1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Include the header file used to customize the compiler options for MSVC. 20 ** This should be done first so that it can successfully prevent spurious 21 ** compiler warnings due to subsequent content in this file and other files 22 ** that are included by this file. 23 */ 24 #include "msvc.h" 25 26 /* 27 ** Special setup for VxWorks 28 */ 29 #include "vxworks.h" 30 31 /* 32 ** These #defines should enable >2GB file support on POSIX if the 33 ** underlying operating system supports it. If the OS lacks 34 ** large file support, or if the OS is windows, these should be no-ops. 35 ** 36 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 37 ** system #includes. Hence, this block of code must be the very first 38 ** code in all source files. 39 ** 40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 41 ** on the compiler command line. This is necessary if you are compiling 42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 43 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 44 ** without this option, LFS is enable. But LFS does not exist in the kernel 45 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 46 ** portability you should omit LFS. 47 ** 48 ** The previous paragraph was written in 2005. (This paragraph is written 49 ** on 2008-11-28.) These days, all Linux kernels support large files, so 50 ** you should probably leave LFS enabled. But some embedded platforms might 51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 52 ** 53 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 54 */ 55 #ifndef SQLITE_DISABLE_LFS 56 # define _LARGE_FILE 1 57 # ifndef _FILE_OFFSET_BITS 58 # define _FILE_OFFSET_BITS 64 59 # endif 60 # define _LARGEFILE_SOURCE 1 61 #endif 62 63 /* Needed for various definitions... */ 64 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 65 # define _GNU_SOURCE 66 #endif 67 68 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 69 # define _BSD_SOURCE 70 #endif 71 72 /* 73 ** For MinGW, check to see if we can include the header file containing its 74 ** version information, among other things. Normally, this internal MinGW 75 ** header file would [only] be included automatically by other MinGW header 76 ** files; however, the contained version information is now required by this 77 ** header file to work around binary compatibility issues (see below) and 78 ** this is the only known way to reliably obtain it. This entire #if block 79 ** would be completely unnecessary if there was any other way of detecting 80 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 81 ** some MinGW-specific macros). When compiling for MinGW, either the 82 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 83 ** defined; otherwise, detection of conditions specific to MinGW will be 84 ** disabled. 85 */ 86 #if defined(_HAVE_MINGW_H) 87 # include "mingw.h" 88 #elif defined(_HAVE__MINGW_H) 89 # include "_mingw.h" 90 #endif 91 92 /* 93 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 94 ** define is required to maintain binary compatibility with the MSVC runtime 95 ** library in use (e.g. for Windows XP). 96 */ 97 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 98 defined(_WIN32) && !defined(_WIN64) && \ 99 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 100 defined(__MSVCRT__) 101 # define _USE_32BIT_TIME_T 102 #endif 103 104 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 105 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 106 ** MinGW. 107 */ 108 #include "sqlite3.h" 109 110 /* 111 ** Include the configuration header output by 'configure' if we're using the 112 ** autoconf-based build 113 */ 114 #ifdef _HAVE_SQLITE_CONFIG_H 115 #include "config.h" 116 #endif 117 118 #include "sqliteLimit.h" 119 120 /* Disable nuisance warnings on Borland compilers */ 121 #if defined(__BORLANDC__) 122 #pragma warn -rch /* unreachable code */ 123 #pragma warn -ccc /* Condition is always true or false */ 124 #pragma warn -aus /* Assigned value is never used */ 125 #pragma warn -csu /* Comparing signed and unsigned */ 126 #pragma warn -spa /* Suspicious pointer arithmetic */ 127 #endif 128 129 /* 130 ** Include standard header files as necessary 131 */ 132 #ifdef HAVE_STDINT_H 133 #include <stdint.h> 134 #endif 135 #ifdef HAVE_INTTYPES_H 136 #include <inttypes.h> 137 #endif 138 139 /* 140 ** The following macros are used to cast pointers to integers and 141 ** integers to pointers. The way you do this varies from one compiler 142 ** to the next, so we have developed the following set of #if statements 143 ** to generate appropriate macros for a wide range of compilers. 144 ** 145 ** The correct "ANSI" way to do this is to use the intptr_t type. 146 ** Unfortunately, that typedef is not available on all compilers, or 147 ** if it is available, it requires an #include of specific headers 148 ** that vary from one machine to the next. 149 ** 150 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 151 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 152 ** So we have to define the macros in different ways depending on the 153 ** compiler. 154 */ 155 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 156 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 157 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 158 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 159 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 160 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 161 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 162 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 163 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 164 #else /* Generates a warning - but it always works */ 165 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 166 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 167 #endif 168 169 /* 170 ** A macro to hint to the compiler that a function should not be 171 ** inlined. 172 */ 173 #if defined(__GNUC__) 174 # define SQLITE_NOINLINE __attribute__((noinline)) 175 #elif defined(_MSC_VER) && _MSC_VER>=1310 176 # define SQLITE_NOINLINE __declspec(noinline) 177 #else 178 # define SQLITE_NOINLINE 179 #endif 180 181 /* 182 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 183 ** 0 means mutexes are permanently disable and the library is never 184 ** threadsafe. 1 means the library is serialized which is the highest 185 ** level of threadsafety. 2 means the library is multithreaded - multiple 186 ** threads can use SQLite as long as no two threads try to use the same 187 ** database connection at the same time. 188 ** 189 ** Older versions of SQLite used an optional THREADSAFE macro. 190 ** We support that for legacy. 191 */ 192 #if !defined(SQLITE_THREADSAFE) 193 # if defined(THREADSAFE) 194 # define SQLITE_THREADSAFE THREADSAFE 195 # else 196 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 197 # endif 198 #endif 199 200 /* 201 ** Powersafe overwrite is on by default. But can be turned off using 202 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 203 */ 204 #ifndef SQLITE_POWERSAFE_OVERWRITE 205 # define SQLITE_POWERSAFE_OVERWRITE 1 206 #endif 207 208 /* 209 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 210 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 211 ** which case memory allocation statistics are disabled by default. 212 */ 213 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 214 # define SQLITE_DEFAULT_MEMSTATUS 1 215 #endif 216 217 /* 218 ** Exactly one of the following macros must be defined in order to 219 ** specify which memory allocation subsystem to use. 220 ** 221 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 222 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 223 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 224 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 225 ** 226 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 227 ** assert() macro is enabled, each call into the Win32 native heap subsystem 228 ** will cause HeapValidate to be called. If heap validation should fail, an 229 ** assertion will be triggered. 230 ** 231 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 232 ** the default. 233 */ 234 #if defined(SQLITE_SYSTEM_MALLOC) \ 235 + defined(SQLITE_WIN32_MALLOC) \ 236 + defined(SQLITE_ZERO_MALLOC) \ 237 + defined(SQLITE_MEMDEBUG)>1 238 # error "Two or more of the following compile-time configuration options\ 239 are defined but at most one is allowed:\ 240 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 241 SQLITE_ZERO_MALLOC" 242 #endif 243 #if defined(SQLITE_SYSTEM_MALLOC) \ 244 + defined(SQLITE_WIN32_MALLOC) \ 245 + defined(SQLITE_ZERO_MALLOC) \ 246 + defined(SQLITE_MEMDEBUG)==0 247 # define SQLITE_SYSTEM_MALLOC 1 248 #endif 249 250 /* 251 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 252 ** sizes of memory allocations below this value where possible. 253 */ 254 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 255 # define SQLITE_MALLOC_SOFT_LIMIT 1024 256 #endif 257 258 /* 259 ** We need to define _XOPEN_SOURCE as follows in order to enable 260 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 261 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 262 ** it. 263 */ 264 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 265 # define _XOPEN_SOURCE 600 266 #endif 267 268 /* 269 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 270 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 271 ** make it true by defining or undefining NDEBUG. 272 ** 273 ** Setting NDEBUG makes the code smaller and faster by disabling the 274 ** assert() statements in the code. So we want the default action 275 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 276 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 277 ** feature. 278 */ 279 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 280 # define NDEBUG 1 281 #endif 282 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 283 # undef NDEBUG 284 #endif 285 286 /* 287 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 288 */ 289 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 290 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 291 #endif 292 293 /* 294 ** The testcase() macro is used to aid in coverage testing. When 295 ** doing coverage testing, the condition inside the argument to 296 ** testcase() must be evaluated both true and false in order to 297 ** get full branch coverage. The testcase() macro is inserted 298 ** to help ensure adequate test coverage in places where simple 299 ** condition/decision coverage is inadequate. For example, testcase() 300 ** can be used to make sure boundary values are tested. For 301 ** bitmask tests, testcase() can be used to make sure each bit 302 ** is significant and used at least once. On switch statements 303 ** where multiple cases go to the same block of code, testcase() 304 ** can insure that all cases are evaluated. 305 ** 306 */ 307 #ifdef SQLITE_COVERAGE_TEST 308 void sqlite3Coverage(int); 309 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 310 #else 311 # define testcase(X) 312 #endif 313 314 /* 315 ** The TESTONLY macro is used to enclose variable declarations or 316 ** other bits of code that are needed to support the arguments 317 ** within testcase() and assert() macros. 318 */ 319 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 320 # define TESTONLY(X) X 321 #else 322 # define TESTONLY(X) 323 #endif 324 325 /* 326 ** Sometimes we need a small amount of code such as a variable initialization 327 ** to setup for a later assert() statement. We do not want this code to 328 ** appear when assert() is disabled. The following macro is therefore 329 ** used to contain that setup code. The "VVA" acronym stands for 330 ** "Verification, Validation, and Accreditation". In other words, the 331 ** code within VVA_ONLY() will only run during verification processes. 332 */ 333 #ifndef NDEBUG 334 # define VVA_ONLY(X) X 335 #else 336 # define VVA_ONLY(X) 337 #endif 338 339 /* 340 ** The ALWAYS and NEVER macros surround boolean expressions which 341 ** are intended to always be true or false, respectively. Such 342 ** expressions could be omitted from the code completely. But they 343 ** are included in a few cases in order to enhance the resilience 344 ** of SQLite to unexpected behavior - to make the code "self-healing" 345 ** or "ductile" rather than being "brittle" and crashing at the first 346 ** hint of unplanned behavior. 347 ** 348 ** In other words, ALWAYS and NEVER are added for defensive code. 349 ** 350 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 351 ** be true and false so that the unreachable code they specify will 352 ** not be counted as untested code. 353 */ 354 #if defined(SQLITE_COVERAGE_TEST) 355 # define ALWAYS(X) (1) 356 # define NEVER(X) (0) 357 #elif !defined(NDEBUG) 358 # define ALWAYS(X) ((X)?1:(assert(0),0)) 359 # define NEVER(X) ((X)?(assert(0),1):0) 360 #else 361 # define ALWAYS(X) (X) 362 # define NEVER(X) (X) 363 #endif 364 365 /* 366 ** Return true (non-zero) if the input is an integer that is too large 367 ** to fit in 32-bits. This macro is used inside of various testcase() 368 ** macros to verify that we have tested SQLite for large-file support. 369 */ 370 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 371 372 /* 373 ** The macro unlikely() is a hint that surrounds a boolean 374 ** expression that is usually false. Macro likely() surrounds 375 ** a boolean expression that is usually true. These hints could, 376 ** in theory, be used by the compiler to generate better code, but 377 ** currently they are just comments for human readers. 378 */ 379 #define likely(X) (X) 380 #define unlikely(X) (X) 381 382 #include "hash.h" 383 #include "parse.h" 384 #include <stdio.h> 385 #include <stdlib.h> 386 #include <string.h> 387 #include <assert.h> 388 #include <stddef.h> 389 390 /* 391 ** If compiling for a processor that lacks floating point support, 392 ** substitute integer for floating-point 393 */ 394 #ifdef SQLITE_OMIT_FLOATING_POINT 395 # define double sqlite_int64 396 # define float sqlite_int64 397 # define LONGDOUBLE_TYPE sqlite_int64 398 # ifndef SQLITE_BIG_DBL 399 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 400 # endif 401 # define SQLITE_OMIT_DATETIME_FUNCS 1 402 # define SQLITE_OMIT_TRACE 1 403 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 404 # undef SQLITE_HAVE_ISNAN 405 #endif 406 #ifndef SQLITE_BIG_DBL 407 # define SQLITE_BIG_DBL (1e99) 408 #endif 409 410 /* 411 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 412 ** afterward. Having this macro allows us to cause the C compiler 413 ** to omit code used by TEMP tables without messy #ifndef statements. 414 */ 415 #ifdef SQLITE_OMIT_TEMPDB 416 #define OMIT_TEMPDB 1 417 #else 418 #define OMIT_TEMPDB 0 419 #endif 420 421 /* 422 ** The "file format" number is an integer that is incremented whenever 423 ** the VDBE-level file format changes. The following macros define the 424 ** the default file format for new databases and the maximum file format 425 ** that the library can read. 426 */ 427 #define SQLITE_MAX_FILE_FORMAT 4 428 #ifndef SQLITE_DEFAULT_FILE_FORMAT 429 # define SQLITE_DEFAULT_FILE_FORMAT 4 430 #endif 431 432 /* 433 ** Determine whether triggers are recursive by default. This can be 434 ** changed at run-time using a pragma. 435 */ 436 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 437 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 438 #endif 439 440 /* 441 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 442 ** on the command-line 443 */ 444 #ifndef SQLITE_TEMP_STORE 445 # define SQLITE_TEMP_STORE 1 446 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 447 #endif 448 449 /* 450 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 451 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 452 ** to zero. 453 */ 454 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 455 # undef SQLITE_MAX_WORKER_THREADS 456 # define SQLITE_MAX_WORKER_THREADS 0 457 #endif 458 #ifndef SQLITE_MAX_WORKER_THREADS 459 # define SQLITE_MAX_WORKER_THREADS 8 460 #endif 461 #ifndef SQLITE_DEFAULT_WORKER_THREADS 462 # define SQLITE_DEFAULT_WORKER_THREADS 0 463 #endif 464 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 465 # undef SQLITE_MAX_WORKER_THREADS 466 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 467 #endif 468 469 470 /* 471 ** GCC does not define the offsetof() macro so we'll have to do it 472 ** ourselves. 473 */ 474 #ifndef offsetof 475 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 476 #endif 477 478 /* 479 ** Macros to compute minimum and maximum of two numbers. 480 */ 481 #define MIN(A,B) ((A)<(B)?(A):(B)) 482 #define MAX(A,B) ((A)>(B)?(A):(B)) 483 484 /* 485 ** Swap two objects of type TYPE. 486 */ 487 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 488 489 /* 490 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 491 ** not, there are still machines out there that use EBCDIC.) 492 */ 493 #if 'A' == '\301' 494 # define SQLITE_EBCDIC 1 495 #else 496 # define SQLITE_ASCII 1 497 #endif 498 499 /* 500 ** Integers of known sizes. These typedefs might change for architectures 501 ** where the sizes very. Preprocessor macros are available so that the 502 ** types can be conveniently redefined at compile-type. Like this: 503 ** 504 ** cc '-DUINTPTR_TYPE=long long int' ... 505 */ 506 #ifndef UINT32_TYPE 507 # ifdef HAVE_UINT32_T 508 # define UINT32_TYPE uint32_t 509 # else 510 # define UINT32_TYPE unsigned int 511 # endif 512 #endif 513 #ifndef UINT16_TYPE 514 # ifdef HAVE_UINT16_T 515 # define UINT16_TYPE uint16_t 516 # else 517 # define UINT16_TYPE unsigned short int 518 # endif 519 #endif 520 #ifndef INT16_TYPE 521 # ifdef HAVE_INT16_T 522 # define INT16_TYPE int16_t 523 # else 524 # define INT16_TYPE short int 525 # endif 526 #endif 527 #ifndef UINT8_TYPE 528 # ifdef HAVE_UINT8_T 529 # define UINT8_TYPE uint8_t 530 # else 531 # define UINT8_TYPE unsigned char 532 # endif 533 #endif 534 #ifndef INT8_TYPE 535 # ifdef HAVE_INT8_T 536 # define INT8_TYPE int8_t 537 # else 538 # define INT8_TYPE signed char 539 # endif 540 #endif 541 #ifndef LONGDOUBLE_TYPE 542 # define LONGDOUBLE_TYPE long double 543 #endif 544 typedef sqlite_int64 i64; /* 8-byte signed integer */ 545 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 546 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 547 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 548 typedef INT16_TYPE i16; /* 2-byte signed integer */ 549 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 550 typedef INT8_TYPE i8; /* 1-byte signed integer */ 551 552 /* 553 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 554 ** that can be stored in a u32 without loss of data. The value 555 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 556 ** have to specify the value in the less intuitive manner shown: 557 */ 558 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 559 560 /* 561 ** The datatype used to store estimates of the number of rows in a 562 ** table or index. This is an unsigned integer type. For 99.9% of 563 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 564 ** can be used at compile-time if desired. 565 */ 566 #ifdef SQLITE_64BIT_STATS 567 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 568 #else 569 typedef u32 tRowcnt; /* 32-bit is the default */ 570 #endif 571 572 /* 573 ** Estimated quantities used for query planning are stored as 16-bit 574 ** logarithms. For quantity X, the value stored is 10*log2(X). This 575 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 576 ** But the allowed values are "grainy". Not every value is representable. 577 ** For example, quantities 16 and 17 are both represented by a LogEst 578 ** of 40. However, since LogEst quantities are suppose to be estimates, 579 ** not exact values, this imprecision is not a problem. 580 ** 581 ** "LogEst" is short for "Logarithmic Estimate". 582 ** 583 ** Examples: 584 ** 1 -> 0 20 -> 43 10000 -> 132 585 ** 2 -> 10 25 -> 46 25000 -> 146 586 ** 3 -> 16 100 -> 66 1000000 -> 199 587 ** 4 -> 20 1000 -> 99 1048576 -> 200 588 ** 10 -> 33 1024 -> 100 4294967296 -> 320 589 ** 590 ** The LogEst can be negative to indicate fractional values. 591 ** Examples: 592 ** 593 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 594 */ 595 typedef INT16_TYPE LogEst; 596 597 /* 598 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 599 */ 600 #ifndef SQLITE_PTRSIZE 601 # if defined(__SIZEOF_POINTER__) 602 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 603 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 604 defined(_M_ARM) || defined(__arm__) || defined(__x86) 605 # define SQLITE_PTRSIZE 4 606 # else 607 # define SQLITE_PTRSIZE 8 608 # endif 609 #endif 610 611 /* 612 ** Macros to determine whether the machine is big or little endian, 613 ** and whether or not that determination is run-time or compile-time. 614 ** 615 ** For best performance, an attempt is made to guess at the byte-order 616 ** using C-preprocessor macros. If that is unsuccessful, or if 617 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 618 ** at run-time. 619 */ 620 #ifdef SQLITE_AMALGAMATION 621 const int sqlite3one = 1; 622 #else 623 extern const int sqlite3one; 624 #endif 625 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 626 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 627 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 628 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 629 # define SQLITE_BYTEORDER 1234 630 # define SQLITE_BIGENDIAN 0 631 # define SQLITE_LITTLEENDIAN 1 632 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 633 #endif 634 #if (defined(sparc) || defined(__ppc__)) \ 635 && !defined(SQLITE_RUNTIME_BYTEORDER) 636 # define SQLITE_BYTEORDER 4321 637 # define SQLITE_BIGENDIAN 1 638 # define SQLITE_LITTLEENDIAN 0 639 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 640 #endif 641 #if !defined(SQLITE_BYTEORDER) 642 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 643 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 644 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 645 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 646 #endif 647 648 /* 649 ** Constants for the largest and smallest possible 64-bit signed integers. 650 ** These macros are designed to work correctly on both 32-bit and 64-bit 651 ** compilers. 652 */ 653 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 654 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 655 656 /* 657 ** Round up a number to the next larger multiple of 8. This is used 658 ** to force 8-byte alignment on 64-bit architectures. 659 */ 660 #define ROUND8(x) (((x)+7)&~7) 661 662 /* 663 ** Round down to the nearest multiple of 8 664 */ 665 #define ROUNDDOWN8(x) ((x)&~7) 666 667 /* 668 ** Assert that the pointer X is aligned to an 8-byte boundary. This 669 ** macro is used only within assert() to verify that the code gets 670 ** all alignment restrictions correct. 671 ** 672 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 673 ** underlying malloc() implementation might return us 4-byte aligned 674 ** pointers. In that case, only verify 4-byte alignment. 675 */ 676 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 677 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 678 #else 679 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 680 #endif 681 682 /* 683 ** Disable MMAP on platforms where it is known to not work 684 */ 685 #if defined(__OpenBSD__) || defined(__QNXNTO__) 686 # undef SQLITE_MAX_MMAP_SIZE 687 # define SQLITE_MAX_MMAP_SIZE 0 688 #endif 689 690 /* 691 ** Default maximum size of memory used by memory-mapped I/O in the VFS 692 */ 693 #ifdef __APPLE__ 694 # include <TargetConditionals.h> 695 # if TARGET_OS_IPHONE 696 # undef SQLITE_MAX_MMAP_SIZE 697 # define SQLITE_MAX_MMAP_SIZE 0 698 # endif 699 #endif 700 #ifndef SQLITE_MAX_MMAP_SIZE 701 # if defined(__linux__) \ 702 || defined(_WIN32) \ 703 || (defined(__APPLE__) && defined(__MACH__)) \ 704 || defined(__sun) 705 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 706 # else 707 # define SQLITE_MAX_MMAP_SIZE 0 708 # endif 709 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 710 #endif 711 712 /* 713 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 714 ** default MMAP_SIZE is specified at compile-time, make sure that it does 715 ** not exceed the maximum mmap size. 716 */ 717 #ifndef SQLITE_DEFAULT_MMAP_SIZE 718 # define SQLITE_DEFAULT_MMAP_SIZE 0 719 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 720 #endif 721 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 722 # undef SQLITE_DEFAULT_MMAP_SIZE 723 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 724 #endif 725 726 /* 727 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 728 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 729 ** define SQLITE_ENABLE_STAT3_OR_STAT4 730 */ 731 #ifdef SQLITE_ENABLE_STAT4 732 # undef SQLITE_ENABLE_STAT3 733 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 734 #elif SQLITE_ENABLE_STAT3 735 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 736 #elif SQLITE_ENABLE_STAT3_OR_STAT4 737 # undef SQLITE_ENABLE_STAT3_OR_STAT4 738 #endif 739 740 /* 741 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 742 ** the Select query generator tracing logic is turned on. 743 */ 744 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 745 # define SELECTTRACE_ENABLED 1 746 #else 747 # define SELECTTRACE_ENABLED 0 748 #endif 749 750 /* 751 ** An instance of the following structure is used to store the busy-handler 752 ** callback for a given sqlite handle. 753 ** 754 ** The sqlite.busyHandler member of the sqlite struct contains the busy 755 ** callback for the database handle. Each pager opened via the sqlite 756 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 757 ** callback is currently invoked only from within pager.c. 758 */ 759 typedef struct BusyHandler BusyHandler; 760 struct BusyHandler { 761 int (*xFunc)(void *,int); /* The busy callback */ 762 void *pArg; /* First arg to busy callback */ 763 int nBusy; /* Incremented with each busy call */ 764 }; 765 766 /* 767 ** Name of the master database table. The master database table 768 ** is a special table that holds the names and attributes of all 769 ** user tables and indices. 770 */ 771 #define MASTER_NAME "sqlite_master" 772 #define TEMP_MASTER_NAME "sqlite_temp_master" 773 774 /* 775 ** The root-page of the master database table. 776 */ 777 #define MASTER_ROOT 1 778 779 /* 780 ** The name of the schema table. 781 */ 782 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 783 784 /* 785 ** A convenience macro that returns the number of elements in 786 ** an array. 787 */ 788 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 789 790 /* 791 ** Determine if the argument is a power of two 792 */ 793 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 794 795 /* 796 ** The following value as a destructor means to use sqlite3DbFree(). 797 ** The sqlite3DbFree() routine requires two parameters instead of the 798 ** one parameter that destructors normally want. So we have to introduce 799 ** this magic value that the code knows to handle differently. Any 800 ** pointer will work here as long as it is distinct from SQLITE_STATIC 801 ** and SQLITE_TRANSIENT. 802 */ 803 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 804 805 /* 806 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 807 ** not support Writable Static Data (WSD) such as global and static variables. 808 ** All variables must either be on the stack or dynamically allocated from 809 ** the heap. When WSD is unsupported, the variable declarations scattered 810 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 811 ** macro is used for this purpose. And instead of referencing the variable 812 ** directly, we use its constant as a key to lookup the run-time allocated 813 ** buffer that holds real variable. The constant is also the initializer 814 ** for the run-time allocated buffer. 815 ** 816 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 817 ** macros become no-ops and have zero performance impact. 818 */ 819 #ifdef SQLITE_OMIT_WSD 820 #define SQLITE_WSD const 821 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 822 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 823 int sqlite3_wsd_init(int N, int J); 824 void *sqlite3_wsd_find(void *K, int L); 825 #else 826 #define SQLITE_WSD 827 #define GLOBAL(t,v) v 828 #define sqlite3GlobalConfig sqlite3Config 829 #endif 830 831 /* 832 ** The following macros are used to suppress compiler warnings and to 833 ** make it clear to human readers when a function parameter is deliberately 834 ** left unused within the body of a function. This usually happens when 835 ** a function is called via a function pointer. For example the 836 ** implementation of an SQL aggregate step callback may not use the 837 ** parameter indicating the number of arguments passed to the aggregate, 838 ** if it knows that this is enforced elsewhere. 839 ** 840 ** When a function parameter is not used at all within the body of a function, 841 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 842 ** However, these macros may also be used to suppress warnings related to 843 ** parameters that may or may not be used depending on compilation options. 844 ** For example those parameters only used in assert() statements. In these 845 ** cases the parameters are named as per the usual conventions. 846 */ 847 #define UNUSED_PARAMETER(x) (void)(x) 848 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 849 850 /* 851 ** Forward references to structures 852 */ 853 typedef struct AggInfo AggInfo; 854 typedef struct AuthContext AuthContext; 855 typedef struct AutoincInfo AutoincInfo; 856 typedef struct Bitvec Bitvec; 857 typedef struct CollSeq CollSeq; 858 typedef struct Column Column; 859 typedef struct Db Db; 860 typedef struct Schema Schema; 861 typedef struct Expr Expr; 862 typedef struct ExprList ExprList; 863 typedef struct ExprSpan ExprSpan; 864 typedef struct FKey FKey; 865 typedef struct FuncDestructor FuncDestructor; 866 typedef struct FuncDef FuncDef; 867 typedef struct FuncDefHash FuncDefHash; 868 typedef struct IdList IdList; 869 typedef struct Index Index; 870 typedef struct IndexSample IndexSample; 871 typedef struct KeyClass KeyClass; 872 typedef struct KeyInfo KeyInfo; 873 typedef struct Lookaside Lookaside; 874 typedef struct LookasideSlot LookasideSlot; 875 typedef struct Module Module; 876 typedef struct NameContext NameContext; 877 typedef struct Parse Parse; 878 typedef struct PrintfArguments PrintfArguments; 879 typedef struct RowSet RowSet; 880 typedef struct Savepoint Savepoint; 881 typedef struct Select Select; 882 typedef struct SQLiteThread SQLiteThread; 883 typedef struct SelectDest SelectDest; 884 typedef struct SrcList SrcList; 885 typedef struct StrAccum StrAccum; 886 typedef struct Table Table; 887 typedef struct TableLock TableLock; 888 typedef struct Token Token; 889 typedef struct TreeView TreeView; 890 typedef struct Trigger Trigger; 891 typedef struct TriggerPrg TriggerPrg; 892 typedef struct TriggerStep TriggerStep; 893 typedef struct UnpackedRecord UnpackedRecord; 894 typedef struct VTable VTable; 895 typedef struct VtabCtx VtabCtx; 896 typedef struct Walker Walker; 897 typedef struct WhereInfo WhereInfo; 898 typedef struct With With; 899 900 /* 901 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 902 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 903 ** pointer types (i.e. FuncDef) defined above. 904 */ 905 #include "btree.h" 906 #include "vdbe.h" 907 #include "pager.h" 908 #include "pcache.h" 909 910 #include "os.h" 911 #include "mutex.h" 912 913 914 /* 915 ** Each database file to be accessed by the system is an instance 916 ** of the following structure. There are normally two of these structures 917 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 918 ** aDb[1] is the database file used to hold temporary tables. Additional 919 ** databases may be attached. 920 */ 921 struct Db { 922 char *zName; /* Name of this database */ 923 Btree *pBt; /* The B*Tree structure for this database file */ 924 u8 safety_level; /* How aggressive at syncing data to disk */ 925 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 926 }; 927 928 /* 929 ** An instance of the following structure stores a database schema. 930 ** 931 ** Most Schema objects are associated with a Btree. The exception is 932 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 933 ** In shared cache mode, a single Schema object can be shared by multiple 934 ** Btrees that refer to the same underlying BtShared object. 935 ** 936 ** Schema objects are automatically deallocated when the last Btree that 937 ** references them is destroyed. The TEMP Schema is manually freed by 938 ** sqlite3_close(). 939 * 940 ** A thread must be holding a mutex on the corresponding Btree in order 941 ** to access Schema content. This implies that the thread must also be 942 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 943 ** For a TEMP Schema, only the connection mutex is required. 944 */ 945 struct Schema { 946 int schema_cookie; /* Database schema version number for this file */ 947 int iGeneration; /* Generation counter. Incremented with each change */ 948 Hash tblHash; /* All tables indexed by name */ 949 Hash idxHash; /* All (named) indices indexed by name */ 950 Hash trigHash; /* All triggers indexed by name */ 951 Hash fkeyHash; /* All foreign keys by referenced table name */ 952 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 953 u8 file_format; /* Schema format version for this file */ 954 u8 enc; /* Text encoding used by this database */ 955 u16 schemaFlags; /* Flags associated with this schema */ 956 int cache_size; /* Number of pages to use in the cache */ 957 }; 958 959 /* 960 ** These macros can be used to test, set, or clear bits in the 961 ** Db.pSchema->flags field. 962 */ 963 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 964 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 965 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 966 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 967 968 /* 969 ** Allowed values for the DB.pSchema->flags field. 970 ** 971 ** The DB_SchemaLoaded flag is set after the database schema has been 972 ** read into internal hash tables. 973 ** 974 ** DB_UnresetViews means that one or more views have column names that 975 ** have been filled out. If the schema changes, these column names might 976 ** changes and so the view will need to be reset. 977 */ 978 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 979 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 980 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 981 982 /* 983 ** The number of different kinds of things that can be limited 984 ** using the sqlite3_limit() interface. 985 */ 986 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 987 988 /* 989 ** Lookaside malloc is a set of fixed-size buffers that can be used 990 ** to satisfy small transient memory allocation requests for objects 991 ** associated with a particular database connection. The use of 992 ** lookaside malloc provides a significant performance enhancement 993 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 994 ** SQL statements. 995 ** 996 ** The Lookaside structure holds configuration information about the 997 ** lookaside malloc subsystem. Each available memory allocation in 998 ** the lookaside subsystem is stored on a linked list of LookasideSlot 999 ** objects. 1000 ** 1001 ** Lookaside allocations are only allowed for objects that are associated 1002 ** with a particular database connection. Hence, schema information cannot 1003 ** be stored in lookaside because in shared cache mode the schema information 1004 ** is shared by multiple database connections. Therefore, while parsing 1005 ** schema information, the Lookaside.bEnabled flag is cleared so that 1006 ** lookaside allocations are not used to construct the schema objects. 1007 */ 1008 struct Lookaside { 1009 u16 sz; /* Size of each buffer in bytes */ 1010 u8 bEnabled; /* False to disable new lookaside allocations */ 1011 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1012 int nOut; /* Number of buffers currently checked out */ 1013 int mxOut; /* Highwater mark for nOut */ 1014 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1015 LookasideSlot *pFree; /* List of available buffers */ 1016 void *pStart; /* First byte of available memory space */ 1017 void *pEnd; /* First byte past end of available space */ 1018 }; 1019 struct LookasideSlot { 1020 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1021 }; 1022 1023 /* 1024 ** A hash table for function definitions. 1025 ** 1026 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1027 ** Collisions are on the FuncDef.pHash chain. 1028 */ 1029 struct FuncDefHash { 1030 FuncDef *a[23]; /* Hash table for functions */ 1031 }; 1032 1033 #ifdef SQLITE_USER_AUTHENTICATION 1034 /* 1035 ** Information held in the "sqlite3" database connection object and used 1036 ** to manage user authentication. 1037 */ 1038 typedef struct sqlite3_userauth sqlite3_userauth; 1039 struct sqlite3_userauth { 1040 u8 authLevel; /* Current authentication level */ 1041 int nAuthPW; /* Size of the zAuthPW in bytes */ 1042 char *zAuthPW; /* Password used to authenticate */ 1043 char *zAuthUser; /* User name used to authenticate */ 1044 }; 1045 1046 /* Allowed values for sqlite3_userauth.authLevel */ 1047 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1048 #define UAUTH_Fail 1 /* User authentication failed */ 1049 #define UAUTH_User 2 /* Authenticated as a normal user */ 1050 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1051 1052 /* Functions used only by user authorization logic */ 1053 int sqlite3UserAuthTable(const char*); 1054 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1055 void sqlite3UserAuthInit(sqlite3*); 1056 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1057 1058 #endif /* SQLITE_USER_AUTHENTICATION */ 1059 1060 /* 1061 ** typedef for the authorization callback function. 1062 */ 1063 #ifdef SQLITE_USER_AUTHENTICATION 1064 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1065 const char*, const char*); 1066 #else 1067 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1068 const char*); 1069 #endif 1070 1071 1072 /* 1073 ** Each database connection is an instance of the following structure. 1074 */ 1075 struct sqlite3 { 1076 sqlite3_vfs *pVfs; /* OS Interface */ 1077 struct Vdbe *pVdbe; /* List of active virtual machines */ 1078 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1079 sqlite3_mutex *mutex; /* Connection mutex */ 1080 Db *aDb; /* All backends */ 1081 int nDb; /* Number of backends currently in use */ 1082 int flags; /* Miscellaneous flags. See below */ 1083 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1084 i64 szMmap; /* Default mmap_size setting */ 1085 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1086 int errCode; /* Most recent error code (SQLITE_*) */ 1087 int errMask; /* & result codes with this before returning */ 1088 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1089 u8 enc; /* Text encoding */ 1090 u8 autoCommit; /* The auto-commit flag. */ 1091 u8 temp_store; /* 1: file 2: memory 0: default */ 1092 u8 mallocFailed; /* True if we have seen a malloc failure */ 1093 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1094 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1095 u8 suppressErr; /* Do not issue error messages if true */ 1096 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1097 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1098 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1099 u32 magic; /* Magic number for detect library misuse */ 1100 int nChange; /* Value returned by sqlite3_changes() */ 1101 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1102 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1103 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1104 struct sqlite3InitInfo { /* Information used during initialization */ 1105 int newTnum; /* Rootpage of table being initialized */ 1106 u8 iDb; /* Which db file is being initialized */ 1107 u8 busy; /* TRUE if currently initializing */ 1108 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1109 u8 imposterTable; /* Building an imposter table */ 1110 } init; 1111 int nVdbeActive; /* Number of VDBEs currently running */ 1112 int nVdbeRead; /* Number of active VDBEs that read or write */ 1113 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1114 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1115 int nVDestroy; /* Number of active OP_VDestroy operations */ 1116 int nExtension; /* Number of loaded extensions */ 1117 void **aExtension; /* Array of shared library handles */ 1118 void (*xTrace)(void*,const char*); /* Trace function */ 1119 void *pTraceArg; /* Argument to the trace function */ 1120 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1121 void *pProfileArg; /* Argument to profile function */ 1122 void *pCommitArg; /* Argument to xCommitCallback() */ 1123 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1124 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1125 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1126 void *pUpdateArg; 1127 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1128 #ifndef SQLITE_OMIT_WAL 1129 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1130 void *pWalArg; 1131 #endif 1132 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1133 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1134 void *pCollNeededArg; 1135 sqlite3_value *pErr; /* Most recent error message */ 1136 union { 1137 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1138 double notUsed1; /* Spacer */ 1139 } u1; 1140 Lookaside lookaside; /* Lookaside malloc configuration */ 1141 #ifndef SQLITE_OMIT_AUTHORIZATION 1142 sqlite3_xauth xAuth; /* Access authorization function */ 1143 void *pAuthArg; /* 1st argument to the access auth function */ 1144 #endif 1145 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1146 int (*xProgress)(void *); /* The progress callback */ 1147 void *pProgressArg; /* Argument to the progress callback */ 1148 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1149 #endif 1150 #ifndef SQLITE_OMIT_VIRTUALTABLE 1151 int nVTrans; /* Allocated size of aVTrans */ 1152 Hash aModule; /* populated by sqlite3_create_module() */ 1153 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1154 VTable **aVTrans; /* Virtual tables with open transactions */ 1155 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1156 #endif 1157 FuncDefHash aFunc; /* Hash table of connection functions */ 1158 Hash aCollSeq; /* All collating sequences */ 1159 BusyHandler busyHandler; /* Busy callback */ 1160 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1161 Savepoint *pSavepoint; /* List of active savepoints */ 1162 int busyTimeout; /* Busy handler timeout, in msec */ 1163 int nSavepoint; /* Number of non-transaction savepoints */ 1164 int nStatement; /* Number of nested statement-transactions */ 1165 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1166 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1167 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1168 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1169 /* The following variables are all protected by the STATIC_MASTER 1170 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1171 ** 1172 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1173 ** unlock so that it can proceed. 1174 ** 1175 ** When X.pBlockingConnection==Y, that means that something that X tried 1176 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1177 ** held by Y. 1178 */ 1179 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1180 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1181 void *pUnlockArg; /* Argument to xUnlockNotify */ 1182 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1183 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1184 #endif 1185 #ifdef SQLITE_USER_AUTHENTICATION 1186 sqlite3_userauth auth; /* User authentication information */ 1187 #endif 1188 }; 1189 1190 /* 1191 ** A macro to discover the encoding of a database. 1192 */ 1193 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1194 #define ENC(db) ((db)->enc) 1195 1196 /* 1197 ** Possible values for the sqlite3.flags. 1198 */ 1199 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1200 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1201 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1202 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1203 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1204 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1205 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1206 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1207 /* DELETE, or UPDATE and return */ 1208 /* the count using a callback. */ 1209 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1210 /* result set is empty */ 1211 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1212 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1213 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1214 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1215 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1216 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1217 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1218 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1219 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1220 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1221 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1222 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1223 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1224 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1225 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1226 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1227 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1228 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1229 1230 1231 /* 1232 ** Bits of the sqlite3.dbOptFlags field that are used by the 1233 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1234 ** selectively disable various optimizations. 1235 */ 1236 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1237 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1238 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1239 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1240 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1241 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1242 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1243 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1244 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1245 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1246 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1247 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1248 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1249 1250 /* 1251 ** Macros for testing whether or not optimizations are enabled or disabled. 1252 */ 1253 #ifndef SQLITE_OMIT_BUILTIN_TEST 1254 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1255 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1256 #else 1257 #define OptimizationDisabled(db, mask) 0 1258 #define OptimizationEnabled(db, mask) 1 1259 #endif 1260 1261 /* 1262 ** Return true if it OK to factor constant expressions into the initialization 1263 ** code. The argument is a Parse object for the code generator. 1264 */ 1265 #define ConstFactorOk(P) ((P)->okConstFactor) 1266 1267 /* 1268 ** Possible values for the sqlite.magic field. 1269 ** The numbers are obtained at random and have no special meaning, other 1270 ** than being distinct from one another. 1271 */ 1272 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1273 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1274 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1275 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1276 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1277 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1278 1279 /* 1280 ** Each SQL function is defined by an instance of the following 1281 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1282 ** hash table. When multiple functions have the same name, the hash table 1283 ** points to a linked list of these structures. 1284 */ 1285 struct FuncDef { 1286 i16 nArg; /* Number of arguments. -1 means unlimited */ 1287 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1288 void *pUserData; /* User data parameter */ 1289 FuncDef *pNext; /* Next function with same name */ 1290 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1291 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1292 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1293 char *zName; /* SQL name of the function. */ 1294 FuncDef *pHash; /* Next with a different name but the same hash */ 1295 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1296 }; 1297 1298 /* 1299 ** This structure encapsulates a user-function destructor callback (as 1300 ** configured using create_function_v2()) and a reference counter. When 1301 ** create_function_v2() is called to create a function with a destructor, 1302 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1303 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1304 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1305 ** member of each of the new FuncDef objects is set to point to the allocated 1306 ** FuncDestructor. 1307 ** 1308 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1309 ** count on this object is decremented. When it reaches 0, the destructor 1310 ** is invoked and the FuncDestructor structure freed. 1311 */ 1312 struct FuncDestructor { 1313 int nRef; 1314 void (*xDestroy)(void *); 1315 void *pUserData; 1316 }; 1317 1318 /* 1319 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1320 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1321 ** are assert() statements in the code to verify this. 1322 */ 1323 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1324 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1325 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1326 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1327 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1328 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1329 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1330 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1331 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1332 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1333 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1334 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1335 1336 /* 1337 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1338 ** used to create the initializers for the FuncDef structures. 1339 ** 1340 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1341 ** Used to create a scalar function definition of a function zName 1342 ** implemented by C function xFunc that accepts nArg arguments. The 1343 ** value passed as iArg is cast to a (void*) and made available 1344 ** as the user-data (sqlite3_user_data()) for the function. If 1345 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1346 ** 1347 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1348 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1349 ** 1350 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1351 ** Used to create an aggregate function definition implemented by 1352 ** the C functions xStep and xFinal. The first four parameters 1353 ** are interpreted in the same way as the first 4 parameters to 1354 ** FUNCTION(). 1355 ** 1356 ** LIKEFUNC(zName, nArg, pArg, flags) 1357 ** Used to create a scalar function definition of a function zName 1358 ** that accepts nArg arguments and is implemented by a call to C 1359 ** function likeFunc. Argument pArg is cast to a (void *) and made 1360 ** available as the function user-data (sqlite3_user_data()). The 1361 ** FuncDef.flags variable is set to the value passed as the flags 1362 ** parameter. 1363 */ 1364 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1365 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1366 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1367 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1368 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1369 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1370 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1371 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1372 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1373 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1374 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1375 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1376 #define LIKEFUNC(zName, nArg, arg, flags) \ 1377 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1378 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1379 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1380 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1381 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1382 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1383 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1384 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1385 1386 /* 1387 ** All current savepoints are stored in a linked list starting at 1388 ** sqlite3.pSavepoint. The first element in the list is the most recently 1389 ** opened savepoint. Savepoints are added to the list by the vdbe 1390 ** OP_Savepoint instruction. 1391 */ 1392 struct Savepoint { 1393 char *zName; /* Savepoint name (nul-terminated) */ 1394 i64 nDeferredCons; /* Number of deferred fk violations */ 1395 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1396 Savepoint *pNext; /* Parent savepoint (if any) */ 1397 }; 1398 1399 /* 1400 ** The following are used as the second parameter to sqlite3Savepoint(), 1401 ** and as the P1 argument to the OP_Savepoint instruction. 1402 */ 1403 #define SAVEPOINT_BEGIN 0 1404 #define SAVEPOINT_RELEASE 1 1405 #define SAVEPOINT_ROLLBACK 2 1406 1407 1408 /* 1409 ** Each SQLite module (virtual table definition) is defined by an 1410 ** instance of the following structure, stored in the sqlite3.aModule 1411 ** hash table. 1412 */ 1413 struct Module { 1414 const sqlite3_module *pModule; /* Callback pointers */ 1415 const char *zName; /* Name passed to create_module() */ 1416 void *pAux; /* pAux passed to create_module() */ 1417 void (*xDestroy)(void *); /* Module destructor function */ 1418 }; 1419 1420 /* 1421 ** information about each column of an SQL table is held in an instance 1422 ** of this structure. 1423 */ 1424 struct Column { 1425 char *zName; /* Name of this column */ 1426 Expr *pDflt; /* Default value of this column */ 1427 char *zDflt; /* Original text of the default value */ 1428 char *zType; /* Data type for this column */ 1429 char *zColl; /* Collating sequence. If NULL, use the default */ 1430 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1431 char affinity; /* One of the SQLITE_AFF_... values */ 1432 u8 szEst; /* Estimated size of this column. INT==1 */ 1433 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1434 }; 1435 1436 /* Allowed values for Column.colFlags: 1437 */ 1438 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1439 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1440 1441 /* 1442 ** A "Collating Sequence" is defined by an instance of the following 1443 ** structure. Conceptually, a collating sequence consists of a name and 1444 ** a comparison routine that defines the order of that sequence. 1445 ** 1446 ** If CollSeq.xCmp is NULL, it means that the 1447 ** collating sequence is undefined. Indices built on an undefined 1448 ** collating sequence may not be read or written. 1449 */ 1450 struct CollSeq { 1451 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1452 u8 enc; /* Text encoding handled by xCmp() */ 1453 void *pUser; /* First argument to xCmp() */ 1454 int (*xCmp)(void*,int, const void*, int, const void*); 1455 void (*xDel)(void*); /* Destructor for pUser */ 1456 }; 1457 1458 /* 1459 ** A sort order can be either ASC or DESC. 1460 */ 1461 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1462 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1463 1464 /* 1465 ** Column affinity types. 1466 ** 1467 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1468 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1469 ** the speed a little by numbering the values consecutively. 1470 ** 1471 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1472 ** when multiple affinity types are concatenated into a string and 1473 ** used as the P4 operand, they will be more readable. 1474 ** 1475 ** Note also that the numeric types are grouped together so that testing 1476 ** for a numeric type is a single comparison. And the NONE type is first. 1477 */ 1478 #define SQLITE_AFF_NONE 'A' 1479 #define SQLITE_AFF_TEXT 'B' 1480 #define SQLITE_AFF_NUMERIC 'C' 1481 #define SQLITE_AFF_INTEGER 'D' 1482 #define SQLITE_AFF_REAL 'E' 1483 1484 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1485 1486 /* 1487 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1488 ** affinity value. 1489 */ 1490 #define SQLITE_AFF_MASK 0x47 1491 1492 /* 1493 ** Additional bit values that can be ORed with an affinity without 1494 ** changing the affinity. 1495 ** 1496 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1497 ** It causes an assert() to fire if either operand to a comparison 1498 ** operator is NULL. It is added to certain comparison operators to 1499 ** prove that the operands are always NOT NULL. 1500 */ 1501 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1502 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1503 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1504 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1505 1506 /* 1507 ** An object of this type is created for each virtual table present in 1508 ** the database schema. 1509 ** 1510 ** If the database schema is shared, then there is one instance of this 1511 ** structure for each database connection (sqlite3*) that uses the shared 1512 ** schema. This is because each database connection requires its own unique 1513 ** instance of the sqlite3_vtab* handle used to access the virtual table 1514 ** implementation. sqlite3_vtab* handles can not be shared between 1515 ** database connections, even when the rest of the in-memory database 1516 ** schema is shared, as the implementation often stores the database 1517 ** connection handle passed to it via the xConnect() or xCreate() method 1518 ** during initialization internally. This database connection handle may 1519 ** then be used by the virtual table implementation to access real tables 1520 ** within the database. So that they appear as part of the callers 1521 ** transaction, these accesses need to be made via the same database 1522 ** connection as that used to execute SQL operations on the virtual table. 1523 ** 1524 ** All VTable objects that correspond to a single table in a shared 1525 ** database schema are initially stored in a linked-list pointed to by 1526 ** the Table.pVTable member variable of the corresponding Table object. 1527 ** When an sqlite3_prepare() operation is required to access the virtual 1528 ** table, it searches the list for the VTable that corresponds to the 1529 ** database connection doing the preparing so as to use the correct 1530 ** sqlite3_vtab* handle in the compiled query. 1531 ** 1532 ** When an in-memory Table object is deleted (for example when the 1533 ** schema is being reloaded for some reason), the VTable objects are not 1534 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1535 ** immediately. Instead, they are moved from the Table.pVTable list to 1536 ** another linked list headed by the sqlite3.pDisconnect member of the 1537 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1538 ** next time a statement is prepared using said sqlite3*. This is done 1539 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1540 ** Refer to comments above function sqlite3VtabUnlockList() for an 1541 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1542 ** list without holding the corresponding sqlite3.mutex mutex. 1543 ** 1544 ** The memory for objects of this type is always allocated by 1545 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1546 ** the first argument. 1547 */ 1548 struct VTable { 1549 sqlite3 *db; /* Database connection associated with this table */ 1550 Module *pMod; /* Pointer to module implementation */ 1551 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1552 int nRef; /* Number of pointers to this structure */ 1553 u8 bConstraint; /* True if constraints are supported */ 1554 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1555 VTable *pNext; /* Next in linked list (see above) */ 1556 }; 1557 1558 /* 1559 ** Each SQL table is represented in memory by an instance of the 1560 ** following structure. 1561 ** 1562 ** Table.zName is the name of the table. The case of the original 1563 ** CREATE TABLE statement is stored, but case is not significant for 1564 ** comparisons. 1565 ** 1566 ** Table.nCol is the number of columns in this table. Table.aCol is a 1567 ** pointer to an array of Column structures, one for each column. 1568 ** 1569 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1570 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1571 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1572 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1573 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1574 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1575 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1576 ** 1577 ** Table.tnum is the page number for the root BTree page of the table in the 1578 ** database file. If Table.iDb is the index of the database table backend 1579 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1580 ** holds temporary tables and indices. If TF_Ephemeral is set 1581 ** then the table is stored in a file that is automatically deleted 1582 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1583 ** refers VDBE cursor number that holds the table open, not to the root 1584 ** page number. Transient tables are used to hold the results of a 1585 ** sub-query that appears instead of a real table name in the FROM clause 1586 ** of a SELECT statement. 1587 */ 1588 struct Table { 1589 char *zName; /* Name of the table or view */ 1590 Column *aCol; /* Information about each column */ 1591 Index *pIndex; /* List of SQL indexes on this table. */ 1592 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1593 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1594 char *zColAff; /* String defining the affinity of each column */ 1595 #ifndef SQLITE_OMIT_CHECK 1596 ExprList *pCheck; /* All CHECK constraints */ 1597 #endif 1598 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1599 int tnum; /* Root BTree node for this table (see note above) */ 1600 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1601 i16 nCol; /* Number of columns in this table */ 1602 u16 nRef; /* Number of pointers to this Table */ 1603 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1604 #ifdef SQLITE_ENABLE_COSTMULT 1605 LogEst costMult; /* Cost multiplier for using this table */ 1606 #endif 1607 u8 tabFlags; /* Mask of TF_* values */ 1608 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1609 #ifndef SQLITE_OMIT_ALTERTABLE 1610 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1611 #endif 1612 #ifndef SQLITE_OMIT_VIRTUALTABLE 1613 int nModuleArg; /* Number of arguments to the module */ 1614 char **azModuleArg; /* Text of all module args. [0] is module name */ 1615 VTable *pVTable; /* List of VTable objects. */ 1616 #endif 1617 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1618 Schema *pSchema; /* Schema that contains this table */ 1619 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1620 }; 1621 1622 /* 1623 ** Allowed values for Table.tabFlags. 1624 */ 1625 #define TF_Readonly 0x01 /* Read-only system table */ 1626 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1627 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1628 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1629 #define TF_Virtual 0x10 /* Is a virtual table */ 1630 #define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */ 1631 1632 1633 /* 1634 ** Test to see whether or not a table is a virtual table. This is 1635 ** done as a macro so that it will be optimized out when virtual 1636 ** table support is omitted from the build. 1637 */ 1638 #ifndef SQLITE_OMIT_VIRTUALTABLE 1639 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1640 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1641 #else 1642 # define IsVirtual(X) 0 1643 # define IsHiddenColumn(X) 0 1644 #endif 1645 1646 /* Does the table have a rowid */ 1647 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1648 1649 /* 1650 ** Each foreign key constraint is an instance of the following structure. 1651 ** 1652 ** A foreign key is associated with two tables. The "from" table is 1653 ** the table that contains the REFERENCES clause that creates the foreign 1654 ** key. The "to" table is the table that is named in the REFERENCES clause. 1655 ** Consider this example: 1656 ** 1657 ** CREATE TABLE ex1( 1658 ** a INTEGER PRIMARY KEY, 1659 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1660 ** ); 1661 ** 1662 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1663 ** Equivalent names: 1664 ** 1665 ** from-table == child-table 1666 ** to-table == parent-table 1667 ** 1668 ** Each REFERENCES clause generates an instance of the following structure 1669 ** which is attached to the from-table. The to-table need not exist when 1670 ** the from-table is created. The existence of the to-table is not checked. 1671 ** 1672 ** The list of all parents for child Table X is held at X.pFKey. 1673 ** 1674 ** A list of all children for a table named Z (which might not even exist) 1675 ** is held in Schema.fkeyHash with a hash key of Z. 1676 */ 1677 struct FKey { 1678 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1679 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1680 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1681 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1682 FKey *pPrevTo; /* Previous with the same zTo */ 1683 int nCol; /* Number of columns in this key */ 1684 /* EV: R-30323-21917 */ 1685 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1686 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1687 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1688 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1689 int iFrom; /* Index of column in pFrom */ 1690 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1691 } aCol[1]; /* One entry for each of nCol columns */ 1692 }; 1693 1694 /* 1695 ** SQLite supports many different ways to resolve a constraint 1696 ** error. ROLLBACK processing means that a constraint violation 1697 ** causes the operation in process to fail and for the current transaction 1698 ** to be rolled back. ABORT processing means the operation in process 1699 ** fails and any prior changes from that one operation are backed out, 1700 ** but the transaction is not rolled back. FAIL processing means that 1701 ** the operation in progress stops and returns an error code. But prior 1702 ** changes due to the same operation are not backed out and no rollback 1703 ** occurs. IGNORE means that the particular row that caused the constraint 1704 ** error is not inserted or updated. Processing continues and no error 1705 ** is returned. REPLACE means that preexisting database rows that caused 1706 ** a UNIQUE constraint violation are removed so that the new insert or 1707 ** update can proceed. Processing continues and no error is reported. 1708 ** 1709 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1710 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1711 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1712 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1713 ** referenced table row is propagated into the row that holds the 1714 ** foreign key. 1715 ** 1716 ** The following symbolic values are used to record which type 1717 ** of action to take. 1718 */ 1719 #define OE_None 0 /* There is no constraint to check */ 1720 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1721 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1722 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1723 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1724 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1725 1726 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1727 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1728 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1729 #define OE_Cascade 9 /* Cascade the changes */ 1730 1731 #define OE_Default 10 /* Do whatever the default action is */ 1732 1733 1734 /* 1735 ** An instance of the following structure is passed as the first 1736 ** argument to sqlite3VdbeKeyCompare and is used to control the 1737 ** comparison of the two index keys. 1738 ** 1739 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1740 ** are nField slots for the columns of an index then one extra slot 1741 ** for the rowid at the end. 1742 */ 1743 struct KeyInfo { 1744 u32 nRef; /* Number of references to this KeyInfo object */ 1745 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1746 u16 nField; /* Number of key columns in the index */ 1747 u16 nXField; /* Number of columns beyond the key columns */ 1748 sqlite3 *db; /* The database connection */ 1749 u8 *aSortOrder; /* Sort order for each column. */ 1750 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1751 }; 1752 1753 /* 1754 ** An instance of the following structure holds information about a 1755 ** single index record that has already been parsed out into individual 1756 ** values. 1757 ** 1758 ** A record is an object that contains one or more fields of data. 1759 ** Records are used to store the content of a table row and to store 1760 ** the key of an index. A blob encoding of a record is created by 1761 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1762 ** OP_Column opcode. 1763 ** 1764 ** This structure holds a record that has already been disassembled 1765 ** into its constituent fields. 1766 ** 1767 ** The r1 and r2 member variables are only used by the optimized comparison 1768 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). 1769 */ 1770 struct UnpackedRecord { 1771 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1772 u16 nField; /* Number of entries in apMem[] */ 1773 i8 default_rc; /* Comparison result if keys are equal */ 1774 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1775 Mem *aMem; /* Values */ 1776 int r1; /* Value to return if (lhs > rhs) */ 1777 int r2; /* Value to return if (rhs < lhs) */ 1778 }; 1779 1780 1781 /* 1782 ** Each SQL index is represented in memory by an 1783 ** instance of the following structure. 1784 ** 1785 ** The columns of the table that are to be indexed are described 1786 ** by the aiColumn[] field of this structure. For example, suppose 1787 ** we have the following table and index: 1788 ** 1789 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1790 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1791 ** 1792 ** In the Table structure describing Ex1, nCol==3 because there are 1793 ** three columns in the table. In the Index structure describing 1794 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1795 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1796 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1797 ** The second column to be indexed (c1) has an index of 0 in 1798 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1799 ** 1800 ** The Index.onError field determines whether or not the indexed columns 1801 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1802 ** it means this is not a unique index. Otherwise it is a unique index 1803 ** and the value of Index.onError indicate the which conflict resolution 1804 ** algorithm to employ whenever an attempt is made to insert a non-unique 1805 ** element. 1806 */ 1807 struct Index { 1808 char *zName; /* Name of this index */ 1809 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1810 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1811 Table *pTable; /* The SQL table being indexed */ 1812 char *zColAff; /* String defining the affinity of each column */ 1813 Index *pNext; /* The next index associated with the same table */ 1814 Schema *pSchema; /* Schema containing this index */ 1815 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1816 char **azColl; /* Array of collation sequence names for index */ 1817 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1818 int tnum; /* DB Page containing root of this index */ 1819 LogEst szIdxRow; /* Estimated average row size in bytes */ 1820 u16 nKeyCol; /* Number of columns forming the key */ 1821 u16 nColumn; /* Number of columns stored in the index */ 1822 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1823 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1824 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1825 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1826 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1827 unsigned isCovering:1; /* True if this is a covering index */ 1828 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1829 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1830 int nSample; /* Number of elements in aSample[] */ 1831 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1832 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1833 IndexSample *aSample; /* Samples of the left-most key */ 1834 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1835 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1836 #endif 1837 }; 1838 1839 /* 1840 ** Allowed values for Index.idxType 1841 */ 1842 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1843 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1844 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1845 1846 /* Return true if index X is a PRIMARY KEY index */ 1847 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1848 1849 /* Return true if index X is a UNIQUE index */ 1850 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1851 1852 /* 1853 ** Each sample stored in the sqlite_stat3 table is represented in memory 1854 ** using a structure of this type. See documentation at the top of the 1855 ** analyze.c source file for additional information. 1856 */ 1857 struct IndexSample { 1858 void *p; /* Pointer to sampled record */ 1859 int n; /* Size of record in bytes */ 1860 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1861 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1862 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1863 }; 1864 1865 /* 1866 ** Each token coming out of the lexer is an instance of 1867 ** this structure. Tokens are also used as part of an expression. 1868 ** 1869 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1870 ** may contain random values. Do not make any assumptions about Token.dyn 1871 ** and Token.n when Token.z==0. 1872 */ 1873 struct Token { 1874 const char *z; /* Text of the token. Not NULL-terminated! */ 1875 unsigned int n; /* Number of characters in this token */ 1876 }; 1877 1878 /* 1879 ** An instance of this structure contains information needed to generate 1880 ** code for a SELECT that contains aggregate functions. 1881 ** 1882 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1883 ** pointer to this structure. The Expr.iColumn field is the index in 1884 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1885 ** code for that node. 1886 ** 1887 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1888 ** original Select structure that describes the SELECT statement. These 1889 ** fields do not need to be freed when deallocating the AggInfo structure. 1890 */ 1891 struct AggInfo { 1892 u8 directMode; /* Direct rendering mode means take data directly 1893 ** from source tables rather than from accumulators */ 1894 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1895 ** than the source table */ 1896 int sortingIdx; /* Cursor number of the sorting index */ 1897 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1898 int nSortingColumn; /* Number of columns in the sorting index */ 1899 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1900 ExprList *pGroupBy; /* The group by clause */ 1901 struct AggInfo_col { /* For each column used in source tables */ 1902 Table *pTab; /* Source table */ 1903 int iTable; /* Cursor number of the source table */ 1904 int iColumn; /* Column number within the source table */ 1905 int iSorterColumn; /* Column number in the sorting index */ 1906 int iMem; /* Memory location that acts as accumulator */ 1907 Expr *pExpr; /* The original expression */ 1908 } *aCol; 1909 int nColumn; /* Number of used entries in aCol[] */ 1910 int nAccumulator; /* Number of columns that show through to the output. 1911 ** Additional columns are used only as parameters to 1912 ** aggregate functions */ 1913 struct AggInfo_func { /* For each aggregate function */ 1914 Expr *pExpr; /* Expression encoding the function */ 1915 FuncDef *pFunc; /* The aggregate function implementation */ 1916 int iMem; /* Memory location that acts as accumulator */ 1917 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1918 } *aFunc; 1919 int nFunc; /* Number of entries in aFunc[] */ 1920 }; 1921 1922 /* 1923 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1924 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1925 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1926 ** it uses less memory in the Expr object, which is a big memory user 1927 ** in systems with lots of prepared statements. And few applications 1928 ** need more than about 10 or 20 variables. But some extreme users want 1929 ** to have prepared statements with over 32767 variables, and for them 1930 ** the option is available (at compile-time). 1931 */ 1932 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1933 typedef i16 ynVar; 1934 #else 1935 typedef int ynVar; 1936 #endif 1937 1938 /* 1939 ** Each node of an expression in the parse tree is an instance 1940 ** of this structure. 1941 ** 1942 ** Expr.op is the opcode. The integer parser token codes are reused 1943 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1944 ** code representing the ">=" operator. This same integer code is reused 1945 ** to represent the greater-than-or-equal-to operator in the expression 1946 ** tree. 1947 ** 1948 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1949 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1950 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1951 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1952 ** then Expr.token contains the name of the function. 1953 ** 1954 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1955 ** binary operator. Either or both may be NULL. 1956 ** 1957 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1958 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1959 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1960 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1961 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1962 ** valid. 1963 ** 1964 ** An expression of the form ID or ID.ID refers to a column in a table. 1965 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1966 ** the integer cursor number of a VDBE cursor pointing to that table and 1967 ** Expr.iColumn is the column number for the specific column. If the 1968 ** expression is used as a result in an aggregate SELECT, then the 1969 ** value is also stored in the Expr.iAgg column in the aggregate so that 1970 ** it can be accessed after all aggregates are computed. 1971 ** 1972 ** If the expression is an unbound variable marker (a question mark 1973 ** character '?' in the original SQL) then the Expr.iTable holds the index 1974 ** number for that variable. 1975 ** 1976 ** If the expression is a subquery then Expr.iColumn holds an integer 1977 ** register number containing the result of the subquery. If the 1978 ** subquery gives a constant result, then iTable is -1. If the subquery 1979 ** gives a different answer at different times during statement processing 1980 ** then iTable is the address of a subroutine that computes the subquery. 1981 ** 1982 ** If the Expr is of type OP_Column, and the table it is selecting from 1983 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1984 ** corresponding table definition. 1985 ** 1986 ** ALLOCATION NOTES: 1987 ** 1988 ** Expr objects can use a lot of memory space in database schema. To 1989 ** help reduce memory requirements, sometimes an Expr object will be 1990 ** truncated. And to reduce the number of memory allocations, sometimes 1991 ** two or more Expr objects will be stored in a single memory allocation, 1992 ** together with Expr.zToken strings. 1993 ** 1994 ** If the EP_Reduced and EP_TokenOnly flags are set when 1995 ** an Expr object is truncated. When EP_Reduced is set, then all 1996 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1997 ** are contained within the same memory allocation. Note, however, that 1998 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1999 ** allocated, regardless of whether or not EP_Reduced is set. 2000 */ 2001 struct Expr { 2002 u8 op; /* Operation performed by this node */ 2003 char affinity; /* The affinity of the column or 0 if not a column */ 2004 u32 flags; /* Various flags. EP_* See below */ 2005 union { 2006 char *zToken; /* Token value. Zero terminated and dequoted */ 2007 int iValue; /* Non-negative integer value if EP_IntValue */ 2008 } u; 2009 2010 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2011 ** space is allocated for the fields below this point. An attempt to 2012 ** access them will result in a segfault or malfunction. 2013 *********************************************************************/ 2014 2015 Expr *pLeft; /* Left subnode */ 2016 Expr *pRight; /* Right subnode */ 2017 union { 2018 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2019 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2020 } x; 2021 2022 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2023 ** space is allocated for the fields below this point. An attempt to 2024 ** access them will result in a segfault or malfunction. 2025 *********************************************************************/ 2026 2027 #if SQLITE_MAX_EXPR_DEPTH>0 2028 int nHeight; /* Height of the tree headed by this node */ 2029 #endif 2030 int iTable; /* TK_COLUMN: cursor number of table holding column 2031 ** TK_REGISTER: register number 2032 ** TK_TRIGGER: 1 -> new, 0 -> old 2033 ** EP_Unlikely: 134217728 times likelihood */ 2034 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2035 ** TK_VARIABLE: variable number (always >= 1). */ 2036 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2037 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2038 u8 op2; /* TK_REGISTER: original value of Expr.op 2039 ** TK_COLUMN: the value of p5 for OP_Column 2040 ** TK_AGG_FUNCTION: nesting depth */ 2041 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2042 Table *pTab; /* Table for TK_COLUMN expressions. */ 2043 }; 2044 2045 /* 2046 ** The following are the meanings of bits in the Expr.flags field. 2047 */ 2048 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2049 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2050 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2051 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2052 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2053 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2054 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2055 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2056 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2057 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2058 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2059 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2060 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2061 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2062 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2063 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2064 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2065 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2066 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2067 #define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */ 2068 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2069 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2070 2071 /* 2072 ** Combinations of two or more EP_* flags 2073 */ 2074 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2075 2076 /* 2077 ** These macros can be used to test, set, or clear bits in the 2078 ** Expr.flags field. 2079 */ 2080 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2081 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2082 #define ExprSetProperty(E,P) (E)->flags|=(P) 2083 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2084 2085 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2086 ** and Accreditation only. It works like ExprSetProperty() during VVA 2087 ** processes but is a no-op for delivery. 2088 */ 2089 #ifdef SQLITE_DEBUG 2090 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2091 #else 2092 # define ExprSetVVAProperty(E,P) 2093 #endif 2094 2095 /* 2096 ** Macros to determine the number of bytes required by a normal Expr 2097 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2098 ** and an Expr struct with the EP_TokenOnly flag set. 2099 */ 2100 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2101 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2102 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2103 2104 /* 2105 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2106 ** above sqlite3ExprDup() for details. 2107 */ 2108 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2109 2110 /* 2111 ** A list of expressions. Each expression may optionally have a 2112 ** name. An expr/name combination can be used in several ways, such 2113 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2114 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2115 ** also be used as the argument to a function, in which case the a.zName 2116 ** field is not used. 2117 ** 2118 ** By default the Expr.zSpan field holds a human-readable description of 2119 ** the expression that is used in the generation of error messages and 2120 ** column labels. In this case, Expr.zSpan is typically the text of a 2121 ** column expression as it exists in a SELECT statement. However, if 2122 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2123 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2124 ** form is used for name resolution with nested FROM clauses. 2125 */ 2126 struct ExprList { 2127 int nExpr; /* Number of expressions on the list */ 2128 struct ExprList_item { /* For each expression in the list */ 2129 Expr *pExpr; /* The list of expressions */ 2130 char *zName; /* Token associated with this expression */ 2131 char *zSpan; /* Original text of the expression */ 2132 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2133 unsigned done :1; /* A flag to indicate when processing is finished */ 2134 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2135 unsigned reusable :1; /* Constant expression is reusable */ 2136 union { 2137 struct { 2138 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2139 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2140 } x; 2141 int iConstExprReg; /* Register in which Expr value is cached */ 2142 } u; 2143 } *a; /* Alloc a power of two greater or equal to nExpr */ 2144 }; 2145 2146 /* 2147 ** An instance of this structure is used by the parser to record both 2148 ** the parse tree for an expression and the span of input text for an 2149 ** expression. 2150 */ 2151 struct ExprSpan { 2152 Expr *pExpr; /* The expression parse tree */ 2153 const char *zStart; /* First character of input text */ 2154 const char *zEnd; /* One character past the end of input text */ 2155 }; 2156 2157 /* 2158 ** An instance of this structure can hold a simple list of identifiers, 2159 ** such as the list "a,b,c" in the following statements: 2160 ** 2161 ** INSERT INTO t(a,b,c) VALUES ...; 2162 ** CREATE INDEX idx ON t(a,b,c); 2163 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2164 ** 2165 ** The IdList.a.idx field is used when the IdList represents the list of 2166 ** column names after a table name in an INSERT statement. In the statement 2167 ** 2168 ** INSERT INTO t(a,b,c) ... 2169 ** 2170 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2171 */ 2172 struct IdList { 2173 struct IdList_item { 2174 char *zName; /* Name of the identifier */ 2175 int idx; /* Index in some Table.aCol[] of a column named zName */ 2176 } *a; 2177 int nId; /* Number of identifiers on the list */ 2178 }; 2179 2180 /* 2181 ** The bitmask datatype defined below is used for various optimizations. 2182 ** 2183 ** Changing this from a 64-bit to a 32-bit type limits the number of 2184 ** tables in a join to 32 instead of 64. But it also reduces the size 2185 ** of the library by 738 bytes on ix86. 2186 */ 2187 typedef u64 Bitmask; 2188 2189 /* 2190 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2191 */ 2192 #define BMS ((int)(sizeof(Bitmask)*8)) 2193 2194 /* 2195 ** A bit in a Bitmask 2196 */ 2197 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2198 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2199 2200 /* 2201 ** The following structure describes the FROM clause of a SELECT statement. 2202 ** Each table or subquery in the FROM clause is a separate element of 2203 ** the SrcList.a[] array. 2204 ** 2205 ** With the addition of multiple database support, the following structure 2206 ** can also be used to describe a particular table such as the table that 2207 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2208 ** such a table must be a simple name: ID. But in SQLite, the table can 2209 ** now be identified by a database name, a dot, then the table name: ID.ID. 2210 ** 2211 ** The jointype starts out showing the join type between the current table 2212 ** and the next table on the list. The parser builds the list this way. 2213 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2214 ** jointype expresses the join between the table and the previous table. 2215 ** 2216 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2217 ** contains more than 63 columns and the 64-th or later column is used. 2218 */ 2219 struct SrcList { 2220 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2221 u32 nAlloc; /* Number of entries allocated in a[] below */ 2222 struct SrcList_item { 2223 Schema *pSchema; /* Schema to which this item is fixed */ 2224 char *zDatabase; /* Name of database holding this table */ 2225 char *zName; /* Name of the table */ 2226 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2227 Table *pTab; /* An SQL table corresponding to zName */ 2228 Select *pSelect; /* A SELECT statement used in place of a table name */ 2229 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2230 int regReturn; /* Register holding return address of addrFillSub */ 2231 int regResult; /* Registers holding results of a co-routine */ 2232 u8 jointype; /* Type of join between this able and the previous */ 2233 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2234 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2235 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2236 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2237 #ifndef SQLITE_OMIT_EXPLAIN 2238 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2239 #endif 2240 int iCursor; /* The VDBE cursor number used to access this table */ 2241 Expr *pOn; /* The ON clause of a join */ 2242 IdList *pUsing; /* The USING clause of a join */ 2243 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2244 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 2245 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2246 } a[1]; /* One entry for each identifier on the list */ 2247 }; 2248 2249 /* 2250 ** Permitted values of the SrcList.a.jointype field 2251 */ 2252 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2253 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2254 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2255 #define JT_LEFT 0x0008 /* Left outer join */ 2256 #define JT_RIGHT 0x0010 /* Right outer join */ 2257 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2258 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2259 2260 2261 /* 2262 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2263 ** and the WhereInfo.wctrlFlags member. 2264 */ 2265 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2266 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2267 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2268 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2269 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2270 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2271 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2272 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2273 #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ 2274 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2275 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2276 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2277 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2278 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2279 2280 /* Allowed return values from sqlite3WhereIsDistinct() 2281 */ 2282 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2283 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2284 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2285 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2286 2287 /* 2288 ** A NameContext defines a context in which to resolve table and column 2289 ** names. The context consists of a list of tables (the pSrcList) field and 2290 ** a list of named expression (pEList). The named expression list may 2291 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2292 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2293 ** pEList corresponds to the result set of a SELECT and is NULL for 2294 ** other statements. 2295 ** 2296 ** NameContexts can be nested. When resolving names, the inner-most 2297 ** context is searched first. If no match is found, the next outer 2298 ** context is checked. If there is still no match, the next context 2299 ** is checked. This process continues until either a match is found 2300 ** or all contexts are check. When a match is found, the nRef member of 2301 ** the context containing the match is incremented. 2302 ** 2303 ** Each subquery gets a new NameContext. The pNext field points to the 2304 ** NameContext in the parent query. Thus the process of scanning the 2305 ** NameContext list corresponds to searching through successively outer 2306 ** subqueries looking for a match. 2307 */ 2308 struct NameContext { 2309 Parse *pParse; /* The parser */ 2310 SrcList *pSrcList; /* One or more tables used to resolve names */ 2311 ExprList *pEList; /* Optional list of result-set columns */ 2312 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2313 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2314 int nRef; /* Number of names resolved by this context */ 2315 int nErr; /* Number of errors encountered while resolving names */ 2316 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2317 }; 2318 2319 /* 2320 ** Allowed values for the NameContext, ncFlags field. 2321 ** 2322 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2323 ** SQLITE_FUNC_MINMAX. 2324 ** 2325 */ 2326 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2327 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2328 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2329 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2330 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2331 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2332 2333 /* 2334 ** An instance of the following structure contains all information 2335 ** needed to generate code for a single SELECT statement. 2336 ** 2337 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2338 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2339 ** limit and nOffset to the value of the offset (or 0 if there is not 2340 ** offset). But later on, nLimit and nOffset become the memory locations 2341 ** in the VDBE that record the limit and offset counters. 2342 ** 2343 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2344 ** These addresses must be stored so that we can go back and fill in 2345 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2346 ** the number of columns in P2 can be computed at the same time 2347 ** as the OP_OpenEphm instruction is coded because not 2348 ** enough information about the compound query is known at that point. 2349 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2350 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2351 ** sequences for the ORDER BY clause. 2352 */ 2353 struct Select { 2354 ExprList *pEList; /* The fields of the result */ 2355 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2356 u16 selFlags; /* Various SF_* values */ 2357 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2358 #if SELECTTRACE_ENABLED 2359 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2360 #endif 2361 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2362 u64 nSelectRow; /* Estimated number of result rows */ 2363 SrcList *pSrc; /* The FROM clause */ 2364 Expr *pWhere; /* The WHERE clause */ 2365 ExprList *pGroupBy; /* The GROUP BY clause */ 2366 Expr *pHaving; /* The HAVING clause */ 2367 ExprList *pOrderBy; /* The ORDER BY clause */ 2368 Select *pPrior; /* Prior select in a compound select statement */ 2369 Select *pNext; /* Next select to the left in a compound */ 2370 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2371 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2372 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2373 }; 2374 2375 /* 2376 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2377 ** "Select Flag". 2378 */ 2379 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2380 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2381 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2382 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2383 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2384 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2385 #define SF_Compound 0x0040 /* Part of a compound query */ 2386 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2387 #define SF_AllValues 0x0100 /* All terms of compound are VALUES */ 2388 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2389 #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ 2390 #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ 2391 #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ 2392 2393 2394 /* 2395 ** The results of a SELECT can be distributed in several ways, as defined 2396 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2397 ** Type". 2398 ** 2399 ** SRT_Union Store results as a key in a temporary index 2400 ** identified by pDest->iSDParm. 2401 ** 2402 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2403 ** 2404 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2405 ** set is not empty. 2406 ** 2407 ** SRT_Discard Throw the results away. This is used by SELECT 2408 ** statements within triggers whose only purpose is 2409 ** the side-effects of functions. 2410 ** 2411 ** All of the above are free to ignore their ORDER BY clause. Those that 2412 ** follow must honor the ORDER BY clause. 2413 ** 2414 ** SRT_Output Generate a row of output (using the OP_ResultRow 2415 ** opcode) for each row in the result set. 2416 ** 2417 ** SRT_Mem Only valid if the result is a single column. 2418 ** Store the first column of the first result row 2419 ** in register pDest->iSDParm then abandon the rest 2420 ** of the query. This destination implies "LIMIT 1". 2421 ** 2422 ** SRT_Set The result must be a single column. Store each 2423 ** row of result as the key in table pDest->iSDParm. 2424 ** Apply the affinity pDest->affSdst before storing 2425 ** results. Used to implement "IN (SELECT ...)". 2426 ** 2427 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2428 ** the result there. The cursor is left open after 2429 ** returning. This is like SRT_Table except that 2430 ** this destination uses OP_OpenEphemeral to create 2431 ** the table first. 2432 ** 2433 ** SRT_Coroutine Generate a co-routine that returns a new row of 2434 ** results each time it is invoked. The entry point 2435 ** of the co-routine is stored in register pDest->iSDParm 2436 ** and the result row is stored in pDest->nDest registers 2437 ** starting with pDest->iSdst. 2438 ** 2439 ** SRT_Table Store results in temporary table pDest->iSDParm. 2440 ** SRT_Fifo This is like SRT_EphemTab except that the table 2441 ** is assumed to already be open. SRT_Fifo has 2442 ** the additional property of being able to ignore 2443 ** the ORDER BY clause. 2444 ** 2445 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2446 ** But also use temporary table pDest->iSDParm+1 as 2447 ** a record of all prior results and ignore any duplicate 2448 ** rows. Name means: "Distinct Fifo". 2449 ** 2450 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2451 ** an index). Append a sequence number so that all entries 2452 ** are distinct. 2453 ** 2454 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2455 ** the same record has never been stored before. The 2456 ** index at pDest->iSDParm+1 hold all prior stores. 2457 */ 2458 #define SRT_Union 1 /* Store result as keys in an index */ 2459 #define SRT_Except 2 /* Remove result from a UNION index */ 2460 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2461 #define SRT_Discard 4 /* Do not save the results anywhere */ 2462 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2463 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2464 #define SRT_Queue 7 /* Store result in an queue */ 2465 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2466 2467 /* The ORDER BY clause is ignored for all of the above */ 2468 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2469 2470 #define SRT_Output 9 /* Output each row of result */ 2471 #define SRT_Mem 10 /* Store result in a memory cell */ 2472 #define SRT_Set 11 /* Store results as keys in an index */ 2473 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2474 #define SRT_Coroutine 13 /* Generate a single row of result */ 2475 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2476 2477 /* 2478 ** An instance of this object describes where to put of the results of 2479 ** a SELECT statement. 2480 */ 2481 struct SelectDest { 2482 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2483 char affSdst; /* Affinity used when eDest==SRT_Set */ 2484 int iSDParm; /* A parameter used by the eDest disposal method */ 2485 int iSdst; /* Base register where results are written */ 2486 int nSdst; /* Number of registers allocated */ 2487 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2488 }; 2489 2490 /* 2491 ** During code generation of statements that do inserts into AUTOINCREMENT 2492 ** tables, the following information is attached to the Table.u.autoInc.p 2493 ** pointer of each autoincrement table to record some side information that 2494 ** the code generator needs. We have to keep per-table autoincrement 2495 ** information in case inserts are down within triggers. Triggers do not 2496 ** normally coordinate their activities, but we do need to coordinate the 2497 ** loading and saving of autoincrement information. 2498 */ 2499 struct AutoincInfo { 2500 AutoincInfo *pNext; /* Next info block in a list of them all */ 2501 Table *pTab; /* Table this info block refers to */ 2502 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2503 int regCtr; /* Memory register holding the rowid counter */ 2504 }; 2505 2506 /* 2507 ** Size of the column cache 2508 */ 2509 #ifndef SQLITE_N_COLCACHE 2510 # define SQLITE_N_COLCACHE 10 2511 #endif 2512 2513 /* 2514 ** At least one instance of the following structure is created for each 2515 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2516 ** statement. All such objects are stored in the linked list headed at 2517 ** Parse.pTriggerPrg and deleted once statement compilation has been 2518 ** completed. 2519 ** 2520 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2521 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2522 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2523 ** The Parse.pTriggerPrg list never contains two entries with the same 2524 ** values for both pTrigger and orconf. 2525 ** 2526 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2527 ** accessed (or set to 0 for triggers fired as a result of INSERT 2528 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2529 ** a mask of new.* columns used by the program. 2530 */ 2531 struct TriggerPrg { 2532 Trigger *pTrigger; /* Trigger this program was coded from */ 2533 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2534 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2535 int orconf; /* Default ON CONFLICT policy */ 2536 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2537 }; 2538 2539 /* 2540 ** The yDbMask datatype for the bitmask of all attached databases. 2541 */ 2542 #if SQLITE_MAX_ATTACHED>30 2543 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2544 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2545 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2546 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2547 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2548 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2549 #else 2550 typedef unsigned int yDbMask; 2551 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2552 # define DbMaskZero(M) (M)=0 2553 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2554 # define DbMaskAllZero(M) (M)==0 2555 # define DbMaskNonZero(M) (M)!=0 2556 #endif 2557 2558 /* 2559 ** An SQL parser context. A copy of this structure is passed through 2560 ** the parser and down into all the parser action routine in order to 2561 ** carry around information that is global to the entire parse. 2562 ** 2563 ** The structure is divided into two parts. When the parser and code 2564 ** generate call themselves recursively, the first part of the structure 2565 ** is constant but the second part is reset at the beginning and end of 2566 ** each recursion. 2567 ** 2568 ** The nTableLock and aTableLock variables are only used if the shared-cache 2569 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2570 ** used to store the set of table-locks required by the statement being 2571 ** compiled. Function sqlite3TableLock() is used to add entries to the 2572 ** list. 2573 */ 2574 struct Parse { 2575 sqlite3 *db; /* The main database structure */ 2576 char *zErrMsg; /* An error message */ 2577 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2578 int rc; /* Return code from execution */ 2579 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2580 u8 checkSchema; /* Causes schema cookie check after an error */ 2581 u8 nested; /* Number of nested calls to the parser/code generator */ 2582 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2583 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2584 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2585 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2586 u8 okConstFactor; /* OK to factor out constants */ 2587 int aTempReg[8]; /* Holding area for temporary registers */ 2588 int nRangeReg; /* Size of the temporary register block */ 2589 int iRangeReg; /* First register in temporary register block */ 2590 int nErr; /* Number of errors seen */ 2591 int nTab; /* Number of previously allocated VDBE cursors */ 2592 int nMem; /* Number of memory cells used so far */ 2593 int nSet; /* Number of sets used so far */ 2594 int nOnce; /* Number of OP_Once instructions so far */ 2595 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2596 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2597 int ckBase; /* Base register of data during check constraints */ 2598 int iPartIdxTab; /* Table corresponding to a partial index */ 2599 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2600 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2601 int nLabel; /* Number of labels used */ 2602 int *aLabel; /* Space to hold the labels */ 2603 struct yColCache { 2604 int iTable; /* Table cursor number */ 2605 i16 iColumn; /* Table column number */ 2606 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2607 int iLevel; /* Nesting level */ 2608 int iReg; /* Reg with value of this column. 0 means none. */ 2609 int lru; /* Least recently used entry has the smallest value */ 2610 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2611 ExprList *pConstExpr;/* Constant expressions */ 2612 Token constraintName;/* Name of the constraint currently being parsed */ 2613 yDbMask writeMask; /* Start a write transaction on these databases */ 2614 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2615 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2616 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2617 int regRoot; /* Register holding root page number for new objects */ 2618 int nMaxArg; /* Max args passed to user function by sub-program */ 2619 #if SELECTTRACE_ENABLED 2620 int nSelect; /* Number of SELECT statements seen */ 2621 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2622 #endif 2623 #ifndef SQLITE_OMIT_SHARED_CACHE 2624 int nTableLock; /* Number of locks in aTableLock */ 2625 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2626 #endif 2627 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2628 2629 /* Information used while coding trigger programs. */ 2630 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2631 Table *pTriggerTab; /* Table triggers are being coded for */ 2632 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2633 int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */ 2634 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2635 u32 oldmask; /* Mask of old.* columns referenced */ 2636 u32 newmask; /* Mask of new.* columns referenced */ 2637 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2638 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2639 u8 disableTriggers; /* True to disable triggers */ 2640 2641 /************************************************************************ 2642 ** Above is constant between recursions. Below is reset before and after 2643 ** each recursion. The boundary between these two regions is determined 2644 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2645 ** in the recursive region. 2646 ************************************************************************/ 2647 2648 int nVar; /* Number of '?' variables seen in the SQL so far */ 2649 int nzVar; /* Number of available slots in azVar[] */ 2650 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2651 u8 bFreeWith; /* True if pWith should be freed with parser */ 2652 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2653 #ifndef SQLITE_OMIT_VIRTUALTABLE 2654 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2655 int nVtabLock; /* Number of virtual tables to lock */ 2656 #endif 2657 int nAlias; /* Number of aliased result set columns */ 2658 int nHeight; /* Expression tree height of current sub-select */ 2659 #ifndef SQLITE_OMIT_EXPLAIN 2660 int iSelectId; /* ID of current select for EXPLAIN output */ 2661 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2662 #endif 2663 char **azVar; /* Pointers to names of parameters */ 2664 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2665 const char *zTail; /* All SQL text past the last semicolon parsed */ 2666 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2667 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2668 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2669 Token sNameToken; /* Token with unqualified schema object name */ 2670 Token sLastToken; /* The last token parsed */ 2671 #ifndef SQLITE_OMIT_VIRTUALTABLE 2672 Token sArg; /* Complete text of a module argument */ 2673 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2674 #endif 2675 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2676 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2677 With *pWith; /* Current WITH clause, or NULL */ 2678 }; 2679 2680 /* 2681 ** Return true if currently inside an sqlite3_declare_vtab() call. 2682 */ 2683 #ifdef SQLITE_OMIT_VIRTUALTABLE 2684 #define IN_DECLARE_VTAB 0 2685 #else 2686 #define IN_DECLARE_VTAB (pParse->declareVtab) 2687 #endif 2688 2689 /* 2690 ** An instance of the following structure can be declared on a stack and used 2691 ** to save the Parse.zAuthContext value so that it can be restored later. 2692 */ 2693 struct AuthContext { 2694 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2695 Parse *pParse; /* The Parse structure */ 2696 }; 2697 2698 /* 2699 ** Bitfield flags for P5 value in various opcodes. 2700 */ 2701 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2702 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2703 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2704 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2705 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2706 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2707 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2708 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2709 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2710 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 2711 #define OPFLAG_P2ISREG 0x04 /* P2 to OP_Open** is a register number */ 2712 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2713 2714 /* 2715 * Each trigger present in the database schema is stored as an instance of 2716 * struct Trigger. 2717 * 2718 * Pointers to instances of struct Trigger are stored in two ways. 2719 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2720 * database). This allows Trigger structures to be retrieved by name. 2721 * 2. All triggers associated with a single table form a linked list, using the 2722 * pNext member of struct Trigger. A pointer to the first element of the 2723 * linked list is stored as the "pTrigger" member of the associated 2724 * struct Table. 2725 * 2726 * The "step_list" member points to the first element of a linked list 2727 * containing the SQL statements specified as the trigger program. 2728 */ 2729 struct Trigger { 2730 char *zName; /* The name of the trigger */ 2731 char *table; /* The table or view to which the trigger applies */ 2732 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2733 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2734 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2735 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2736 the <column-list> is stored here */ 2737 Schema *pSchema; /* Schema containing the trigger */ 2738 Schema *pTabSchema; /* Schema containing the table */ 2739 TriggerStep *step_list; /* Link list of trigger program steps */ 2740 Trigger *pNext; /* Next trigger associated with the table */ 2741 }; 2742 2743 /* 2744 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2745 ** determine which. 2746 ** 2747 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2748 ** In that cases, the constants below can be ORed together. 2749 */ 2750 #define TRIGGER_BEFORE 1 2751 #define TRIGGER_AFTER 2 2752 2753 /* 2754 * An instance of struct TriggerStep is used to store a single SQL statement 2755 * that is a part of a trigger-program. 2756 * 2757 * Instances of struct TriggerStep are stored in a singly linked list (linked 2758 * using the "pNext" member) referenced by the "step_list" member of the 2759 * associated struct Trigger instance. The first element of the linked list is 2760 * the first step of the trigger-program. 2761 * 2762 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2763 * "SELECT" statement. The meanings of the other members is determined by the 2764 * value of "op" as follows: 2765 * 2766 * (op == TK_INSERT) 2767 * orconf -> stores the ON CONFLICT algorithm 2768 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2769 * this stores a pointer to the SELECT statement. Otherwise NULL. 2770 * target -> A token holding the quoted name of the table to insert into. 2771 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2772 * this stores values to be inserted. Otherwise NULL. 2773 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2774 * statement, then this stores the column-names to be 2775 * inserted into. 2776 * 2777 * (op == TK_DELETE) 2778 * target -> A token holding the quoted name of the table to delete from. 2779 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2780 * Otherwise NULL. 2781 * 2782 * (op == TK_UPDATE) 2783 * target -> A token holding the quoted name of the table to update rows of. 2784 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2785 * Otherwise NULL. 2786 * pExprList -> A list of the columns to update and the expressions to update 2787 * them to. See sqlite3Update() documentation of "pChanges" 2788 * argument. 2789 * 2790 */ 2791 struct TriggerStep { 2792 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2793 u8 orconf; /* OE_Rollback etc. */ 2794 Trigger *pTrig; /* The trigger that this step is a part of */ 2795 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2796 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2797 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2798 ExprList *pExprList; /* SET clause for UPDATE. */ 2799 IdList *pIdList; /* Column names for INSERT */ 2800 TriggerStep *pNext; /* Next in the link-list */ 2801 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2802 }; 2803 2804 /* 2805 ** The following structure contains information used by the sqliteFix... 2806 ** routines as they walk the parse tree to make database references 2807 ** explicit. 2808 */ 2809 typedef struct DbFixer DbFixer; 2810 struct DbFixer { 2811 Parse *pParse; /* The parsing context. Error messages written here */ 2812 Schema *pSchema; /* Fix items to this schema */ 2813 int bVarOnly; /* Check for variable references only */ 2814 const char *zDb; /* Make sure all objects are contained in this database */ 2815 const char *zType; /* Type of the container - used for error messages */ 2816 const Token *pName; /* Name of the container - used for error messages */ 2817 }; 2818 2819 /* 2820 ** An objected used to accumulate the text of a string where we 2821 ** do not necessarily know how big the string will be in the end. 2822 */ 2823 struct StrAccum { 2824 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2825 char *zBase; /* A base allocation. Not from malloc. */ 2826 char *zText; /* The string collected so far */ 2827 int nChar; /* Length of the string so far */ 2828 int nAlloc; /* Amount of space allocated in zText */ 2829 int mxAlloc; /* Maximum allowed string length */ 2830 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2831 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2832 }; 2833 #define STRACCUM_NOMEM 1 2834 #define STRACCUM_TOOBIG 2 2835 2836 /* 2837 ** A pointer to this structure is used to communicate information 2838 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2839 */ 2840 typedef struct { 2841 sqlite3 *db; /* The database being initialized */ 2842 char **pzErrMsg; /* Error message stored here */ 2843 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2844 int rc; /* Result code stored here */ 2845 } InitData; 2846 2847 /* 2848 ** Structure containing global configuration data for the SQLite library. 2849 ** 2850 ** This structure also contains some state information. 2851 */ 2852 struct Sqlite3Config { 2853 int bMemstat; /* True to enable memory status */ 2854 int bCoreMutex; /* True to enable core mutexing */ 2855 int bFullMutex; /* True to enable full mutexing */ 2856 int bOpenUri; /* True to interpret filenames as URIs */ 2857 int bUseCis; /* Use covering indices for full-scans */ 2858 int mxStrlen; /* Maximum string length */ 2859 int neverCorrupt; /* Database is always well-formed */ 2860 int szLookaside; /* Default lookaside buffer size */ 2861 int nLookaside; /* Default lookaside buffer count */ 2862 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2863 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2864 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2865 void *pHeap; /* Heap storage space */ 2866 int nHeap; /* Size of pHeap[] */ 2867 int mnReq, mxReq; /* Min and max heap requests sizes */ 2868 sqlite3_int64 szMmap; /* mmap() space per open file */ 2869 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2870 void *pScratch; /* Scratch memory */ 2871 int szScratch; /* Size of each scratch buffer */ 2872 int nScratch; /* Number of scratch buffers */ 2873 void *pPage; /* Page cache memory */ 2874 int szPage; /* Size of each page in pPage[] */ 2875 int nPage; /* Number of pages in pPage[] */ 2876 int mxParserStack; /* maximum depth of the parser stack */ 2877 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2878 u32 szPma; /* Maximum Sorter PMA size */ 2879 /* The above might be initialized to non-zero. The following need to always 2880 ** initially be zero, however. */ 2881 int isInit; /* True after initialization has finished */ 2882 int inProgress; /* True while initialization in progress */ 2883 int isMutexInit; /* True after mutexes are initialized */ 2884 int isMallocInit; /* True after malloc is initialized */ 2885 int isPCacheInit; /* True after malloc is initialized */ 2886 int nRefInitMutex; /* Number of users of pInitMutex */ 2887 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2888 void (*xLog)(void*,int,const char*); /* Function for logging */ 2889 void *pLogArg; /* First argument to xLog() */ 2890 #ifdef SQLITE_ENABLE_SQLLOG 2891 void(*xSqllog)(void*,sqlite3*,const char*, int); 2892 void *pSqllogArg; 2893 #endif 2894 #ifdef SQLITE_VDBE_COVERAGE 2895 /* The following callback (if not NULL) is invoked on every VDBE branch 2896 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 2897 */ 2898 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 2899 void *pVdbeBranchArg; /* 1st argument */ 2900 #endif 2901 #ifndef SQLITE_OMIT_BUILTIN_TEST 2902 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 2903 #endif 2904 int bLocaltimeFault; /* True to fail localtime() calls */ 2905 }; 2906 2907 /* 2908 ** This macro is used inside of assert() statements to indicate that 2909 ** the assert is only valid on a well-formed database. Instead of: 2910 ** 2911 ** assert( X ); 2912 ** 2913 ** One writes: 2914 ** 2915 ** assert( X || CORRUPT_DB ); 2916 ** 2917 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2918 ** that the database is definitely corrupt, only that it might be corrupt. 2919 ** For most test cases, CORRUPT_DB is set to false using a special 2920 ** sqlite3_test_control(). This enables assert() statements to prove 2921 ** things that are always true for well-formed databases. 2922 */ 2923 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2924 2925 /* 2926 ** Context pointer passed down through the tree-walk. 2927 */ 2928 struct Walker { 2929 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2930 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2931 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2932 Parse *pParse; /* Parser context. */ 2933 int walkerDepth; /* Number of subqueries */ 2934 u8 eCode; /* A small processing code */ 2935 union { /* Extra data for callback */ 2936 NameContext *pNC; /* Naming context */ 2937 int n; /* A counter */ 2938 int iCur; /* A cursor number */ 2939 SrcList *pSrcList; /* FROM clause */ 2940 struct SrcCount *pSrcCount; /* Counting column references */ 2941 } u; 2942 }; 2943 2944 /* Forward declarations */ 2945 int sqlite3WalkExpr(Walker*, Expr*); 2946 int sqlite3WalkExprList(Walker*, ExprList*); 2947 int sqlite3WalkSelect(Walker*, Select*); 2948 int sqlite3WalkSelectExpr(Walker*, Select*); 2949 int sqlite3WalkSelectFrom(Walker*, Select*); 2950 2951 /* 2952 ** Return code from the parse-tree walking primitives and their 2953 ** callbacks. 2954 */ 2955 #define WRC_Continue 0 /* Continue down into children */ 2956 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2957 #define WRC_Abort 2 /* Abandon the tree walk */ 2958 2959 /* 2960 ** An instance of this structure represents a set of one or more CTEs 2961 ** (common table expressions) created by a single WITH clause. 2962 */ 2963 struct With { 2964 int nCte; /* Number of CTEs in the WITH clause */ 2965 With *pOuter; /* Containing WITH clause, or NULL */ 2966 struct Cte { /* For each CTE in the WITH clause.... */ 2967 char *zName; /* Name of this CTE */ 2968 ExprList *pCols; /* List of explicit column names, or NULL */ 2969 Select *pSelect; /* The definition of this CTE */ 2970 const char *zErr; /* Error message for circular references */ 2971 } a[1]; 2972 }; 2973 2974 #ifdef SQLITE_DEBUG 2975 /* 2976 ** An instance of the TreeView object is used for printing the content of 2977 ** data structures on sqlite3DebugPrintf() using a tree-like view. 2978 */ 2979 struct TreeView { 2980 int iLevel; /* Which level of the tree we are on */ 2981 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 2982 }; 2983 #endif /* SQLITE_DEBUG */ 2984 2985 /* 2986 ** Assuming zIn points to the first byte of a UTF-8 character, 2987 ** advance zIn to point to the first byte of the next UTF-8 character. 2988 */ 2989 #define SQLITE_SKIP_UTF8(zIn) { \ 2990 if( (*(zIn++))>=0xc0 ){ \ 2991 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2992 } \ 2993 } 2994 2995 /* 2996 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2997 ** the same name but without the _BKPT suffix. These macros invoke 2998 ** routines that report the line-number on which the error originated 2999 ** using sqlite3_log(). The routines also provide a convenient place 3000 ** to set a debugger breakpoint. 3001 */ 3002 int sqlite3CorruptError(int); 3003 int sqlite3MisuseError(int); 3004 int sqlite3CantopenError(int); 3005 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3006 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3007 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3008 3009 3010 /* 3011 ** FTS4 is really an extension for FTS3. It is enabled using the 3012 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3013 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3014 */ 3015 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3016 # define SQLITE_ENABLE_FTS3 1 3017 #endif 3018 3019 /* 3020 ** The ctype.h header is needed for non-ASCII systems. It is also 3021 ** needed by FTS3 when FTS3 is included in the amalgamation. 3022 */ 3023 #if !defined(SQLITE_ASCII) || \ 3024 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3025 # include <ctype.h> 3026 #endif 3027 3028 /* 3029 ** The following macros mimic the standard library functions toupper(), 3030 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3031 ** sqlite versions only work for ASCII characters, regardless of locale. 3032 */ 3033 #ifdef SQLITE_ASCII 3034 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3035 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3036 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3037 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3038 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3039 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3040 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3041 #else 3042 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3043 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3044 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3045 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3046 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3047 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3048 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3049 #endif 3050 int sqlite3IsIdChar(u8); 3051 3052 /* 3053 ** Internal function prototypes 3054 */ 3055 #define sqlite3StrICmp sqlite3_stricmp 3056 int sqlite3Strlen30(const char*); 3057 #define sqlite3StrNICmp sqlite3_strnicmp 3058 3059 int sqlite3MallocInit(void); 3060 void sqlite3MallocEnd(void); 3061 void *sqlite3Malloc(u64); 3062 void *sqlite3MallocZero(u64); 3063 void *sqlite3DbMallocZero(sqlite3*, u64); 3064 void *sqlite3DbMallocRaw(sqlite3*, u64); 3065 char *sqlite3DbStrDup(sqlite3*,const char*); 3066 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3067 void *sqlite3Realloc(void*, u64); 3068 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3069 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3070 void sqlite3DbFree(sqlite3*, void*); 3071 int sqlite3MallocSize(void*); 3072 int sqlite3DbMallocSize(sqlite3*, void*); 3073 void *sqlite3ScratchMalloc(int); 3074 void sqlite3ScratchFree(void*); 3075 void *sqlite3PageMalloc(int); 3076 void sqlite3PageFree(void*); 3077 void sqlite3MemSetDefault(void); 3078 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3079 int sqlite3HeapNearlyFull(void); 3080 3081 /* 3082 ** On systems with ample stack space and that support alloca(), make 3083 ** use of alloca() to obtain space for large automatic objects. By default, 3084 ** obtain space from malloc(). 3085 ** 3086 ** The alloca() routine never returns NULL. This will cause code paths 3087 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3088 */ 3089 #ifdef SQLITE_USE_ALLOCA 3090 # define sqlite3StackAllocRaw(D,N) alloca(N) 3091 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3092 # define sqlite3StackFree(D,P) 3093 #else 3094 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3095 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3096 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3097 #endif 3098 3099 #ifdef SQLITE_ENABLE_MEMSYS3 3100 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3101 #endif 3102 #ifdef SQLITE_ENABLE_MEMSYS5 3103 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3104 #endif 3105 3106 3107 #ifndef SQLITE_MUTEX_OMIT 3108 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3109 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3110 sqlite3_mutex *sqlite3MutexAlloc(int); 3111 int sqlite3MutexInit(void); 3112 int sqlite3MutexEnd(void); 3113 #endif 3114 3115 sqlite3_int64 sqlite3StatusValue(int); 3116 void sqlite3StatusUp(int, int); 3117 void sqlite3StatusDown(int, int); 3118 void sqlite3StatusSet(int, int); 3119 3120 /* Access to mutexes used by sqlite3_status() */ 3121 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3122 sqlite3_mutex *sqlite3MallocMutex(void); 3123 3124 #ifndef SQLITE_OMIT_FLOATING_POINT 3125 int sqlite3IsNaN(double); 3126 #else 3127 # define sqlite3IsNaN(X) 0 3128 #endif 3129 3130 /* 3131 ** An instance of the following structure holds information about SQL 3132 ** functions arguments that are the parameters to the printf() function. 3133 */ 3134 struct PrintfArguments { 3135 int nArg; /* Total number of arguments */ 3136 int nUsed; /* Number of arguments used so far */ 3137 sqlite3_value **apArg; /* The argument values */ 3138 }; 3139 3140 #define SQLITE_PRINTF_INTERNAL 0x01 3141 #define SQLITE_PRINTF_SQLFUNC 0x02 3142 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3143 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3144 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3145 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3146 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 3147 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 3148 void sqlite3DebugPrintf(const char*, ...); 3149 #endif 3150 #if defined(SQLITE_TEST) 3151 void *sqlite3TestTextToPtr(const char*); 3152 #endif 3153 3154 #if defined(SQLITE_DEBUG) 3155 TreeView *sqlite3TreeViewPush(TreeView*,u8); 3156 void sqlite3TreeViewPop(TreeView*); 3157 void sqlite3TreeViewLine(TreeView*, const char*, ...); 3158 void sqlite3TreeViewItem(TreeView*, const char*, u8); 3159 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3160 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3161 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3162 #endif 3163 3164 3165 void sqlite3SetString(char **, sqlite3*, const char*, ...); 3166 void sqlite3ErrorMsg(Parse*, const char*, ...); 3167 int sqlite3Dequote(char*); 3168 int sqlite3KeywordCode(const unsigned char*, int); 3169 int sqlite3RunParser(Parse*, const char*, char **); 3170 void sqlite3FinishCoding(Parse*); 3171 int sqlite3GetTempReg(Parse*); 3172 void sqlite3ReleaseTempReg(Parse*,int); 3173 int sqlite3GetTempRange(Parse*,int); 3174 void sqlite3ReleaseTempRange(Parse*,int,int); 3175 void sqlite3ClearTempRegCache(Parse*); 3176 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3177 Expr *sqlite3Expr(sqlite3*,int,const char*); 3178 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3179 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3180 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3181 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3182 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3183 void sqlite3ExprDelete(sqlite3*, Expr*); 3184 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3185 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3186 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3187 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3188 u32 sqlite3ExprListFlags(const ExprList*); 3189 int sqlite3Init(sqlite3*, char**); 3190 int sqlite3InitCallback(void*, int, char**, char**); 3191 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3192 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3193 void sqlite3ResetOneSchema(sqlite3*,int); 3194 void sqlite3CollapseDatabaseArray(sqlite3*); 3195 void sqlite3BeginParse(Parse*,int); 3196 void sqlite3CommitInternalChanges(sqlite3*); 3197 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3198 void sqlite3OpenMasterTable(Parse *, int); 3199 Index *sqlite3PrimaryKeyIndex(Table*); 3200 i16 sqlite3ColumnOfIndex(Index*, i16); 3201 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3202 void sqlite3AddColumn(Parse*,Token*); 3203 void sqlite3AddNotNull(Parse*, int); 3204 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3205 void sqlite3AddCheckConstraint(Parse*, Expr*); 3206 void sqlite3AddColumnType(Parse*,Token*); 3207 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3208 void sqlite3AddCollateType(Parse*, Token*); 3209 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3210 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3211 sqlite3_vfs**,char**,char **); 3212 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3213 int sqlite3CodeOnce(Parse *); 3214 3215 #ifdef SQLITE_OMIT_BUILTIN_TEST 3216 # define sqlite3FaultSim(X) SQLITE_OK 3217 #else 3218 int sqlite3FaultSim(int); 3219 #endif 3220 3221 Bitvec *sqlite3BitvecCreate(u32); 3222 int sqlite3BitvecTest(Bitvec*, u32); 3223 int sqlite3BitvecSet(Bitvec*, u32); 3224 void sqlite3BitvecClear(Bitvec*, u32, void*); 3225 void sqlite3BitvecDestroy(Bitvec*); 3226 u32 sqlite3BitvecSize(Bitvec*); 3227 int sqlite3BitvecBuiltinTest(int,int*); 3228 3229 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3230 void sqlite3RowSetClear(RowSet*); 3231 void sqlite3RowSetInsert(RowSet*, i64); 3232 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3233 int sqlite3RowSetNext(RowSet*, i64*); 3234 3235 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 3236 3237 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3238 int sqlite3ViewGetColumnNames(Parse*,Table*); 3239 #else 3240 # define sqlite3ViewGetColumnNames(A,B) 0 3241 #endif 3242 3243 #if SQLITE_MAX_ATTACHED>30 3244 int sqlite3DbMaskAllZero(yDbMask); 3245 #endif 3246 void sqlite3DropTable(Parse*, SrcList*, int, int); 3247 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3248 void sqlite3DeleteTable(sqlite3*, Table*); 3249 #ifndef SQLITE_OMIT_AUTOINCREMENT 3250 void sqlite3AutoincrementBegin(Parse *pParse); 3251 void sqlite3AutoincrementEnd(Parse *pParse); 3252 #else 3253 # define sqlite3AutoincrementBegin(X) 3254 # define sqlite3AutoincrementEnd(X) 3255 #endif 3256 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3257 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3258 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3259 int sqlite3IdListIndex(IdList*,const char*); 3260 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3261 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3262 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3263 Token*, Select*, Expr*, IdList*); 3264 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3265 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3266 void sqlite3SrcListShiftJoinType(SrcList*); 3267 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3268 void sqlite3IdListDelete(sqlite3*, IdList*); 3269 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3270 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3271 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3272 Expr*, int, int); 3273 void sqlite3DropIndex(Parse*, SrcList*, int); 3274 int sqlite3Select(Parse*, Select*, SelectDest*); 3275 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3276 Expr*,ExprList*,u16,Expr*,Expr*); 3277 void sqlite3SelectDelete(sqlite3*, Select*); 3278 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3279 int sqlite3IsReadOnly(Parse*, Table*, int); 3280 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3281 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3282 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3283 #endif 3284 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3285 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3286 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3287 void sqlite3WhereEnd(WhereInfo*); 3288 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3289 int sqlite3WhereIsDistinct(WhereInfo*); 3290 int sqlite3WhereIsOrdered(WhereInfo*); 3291 int sqlite3WhereIsSorted(WhereInfo*); 3292 int sqlite3WhereContinueLabel(WhereInfo*); 3293 int sqlite3WhereBreakLabel(WhereInfo*); 3294 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3295 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3296 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3297 void sqlite3ExprCodeMove(Parse*, int, int, int); 3298 void sqlite3ExprCacheStore(Parse*, int, int, int); 3299 void sqlite3ExprCachePush(Parse*); 3300 void sqlite3ExprCachePop(Parse*); 3301 void sqlite3ExprCacheRemove(Parse*, int, int); 3302 void sqlite3ExprCacheClear(Parse*); 3303 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3304 void sqlite3ExprCode(Parse*, Expr*, int); 3305 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3306 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3307 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3308 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3309 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3310 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3311 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3312 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3313 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3314 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3315 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3316 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3317 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3318 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3319 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3320 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3321 void sqlite3Vacuum(Parse*); 3322 int sqlite3RunVacuum(char**, sqlite3*); 3323 char *sqlite3NameFromToken(sqlite3*, Token*); 3324 int sqlite3ExprCompare(Expr*, Expr*, int); 3325 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3326 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3327 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3328 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3329 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3330 Vdbe *sqlite3GetVdbe(Parse*); 3331 void sqlite3PrngSaveState(void); 3332 void sqlite3PrngRestoreState(void); 3333 void sqlite3RollbackAll(sqlite3*,int); 3334 void sqlite3CodeVerifySchema(Parse*, int); 3335 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3336 void sqlite3BeginTransaction(Parse*, int); 3337 void sqlite3CommitTransaction(Parse*); 3338 void sqlite3RollbackTransaction(Parse*); 3339 void sqlite3Savepoint(Parse*, int, Token*); 3340 void sqlite3CloseSavepoints(sqlite3 *); 3341 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3342 int sqlite3ExprIsConstant(Expr*); 3343 int sqlite3ExprIsConstantNotJoin(Expr*); 3344 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3345 int sqlite3ExprIsTableConstant(Expr*,int); 3346 int sqlite3ExprIsInteger(Expr*, int*); 3347 int sqlite3ExprCanBeNull(const Expr*); 3348 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3349 int sqlite3IsRowid(const char*); 3350 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3351 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3352 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3353 void sqlite3ResolvePartIdxLabel(Parse*,int); 3354 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3355 u8,u8,int,int*); 3356 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3357 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3358 void sqlite3BeginWriteOperation(Parse*, int, int); 3359 void sqlite3MultiWrite(Parse*); 3360 void sqlite3MayAbort(Parse*); 3361 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3362 void sqlite3UniqueConstraint(Parse*, int, Index*); 3363 void sqlite3RowidConstraint(Parse*, int, Table*); 3364 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3365 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3366 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3367 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3368 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3369 #if SELECTTRACE_ENABLED 3370 void sqlite3SelectSetName(Select*,const char*); 3371 #else 3372 # define sqlite3SelectSetName(A,B) 3373 #endif 3374 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3375 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3376 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3377 void sqlite3RegisterDateTimeFunctions(void); 3378 void sqlite3RegisterGlobalFunctions(void); 3379 int sqlite3SafetyCheckOk(sqlite3*); 3380 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3381 void sqlite3ChangeCookie(Parse*, int); 3382 3383 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3384 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3385 #endif 3386 3387 #ifndef SQLITE_OMIT_TRIGGER 3388 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3389 Expr*,int, int); 3390 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3391 void sqlite3DropTrigger(Parse*, SrcList*, int); 3392 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3393 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3394 Trigger *sqlite3TriggerList(Parse *, Table *); 3395 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3396 int, int, int); 3397 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3398 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3399 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3400 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3401 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3402 Select*,u8); 3403 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3404 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3405 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3406 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3407 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3408 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3409 #else 3410 # define sqlite3TriggersExist(B,C,D,E,F) 0 3411 # define sqlite3DeleteTrigger(A,B) 3412 # define sqlite3DropTriggerPtr(A,B) 3413 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3414 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3415 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3416 # define sqlite3TriggerList(X, Y) 0 3417 # define sqlite3ParseToplevel(p) p 3418 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3419 #endif 3420 3421 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3422 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3423 void sqlite3DeferForeignKey(Parse*, int); 3424 #ifndef SQLITE_OMIT_AUTHORIZATION 3425 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3426 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3427 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3428 void sqlite3AuthContextPop(AuthContext*); 3429 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3430 #else 3431 # define sqlite3AuthRead(a,b,c,d) 3432 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3433 # define sqlite3AuthContextPush(a,b,c) 3434 # define sqlite3AuthContextPop(a) ((void)(a)) 3435 #endif 3436 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3437 void sqlite3Detach(Parse*, Expr*); 3438 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3439 int sqlite3FixSrcList(DbFixer*, SrcList*); 3440 int sqlite3FixSelect(DbFixer*, Select*); 3441 int sqlite3FixExpr(DbFixer*, Expr*); 3442 int sqlite3FixExprList(DbFixer*, ExprList*); 3443 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3444 int sqlite3AtoF(const char *z, double*, int, u8); 3445 int sqlite3GetInt32(const char *, int*); 3446 int sqlite3Atoi(const char*); 3447 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3448 int sqlite3Utf8CharLen(const char *pData, int nByte); 3449 u32 sqlite3Utf8Read(const u8**); 3450 LogEst sqlite3LogEst(u64); 3451 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3452 #ifndef SQLITE_OMIT_VIRTUALTABLE 3453 LogEst sqlite3LogEstFromDouble(double); 3454 #endif 3455 u64 sqlite3LogEstToInt(LogEst); 3456 3457 /* 3458 ** Routines to read and write variable-length integers. These used to 3459 ** be defined locally, but now we use the varint routines in the util.c 3460 ** file. 3461 */ 3462 int sqlite3PutVarint(unsigned char*, u64); 3463 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3464 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3465 int sqlite3VarintLen(u64 v); 3466 3467 /* 3468 ** The common case is for a varint to be a single byte. They following 3469 ** macros handle the common case without a procedure call, but then call 3470 ** the procedure for larger varints. 3471 */ 3472 #define getVarint32(A,B) \ 3473 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3474 #define putVarint32(A,B) \ 3475 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3476 sqlite3PutVarint((A),(B))) 3477 #define getVarint sqlite3GetVarint 3478 #define putVarint sqlite3PutVarint 3479 3480 3481 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3482 void sqlite3TableAffinity(Vdbe*, Table*, int); 3483 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3484 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3485 char sqlite3ExprAffinity(Expr *pExpr); 3486 int sqlite3Atoi64(const char*, i64*, int, u8); 3487 int sqlite3DecOrHexToI64(const char*, i64*); 3488 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3489 void sqlite3Error(sqlite3*,int); 3490 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3491 u8 sqlite3HexToInt(int h); 3492 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3493 3494 #if defined(SQLITE_DEBUG) && \ 3495 (defined(SQLITE_TEST) || defined(SQLITE_FORCE_OS_TRACE)) 3496 const char *sqlite3ErrName(int); 3497 #endif 3498 3499 const char *sqlite3ErrStr(int); 3500 int sqlite3ReadSchema(Parse *pParse); 3501 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3502 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3503 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3504 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3505 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3506 Expr *sqlite3ExprSkipCollate(Expr*); 3507 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3508 int sqlite3CheckObjectName(Parse *, const char *); 3509 void sqlite3VdbeSetChanges(sqlite3 *, int); 3510 int sqlite3AddInt64(i64*,i64); 3511 int sqlite3SubInt64(i64*,i64); 3512 int sqlite3MulInt64(i64*,i64); 3513 int sqlite3AbsInt32(int); 3514 #ifdef SQLITE_ENABLE_8_3_NAMES 3515 void sqlite3FileSuffix3(const char*, char*); 3516 #else 3517 # define sqlite3FileSuffix3(X,Y) 3518 #endif 3519 u8 sqlite3GetBoolean(const char *z,u8); 3520 3521 const void *sqlite3ValueText(sqlite3_value*, u8); 3522 int sqlite3ValueBytes(sqlite3_value*, u8); 3523 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3524 void(*)(void*)); 3525 void sqlite3ValueSetNull(sqlite3_value*); 3526 void sqlite3ValueFree(sqlite3_value*); 3527 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3528 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3529 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3530 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3531 #ifndef SQLITE_AMALGAMATION 3532 extern const unsigned char sqlite3OpcodeProperty[]; 3533 extern const unsigned char sqlite3UpperToLower[]; 3534 extern const unsigned char sqlite3CtypeMap[]; 3535 extern const Token sqlite3IntTokens[]; 3536 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3537 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3538 #ifndef SQLITE_OMIT_WSD 3539 extern int sqlite3PendingByte; 3540 #endif 3541 #endif 3542 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3543 void sqlite3Reindex(Parse*, Token*, Token*); 3544 void sqlite3AlterFunctions(void); 3545 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3546 int sqlite3GetToken(const unsigned char *, int *); 3547 void sqlite3NestedParse(Parse*, const char*, ...); 3548 void sqlite3ExpirePreparedStatements(sqlite3*); 3549 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3550 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3551 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3552 int sqlite3ResolveExprNames(NameContext*, Expr*); 3553 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3554 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3555 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3556 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3557 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3558 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3559 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3560 char sqlite3AffinityType(const char*, u8*); 3561 void sqlite3Analyze(Parse*, Token*, Token*); 3562 int sqlite3InvokeBusyHandler(BusyHandler*); 3563 int sqlite3FindDb(sqlite3*, Token*); 3564 int sqlite3FindDbName(sqlite3 *, const char *); 3565 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3566 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3567 void sqlite3DefaultRowEst(Index*); 3568 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3569 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3570 void sqlite3MinimumFileFormat(Parse*, int, int); 3571 void sqlite3SchemaClear(void *); 3572 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3573 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3574 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3575 void sqlite3KeyInfoUnref(KeyInfo*); 3576 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3577 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3578 #ifdef SQLITE_DEBUG 3579 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3580 #endif 3581 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3582 void (*)(sqlite3_context*,int,sqlite3_value **), 3583 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3584 FuncDestructor *pDestructor 3585 ); 3586 int sqlite3ApiExit(sqlite3 *db, int); 3587 int sqlite3OpenTempDatabase(Parse *); 3588 3589 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3590 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3591 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3592 void sqlite3AppendChar(StrAccum*,int,char); 3593 char *sqlite3StrAccumFinish(StrAccum*); 3594 void sqlite3StrAccumReset(StrAccum*); 3595 void sqlite3SelectDestInit(SelectDest*,int,int); 3596 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3597 3598 void sqlite3BackupRestart(sqlite3_backup *); 3599 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3600 3601 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3602 void sqlite3AnalyzeFunctions(void); 3603 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3604 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3605 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3606 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3607 #endif 3608 3609 /* 3610 ** The interface to the LEMON-generated parser 3611 */ 3612 void *sqlite3ParserAlloc(void*(*)(u64)); 3613 void sqlite3ParserFree(void*, void(*)(void*)); 3614 void sqlite3Parser(void*, int, Token, Parse*); 3615 #ifdef YYTRACKMAXSTACKDEPTH 3616 int sqlite3ParserStackPeak(void*); 3617 #endif 3618 3619 void sqlite3AutoLoadExtensions(sqlite3*); 3620 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3621 void sqlite3CloseExtensions(sqlite3*); 3622 #else 3623 # define sqlite3CloseExtensions(X) 3624 #endif 3625 3626 #ifndef SQLITE_OMIT_SHARED_CACHE 3627 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3628 #else 3629 #define sqlite3TableLock(v,w,x,y,z) 3630 #endif 3631 3632 #ifdef SQLITE_TEST 3633 int sqlite3Utf8To8(unsigned char*); 3634 #endif 3635 3636 #ifdef SQLITE_OMIT_VIRTUALTABLE 3637 # define sqlite3VtabClear(Y) 3638 # define sqlite3VtabSync(X,Y) SQLITE_OK 3639 # define sqlite3VtabRollback(X) 3640 # define sqlite3VtabCommit(X) 3641 # define sqlite3VtabInSync(db) 0 3642 # define sqlite3VtabLock(X) 3643 # define sqlite3VtabUnlock(X) 3644 # define sqlite3VtabUnlockList(X) 3645 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3646 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3647 #else 3648 void sqlite3VtabClear(sqlite3 *db, Table*); 3649 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3650 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3651 int sqlite3VtabRollback(sqlite3 *db); 3652 int sqlite3VtabCommit(sqlite3 *db); 3653 void sqlite3VtabLock(VTable *); 3654 void sqlite3VtabUnlock(VTable *); 3655 void sqlite3VtabUnlockList(sqlite3*); 3656 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3657 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3658 VTable *sqlite3GetVTable(sqlite3*, Table*); 3659 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3660 #endif 3661 void sqlite3VtabMakeWritable(Parse*,Table*); 3662 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3663 void sqlite3VtabFinishParse(Parse*, Token*); 3664 void sqlite3VtabArgInit(Parse*); 3665 void sqlite3VtabArgExtend(Parse*, Token*); 3666 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3667 int sqlite3VtabCallConnect(Parse*, Table*); 3668 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3669 int sqlite3VtabBegin(sqlite3 *, VTable *); 3670 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3671 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3672 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3673 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3674 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3675 void sqlite3ParserReset(Parse*); 3676 int sqlite3Reprepare(Vdbe*); 3677 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3678 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3679 int sqlite3TempInMemory(const sqlite3*); 3680 const char *sqlite3JournalModename(int); 3681 #ifndef SQLITE_OMIT_WAL 3682 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3683 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3684 #endif 3685 #ifndef SQLITE_OMIT_CTE 3686 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3687 void sqlite3WithDelete(sqlite3*,With*); 3688 void sqlite3WithPush(Parse*, With*, u8); 3689 #else 3690 #define sqlite3WithPush(x,y,z) 3691 #define sqlite3WithDelete(x,y) 3692 #endif 3693 3694 /* Declarations for functions in fkey.c. All of these are replaced by 3695 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3696 ** key functionality is available. If OMIT_TRIGGER is defined but 3697 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3698 ** this case foreign keys are parsed, but no other functionality is 3699 ** provided (enforcement of FK constraints requires the triggers sub-system). 3700 */ 3701 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3702 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3703 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3704 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3705 int sqlite3FkRequired(Parse*, Table*, int*, int); 3706 u32 sqlite3FkOldmask(Parse*, Table*); 3707 FKey *sqlite3FkReferences(Table *); 3708 #else 3709 #define sqlite3FkActions(a,b,c,d,e,f) 3710 #define sqlite3FkCheck(a,b,c,d,e,f) 3711 #define sqlite3FkDropTable(a,b,c) 3712 #define sqlite3FkOldmask(a,b) 0 3713 #define sqlite3FkRequired(a,b,c,d) 0 3714 #endif 3715 #ifndef SQLITE_OMIT_FOREIGN_KEY 3716 void sqlite3FkDelete(sqlite3 *, Table*); 3717 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3718 #else 3719 #define sqlite3FkDelete(a,b) 3720 #define sqlite3FkLocateIndex(a,b,c,d,e) 3721 #endif 3722 3723 3724 /* 3725 ** Available fault injectors. Should be numbered beginning with 0. 3726 */ 3727 #define SQLITE_FAULTINJECTOR_MALLOC 0 3728 #define SQLITE_FAULTINJECTOR_COUNT 1 3729 3730 /* 3731 ** The interface to the code in fault.c used for identifying "benign" 3732 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3733 ** is not defined. 3734 */ 3735 #ifndef SQLITE_OMIT_BUILTIN_TEST 3736 void sqlite3BeginBenignMalloc(void); 3737 void sqlite3EndBenignMalloc(void); 3738 #else 3739 #define sqlite3BeginBenignMalloc() 3740 #define sqlite3EndBenignMalloc() 3741 #endif 3742 3743 /* 3744 ** Allowed return values from sqlite3FindInIndex() 3745 */ 3746 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3747 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3748 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3749 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3750 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3751 /* 3752 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3753 */ 3754 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3755 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3756 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3757 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3758 3759 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3760 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3761 int sqlite3JournalSize(sqlite3_vfs *); 3762 int sqlite3JournalCreate(sqlite3_file *); 3763 int sqlite3JournalExists(sqlite3_file *p); 3764 #else 3765 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3766 #define sqlite3JournalExists(p) 1 3767 #endif 3768 3769 void sqlite3MemJournalOpen(sqlite3_file *); 3770 int sqlite3MemJournalSize(void); 3771 int sqlite3IsMemJournal(sqlite3_file *); 3772 3773 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 3774 #if SQLITE_MAX_EXPR_DEPTH>0 3775 int sqlite3SelectExprHeight(Select *); 3776 int sqlite3ExprCheckHeight(Parse*, int); 3777 #else 3778 #define sqlite3SelectExprHeight(x) 0 3779 #define sqlite3ExprCheckHeight(x,y) 3780 #endif 3781 3782 u32 sqlite3Get4byte(const u8*); 3783 void sqlite3Put4byte(u8*, u32); 3784 3785 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3786 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3787 void sqlite3ConnectionUnlocked(sqlite3 *db); 3788 void sqlite3ConnectionClosed(sqlite3 *db); 3789 #else 3790 #define sqlite3ConnectionBlocked(x,y) 3791 #define sqlite3ConnectionUnlocked(x) 3792 #define sqlite3ConnectionClosed(x) 3793 #endif 3794 3795 #ifdef SQLITE_DEBUG 3796 void sqlite3ParserTrace(FILE*, char *); 3797 #endif 3798 3799 /* 3800 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3801 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3802 ** print I/O tracing messages. 3803 */ 3804 #ifdef SQLITE_ENABLE_IOTRACE 3805 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3806 void sqlite3VdbeIOTraceSql(Vdbe*); 3807 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 3808 #else 3809 # define IOTRACE(A) 3810 # define sqlite3VdbeIOTraceSql(X) 3811 #endif 3812 3813 /* 3814 ** These routines are available for the mem2.c debugging memory allocator 3815 ** only. They are used to verify that different "types" of memory 3816 ** allocations are properly tracked by the system. 3817 ** 3818 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3819 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3820 ** a single bit set. 3821 ** 3822 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3823 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3824 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3825 ** 3826 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3827 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3828 ** 3829 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3830 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3831 ** it might have been allocated by lookaside, except the allocation was 3832 ** too large or lookaside was already full. It is important to verify 3833 ** that allocations that might have been satisfied by lookaside are not 3834 ** passed back to non-lookaside free() routines. Asserts such as the 3835 ** example above are placed on the non-lookaside free() routines to verify 3836 ** this constraint. 3837 ** 3838 ** All of this is no-op for a production build. It only comes into 3839 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3840 */ 3841 #ifdef SQLITE_MEMDEBUG 3842 void sqlite3MemdebugSetType(void*,u8); 3843 int sqlite3MemdebugHasType(void*,u8); 3844 int sqlite3MemdebugNoType(void*,u8); 3845 #else 3846 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3847 # define sqlite3MemdebugHasType(X,Y) 1 3848 # define sqlite3MemdebugNoType(X,Y) 1 3849 #endif 3850 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3851 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 3852 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3853 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3854 3855 /* 3856 ** Threading interface 3857 */ 3858 #if SQLITE_MAX_WORKER_THREADS>0 3859 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 3860 int sqlite3ThreadJoin(SQLiteThread*, void**); 3861 #endif 3862 3863 #endif /* _SQLITEINT_H_ */ 3864