xref: /sqlite-3.40.0/src/sqliteInt.h (revision ef5ecb41)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 ** @(#) $Id: sqliteInt.h,v 1.281 2004/06/10 14:01:08 danielk1977 Exp $
15 */
16 #include "config.h"
17 #include "sqlite3.h"
18 #include "hash.h"
19 #include "parse.h"
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <string.h>
23 #include <assert.h>
24 
25 /*
26 ** The maximum number of in-memory pages to use for the main database
27 ** table and for temporary tables.
28 */
29 #define MAX_PAGES   2000
30 #define TEMP_PAGES   500
31 
32 /*
33 ** If the following macro is set to 1, then NULL values are considered
34 ** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT
35 ** compound queries.  No other SQL database engine (among those tested)
36 ** works this way except for OCELOT.  But the SQL92 spec implies that
37 ** this is how things should work.
38 **
39 ** If the following macro is set to 0, then NULLs are indistinct for
40 ** SELECT DISTINCT and for UNION.
41 */
42 #define NULL_ALWAYS_DISTINCT 0
43 
44 /*
45 ** If the following macro is set to 1, then NULL values are considered
46 ** distinct when determining whether or not two entries are the same
47 ** in a UNIQUE index.  This is the way PostgreSQL, Oracle, DB2, MySQL,
48 ** OCELOT, and Firebird all work.  The SQL92 spec explicitly says this
49 ** is the way things are suppose to work.
50 **
51 ** If the following macro is set to 0, the NULLs are indistinct for
52 ** a UNIQUE index.  In this mode, you can only have a single NULL entry
53 ** for a column declared UNIQUE.  This is the way Informix and SQL Server
54 ** work.
55 */
56 #define NULL_DISTINCT_FOR_UNIQUE 1
57 
58 /*
59 ** The maximum number of attached databases.  This must be at least 2
60 ** in order to support the main database file (0) and the file used to
61 ** hold temporary tables (1).  And it must be less than 32 because
62 ** we use a bitmask of databases with a u32 in places (for example
63 ** the Parse.cookieMask field).
64 */
65 #define MAX_ATTACHED 10
66 
67 /*
68 ** The next macro is used to determine where TEMP tables and indices
69 ** are stored.  Possible values:
70 **
71 **   0    Always use a temporary files
72 **   1    Use a file unless overridden by "PRAGMA temp_store"
73 **   2    Use memory unless overridden by "PRAGMA temp_store"
74 **   3    Always use memory
75 */
76 #ifndef TEMP_STORE
77 # define TEMP_STORE 1
78 #endif
79 
80 /*
81 ** When building SQLite for embedded systems where memory is scarce,
82 ** you can define one or more of the following macros to omit extra
83 ** features of the library and thus keep the size of the library to
84 ** a minimum.
85 */
86 /* #define SQLITE_OMIT_AUTHORIZATION  1 */
87 /* #define SQLITE_OMIT_INMEMORYDB     1 */
88 /* #define SQLITE_OMIT_VACUUM         1 */
89 /* #define SQLITE_OMIT_DATETIME_FUNCS 1 */
90 /* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */
91 
92 /*
93 ** Integers of known sizes.  These typedefs might change for architectures
94 ** where the sizes very.  Preprocessor macros are available so that the
95 ** types can be conveniently redefined at compile-type.  Like this:
96 **
97 **         cc '-DUINTPTR_TYPE=long long int' ...
98 */
99 #ifndef INT64_TYPE
100 # define INT64_TYPE long long int
101 #endif
102 #ifndef UINT64_TYPE
103 # define UINT64_TYPE unsigned long long int
104 #endif
105 #ifndef UINT32_TYPE
106 # define UINT32_TYPE unsigned int
107 #endif
108 #ifndef UINT16_TYPE
109 # define UINT16_TYPE unsigned short int
110 #endif
111 #ifndef UINT8_TYPE
112 # define UINT8_TYPE unsigned char
113 #endif
114 #ifndef INT8_TYPE
115 # define INT8_TYPE signed char
116 #endif
117 #ifndef INTPTR_TYPE
118 # if SQLITE_PTR_SZ==4
119 #   define INTPTR_TYPE int
120 # else
121 #   define INTPTR_TYPE long long
122 # endif
123 #endif
124 typedef INT64_TYPE i64;            /* 8-byte signed integer */
125 typedef UINT64_TYPE u64;           /* 8-byte unsigned integer */
126 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
127 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
128 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
129 typedef UINT8_TYPE i8;             /* 1-byte signed integer */
130 typedef INTPTR_TYPE ptr;           /* Big enough to hold a pointer */
131 typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */
132 
133 /*
134 ** Macros to determine whether the machine is big or little endian,
135 ** evaluated at runtime.
136 */
137 extern const int sqlite3one;
138 #define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
139 #define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
140 
141 /*
142 ** Defer sourcing vdbe.h until after the "u8" typedef is defined.
143 */
144 #include "vdbe.h"
145 #include "btree.h"
146 
147 /*
148 ** Most C compilers these days recognize "long double", don't they?
149 ** Just in case we encounter one that does not, we will create a macro
150 ** for long double so that it can be easily changed to just "double".
151 */
152 #ifndef LONGDOUBLE_TYPE
153 # define LONGDOUBLE_TYPE long double
154 #endif
155 
156 /*
157 ** This macro casts a pointer to an integer.  Useful for doing
158 ** pointer arithmetic.
159 */
160 #define Addr(X)  ((uptr)X)
161 
162 /*
163 ** The maximum number of bytes of data that can be put into a single
164 ** row of a single table.  The upper bound on this limit is
165 ** 9223372036854775808 bytes (or 2**63).  We have arbitrarily set the
166 ** limit to just 1MB here because the overflow page chain is inefficient
167 ** for really big records and we want to discourage people from thinking that
168 ** multi-megabyte records are OK.  If your needs are different, you can
169 ** change this define and recompile to increase or decrease the record
170 ** size.
171 */
172 #define MAX_BYTES_PER_ROW  1048576
173 
174 /*
175 ** If memory allocation problems are found, recompile with
176 **
177 **      -DSQLITE_DEBUG=1
178 **
179 ** to enable some sanity checking on malloc() and free().  To
180 ** check for memory leaks, recompile with
181 **
182 **      -DSQLITE_DEBUG=2
183 **
184 ** and a line of text will be written to standard error for
185 ** each malloc() and free().  This output can be analyzed
186 ** by an AWK script to determine if there are any leaks.
187 */
188 #ifdef SQLITE_DEBUG
189 # define sqliteMalloc(X)    sqlite3Malloc_(X,1,__FILE__,__LINE__)
190 # define sqliteMallocRaw(X) sqlite3Malloc_(X,0,__FILE__,__LINE__)
191 # define sqliteFree(X)      sqlite3Free_(X,__FILE__,__LINE__)
192 # define sqliteRealloc(X,Y) sqlite3Realloc_(X,Y,__FILE__,__LINE__)
193 # define sqliteStrDup(X)    sqlite3StrDup_(X,__FILE__,__LINE__)
194 # define sqliteStrNDup(X,Y) sqlite3StrNDup_(X,Y,__FILE__,__LINE__)
195   void sqlite3StrRealloc(char**);
196 #else
197 # define sqlite3Realloc_(X,Y) sqliteRealloc(X,Y)
198 # define sqlite3StrRealloc(X)
199 #endif
200 
201 /*
202 ** This variable gets set if malloc() ever fails.  After it gets set,
203 ** the SQLite library shuts down permanently.
204 */
205 extern int sqlite3_malloc_failed;
206 
207 /*
208 ** The following global variables are used for testing and debugging
209 ** only.  They only work if SQLITE_DEBUG is defined.
210 */
211 #ifdef SQLITE_DEBUG
212 extern int sqlite3_nMalloc;       /* Number of sqliteMalloc() calls */
213 extern int sqlite3_nFree;         /* Number of sqliteFree() calls */
214 extern int sqlite3_iMallocFail;   /* Fail sqliteMalloc() after this many calls */
215 #endif
216 
217 /*
218 ** Name of the master database table.  The master database table
219 ** is a special table that holds the names and attributes of all
220 ** user tables and indices.
221 */
222 #define MASTER_NAME       "sqlite_master"
223 #define TEMP_MASTER_NAME  "sqlite_temp_master"
224 
225 /*
226 ** The root-page of the master database table.
227 */
228 #define MASTER_ROOT       1
229 
230 /*
231 ** The name of the schema table.
232 */
233 #define SCHEMA_TABLE(x)  (x==1?TEMP_MASTER_NAME:MASTER_NAME)
234 
235 /*
236 ** A convenience macro that returns the number of elements in
237 ** an array.
238 */
239 #define ArraySize(X)    (sizeof(X)/sizeof(X[0]))
240 
241 /*
242 ** Forward references to structures
243 */
244 typedef struct Column Column;
245 typedef struct Table Table;
246 typedef struct Index Index;
247 typedef struct Instruction Instruction;
248 typedef struct Expr Expr;
249 typedef struct ExprList ExprList;
250 typedef struct Parse Parse;
251 typedef struct Token Token;
252 typedef struct IdList IdList;
253 typedef struct SrcList SrcList;
254 typedef struct WhereInfo WhereInfo;
255 typedef struct WhereLevel WhereLevel;
256 typedef struct Select Select;
257 typedef struct AggExpr AggExpr;
258 typedef struct FuncDef FuncDef;
259 typedef struct Trigger Trigger;
260 typedef struct TriggerStep TriggerStep;
261 typedef struct TriggerStack TriggerStack;
262 typedef struct FKey FKey;
263 typedef struct Db Db;
264 typedef struct AuthContext AuthContext;
265 typedef struct KeyClass KeyClass;
266 typedef struct CollSeq CollSeq;
267 typedef struct KeyInfo KeyInfo;
268 typedef struct BusyHandler BusyHandler;
269 
270 
271 /*
272 ** Each database file to be accessed by the system is an instance
273 ** of the following structure.  There are normally two of these structures
274 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
275 ** aDb[1] is the database file used to hold temporary tables.  Additional
276 ** databases may be attached.
277 */
278 struct Db {
279   char *zName;         /* Name of this database */
280   Btree *pBt;          /* The B*Tree structure for this database file */
281   int schema_cookie;   /* Database schema version number for this file */
282   Hash tblHash;        /* All tables indexed by name */
283   Hash idxHash;        /* All (named) indices indexed by name */
284   Hash trigHash;       /* All triggers indexed by name */
285   Hash aFKey;          /* Foreign keys indexed by to-table */
286   u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
287   u16 flags;           /* Flags associated with this database */
288   void *pAux;          /* Auxiliary data.  Usually NULL */
289   void (*xFreeAux)(void*);  /* Routine to free pAux */
290 };
291 
292 /*
293 ** These macros can be used to test, set, or clear bits in the
294 ** Db.flags field.
295 */
296 #define DbHasProperty(D,I,P)     (((D)->aDb[I].flags&(P))==(P))
297 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].flags&(P))!=0)
298 #define DbSetProperty(D,I,P)     (D)->aDb[I].flags|=(P)
299 #define DbClearProperty(D,I,P)   (D)->aDb[I].flags&=~(P)
300 
301 /*
302 ** Allowed values for the DB.flags field.
303 **
304 ** The DB_Locked flag is set when the first OP_Transaction or OP_Checkpoint
305 ** opcode is emitted for a database.  This prevents multiple occurances
306 ** of those opcodes for the same database in the same program.  Similarly,
307 ** the DB_Cookie flag is set when the OP_VerifyCookie opcode is emitted,
308 ** and prevents duplicate OP_VerifyCookies from taking up space and slowing
309 ** down execution.
310 **
311 ** The DB_SchemaLoaded flag is set after the database schema has been
312 ** read into internal hash tables.
313 **
314 ** DB_UnresetViews means that one or more views have column names that
315 ** have been filled out.  If the schema changes, these column names might
316 ** changes and so the view will need to be reset.
317 */
318 #define DB_Locked          0x0001  /* OP_Transaction opcode has been emitted */
319 #define DB_Cookie          0x0002  /* OP_VerifyCookie opcode has been emiited */
320 #define DB_SchemaLoaded    0x0004  /* The schema has been loaded */
321 #define DB_UnresetViews    0x0008  /* Some views have defined column names */
322 
323 /*
324 ** Possible values for the Db.textEnc field.
325 */
326 #define TEXT_Utf8          1
327 #define TEXT_Utf16le       2
328 #define TEXT_Utf16be       3
329 #define TEXT_Utf16         (SQLITE_BIGENDIAN?TEXT_Utf16be:TEXT_Utf16le)
330 
331 /*
332 ** An instance of the following structure is used to store the busy-handler
333 ** callback for a given sqlite handle.
334 **
335 ** The sqlite.busyHandler member of the sqlite struct contains the busy
336 ** callback for the database handle. Each pager opened via the sqlite
337 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
338 ** callback is currently invoked only from within pager.c.
339 */
340 struct BusyHandler {
341   int (*xFunc)(void *,const char*,int);  /* The busy callback */
342   void *pArg;                            /* First arg to busy callback */
343 };
344 
345 /*
346 ** Each database is an instance of the following structure.
347 **
348 ** The sqlite.temp_store determines where temporary database files
349 ** are stored.  If 1, then a file is created to hold those tables.  If
350 ** 2, then they are held in memory.  0 means use the default value in
351 ** the TEMP_STORE macro.
352 **
353 ** The sqlite.lastRowid records the last insert rowid generated by an
354 ** insert statement.  Inserts on views do not affect its value.  Each
355 ** trigger has its own context, so that lastRowid can be updated inside
356 ** triggers as usual.  The previous value will be restored once the trigger
357 ** exits.  Upon entering a before or instead of trigger, lastRowid is no
358 ** longer (since after version 2.8.12) reset to -1.
359 **
360 ** The sqlite.nChange does not count changes within triggers and keeps no
361 ** context.  It is reset at start of sqlite3_exec.
362 ** The sqlite.lsChange represents the number of changes made by the last
363 ** insert, update, or delete statement.  It remains constant throughout the
364 ** length of a statement and is then updated by OP_SetCounts.  It keeps a
365 ** context stack just like lastRowid so that the count of changes
366 ** within a trigger is not seen outside the trigger.  Changes to views do not
367 ** affect the value of lsChange.
368 ** The sqlite.csChange keeps track of the number of current changes (since
369 ** the last statement) and is used to update sqlite_lsChange.
370 **
371 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
372 ** store the most recent error code and, if applicable, string. The
373 ** internal function sqlite3Error() is used to set these variables
374 ** consistently.
375 */
376 struct sqlite {
377   int nDb;                      /* Number of backends currently in use */
378   Db *aDb;                      /* All backends */
379   Db aDbStatic[2];              /* Static space for the 2 default backends */
380   int flags;                    /* Miscellanous flags. See below */
381   u8 file_format;               /* What file format version is this database? */
382   u8 safety_level;              /* How aggressive at synching data to disk */
383   u8 want_to_close;             /* Close after all VDBEs are deallocated */
384   u8 temp_store;                /* 1=file, 2=memory, 0=compile-time default */
385   int next_cookie;              /* Next value of aDb[0].schema_cookie */
386   int cache_size;               /* Number of pages to use in the cache */
387   int nTable;                   /* Number of tables in the database */
388   BusyHandler busyHandler;      /* Busy callback */
389   void *pCommitArg;             /* Argument to xCommitCallback() */
390   int (*xCommitCallback)(void*);/* Invoked at every commit. */
391   Hash aFunc;                   /* All functions that can be in SQL exprs */
392   Hash aCollSeq;                /* All collating sequences */
393   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
394   i64 lastRowid;                /* ROWID of most recent insert (see above) */
395   i64 priorNewRowid;            /* Last randomly generated ROWID */
396   int magic;                    /* Magic number for detect library misuse */
397   int nChange;                  /* Number of rows changed (see above) */
398   int lsChange;                 /* Last statement change count (see above) */
399   int csChange;                 /* Current statement change count (see above) */
400   struct sqlite3InitInfo {       /* Information used during initialization */
401     int iDb;                       /* When back is being initialized */
402     int newTnum;                   /* Rootpage of table being initialized */
403     u8 busy;                       /* TRUE if currently initializing */
404   } init;
405   struct Vdbe *pVdbe;           /* List of active virtual machines */
406   int activeVdbeCnt;            /* Number of vdbes currently executing */
407   void (*xTrace)(void*,const char*);     /* Trace function */
408   void *pTraceArg;                       /* Argument to the trace function */
409 #ifndef SQLITE_OMIT_AUTHORIZATION
410   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
411                                 /* Access authorization function */
412   void *pAuthArg;               /* 1st argument to the access auth function */
413 #endif
414 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
415   int (*xProgress)(void *);     /* The progress callback */
416   void *pProgressArg;           /* Argument to the progress callback */
417   int nProgressOps;             /* Number of opcodes for progress callback */
418 #endif
419 
420   int errCode;                  /* Most recent error code (SQLITE_*) */
421   char *zErrMsg;                /* Most recent error message (UTF-8 encoded) */
422   void *zErrMsg16;              /* Most recent error message (UTF-16 encoded) */
423   u8 enc;                       /* Text encoding for this database. */
424   u8 autoCommit;                /* The auto-commit flag. */
425   int nMaster;                  /* Length of master journal name. -1=unknown */
426   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
427   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
428   void *pCollNeededArg;
429 };
430 
431 /*
432 ** Possible values for the sqlite.flags and or Db.flags fields.
433 **
434 ** On sqlite.flags, the SQLITE_InTrans value means that we have
435 ** executed a BEGIN.  On Db.flags, SQLITE_InTrans means a statement
436 ** transaction is active on that particular database file.
437 */
438 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
439 #define SQLITE_Initialized    0x00000002  /* True after initialization */
440 #define SQLITE_Interrupt      0x00000004  /* Cancel current operation */
441 #define SQLITE_InTrans        0x00000008  /* True if in a transaction */
442 #define SQLITE_InternChanges  0x00000010  /* Uncommitted Hash table changes */
443 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
444 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
445 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
446                                           /*   DELETE, or UPDATE and return */
447                                           /*   the count using a callback. */
448 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
449                                           /*   result set is empty */
450 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
451 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
452 
453 /*
454 ** Possible values for the sqlite.magic field.
455 ** The numbers are obtained at random and have no special meaning, other
456 ** than being distinct from one another.
457 */
458 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
459 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
460 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
461 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
462 
463 /*
464 ** Each SQL function is defined by an instance of the following
465 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
466 ** hash table.  When multiple functions have the same name, the hash table
467 ** points to a linked list of these structures.
468 */
469 struct FuncDef {
470   char *zName;         /* SQL name of the function */
471   int nArg;            /* Number of arguments.  -1 means unlimited */
472   int iPrefEnc;        /* Preferred text encoding */
473   void *pUserData;     /* User data parameter */
474   FuncDef *pNext;      /* Next function with same name */
475   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
476   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
477   void (*xFinalize)(sqlite3_context*);                /* Aggregate finializer */
478 };
479 
480 /*
481 ** information about each column of an SQL table is held in an instance
482 ** of this structure.
483 */
484 struct Column {
485   char *zName;     /* Name of this column */
486   char *zDflt;     /* Default value of this column */
487   char *zType;     /* Data type for this column */
488   CollSeq *pColl;  /* Collating sequence.  If NULL, use the default */
489   u8 notNull;      /* True if there is a NOT NULL constraint */
490   u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
491   char affinity;   /* One of the SQLITE_AFF_... values */
492   u8 dottedName;   /* True if zName contains a "." character */
493 };
494 
495 /*
496 ** A "Collating Sequence" is defined by an instance of the following
497 ** structure. Conceptually, a collating sequence consists of a name and
498 ** a comparison routine that defines the order of that sequence.
499 **
500 ** There may two seperate implementations of the collation function, one
501 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
502 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
503 ** native byte order. When a collation sequence is invoked, SQLite selects
504 ** the version that will require the least expensive encoding
505 ** transalations, if any.
506 **
507 ** The CollSeq.pUser member variable is an extra parameter that passed in
508 ** as the first argument to the UTF-8 comparison function, xCmp.
509 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
510 ** xCmp16.
511 **
512 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
513 ** collating sequence is undefined.  Indices built on an undefined
514 ** collating sequence may not be read or written.
515 */
516 struct CollSeq {
517   char *zName;         /* Name of the collating sequence, UTF-8 encoded */
518   u8 enc;              /* Text encoding handled by xCmp() */
519   void *pUser;         /* First argument to xCmp() */
520   int (*xCmp)(void*,int, const void*, int, const void*);
521 };
522 
523 /*
524 ** A sort order can be either ASC or DESC.
525 */
526 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
527 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
528 
529 /*
530 ** Column affinity types.
531 */
532 #define SQLITE_AFF_INTEGER  'i'
533 #define SQLITE_AFF_NUMERIC  'n'
534 #define SQLITE_AFF_TEXT     't'
535 #define SQLITE_AFF_NONE     'o'
536 
537 
538 /*
539 ** Each SQL table is represented in memory by an instance of the
540 ** following structure.
541 **
542 ** Table.zName is the name of the table.  The case of the original
543 ** CREATE TABLE statement is stored, but case is not significant for
544 ** comparisons.
545 **
546 ** Table.nCol is the number of columns in this table.  Table.aCol is a
547 ** pointer to an array of Column structures, one for each column.
548 **
549 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
550 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
551 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
552 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
553 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
554 ** is generated for each row of the table.  Table.hasPrimKey is true if
555 ** the table has any PRIMARY KEY, INTEGER or otherwise.
556 **
557 ** Table.tnum is the page number for the root BTree page of the table in the
558 ** database file.  If Table.iDb is the index of the database table backend
559 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
560 ** holds temporary tables and indices.  If Table.isTransient
561 ** is true, then the table is stored in a file that is automatically deleted
562 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
563 ** refers VDBE cursor number that holds the table open, not to the root
564 ** page number.  Transient tables are used to hold the results of a
565 ** sub-query that appears instead of a real table name in the FROM clause
566 ** of a SELECT statement.
567 */
568 struct Table {
569   char *zName;     /* Name of the table */
570   int nCol;        /* Number of columns in this table */
571   Column *aCol;    /* Information about each column */
572   int iPKey;       /* If not less then 0, use aCol[iPKey] as the primary key */
573   Index *pIndex;   /* List of SQL indexes on this table. */
574   int tnum;        /* Root BTree node for this table (see note above) */
575   Select *pSelect; /* NULL for tables.  Points to definition if a view. */
576   u8 readOnly;     /* True if this table should not be written by the user */
577   u8 iDb;          /* Index into sqlite.aDb[] of the backend for this table */
578   u8 isTransient;  /* True if automatically deleted when VDBE finishes */
579   u8 hasPrimKey;   /* True if there exists a primary key */
580   u8 keyConf;      /* What to do in case of uniqueness conflict on iPKey */
581   Trigger *pTrigger; /* List of SQL triggers on this table */
582   FKey *pFKey;       /* Linked list of all foreign keys in this table */
583   char *zColAff;     /* String defining the affinity of each column */
584 };
585 
586 /*
587 ** Each foreign key constraint is an instance of the following structure.
588 **
589 ** A foreign key is associated with two tables.  The "from" table is
590 ** the table that contains the REFERENCES clause that creates the foreign
591 ** key.  The "to" table is the table that is named in the REFERENCES clause.
592 ** Consider this example:
593 **
594 **     CREATE TABLE ex1(
595 **       a INTEGER PRIMARY KEY,
596 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
597 **     );
598 **
599 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
600 **
601 ** Each REFERENCES clause generates an instance of the following structure
602 ** which is attached to the from-table.  The to-table need not exist when
603 ** the from-table is created.  The existance of the to-table is not checked
604 ** until an attempt is made to insert data into the from-table.
605 **
606 ** The sqlite.aFKey hash table stores pointers to this structure
607 ** given the name of a to-table.  For each to-table, all foreign keys
608 ** associated with that table are on a linked list using the FKey.pNextTo
609 ** field.
610 */
611 struct FKey {
612   Table *pFrom;     /* The table that constains the REFERENCES clause */
613   FKey *pNextFrom;  /* Next foreign key in pFrom */
614   char *zTo;        /* Name of table that the key points to */
615   FKey *pNextTo;    /* Next foreign key that points to zTo */
616   int nCol;         /* Number of columns in this key */
617   struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
618     int iFrom;         /* Index of column in pFrom */
619     char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
620   } *aCol;          /* One entry for each of nCol column s */
621   u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
622   u8 updateConf;    /* How to resolve conflicts that occur on UPDATE */
623   u8 deleteConf;    /* How to resolve conflicts that occur on DELETE */
624   u8 insertConf;    /* How to resolve conflicts that occur on INSERT */
625 };
626 
627 /*
628 ** SQLite supports many different ways to resolve a contraint
629 ** error.  ROLLBACK processing means that a constraint violation
630 ** causes the operation in process to fail and for the current transaction
631 ** to be rolled back.  ABORT processing means the operation in process
632 ** fails and any prior changes from that one operation are backed out,
633 ** but the transaction is not rolled back.  FAIL processing means that
634 ** the operation in progress stops and returns an error code.  But prior
635 ** changes due to the same operation are not backed out and no rollback
636 ** occurs.  IGNORE means that the particular row that caused the constraint
637 ** error is not inserted or updated.  Processing continues and no error
638 ** is returned.  REPLACE means that preexisting database rows that caused
639 ** a UNIQUE constraint violation are removed so that the new insert or
640 ** update can proceed.  Processing continues and no error is reported.
641 **
642 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
643 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
644 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
645 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
646 ** referenced table row is propagated into the row that holds the
647 ** foreign key.
648 **
649 ** The following symbolic values are used to record which type
650 ** of action to take.
651 */
652 #define OE_None     0   /* There is no constraint to check */
653 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
654 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
655 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
656 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
657 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
658 
659 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
660 #define OE_SetNull  7   /* Set the foreign key value to NULL */
661 #define OE_SetDflt  8   /* Set the foreign key value to its default */
662 #define OE_Cascade  9   /* Cascade the changes */
663 
664 #define OE_Default  99  /* Do whatever the default action is */
665 
666 
667 /*
668 ** An instance of the following structure is passed as the first
669 ** argument to sqlite3VdbeKeyCompare and is used to control the
670 ** comparison of the two index keys.
671 **
672 ** If the KeyInfo.incrKey value is true and the comparison would
673 ** otherwise be equal, then return a result as if the second key larger.
674 */
675 struct KeyInfo {
676   u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
677   u8 incrKey;         /* Increase 2nd key by epsilon before comparison */
678   int nField;         /* Number of entries in aColl[] */
679   u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
680   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
681 };
682 
683 /*
684 ** Each SQL index is represented in memory by an
685 ** instance of the following structure.
686 **
687 ** The columns of the table that are to be indexed are described
688 ** by the aiColumn[] field of this structure.  For example, suppose
689 ** we have the following table and index:
690 **
691 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
692 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
693 **
694 ** In the Table structure describing Ex1, nCol==3 because there are
695 ** three columns in the table.  In the Index structure describing
696 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
697 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
698 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
699 ** The second column to be indexed (c1) has an index of 0 in
700 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
701 **
702 ** The Index.onError field determines whether or not the indexed columns
703 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
704 ** it means this is not a unique index.  Otherwise it is a unique index
705 ** and the value of Index.onError indicate the which conflict resolution
706 ** algorithm to employ whenever an attempt is made to insert a non-unique
707 ** element.
708 */
709 struct Index {
710   char *zName;     /* Name of this index */
711   int nColumn;     /* Number of columns in the table used by this index */
712   int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
713   Table *pTable;   /* The SQL table being indexed */
714   int tnum;        /* Page containing root of this index in database file */
715   u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
716   u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
717   u8 iDb;          /* Index in sqlite.aDb[] of where this index is stored */
718   char *zColAff;   /* String defining the affinity of each column */
719   Index *pNext;    /* The next index associated with the same table */
720   KeyInfo keyInfo; /* Info on how to order keys.  MUST BE LAST */
721 };
722 
723 /*
724 ** Each token coming out of the lexer is an instance of
725 ** this structure.  Tokens are also used as part of an expression.
726 **
727 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
728 ** may contain random values.  Do not make any assuptions about Token.dyn
729 ** and Token.n when Token.z==0.
730 */
731 struct Token {
732   const char *z;      /* Text of the token.  Not NULL-terminated! */
733   unsigned dyn  : 1;  /* True for malloced memory, false for static */
734   unsigned n    : 31; /* Number of characters in this token */
735 };
736 
737 /*
738 ** Each node of an expression in the parse tree is an instance
739 ** of this structure.
740 **
741 ** Expr.op is the opcode.  The integer parser token codes are reused
742 ** as opcodes here.  For example, the parser defines TK_GE to be an integer
743 ** code representing the ">=" operator.  This same integer code is reused
744 ** to represent the greater-than-or-equal-to operator in the expression
745 ** tree.
746 **
747 ** Expr.pRight and Expr.pLeft are subexpressions.  Expr.pList is a list
748 ** of argument if the expression is a function.
749 **
750 ** Expr.token is the operator token for this node.  For some expressions
751 ** that have subexpressions, Expr.token can be the complete text that gave
752 ** rise to the Expr.  In the latter case, the token is marked as being
753 ** a compound token.
754 **
755 ** An expression of the form ID or ID.ID refers to a column in a table.
756 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
757 ** the integer cursor number of a VDBE cursor pointing to that table and
758 ** Expr.iColumn is the column number for the specific column.  If the
759 ** expression is used as a result in an aggregate SELECT, then the
760 ** value is also stored in the Expr.iAgg column in the aggregate so that
761 ** it can be accessed after all aggregates are computed.
762 **
763 ** If the expression is a function, the Expr.iTable is an integer code
764 ** representing which function.  If the expression is an unbound variable
765 ** marker (a question mark character '?' in the original SQL) then the
766 ** Expr.iTable holds the index number for that variable.
767 **
768 ** The Expr.pSelect field points to a SELECT statement.  The SELECT might
769 ** be the right operand of an IN operator.  Or, if a scalar SELECT appears
770 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
771 ** operand.
772 */
773 struct Expr {
774   u8 op;                 /* Operation performed by this node */
775   char affinity;         /* The affinity of the column or 0 if not a column */
776   CollSeq *pColl;        /* The collation type of the column or 0 */
777   u8 iDb;                /* Database referenced by this expression */
778   u8 flags;              /* Various flags.  See below */
779   Expr *pLeft, *pRight;  /* Left and right subnodes */
780   ExprList *pList;       /* A list of expressions used as function arguments
781                          ** or in "<expr> IN (<expr-list)" */
782   Token token;           /* An operand token */
783   Token span;            /* Complete text of the expression */
784   int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
785                          ** iColumn-th field of the iTable-th table. */
786   int iAgg;              /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull
787                          ** result from the iAgg-th element of the aggregator */
788   Select *pSelect;       /* When the expression is a sub-select.  Also the
789                          ** right side of "<expr> IN (<select>)" */
790 };
791 
792 /*
793 ** The following are the meanings of bits in the Expr.flags field.
794 */
795 #define EP_FromJoin     0x0001  /* Originated in ON or USING clause of a join */
796 
797 /*
798 ** These macros can be used to test, set, or clear bits in the
799 ** Expr.flags field.
800 */
801 #define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
802 #define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
803 #define ExprSetProperty(E,P)     (E)->flags|=(P)
804 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
805 
806 /*
807 ** A list of expressions.  Each expression may optionally have a
808 ** name.  An expr/name combination can be used in several ways, such
809 ** as the list of "expr AS ID" fields following a "SELECT" or in the
810 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
811 ** also be used as the argument to a function, in which case the a.zName
812 ** field is not used.
813 */
814 struct ExprList {
815   int nExpr;             /* Number of expressions on the list */
816   int nAlloc;            /* Number of entries allocated below */
817   struct ExprList_item {
818     Expr *pExpr;           /* The list of expressions */
819     char *zName;           /* Token associated with this expression */
820     u8 sortOrder;          /* 1 for DESC or 0 for ASC */
821     u8 isAgg;              /* True if this is an aggregate like count(*) */
822     u8 done;               /* A flag to indicate when processing is finished */
823   } *a;                  /* One entry for each expression */
824 };
825 
826 /*
827 ** An instance of this structure can hold a simple list of identifiers,
828 ** such as the list "a,b,c" in the following statements:
829 **
830 **      INSERT INTO t(a,b,c) VALUES ...;
831 **      CREATE INDEX idx ON t(a,b,c);
832 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
833 **
834 ** The IdList.a.idx field is used when the IdList represents the list of
835 ** column names after a table name in an INSERT statement.  In the statement
836 **
837 **     INSERT INTO t(a,b,c) ...
838 **
839 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
840 */
841 struct IdList {
842   int nId;         /* Number of identifiers on the list */
843   int nAlloc;      /* Number of entries allocated for a[] below */
844   struct IdList_item {
845     char *zName;      /* Name of the identifier */
846     int idx;          /* Index in some Table.aCol[] of a column named zName */
847   } *a;
848 };
849 
850 /*
851 ** The following structure describes the FROM clause of a SELECT statement.
852 ** Each table or subquery in the FROM clause is a separate element of
853 ** the SrcList.a[] array.
854 **
855 ** With the addition of multiple database support, the following structure
856 ** can also be used to describe a particular table such as the table that
857 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
858 ** such a table must be a simple name: ID.  But in SQLite, the table can
859 ** now be identified by a database name, a dot, then the table name: ID.ID.
860 */
861 struct SrcList {
862   u16 nSrc;        /* Number of tables or subqueries in the FROM clause */
863   u16 nAlloc;      /* Number of entries allocated in a[] below */
864   struct SrcList_item {
865     char *zDatabase;  /* Name of database holding this table */
866     char *zName;      /* Name of the table */
867     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
868     Table *pTab;      /* An SQL table corresponding to zName */
869     Select *pSelect;  /* A SELECT statement used in place of a table name */
870     int jointype;     /* Type of join between this table and the next */
871     int iCursor;      /* The VDBE cursor number used to access this table */
872     Expr *pOn;        /* The ON clause of a join */
873     IdList *pUsing;   /* The USING clause of a join */
874   } a[1];             /* One entry for each identifier on the list */
875 };
876 
877 /*
878 ** Permitted values of the SrcList.a.jointype field
879 */
880 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
881 #define JT_NATURAL   0x0002    /* True for a "natural" join */
882 #define JT_LEFT      0x0004    /* Left outer join */
883 #define JT_RIGHT     0x0008    /* Right outer join */
884 #define JT_OUTER     0x0010    /* The "OUTER" keyword is present */
885 #define JT_ERROR     0x0020    /* unknown or unsupported join type */
886 
887 /*
888 ** For each nested loop in a WHERE clause implementation, the WhereInfo
889 ** structure contains a single instance of this structure.  This structure
890 ** is intended to be private the the where.c module and should not be
891 ** access or modified by other modules.
892 */
893 struct WhereLevel {
894   int iMem;            /* Memory cell used by this level */
895   Index *pIdx;         /* Index used */
896   int iCur;            /* Cursor number used for this index */
897   int score;           /* How well this indexed scored */
898   int brk;             /* Jump here to break out of the loop */
899   int cont;            /* Jump here to continue with the next loop cycle */
900   int op, p1, p2;      /* Opcode used to terminate the loop */
901   int iLeftJoin;       /* Memory cell used to implement LEFT OUTER JOIN */
902   int top;             /* First instruction of interior of the loop */
903   int inOp, inP1, inP2;/* Opcode used to implement an IN operator */
904   int bRev;            /* Do the scan in the reverse direction */
905 };
906 
907 /*
908 ** The WHERE clause processing routine has two halves.  The
909 ** first part does the start of the WHERE loop and the second
910 ** half does the tail of the WHERE loop.  An instance of
911 ** this structure is returned by the first half and passed
912 ** into the second half to give some continuity.
913 */
914 struct WhereInfo {
915   Parse *pParse;
916   SrcList *pTabList;   /* List of tables in the join */
917   int iContinue;       /* Jump here to continue with next record */
918   int iBreak;          /* Jump here to break out of the loop */
919   int nLevel;          /* Number of nested loop */
920   int savedNTab;       /* Value of pParse->nTab before WhereBegin() */
921   int peakNTab;        /* Value of pParse->nTab after WhereBegin() */
922   WhereLevel a[1];     /* Information about each nest loop in the WHERE */
923 };
924 
925 /*
926 ** An instance of the following structure contains all information
927 ** needed to generate code for a single SELECT statement.
928 **
929 ** The zSelect field is used when the Select structure must be persistent.
930 ** Normally, the expression tree points to tokens in the original input
931 ** string that encodes the select.  But if the Select structure must live
932 ** longer than its input string (for example when it is used to describe
933 ** a VIEW) we have to make a copy of the input string so that the nodes
934 ** of the expression tree will have something to point to.  zSelect is used
935 ** to hold that copy.
936 **
937 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
938 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
939 ** limit and nOffset to the value of the offset (or 0 if there is not
940 ** offset).  But later on, nLimit and nOffset become the memory locations
941 ** in the VDBE that record the limit and offset counters.
942 */
943 struct Select {
944   ExprList *pEList;      /* The fields of the result */
945   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
946   u8 isDistinct;         /* True if the DISTINCT keyword is present */
947   SrcList *pSrc;         /* The FROM clause */
948   Expr *pWhere;          /* The WHERE clause */
949   ExprList *pGroupBy;    /* The GROUP BY clause */
950   Expr *pHaving;         /* The HAVING clause */
951   ExprList *pOrderBy;    /* The ORDER BY clause */
952   Select *pPrior;        /* Prior select in a compound select statement */
953   int nLimit, nOffset;   /* LIMIT and OFFSET values.  -1 means not used */
954   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
955   char *zSelect;         /* Complete text of the SELECT command */
956 };
957 
958 /*
959 ** The results of a select can be distributed in several ways.
960 */
961 #define SRT_Callback     1  /* Invoke a callback with each row of result */
962 #define SRT_Mem          2  /* Store result in a memory cell */
963 #define SRT_Set          3  /* Store result as unique keys in a table */
964 #define SRT_Union        5  /* Store result as keys in a table */
965 #define SRT_Except       6  /* Remove result from a UNION table */
966 #define SRT_Table        7  /* Store result as data with a unique key */
967 #define SRT_TempTable    8  /* Store result in a trasient table */
968 #define SRT_Discard      9  /* Do not save the results anywhere */
969 #define SRT_Sorter      10  /* Store results in the sorter */
970 #define SRT_Subroutine  11  /* Call a subroutine to handle results */
971 
972 /*
973 ** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)")
974 ** we have to do some additional analysis of expressions.  An instance
975 ** of the following structure holds information about a single subexpression
976 ** somewhere in the SELECT statement.  An array of these structures holds
977 ** all the information we need to generate code for aggregate
978 ** expressions.
979 **
980 ** Note that when analyzing a SELECT containing aggregates, both
981 ** non-aggregate field variables and aggregate functions are stored
982 ** in the AggExpr array of the Parser structure.
983 **
984 ** The pExpr field points to an expression that is part of either the
985 ** field list, the GROUP BY clause, the HAVING clause or the ORDER BY
986 ** clause.  The expression will be freed when those clauses are cleaned
987 ** up.  Do not try to delete the expression attached to AggExpr.pExpr.
988 **
989 ** If AggExpr.pExpr==0, that means the expression is "count(*)".
990 */
991 struct AggExpr {
992   int isAgg;        /* if TRUE contains an aggregate function */
993   Expr *pExpr;      /* The expression */
994   FuncDef *pFunc;   /* Information about the aggregate function */
995 };
996 
997 /*
998 ** An SQL parser context.  A copy of this structure is passed through
999 ** the parser and down into all the parser action routine in order to
1000 ** carry around information that is global to the entire parse.
1001 */
1002 struct Parse {
1003   sqlite *db;          /* The main database structure */
1004   int rc;              /* Return code from execution */
1005   char *zErrMsg;       /* An error message */
1006   Token sErrToken;     /* The token at which the error occurred */
1007   Token sNameToken;    /* Token with unqualified schema object name */
1008   Token sLastToken;    /* The last token parsed */
1009   const char *zTail;   /* All SQL text past the last semicolon parsed */
1010   Table *pNewTable;    /* A table being constructed by CREATE TABLE */
1011   Vdbe *pVdbe;         /* An engine for executing database bytecode */
1012   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
1013   u8 explain;          /* True if the EXPLAIN flag is found on the query */
1014   u8 nameClash;        /* A permanent table name clashes with temp table name */
1015   u8 useAgg;           /* If true, extract field values from the aggregator
1016                        ** while generating expressions.  Normally false */
1017   u8 checkSchema;      /* Causes schema cookie check after an error */
1018   int nErr;            /* Number of errors seen */
1019   int nTab;            /* Number of previously allocated VDBE cursors */
1020   int nMem;            /* Number of memory cells used so far */
1021   int nSet;            /* Number of sets used so far */
1022   int nAgg;            /* Number of aggregate expressions */
1023   int nVar;            /* Number of '?' variables seen in the SQL so far */
1024   AggExpr *aAgg;       /* An array of aggregate expressions */
1025   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
1026   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
1027   TriggerStack *trigStack;  /* Trigger actions being coded */
1028   u32 cookieMask;      /* Bitmask of schema verified databases */
1029   int cookieValue[MAX_ATTACHED+2];  /* Values of cookies to verify */
1030   int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
1031   u32 writeMask;       /* Start a write transaction on these databases */
1032 };
1033 
1034 /*
1035 ** An instance of the following structure can be declared on a stack and used
1036 ** to save the Parse.zAuthContext value so that it can be restored later.
1037 */
1038 struct AuthContext {
1039   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
1040   Parse *pParse;              /* The Parse structure */
1041 };
1042 
1043 /*
1044 ** Bitfield flags for P2 value in OP_PutIntKey and OP_Delete
1045 */
1046 #define OPFLAG_NCHANGE   1    /* Set to update db->nChange */
1047 #define OPFLAG_LASTROWID 2    /* Set to update db->lastRowid */
1048 #define OPFLAG_CSCHANGE  4    /* Set to update db->csChange */
1049 
1050 /*
1051  * Each trigger present in the database schema is stored as an instance of
1052  * struct Trigger.
1053  *
1054  * Pointers to instances of struct Trigger are stored in two ways.
1055  * 1. In the "trigHash" hash table (part of the sqlite* that represents the
1056  *    database). This allows Trigger structures to be retrieved by name.
1057  * 2. All triggers associated with a single table form a linked list, using the
1058  *    pNext member of struct Trigger. A pointer to the first element of the
1059  *    linked list is stored as the "pTrigger" member of the associated
1060  *    struct Table.
1061  *
1062  * The "step_list" member points to the first element of a linked list
1063  * containing the SQL statements specified as the trigger program.
1064  */
1065 struct Trigger {
1066   char *name;             /* The name of the trigger                        */
1067   char *table;            /* The table or view to which the trigger applies */
1068   u8 iDb;                 /* Database containing this trigger               */
1069   u8 iTabDb;              /* Database containing Trigger.table              */
1070   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
1071   u8 tr_tm;               /* One of TK_BEFORE, TK_AFTER */
1072   Expr *pWhen;            /* The WHEN clause of the expresion (may be NULL) */
1073   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
1074                              the <column-list> is stored here */
1075   int foreach;            /* One of TK_ROW or TK_STATEMENT */
1076   Token nameToken;        /* Token containing zName. Use during parsing only */
1077 
1078   TriggerStep *step_list; /* Link list of trigger program steps             */
1079   Trigger *pNext;         /* Next trigger associated with the table */
1080 };
1081 
1082 /*
1083  * An instance of struct TriggerStep is used to store a single SQL statement
1084  * that is a part of a trigger-program.
1085  *
1086  * Instances of struct TriggerStep are stored in a singly linked list (linked
1087  * using the "pNext" member) referenced by the "step_list" member of the
1088  * associated struct Trigger instance. The first element of the linked list is
1089  * the first step of the trigger-program.
1090  *
1091  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
1092  * "SELECT" statement. The meanings of the other members is determined by the
1093  * value of "op" as follows:
1094  *
1095  * (op == TK_INSERT)
1096  * orconf    -> stores the ON CONFLICT algorithm
1097  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
1098  *              this stores a pointer to the SELECT statement. Otherwise NULL.
1099  * target    -> A token holding the name of the table to insert into.
1100  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
1101  *              this stores values to be inserted. Otherwise NULL.
1102  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
1103  *              statement, then this stores the column-names to be
1104  *              inserted into.
1105  *
1106  * (op == TK_DELETE)
1107  * target    -> A token holding the name of the table to delete from.
1108  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
1109  *              Otherwise NULL.
1110  *
1111  * (op == TK_UPDATE)
1112  * target    -> A token holding the name of the table to update rows of.
1113  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
1114  *              Otherwise NULL.
1115  * pExprList -> A list of the columns to update and the expressions to update
1116  *              them to. See sqlite3Update() documentation of "pChanges"
1117  *              argument.
1118  *
1119  */
1120 struct TriggerStep {
1121   int op;              /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
1122   int orconf;          /* OE_Rollback etc. */
1123   Trigger *pTrig;      /* The trigger that this step is a part of */
1124 
1125   Select *pSelect;     /* Valid for SELECT and sometimes
1126 			  INSERT steps (when pExprList == 0) */
1127   Token target;        /* Valid for DELETE, UPDATE, INSERT steps */
1128   Expr *pWhere;        /* Valid for DELETE, UPDATE steps */
1129   ExprList *pExprList; /* Valid for UPDATE statements and sometimes
1130 			   INSERT steps (when pSelect == 0)         */
1131   IdList *pIdList;     /* Valid for INSERT statements only */
1132 
1133   TriggerStep * pNext; /* Next in the link-list */
1134 };
1135 
1136 /*
1137  * An instance of struct TriggerStack stores information required during code
1138  * generation of a single trigger program. While the trigger program is being
1139  * coded, its associated TriggerStack instance is pointed to by the
1140  * "pTriggerStack" member of the Parse structure.
1141  *
1142  * The pTab member points to the table that triggers are being coded on. The
1143  * newIdx member contains the index of the vdbe cursor that points at the temp
1144  * table that stores the new.* references. If new.* references are not valid
1145  * for the trigger being coded (for example an ON DELETE trigger), then newIdx
1146  * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
1147  *
1148  * The ON CONFLICT policy to be used for the trigger program steps is stored
1149  * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
1150  * specified for individual triggers steps is used.
1151  *
1152  * struct TriggerStack has a "pNext" member, to allow linked lists to be
1153  * constructed. When coding nested triggers (triggers fired by other triggers)
1154  * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
1155  * pointer. Once the nested trigger has been coded, the pNext value is restored
1156  * to the pTriggerStack member of the Parse stucture and coding of the parent
1157  * trigger continues.
1158  *
1159  * Before a nested trigger is coded, the linked list pointed to by the
1160  * pTriggerStack is scanned to ensure that the trigger is not about to be coded
1161  * recursively. If this condition is detected, the nested trigger is not coded.
1162  */
1163 struct TriggerStack {
1164   Table *pTab;         /* Table that triggers are currently being coded on */
1165   int newIdx;          /* Index of vdbe cursor to "new" temp table */
1166   int oldIdx;          /* Index of vdbe cursor to "old" temp table */
1167   int orconf;          /* Current orconf policy */
1168   int ignoreJump;      /* where to jump to for a RAISE(IGNORE) */
1169   Trigger *pTrigger;   /* The trigger currently being coded */
1170   TriggerStack *pNext; /* Next trigger down on the trigger stack */
1171 };
1172 
1173 /*
1174 ** The following structure contains information used by the sqliteFix...
1175 ** routines as they walk the parse tree to make database references
1176 ** explicit.
1177 */
1178 typedef struct DbFixer DbFixer;
1179 struct DbFixer {
1180   Parse *pParse;      /* The parsing context.  Error messages written here */
1181   const char *zDb;    /* Make sure all objects are contained in this database */
1182   const char *zType;  /* Type of the container - used for error messages */
1183   const Token *pName; /* Name of the container - used for error messages */
1184 };
1185 
1186 /*
1187  * This global flag is set for performance testing of triggers. When it is set
1188  * SQLite will perform the overhead of building new and old trigger references
1189  * even when no triggers exist
1190  */
1191 extern int always_code_trigger_setup;
1192 
1193 /*
1194 ** Internal function prototypes
1195 */
1196 int sqlite3StrICmp(const char *, const char *);
1197 int sqlite3StrNICmp(const char *, const char *, int);
1198 int sqlite3HashNoCase(const char *, int);
1199 int sqlite3IsNumber(const char*, int*, u8);
1200 int sqlite3Compare(const char *, const char *);
1201 int sqlite3SortCompare(const char *, const char *);
1202 void sqlite3RealToSortable(double r, char *);
1203 #ifdef SQLITE_DEBUG
1204   void *sqlite3Malloc_(int,int,char*,int);
1205   void sqlite3Free_(void*,char*,int);
1206   void *sqlite3Realloc_(void*,int,char*,int);
1207   char *sqlite3StrDup_(const char*,char*,int);
1208   char *sqlite3StrNDup_(const char*, int,char*,int);
1209   void sqlite3CheckMemory(void*,int);
1210 #else
1211   void *sqliteMalloc(int);
1212   void *sqliteMallocRaw(int);
1213   void sqliteFree(void*);
1214   void *sqliteRealloc(void*,int);
1215   char *sqliteStrDup(const char*);
1216   char *sqliteStrNDup(const char*, int);
1217 # define sqlite3CheckMemory(a,b)
1218 #endif
1219 char *sqlite3MPrintf(const char*, ...);
1220 char *sqlite3VMPrintf(const char*, va_list);
1221 void sqlite3DebugPrintf(const char*, ...);
1222 void sqlite3SetString(char **, const char *, ...);
1223 void sqlite3SetNString(char **, ...);
1224 void sqlite3ErrorMsg(Parse*, const char*, ...);
1225 void sqlite3Dequote(char*);
1226 int sqlite3KeywordCode(const char*, int);
1227 int sqlite3RunParser(Parse*, const char*, char **);
1228 void sqlite3FinishCoding(Parse*);
1229 Expr *sqlite3Expr(int, Expr*, Expr*, Token*);
1230 void sqlite3ExprSpan(Expr*,Token*,Token*);
1231 Expr *sqlite3ExprFunction(ExprList*, Token*);
1232 void sqlite3ExprDelete(Expr*);
1233 ExprList *sqlite3ExprListAppend(ExprList*,Expr*,Token*);
1234 void sqlite3ExprListDelete(ExprList*);
1235 int sqlite3Init(sqlite*, char**);
1236 void sqlite3Pragma(Parse*,Token*,Token*,int);
1237 void sqlite3ResetInternalSchema(sqlite*, int);
1238 void sqlite3BeginParse(Parse*,int);
1239 void sqlite3RollbackInternalChanges(sqlite*);
1240 void sqlite3CommitInternalChanges(sqlite*);
1241 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*);
1242 void sqlite3OpenMasterTable(Vdbe *v, int);
1243 void sqlite3StartTable(Parse*,Token*,Token*,Token*,int,int);
1244 void sqlite3AddColumn(Parse*,Token*);
1245 void sqlite3AddNotNull(Parse*, int);
1246 void sqlite3AddPrimaryKey(Parse*, ExprList*, int);
1247 void sqlite3AddColumnType(Parse*,Token*,Token*);
1248 void sqlite3AddDefaultValue(Parse*,Token*,int);
1249 void sqlite3AddCollateType(Parse*, const char*, int);
1250 void sqlite3EndTable(Parse*,Token*,Select*);
1251 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int);
1252 int sqlite3ViewGetColumnNames(Parse*,Table*);
1253 void sqlite3DropTable(Parse*, SrcList*, int);
1254 void sqlite3DeleteTable(sqlite*, Table*);
1255 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
1256 IdList *sqlite3IdListAppend(IdList*, Token*);
1257 int sqlite3IdListIndex(IdList*,const char*);
1258 SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*);
1259 void sqlite3SrcListAddAlias(SrcList*, Token*);
1260 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
1261 void sqlite3IdListDelete(IdList*);
1262 void sqlite3SrcListDelete(SrcList*);
1263 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
1264                         Token*);
1265 void sqlite3DropIndex(Parse*, SrcList*);
1266 void sqlite3AddKeyType(Vdbe*, ExprList*);
1267 void sqlite3AddIdxKeyType(Vdbe*, Index*);
1268 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff);
1269 Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*,
1270                         int,int,int);
1271 void sqlite3SelectDelete(Select*);
1272 void sqlite3SelectUnbind(Select*);
1273 Table *sqlite3SrcListLookup(Parse*, SrcList*);
1274 int sqlite3IsReadOnly(Parse*, Table*, int);
1275 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
1276 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
1277 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, int, ExprList**);
1278 void sqlite3WhereEnd(WhereInfo*);
1279 void sqlite3ExprCode(Parse*, Expr*);
1280 int sqlite3ExprCodeExprList(Parse*, ExprList*);
1281 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
1282 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
1283 Table *sqlite3FindTable(sqlite*,const char*, const char*);
1284 Table *sqlite3LocateTable(Parse*,const char*, const char*);
1285 Index *sqlite3FindIndex(sqlite*,const char*, const char*);
1286 void sqlite3UnlinkAndDeleteIndex(sqlite*,Index*);
1287 void sqlite3Vacuum(Parse*, Token*);
1288 int sqlite3RunVacuum(char**, sqlite*);
1289 int sqlite3GlobCompare(const unsigned char*,const unsigned char*);
1290 char *sqlite3TableNameFromToken(Token*);
1291 int sqlite3ExprCheck(Parse*, Expr*, int, int*);
1292 int sqlite3ExprType(Expr*);
1293 int sqlite3ExprCompare(Expr*, Expr*);
1294 int sqliteFuncId(Token*);
1295 int sqlite3ExprResolveIds(Parse*, SrcList*, ExprList*, Expr*);
1296 int sqlite3ExprAnalyzeAggregates(Parse*, Expr*);
1297 Vdbe *sqlite3GetVdbe(Parse*);
1298 void sqlite3Randomness(int, void*);
1299 void sqlite3RollbackAll(sqlite*);
1300 void sqlite3CodeVerifySchema(Parse*, int);
1301 void sqlite3BeginTransaction(Parse*);
1302 void sqlite3CommitTransaction(Parse*);
1303 void sqlite3RollbackTransaction(Parse*);
1304 int sqlite3ExprIsConstant(Expr*);
1305 int sqlite3ExprIsInteger(Expr*, int*);
1306 int sqlite3IsRowid(const char*);
1307 void sqlite3GenerateRowDelete(sqlite*, Vdbe*, Table*, int, int);
1308 void sqlite3GenerateRowIndexDelete(sqlite*, Vdbe*, Table*, int, char*);
1309 void sqlite3GenerateIndexKey(Vdbe*, Index*, int);
1310 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int);
1311 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int);
1312 int sqlite3OpenTableAndIndices(Parse*, Table*, int);
1313 void sqlite3BeginWriteOperation(Parse*, int, int);
1314 void sqlite3EndWriteOperation(Parse*);
1315 Expr *sqlite3ExprDup(Expr*);
1316 void sqlite3TokenCopy(Token*, Token*);
1317 ExprList *sqlite3ExprListDup(ExprList*);
1318 SrcList *sqlite3SrcListDup(SrcList*);
1319 IdList *sqlite3IdListDup(IdList*);
1320 Select *sqlite3SelectDup(Select*);
1321 FuncDef *sqlite3FindFunction(sqlite*,const char*,int,int,int,int);
1322 void sqlite3RegisterBuiltinFunctions(sqlite*);
1323 void sqlite3RegisterDateTimeFunctions(sqlite*);
1324 int sqlite3SafetyOn(sqlite*);
1325 int sqlite3SafetyOff(sqlite*);
1326 int sqlite3SafetyCheck(sqlite*);
1327 void sqlite3ChangeCookie(sqlite*, Vdbe*, int);
1328 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
1329                          int,Expr*,int);
1330 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
1331 void sqlite3DropTrigger(Parse*, SrcList*);
1332 void sqlite3DropTriggerPtr(Parse*, Trigger*, int);
1333 int sqlite3TriggersExist(Parse* , Trigger* , int , int , int, ExprList*);
1334 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
1335                          int, int);
1336 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
1337 void sqlite3DeleteTriggerStep(TriggerStep*);
1338 TriggerStep *sqlite3TriggerSelectStep(Select*);
1339 TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*, Select*, int);
1340 TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int);
1341 TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*);
1342 void sqlite3DeleteTrigger(Trigger*);
1343 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
1344 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
1345 void sqlite3DeferForeignKey(Parse*, int);
1346 #ifndef SQLITE_OMIT_AUTHORIZATION
1347   void sqlite3AuthRead(Parse*,Expr*,SrcList*);
1348   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
1349   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
1350   void sqlite3AuthContextPop(AuthContext*);
1351 #else
1352 # define sqlite3AuthRead(a,b,c)
1353 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
1354 # define sqlite3AuthContextPush(a,b,c)
1355 # define sqlite3AuthContextPop(a)  ((void)(a))
1356 #endif
1357 void sqlite3Attach(Parse*, Token*, Token*, Token*);
1358 void sqlite3Detach(Parse*, Token*);
1359 int sqlite3BtreeFactory(const sqlite *db, const char *zFilename,
1360                        int mode, int nPg, Btree **ppBtree);
1361 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
1362 int sqlite3FixSrcList(DbFixer*, SrcList*);
1363 int sqlite3FixSelect(DbFixer*, Select*);
1364 int sqlite3FixExpr(DbFixer*, Expr*);
1365 int sqlite3FixExprList(DbFixer*, ExprList*);
1366 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
1367 double sqlite3AtoF(const char *z, const char **);
1368 char *sqlite3_snprintf(int,char*,const char*,...);
1369 int sqlite3GetInt32(const char *, int*);
1370 int sqlite3GetInt64(const char *, i64*);
1371 int sqlite3FitsIn64Bits(const char *);
1372 unsigned char *sqlite3utf16to8(const void *pData, int N, int big_endian);
1373 void *sqlite3utf8to16be(const unsigned char *pIn, int N);
1374 void *sqlite3utf8to16le(const unsigned char *pIn, int N);
1375 void sqlite3utf16to16le(void *pData, int N);
1376 void sqlite3utf16to16be(void *pData, int N);
1377 int sqlite3utf16ByteLen(const void *pData, int nChar);
1378 int sqlite3utf8CharLen(const char *pData, int nByte);
1379 int sqlite3PutVarint(unsigned char *, u64);
1380 int sqlite3GetVarint(const unsigned char *, u64 *);
1381 int sqlite3GetVarint32(const unsigned char *, u32 *);
1382 int sqlite3VarintLen(u64 v);
1383 char sqlite3AffinityType(const char *, int);
1384 void sqlite3IndexAffinityStr(Vdbe *, Index *);
1385 void sqlite3TableAffinityStr(Vdbe *, Table *);
1386 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
1387 char const *sqlite3AffinityString(char affinity);
1388 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
1389 char sqlite3ExprAffinity(Expr *pExpr);
1390 int sqlite3atoi64(const char*, i64*);
1391 void sqlite3Error(sqlite *, int, const char*,...);
1392 int sqlite3utfTranslate(const void *, int , u8 , void **, int *, u8);
1393 u8 sqlite3UtfReadBom(const void *zData, int nData);
1394 void *sqlite3HexToBlob(const char *z);
1395 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
1396 const char *sqlite3ErrStr(int);
1397 int sqlite3ReadUniChar(const char *zStr, int *pOffset, u8 *pEnc, int fold);
1398 int sqlite3ReadSchema(sqlite *db, char **);
1399 CollSeq *sqlite3FindCollSeq(sqlite *,u8 enc, const char *,int,int);
1400 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
1401 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
1402 int sqlite3CheckCollSeq(Parse *, CollSeq *);
1403 int sqlite3CheckIndexCollSeq(Parse *, Index *);
1404 
1405 const void *sqlite3ValueText(sqlite3_value*, u8);
1406 int sqlite3ValueBytes(sqlite3_value*, u8);
1407 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8);
1408 void sqlite3ValueFree(sqlite3_value*);
1409 sqlite3_value *sqlite3ValueNew();
1410 
1411