 };
744 struct LookasideSlot {
745   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
746 };
747 
748 /*
749 ** A hash table for function definitions.
750 **
751 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
752 ** Collisions are on the FuncDef.pHash chain.
753 */
754 struct FuncDefHash {
755   FuncDef *a[23];       /* Hash table for functions */
756 };
757 
758 /*
759 ** Each database connection is an instance of the following structure.
760 **
761 ** The sqlite.lastRowid records the last insert rowid generated by an
762 ** insert statement.  Inserts on views do not affect its value.  Each
763 ** trigger has its own context, so that lastRowid can be updated inside
764 ** triggers as usual.  The previous value will be restored once the trigger
765 ** exits.  Upon entering a before or instead of trigger, lastRowid is no
766 ** longer (since after version 2.8.12) reset to -1.
767 **
768 ** The sqlite.nChange does not count changes within triggers and keeps no
769 ** context.  It is reset at start of sqlite3_exec.
770 ** The sqlite.lsChange represents the number of changes made by the last
771 ** insert, update, or delete statement.  It remains constant throughout the
772 ** length of a statement and is then updated by OP_SetCounts.  It keeps a
773 ** context stack just like lastRowid so that the count of changes
774 ** within a trigger is not seen outside the trigger.  Changes to views do not
775 ** affect the value of lsChange.
776 ** The sqlite.csChange keeps track of the number of current changes (since
777 ** the last statement) and is used to update sqlite_lsChange.
778 **
779 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
780 ** store the most recent error code and, if applicable, string. The
781 ** internal function sqlite3Error() is used to set these variables
782 ** consistently.
783 */
784 struct sqlite3 {
785   sqlite3_vfs *pVfs;            /* OS Interface */
786   int nDb;                      /* Number of backends currently in use */
787   Db *aDb;                      /* All backends */
788   int flags;                    /* Miscellaneous flags. See below */
789   int openFlags;                /* Flags passed to sqlite3_vfs.xOpen() */
790   int errCode;                  /* Most recent error code (SQLITE_*) */
791   int errMask;                  /* & result codes with this before returning */
792   u8 autoCommit;                /* The auto-commit flag. */
793   u8 temp_store;                /* 1: file 2: memory 0: default */
794   u8 mallocFailed;              /* True if we have seen a malloc failure */
795   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
796   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
797   u8 suppressErr;               /* Do not issue error messages if true */
798   int nextPagesize;             /* Pagesize after VACUUM if >0 */
799   int nTable;                   /* Number of tables in the database */
800   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
801   i64 lastRowid;                /* ROWID of most recent insert (see above) */
802   u32 magic;                    /* Magic number for detect library misuse */
803   int nChange;                  /* Value returned by sqlite3_changes() */
804   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
805   sqlite3_mutex *mutex;         /* Connection mutex */
806   int aLimit[SQLITE_N_LIMIT];   /* Limits */
807   struct sqlite3InitInfo {      /* Information used during initialization */
808     int iDb;                    /* When back is being initialized */
809     int newTnum;                /* Rootpage of table being initialized */
810     u8 busy;                    /* TRUE if currently initializing */
811     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
812   } init;
813   int nExtension;               /* Number of loaded extensions */
814   void **aExtension;            /* Array of shared library handles */
815   struct Vdbe *pVdbe;           /* List of active virtual machines */
816   int activeVdbeCnt;            /* Number of VDBEs currently executing */
817   int writeVdbeCnt;             /* Number of active VDBEs that are writing */
818   void (*xTrace)(void*,const char*);        /* Trace function */
819   void *pTraceArg;                          /* Argument to the trace function */
820   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
821   void *pProfileArg;                        /* Argument to profile function */
822   void *pCommitArg;                 /* Argument to xCommitCallback() */
823   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
824   void *pRollbackArg;               /* Argument to xRollbackCallback() */
825   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
826   void *pUpdateArg;
827   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
828 #ifndef SQLITE_OMIT_WAL
829   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
830   void *pWalArg;
831 #endif
832   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
833   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
834   void *pCollNeededArg;
835   sqlite3_value *pErr;          /* Most recent error message */
836   char *zErrMsg;                /* Most recent error message (UTF-8 encoded) */
837   char *zErrMsg16;              /* Most recent error message (UTF-16 encoded) */
838   union {
839     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
840     double notUsed1;            /* Spacer */
841   } u1;
842   Lookaside lookaside;          /* Lookaside malloc configuration */
843 #ifndef SQLITE_OMIT_AUTHORIZATION
844   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
845                                 /* Access authorization function */
846   void *pAuthArg;               /* 1st argument to the access auth function */
847 #endif
848 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
849   int (*xProgress)(void *);     /* The progress callback */
850   void *pProgressArg;           /* Argument to the progress callback */
851   int nProgressOps;             /* Number of opcodes for progress callback */
852 #endif
853 #ifndef SQLITE_OMIT_VIRTUALTABLE
854   Hash aModule;                 /* populated by sqlite3_create_module() */
855   Table *pVTab;                 /* vtab with active Connect/Create method */
856   VTable **aVTrans;             /* Virtual tables with open transactions */
857   int nVTrans;                  /* Allocated size of aVTrans */
858   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
859 #endif
860   FuncDefHash aFunc;            /* Hash table of connection functions */
861   Hash aCollSeq;                /* All collating sequences */
862   BusyHandler busyHandler;      /* Busy callback */
863   int busyTimeout;              /* Busy handler timeout, in msec */
864   Db aDbStatic[2];              /* Static space for the 2 default backends */
865   Savepoint *pSavepoint;        /* List of active savepoints */
866   int nSavepoint;               /* Number of non-transaction savepoints */
867   int nStatement;               /* Number of nested statement-transactions  */
868   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
869   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
870   int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
871 
872 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
873   /* The following variables are all protected by the STATIC_MASTER
874   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
875   **
876   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
877   ** unlock so that it can proceed.
878   **
879   ** When X.pBlockingConnection==Y, that means that something that X tried
880   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
881   ** held by Y.
882   */
883   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
884   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
885   void *pUnlockArg;                     /* Argument to xUnlockNotify */
886   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
887   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
888 #endif
889 };
890 
891 /*
892 ** A macro to discover the encoding of a database.
893 */
894 #define ENC(db) ((db)->aDb[0].pSchema->enc)
895 
896 /*
897 ** Possible values for the sqlite3.flags.
898 */
899 #define SQLITE_VdbeTrace      0x00000100  /* True to trace VDBE execution */
900 #define SQLITE_InternChanges  0x00000200  /* Uncommitted Hash table changes */
901 #define SQLITE_FullColNames   0x00000400  /* Show full column names on SELECT */
902 #define SQLITE_ShortColNames  0x00000800  /* Show short columns names */
903 #define SQLITE_CountRows      0x00001000  /* Count rows changed by INSERT, */
904                                           /*   DELETE, or UPDATE and return */
905                                           /*   the count using a callback. */
906 #define SQLITE_NullCallback   0x00002000  /* Invoke the callback once if the */
907                                           /*   result set is empty */
908 #define SQLITE_SqlTrace       0x00004000  /* Debug print SQL as it executes */
909 #define SQLITE_VdbeListing    0x00008000  /* Debug listings of VDBE programs */
910 #define SQLITE_WriteSchema    0x00010000  /* OK to update SQLITE_MASTER */
911 #define SQLITE_NoReadlock     0x00020000  /* Readlocks are omitted when
912                                           ** accessing read-only databases */
913 #define SQLITE_IgnoreChecks   0x00040000  /* Do not enforce check constraints */
914 #define SQLITE_ReadUncommitted 0x0080000  /* For shared-cache mode */
915 #define SQLITE_LegacyFileFmt  0x00100000  /* Create new databases in format 1 */
916 #define SQLITE_FullFSync      0x00200000  /* Use full fsync on the backend */
917 #define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
918 #define SQLITE_RecoveryMode   0x00800000  /* Ignore schema errors */
919 #define SQLITE_ReverseOrder   0x01000000  /* Reverse unordered SELECTs */
920 #define SQLITE_RecTriggers    0x02000000  /* Enable recursive triggers */
921 #define SQLITE_ForeignKeys    0x04000000  /* Enforce foreign key constraints  */
922 #define SQLITE_AutoIndex      0x08000000  /* Enable automatic indexes */
923 #define SQLITE_PreferBuiltin  0x10000000  /* Preference to built-in funcs */
924 
925 /*
926 ** Bits of the sqlite3.flags field that are used by the
927 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface.
928 ** These must be the low-order bits of the flags field.
929 */
930 #define SQLITE_QueryFlattener 0x01        /* Disable query flattening */
931 #define SQLITE_ColumnCache    0x02        /* Disable the column cache */
932 #define SQLITE_IndexSort      0x04        /* Disable indexes for sorting */
933 #define SQLITE_IndexSearch    0x08        /* Disable indexes for searching */
934 #define SQLITE_IndexCover     0x10        /* Disable index covering table */
935 #define SQLITE_GroupByOrder   0x20        /* Disable GROUPBY cover of ORDERBY */
936 #define SQLITE_OptMask        0xff        /* Mask of all disablable opts */
937 
938 /*
939 ** Possible values for the sqlite.magic field.
940 ** The numbers are obtained at random and have no special meaning, other
941 ** than being distinct from one another.
942 */
943 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
944 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
945 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
946 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
947 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
948 
949 /*
950 ** Each SQL function is defined by an instance of the following
951 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
952 ** hash table.  When multiple functions have the same name, the hash table
953 ** points to a linked list of these structures.
954 */
955 struct FuncDef {
956   i16 nArg;            /* Number of arguments.  -1 means unlimited */
957   u8 iPrefEnc;         /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
958   u8 flags;            /* Some combination of SQLITE_FUNC_* */
959   void *pUserData;     /* User data parameter */
960   FuncDef *pNext;      /* Next function with same name */
961   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
962   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
963   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
964   char *zName;         /* SQL name of the function. */
965   FuncDef *pHash;      /* Next with a different name but the same hash */
966   FuncDestructor *pDestructor;   /* Reference counted destructor function */
967 };
968 
969 /*
970 ** This structure encapsulates a user-function destructor callback (as
971 ** configured using create_function_v2()) and a reference counter. When
972 ** create_function_v2() is called to create a function with a destructor,
973 ** a single object of this type is allocated. FuncDestructor.nRef is set to
974 ** the number of FuncDef objects created (either 1 or 3, depending on whether
975 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
976 ** member of each of the new FuncDef objects is set to point to the allocated
977 ** FuncDestructor.
978 **
979 ** Thereafter, when one of the FuncDef objects is deleted, the reference
980 ** count on this object is decremented. When it reaches 0, the destructor
981 ** is invoked and the FuncDestructor structure freed.
982 */
983 struct FuncDestructor {
984   int nRef;
985   void (*xDestroy)(void *);
986   void *pUserData;
987 };
988 
989 /*
990 ** Possible values for FuncDef.flags
991 */
992 #define SQLITE_FUNC_LIKE     0x01 /* Candidate for the LIKE optimization */
993 #define SQLITE_FUNC_CASE     0x02 /* Case-sensitive LIKE-type function */
994 #define SQLITE_FUNC_EPHEM    0x04 /* Ephemeral.  Delete with VDBE */
995 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
996 #define SQLITE_FUNC_PRIVATE  0x10 /* Allowed for internal use only */
997 #define SQLITE_FUNC_COUNT    0x20 /* Built-in count(*) aggregate */
998 #define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */
999 
1000 /*
1001 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1002 ** used to create the initializers for the FuncDef structures.
1003 **
1004 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
1005 **     Used to create a scalar function definition of a function zName
1006 **     implemented by C function xFunc that accepts nArg arguments. The
1007 **     value passed as iArg is cast to a (void*) and made available
1008 **     as the user-data (sqlite3_user_data()) for the function. If
1009 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1010 **
1011 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1012 **     Used to create an aggregate function definition implemented by
1013 **     the C functions xStep and xFinal. The first four parameters
1014 **     are interpreted in the same way as the first 4 parameters to
1015 **     FUNCTION().
1016 **
1017 **   LIKEFUNC(zName, nArg, pArg, flags)
1018 **     Used to create a scalar function definition of a function zName
1019 **     that accepts nArg arguments and is implemented by a call to C
1020 **     function likeFunc. Argument pArg is cast to a (void *) and made
1021 **     available as the function user-data (sqlite3_user_data()). The
1022 **     FuncDef.flags variable is set to the value passed as the flags
1023 **     parameter.
1024 */
1025 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1026   {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
1027    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0}
1028 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1029   {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
1030    pArg, 0, xFunc, 0, 0, #zName, 0}
1031 #define LIKEFUNC(zName, nArg, arg, flags) \
1032   {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0}
1033 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1034   {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
1035    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0}
1036 
1037 /*
1038 ** All current savepoints are stored in a linked list starting at
1039 ** sqlite3.pSavepoint. The first element in the list is the most recently
1040 ** opened savepoint. Savepoints are added to the list by the vdbe
1041 ** OP_Savepoint instruction.
1042 */
1043 struct Savepoint {
1044   char *zName;                        /* Savepoint name (nul-terminated) */
1045   i64 nDeferredCons;                  /* Number of deferred fk violations */
1046   Savepoint *pNext;                   /* Parent savepoint (if any) */
1047 };
1048 
1049 /*
1050 ** The following are used as the second parameter to sqlite3Savepoint(),
1051 ** and as the P1 argument to the OP_Savepoint instruction.
1052 */
1053 #define SAVEPOINT_BEGIN      0
1054 #define SAVEPOINT_RELEASE    1
1055 #define SAVEPOINT_ROLLBACK   2
1056 
1057 
1058 /*
1059 ** Each SQLite module (virtual table definition) is defined by an
1060 ** instance of the following structure, stored in the sqlite3.aModule
1061 ** hash table.
1062 */
1063 struct Module {
1064   const sqlite3_module *pModule;       /* Callback pointers */
1065   const char *zName;                   /* Name passed to create_module() */
1066   void *pAux;                          /* pAux passed to create_module() */
1067   void (*xDestroy)(void *);            /* Module destructor function */
1068 };
1069 
1070 /*
1071 ** information about each column of an SQL table is held in an instance
1072 ** of this structure.
1073 */
1074 struct Column {
1075   char *zName;     /* Name of this column */
1076   Expr *pDflt;     /* Default value of this column */
1077   char *zDflt;     /* Original text of the default value */
1078   char *zType;     /* Data type for this column */
1079   char *zColl;     /* Collating sequence.  If NULL, use the default */
1080   u8 notNull;      /* True if there is a NOT NULL constraint */
1081   u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
1082   char affinity;   /* One of the SQLITE_AFF_... values */
1083 #ifndef SQLITE_OMIT_VIRTUALTABLE
1084   u8 isHidden;     /* True if this column is 'hidden' */
1085 #endif
1086 };
1087 
1088 /*
1089 ** A "Collating Sequence" is defined by an instance of the following
1090 ** structure. Conceptually, a collating sequence consists of a name and
1091 ** a comparison routine that defines the order of that sequence.
1092 **
1093 ** There may two separate implementations of the collation function, one
1094 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
1095 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
1096 ** native byte order. When a collation sequence is invoked, SQLite selects
1097 ** the version that will require the least expensive encoding
1098 ** translations, if any.
1099 **
1100 ** The CollSeq.pUser member variable is an extra parameter that passed in
1101 ** as the first argument to the UTF-8 comparison function, xCmp.
1102 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
1103 ** xCmp16.
1104 **
1105 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
1106 ** collating sequence is undefined.  Indices built on an undefined
1107 ** collating sequence may not be read or written.
1108 */
1109 struct CollSeq {
1110   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1111   u8 enc;               /* Text encoding handled by xCmp() */
1112   u8 type;              /* One of the SQLITE_COLL_... values below */
1113   void *pUser;          /* First argument to xCmp() */
1114   int (*xCmp)(void*,int, const void*, int, const void*);
1115   void (*xDel)(void*);  /* Destructor for pUser */
1116 };
1117 
1118 /*
1119 ** Allowed values of CollSeq.type:
1120 */
1121 #define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
1122 #define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
1123 #define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
1124 #define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */
1125 
1126 /*
1127 ** A sort order can be either ASC or DESC.
1128 */
1129 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1130 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1131 
1132 /*
1133 ** Column affinity types.
1134 **
1135 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1136 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1137 ** the speed a little by numbering the values consecutively.
1138 **
1139 ** But rather than start with 0 or 1, we begin with 'a'.  That way,
1140 ** when multiple affinity types are concatenated into a string and
1141 ** used as the P4 operand, they will be more readable.
1142 **
1143 ** Note also that the numeric types are grouped together so that testing
1144 ** for a numeric type is a single comparison.
1145 */
1146 #define SQLITE_AFF_TEXT     'a'
1147 #define SQLITE_AFF_NONE     'b'
1148 #define SQLITE_AFF_NUMERIC  'c'
1149 #define SQLITE_AFF_INTEGER  'd'
1150 #define SQLITE_AFF_REAL     'e'
1151 
1152 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1153 
1154 /*
1155 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1156 ** affinity value.
1157 */
1158 #define SQLITE_AFF_MASK     0x67
1159 
1160 /*
1161 ** Additional bit values that can be ORed with an affinity without
1162 ** changing the affinity.
1163 */
1164 #define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
1165 #define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
1166 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1167 
1168 /*
1169 ** An object of this type is created for each virtual table present in
1170 ** the database schema.
1171 **
1172 ** If the database schema is shared, then there is one instance of this
1173 ** structure for each database connection (sqlite3*) that uses the shared
1174 ** schema. This is because each database connection requires its own unique
1175 ** instance of the sqlite3_vtab* handle used to access the virtual table
1176 ** implementation. sqlite3_vtab* handles can not be shared between
1177 ** database connections, even when the rest of the in-memory database
1178 ** schema is shared, as the implementation often stores the database
1179 ** connection handle passed to it via the xConnect() or xCreate() method
1180 ** during initialization internally. This database connection handle may
1181 ** then used by the virtual table implementation to access real tables
1182 ** within the database. So that they appear as part of the callers
1183 ** transaction, these accesses need to be made via the same database
1184 ** connection as that used to execute SQL operations on the virtual table.
1185 **
1186 ** All VTable objects that correspond to a single table in a shared
1187 ** database schema are initially stored in a linked-list pointed to by
1188 ** the Table.pVTable member variable of the corresponding Table object.
1189 ** When an sqlite3_prepare() operation is required to access the virtual
1190 ** table, it searches the list for the VTable that corresponds to the
1191 ** database connection doing the preparing so as to use the correct
1192 ** sqlite3_vtab* handle in the compiled query.
1193 **
1194 ** When an in-memory Table object is deleted (for example when the
1195 ** schema is being reloaded for some reason), the VTable objects are not
1196 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1197 ** immediately. Instead, they are moved from the Table.pVTable list to
1198 ** another linked list headed by the sqlite3.pDisconnect member of the
1199 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1200 ** next time a statement is prepared using said sqlite3*. This is done
1201 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1202 ** Refer to comments above function sqlite3VtabUnlockList() for an
1203 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1204 ** list without holding the corresponding sqlite3.mutex mutex.
1205 **
1206 ** The memory for objects of this type is always allocated by
1207 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1208 ** the first argument.
1209 */
1210 struct VTable {
1211   sqlite3 *db;              /* Database connection associated with this table */
1212   Module *pMod;             /* Pointer to module implementation */
1213   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1214   int nRef;                 /* Number of pointers to this structure */
1215   VTable *pNext;            /* Next in linked list (see above) */
1216 };
1217 
1218 /*
1219 ** Each SQL table is represented in memory by an instance of the
1220 ** following structure.
1221 **
1222 ** Table.zName is the name of the table.  The case of the original
1223 ** CREATE TABLE statement is stored, but case is not significant for
1224 ** comparisons.
1225 **
1226 ** Table.nCol is the number of columns in this table.  Table.aCol is a
1227 ** pointer to an array of Column structures, one for each column.
1228 **
1229 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
1230 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
1231 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
1232 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
1233 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
1234 ** is generated for each row of the table.  TF_HasPrimaryKey is set if
1235 ** the table has any PRIMARY KEY, INTEGER or otherwise.
1236 **
1237 ** Table.tnum is the page number for the root BTree page of the table in the
1238 ** database file.  If Table.iDb is the index of the database table backend
1239 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
1240 ** holds temporary tables and indices.  If TF_Ephemeral is set
1241 ** then the table is stored in a file that is automatically deleted
1242 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
1243 ** refers VDBE cursor number that holds the table open, not to the root
1244 ** page number.  Transient tables are used to hold the results of a
1245 ** sub-query that appears instead of a real table name in the FROM clause
1246 ** of a SELECT statement.
1247 */
1248 struct Table {
1249   char *zName;         /* Name of the table or view */
1250   int iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
1251   int nCol;            /* Number of columns in this table */
1252   Column *aCol;        /* Information about each column */
1253   Index *pIndex;       /* List of SQL indexes on this table. */
1254   int tnum;            /* Root BTree node for this table (see note above) */
1255   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1256   u16 nRef;            /* Number of pointers to this Table */
1257   u8 tabFlags;         /* Mask of TF_* values */
1258   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1259   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1260   char *zColAff;       /* String defining the affinity of each column */
1261 #ifndef SQLITE_OMIT_CHECK
1262   Expr *pCheck;        /* The AND of all CHECK constraints */
1263 #endif
1264 #ifndef SQLITE_OMIT_ALTERTABLE
1265   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1266 #endif
1267 #ifndef SQLITE_OMIT_VIRTUALTABLE
1268   VTable *pVTable;     /* List of VTable objects. */
1269   int nModuleArg;      /* Number of arguments to the module */
1270   char **azModuleArg;  /* Text of all module args. [0] is module name */
1271 #endif
1272   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1273   Schema *pSchema;     /* Schema that contains this table */
1274   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1275 };
1276 
1277 /*
1278 ** Allowed values for Tabe.tabFlags.
1279 */
1280 #define TF_Readonly        0x01    /* Read-only system table */
1281 #define TF_Ephemeral       0x02    /* An ephemeral table */
1282 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1283 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1284 #define TF_Virtual         0x10    /* Is a virtual table */
1285 #define TF_NeedMetadata    0x20    /* aCol[].zType and aCol[].pColl missing */
1286 
1287 
1288 
1289 /*
1290 ** Test to see whether or not a table is a virtual table.  This is
1291 ** done as a macro so that it will be optimized out when virtual
1292 ** table support is omitted from the build.
1293 */
1294 #ifndef SQLITE_OMIT_VIRTUALTABLE
1295 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1296 #  define IsHiddenColumn(X) ((X)->isHidden)
1297 #else
1298 #  define IsVirtual(X)      0
1299 #  define IsHiddenColumn(X) 0
1300 #endif
1301 
1302 /*
1303 ** Each foreign key constraint is an instance of the following structure.
1304 **
1305 ** A foreign key is associated with two tables.  The "from" table is
1306 ** the table that contains the REFERENCES clause that creates the foreign
1307 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1308 ** Consider this example:
1309 **
1310 **     CREATE TABLE ex1(
1311 **       a INTEGER PRIMARY KEY,
1312 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1313 **     );
1314 **
1315 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1316 **
1317 ** Each REFERENCES clause generates an instance of the following structure
1318 ** which is attached to the from-table.  The to-table need not exist when
1319 ** the from-table is created.  The existence of the to-table is not checked.
1320 */
1321 struct FKey {
1322   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1323   FKey *pNextFrom;  /* Next foreign key in pFrom */
1324   char *zTo;        /* Name of table that the key points to (aka: Parent) */
1325   FKey *pNextTo;    /* Next foreign key on table named zTo */
1326   FKey *pPrevTo;    /* Previous foreign key on table named zTo */
1327   int nCol;         /* Number of columns in this key */
1328   /* EV: R-30323-21917 */
1329   u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
1330   u8 aAction[2];          /* ON DELETE and ON UPDATE actions, respectively */
1331   Trigger *apTrigger[2];  /* Triggers for aAction[] actions */
1332   struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
1333     int iFrom;         /* Index of column in pFrom */
1334     char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
1335   } aCol[1];        /* One entry for each of nCol column s */
1336 };
1337 
1338 /*
1339 ** SQLite supports many different ways to resolve a constraint
1340 ** error.  ROLLBACK processing means that a constraint violation
1341 ** causes the operation in process to fail and for the current transaction
1342 ** to be rolled back.  ABORT processing means the operation in process
1343 ** fails and any prior changes from that one operation are backed out,
1344 ** but the transaction is not rolled back.  FAIL processing means that
1345 ** the operation in progress stops and returns an error code.  But prior
1346 ** changes due to the same operation are not backed out and no rollback
1347 ** occurs.  IGNORE means that the particular row that caused the constraint
1348 ** error is not inserted or updated.  Processing continues and no error
1349 ** is returned.  REPLACE means that preexisting database rows that caused
1350 ** a UNIQUE constraint violation are removed so that the new insert or
1351 ** update can proceed.  Processing continues and no error is reported.
1352 **
1353 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1354 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1355 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1356 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1357 ** referenced table row is propagated into the row that holds the
1358 ** foreign key.
1359 **
1360 ** The following symbolic values are used to record which type
1361 ** of action to take.
1362 */
1363 #define OE_None     0   /* There is no constraint to check */
1364 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1365 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1366 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1367 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1368 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1369 
1370 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1371 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1372 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1373 #define OE_Cascade  9   /* Cascade the changes */
1374 
1375 #define OE_Default  99  /* Do whatever the default action is */
1376 
1377 
1378 /*
1379 ** An instance of the following structure is passed as the first
1380 ** argument to sqlite3VdbeKeyCompare and is used to control the
1381 ** comparison of the two index keys.
1382 */
1383 struct KeyInfo {
1384   sqlite3 *db;        /* The database connection */
1385   u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
1386   u16 nField;         /* Number of entries in aColl[] */
1387   u8 *aSortOrder;     /* Sort order for each column.  May be NULL */
1388   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1389 };
1390 
1391 /*
1392 ** An instance of the following structure holds information about a
1393 ** single index record that has already been parsed out into individual
1394 ** values.
1395 **
1396 ** A record is an object that contains one or more fields of data.
1397 ** Records are used to store the content of a table row and to store
1398 ** the key of an index.  A blob encoding of a record is created by
1399 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1400 ** OP_Column opcode.
1401 **
1402 ** This structure holds a record that has already been disassembled
1403 ** into its constituent fields.
1404 */
1405 struct UnpackedRecord {
1406   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1407   u16 nField;         /* Number of entries in apMem[] */
1408   u16 flags;          /* Boolean settings.  UNPACKED_... below */
1409   i64 rowid;          /* Used by UNPACKED_PREFIX_SEARCH */
1410   Mem *aMem;          /* Values */
1411 };
1412 
1413 /*
1414 ** Allowed values of UnpackedRecord.flags
1415 */
1416 #define UNPACKED_NEED_FREE     0x0001  /* Memory is from sqlite3Malloc() */
1417 #define UNPACKED_NEED_DESTROY  0x0002  /* apMem[]s should all be destroyed */
1418 #define UNPACKED_IGNORE_ROWID  0x0004  /* Ignore trailing rowid on key1 */
1419 #define UNPACKED_INCRKEY       0x0008  /* Make this key an epsilon larger */
1420 #define UNPACKED_PREFIX_MATCH  0x0010  /* A prefix match is considered OK */
1421 #define UNPACKED_PREFIX_SEARCH 0x0020  /* A prefix match is considered OK */
1422 
1423 /*
1424 ** Each SQL index is represented in memory by an
1425 ** instance of the following structure.
1426 **
1427 ** The columns of the table that are to be indexed are described
1428 ** by the aiColumn[] field of this structure.  For example, suppose
1429 ** we have the following table and index:
1430 **
1431 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1432 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1433 **
1434 ** In the Table structure describing Ex1, nCol==3 because there are
1435 ** three columns in the table.  In the Index structure describing
1436 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1437 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1438 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1439 ** The second column to be indexed (c1) has an index of 0 in
1440 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1441 **
1442 ** The Index.onError field determines whether or not the indexed columns
1443 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1444 ** it means this is not a unique index.  Otherwise it is a unique index
1445 ** and the value of Index.onError indicate the which conflict resolution
1446 ** algorithm to employ whenever an attempt is made to insert a non-unique
1447 ** element.
1448 */
1449 struct Index {
1450   char *zName;     /* Name of this index */
1451   int nColumn;     /* Number of columns in the table used by this index */
1452   int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
1453   unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
1454   Table *pTable;   /* The SQL table being indexed */
1455   int tnum;        /* Page containing root of this index in database file */
1456   u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1457   u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
1458   char *zColAff;   /* String defining the affinity of each column */
1459   Index *pNext;    /* The next index associated with the same table */
1460   Schema *pSchema; /* Schema containing this index */
1461   u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
1462   char **azColl;   /* Array of collation sequence names for index */
1463   IndexSample *aSample;    /* Array of SQLITE_INDEX_SAMPLES samples */
1464 };
1465 
1466 /*
1467 ** Each sample stored in the sqlite_stat2 table is represented in memory
1468 ** using a structure of this type.
1469 */
1470 struct IndexSample {
1471   union {
1472     char *z;        /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
1473     double r;       /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */
1474   } u;
1475   u8 eType;         /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
1476   u8 nByte;         /* Size in byte of text or blob. */
1477 };
1478 
1479 /*
1480 ** Each token coming out of the lexer is an instance of
1481 ** this structure.  Tokens are also used as part of an expression.
1482 **
1483 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1484 ** may contain random values.  Do not make any assumptions about Token.dyn
1485 ** and Token.n when Token.z==0.
1486 */
1487 struct Token {
1488   const char *z;     /* Text of the token.  Not NULL-terminated! */
1489   unsigned int n;    /* Number of characters in this token */
1490 };
1491 
1492 /*
1493 ** An instance of this structure contains information needed to generate
1494 ** code for a SELECT that contains aggregate functions.
1495 **
1496 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1497 ** pointer to this structure.  The Expr.iColumn field is the index in
1498 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1499 ** code for that node.
1500 **
1501 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1502 ** original Select structure that describes the SELECT statement.  These
1503 ** fields do not need to be freed when deallocating the AggInfo structure.
1504 */
1505 struct AggInfo {
1506   u8 directMode;          /* Direct rendering mode means take data directly
1507                           ** from source tables rather than from accumulators */
1508   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1509                           ** than the source table */
1510   int sortingIdx;         /* Cursor number of the sorting index */
1511   ExprList *pGroupBy;     /* The group by clause */
1512   int nSortingColumn;     /* Number of columns in the sorting index */
1513   struct AggInfo_col {    /* For each column used in source tables */
1514     Table *pTab;             /* Source table */
1515     int iTable;              /* Cursor number of the source table */
1516     int iColumn;             /* Column number within the source table */
1517     int iSorterColumn;       /* Column number in the sorting index */
1518     int iMem;                /* Memory location that acts as accumulator */
1519     Expr *pExpr;             /* The original expression */
1520   } *aCol;
1521   int nColumn;            /* Number of used entries in aCol[] */
1522   int nColumnAlloc;       /* Number of slots allocated for aCol[] */
1523   int nAccumulator;       /* Number of columns that show through to the output.
1524                           ** Additional columns are used only as parameters to
1525                           ** aggregate functions */
1526   struct AggInfo_func {   /* For each aggregate function */
1527     Expr *pExpr;             /* Expression encoding the function */
1528     FuncDef *pFunc;          /* The aggregate function implementation */
1529     int iMem;                /* Memory location that acts as accumulator */
1530     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1531   } *aFunc;
1532   int nFunc;              /* Number of entries in aFunc[] */
1533   int nFuncAlloc;         /* Number of slots allocated for aFunc[] */
1534 };
1535 
1536 /*
1537 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
1538 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
1539 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
1540 ** it uses less memory in the Expr object, which is a big memory user
1541 ** in systems with lots of prepared statements.  And few applications
1542 ** need more than about 10 or 20 variables.  But some extreme users want
1543 ** to have prepared statements with over 32767 variables, and for them
1544 ** the option is available (at compile-time).
1545 */
1546 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
1547 typedef i16 ynVar;
1548 #else
1549 typedef int ynVar;
1550 #endif
1551 
1552 /*
1553 ** Each node of an expression in the parse tree is an instance
1554 ** of this structure.
1555 **
1556 ** Expr.op is the opcode. The integer parser token codes are reused
1557 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1558 ** code representing the ">=" operator. This same integer code is reused
1559 ** to represent the greater-than-or-equal-to operator in the expression
1560 ** tree.
1561 **
1562 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1563 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1564 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1565 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1566 ** then Expr.token contains the name of the function.
1567 **
1568 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1569 ** binary operator. Either or both may be NULL.
1570 **
1571 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
1572 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1573 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1574 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1575 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1576 ** valid.
1577 **
1578 ** An expression of the form ID or ID.ID refers to a column in a table.
1579 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1580 ** the integer cursor number of a VDBE cursor pointing to that table and
1581 ** Expr.iColumn is the column number for the specific column.  If the
1582 ** expression is used as a result in an aggregate SELECT, then the
1583 ** value is also stored in the Expr.iAgg column in the aggregate so that
1584 ** it can be accessed after all aggregates are computed.
1585 **
1586 ** If the expression is an unbound variable marker (a question mark
1587 ** character '?' in the original SQL) then the Expr.iTable holds the index
1588 ** number for that variable.
1589 **
1590 ** If the expression is a subquery then Expr.iColumn holds an integer
1591 ** register number containing the result of the subquery.  If the
1592 ** subquery gives a constant result, then iTable is -1.  If the subquery
1593 ** gives a different answer at different times during statement processing
1594 ** then iTable is the address of a subroutine that computes the subquery.
1595 **
1596 ** If the Expr is of type OP_Column, and the table it is selecting from
1597 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
1598 ** corresponding table definition.
1599 **
1600 ** ALLOCATION NOTES:
1601 **
1602 ** Expr objects can use a lot of memory space in database schema.  To
1603 ** help reduce memory requirements, sometimes an Expr object will be
1604 ** truncated.  And to reduce the number of memory allocations, sometimes
1605 ** two or more Expr objects will be stored in a single memory allocation,
1606 ** together with Expr.zToken strings.
1607 **
1608 ** If the EP_Reduced and EP_TokenOnly flags are set when
1609 ** an Expr object is truncated.  When EP_Reduced is set, then all
1610 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
1611 ** are contained within the same memory allocation.  Note, however, that
1612 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
1613 ** allocated, regardless of whether or not EP_Reduced is set.
1614 */
1615 struct Expr {
1616   u8 op;                 /* Operation performed by this node */
1617   char affinity;         /* The affinity of the column or 0 if not a column */
1618   u16 flags;             /* Various flags.  EP_* See below */
1619   union {
1620     char *zToken;          /* Token value. Zero terminated and dequoted */
1621     int iValue;            /* Integer value if EP_IntValue */
1622   } u;
1623 
1624   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
1625   ** space is allocated for the fields below this point. An attempt to
1626   ** access them will result in a segfault or malfunction.
1627   *********************************************************************/
1628 
1629   Expr *pLeft;           /* Left subnode */
1630   Expr *pRight;          /* Right subnode */
1631   union {
1632     ExprList *pList;     /* Function arguments or in "<expr> IN (<expr-list)" */
1633     Select *pSelect;     /* Used for sub-selects and "<expr> IN (<select>)" */
1634   } x;
1635   CollSeq *pColl;        /* The collation type of the column or 0 */
1636 
1637   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
1638   ** space is allocated for the fields below this point. An attempt to
1639   ** access them will result in a segfault or malfunction.
1640   *********************************************************************/
1641 
1642   int iTable;            /* TK_COLUMN: cursor number of table holding column
1643                          ** TK_REGISTER: register number
1644                          ** TK_TRIGGER: 1 -> new, 0 -> old */
1645   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
1646                          ** TK_VARIABLE: variable number (always >= 1). */
1647   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
1648   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
1649   u8 flags2;             /* Second set of flags.  EP2_... */
1650   u8 op2;                /* If a TK_REGISTER, the original value of Expr.op */
1651   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
1652   Table *pTab;           /* Table for TK_COLUMN expressions. */
1653 #if SQLITE_MAX_EXPR_DEPTH>0
1654   int nHeight;           /* Height of the tree headed by this node */
1655 #endif
1656 };
1657 
1658 /*
1659 ** The following are the meanings of bits in the Expr.flags field.
1660 */
1661 #define EP_FromJoin   0x0001  /* Originated in ON or USING clause of a join */
1662 #define EP_Agg        0x0002  /* Contains one or more aggregate functions */
1663 #define EP_Resolved   0x0004  /* IDs have been resolved to COLUMNs */
1664 #define EP_Error      0x0008  /* Expression contains one or more errors */
1665 #define EP_Distinct   0x0010  /* Aggregate function with DISTINCT keyword */
1666 #define EP_VarSelect  0x0020  /* pSelect is correlated, not constant */
1667 #define EP_DblQuoted  0x0040  /* token.z was originally in "..." */
1668 #define EP_InfixFunc  0x0080  /* True for an infix function: LIKE, GLOB, etc */
1669 #define EP_ExpCollate 0x0100  /* Collating sequence specified explicitly */
1670 #define EP_FixedDest  0x0200  /* Result needed in a specific register */
1671 #define EP_IntValue   0x0400  /* Integer value contained in u.iValue */
1672 #define EP_xIsSelect  0x0800  /* x.pSelect is valid (otherwise x.pList is) */
1673 
1674 #define EP_Reduced    0x1000  /* Expr struct is EXPR_REDUCEDSIZE bytes only */
1675 #define EP_TokenOnly  0x2000  /* Expr struct is EXPR_TOKENONLYSIZE bytes only */
1676 #define EP_Static     0x4000  /* Held in memory not obtained from malloc() */
1677 
1678 /*
1679 ** The following are the meanings of bits in the Expr.flags2 field.
1680 */
1681 #define EP2_MallocedToken  0x0001  /* Need to sqlite3DbFree() Expr.zToken */
1682 #define EP2_Irreducible    0x0002  /* Cannot EXPRDUP_REDUCE this Expr */
1683 
1684 /*
1685 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible
1686 ** flag on an expression structure.  This flag is used for VV&A only.  The
1687 ** routine is implemented as a macro that only works when in debugging mode,
1688 ** so as not to burden production code.
1689 */
1690 #ifdef SQLITE_DEBUG
1691 # define ExprSetIrreducible(X)  (X)->flags2 |= EP2_Irreducible
1692 #else
1693 # define ExprSetIrreducible(X)
1694 #endif
1695 
1696 /*
1697 ** These macros can be used to test, set, or clear bits in the
1698 ** Expr.flags field.
1699 */
1700 #define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
1701 #define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
1702 #define ExprSetProperty(E,P)     (E)->flags|=(P)
1703 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
1704 
1705 /*
1706 ** Macros to determine the number of bytes required by a normal Expr
1707 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
1708 ** and an Expr struct with the EP_TokenOnly flag set.
1709 */
1710 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
1711 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
1712 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
1713 
1714 /*
1715 ** Flags passed to the sqlite3ExprDup() function. See the header comment
1716 ** above sqlite3ExprDup() for details.
1717 */
1718 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
1719 
1720 /*
1721 ** A list of expressions.  Each expression may optionally have a
1722 ** name.  An expr/name combination can be used in several ways, such
1723 ** as the list of "expr AS ID" fields following a "SELECT" or in the
1724 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
1725 ** also be used as the argument to a function, in which case the a.zName
1726 ** field is not used.
1727 */
1728 struct ExprList {
1729   int nExpr;             /* Number of expressions on the list */
1730   int nAlloc;            /* Number of entries allocated below */
1731   int iECursor;          /* VDBE Cursor associated with this ExprList */
1732   struct ExprList_item {
1733     Expr *pExpr;           /* The list of expressions */
1734     char *zName;           /* Token associated with this expression */
1735     char *zSpan;           /* Original text of the expression */
1736     u8 sortOrder;          /* 1 for DESC or 0 for ASC */
1737     u8 done;               /* A flag to indicate when processing is finished */
1738     u16 iCol;              /* For ORDER BY, column number in result set */
1739     u16 iAlias;            /* Index into Parse.aAlias[] for zName */
1740   } *a;                  /* One entry for each expression */
1741 };
1742 
1743 /*
1744 ** An instance of this structure is used by the parser to record both
1745 ** the parse tree for an expression and the span of input text for an
1746 ** expression.
1747 */
1748 struct ExprSpan {
1749   Expr *pExpr;          /* The expression parse tree */
1750   const char *zStart;   /* First character of input text */
1751   const char *zEnd;     /* One character past the end of input text */
1752 };
1753 
1754 /*
1755 ** An instance of this structure can hold a simple list of identifiers,
1756 ** such as the list "a,b,c" in the following statements:
1757 **
1758 **      INSERT INTO t(a,b,c) VALUES ...;
1759 **      CREATE INDEX idx ON t(a,b,c);
1760 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
1761 **
1762 ** The IdList.a.idx field is used when the IdList represents the list of
1763 ** column names after a table name in an INSERT statement.  In the statement
1764 **
1765 **     INSERT INTO t(a,b,c) ...
1766 **
1767 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
1768 */
1769 struct IdList {
1770   struct IdList_item {
1771     char *zName;      /* Name of the identifier */
1772     int idx;          /* Index in some Table.aCol[] of a column named zName */
1773   } *a;
1774   int nId;         /* Number of identifiers on the list */
1775   int nAlloc;      /* Number of entries allocated for a[] below */
1776 };
1777 
1778 /*
1779 ** The bitmask datatype defined below is used for various optimizations.
1780 **
1781 ** Changing this from a 64-bit to a 32-bit type limits the number of
1782 ** tables in a join to 32 instead of 64.  But it also reduces the size
1783 ** of the library by 738 bytes on ix86.
1784 */
1785 typedef u64 Bitmask;
1786 
1787 /*
1788 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
1789 */
1790 #define BMS  ((int)(sizeof(Bitmask)*8))
1791 
1792 /*
1793 ** The following structure describes the FROM clause of a SELECT statement.
1794 ** Each table or subquery in the FROM clause is a separate element of
1795 ** the SrcList.a[] array.
1796 **
1797 ** With the addition of multiple database support, the following structure
1798 ** can also be used to describe a particular table such as the table that
1799 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
1800 ** such a table must be a simple name: ID.  But in SQLite, the table can
1801 ** now be identified by a database name, a dot, then the table name: ID.ID.
1802 **
1803 ** The jointype starts out showing the join type between the current table
1804 ** and the next table on the list.  The parser builds the list this way.
1805 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
1806 ** jointype expresses the join between the table and the previous table.
1807 **
1808 ** In the colUsed field, the high-order bit (bit 63) is set if the table
1809 ** contains more than 63 columns and the 64-th or later column is used.
1810 */
1811 struct SrcList {
1812   i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
1813   i16 nAlloc;      /* Number of entries allocated in a[] below */
1814   struct SrcList_item {
1815     char *zDatabase;  /* Name of database holding this table */
1816     char *zName;      /* Name of the table */
1817     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
1818     Table *pTab;      /* An SQL table corresponding to zName */
1819     Select *pSelect;  /* A SELECT statement used in place of a table name */
1820     u8 isPopulated;   /* Temporary table associated with SELECT is populated */
1821     u8 jointype;      /* Type of join between this able and the previous */
1822     u8 notIndexed;    /* True if there is a NOT INDEXED clause */
1823     int iCursor;      /* The VDBE cursor number used to access this table */
1824     Expr *pOn;        /* The ON clause of a join */
1825     IdList *pUsing;   /* The USING clause of a join */
1826     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
1827     char *zIndex;     /* Identifier from "INDEXED BY <zIndex>" clause */
1828     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
1829   } a[1];             /* One entry for each identifier on the list */
1830 };
1831 
1832 /*
1833 ** Permitted values of the SrcList.a.jointype field
1834 */
1835 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
1836 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
1837 #define JT_NATURAL   0x0004    /* True for a "natural" join */
1838 #define JT_LEFT      0x0008    /* Left outer join */
1839 #define JT_RIGHT     0x0010    /* Right outer join */
1840 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
1841 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
1842 
1843 
1844 /*
1845 ** A WherePlan object holds information that describes a lookup
1846 ** strategy.
1847 **
1848 ** This object is intended to be opaque outside of the where.c module.
1849 ** It is included here only so that that compiler will know how big it
1850 ** is.  None of the fields in this object should be used outside of
1851 ** the where.c module.
1852 **
1853 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
1854 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true.  And pVtabIdx
1855 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true.  It is never the
1856 ** case that more than one of these conditions is true.
1857 */
1858 struct WherePlan {
1859   u32 wsFlags;                   /* WHERE_* flags that describe the strategy */
1860   u32 nEq;                       /* Number of == constraints */
1861   union {
1862     Index *pIdx;                   /* Index when WHERE_INDEXED is true */
1863     struct WhereTerm *pTerm;       /* WHERE clause term for OR-search */
1864     sqlite3_index_info *pVtabIdx;  /* Virtual table index to use */
1865   } u;
1866 };
1867 
1868 /*
1869 ** For each nested loop in a WHERE clause implementation, the WhereInfo
1870 ** structure contains a single instance of this structure.  This structure
1871 ** is intended to be private the the where.c module and should not be
1872 ** access or modified by other modules.
1873 **
1874 ** The pIdxInfo field is used to help pick the best index on a
1875 ** virtual table.  The pIdxInfo pointer contains indexing
1876 ** information for the i-th table in the FROM clause before reordering.
1877 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
1878 ** All other information in the i-th WhereLevel object for the i-th table
1879 ** after FROM clause ordering.
1880 */
1881 struct WhereLevel {
1882   WherePlan plan;       /* query plan for this element of the FROM clause */
1883   int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
1884   int iTabCur;          /* The VDBE cursor used to access the table */
1885   int iIdxCur;          /* The VDBE cursor used to access pIdx */
1886   int addrBrk;          /* Jump here to break out of the loop */
1887   int addrNxt;          /* Jump here to start the next IN combination */
1888   int addrCont;         /* Jump here to continue with the next loop cycle */
1889   int addrFirst;        /* First instruction of interior of the loop */
1890   u8 iFrom;             /* Which entry in the FROM clause */
1891   u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
1892   int p1, p2;           /* Operands of the opcode used to ends the loop */
1893   union {               /* Information that depends on plan.wsFlags */
1894     struct {
1895       int nIn;              /* Number of entries in aInLoop[] */
1896       struct InLoop {
1897         int iCur;              /* The VDBE cursor used by this IN operator */
1898         int addrInTop;         /* Top of the IN loop */
1899       } *aInLoop;           /* Information about each nested IN operator */
1900     } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
1901   } u;
1902 
1903   /* The following field is really not part of the current level.  But
1904   ** we need a place to cache virtual table index information for each
1905   ** virtual table in the FROM clause and the WhereLevel structure is
1906   ** a convenient place since there is one WhereLevel for each FROM clause
1907   ** element.
1908   */
1909   sqlite3_index_info *pIdxInfo;  /* Index info for n-th source table */
1910 };
1911 
1912 /*
1913 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
1914 ** and the WhereInfo.wctrlFlags member.
1915 */
1916 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
1917 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
1918 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
1919 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
1920 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
1921 #define WHERE_OMIT_OPEN        0x0010 /* Table cursors are already open */
1922 #define WHERE_OMIT_CLOSE       0x0020 /* Omit close of table & index cursors */
1923 #define WHERE_FORCE_TABLE      0x0040 /* Do not use an index-only search */
1924 #define WHERE_ONETABLE_ONLY    0x0080 /* Only code the 1st table in pTabList */
1925 
1926 /*
1927 ** The WHERE clause processing routine has two halves.  The
1928 ** first part does the start of the WHERE loop and the second
1929 ** half does the tail of the WHERE loop.  An instance of
1930 ** this structure is returned by the first half and passed
1931 ** into the second half to give some continuity.
1932 */
1933 struct WhereInfo {
1934   Parse *pParse;       /* Parsing and code generating context */
1935   u16 wctrlFlags;      /* Flags originally passed to sqlite3WhereBegin() */
1936   u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */
1937   u8 untestedTerms;    /* Not all WHERE terms resolved by outer loop */
1938   SrcList *pTabList;             /* List of tables in the join */
1939   int iTop;                      /* The very beginning of the WHERE loop */
1940   int iContinue;                 /* Jump here to continue with next record */
1941   int iBreak;                    /* Jump here to break out of the loop */
1942   int nLevel;                    /* Number of nested loop */
1943   struct WhereClause *pWC;       /* Decomposition of the WHERE clause */
1944   double savedNQueryLoop;        /* pParse->nQueryLoop outside the WHERE loop */
1945   WhereLevel a[1];               /* Information about each nest loop in WHERE */
1946 };
1947 
1948 /*
1949 ** A NameContext defines a context in which to resolve table and column
1950 ** names.  The context consists of a list of tables (the pSrcList) field and
1951 ** a list of named expression (pEList).  The named expression list may
1952 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
1953 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
1954 ** pEList corresponds to the result set of a SELECT and is NULL for
1955 ** other statements.
1956 **
1957 ** NameContexts can be nested.  When resolving names, the inner-most
1958 ** context is searched first.  If no match is found, the next outer
1959 ** context is checked.  If there is still no match, the next context
1960 ** is checked.  This process continues until either a match is found
1961 ** or all contexts are check.  When a match is found, the nRef member of
1962 ** the context containing the match is incremented.
1963 **
1964 ** Each subquery gets a new NameContext.  The pNext field points to the
1965 ** NameContext in the parent query.  Thus the process of scanning the
1966 ** NameContext list corresponds to searching through successively outer
1967 ** subqueries looking for a match.
1968 */
1969 struct NameContext {
1970   Parse *pParse;       /* The parser */
1971   SrcList *pSrcList;   /* One or more tables used to resolve names */
1972   ExprList *pEList;    /* Optional list of named expressions */
1973   int nRef;            /* Number of names resolved by this context */
1974   int nErr;            /* Number of errors encountered while resolving names */
1975   u8 allowAgg;         /* Aggregate functions allowed here */
1976   u8 hasAgg;           /* True if aggregates are seen */
1977   u8 isCheck;          /* True if resolving names in a CHECK constraint */
1978   int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
1979   AggInfo *pAggInfo;   /* Information about aggregates at this level */
1980   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
1981 };
1982 
1983 /*
1984 ** An instance of the following structure contains all information
1985 ** needed to generate code for a single SELECT statement.
1986 **
1987 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
1988 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
1989 ** limit and nOffset to the value of the offset (or 0 if there is not
1990 ** offset).  But later on, nLimit and nOffset become the memory locations
1991 ** in the VDBE that record the limit and offset counters.
1992 **
1993 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
1994 ** These addresses must be stored so that we can go back and fill in
1995 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
1996 ** the number of columns in P2 can be computed at the same time
1997 ** as the OP_OpenEphm instruction is coded because not
1998 ** enough information about the compound query is known at that point.
1999 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2000 ** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
2001 ** sequences for the ORDER BY clause.
2002 */
2003 struct Select {
2004   ExprList *pEList;      /* The fields of the result */
2005   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2006   char affinity;         /* MakeRecord with this affinity for SRT_Set */
2007   u16 selFlags;          /* Various SF_* values */
2008   SrcList *pSrc;         /* The FROM clause */
2009   Expr *pWhere;          /* The WHERE clause */
2010   ExprList *pGroupBy;    /* The GROUP BY clause */
2011   Expr *pHaving;         /* The HAVING clause */
2012   ExprList *pOrderBy;    /* The ORDER BY clause */
2013   Select *pPrior;        /* Prior select in a compound select statement */
2014   Select *pNext;         /* Next select to the left in a compound */
2015   Select *pRightmost;    /* Right-most select in a compound select statement */
2016   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2017   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2018   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2019   int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
2020 };
2021 
2022 /*
2023 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
2024 ** "Select Flag".
2025 */
2026 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
2027 #define SF_Resolved        0x0002  /* Identifiers have been resolved */
2028 #define SF_Aggregate       0x0004  /* Contains aggregate functions */
2029 #define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
2030 #define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
2031 #define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
2032 
2033 
2034 /*
2035 ** The results of a select can be distributed in several ways.  The
2036 ** "SRT" prefix means "SELECT Result Type".
2037 */
2038 #define SRT_Union        1  /* Store result as keys in an index */
2039 #define SRT_Except       2  /* Remove result from a UNION index */
2040 #define SRT_Exists       3  /* Store 1 if the result is not empty */
2041 #define SRT_Discard      4  /* Do not save the results anywhere */
2042 
2043 /* The ORDER BY clause is ignored for all of the above */
2044 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
2045 
2046 #define SRT_Output       5  /* Output each row of result */
2047 #define SRT_Mem          6  /* Store result in a memory cell */
2048 #define SRT_Set          7  /* Store results as keys in an index */
2049 #define SRT_Table        8  /* Store result as data with an automatic rowid */
2050 #define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
2051 #define SRT_Coroutine   10  /* Generate a single row of result */
2052 
2053 /*
2054 ** A structure used to customize the behavior of sqlite3Select(). See
2055 ** comments above sqlite3Select() for details.
2056 */
2057 typedef struct SelectDest SelectDest;
2058 struct SelectDest {
2059   u8 eDest;         /* How to dispose of the results */
2060   u8 affinity;      /* Affinity used when eDest==SRT_Set */
2061   int iParm;        /* A parameter used by the eDest disposal method */
2062   int iMem;         /* Base register where results are written */
2063   int nMem;         /* Number of registers allocated */
2064 };
2065 
2066 /*
2067 ** During code generation of statements that do inserts into AUTOINCREMENT
2068 ** tables, the following information is attached to the Table.u.autoInc.p
2069 ** pointer of each autoincrement table to record some side information that
2070 ** the code generator needs.  We have to keep per-table autoincrement
2071 ** information in case inserts are down within triggers.  Triggers do not
2072 ** normally coordinate their activities, but we do need to coordinate the
2073 ** loading and saving of autoincrement information.
2074 */
2075 struct AutoincInfo {
2076   AutoincInfo *pNext;   /* Next info block in a list of them all */
2077   Table *pTab;          /* Table this info block refers to */
2078   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2079   int regCtr;           /* Memory register holding the rowid counter */
2080 };
2081 
2082 /*
2083 ** Size of the column cache
2084 */
2085 #ifndef SQLITE_N_COLCACHE
2086 # define SQLITE_N_COLCACHE 10
2087 #endif
2088 
2089 /*
2090 ** At least one instance of the following structure is created for each
2091 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2092 ** statement. All such objects are stored in the linked list headed at
2093 ** Parse.pTriggerPrg and deleted once statement compilation has been
2094 ** completed.
2095 **
2096 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2097 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2098 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2099 ** The Parse.pTriggerPrg list never contains two entries with the same
2100 ** values for both pTrigger and orconf.
2101 **
2102 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2103 ** accessed (or set to 0 for triggers fired as a result of INSERT
2104 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2105 ** a mask of new.* columns used by the program.
2106 */
2107 struct TriggerPrg {
2108   Trigger *pTrigger;      /* Trigger this program was coded from */
2109   int orconf;             /* Default ON CONFLICT policy */
2110   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2111   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2112   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2113 };
2114 
2115 /*
2116 ** An SQL parser context.  A copy of this structure is passed through
2117 ** the parser and down into all the parser action routine in order to
2118 ** carry around information that is global to the entire parse.
2119 **
2120 ** The structure is divided into two parts.  When the parser and code
2121 ** generate call themselves recursively, the first part of the structure
2122 ** is constant but the second part is reset at the beginning and end of
2123 ** each recursion.
2124 **
2125 ** The nTableLock and aTableLock variables are only used if the shared-cache
2126 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2127 ** used to store the set of table-locks required by the statement being
2128 ** compiled. Function sqlite3TableLock() is used to add entries to the
2129 ** list.
2130 */
2131 struct Parse {
2132   sqlite3 *db;         /* The main database structure */
2133   int rc;              /* Return code from execution */
2134   char *zErrMsg;       /* An error message */
2135   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2136   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2137   u8 nameClash;        /* A permanent table name clashes with temp table name */
2138   u8 checkSchema;      /* Causes schema cookie check after an error */
2139   u8 nested;           /* Number of nested calls to the parser/code generator */
2140   u8 parseError;       /* True after a parsing error.  Ticket #1794 */
2141   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2142   u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
2143   int aTempReg[8];     /* Holding area for temporary registers */
2144   int nRangeReg;       /* Size of the temporary register block */
2145   int iRangeReg;       /* First register in temporary register block */
2146   int nErr;            /* Number of errors seen */
2147   int nTab;            /* Number of previously allocated VDBE cursors */
2148   int nMem;            /* Number of memory cells used so far */
2149   int nSet;            /* Number of sets used so far */
2150   int ckBase;          /* Base register of data during check constraints */
2151   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2152   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2153   u8 nColCache;        /* Number of entries in the column cache */
2154   u8 iColCache;        /* Next entry of the cache to replace */
2155   struct yColCache {
2156     int iTable;           /* Table cursor number */
2157     int iColumn;          /* Table column number */
2158     u8 tempReg;           /* iReg is a temp register that needs to be freed */
2159     int iLevel;           /* Nesting level */
2160     int iReg;             /* Reg with value of this column. 0 means none. */
2161     int lru;              /* Least recently used entry has the smallest value */
2162   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2163   u32 writeMask;       /* Start a write transaction on these databases */
2164   u32 cookieMask;      /* Bitmask of schema verified databases */
2165   u8 isMultiWrite;     /* True if statement may affect/insert multiple rows */
2166   u8 mayAbort;         /* True if statement may throw an ABORT exception */
2167   int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
2168   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2169 #ifndef SQLITE_OMIT_SHARED_CACHE
2170   int nTableLock;        /* Number of locks in aTableLock */
2171   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2172 #endif
2173   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2174   int regRoot;         /* Register holding root page number for new objects */
2175   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2176   int nMaxArg;         /* Max args passed to user function by sub-program */
2177 
2178   /* Information used while coding trigger programs. */
2179   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
2180   Table *pTriggerTab;  /* Table triggers are being coded for */
2181   u32 oldmask;         /* Mask of old.* columns referenced */
2182   u32 newmask;         /* Mask of new.* columns referenced */
2183   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
2184   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
2185   u8 disableTriggers;  /* True to disable triggers */
2186   double nQueryLoop;   /* Estimated number of iterations of a query */
2187 
2188   /* Above is constant between recursions.  Below is reset before and after
2189   ** each recursion */
2190 
2191   int nVar;            /* Number of '?' variables seen in the SQL so far */
2192   int nVarExpr;        /* Number of used slots in apVarExpr[] */
2193   int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
2194   Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
2195   Vdbe *pReprepare;    /* VM being reprepared (sqlite3Reprepare()) */
2196   int nAlias;          /* Number of aliased result set columns */
2197   int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
2198   int *aAlias;         /* Register used to hold aliased result */
2199   u8 explain;          /* True if the EXPLAIN flag is found on the query */
2200   Token sNameToken;    /* Token with unqualified schema object name */
2201   Token sLastToken;    /* The last token parsed */
2202   const char *zTail;   /* All SQL text past the last semicolon parsed */
2203   Table *pNewTable;    /* A table being constructed by CREATE TABLE */
2204   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2205   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2206 #ifndef SQLITE_OMIT_VIRTUALTABLE
2207   Token sArg;                /* Complete text of a module argument */
2208   u8 declareVtab;            /* True if inside sqlite3_declare_vtab() */
2209   int nVtabLock;             /* Number of virtual tables to lock */
2210   Table **apVtabLock;        /* Pointer to virtual tables needing locking */
2211 #endif
2212   int nHeight;            /* Expression tree height of current sub-select */
2213   Table *pZombieTab;      /* List of Table objects to delete after code gen */
2214   TriggerPrg *pTriggerPrg;    /* Linked list of coded triggers */
2215 };
2216 
2217 #ifdef SQLITE_OMIT_VIRTUALTABLE
2218   #define IN_DECLARE_VTAB 0
2219 #else
2220   #define IN_DECLARE_VTAB (pParse->declareVtab)
2221 #endif
2222 
2223 /*
2224 ** An instance of the following structure can be declared on a stack and used
2225 ** to save the Parse.zAuthContext value so that it can be restored later.
2226 */
2227 struct AuthContext {
2228   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2229   Parse *pParse;              /* The Parse structure */
2230 };
2231 
2232 /*
2233 ** Bitfield flags for P5 value in OP_Insert and OP_Delete
2234 */
2235 #define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
2236 #define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
2237 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
2238 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
2239 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
2240 #define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */
2241 
2242 /*
2243  * Each trigger present in the database schema is stored as an instance of
2244  * struct Trigger.
2245  *
2246  * Pointers to instances of struct Trigger are stored in two ways.
2247  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2248  *    database). This allows Trigger structures to be retrieved by name.
2249  * 2. All triggers associated with a single table form a linked list, using the
2250  *    pNext member of struct Trigger. A pointer to the first element of the
2251  *    linked list is stored as the "pTrigger" member of the associated
2252  *    struct Table.
2253  *
2254  * The "step_list" member points to the first element of a linked list
2255  * containing the SQL statements specified as the trigger program.
2256  */
2257 struct Trigger {
2258   char *zName;            /* The name of the trigger                        */
2259   char *table;            /* The table or view to which the trigger applies */
2260   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2261   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2262   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2263   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2264                              the <column-list> is stored here */
2265   Schema *pSchema;        /* Schema containing the trigger */
2266   Schema *pTabSchema;     /* Schema containing the table */
2267   TriggerStep *step_list; /* Link list of trigger program steps             */
2268   Trigger *pNext;         /* Next trigger associated with the table */
2269 };
2270 
2271 /*
2272 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2273 ** determine which.
2274 **
2275 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2276 ** In that cases, the constants below can be ORed together.
2277 */
2278 #define TRIGGER_BEFORE  1
2279 #define TRIGGER_AFTER   2
2280 
2281 /*
2282  * An instance of struct TriggerStep is used to store a single SQL statement
2283  * that is a part of a trigger-program.
2284  *
2285  * Instances of struct TriggerStep are stored in a singly linked list (linked
2286  * using the "pNext" member) referenced by the "step_list" member of the
2287  * associated struct Trigger instance. The first element of the linked list is
2288  * the first step of the trigger-program.
2289  *
2290  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2291  * "SELECT" statement. The meanings of the other members is determined by the
2292  * value of "op" as follows:
2293  *
2294  * (op == TK_INSERT)
2295  * orconf    -> stores the ON CONFLICT algorithm
2296  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2297  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2298  * target    -> A token holding the quoted name of the table to insert into.
2299  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2300  *              this stores values to be inserted. Otherwise NULL.
2301  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2302  *              statement, then this stores the column-names to be
2303  *              inserted into.
2304  *
2305  * (op == TK_DELETE)
2306  * target    -> A token holding the quoted name of the table to delete from.
2307  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2308  *              Otherwise NULL.
2309  *
2310  * (op == TK_UPDATE)
2311  * target    -> A token holding the quoted name of the table to update rows of.
2312  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2313  *              Otherwise NULL.
2314  * pExprList -> A list of the columns to update and the expressions to update
2315  *              them to. See sqlite3Update() documentation of "pChanges"
2316  *              argument.
2317  *
2318  */
2319 struct TriggerStep {
2320   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2321   u8 orconf;           /* OE_Rollback etc. */
2322   Trigger *pTrig;      /* The trigger that this step is a part of */
2323   Select *pSelect;     /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
2324   Token target;        /* Target table for DELETE, UPDATE, INSERT */
2325   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2326   ExprList *pExprList; /* SET clause for UPDATE.  VALUES clause for INSERT */
2327   IdList *pIdList;     /* Column names for INSERT */
2328   TriggerStep *pNext;  /* Next in the link-list */
2329   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2330 };
2331 
2332 /*
2333 ** The following structure contains information used by the sqliteFix...
2334 ** routines as they walk the parse tree to make database references
2335 ** explicit.
2336 */
2337 typedef struct DbFixer DbFixer;
2338 struct DbFixer {
2339   Parse *pParse;      /* The parsing context.  Error messages written here */
2340   const char *zDb;    /* Make sure all objects are contained in this database */
2341   const char *zType;  /* Type of the container - used for error messages */
2342   const Token *pName; /* Name of the container - used for error messages */
2343 };
2344 
2345 /*
2346 ** An objected used to accumulate the text of a string where we
2347 ** do not necessarily know how big the string will be in the end.
2348 */
2349 struct StrAccum {
2350   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2351   char *zBase;         /* A base allocation.  Not from malloc. */
2352   char *zText;         /* The string collected so far */
2353   int  nChar;          /* Length of the string so far */
2354   int  nAlloc;         /* Amount of space allocated in zText */
2355   int  mxAlloc;        /* Maximum allowed string length */
2356   u8   mallocFailed;   /* Becomes true if any memory allocation fails */
2357   u8   useMalloc;      /* 0: none,  1: sqlite3DbMalloc,  2: sqlite3_malloc */
2358   u8   tooBig;         /* Becomes true if string size exceeds limits */
2359 };
2360 
2361 /*
2362 ** A pointer to this structure is used to communicate information
2363 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2364 */
2365 typedef struct {
2366   sqlite3 *db;        /* The database being initialized */
2367   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2368   char **pzErrMsg;    /* Error message stored here */
2369   int rc;             /* Result code stored here */
2370 } InitData;
2371 
2372 /*
2373 ** Structure containing global configuration data for the SQLite library.
2374 **
2375 ** This structure also contains some state information.
2376 */
2377 struct Sqlite3Config {
2378   int bMemstat;                     /* True to enable memory status */
2379   int bCoreMutex;                   /* True to enable core mutexing */
2380   int bFullMutex;                   /* True to enable full mutexing */
2381   int mxStrlen;                     /* Maximum string length */
2382   int szLookaside;                  /* Default lookaside buffer size */
2383   int nLookaside;                   /* Default lookaside buffer count */
2384   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2385   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2386   sqlite3_pcache_methods pcache;    /* Low-level page-cache interface */
2387   void *pHeap;                      /* Heap storage space */
2388   int nHeap;                        /* Size of pHeap[] */
2389   int mnReq, mxReq;                 /* Min and max heap requests sizes */
2390   void *pScratch;                   /* Scratch memory */
2391   int szScratch;                    /* Size of each scratch buffer */
2392   int nScratch;                     /* Number of scratch buffers */
2393   void *pPage;                      /* Page cache memory */
2394   int szPage;                       /* Size of each page in pPage[] */
2395   int nPage;                        /* Number of pages in pPage[] */
2396   int mxParserStack;                /* maximum depth of the parser stack */
2397   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2398   /* The above might be initialized to non-zero.  The following need to always
2399   ** initially be zero, however. */
2400   int isInit;                       /* True after initialization has finished */
2401   int inProgress;                   /* True while initialization in progress */
2402   int isMutexInit;                  /* True after mutexes are initialized */
2403   int isMallocInit;                 /* True after malloc is initialized */
2404   int isPCacheInit;                 /* True after malloc is initialized */
2405   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2406   int nRefInitMutex;                /* Number of users of pInitMutex */
2407   void (*xLog)(void*,int,const char*); /* Function for logging */
2408   void *pLogArg;                       /* First argument to xLog() */
2409 };
2410 
2411 /*
2412 ** Context pointer passed down through the tree-walk.
2413 */
2414 struct Walker {
2415   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2416   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2417   Parse *pParse;                            /* Parser context.  */
2418   union {                                   /* Extra data for callback */
2419     NameContext *pNC;                          /* Naming context */
2420     int i;                                     /* Integer value */
2421   } u;
2422 };
2423 
2424 /* Forward declarations */
2425 int sqlite3WalkExpr(Walker*, Expr*);
2426 int sqlite3WalkExprList(Walker*, ExprList*);
2427 int sqlite3WalkSelect(Walker*, Select*);
2428 int sqlite3WalkSelectExpr(Walker*, Select*);
2429 int sqlite3WalkSelectFrom(Walker*, Select*);
2430 
2431 /*
2432 ** Return code from the parse-tree walking primitives and their
2433 ** callbacks.
2434 */
2435 #define WRC_Continue    0   /* Continue down into children */
2436 #define WRC_Prune       1   /* Omit children but continue walking siblings */
2437 #define WRC_Abort       2   /* Abandon the tree walk */
2438 
2439 /*
2440 ** Assuming zIn points to the first byte of a UTF-8 character,
2441 ** advance zIn to point to the first byte of the next UTF-8 character.
2442 */
2443 #define SQLITE_SKIP_UTF8(zIn) {                        \
2444   if( (*(zIn++))>=0xc0 ){                              \
2445     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
2446   }                                                    \
2447 }
2448 
2449 /*
2450 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
2451 ** the same name but without the _BKPT suffix.  These macros invoke
2452 ** routines that report the line-number on which the error originated
2453 ** using sqlite3_log().  The routines also provide a convenient place
2454 ** to set a debugger breakpoint.
2455 */
2456 int sqlite3CorruptError(int);
2457 int sqlite3MisuseError(int);
2458 int sqlite3CantopenError(int);
2459 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
2460 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
2461 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
2462 
2463 
2464 /*
2465 ** FTS4 is really an extension for FTS3.  It is enabled using the
2466 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
2467 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
2468 */
2469 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
2470 # define SQLITE_ENABLE_FTS3
2471 #endif
2472 
2473 /*
2474 ** The ctype.h header is needed for non-ASCII systems.  It is also
2475 ** needed by FTS3 when FTS3 is included in the amalgamation.
2476 */
2477 #if !defined(SQLITE_ASCII) || \
2478     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
2479 # include <ctype.h>
2480 #endif
2481 
2482 /*
2483 ** The following macros mimic the standard library functions toupper(),
2484 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
2485 ** sqlite versions only work for ASCII characters, regardless of locale.
2486 */
2487 #ifdef SQLITE_ASCII
2488 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
2489 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
2490 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
2491 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
2492 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
2493 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
2494 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
2495 #else
2496 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
2497 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
2498 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
2499 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
2500 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
2501 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
2502 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
2503 #endif
2504 
2505 /*
2506 ** Internal function prototypes
2507 */
2508 int sqlite3StrICmp(const char *, const char *);
2509 int sqlite3IsNumber(const char*, int*, u8);
2510 int sqlite3Strlen30(const char*);
2511 #define sqlite3StrNICmp sqlite3_strnicmp
2512 
2513 int sqlite3MallocInit(void);
2514 void sqlite3MallocEnd(void);
2515 void *sqlite3Malloc(int);
2516 void *sqlite3MallocZero(int);
2517 void *sqlite3DbMallocZero(sqlite3*, int);
2518 void *sqlite3DbMallocRaw(sqlite3*, int);
2519 char *sqlite3DbStrDup(sqlite3*,const char*);
2520 char *sqlite3DbStrNDup(sqlite3*,const char*, int);
2521 void *sqlite3Realloc(void*, int);
2522 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
2523 void *sqlite3DbRealloc(sqlite3 *, void *, int);
2524 void sqlite3DbFree(sqlite3*, void*);
2525 int sqlite3MallocSize(void*);
2526 int sqlite3DbMallocSize(sqlite3*, void*);
2527 void *sqlite3ScratchMalloc(int);
2528 void sqlite3ScratchFree(void*);
2529 void *sqlite3PageMalloc(int);
2530 void sqlite3PageFree(void*);
2531 void sqlite3MemSetDefault(void);
2532 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
2533 int sqlite3HeapNearlyFull(void);
2534 
2535 /*
2536 ** On systems with ample stack space and that support alloca(), make
2537 ** use of alloca() to obtain space for large automatic objects.  By default,
2538 ** obtain space from malloc().
2539 **
2540 ** The alloca() routine never returns NULL.  This will cause code paths
2541 ** that deal with sqlite3StackAlloc() failures to be unreachable.
2542 */
2543 #ifdef SQLITE_USE_ALLOCA
2544 # define sqlite3StackAllocRaw(D,N)   alloca(N)
2545 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
2546 # define sqlite3StackFree(D,P)
2547 #else
2548 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
2549 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
2550 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
2551 #endif
2552 
2553 #ifdef SQLITE_ENABLE_MEMSYS3
2554 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
2555 #endif
2556 #ifdef SQLITE_ENABLE_MEMSYS5
2557 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
2558 #endif
2559 
2560 
2561 #ifndef SQLITE_MUTEX_OMIT
2562   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
2563   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
2564   sqlite3_mutex *sqlite3MutexAlloc(int);
2565   int sqlite3MutexInit(void);
2566   int sqlite3MutexEnd(void);
2567 #endif
2568 
2569 int sqlite3StatusValue(int);
2570 void sqlite3StatusAdd(int, int);
2571 void sqlite3StatusSet(int, int);
2572 
2573 #ifndef SQLITE_OMIT_FLOATING_POINT
2574   int sqlite3IsNaN(double);
2575 #else
2576 # define sqlite3IsNaN(X)  0
2577 #endif
2578 
2579 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
2580 #ifndef SQLITE_OMIT_TRACE
2581 void sqlite3XPrintf(StrAccum*, const char*, ...);
2582 #endif
2583 char *sqlite3MPrintf(sqlite3*,const char*, ...);
2584 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
2585 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
2586 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
2587   void sqlite3DebugPrintf(const char*, ...);
2588 #endif
2589 #if defined(SQLITE_TEST)
2590   void *sqlite3TestTextToPtr(const char*);
2591 #endif
2592 void sqlite3SetString(char **, sqlite3*, const char*, ...);
2593 void sqlite3ErrorMsg(Parse*, const char*, ...);
2594 int sqlite3Dequote(char*);
2595 int sqlite3KeywordCode(const unsigned char*, int);
2596 int sqlite3RunParser(Parse*, const char*, char **);
2597 void sqlite3FinishCoding(Parse*);
2598 int sqlite3GetTempReg(Parse*);
2599 void sqlite3ReleaseTempReg(Parse*,int);
2600 int sqlite3GetTempRange(Parse*,int);
2601 void sqlite3ReleaseTempRange(Parse*,int,int);
2602 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
2603 Expr *sqlite3Expr(sqlite3*,int,const char*);
2604 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
2605 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
2606 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
2607 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
2608 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
2609 void sqlite3ExprDelete(sqlite3*, Expr*);
2610 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
2611 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
2612 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
2613 void sqlite3ExprListDelete(sqlite3*, ExprList*);
2614 int sqlite3Init(sqlite3*, char**);
2615 int sqlite3InitCallback(void*, int, char**, char**);
2616 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
2617 void sqlite3ResetInternalSchema(sqlite3*, int);
2618 void sqlite3BeginParse(Parse*,int);
2619 void sqlite3CommitInternalChanges(sqlite3*);
2620 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
2621 void sqlite3OpenMasterTable(Parse *, int);
2622 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
2623 void sqlite3AddColumn(Parse*,Token*);
2624 void sqlite3AddNotNull(Parse*, int);
2625 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
2626 void sqlite3AddCheckConstraint(Parse*, Expr*);
2627 void sqlite3AddColumnType(Parse*,Token*);
2628 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
2629 void sqlite3AddCollateType(Parse*, Token*);
2630 void sqlite3EndTable(Parse*,Token*,Token*,Select*);
2631 
2632 Bitvec *sqlite3BitvecCreate(u32);
2633 int sqlite3BitvecTest(Bitvec*, u32);
2634 int sqlite3BitvecSet(Bitvec*, u32);
2635 void sqlite3BitvecClear(Bitvec*, u32, void*);
2636 void sqlite3BitvecDestroy(Bitvec*);
2637 u32 sqlite3BitvecSize(Bitvec*);
2638 int sqlite3BitvecBuiltinTest(int,int*);
2639 
2640 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
2641 void sqlite3RowSetClear(RowSet*);
2642 void sqlite3RowSetInsert(RowSet*, i64);
2643 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64);
2644 int sqlite3RowSetNext(RowSet*, i64*);
2645 
2646 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
2647 
2648 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2649   int sqlite3ViewGetColumnNames(Parse*,Table*);
2650 #else
2651 # define sqlite3ViewGetColumnNames(A,B) 0
2652 #endif
2653 
2654 void sqlite3DropTable(Parse*, SrcList*, int, int);
2655 void sqlite3DeleteTable(sqlite3*, Table*);
2656 #ifndef SQLITE_OMIT_AUTOINCREMENT
2657   void sqlite3AutoincrementBegin(Parse *pParse);
2658   void sqlite3AutoincrementEnd(Parse *pParse);
2659 #else
2660 # define sqlite3AutoincrementBegin(X)
2661 # define sqlite3AutoincrementEnd(X)
2662 #endif
2663 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
2664 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
2665 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
2666 int sqlite3IdListIndex(IdList*,const char*);
2667 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
2668 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
2669 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
2670                                       Token*, Select*, Expr*, IdList*);
2671 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
2672 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
2673 void sqlite3SrcListShiftJoinType(SrcList*);
2674 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
2675 void sqlite3IdListDelete(sqlite3*, IdList*);
2676 void sqlite3SrcListDelete(sqlite3*, SrcList*);
2677 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
2678                         Token*, int, int);
2679 void sqlite3DropIndex(Parse*, SrcList*, int);
2680 int sqlite3Select(Parse*, Select*, SelectDest*);
2681 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
2682                          Expr*,ExprList*,int,Expr*,Expr*);
2683 void sqlite3SelectDelete(sqlite3*, Select*);
2684 Table *sqlite3SrcListLookup(Parse*, SrcList*);
2685 int sqlite3IsReadOnly(Parse*, Table*, int);
2686 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
2687 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
2688 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
2689 #endif
2690 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
2691 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
2692 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16);
2693 void sqlite3WhereEnd(WhereInfo*);
2694 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int);
2695 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
2696 void sqlite3ExprCodeMove(Parse*, int, int, int);
2697 void sqlite3ExprCodeCopy(Parse*, int, int, int);
2698 void sqlite3ExprCacheStore(Parse*, int, int, int);
2699 void sqlite3ExprCachePush(Parse*);
2700 void sqlite3ExprCachePop(Parse*, int);
2701 void sqlite3ExprCacheRemove(Parse*, int, int);
2702 void sqlite3ExprCacheClear(Parse*);
2703 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
2704 void sqlite3ExprHardCopy(Parse*,int,int);
2705 int sqlite3ExprCode(Parse*, Expr*, int);
2706 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
2707 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
2708 int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
2709 void sqlite3ExprCodeConstants(Parse*, Expr*);
2710 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
2711 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
2712 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
2713 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
2714 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
2715 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
2716 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
2717 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
2718 void sqlite3Vacuum(Parse*);
2719 int sqlite3RunVacuum(char**, sqlite3*);
2720 char *sqlite3NameFromToken(sqlite3*, Token*);
2721 int sqlite3ExprCompare(Expr*, Expr*);
2722 int sqlite3ExprListCompare(ExprList*, ExprList*);
2723 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
2724 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
2725 Vdbe *sqlite3GetVdbe(Parse*);
2726 void sqlite3PrngSaveState(void);
2727 void sqlite3PrngRestoreState(void);
2728 void sqlite3PrngResetState(void);
2729 void sqlite3RollbackAll(sqlite3*);
2730 void sqlite3CodeVerifySchema(Parse*, int);
2731 void sqlite3BeginTransaction(Parse*, int);
2732 void sqlite3CommitTransaction(Parse*);
2733 void sqlite3RollbackTransaction(Parse*);
2734 void sqlite3Savepoint(Parse*, int, Token*);
2735 void sqlite3CloseSavepoints(sqlite3 *);
2736 int sqlite3ExprIsConstant(Expr*);
2737 int sqlite3ExprIsConstantNotJoin(Expr*);
2738 int sqlite3ExprIsConstantOrFunction(Expr*);
2739 int sqlite3ExprIsInteger(Expr*, int*);
2740 int sqlite3ExprCanBeNull(const Expr*);
2741 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
2742 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
2743 int sqlite3IsRowid(const char*);
2744 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
2745 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
2746 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
2747 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
2748                                      int*,int,int,int,int,int*);
2749 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
2750 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
2751 void sqlite3BeginWriteOperation(Parse*, int, int);
2752 void sqlite3MultiWrite(Parse*);
2753 void sqlite3MayAbort(Parse*);
2754 void sqlite3HaltConstraint(Parse*, int, char*, int);
2755 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
2756 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
2757 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
2758 IdList *sqlite3IdListDup(sqlite3*,IdList*);
2759 Select *sqlite3SelectDup(sqlite3*,Select*,int);
2760 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
2761 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
2762 void sqlite3RegisterBuiltinFunctions(sqlite3*);
2763 void sqlite3RegisterDateTimeFunctions(void);
2764 void sqlite3RegisterGlobalFunctions(void);
2765 int sqlite3SafetyCheckOk(sqlite3*);
2766 int sqlite3SafetyCheckSickOrOk(sqlite3*);
2767 void sqlite3ChangeCookie(Parse*, int);
2768 
2769 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
2770 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
2771 #endif
2772 
2773 #ifndef SQLITE_OMIT_TRIGGER
2774   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
2775                            Expr*,int, int);
2776   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
2777   void sqlite3DropTrigger(Parse*, SrcList*, int);
2778   void sqlite3DropTriggerPtr(Parse*, Trigger*);
2779   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
2780   Trigger *sqlite3TriggerList(Parse *, Table *);
2781   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
2782                             int, int, int);
2783   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
2784   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
2785   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
2786   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
2787   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
2788                                         ExprList*,Select*,u8);
2789   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
2790   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
2791   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
2792   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
2793   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
2794 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
2795 #else
2796 # define sqlite3TriggersExist(B,C,D,E,F) 0
2797 # define sqlite3DeleteTrigger(A,B)
2798 # define sqlite3DropTriggerPtr(A,B)
2799 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
2800 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
2801 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
2802 # define sqlite3TriggerList(X, Y) 0
2803 # define sqlite3ParseToplevel(p) p
2804 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
2805 #endif
2806 
2807 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
2808 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
2809 void sqlite3DeferForeignKey(Parse*, int);
2810 #ifndef SQLITE_OMIT_AUTHORIZATION
2811   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
2812   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
2813   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
2814   void sqlite3AuthContextPop(AuthContext*);
2815   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
2816 #else
2817 # define sqlite3AuthRead(a,b,c,d)
2818 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
2819 # define sqlite3AuthContextPush(a,b,c)
2820 # define sqlite3AuthContextPop(a)  ((void)(a))
2821 #endif
2822 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
2823 void sqlite3Detach(Parse*, Expr*);
2824 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
2825 int sqlite3FixSrcList(DbFixer*, SrcList*);
2826 int sqlite3FixSelect(DbFixer*, Select*);
2827 int sqlite3FixExpr(DbFixer*, Expr*);
2828 int sqlite3FixExprList(DbFixer*, ExprList*);
2829 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
2830 int sqlite3AtoF(const char *z, double*);
2831 int sqlite3GetInt32(const char *, int*);
2832 int sqlite3FitsIn64Bits(const char *, int);
2833 int sqlite3Utf16ByteLen(const void *pData, int nChar);
2834 int sqlite3Utf8CharLen(const char *pData, int nByte);
2835 int sqlite3Utf8Read(const u8*, const u8**);
2836 
2837 /*
2838 ** Routines to read and write variable-length integers.  These used to
2839 ** be defined locally, but now we use the varint routines in the util.c
2840 ** file.  Code should use the MACRO forms below, as the Varint32 versions
2841 ** are coded to assume the single byte case is already handled (which
2842 ** the MACRO form does).
2843 */
2844 int sqlite3PutVarint(unsigned char*, u64);
2845 int sqlite3PutVarint32(unsigned char*, u32);
2846 u8 sqlite3GetVarint(const unsigned char *, u64 *);
2847 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
2848 int sqlite3VarintLen(u64 v);
2849 
2850 /*
2851 ** The header of a record consists of a sequence variable-length integers.
2852 ** These integers are almost always small and are encoded as a single byte.
2853 ** The following macros take advantage this fact to provide a fast encode
2854 ** and decode of the integers in a record header.  It is faster for the common
2855 ** case where the integer is a single byte.  It is a little slower when the
2856 ** integer is two or more bytes.  But overall it is faster.
2857 **
2858 ** The following expressions are equivalent:
2859 **
2860 **     x = sqlite3GetVarint32( A, &B );
2861 **     x = sqlite3PutVarint32( A, B );
2862 **
2863 **     x = getVarint32( A, B );
2864 **     x = putVarint32( A, B );
2865 **
2866 */
2867 #define getVarint32(A,B)  (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
2868 #define putVarint32(A,B)  (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
2869 #define getVarint    sqlite3GetVarint
2870 #define putVarint    sqlite3PutVarint
2871 
2872 
2873 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
2874 void sqlite3TableAffinityStr(Vdbe *, Table *);
2875 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
2876 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
2877 char sqlite3ExprAffinity(Expr *pExpr);
2878 int sqlite3Atoi64(const char*, i64*);
2879 void sqlite3Error(sqlite3*, int, const char*,...);
2880 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
2881 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
2882 const char *sqlite3ErrStr(int);
2883 int sqlite3ReadSchema(Parse *pParse);
2884 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
2885 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
2886 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
2887 Expr *sqlite3ExprSetColl(Expr*, CollSeq*);
2888 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*);
2889 int sqlite3CheckCollSeq(Parse *, CollSeq *);
2890 int sqlite3CheckObjectName(Parse *, const char *);
2891 void sqlite3VdbeSetChanges(sqlite3 *, int);
2892 
2893 const void *sqlite3ValueText(sqlite3_value*, u8);
2894 int sqlite3ValueBytes(sqlite3_value*, u8);
2895 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
2896                         void(*)(void*));
2897 void sqlite3ValueFree(sqlite3_value*);
2898 sqlite3_value *sqlite3ValueNew(sqlite3 *);
2899 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
2900 #ifdef SQLITE_ENABLE_STAT2
2901 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
2902 #endif
2903 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
2904 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
2905 #ifndef SQLITE_AMALGAMATION
2906 extern const unsigned char sqlite3OpcodeProperty[];
2907 extern const unsigned char sqlite3UpperToLower[];
2908 extern const unsigned char sqlite3CtypeMap[];
2909 extern const Token sqlite3IntTokens[];
2910 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
2911 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
2912 #ifndef SQLITE_OMIT_WSD
2913 extern int sqlite3PendingByte;
2914 #endif
2915 #endif
2916 void sqlite3RootPageMoved(Db*, int, int);
2917 void sqlite3Reindex(Parse*, Token*, Token*);
2918 void sqlite3AlterFunctions(void);
2919 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
2920 int sqlite3GetToken(const unsigned char *, int *);
2921 void sqlite3NestedParse(Parse*, const char*, ...);
2922 void sqlite3ExpirePreparedStatements(sqlite3*);
2923 int sqlite3CodeSubselect(Parse *, Expr *, int, int);
2924 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
2925 int sqlite3ResolveExprNames(NameContext*, Expr*);
2926 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
2927 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
2928 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
2929 void sqlite3AlterFinishAddColumn(Parse *, Token *);
2930 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
2931 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*);
2932 char sqlite3AffinityType(const char*);
2933 void sqlite3Analyze(Parse*, Token*, Token*);
2934 int sqlite3InvokeBusyHandler(BusyHandler*);
2935 int sqlite3FindDb(sqlite3*, Token*);
2936 int sqlite3FindDbName(sqlite3 *, const char *);
2937 int sqlite3AnalysisLoad(sqlite3*,int iDB);
2938 void sqlite3DeleteIndexSamples(sqlite3*,Index*);
2939 void sqlite3DefaultRowEst(Index*);
2940 void sqlite3RegisterLikeFunctions(sqlite3*, int);
2941 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
2942 void sqlite3MinimumFileFormat(Parse*, int, int);
2943 void sqlite3SchemaFree(void *);
2944 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
2945 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
2946 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
2947 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
2948   void (*)(sqlite3_context*,int,sqlite3_value **),
2949   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
2950   FuncDestructor *pDestructor
2951 );
2952 int sqlite3ApiExit(sqlite3 *db, int);
2953 int sqlite3OpenTempDatabase(Parse *);
2954 
2955 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
2956 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
2957 char *sqlite3StrAccumFinish(StrAccum*);
2958 void sqlite3StrAccumReset(StrAccum*);
2959 void sqlite3SelectDestInit(SelectDest*,int,int);
2960 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
2961 
2962 void sqlite3BackupRestart(sqlite3_backup *);
2963 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
2964 
2965 /*
2966 ** The interface to the LEMON-generated parser
2967 */
2968 void *sqlite3ParserAlloc(void*(*)(size_t));
2969 void sqlite3ParserFree(void*, void(*)(void*));
2970 void sqlite3Parser(void*, int, Token, Parse*);
2971 #ifdef YYTRACKMAXSTACKDEPTH
2972   int sqlite3ParserStackPeak(void*);
2973 #endif
2974 
2975 void sqlite3AutoLoadExtensions(sqlite3*);
2976 #ifndef SQLITE_OMIT_LOAD_EXTENSION
2977   void sqlite3CloseExtensions(sqlite3*);
2978 #else
2979 # define sqlite3CloseExtensions(X)
2980 #endif
2981 
2982 #ifndef SQLITE_OMIT_SHARED_CACHE
2983   void sqlite3TableLock(Parse *, int, int, u8, const char *);
2984 #else
2985   #define sqlite3TableLock(v,w,x,y,z)
2986 #endif
2987 
2988 #ifdef SQLITE_TEST
2989   int sqlite3Utf8To8(unsigned char*);
2990 #endif
2991 
2992 #ifdef SQLITE_OMIT_VIRTUALTABLE
2993 #  define sqlite3VtabClear(Y)
2994 #  define sqlite3VtabSync(X,Y) SQLITE_OK
2995 #  define sqlite3VtabRollback(X)
2996 #  define sqlite3VtabCommit(X)
2997 #  define sqlite3VtabInSync(db) 0
2998 #  define sqlite3VtabLock(X)
2999 #  define sqlite3VtabUnlock(X)
3000 #  define sqlite3VtabUnlockList(X)
3001 #else
3002    void sqlite3VtabClear(sqlite3 *db, Table*);
3003    int sqlite3VtabSync(sqlite3 *db, char **);
3004    int sqlite3VtabRollback(sqlite3 *db);
3005    int sqlite3VtabCommit(sqlite3 *db);
3006    void sqlite3VtabLock(VTable *);
3007    void sqlite3VtabUnlock(VTable *);
3008    void sqlite3VtabUnlockList(sqlite3*);
3009 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
3010 #endif
3011 void sqlite3VtabMakeWritable(Parse*,Table*);
3012 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
3013 void sqlite3VtabFinishParse(Parse*, Token*);
3014 void sqlite3VtabArgInit(Parse*);
3015 void sqlite3VtabArgExtend(Parse*, Token*);
3016 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
3017 int sqlite3VtabCallConnect(Parse*, Table*);
3018 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3019 int sqlite3VtabBegin(sqlite3 *, VTable *);
3020 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3021 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3022 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3023 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3024 int sqlite3Reprepare(Vdbe*);
3025 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3026 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3027 int sqlite3TempInMemory(const sqlite3*);
3028 VTable *sqlite3GetVTable(sqlite3*, Table*);
3029 const char *sqlite3JournalModename(int);
3030 int sqlite3Checkpoint(sqlite3*, int);
3031 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3032 
3033 /* Declarations for functions in fkey.c. All of these are replaced by
3034 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3035 ** key functionality is available. If OMIT_TRIGGER is defined but
3036 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3037 ** this case foreign keys are parsed, but no other functionality is
3038 ** provided (enforcement of FK constraints requires the triggers sub-system).
3039 */
3040 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3041   void sqlite3FkCheck(Parse*, Table*, int, int);
3042   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3043   void sqlite3FkActions(Parse*, Table*, ExprList*, int);
3044   int sqlite3FkRequired(Parse*, Table*, int*, int);
3045   u32 sqlite3FkOldmask(Parse*, Table*);
3046   FKey *sqlite3FkReferences(Table *);
3047 #else
3048   #define sqlite3FkActions(a,b,c,d)
3049   #define sqlite3FkCheck(a,b,c,d)
3050   #define sqlite3FkDropTable(a,b,c)
3051   #define sqlite3FkOldmask(a,b)      0
3052   #define sqlite3FkRequired(a,b,c,d) 0
3053 #endif
3054 #ifndef SQLITE_OMIT_FOREIGN_KEY
3055   void sqlite3FkDelete(sqlite3 *, Table*);
3056 #else
3057   #define sqlite3FkDelete(a,b)
3058 #endif
3059 
3060 
3061 /*
3062 ** Available fault injectors.  Should be numbered beginning with 0.
3063 */
3064 #define SQLITE_FAULTINJECTOR_MALLOC     0
3065 #define SQLITE_FAULTINJECTOR_COUNT      1
3066 
3067 /*
3068 ** The interface to the code in fault.c used for identifying "benign"
3069 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3070 ** is not defined.
3071 */
3072 #ifndef SQLITE_OMIT_BUILTIN_TEST
3073   void sqlite3BeginBenignMalloc(void);
3074   void sqlite3EndBenignMalloc(void);
3075 #else
3076   #define sqlite3BeginBenignMalloc()
3077   #define sqlite3EndBenignMalloc()
3078 #endif
3079 
3080 #define IN_INDEX_ROWID           1
3081 #define IN_INDEX_EPH             2
3082 #define IN_INDEX_INDEX           3
3083 int sqlite3FindInIndex(Parse *, Expr *, int*);
3084 
3085 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3086   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3087   int sqlite3JournalSize(sqlite3_vfs *);
3088   int sqlite3JournalCreate(sqlite3_file *);
3089 #else
3090   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
3091 #endif
3092 
3093 void sqlite3MemJournalOpen(sqlite3_file *);
3094 int sqlite3MemJournalSize(void);
3095 int sqlite3IsMemJournal(sqlite3_file *);
3096 
3097 #if SQLITE_MAX_EXPR_DEPTH>0
3098   void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
3099   int sqlite3SelectExprHeight(Select *);
3100   int sqlite3ExprCheckHeight(Parse*, int);
3101 #else
3102   #define sqlite3ExprSetHeight(x,y)
3103   #define sqlite3SelectExprHeight(x) 0
3104   #define sqlite3ExprCheckHeight(x,y)
3105 #endif
3106 
3107 u32 sqlite3Get4byte(const u8*);
3108 void sqlite3Put4byte(u8*, u32);
3109 
3110 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
3111   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
3112   void sqlite3ConnectionUnlocked(sqlite3 *db);
3113   void sqlite3ConnectionClosed(sqlite3 *db);
3114 #else
3115   #define sqlite3ConnectionBlocked(x,y)
3116   #define sqlite3ConnectionUnlocked(x)
3117   #define sqlite3ConnectionClosed(x)
3118 #endif
3119 
3120 #ifdef SQLITE_DEBUG
3121   void sqlite3ParserTrace(FILE*, char *);
3122 #endif
3123 
3124 /*
3125 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
3126 ** sqlite3IoTrace is a pointer to a printf-like routine used to
3127 ** print I/O tracing messages.
3128 */
3129 #ifdef SQLITE_ENABLE_IOTRACE
3130 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3131   void sqlite3VdbeIOTraceSql(Vdbe*);
3132 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
3133 #else
3134 # define IOTRACE(A)
3135 # define sqlite3VdbeIOTraceSql(X)
3136 #endif
3137 
3138 /*
3139 ** These routines are available for the mem2.c debugging memory allocator
3140 ** only.  They are used to verify that different "types" of memory
3141 ** allocations are properly tracked by the system.
3142 **
3143 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
3144 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
3145 ** a single bit set.
3146 **
3147 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
3148 ** argument match the type set by the previous sqlite3MemdebugSetType().
3149 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
3150 **
3151 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
3152 ** argument match the type set by the previous sqlite3MemdebugSetType().
3153 **
3154 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
3155 ** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
3156 ** it might have been allocated by lookaside, except the allocation was
3157 ** too large or lookaside was already full.  It is important to verify
3158 ** that allocations that might have been satisfied by lookaside are not
3159 ** passed back to non-lookaside free() routines.  Asserts such as the
3160 ** example above are placed on the non-lookaside free() routines to verify
3161 ** this constraint.
3162 **
3163 ** All of this is no-op for a production build.  It only comes into
3164 ** play when the SQLITE_MEMDEBUG compile-time option is used.
3165 */
3166 #ifdef SQLITE_MEMDEBUG
3167   void sqlite3MemdebugSetType(void*,u8);
3168   int sqlite3MemdebugHasType(void*,u8);
3169   int sqlite3MemdebugNoType(void*,u8);
3170 #else
3171 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
3172 # define sqlite3MemdebugHasType(X,Y)  1
3173 # define sqlite3MemdebugNoType(X,Y)   1
3174 #endif
3175 #define MEMTYPE_HEAP       0x01  /* General heap allocations */
3176 #define MEMTYPE_LOOKASIDE  0x02  /* Might have been lookaside memory */
3177 #define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
3178 #define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
3179 #define MEMTYPE_DB         0x10  /* Uses sqlite3DbMalloc, not sqlite_malloc */
3180 
3181 #endif /* _SQLITEINT_H_ */
3182