xref: /sqlite-3.40.0/src/sqliteInt.h (revision e933b83f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17 
18 /*
19 ** These #defines should enable >2GB file support on POSIX if the
20 ** underlying operating system supports it.  If the OS lacks
21 ** large file support, or if the OS is windows, these should be no-ops.
22 **
23 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
24 ** system #includes.  Hence, this block of code must be the very first
25 ** code in all source files.
26 **
27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
28 ** on the compiler command line.  This is necessary if you are compiling
29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
30 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
31 ** without this option, LFS is enable.  But LFS does not exist in the kernel
32 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
33 ** portability you should omit LFS.
34 **
35 ** The previous paragraph was written in 2005.  (This paragraph is written
36 ** on 2008-11-28.) These days, all Linux kernels support large files, so
37 ** you should probably leave LFS enabled.  But some embedded platforms might
38 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
39 **
40 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
41 */
42 #ifndef SQLITE_DISABLE_LFS
43 # define _LARGE_FILE       1
44 # ifndef _FILE_OFFSET_BITS
45 #   define _FILE_OFFSET_BITS 64
46 # endif
47 # define _LARGEFILE_SOURCE 1
48 #endif
49 
50 /*
51 ** For MinGW, check to see if we can include the header file containing its
52 ** version information, among other things.  Normally, this internal MinGW
53 ** header file would [only] be included automatically by other MinGW header
54 ** files; however, the contained version information is now required by this
55 ** header file to work around binary compatibility issues (see below) and
56 ** this is the only known way to reliably obtain it.  This entire #if block
57 ** would be completely unnecessary if there was any other way of detecting
58 ** MinGW via their preprocessor (e.g. if they customized their GCC to define
59 ** some MinGW-specific macros).  When compiling for MinGW, either the
60 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
61 ** defined; otherwise, detection of conditions specific to MinGW will be
62 ** disabled.
63 */
64 #if defined(_HAVE_MINGW_H)
65 # include "mingw.h"
66 #elif defined(_HAVE__MINGW_H)
67 # include "_mingw.h"
68 #endif
69 
70 /*
71 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
72 ** define is required to maintain binary compatibility with the MSVC runtime
73 ** library in use (e.g. for Windows XP).
74 */
75 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
76     defined(_WIN32) && !defined(_WIN64) && \
77     defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
78     defined(__MSVCRT__)
79 # define _USE_32BIT_TIME_T
80 #endif
81 
82 /* The public SQLite interface.  The _FILE_OFFSET_BITS macro must appear
83 ** first in QNX.  Also, the _USE_32BIT_TIME_T macro must appear first for
84 ** MinGW.
85 */
86 #include "sqlite3.h"
87 
88 /*
89 ** Include the configuration header output by 'configure' if we're using the
90 ** autoconf-based build
91 */
92 #ifdef _HAVE_SQLITE_CONFIG_H
93 #include "config.h"
94 #endif
95 
96 #include "sqliteLimit.h"
97 
98 /* Disable nuisance warnings on Borland compilers */
99 #if defined(__BORLANDC__)
100 #pragma warn -rch /* unreachable code */
101 #pragma warn -ccc /* Condition is always true or false */
102 #pragma warn -aus /* Assigned value is never used */
103 #pragma warn -csu /* Comparing signed and unsigned */
104 #pragma warn -spa /* Suspicious pointer arithmetic */
105 #endif
106 
107 /* Needed for various definitions... */
108 #ifndef _GNU_SOURCE
109 # define _GNU_SOURCE
110 #endif
111 
112 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
113 # define _BSD_SOURCE
114 #endif
115 
116 /*
117 ** Include standard header files as necessary
118 */
119 #ifdef HAVE_STDINT_H
120 #include <stdint.h>
121 #endif
122 #ifdef HAVE_INTTYPES_H
123 #include <inttypes.h>
124 #endif
125 
126 /*
127 ** The following macros are used to cast pointers to integers and
128 ** integers to pointers.  The way you do this varies from one compiler
129 ** to the next, so we have developed the following set of #if statements
130 ** to generate appropriate macros for a wide range of compilers.
131 **
132 ** The correct "ANSI" way to do this is to use the intptr_t type.
133 ** Unfortunately, that typedef is not available on all compilers, or
134 ** if it is available, it requires an #include of specific headers
135 ** that vary from one machine to the next.
136 **
137 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
138 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
139 ** So we have to define the macros in different ways depending on the
140 ** compiler.
141 */
142 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
143 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
144 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
145 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
146 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
147 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
148 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
149 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
150 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
151 #else                          /* Generates a warning - but it always works */
152 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
153 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
154 #endif
155 
156 /*
157 ** A macro to hint to the compiler that a function should not be
158 ** inlined.
159 */
160 #if defined(__GNUC__)
161 #  define SQLITE_NOINLINE  __attribute__((noinline))
162 #elif defined(_MSC_VER)
163 #  define SQLITE_NOINLINE  __declspec(noinline)
164 #else
165 #  define SQLITE_NOINLINE
166 #endif
167 
168 /*
169 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
170 ** 0 means mutexes are permanently disable and the library is never
171 ** threadsafe.  1 means the library is serialized which is the highest
172 ** level of threadsafety.  2 means the library is multithreaded - multiple
173 ** threads can use SQLite as long as no two threads try to use the same
174 ** database connection at the same time.
175 **
176 ** Older versions of SQLite used an optional THREADSAFE macro.
177 ** We support that for legacy.
178 */
179 #if !defined(SQLITE_THREADSAFE)
180 # if defined(THREADSAFE)
181 #   define SQLITE_THREADSAFE THREADSAFE
182 # else
183 #   define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
184 # endif
185 #endif
186 
187 /*
188 ** Powersafe overwrite is on by default.  But can be turned off using
189 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
190 */
191 #ifndef SQLITE_POWERSAFE_OVERWRITE
192 # define SQLITE_POWERSAFE_OVERWRITE 1
193 #endif
194 
195 /*
196 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
197 ** It determines whether or not the features related to
198 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
199 ** be overridden at runtime using the sqlite3_config() API.
200 */
201 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
202 # define SQLITE_DEFAULT_MEMSTATUS 1
203 #endif
204 
205 /*
206 ** Exactly one of the following macros must be defined in order to
207 ** specify which memory allocation subsystem to use.
208 **
209 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
210 **     SQLITE_WIN32_MALLOC           // Use Win32 native heap API
211 **     SQLITE_ZERO_MALLOC            // Use a stub allocator that always fails
212 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
213 **
214 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
215 ** assert() macro is enabled, each call into the Win32 native heap subsystem
216 ** will cause HeapValidate to be called.  If heap validation should fail, an
217 ** assertion will be triggered.
218 **
219 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
220 ** the default.
221 */
222 #if defined(SQLITE_SYSTEM_MALLOC) \
223   + defined(SQLITE_WIN32_MALLOC) \
224   + defined(SQLITE_ZERO_MALLOC) \
225   + defined(SQLITE_MEMDEBUG)>1
226 # error "Two or more of the following compile-time configuration options\
227  are defined but at most one is allowed:\
228  SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
229  SQLITE_ZERO_MALLOC"
230 #endif
231 #if defined(SQLITE_SYSTEM_MALLOC) \
232   + defined(SQLITE_WIN32_MALLOC) \
233   + defined(SQLITE_ZERO_MALLOC) \
234   + defined(SQLITE_MEMDEBUG)==0
235 # define SQLITE_SYSTEM_MALLOC 1
236 #endif
237 
238 /*
239 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
240 ** sizes of memory allocations below this value where possible.
241 */
242 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
243 # define SQLITE_MALLOC_SOFT_LIMIT 1024
244 #endif
245 
246 /*
247 ** We need to define _XOPEN_SOURCE as follows in order to enable
248 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
249 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
250 ** it.
251 */
252 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
253 #  define _XOPEN_SOURCE 600
254 #endif
255 
256 /*
257 ** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
258 ** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
259 ** make it true by defining or undefining NDEBUG.
260 **
261 ** Setting NDEBUG makes the code smaller and faster by disabling the
262 ** assert() statements in the code.  So we want the default action
263 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
264 ** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
265 ** feature.
266 */
267 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
268 # define NDEBUG 1
269 #endif
270 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
271 # undef NDEBUG
272 #endif
273 
274 /*
275 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
276 */
277 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
278 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
279 #endif
280 
281 /*
282 ** The testcase() macro is used to aid in coverage testing.  When
283 ** doing coverage testing, the condition inside the argument to
284 ** testcase() must be evaluated both true and false in order to
285 ** get full branch coverage.  The testcase() macro is inserted
286 ** to help ensure adequate test coverage in places where simple
287 ** condition/decision coverage is inadequate.  For example, testcase()
288 ** can be used to make sure boundary values are tested.  For
289 ** bitmask tests, testcase() can be used to make sure each bit
290 ** is significant and used at least once.  On switch statements
291 ** where multiple cases go to the same block of code, testcase()
292 ** can insure that all cases are evaluated.
293 **
294 */
295 #ifdef SQLITE_COVERAGE_TEST
296   void sqlite3Coverage(int);
297 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
298 #else
299 # define testcase(X)
300 #endif
301 
302 /*
303 ** The TESTONLY macro is used to enclose variable declarations or
304 ** other bits of code that are needed to support the arguments
305 ** within testcase() and assert() macros.
306 */
307 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
308 # define TESTONLY(X)  X
309 #else
310 # define TESTONLY(X)
311 #endif
312 
313 /*
314 ** Sometimes we need a small amount of code such as a variable initialization
315 ** to setup for a later assert() statement.  We do not want this code to
316 ** appear when assert() is disabled.  The following macro is therefore
317 ** used to contain that setup code.  The "VVA" acronym stands for
318 ** "Verification, Validation, and Accreditation".  In other words, the
319 ** code within VVA_ONLY() will only run during verification processes.
320 */
321 #ifndef NDEBUG
322 # define VVA_ONLY(X)  X
323 #else
324 # define VVA_ONLY(X)
325 #endif
326 
327 /*
328 ** The ALWAYS and NEVER macros surround boolean expressions which
329 ** are intended to always be true or false, respectively.  Such
330 ** expressions could be omitted from the code completely.  But they
331 ** are included in a few cases in order to enhance the resilience
332 ** of SQLite to unexpected behavior - to make the code "self-healing"
333 ** or "ductile" rather than being "brittle" and crashing at the first
334 ** hint of unplanned behavior.
335 **
336 ** In other words, ALWAYS and NEVER are added for defensive code.
337 **
338 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
339 ** be true and false so that the unreachable code they specify will
340 ** not be counted as untested code.
341 */
342 #if defined(SQLITE_COVERAGE_TEST)
343 # define ALWAYS(X)      (1)
344 # define NEVER(X)       (0)
345 #elif !defined(NDEBUG)
346 # define ALWAYS(X)      ((X)?1:(assert(0),0))
347 # define NEVER(X)       ((X)?(assert(0),1):0)
348 #else
349 # define ALWAYS(X)      (X)
350 # define NEVER(X)       (X)
351 #endif
352 
353 /*
354 ** Return true (non-zero) if the input is an integer that is too large
355 ** to fit in 32-bits.  This macro is used inside of various testcase()
356 ** macros to verify that we have tested SQLite for large-file support.
357 */
358 #define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
359 
360 /*
361 ** The macro unlikely() is a hint that surrounds a boolean
362 ** expression that is usually false.  Macro likely() surrounds
363 ** a boolean expression that is usually true.  These hints could,
364 ** in theory, be used by the compiler to generate better code, but
365 ** currently they are just comments for human readers.
366 */
367 #define likely(X)    (X)
368 #define unlikely(X)  (X)
369 
370 #include "hash.h"
371 #include "parse.h"
372 #include <stdio.h>
373 #include <stdlib.h>
374 #include <string.h>
375 #include <assert.h>
376 #include <stddef.h>
377 
378 /*
379 ** If compiling for a processor that lacks floating point support,
380 ** substitute integer for floating-point
381 */
382 #ifdef SQLITE_OMIT_FLOATING_POINT
383 # define double sqlite_int64
384 # define float sqlite_int64
385 # define LONGDOUBLE_TYPE sqlite_int64
386 # ifndef SQLITE_BIG_DBL
387 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
388 # endif
389 # define SQLITE_OMIT_DATETIME_FUNCS 1
390 # define SQLITE_OMIT_TRACE 1
391 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
392 # undef SQLITE_HAVE_ISNAN
393 #endif
394 #ifndef SQLITE_BIG_DBL
395 # define SQLITE_BIG_DBL (1e99)
396 #endif
397 
398 /*
399 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
400 ** afterward. Having this macro allows us to cause the C compiler
401 ** to omit code used by TEMP tables without messy #ifndef statements.
402 */
403 #ifdef SQLITE_OMIT_TEMPDB
404 #define OMIT_TEMPDB 1
405 #else
406 #define OMIT_TEMPDB 0
407 #endif
408 
409 /*
410 ** The "file format" number is an integer that is incremented whenever
411 ** the VDBE-level file format changes.  The following macros define the
412 ** the default file format for new databases and the maximum file format
413 ** that the library can read.
414 */
415 #define SQLITE_MAX_FILE_FORMAT 4
416 #ifndef SQLITE_DEFAULT_FILE_FORMAT
417 # define SQLITE_DEFAULT_FILE_FORMAT 4
418 #endif
419 
420 /*
421 ** Determine whether triggers are recursive by default.  This can be
422 ** changed at run-time using a pragma.
423 */
424 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
425 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
426 #endif
427 
428 /*
429 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
430 ** on the command-line
431 */
432 #ifndef SQLITE_TEMP_STORE
433 # define SQLITE_TEMP_STORE 1
434 # define SQLITE_TEMP_STORE_xc 1  /* Exclude from ctime.c */
435 #endif
436 
437 /*
438 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
439 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
440 ** to zero.
441 */
442 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
443 # undef SQLITE_MAX_WORKER_THREADS
444 # define SQLITE_MAX_WORKER_THREADS 0
445 #endif
446 #ifndef SQLITE_MAX_WORKER_THREADS
447 # define SQLITE_MAX_WORKER_THREADS 8
448 #endif
449 #ifndef SQLITE_DEFAULT_WORKER_THREADS
450 # define SQLITE_DEFAULT_WORKER_THREADS 0
451 #endif
452 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
453 # undef SQLITE_MAX_WORKER_THREADS
454 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
455 #endif
456 
457 
458 /*
459 ** GCC does not define the offsetof() macro so we'll have to do it
460 ** ourselves.
461 */
462 #ifndef offsetof
463 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
464 #endif
465 
466 /*
467 ** Macros to compute minimum and maximum of two numbers.
468 */
469 #define MIN(A,B) ((A)<(B)?(A):(B))
470 #define MAX(A,B) ((A)>(B)?(A):(B))
471 
472 /*
473 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
474 ** not, there are still machines out there that use EBCDIC.)
475 */
476 #if 'A' == '\301'
477 # define SQLITE_EBCDIC 1
478 #else
479 # define SQLITE_ASCII 1
480 #endif
481 
482 /*
483 ** Integers of known sizes.  These typedefs might change for architectures
484 ** where the sizes very.  Preprocessor macros are available so that the
485 ** types can be conveniently redefined at compile-type.  Like this:
486 **
487 **         cc '-DUINTPTR_TYPE=long long int' ...
488 */
489 #ifndef UINT32_TYPE
490 # ifdef HAVE_UINT32_T
491 #  define UINT32_TYPE uint32_t
492 # else
493 #  define UINT32_TYPE unsigned int
494 # endif
495 #endif
496 #ifndef UINT16_TYPE
497 # ifdef HAVE_UINT16_T
498 #  define UINT16_TYPE uint16_t
499 # else
500 #  define UINT16_TYPE unsigned short int
501 # endif
502 #endif
503 #ifndef INT16_TYPE
504 # ifdef HAVE_INT16_T
505 #  define INT16_TYPE int16_t
506 # else
507 #  define INT16_TYPE short int
508 # endif
509 #endif
510 #ifndef UINT8_TYPE
511 # ifdef HAVE_UINT8_T
512 #  define UINT8_TYPE uint8_t
513 # else
514 #  define UINT8_TYPE unsigned char
515 # endif
516 #endif
517 #ifndef INT8_TYPE
518 # ifdef HAVE_INT8_T
519 #  define INT8_TYPE int8_t
520 # else
521 #  define INT8_TYPE signed char
522 # endif
523 #endif
524 #ifndef LONGDOUBLE_TYPE
525 # define LONGDOUBLE_TYPE long double
526 #endif
527 typedef sqlite_int64 i64;          /* 8-byte signed integer */
528 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
529 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
530 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
531 typedef INT16_TYPE i16;            /* 2-byte signed integer */
532 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
533 typedef INT8_TYPE i8;              /* 1-byte signed integer */
534 
535 /*
536 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
537 ** that can be stored in a u32 without loss of data.  The value
538 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
539 ** have to specify the value in the less intuitive manner shown:
540 */
541 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
542 
543 /*
544 ** The datatype used to store estimates of the number of rows in a
545 ** table or index.  This is an unsigned integer type.  For 99.9% of
546 ** the world, a 32-bit integer is sufficient.  But a 64-bit integer
547 ** can be used at compile-time if desired.
548 */
549 #ifdef SQLITE_64BIT_STATS
550  typedef u64 tRowcnt;    /* 64-bit only if requested at compile-time */
551 #else
552  typedef u32 tRowcnt;    /* 32-bit is the default */
553 #endif
554 
555 /*
556 ** Estimated quantities used for query planning are stored as 16-bit
557 ** logarithms.  For quantity X, the value stored is 10*log2(X).  This
558 ** gives a possible range of values of approximately 1.0e986 to 1e-986.
559 ** But the allowed values are "grainy".  Not every value is representable.
560 ** For example, quantities 16 and 17 are both represented by a LogEst
561 ** of 40.  However, since LogEst quantaties are suppose to be estimates,
562 ** not exact values, this imprecision is not a problem.
563 **
564 ** "LogEst" is short for "Logarithmic Estimate".
565 **
566 ** Examples:
567 **      1 -> 0              20 -> 43          10000 -> 132
568 **      2 -> 10             25 -> 46          25000 -> 146
569 **      3 -> 16            100 -> 66        1000000 -> 199
570 **      4 -> 20           1000 -> 99        1048576 -> 200
571 **     10 -> 33           1024 -> 100    4294967296 -> 320
572 **
573 ** The LogEst can be negative to indicate fractional values.
574 ** Examples:
575 **
576 **    0.5 -> -10           0.1 -> -33        0.0625 -> -40
577 */
578 typedef INT16_TYPE LogEst;
579 
580 /*
581 ** Macros to determine whether the machine is big or little endian,
582 ** and whether or not that determination is run-time or compile-time.
583 **
584 ** For best performance, an attempt is made to guess at the byte-order
585 ** using C-preprocessor macros.  If that is unsuccessful, or if
586 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
587 ** at run-time.
588 */
589 #ifdef SQLITE_AMALGAMATION
590 const int sqlite3one = 1;
591 #else
592 extern const int sqlite3one;
593 #endif
594 #if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
595      defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
596      defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
597      defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
598 # define SQLITE_BYTEORDER    1234
599 # define SQLITE_BIGENDIAN    0
600 # define SQLITE_LITTLEENDIAN 1
601 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
602 #endif
603 #if (defined(sparc)    || defined(__ppc__))  \
604     && !defined(SQLITE_RUNTIME_BYTEORDER)
605 # define SQLITE_BYTEORDER    4321
606 # define SQLITE_BIGENDIAN    1
607 # define SQLITE_LITTLEENDIAN 0
608 # define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
609 #endif
610 #if !defined(SQLITE_BYTEORDER)
611 # define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
612 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
613 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
614 # define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
615 #endif
616 
617 /*
618 ** Constants for the largest and smallest possible 64-bit signed integers.
619 ** These macros are designed to work correctly on both 32-bit and 64-bit
620 ** compilers.
621 */
622 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
623 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
624 
625 /*
626 ** Round up a number to the next larger multiple of 8.  This is used
627 ** to force 8-byte alignment on 64-bit architectures.
628 */
629 #define ROUND8(x)     (((x)+7)&~7)
630 
631 /*
632 ** Round down to the nearest multiple of 8
633 */
634 #define ROUNDDOWN8(x) ((x)&~7)
635 
636 /*
637 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
638 ** macro is used only within assert() to verify that the code gets
639 ** all alignment restrictions correct.
640 **
641 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
642 ** underlying malloc() implementation might return us 4-byte aligned
643 ** pointers.  In that case, only verify 4-byte alignment.
644 */
645 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
646 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
647 #else
648 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
649 #endif
650 
651 /*
652 ** Disable MMAP on platforms where it is known to not work
653 */
654 #if defined(__OpenBSD__) || defined(__QNXNTO__)
655 # undef SQLITE_MAX_MMAP_SIZE
656 # define SQLITE_MAX_MMAP_SIZE 0
657 #endif
658 
659 /*
660 ** Default maximum size of memory used by memory-mapped I/O in the VFS
661 */
662 #ifdef __APPLE__
663 # include <TargetConditionals.h>
664 # if TARGET_OS_IPHONE
665 #   undef SQLITE_MAX_MMAP_SIZE
666 #   define SQLITE_MAX_MMAP_SIZE 0
667 # endif
668 #endif
669 #ifndef SQLITE_MAX_MMAP_SIZE
670 # if defined(__linux__) \
671   || defined(_WIN32) \
672   || (defined(__APPLE__) && defined(__MACH__)) \
673   || defined(__sun)
674 #   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
675 # else
676 #   define SQLITE_MAX_MMAP_SIZE 0
677 # endif
678 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
679 #endif
680 
681 /*
682 ** The default MMAP_SIZE is zero on all platforms.  Or, even if a larger
683 ** default MMAP_SIZE is specified at compile-time, make sure that it does
684 ** not exceed the maximum mmap size.
685 */
686 #ifndef SQLITE_DEFAULT_MMAP_SIZE
687 # define SQLITE_DEFAULT_MMAP_SIZE 0
688 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1  /* Exclude from ctime.c */
689 #endif
690 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
691 # undef SQLITE_DEFAULT_MMAP_SIZE
692 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
693 #endif
694 
695 /*
696 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
697 ** Priority is given to SQLITE_ENABLE_STAT4.  If either are defined, also
698 ** define SQLITE_ENABLE_STAT3_OR_STAT4
699 */
700 #ifdef SQLITE_ENABLE_STAT4
701 # undef SQLITE_ENABLE_STAT3
702 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
703 #elif SQLITE_ENABLE_STAT3
704 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
705 #elif SQLITE_ENABLE_STAT3_OR_STAT4
706 # undef SQLITE_ENABLE_STAT3_OR_STAT4
707 #endif
708 
709 /*
710 ** An instance of the following structure is used to store the busy-handler
711 ** callback for a given sqlite handle.
712 **
713 ** The sqlite.busyHandler member of the sqlite struct contains the busy
714 ** callback for the database handle. Each pager opened via the sqlite
715 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
716 ** callback is currently invoked only from within pager.c.
717 */
718 typedef struct BusyHandler BusyHandler;
719 struct BusyHandler {
720   int (*xFunc)(void *,int);  /* The busy callback */
721   void *pArg;                /* First arg to busy callback */
722   int nBusy;                 /* Incremented with each busy call */
723 };
724 
725 /*
726 ** Name of the master database table.  The master database table
727 ** is a special table that holds the names and attributes of all
728 ** user tables and indices.
729 */
730 #define MASTER_NAME       "sqlite_master"
731 #define TEMP_MASTER_NAME  "sqlite_temp_master"
732 
733 /*
734 ** The root-page of the master database table.
735 */
736 #define MASTER_ROOT       1
737 
738 /*
739 ** The name of the schema table.
740 */
741 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
742 
743 /*
744 ** A convenience macro that returns the number of elements in
745 ** an array.
746 */
747 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
748 
749 /*
750 ** Determine if the argument is a power of two
751 */
752 #define IsPowerOfTwo(X) (((X)&((X)-1))==0)
753 
754 /*
755 ** The following value as a destructor means to use sqlite3DbFree().
756 ** The sqlite3DbFree() routine requires two parameters instead of the
757 ** one parameter that destructors normally want.  So we have to introduce
758 ** this magic value that the code knows to handle differently.  Any
759 ** pointer will work here as long as it is distinct from SQLITE_STATIC
760 ** and SQLITE_TRANSIENT.
761 */
762 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3MallocSize)
763 
764 /*
765 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
766 ** not support Writable Static Data (WSD) such as global and static variables.
767 ** All variables must either be on the stack or dynamically allocated from
768 ** the heap.  When WSD is unsupported, the variable declarations scattered
769 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
770 ** macro is used for this purpose.  And instead of referencing the variable
771 ** directly, we use its constant as a key to lookup the run-time allocated
772 ** buffer that holds real variable.  The constant is also the initializer
773 ** for the run-time allocated buffer.
774 **
775 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
776 ** macros become no-ops and have zero performance impact.
777 */
778 #ifdef SQLITE_OMIT_WSD
779   #define SQLITE_WSD const
780   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
781   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
782   int sqlite3_wsd_init(int N, int J);
783   void *sqlite3_wsd_find(void *K, int L);
784 #else
785   #define SQLITE_WSD
786   #define GLOBAL(t,v) v
787   #define sqlite3GlobalConfig sqlite3Config
788 #endif
789 
790 /*
791 ** The following macros are used to suppress compiler warnings and to
792 ** make it clear to human readers when a function parameter is deliberately
793 ** left unused within the body of a function. This usually happens when
794 ** a function is called via a function pointer. For example the
795 ** implementation of an SQL aggregate step callback may not use the
796 ** parameter indicating the number of arguments passed to the aggregate,
797 ** if it knows that this is enforced elsewhere.
798 **
799 ** When a function parameter is not used at all within the body of a function,
800 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
801 ** However, these macros may also be used to suppress warnings related to
802 ** parameters that may or may not be used depending on compilation options.
803 ** For example those parameters only used in assert() statements. In these
804 ** cases the parameters are named as per the usual conventions.
805 */
806 #define UNUSED_PARAMETER(x) (void)(x)
807 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
808 
809 /*
810 ** Forward references to structures
811 */
812 typedef struct AggInfo AggInfo;
813 typedef struct AuthContext AuthContext;
814 typedef struct AutoincInfo AutoincInfo;
815 typedef struct Bitvec Bitvec;
816 typedef struct CollSeq CollSeq;
817 typedef struct Column Column;
818 typedef struct Db Db;
819 typedef struct Schema Schema;
820 typedef struct Expr Expr;
821 typedef struct ExprList ExprList;
822 typedef struct ExprSpan ExprSpan;
823 typedef struct FKey FKey;
824 typedef struct FuncDestructor FuncDestructor;
825 typedef struct FuncDef FuncDef;
826 typedef struct FuncDefHash FuncDefHash;
827 typedef struct IdList IdList;
828 typedef struct Index Index;
829 typedef struct IndexSample IndexSample;
830 typedef struct KeyClass KeyClass;
831 typedef struct KeyInfo KeyInfo;
832 typedef struct Lookaside Lookaside;
833 typedef struct LookasideSlot LookasideSlot;
834 typedef struct Module Module;
835 typedef struct NameContext NameContext;
836 typedef struct Parse Parse;
837 typedef struct PrintfArguments PrintfArguments;
838 typedef struct RowSet RowSet;
839 typedef struct Savepoint Savepoint;
840 typedef struct Select Select;
841 typedef struct SQLiteThread SQLiteThread;
842 typedef struct SelectDest SelectDest;
843 typedef struct SrcList SrcList;
844 typedef struct StrAccum StrAccum;
845 typedef struct Table Table;
846 typedef struct TableLock TableLock;
847 typedef struct Token Token;
848 typedef struct Trigger Trigger;
849 typedef struct TriggerPrg TriggerPrg;
850 typedef struct TriggerStep TriggerStep;
851 typedef struct UnpackedRecord UnpackedRecord;
852 typedef struct VTable VTable;
853 typedef struct VtabCtx VtabCtx;
854 typedef struct Walker Walker;
855 typedef struct WhereInfo WhereInfo;
856 typedef struct With With;
857 
858 /*
859 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
860 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
861 ** pointer types (i.e. FuncDef) defined above.
862 */
863 #include "btree.h"
864 #include "vdbe.h"
865 #include "pager.h"
866 #include "pcache.h"
867 
868 #include "os.h"
869 #include "mutex.h"
870 
871 
872 /*
873 ** Each database file to be accessed by the system is an instance
874 ** of the following structure.  There are normally two of these structures
875 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
876 ** aDb[1] is the database file used to hold temporary tables.  Additional
877 ** databases may be attached.
878 */
879 struct Db {
880   char *zName;         /* Name of this database */
881   Btree *pBt;          /* The B*Tree structure for this database file */
882   u8 safety_level;     /* How aggressive at syncing data to disk */
883   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
884 };
885 
886 /*
887 ** An instance of the following structure stores a database schema.
888 **
889 ** Most Schema objects are associated with a Btree.  The exception is
890 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
891 ** In shared cache mode, a single Schema object can be shared by multiple
892 ** Btrees that refer to the same underlying BtShared object.
893 **
894 ** Schema objects are automatically deallocated when the last Btree that
895 ** references them is destroyed.   The TEMP Schema is manually freed by
896 ** sqlite3_close().
897 *
898 ** A thread must be holding a mutex on the corresponding Btree in order
899 ** to access Schema content.  This implies that the thread must also be
900 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
901 ** For a TEMP Schema, only the connection mutex is required.
902 */
903 struct Schema {
904   int schema_cookie;   /* Database schema version number for this file */
905   int iGeneration;     /* Generation counter.  Incremented with each change */
906   Hash tblHash;        /* All tables indexed by name */
907   Hash idxHash;        /* All (named) indices indexed by name */
908   Hash trigHash;       /* All triggers indexed by name */
909   Hash fkeyHash;       /* All foreign keys by referenced table name */
910   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
911   u8 file_format;      /* Schema format version for this file */
912   u8 enc;              /* Text encoding used by this database */
913   u16 schemaFlags;     /* Flags associated with this schema */
914   int cache_size;      /* Number of pages to use in the cache */
915 };
916 
917 /*
918 ** These macros can be used to test, set, or clear bits in the
919 ** Db.pSchema->flags field.
920 */
921 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
922 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
923 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->schemaFlags|=(P)
924 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->schemaFlags&=~(P)
925 
926 /*
927 ** Allowed values for the DB.pSchema->flags field.
928 **
929 ** The DB_SchemaLoaded flag is set after the database schema has been
930 ** read into internal hash tables.
931 **
932 ** DB_UnresetViews means that one or more views have column names that
933 ** have been filled out.  If the schema changes, these column names might
934 ** changes and so the view will need to be reset.
935 */
936 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
937 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
938 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
939 
940 /*
941 ** The number of different kinds of things that can be limited
942 ** using the sqlite3_limit() interface.
943 */
944 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
945 
946 /*
947 ** Lookaside malloc is a set of fixed-size buffers that can be used
948 ** to satisfy small transient memory allocation requests for objects
949 ** associated with a particular database connection.  The use of
950 ** lookaside malloc provides a significant performance enhancement
951 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
952 ** SQL statements.
953 **
954 ** The Lookaside structure holds configuration information about the
955 ** lookaside malloc subsystem.  Each available memory allocation in
956 ** the lookaside subsystem is stored on a linked list of LookasideSlot
957 ** objects.
958 **
959 ** Lookaside allocations are only allowed for objects that are associated
960 ** with a particular database connection.  Hence, schema information cannot
961 ** be stored in lookaside because in shared cache mode the schema information
962 ** is shared by multiple database connections.  Therefore, while parsing
963 ** schema information, the Lookaside.bEnabled flag is cleared so that
964 ** lookaside allocations are not used to construct the schema objects.
965 */
966 struct Lookaside {
967   u16 sz;                 /* Size of each buffer in bytes */
968   u8 bEnabled;            /* False to disable new lookaside allocations */
969   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
970   int nOut;               /* Number of buffers currently checked out */
971   int mxOut;              /* Highwater mark for nOut */
972   int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
973   LookasideSlot *pFree;   /* List of available buffers */
974   void *pStart;           /* First byte of available memory space */
975   void *pEnd;             /* First byte past end of available space */
976 };
977 struct LookasideSlot {
978   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
979 };
980 
981 /*
982 ** A hash table for function definitions.
983 **
984 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
985 ** Collisions are on the FuncDef.pHash chain.
986 */
987 struct FuncDefHash {
988   FuncDef *a[23];       /* Hash table for functions */
989 };
990 
991 #ifdef SQLITE_USER_AUTHENTICATION
992 /*
993 ** Information held in the "sqlite3" database connection object and used
994 ** to manage user authentication.
995 */
996 typedef struct sqlite3_userauth sqlite3_userauth;
997 struct sqlite3_userauth {
998   u8 authLevel;                 /* Current authentication level */
999   int nAuthPW;                  /* Size of the zAuthPW in bytes */
1000   char *zAuthPW;                /* Password used to authenticate */
1001   char *zAuthUser;              /* User name used to authenticate */
1002 };
1003 
1004 /* Allowed values for sqlite3_userauth.authLevel */
1005 #define UAUTH_Unknown     0     /* Authentication not yet checked */
1006 #define UAUTH_Fail        1     /* User authentication failed */
1007 #define UAUTH_User        2     /* Authenticated as a normal user */
1008 #define UAUTH_Admin       3     /* Authenticated as an administrator */
1009 
1010 /* Functions used only by user authorization logic */
1011 int sqlite3UserAuthTable(const char*);
1012 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
1013 
1014 #endif /* SQLITE_USER_AUTHENTICATION */
1015 
1016 
1017 /*
1018 ** Each database connection is an instance of the following structure.
1019 */
1020 struct sqlite3 {
1021   sqlite3_vfs *pVfs;            /* OS Interface */
1022   struct Vdbe *pVdbe;           /* List of active virtual machines */
1023   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
1024   sqlite3_mutex *mutex;         /* Connection mutex */
1025   Db *aDb;                      /* All backends */
1026   int nDb;                      /* Number of backends currently in use */
1027   int flags;                    /* Miscellaneous flags. See below */
1028   i64 lastRowid;                /* ROWID of most recent insert (see above) */
1029   i64 szMmap;                   /* Default mmap_size setting */
1030   unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
1031   int errCode;                  /* Most recent error code (SQLITE_*) */
1032   int errMask;                  /* & result codes with this before returning */
1033   u16 dbOptFlags;               /* Flags to enable/disable optimizations */
1034   u8 autoCommit;                /* The auto-commit flag. */
1035   u8 temp_store;                /* 1: file 2: memory 0: default */
1036   u8 mallocFailed;              /* True if we have seen a malloc failure */
1037   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
1038   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
1039   u8 suppressErr;               /* Do not issue error messages if true */
1040   u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
1041   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
1042   int nextPagesize;             /* Pagesize after VACUUM if >0 */
1043   u32 magic;                    /* Magic number for detect library misuse */
1044   int nChange;                  /* Value returned by sqlite3_changes() */
1045   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
1046   int aLimit[SQLITE_N_LIMIT];   /* Limits */
1047   int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
1048   struct sqlite3InitInfo {      /* Information used during initialization */
1049     int newTnum;                /* Rootpage of table being initialized */
1050     u8 iDb;                     /* Which db file is being initialized */
1051     u8 busy;                    /* TRUE if currently initializing */
1052     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
1053   } init;
1054   int nVdbeActive;              /* Number of VDBEs currently running */
1055   int nVdbeRead;                /* Number of active VDBEs that read or write */
1056   int nVdbeWrite;               /* Number of active VDBEs that read and write */
1057   int nVdbeExec;                /* Number of nested calls to VdbeExec() */
1058   int nExtension;               /* Number of loaded extensions */
1059   void **aExtension;            /* Array of shared library handles */
1060   void (*xTrace)(void*,const char*);        /* Trace function */
1061   void *pTraceArg;                          /* Argument to the trace function */
1062   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
1063   void *pProfileArg;                        /* Argument to profile function */
1064   void *pCommitArg;                 /* Argument to xCommitCallback() */
1065   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
1066   void *pRollbackArg;               /* Argument to xRollbackCallback() */
1067   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
1068   void *pUpdateArg;
1069   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
1070 #ifndef SQLITE_OMIT_WAL
1071   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
1072   void *pWalArg;
1073 #endif
1074   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
1075   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
1076   void *pCollNeededArg;
1077   sqlite3_value *pErr;          /* Most recent error message */
1078   union {
1079     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
1080     double notUsed1;            /* Spacer */
1081   } u1;
1082   Lookaside lookaside;          /* Lookaside malloc configuration */
1083 #ifndef SQLITE_OMIT_AUTHORIZATION
1084   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1085                                 /* Access authorization function */
1086   void *pAuthArg;               /* 1st argument to the access auth function */
1087 #endif
1088 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1089   int (*xProgress)(void *);     /* The progress callback */
1090   void *pProgressArg;           /* Argument to the progress callback */
1091   unsigned nProgressOps;        /* Number of opcodes for progress callback */
1092 #endif
1093 #ifndef SQLITE_OMIT_VIRTUALTABLE
1094   int nVTrans;                  /* Allocated size of aVTrans */
1095   Hash aModule;                 /* populated by sqlite3_create_module() */
1096   VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
1097   VTable **aVTrans;             /* Virtual tables with open transactions */
1098   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
1099 #endif
1100   FuncDefHash aFunc;            /* Hash table of connection functions */
1101   Hash aCollSeq;                /* All collating sequences */
1102   BusyHandler busyHandler;      /* Busy callback */
1103   Db aDbStatic[2];              /* Static space for the 2 default backends */
1104   Savepoint *pSavepoint;        /* List of active savepoints */
1105   int busyTimeout;              /* Busy handler timeout, in msec */
1106   int nSavepoint;               /* Number of non-transaction savepoints */
1107   int nStatement;               /* Number of nested statement-transactions  */
1108   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
1109   i64 nDeferredImmCons;         /* Net deferred immediate constraints */
1110   int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
1111 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
1112   /* The following variables are all protected by the STATIC_MASTER
1113   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
1114   **
1115   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
1116   ** unlock so that it can proceed.
1117   **
1118   ** When X.pBlockingConnection==Y, that means that something that X tried
1119   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
1120   ** held by Y.
1121   */
1122   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
1123   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
1124   void *pUnlockArg;                     /* Argument to xUnlockNotify */
1125   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
1126   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
1127 #endif
1128 #ifdef SQLITE_USER_AUTHENTICATION
1129   sqlite3_userauth auth;        /* User authentication information */
1130 #endif
1131 };
1132 
1133 /*
1134 ** A macro to discover the encoding of a database.
1135 */
1136 #define ENC(db) ((db)->aDb[0].pSchema->enc)
1137 
1138 /*
1139 ** Possible values for the sqlite3.flags.
1140 */
1141 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
1142 #define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
1143 #define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
1144 #define SQLITE_CkptFullFSync  0x00000008  /* Use full fsync for checkpoint */
1145 #define SQLITE_CacheSpill     0x00000010  /* OK to spill pager cache */
1146 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
1147 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
1148 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
1149                                           /*   DELETE, or UPDATE and return */
1150                                           /*   the count using a callback. */
1151 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
1152                                           /*   result set is empty */
1153 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
1154 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
1155 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
1156 #define SQLITE_VdbeAddopTrace 0x00001000  /* Trace sqlite3VdbeAddOp() calls */
1157 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
1158 #define SQLITE_ReadUncommitted 0x0004000  /* For shared-cache mode */
1159 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
1160 #define SQLITE_RecoveryMode   0x00010000  /* Ignore schema errors */
1161 #define SQLITE_ReverseOrder   0x00020000  /* Reverse unordered SELECTs */
1162 #define SQLITE_RecTriggers    0x00040000  /* Enable recursive triggers */
1163 #define SQLITE_ForeignKeys    0x00080000  /* Enforce foreign key constraints  */
1164 #define SQLITE_AutoIndex      0x00100000  /* Enable automatic indexes */
1165 #define SQLITE_PreferBuiltin  0x00200000  /* Preference to built-in funcs */
1166 #define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
1167 #define SQLITE_EnableTrigger  0x00800000  /* True to enable triggers */
1168 #define SQLITE_DeferFKs       0x01000000  /* Defer all FK constraints */
1169 #define SQLITE_QueryOnly      0x02000000  /* Disable database changes */
1170 #define SQLITE_VdbeEQP        0x04000000  /* Debug EXPLAIN QUERY PLAN */
1171 
1172 
1173 /*
1174 ** Bits of the sqlite3.dbOptFlags field that are used by the
1175 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
1176 ** selectively disable various optimizations.
1177 */
1178 #define SQLITE_QueryFlattener 0x0001   /* Query flattening */
1179 #define SQLITE_ColumnCache    0x0002   /* Column cache */
1180 #define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
1181 #define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
1182 /*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
1183 #define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
1184 #define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
1185 #define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
1186 #define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
1187 #define SQLITE_Transitive     0x0200   /* Transitive constraints */
1188 #define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
1189 #define SQLITE_Stat3          0x0800   /* Use the SQLITE_STAT3 table */
1190 #define SQLITE_AllOpts        0xffff   /* All optimizations */
1191 
1192 /*
1193 ** Macros for testing whether or not optimizations are enabled or disabled.
1194 */
1195 #ifndef SQLITE_OMIT_BUILTIN_TEST
1196 #define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1197 #define OptimizationEnabled(db, mask)   (((db)->dbOptFlags&(mask))==0)
1198 #else
1199 #define OptimizationDisabled(db, mask)  0
1200 #define OptimizationEnabled(db, mask)   1
1201 #endif
1202 
1203 /*
1204 ** Return true if it OK to factor constant expressions into the initialization
1205 ** code. The argument is a Parse object for the code generator.
1206 */
1207 #define ConstFactorOk(P) ((P)->okConstFactor)
1208 
1209 /*
1210 ** Possible values for the sqlite.magic field.
1211 ** The numbers are obtained at random and have no special meaning, other
1212 ** than being distinct from one another.
1213 */
1214 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
1215 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
1216 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
1217 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
1218 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
1219 #define SQLITE_MAGIC_ZOMBIE   0x64cffc7f  /* Close with last statement close */
1220 
1221 /*
1222 ** Each SQL function is defined by an instance of the following
1223 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
1224 ** hash table.  When multiple functions have the same name, the hash table
1225 ** points to a linked list of these structures.
1226 */
1227 struct FuncDef {
1228   i16 nArg;            /* Number of arguments.  -1 means unlimited */
1229   u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
1230   void *pUserData;     /* User data parameter */
1231   FuncDef *pNext;      /* Next function with same name */
1232   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
1233   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
1234   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
1235   char *zName;         /* SQL name of the function. */
1236   FuncDef *pHash;      /* Next with a different name but the same hash */
1237   FuncDestructor *pDestructor;   /* Reference counted destructor function */
1238 };
1239 
1240 /*
1241 ** This structure encapsulates a user-function destructor callback (as
1242 ** configured using create_function_v2()) and a reference counter. When
1243 ** create_function_v2() is called to create a function with a destructor,
1244 ** a single object of this type is allocated. FuncDestructor.nRef is set to
1245 ** the number of FuncDef objects created (either 1 or 3, depending on whether
1246 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
1247 ** member of each of the new FuncDef objects is set to point to the allocated
1248 ** FuncDestructor.
1249 **
1250 ** Thereafter, when one of the FuncDef objects is deleted, the reference
1251 ** count on this object is decremented. When it reaches 0, the destructor
1252 ** is invoked and the FuncDestructor structure freed.
1253 */
1254 struct FuncDestructor {
1255   int nRef;
1256   void (*xDestroy)(void *);
1257   void *pUserData;
1258 };
1259 
1260 /*
1261 ** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
1262 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  There
1263 ** are assert() statements in the code to verify this.
1264 */
1265 #define SQLITE_FUNC_ENCMASK  0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
1266 #define SQLITE_FUNC_LIKE     0x004 /* Candidate for the LIKE optimization */
1267 #define SQLITE_FUNC_CASE     0x008 /* Case-sensitive LIKE-type function */
1268 #define SQLITE_FUNC_EPHEM    0x010 /* Ephemeral.  Delete with VDBE */
1269 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
1270 #define SQLITE_FUNC_LENGTH   0x040 /* Built-in length() function */
1271 #define SQLITE_FUNC_TYPEOF   0x080 /* Built-in typeof() function */
1272 #define SQLITE_FUNC_COUNT    0x100 /* Built-in count(*) aggregate */
1273 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
1274 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */
1275 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */
1276 
1277 /*
1278 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1279 ** used to create the initializers for the FuncDef structures.
1280 **
1281 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
1282 **     Used to create a scalar function definition of a function zName
1283 **     implemented by C function xFunc that accepts nArg arguments. The
1284 **     value passed as iArg is cast to a (void*) and made available
1285 **     as the user-data (sqlite3_user_data()) for the function. If
1286 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1287 **
1288 **   VFUNCTION(zName, nArg, iArg, bNC, xFunc)
1289 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
1290 **
1291 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1292 **     Used to create an aggregate function definition implemented by
1293 **     the C functions xStep and xFinal. The first four parameters
1294 **     are interpreted in the same way as the first 4 parameters to
1295 **     FUNCTION().
1296 **
1297 **   LIKEFUNC(zName, nArg, pArg, flags)
1298 **     Used to create a scalar function definition of a function zName
1299 **     that accepts nArg arguments and is implemented by a call to C
1300 **     function likeFunc. Argument pArg is cast to a (void *) and made
1301 **     available as the function user-data (sqlite3_user_data()). The
1302 **     FuncDef.flags variable is set to the value passed as the flags
1303 **     parameter.
1304 */
1305 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1306   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1307    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1308 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
1309   {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1310    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1311 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
1312   {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
1313    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1314 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1315   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1316    pArg, 0, xFunc, 0, 0, #zName, 0, 0}
1317 #define LIKEFUNC(zName, nArg, arg, flags) \
1318   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
1319    (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
1320 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1321   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
1322    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1323 
1324 /*
1325 ** All current savepoints are stored in a linked list starting at
1326 ** sqlite3.pSavepoint. The first element in the list is the most recently
1327 ** opened savepoint. Savepoints are added to the list by the vdbe
1328 ** OP_Savepoint instruction.
1329 */
1330 struct Savepoint {
1331   char *zName;                        /* Savepoint name (nul-terminated) */
1332   i64 nDeferredCons;                  /* Number of deferred fk violations */
1333   i64 nDeferredImmCons;               /* Number of deferred imm fk. */
1334   Savepoint *pNext;                   /* Parent savepoint (if any) */
1335 };
1336 
1337 /*
1338 ** The following are used as the second parameter to sqlite3Savepoint(),
1339 ** and as the P1 argument to the OP_Savepoint instruction.
1340 */
1341 #define SAVEPOINT_BEGIN      0
1342 #define SAVEPOINT_RELEASE    1
1343 #define SAVEPOINT_ROLLBACK   2
1344 
1345 
1346 /*
1347 ** Each SQLite module (virtual table definition) is defined by an
1348 ** instance of the following structure, stored in the sqlite3.aModule
1349 ** hash table.
1350 */
1351 struct Module {
1352   const sqlite3_module *pModule;       /* Callback pointers */
1353   const char *zName;                   /* Name passed to create_module() */
1354   void *pAux;                          /* pAux passed to create_module() */
1355   void (*xDestroy)(void *);            /* Module destructor function */
1356 };
1357 
1358 /*
1359 ** information about each column of an SQL table is held in an instance
1360 ** of this structure.
1361 */
1362 struct Column {
1363   char *zName;     /* Name of this column */
1364   Expr *pDflt;     /* Default value of this column */
1365   char *zDflt;     /* Original text of the default value */
1366   char *zType;     /* Data type for this column */
1367   char *zColl;     /* Collating sequence.  If NULL, use the default */
1368   u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
1369   char affinity;   /* One of the SQLITE_AFF_... values */
1370   u8 szEst;        /* Estimated size of this column.  INT==1 */
1371   u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
1372 };
1373 
1374 /* Allowed values for Column.colFlags:
1375 */
1376 #define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
1377 #define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
1378 
1379 /*
1380 ** A "Collating Sequence" is defined by an instance of the following
1381 ** structure. Conceptually, a collating sequence consists of a name and
1382 ** a comparison routine that defines the order of that sequence.
1383 **
1384 ** If CollSeq.xCmp is NULL, it means that the
1385 ** collating sequence is undefined.  Indices built on an undefined
1386 ** collating sequence may not be read or written.
1387 */
1388 struct CollSeq {
1389   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1390   u8 enc;               /* Text encoding handled by xCmp() */
1391   void *pUser;          /* First argument to xCmp() */
1392   int (*xCmp)(void*,int, const void*, int, const void*);
1393   void (*xDel)(void*);  /* Destructor for pUser */
1394 };
1395 
1396 /*
1397 ** A sort order can be either ASC or DESC.
1398 */
1399 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1400 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1401 
1402 /*
1403 ** Column affinity types.
1404 **
1405 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1406 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1407 ** the speed a little by numbering the values consecutively.
1408 **
1409 ** But rather than start with 0 or 1, we begin with 'a'.  That way,
1410 ** when multiple affinity types are concatenated into a string and
1411 ** used as the P4 operand, they will be more readable.
1412 **
1413 ** Note also that the numeric types are grouped together so that testing
1414 ** for a numeric type is a single comparison.
1415 */
1416 #define SQLITE_AFF_TEXT     'a'
1417 #define SQLITE_AFF_NONE     'b'
1418 #define SQLITE_AFF_NUMERIC  'c'
1419 #define SQLITE_AFF_INTEGER  'd'
1420 #define SQLITE_AFF_REAL     'e'
1421 
1422 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1423 
1424 /*
1425 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1426 ** affinity value.
1427 */
1428 #define SQLITE_AFF_MASK     0x67
1429 
1430 /*
1431 ** Additional bit values that can be ORed with an affinity without
1432 ** changing the affinity.
1433 **
1434 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
1435 ** It causes an assert() to fire if either operand to a comparison
1436 ** operator is NULL.  It is added to certain comparison operators to
1437 ** prove that the operands are always NOT NULL.
1438 */
1439 #define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
1440 #define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
1441 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1442 #define SQLITE_NOTNULL      0x88  /* Assert that operands are never NULL */
1443 
1444 /*
1445 ** An object of this type is created for each virtual table present in
1446 ** the database schema.
1447 **
1448 ** If the database schema is shared, then there is one instance of this
1449 ** structure for each database connection (sqlite3*) that uses the shared
1450 ** schema. This is because each database connection requires its own unique
1451 ** instance of the sqlite3_vtab* handle used to access the virtual table
1452 ** implementation. sqlite3_vtab* handles can not be shared between
1453 ** database connections, even when the rest of the in-memory database
1454 ** schema is shared, as the implementation often stores the database
1455 ** connection handle passed to it via the xConnect() or xCreate() method
1456 ** during initialization internally. This database connection handle may
1457 ** then be used by the virtual table implementation to access real tables
1458 ** within the database. So that they appear as part of the callers
1459 ** transaction, these accesses need to be made via the same database
1460 ** connection as that used to execute SQL operations on the virtual table.
1461 **
1462 ** All VTable objects that correspond to a single table in a shared
1463 ** database schema are initially stored in a linked-list pointed to by
1464 ** the Table.pVTable member variable of the corresponding Table object.
1465 ** When an sqlite3_prepare() operation is required to access the virtual
1466 ** table, it searches the list for the VTable that corresponds to the
1467 ** database connection doing the preparing so as to use the correct
1468 ** sqlite3_vtab* handle in the compiled query.
1469 **
1470 ** When an in-memory Table object is deleted (for example when the
1471 ** schema is being reloaded for some reason), the VTable objects are not
1472 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1473 ** immediately. Instead, they are moved from the Table.pVTable list to
1474 ** another linked list headed by the sqlite3.pDisconnect member of the
1475 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1476 ** next time a statement is prepared using said sqlite3*. This is done
1477 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1478 ** Refer to comments above function sqlite3VtabUnlockList() for an
1479 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1480 ** list without holding the corresponding sqlite3.mutex mutex.
1481 **
1482 ** The memory for objects of this type is always allocated by
1483 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1484 ** the first argument.
1485 */
1486 struct VTable {
1487   sqlite3 *db;              /* Database connection associated with this table */
1488   Module *pMod;             /* Pointer to module implementation */
1489   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1490   int nRef;                 /* Number of pointers to this structure */
1491   u8 bConstraint;           /* True if constraints are supported */
1492   int iSavepoint;           /* Depth of the SAVEPOINT stack */
1493   VTable *pNext;            /* Next in linked list (see above) */
1494 };
1495 
1496 /*
1497 ** Each SQL table is represented in memory by an instance of the
1498 ** following structure.
1499 **
1500 ** Table.zName is the name of the table.  The case of the original
1501 ** CREATE TABLE statement is stored, but case is not significant for
1502 ** comparisons.
1503 **
1504 ** Table.nCol is the number of columns in this table.  Table.aCol is a
1505 ** pointer to an array of Column structures, one for each column.
1506 **
1507 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
1508 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
1509 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
1510 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
1511 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
1512 ** is generated for each row of the table.  TF_HasPrimaryKey is set if
1513 ** the table has any PRIMARY KEY, INTEGER or otherwise.
1514 **
1515 ** Table.tnum is the page number for the root BTree page of the table in the
1516 ** database file.  If Table.iDb is the index of the database table backend
1517 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
1518 ** holds temporary tables and indices.  If TF_Ephemeral is set
1519 ** then the table is stored in a file that is automatically deleted
1520 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
1521 ** refers VDBE cursor number that holds the table open, not to the root
1522 ** page number.  Transient tables are used to hold the results of a
1523 ** sub-query that appears instead of a real table name in the FROM clause
1524 ** of a SELECT statement.
1525 */
1526 struct Table {
1527   char *zName;         /* Name of the table or view */
1528   Column *aCol;        /* Information about each column */
1529   Index *pIndex;       /* List of SQL indexes on this table. */
1530   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1531   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1532   char *zColAff;       /* String defining the affinity of each column */
1533 #ifndef SQLITE_OMIT_CHECK
1534   ExprList *pCheck;    /* All CHECK constraints */
1535 #endif
1536   LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
1537   int tnum;            /* Root BTree node for this table (see note above) */
1538   i16 iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
1539   i16 nCol;            /* Number of columns in this table */
1540   u16 nRef;            /* Number of pointers to this Table */
1541   LogEst szTabRow;     /* Estimated size of each table row in bytes */
1542 #ifdef SQLITE_ENABLE_COSTMULT
1543   LogEst costMult;     /* Cost multiplier for using this table */
1544 #endif
1545   u8 tabFlags;         /* Mask of TF_* values */
1546   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1547 #ifndef SQLITE_OMIT_ALTERTABLE
1548   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1549 #endif
1550 #ifndef SQLITE_OMIT_VIRTUALTABLE
1551   int nModuleArg;      /* Number of arguments to the module */
1552   char **azModuleArg;  /* Text of all module args. [0] is module name */
1553   VTable *pVTable;     /* List of VTable objects. */
1554 #endif
1555   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1556   Schema *pSchema;     /* Schema that contains this table */
1557   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1558 };
1559 
1560 /*
1561 ** Allowed values for Table.tabFlags.
1562 */
1563 #define TF_Readonly        0x01    /* Read-only system table */
1564 #define TF_Ephemeral       0x02    /* An ephemeral table */
1565 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1566 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1567 #define TF_Virtual         0x10    /* Is a virtual table */
1568 #define TF_WithoutRowid    0x20    /* No rowid used. PRIMARY KEY is the key */
1569 
1570 
1571 /*
1572 ** Test to see whether or not a table is a virtual table.  This is
1573 ** done as a macro so that it will be optimized out when virtual
1574 ** table support is omitted from the build.
1575 */
1576 #ifndef SQLITE_OMIT_VIRTUALTABLE
1577 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1578 #  define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1579 #else
1580 #  define IsVirtual(X)      0
1581 #  define IsHiddenColumn(X) 0
1582 #endif
1583 
1584 /* Does the table have a rowid */
1585 #define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
1586 
1587 /*
1588 ** Each foreign key constraint is an instance of the following structure.
1589 **
1590 ** A foreign key is associated with two tables.  The "from" table is
1591 ** the table that contains the REFERENCES clause that creates the foreign
1592 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1593 ** Consider this example:
1594 **
1595 **     CREATE TABLE ex1(
1596 **       a INTEGER PRIMARY KEY,
1597 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1598 **     );
1599 **
1600 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1601 ** Equivalent names:
1602 **
1603 **     from-table == child-table
1604 **       to-table == parent-table
1605 **
1606 ** Each REFERENCES clause generates an instance of the following structure
1607 ** which is attached to the from-table.  The to-table need not exist when
1608 ** the from-table is created.  The existence of the to-table is not checked.
1609 **
1610 ** The list of all parents for child Table X is held at X.pFKey.
1611 **
1612 ** A list of all children for a table named Z (which might not even exist)
1613 ** is held in Schema.fkeyHash with a hash key of Z.
1614 */
1615 struct FKey {
1616   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1617   FKey *pNextFrom;  /* Next FKey with the same in pFrom. Next parent of pFrom */
1618   char *zTo;        /* Name of table that the key points to (aka: Parent) */
1619   FKey *pNextTo;    /* Next with the same zTo. Next child of zTo. */
1620   FKey *pPrevTo;    /* Previous with the same zTo */
1621   int nCol;         /* Number of columns in this key */
1622   /* EV: R-30323-21917 */
1623   u8 isDeferred;       /* True if constraint checking is deferred till COMMIT */
1624   u8 aAction[2];        /* ON DELETE and ON UPDATE actions, respectively */
1625   Trigger *apTrigger[2];/* Triggers for aAction[] actions */
1626   struct sColMap {      /* Mapping of columns in pFrom to columns in zTo */
1627     int iFrom;            /* Index of column in pFrom */
1628     char *zCol;           /* Name of column in zTo.  If NULL use PRIMARY KEY */
1629   } aCol[1];            /* One entry for each of nCol columns */
1630 };
1631 
1632 /*
1633 ** SQLite supports many different ways to resolve a constraint
1634 ** error.  ROLLBACK processing means that a constraint violation
1635 ** causes the operation in process to fail and for the current transaction
1636 ** to be rolled back.  ABORT processing means the operation in process
1637 ** fails and any prior changes from that one operation are backed out,
1638 ** but the transaction is not rolled back.  FAIL processing means that
1639 ** the operation in progress stops and returns an error code.  But prior
1640 ** changes due to the same operation are not backed out and no rollback
1641 ** occurs.  IGNORE means that the particular row that caused the constraint
1642 ** error is not inserted or updated.  Processing continues and no error
1643 ** is returned.  REPLACE means that preexisting database rows that caused
1644 ** a UNIQUE constraint violation are removed so that the new insert or
1645 ** update can proceed.  Processing continues and no error is reported.
1646 **
1647 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1648 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1649 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1650 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1651 ** referenced table row is propagated into the row that holds the
1652 ** foreign key.
1653 **
1654 ** The following symbolic values are used to record which type
1655 ** of action to take.
1656 */
1657 #define OE_None     0   /* There is no constraint to check */
1658 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1659 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1660 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1661 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1662 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1663 
1664 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1665 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1666 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1667 #define OE_Cascade  9   /* Cascade the changes */
1668 
1669 #define OE_Default  10  /* Do whatever the default action is */
1670 
1671 
1672 /*
1673 ** An instance of the following structure is passed as the first
1674 ** argument to sqlite3VdbeKeyCompare and is used to control the
1675 ** comparison of the two index keys.
1676 **
1677 ** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
1678 ** are nField slots for the columns of an index then one extra slot
1679 ** for the rowid at the end.
1680 */
1681 struct KeyInfo {
1682   u32 nRef;           /* Number of references to this KeyInfo object */
1683   u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
1684   u16 nField;         /* Number of key columns in the index */
1685   u16 nXField;        /* Number of columns beyond the key columns */
1686   sqlite3 *db;        /* The database connection */
1687   u8 *aSortOrder;     /* Sort order for each column. */
1688   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1689 };
1690 
1691 /*
1692 ** An instance of the following structure holds information about a
1693 ** single index record that has already been parsed out into individual
1694 ** values.
1695 **
1696 ** A record is an object that contains one or more fields of data.
1697 ** Records are used to store the content of a table row and to store
1698 ** the key of an index.  A blob encoding of a record is created by
1699 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1700 ** OP_Column opcode.
1701 **
1702 ** This structure holds a record that has already been disassembled
1703 ** into its constituent fields.
1704 **
1705 ** The r1 and r2 member variables are only used by the optimized comparison
1706 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
1707 */
1708 struct UnpackedRecord {
1709   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1710   u16 nField;         /* Number of entries in apMem[] */
1711   i8 default_rc;      /* Comparison result if keys are equal */
1712   u8 errCode;         /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
1713   Mem *aMem;          /* Values */
1714   int r1;             /* Value to return if (lhs > rhs) */
1715   int r2;             /* Value to return if (rhs < lhs) */
1716 };
1717 
1718 
1719 /*
1720 ** Each SQL index is represented in memory by an
1721 ** instance of the following structure.
1722 **
1723 ** The columns of the table that are to be indexed are described
1724 ** by the aiColumn[] field of this structure.  For example, suppose
1725 ** we have the following table and index:
1726 **
1727 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1728 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1729 **
1730 ** In the Table structure describing Ex1, nCol==3 because there are
1731 ** three columns in the table.  In the Index structure describing
1732 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1733 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1734 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1735 ** The second column to be indexed (c1) has an index of 0 in
1736 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1737 **
1738 ** The Index.onError field determines whether or not the indexed columns
1739 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1740 ** it means this is not a unique index.  Otherwise it is a unique index
1741 ** and the value of Index.onError indicate the which conflict resolution
1742 ** algorithm to employ whenever an attempt is made to insert a non-unique
1743 ** element.
1744 */
1745 struct Index {
1746   char *zName;             /* Name of this index */
1747   i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
1748   LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
1749   Table *pTable;           /* The SQL table being indexed */
1750   char *zColAff;           /* String defining the affinity of each column */
1751   Index *pNext;            /* The next index associated with the same table */
1752   Schema *pSchema;         /* Schema containing this index */
1753   u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
1754   char **azColl;           /* Array of collation sequence names for index */
1755   Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
1756   KeyInfo *pKeyInfo;       /* A KeyInfo object suitable for this index */
1757   int tnum;                /* DB Page containing root of this index */
1758   LogEst szIdxRow;         /* Estimated average row size in bytes */
1759   u16 nKeyCol;             /* Number of columns forming the key */
1760   u16 nColumn;             /* Number of columns stored in the index */
1761   u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1762   unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
1763   unsigned bUnordered:1;   /* Use this index for == or IN queries only */
1764   unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
1765   unsigned isResized:1;    /* True if resizeIndexObject() has been called */
1766   unsigned isCovering:1;   /* True if this is a covering index */
1767 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1768   int nSample;             /* Number of elements in aSample[] */
1769   int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
1770   tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
1771   IndexSample *aSample;    /* Samples of the left-most key */
1772 #endif
1773 };
1774 
1775 /*
1776 ** Allowed values for Index.idxType
1777 */
1778 #define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
1779 #define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
1780 #define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */
1781 
1782 /* Return true if index X is a PRIMARY KEY index */
1783 #define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
1784 
1785 /* Return true if index X is a UNIQUE index */
1786 #define IsUniqueIndex(X)      ((X)->onError!=OE_None)
1787 
1788 /*
1789 ** Each sample stored in the sqlite_stat3 table is represented in memory
1790 ** using a structure of this type.  See documentation at the top of the
1791 ** analyze.c source file for additional information.
1792 */
1793 struct IndexSample {
1794   void *p;          /* Pointer to sampled record */
1795   int n;            /* Size of record in bytes */
1796   tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
1797   tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
1798   tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
1799 };
1800 
1801 /*
1802 ** Each token coming out of the lexer is an instance of
1803 ** this structure.  Tokens are also used as part of an expression.
1804 **
1805 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1806 ** may contain random values.  Do not make any assumptions about Token.dyn
1807 ** and Token.n when Token.z==0.
1808 */
1809 struct Token {
1810   const char *z;     /* Text of the token.  Not NULL-terminated! */
1811   unsigned int n;    /* Number of characters in this token */
1812 };
1813 
1814 /*
1815 ** An instance of this structure contains information needed to generate
1816 ** code for a SELECT that contains aggregate functions.
1817 **
1818 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1819 ** pointer to this structure.  The Expr.iColumn field is the index in
1820 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1821 ** code for that node.
1822 **
1823 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1824 ** original Select structure that describes the SELECT statement.  These
1825 ** fields do not need to be freed when deallocating the AggInfo structure.
1826 */
1827 struct AggInfo {
1828   u8 directMode;          /* Direct rendering mode means take data directly
1829                           ** from source tables rather than from accumulators */
1830   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1831                           ** than the source table */
1832   int sortingIdx;         /* Cursor number of the sorting index */
1833   int sortingIdxPTab;     /* Cursor number of pseudo-table */
1834   int nSortingColumn;     /* Number of columns in the sorting index */
1835   int mnReg, mxReg;       /* Range of registers allocated for aCol and aFunc */
1836   ExprList *pGroupBy;     /* The group by clause */
1837   struct AggInfo_col {    /* For each column used in source tables */
1838     Table *pTab;             /* Source table */
1839     int iTable;              /* Cursor number of the source table */
1840     int iColumn;             /* Column number within the source table */
1841     int iSorterColumn;       /* Column number in the sorting index */
1842     int iMem;                /* Memory location that acts as accumulator */
1843     Expr *pExpr;             /* The original expression */
1844   } *aCol;
1845   int nColumn;            /* Number of used entries in aCol[] */
1846   int nAccumulator;       /* Number of columns that show through to the output.
1847                           ** Additional columns are used only as parameters to
1848                           ** aggregate functions */
1849   struct AggInfo_func {   /* For each aggregate function */
1850     Expr *pExpr;             /* Expression encoding the function */
1851     FuncDef *pFunc;          /* The aggregate function implementation */
1852     int iMem;                /* Memory location that acts as accumulator */
1853     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1854   } *aFunc;
1855   int nFunc;              /* Number of entries in aFunc[] */
1856 };
1857 
1858 /*
1859 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
1860 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
1861 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
1862 ** it uses less memory in the Expr object, which is a big memory user
1863 ** in systems with lots of prepared statements.  And few applications
1864 ** need more than about 10 or 20 variables.  But some extreme users want
1865 ** to have prepared statements with over 32767 variables, and for them
1866 ** the option is available (at compile-time).
1867 */
1868 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
1869 typedef i16 ynVar;
1870 #else
1871 typedef int ynVar;
1872 #endif
1873 
1874 /*
1875 ** Each node of an expression in the parse tree is an instance
1876 ** of this structure.
1877 **
1878 ** Expr.op is the opcode. The integer parser token codes are reused
1879 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1880 ** code representing the ">=" operator. This same integer code is reused
1881 ** to represent the greater-than-or-equal-to operator in the expression
1882 ** tree.
1883 **
1884 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1885 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1886 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1887 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1888 ** then Expr.token contains the name of the function.
1889 **
1890 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1891 ** binary operator. Either or both may be NULL.
1892 **
1893 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
1894 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1895 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1896 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1897 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1898 ** valid.
1899 **
1900 ** An expression of the form ID or ID.ID refers to a column in a table.
1901 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1902 ** the integer cursor number of a VDBE cursor pointing to that table and
1903 ** Expr.iColumn is the column number for the specific column.  If the
1904 ** expression is used as a result in an aggregate SELECT, then the
1905 ** value is also stored in the Expr.iAgg column in the aggregate so that
1906 ** it can be accessed after all aggregates are computed.
1907 **
1908 ** If the expression is an unbound variable marker (a question mark
1909 ** character '?' in the original SQL) then the Expr.iTable holds the index
1910 ** number for that variable.
1911 **
1912 ** If the expression is a subquery then Expr.iColumn holds an integer
1913 ** register number containing the result of the subquery.  If the
1914 ** subquery gives a constant result, then iTable is -1.  If the subquery
1915 ** gives a different answer at different times during statement processing
1916 ** then iTable is the address of a subroutine that computes the subquery.
1917 **
1918 ** If the Expr is of type OP_Column, and the table it is selecting from
1919 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
1920 ** corresponding table definition.
1921 **
1922 ** ALLOCATION NOTES:
1923 **
1924 ** Expr objects can use a lot of memory space in database schema.  To
1925 ** help reduce memory requirements, sometimes an Expr object will be
1926 ** truncated.  And to reduce the number of memory allocations, sometimes
1927 ** two or more Expr objects will be stored in a single memory allocation,
1928 ** together with Expr.zToken strings.
1929 **
1930 ** If the EP_Reduced and EP_TokenOnly flags are set when
1931 ** an Expr object is truncated.  When EP_Reduced is set, then all
1932 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
1933 ** are contained within the same memory allocation.  Note, however, that
1934 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
1935 ** allocated, regardless of whether or not EP_Reduced is set.
1936 */
1937 struct Expr {
1938   u8 op;                 /* Operation performed by this node */
1939   char affinity;         /* The affinity of the column or 0 if not a column */
1940   u32 flags;             /* Various flags.  EP_* See below */
1941   union {
1942     char *zToken;          /* Token value. Zero terminated and dequoted */
1943     int iValue;            /* Non-negative integer value if EP_IntValue */
1944   } u;
1945 
1946   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
1947   ** space is allocated for the fields below this point. An attempt to
1948   ** access them will result in a segfault or malfunction.
1949   *********************************************************************/
1950 
1951   Expr *pLeft;           /* Left subnode */
1952   Expr *pRight;          /* Right subnode */
1953   union {
1954     ExprList *pList;     /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
1955     Select *pSelect;     /* EP_xIsSelect and op = IN, EXISTS, SELECT */
1956   } x;
1957 
1958   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
1959   ** space is allocated for the fields below this point. An attempt to
1960   ** access them will result in a segfault or malfunction.
1961   *********************************************************************/
1962 
1963 #if SQLITE_MAX_EXPR_DEPTH>0
1964   int nHeight;           /* Height of the tree headed by this node */
1965 #endif
1966   int iTable;            /* TK_COLUMN: cursor number of table holding column
1967                          ** TK_REGISTER: register number
1968                          ** TK_TRIGGER: 1 -> new, 0 -> old
1969                          ** EP_Unlikely:  1000 times likelihood */
1970   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
1971                          ** TK_VARIABLE: variable number (always >= 1). */
1972   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
1973   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
1974   u8 op2;                /* TK_REGISTER: original value of Expr.op
1975                          ** TK_COLUMN: the value of p5 for OP_Column
1976                          ** TK_AGG_FUNCTION: nesting depth */
1977   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
1978   Table *pTab;           /* Table for TK_COLUMN expressions. */
1979 };
1980 
1981 /*
1982 ** The following are the meanings of bits in the Expr.flags field.
1983 */
1984 #define EP_FromJoin  0x000001 /* Originated in ON or USING clause of a join */
1985 #define EP_Agg       0x000002 /* Contains one or more aggregate functions */
1986 #define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
1987 #define EP_Error     0x000008 /* Expression contains one or more errors */
1988 #define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
1989 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
1990 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
1991 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
1992 #define EP_Collate   0x000100 /* Tree contains a TK_COLLATE operator */
1993 #define EP_Generic   0x000200 /* Ignore COLLATE or affinity on this tree */
1994 #define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
1995 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
1996 #define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
1997 #define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
1998 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
1999 #define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
2000 #define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
2001 #define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
2002 #define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
2003 #define EP_Constant  0x080000 /* Node is a constant */
2004 
2005 /*
2006 ** These macros can be used to test, set, or clear bits in the
2007 ** Expr.flags field.
2008 */
2009 #define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
2010 #define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
2011 #define ExprSetProperty(E,P)     (E)->flags|=(P)
2012 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
2013 
2014 /* The ExprSetVVAProperty() macro is used for Verification, Validation,
2015 ** and Accreditation only.  It works like ExprSetProperty() during VVA
2016 ** processes but is a no-op for delivery.
2017 */
2018 #ifdef SQLITE_DEBUG
2019 # define ExprSetVVAProperty(E,P)  (E)->flags|=(P)
2020 #else
2021 # define ExprSetVVAProperty(E,P)
2022 #endif
2023 
2024 /*
2025 ** Macros to determine the number of bytes required by a normal Expr
2026 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
2027 ** and an Expr struct with the EP_TokenOnly flag set.
2028 */
2029 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
2030 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
2031 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
2032 
2033 /*
2034 ** Flags passed to the sqlite3ExprDup() function. See the header comment
2035 ** above sqlite3ExprDup() for details.
2036 */
2037 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
2038 
2039 /*
2040 ** A list of expressions.  Each expression may optionally have a
2041 ** name.  An expr/name combination can be used in several ways, such
2042 ** as the list of "expr AS ID" fields following a "SELECT" or in the
2043 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
2044 ** also be used as the argument to a function, in which case the a.zName
2045 ** field is not used.
2046 **
2047 ** By default the Expr.zSpan field holds a human-readable description of
2048 ** the expression that is used in the generation of error messages and
2049 ** column labels.  In this case, Expr.zSpan is typically the text of a
2050 ** column expression as it exists in a SELECT statement.  However, if
2051 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
2052 ** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
2053 ** form is used for name resolution with nested FROM clauses.
2054 */
2055 struct ExprList {
2056   int nExpr;             /* Number of expressions on the list */
2057   struct ExprList_item { /* For each expression in the list */
2058     Expr *pExpr;            /* The list of expressions */
2059     char *zName;            /* Token associated with this expression */
2060     char *zSpan;            /* Original text of the expression */
2061     u8 sortOrder;           /* 1 for DESC or 0 for ASC */
2062     unsigned done :1;       /* A flag to indicate when processing is finished */
2063     unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
2064     unsigned reusable :1;   /* Constant expression is reusable */
2065     union {
2066       struct {
2067         u16 iOrderByCol;      /* For ORDER BY, column number in result set */
2068         u16 iAlias;           /* Index into Parse.aAlias[] for zName */
2069       } x;
2070       int iConstExprReg;      /* Register in which Expr value is cached */
2071     } u;
2072   } *a;                  /* Alloc a power of two greater or equal to nExpr */
2073 };
2074 
2075 /*
2076 ** An instance of this structure is used by the parser to record both
2077 ** the parse tree for an expression and the span of input text for an
2078 ** expression.
2079 */
2080 struct ExprSpan {
2081   Expr *pExpr;          /* The expression parse tree */
2082   const char *zStart;   /* First character of input text */
2083   const char *zEnd;     /* One character past the end of input text */
2084 };
2085 
2086 /*
2087 ** An instance of this structure can hold a simple list of identifiers,
2088 ** such as the list "a,b,c" in the following statements:
2089 **
2090 **      INSERT INTO t(a,b,c) VALUES ...;
2091 **      CREATE INDEX idx ON t(a,b,c);
2092 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
2093 **
2094 ** The IdList.a.idx field is used when the IdList represents the list of
2095 ** column names after a table name in an INSERT statement.  In the statement
2096 **
2097 **     INSERT INTO t(a,b,c) ...
2098 **
2099 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
2100 */
2101 struct IdList {
2102   struct IdList_item {
2103     char *zName;      /* Name of the identifier */
2104     int idx;          /* Index in some Table.aCol[] of a column named zName */
2105   } *a;
2106   int nId;         /* Number of identifiers on the list */
2107 };
2108 
2109 /*
2110 ** The bitmask datatype defined below is used for various optimizations.
2111 **
2112 ** Changing this from a 64-bit to a 32-bit type limits the number of
2113 ** tables in a join to 32 instead of 64.  But it also reduces the size
2114 ** of the library by 738 bytes on ix86.
2115 */
2116 typedef u64 Bitmask;
2117 
2118 /*
2119 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
2120 */
2121 #define BMS  ((int)(sizeof(Bitmask)*8))
2122 
2123 /*
2124 ** A bit in a Bitmask
2125 */
2126 #define MASKBIT(n)   (((Bitmask)1)<<(n))
2127 #define MASKBIT32(n) (((unsigned int)1)<<(n))
2128 
2129 /*
2130 ** The following structure describes the FROM clause of a SELECT statement.
2131 ** Each table or subquery in the FROM clause is a separate element of
2132 ** the SrcList.a[] array.
2133 **
2134 ** With the addition of multiple database support, the following structure
2135 ** can also be used to describe a particular table such as the table that
2136 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
2137 ** such a table must be a simple name: ID.  But in SQLite, the table can
2138 ** now be identified by a database name, a dot, then the table name: ID.ID.
2139 **
2140 ** The jointype starts out showing the join type between the current table
2141 ** and the next table on the list.  The parser builds the list this way.
2142 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
2143 ** jointype expresses the join between the table and the previous table.
2144 **
2145 ** In the colUsed field, the high-order bit (bit 63) is set if the table
2146 ** contains more than 63 columns and the 64-th or later column is used.
2147 */
2148 struct SrcList {
2149   int nSrc;        /* Number of tables or subqueries in the FROM clause */
2150   u32 nAlloc;      /* Number of entries allocated in a[] below */
2151   struct SrcList_item {
2152     Schema *pSchema;  /* Schema to which this item is fixed */
2153     char *zDatabase;  /* Name of database holding this table */
2154     char *zName;      /* Name of the table */
2155     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
2156     Table *pTab;      /* An SQL table corresponding to zName */
2157     Select *pSelect;  /* A SELECT statement used in place of a table name */
2158     int addrFillSub;  /* Address of subroutine to manifest a subquery */
2159     int regReturn;    /* Register holding return address of addrFillSub */
2160     int regResult;    /* Registers holding results of a co-routine */
2161     u8 jointype;      /* Type of join between this able and the previous */
2162     unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
2163     unsigned isCorrelated :1;  /* True if sub-query is correlated */
2164     unsigned viaCoroutine :1;  /* Implemented as a co-routine */
2165     unsigned isRecursive :1;   /* True for recursive reference in WITH */
2166 #ifndef SQLITE_OMIT_EXPLAIN
2167     u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
2168 #endif
2169     int iCursor;      /* The VDBE cursor number used to access this table */
2170     Expr *pOn;        /* The ON clause of a join */
2171     IdList *pUsing;   /* The USING clause of a join */
2172     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
2173     char *zIndex;     /* Identifier from "INDEXED BY <zIndex>" clause */
2174     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
2175   } a[1];             /* One entry for each identifier on the list */
2176 };
2177 
2178 /*
2179 ** Permitted values of the SrcList.a.jointype field
2180 */
2181 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
2182 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
2183 #define JT_NATURAL   0x0004    /* True for a "natural" join */
2184 #define JT_LEFT      0x0008    /* Left outer join */
2185 #define JT_RIGHT     0x0010    /* Right outer join */
2186 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
2187 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
2188 
2189 
2190 /*
2191 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
2192 ** and the WhereInfo.wctrlFlags member.
2193 */
2194 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
2195 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
2196 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
2197 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
2198 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
2199 #define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
2200 #define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
2201 #define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
2202 #define WHERE_AND_ONLY         0x0080 /* Don't use indices for OR terms */
2203 #define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
2204 #define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
2205 #define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
2206 #define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
2207 #define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */
2208 
2209 /* Allowed return values from sqlite3WhereIsDistinct()
2210 */
2211 #define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
2212 #define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
2213 #define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
2214 #define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
2215 
2216 /*
2217 ** A NameContext defines a context in which to resolve table and column
2218 ** names.  The context consists of a list of tables (the pSrcList) field and
2219 ** a list of named expression (pEList).  The named expression list may
2220 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
2221 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
2222 ** pEList corresponds to the result set of a SELECT and is NULL for
2223 ** other statements.
2224 **
2225 ** NameContexts can be nested.  When resolving names, the inner-most
2226 ** context is searched first.  If no match is found, the next outer
2227 ** context is checked.  If there is still no match, the next context
2228 ** is checked.  This process continues until either a match is found
2229 ** or all contexts are check.  When a match is found, the nRef member of
2230 ** the context containing the match is incremented.
2231 **
2232 ** Each subquery gets a new NameContext.  The pNext field points to the
2233 ** NameContext in the parent query.  Thus the process of scanning the
2234 ** NameContext list corresponds to searching through successively outer
2235 ** subqueries looking for a match.
2236 */
2237 struct NameContext {
2238   Parse *pParse;       /* The parser */
2239   SrcList *pSrcList;   /* One or more tables used to resolve names */
2240   ExprList *pEList;    /* Optional list of result-set columns */
2241   AggInfo *pAggInfo;   /* Information about aggregates at this level */
2242   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
2243   int nRef;            /* Number of names resolved by this context */
2244   int nErr;            /* Number of errors encountered while resolving names */
2245   u8 ncFlags;          /* Zero or more NC_* flags defined below */
2246 };
2247 
2248 /*
2249 ** Allowed values for the NameContext, ncFlags field.
2250 */
2251 #define NC_AllowAgg  0x01    /* Aggregate functions are allowed here */
2252 #define NC_HasAgg    0x02    /* One or more aggregate functions seen */
2253 #define NC_IsCheck   0x04    /* True if resolving names in a CHECK constraint */
2254 #define NC_InAggFunc 0x08    /* True if analyzing arguments to an agg func */
2255 #define NC_PartIdx   0x10    /* True if resolving a partial index WHERE */
2256 
2257 /*
2258 ** An instance of the following structure contains all information
2259 ** needed to generate code for a single SELECT statement.
2260 **
2261 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
2262 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
2263 ** limit and nOffset to the value of the offset (or 0 if there is not
2264 ** offset).  But later on, nLimit and nOffset become the memory locations
2265 ** in the VDBE that record the limit and offset counters.
2266 **
2267 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
2268 ** These addresses must be stored so that we can go back and fill in
2269 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
2270 ** the number of columns in P2 can be computed at the same time
2271 ** as the OP_OpenEphm instruction is coded because not
2272 ** enough information about the compound query is known at that point.
2273 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2274 ** for the result set.  The KeyInfo for addrOpenEphm[2] contains collating
2275 ** sequences for the ORDER BY clause.
2276 */
2277 struct Select {
2278   ExprList *pEList;      /* The fields of the result */
2279   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2280   u16 selFlags;          /* Various SF_* values */
2281   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2282   int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
2283   u64 nSelectRow;        /* Estimated number of result rows */
2284   SrcList *pSrc;         /* The FROM clause */
2285   Expr *pWhere;          /* The WHERE clause */
2286   ExprList *pGroupBy;    /* The GROUP BY clause */
2287   Expr *pHaving;         /* The HAVING clause */
2288   ExprList *pOrderBy;    /* The ORDER BY clause */
2289   Select *pPrior;        /* Prior select in a compound select statement */
2290   Select *pNext;         /* Next select to the left in a compound */
2291   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2292   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2293   With *pWith;           /* WITH clause attached to this select. Or NULL. */
2294 };
2295 
2296 /*
2297 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
2298 ** "Select Flag".
2299 */
2300 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
2301 #define SF_Resolved        0x0002  /* Identifiers have been resolved */
2302 #define SF_Aggregate       0x0004  /* Contains aggregate functions */
2303 #define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
2304 #define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
2305 #define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
2306                     /*     0x0040  NOT USED */
2307 #define SF_Values          0x0080  /* Synthesized from VALUES clause */
2308                     /*     0x0100  NOT USED */
2309 #define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
2310 #define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
2311 #define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
2312 #define SF_Compound        0x1000  /* Part of a compound query */
2313 
2314 
2315 /*
2316 ** The results of a SELECT can be distributed in several ways, as defined
2317 ** by one of the following macros.  The "SRT" prefix means "SELECT Result
2318 ** Type".
2319 **
2320 **     SRT_Union       Store results as a key in a temporary index
2321 **                     identified by pDest->iSDParm.
2322 **
2323 **     SRT_Except      Remove results from the temporary index pDest->iSDParm.
2324 **
2325 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
2326 **                     set is not empty.
2327 **
2328 **     SRT_Discard     Throw the results away.  This is used by SELECT
2329 **                     statements within triggers whose only purpose is
2330 **                     the side-effects of functions.
2331 **
2332 ** All of the above are free to ignore their ORDER BY clause. Those that
2333 ** follow must honor the ORDER BY clause.
2334 **
2335 **     SRT_Output      Generate a row of output (using the OP_ResultRow
2336 **                     opcode) for each row in the result set.
2337 **
2338 **     SRT_Mem         Only valid if the result is a single column.
2339 **                     Store the first column of the first result row
2340 **                     in register pDest->iSDParm then abandon the rest
2341 **                     of the query.  This destination implies "LIMIT 1".
2342 **
2343 **     SRT_Set         The result must be a single column.  Store each
2344 **                     row of result as the key in table pDest->iSDParm.
2345 **                     Apply the affinity pDest->affSdst before storing
2346 **                     results.  Used to implement "IN (SELECT ...)".
2347 **
2348 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
2349 **                     the result there. The cursor is left open after
2350 **                     returning.  This is like SRT_Table except that
2351 **                     this destination uses OP_OpenEphemeral to create
2352 **                     the table first.
2353 **
2354 **     SRT_Coroutine   Generate a co-routine that returns a new row of
2355 **                     results each time it is invoked.  The entry point
2356 **                     of the co-routine is stored in register pDest->iSDParm
2357 **                     and the result row is stored in pDest->nDest registers
2358 **                     starting with pDest->iSdst.
2359 **
2360 **     SRT_Table       Store results in temporary table pDest->iSDParm.
2361 **     SRT_Fifo        This is like SRT_EphemTab except that the table
2362 **                     is assumed to already be open.  SRT_Fifo has
2363 **                     the additional property of being able to ignore
2364 **                     the ORDER BY clause.
2365 **
2366 **     SRT_DistFifo    Store results in a temporary table pDest->iSDParm.
2367 **                     But also use temporary table pDest->iSDParm+1 as
2368 **                     a record of all prior results and ignore any duplicate
2369 **                     rows.  Name means:  "Distinct Fifo".
2370 **
2371 **     SRT_Queue       Store results in priority queue pDest->iSDParm (really
2372 **                     an index).  Append a sequence number so that all entries
2373 **                     are distinct.
2374 **
2375 **     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
2376 **                     the same record has never been stored before.  The
2377 **                     index at pDest->iSDParm+1 hold all prior stores.
2378 */
2379 #define SRT_Union        1  /* Store result as keys in an index */
2380 #define SRT_Except       2  /* Remove result from a UNION index */
2381 #define SRT_Exists       3  /* Store 1 if the result is not empty */
2382 #define SRT_Discard      4  /* Do not save the results anywhere */
2383 #define SRT_Fifo         5  /* Store result as data with an automatic rowid */
2384 #define SRT_DistFifo     6  /* Like SRT_Fifo, but unique results only */
2385 #define SRT_Queue        7  /* Store result in an queue */
2386 #define SRT_DistQueue    8  /* Like SRT_Queue, but unique results only */
2387 
2388 /* The ORDER BY clause is ignored for all of the above */
2389 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)
2390 
2391 #define SRT_Output       9  /* Output each row of result */
2392 #define SRT_Mem         10  /* Store result in a memory cell */
2393 #define SRT_Set         11  /* Store results as keys in an index */
2394 #define SRT_EphemTab    12  /* Create transient tab and store like SRT_Table */
2395 #define SRT_Coroutine   13  /* Generate a single row of result */
2396 #define SRT_Table       14  /* Store result as data with an automatic rowid */
2397 
2398 /*
2399 ** An instance of this object describes where to put of the results of
2400 ** a SELECT statement.
2401 */
2402 struct SelectDest {
2403   u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
2404   char affSdst;        /* Affinity used when eDest==SRT_Set */
2405   int iSDParm;         /* A parameter used by the eDest disposal method */
2406   int iSdst;           /* Base register where results are written */
2407   int nSdst;           /* Number of registers allocated */
2408   ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
2409 };
2410 
2411 /*
2412 ** During code generation of statements that do inserts into AUTOINCREMENT
2413 ** tables, the following information is attached to the Table.u.autoInc.p
2414 ** pointer of each autoincrement table to record some side information that
2415 ** the code generator needs.  We have to keep per-table autoincrement
2416 ** information in case inserts are down within triggers.  Triggers do not
2417 ** normally coordinate their activities, but we do need to coordinate the
2418 ** loading and saving of autoincrement information.
2419 */
2420 struct AutoincInfo {
2421   AutoincInfo *pNext;   /* Next info block in a list of them all */
2422   Table *pTab;          /* Table this info block refers to */
2423   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2424   int regCtr;           /* Memory register holding the rowid counter */
2425 };
2426 
2427 /*
2428 ** Size of the column cache
2429 */
2430 #ifndef SQLITE_N_COLCACHE
2431 # define SQLITE_N_COLCACHE 10
2432 #endif
2433 
2434 /*
2435 ** At least one instance of the following structure is created for each
2436 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2437 ** statement. All such objects are stored in the linked list headed at
2438 ** Parse.pTriggerPrg and deleted once statement compilation has been
2439 ** completed.
2440 **
2441 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2442 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2443 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2444 ** The Parse.pTriggerPrg list never contains two entries with the same
2445 ** values for both pTrigger and orconf.
2446 **
2447 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2448 ** accessed (or set to 0 for triggers fired as a result of INSERT
2449 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2450 ** a mask of new.* columns used by the program.
2451 */
2452 struct TriggerPrg {
2453   Trigger *pTrigger;      /* Trigger this program was coded from */
2454   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2455   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2456   int orconf;             /* Default ON CONFLICT policy */
2457   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2458 };
2459 
2460 /*
2461 ** The yDbMask datatype for the bitmask of all attached databases.
2462 */
2463 #if SQLITE_MAX_ATTACHED>30
2464   typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
2465 # define DbMaskTest(M,I)    (((M)[(I)/8]&(1<<((I)&7)))!=0)
2466 # define DbMaskZero(M)      memset((M),0,sizeof(M))
2467 # define DbMaskSet(M,I)     (M)[(I)/8]|=(1<<((I)&7))
2468 # define DbMaskAllZero(M)   sqlite3DbMaskAllZero(M)
2469 # define DbMaskNonZero(M)   (sqlite3DbMaskAllZero(M)==0)
2470 #else
2471   typedef unsigned int yDbMask;
2472 # define DbMaskTest(M,I)    (((M)&(((yDbMask)1)<<(I)))!=0)
2473 # define DbMaskZero(M)      (M)=0
2474 # define DbMaskSet(M,I)     (M)|=(((yDbMask)1)<<(I))
2475 # define DbMaskAllZero(M)   (M)==0
2476 # define DbMaskNonZero(M)   (M)!=0
2477 #endif
2478 
2479 /*
2480 ** An SQL parser context.  A copy of this structure is passed through
2481 ** the parser and down into all the parser action routine in order to
2482 ** carry around information that is global to the entire parse.
2483 **
2484 ** The structure is divided into two parts.  When the parser and code
2485 ** generate call themselves recursively, the first part of the structure
2486 ** is constant but the second part is reset at the beginning and end of
2487 ** each recursion.
2488 **
2489 ** The nTableLock and aTableLock variables are only used if the shared-cache
2490 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2491 ** used to store the set of table-locks required by the statement being
2492 ** compiled. Function sqlite3TableLock() is used to add entries to the
2493 ** list.
2494 */
2495 struct Parse {
2496   sqlite3 *db;         /* The main database structure */
2497   char *zErrMsg;       /* An error message */
2498   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2499   int rc;              /* Return code from execution */
2500   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2501   u8 checkSchema;      /* Causes schema cookie check after an error */
2502   u8 nested;           /* Number of nested calls to the parser/code generator */
2503   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2504   u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
2505   u8 mayAbort;         /* True if statement may throw an ABORT exception */
2506   u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
2507   u8 okConstFactor;    /* OK to factor out constants */
2508   int aTempReg[8];     /* Holding area for temporary registers */
2509   int nRangeReg;       /* Size of the temporary register block */
2510   int iRangeReg;       /* First register in temporary register block */
2511   int nErr;            /* Number of errors seen */
2512   int nTab;            /* Number of previously allocated VDBE cursors */
2513   int nMem;            /* Number of memory cells used so far */
2514   int nSet;            /* Number of sets used so far */
2515   int nOnce;           /* Number of OP_Once instructions so far */
2516   int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */
2517   int iFixedOp;        /* Never back out opcodes iFixedOp-1 or earlier */
2518   int ckBase;          /* Base register of data during check constraints */
2519   int iPartIdxTab;     /* Table corresponding to a partial index */
2520   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2521   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2522   int nLabel;          /* Number of labels used */
2523   int *aLabel;         /* Space to hold the labels */
2524   struct yColCache {
2525     int iTable;           /* Table cursor number */
2526     i16 iColumn;          /* Table column number */
2527     u8 tempReg;           /* iReg is a temp register that needs to be freed */
2528     int iLevel;           /* Nesting level */
2529     int iReg;             /* Reg with value of this column. 0 means none. */
2530     int lru;              /* Least recently used entry has the smallest value */
2531   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2532   ExprList *pConstExpr;/* Constant expressions */
2533   Token constraintName;/* Name of the constraint currently being parsed */
2534   yDbMask writeMask;   /* Start a write transaction on these databases */
2535   yDbMask cookieMask;  /* Bitmask of schema verified databases */
2536   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2537   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2538   int regRoot;         /* Register holding root page number for new objects */
2539   int nMaxArg;         /* Max args passed to user function by sub-program */
2540 #ifndef SQLITE_OMIT_SHARED_CACHE
2541   int nTableLock;        /* Number of locks in aTableLock */
2542   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2543 #endif
2544   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2545 
2546   /* Information used while coding trigger programs. */
2547   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
2548   Table *pTriggerTab;  /* Table triggers are being coded for */
2549   int addrCrTab;       /* Address of OP_CreateTable opcode on CREATE TABLE */
2550   int addrSkipPK;      /* Address of instruction to skip PRIMARY KEY index */
2551   u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
2552   u32 oldmask;         /* Mask of old.* columns referenced */
2553   u32 newmask;         /* Mask of new.* columns referenced */
2554   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
2555   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
2556   u8 disableTriggers;  /* True to disable triggers */
2557 
2558   /************************************************************************
2559   ** Above is constant between recursions.  Below is reset before and after
2560   ** each recursion.  The boundary between these two regions is determined
2561   ** using offsetof(Parse,nVar) so the nVar field must be the first field
2562   ** in the recursive region.
2563   ************************************************************************/
2564 
2565   int nVar;                 /* Number of '?' variables seen in the SQL so far */
2566   int nzVar;                /* Number of available slots in azVar[] */
2567   u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
2568   u8 bFreeWith;             /* True if pWith should be freed with parser */
2569   u8 explain;               /* True if the EXPLAIN flag is found on the query */
2570 #ifndef SQLITE_OMIT_VIRTUALTABLE
2571   u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
2572   int nVtabLock;            /* Number of virtual tables to lock */
2573 #endif
2574   int nAlias;               /* Number of aliased result set columns */
2575   int nHeight;              /* Expression tree height of current sub-select */
2576 #ifndef SQLITE_OMIT_EXPLAIN
2577   int iSelectId;            /* ID of current select for EXPLAIN output */
2578   int iNextSelectId;        /* Next available select ID for EXPLAIN output */
2579 #endif
2580   char **azVar;             /* Pointers to names of parameters */
2581   Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
2582   const char *zTail;        /* All SQL text past the last semicolon parsed */
2583   Table *pNewTable;         /* A table being constructed by CREATE TABLE */
2584   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2585   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2586   Token sNameToken;         /* Token with unqualified schema object name */
2587   Token sLastToken;         /* The last token parsed */
2588 #ifndef SQLITE_OMIT_VIRTUALTABLE
2589   Token sArg;               /* Complete text of a module argument */
2590   Table **apVtabLock;       /* Pointer to virtual tables needing locking */
2591 #endif
2592   Table *pZombieTab;        /* List of Table objects to delete after code gen */
2593   TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
2594   With *pWith;              /* Current WITH clause, or NULL */
2595 };
2596 
2597 /*
2598 ** Return true if currently inside an sqlite3_declare_vtab() call.
2599 */
2600 #ifdef SQLITE_OMIT_VIRTUALTABLE
2601   #define IN_DECLARE_VTAB 0
2602 #else
2603   #define IN_DECLARE_VTAB (pParse->declareVtab)
2604 #endif
2605 
2606 /*
2607 ** An instance of the following structure can be declared on a stack and used
2608 ** to save the Parse.zAuthContext value so that it can be restored later.
2609 */
2610 struct AuthContext {
2611   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2612   Parse *pParse;              /* The Parse structure */
2613 };
2614 
2615 /*
2616 ** Bitfield flags for P5 value in various opcodes.
2617 */
2618 #define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
2619 #define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
2620 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
2621 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
2622 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
2623 #define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */
2624 #define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
2625 #define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
2626 #define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
2627 #define OPFLAG_P2ISREG       0x02    /* P2 to OP_Open** is a register number */
2628 #define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
2629 
2630 /*
2631  * Each trigger present in the database schema is stored as an instance of
2632  * struct Trigger.
2633  *
2634  * Pointers to instances of struct Trigger are stored in two ways.
2635  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2636  *    database). This allows Trigger structures to be retrieved by name.
2637  * 2. All triggers associated with a single table form a linked list, using the
2638  *    pNext member of struct Trigger. A pointer to the first element of the
2639  *    linked list is stored as the "pTrigger" member of the associated
2640  *    struct Table.
2641  *
2642  * The "step_list" member points to the first element of a linked list
2643  * containing the SQL statements specified as the trigger program.
2644  */
2645 struct Trigger {
2646   char *zName;            /* The name of the trigger                        */
2647   char *table;            /* The table or view to which the trigger applies */
2648   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2649   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2650   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2651   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2652                              the <column-list> is stored here */
2653   Schema *pSchema;        /* Schema containing the trigger */
2654   Schema *pTabSchema;     /* Schema containing the table */
2655   TriggerStep *step_list; /* Link list of trigger program steps             */
2656   Trigger *pNext;         /* Next trigger associated with the table */
2657 };
2658 
2659 /*
2660 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2661 ** determine which.
2662 **
2663 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2664 ** In that cases, the constants below can be ORed together.
2665 */
2666 #define TRIGGER_BEFORE  1
2667 #define TRIGGER_AFTER   2
2668 
2669 /*
2670  * An instance of struct TriggerStep is used to store a single SQL statement
2671  * that is a part of a trigger-program.
2672  *
2673  * Instances of struct TriggerStep are stored in a singly linked list (linked
2674  * using the "pNext" member) referenced by the "step_list" member of the
2675  * associated struct Trigger instance. The first element of the linked list is
2676  * the first step of the trigger-program.
2677  *
2678  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2679  * "SELECT" statement. The meanings of the other members is determined by the
2680  * value of "op" as follows:
2681  *
2682  * (op == TK_INSERT)
2683  * orconf    -> stores the ON CONFLICT algorithm
2684  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2685  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2686  * target    -> A token holding the quoted name of the table to insert into.
2687  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2688  *              this stores values to be inserted. Otherwise NULL.
2689  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2690  *              statement, then this stores the column-names to be
2691  *              inserted into.
2692  *
2693  * (op == TK_DELETE)
2694  * target    -> A token holding the quoted name of the table to delete from.
2695  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2696  *              Otherwise NULL.
2697  *
2698  * (op == TK_UPDATE)
2699  * target    -> A token holding the quoted name of the table to update rows of.
2700  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2701  *              Otherwise NULL.
2702  * pExprList -> A list of the columns to update and the expressions to update
2703  *              them to. See sqlite3Update() documentation of "pChanges"
2704  *              argument.
2705  *
2706  */
2707 struct TriggerStep {
2708   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2709   u8 orconf;           /* OE_Rollback etc. */
2710   Trigger *pTrig;      /* The trigger that this step is a part of */
2711   Select *pSelect;     /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
2712   Token target;        /* Target table for DELETE, UPDATE, INSERT */
2713   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2714   ExprList *pExprList; /* SET clause for UPDATE. */
2715   IdList *pIdList;     /* Column names for INSERT */
2716   TriggerStep *pNext;  /* Next in the link-list */
2717   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2718 };
2719 
2720 /*
2721 ** The following structure contains information used by the sqliteFix...
2722 ** routines as they walk the parse tree to make database references
2723 ** explicit.
2724 */
2725 typedef struct DbFixer DbFixer;
2726 struct DbFixer {
2727   Parse *pParse;      /* The parsing context.  Error messages written here */
2728   Schema *pSchema;    /* Fix items to this schema */
2729   int bVarOnly;       /* Check for variable references only */
2730   const char *zDb;    /* Make sure all objects are contained in this database */
2731   const char *zType;  /* Type of the container - used for error messages */
2732   const Token *pName; /* Name of the container - used for error messages */
2733 };
2734 
2735 /*
2736 ** An objected used to accumulate the text of a string where we
2737 ** do not necessarily know how big the string will be in the end.
2738 */
2739 struct StrAccum {
2740   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2741   char *zBase;         /* A base allocation.  Not from malloc. */
2742   char *zText;         /* The string collected so far */
2743   int  nChar;          /* Length of the string so far */
2744   int  nAlloc;         /* Amount of space allocated in zText */
2745   int  mxAlloc;        /* Maximum allowed string length */
2746   u8   useMalloc;      /* 0: none,  1: sqlite3DbMalloc,  2: sqlite3_malloc */
2747   u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
2748 };
2749 #define STRACCUM_NOMEM   1
2750 #define STRACCUM_TOOBIG  2
2751 
2752 /*
2753 ** A pointer to this structure is used to communicate information
2754 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2755 */
2756 typedef struct {
2757   sqlite3 *db;        /* The database being initialized */
2758   char **pzErrMsg;    /* Error message stored here */
2759   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2760   int rc;             /* Result code stored here */
2761 } InitData;
2762 
2763 /*
2764 ** Structure containing global configuration data for the SQLite library.
2765 **
2766 ** This structure also contains some state information.
2767 */
2768 struct Sqlite3Config {
2769   int bMemstat;                     /* True to enable memory status */
2770   int bCoreMutex;                   /* True to enable core mutexing */
2771   int bFullMutex;                   /* True to enable full mutexing */
2772   int bOpenUri;                     /* True to interpret filenames as URIs */
2773   int bUseCis;                      /* Use covering indices for full-scans */
2774   int mxStrlen;                     /* Maximum string length */
2775   int neverCorrupt;                 /* Database is always well-formed */
2776   int szLookaside;                  /* Default lookaside buffer size */
2777   int nLookaside;                   /* Default lookaside buffer count */
2778   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2779   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2780   sqlite3_pcache_methods2 pcache2;  /* Low-level page-cache interface */
2781   void *pHeap;                      /* Heap storage space */
2782   int nHeap;                        /* Size of pHeap[] */
2783   int mnReq, mxReq;                 /* Min and max heap requests sizes */
2784   sqlite3_int64 szMmap;             /* mmap() space per open file */
2785   sqlite3_int64 mxMmap;             /* Maximum value for szMmap */
2786   void *pScratch;                   /* Scratch memory */
2787   int szScratch;                    /* Size of each scratch buffer */
2788   int nScratch;                     /* Number of scratch buffers */
2789   void *pPage;                      /* Page cache memory */
2790   int szPage;                       /* Size of each page in pPage[] */
2791   int nPage;                        /* Number of pages in pPage[] */
2792   int mxParserStack;                /* maximum depth of the parser stack */
2793   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2794   /* The above might be initialized to non-zero.  The following need to always
2795   ** initially be zero, however. */
2796   int isInit;                       /* True after initialization has finished */
2797   int inProgress;                   /* True while initialization in progress */
2798   int isMutexInit;                  /* True after mutexes are initialized */
2799   int isMallocInit;                 /* True after malloc is initialized */
2800   int isPCacheInit;                 /* True after malloc is initialized */
2801   int nRefInitMutex;                /* Number of users of pInitMutex */
2802   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2803   void (*xLog)(void*,int,const char*); /* Function for logging */
2804   void *pLogArg;                       /* First argument to xLog() */
2805 #ifdef SQLITE_ENABLE_SQLLOG
2806   void(*xSqllog)(void*,sqlite3*,const char*, int);
2807   void *pSqllogArg;
2808 #endif
2809 #ifdef SQLITE_VDBE_COVERAGE
2810   /* The following callback (if not NULL) is invoked on every VDBE branch
2811   ** operation.  Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
2812   */
2813   void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx);  /* Callback */
2814   void *pVdbeBranchArg;                                     /* 1st argument */
2815 #endif
2816 #ifndef SQLITE_OMIT_BUILTIN_TEST
2817   int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
2818 #endif
2819   int bLocaltimeFault;              /* True to fail localtime() calls */
2820 };
2821 
2822 /*
2823 ** This macro is used inside of assert() statements to indicate that
2824 ** the assert is only valid on a well-formed database.  Instead of:
2825 **
2826 **     assert( X );
2827 **
2828 ** One writes:
2829 **
2830 **     assert( X || CORRUPT_DB );
2831 **
2832 ** CORRUPT_DB is true during normal operation.  CORRUPT_DB does not indicate
2833 ** that the database is definitely corrupt, only that it might be corrupt.
2834 ** For most test cases, CORRUPT_DB is set to false using a special
2835 ** sqlite3_test_control().  This enables assert() statements to prove
2836 ** things that are always true for well-formed databases.
2837 */
2838 #define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)
2839 
2840 /*
2841 ** Context pointer passed down through the tree-walk.
2842 */
2843 struct Walker {
2844   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2845   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2846   void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
2847   Parse *pParse;                            /* Parser context.  */
2848   int walkerDepth;                          /* Number of subqueries */
2849   union {                                   /* Extra data for callback */
2850     NameContext *pNC;                          /* Naming context */
2851     int i;                                     /* Integer value */
2852     SrcList *pSrcList;                         /* FROM clause */
2853     struct SrcCount *pSrcCount;                /* Counting column references */
2854   } u;
2855 };
2856 
2857 /* Forward declarations */
2858 int sqlite3WalkExpr(Walker*, Expr*);
2859 int sqlite3WalkExprList(Walker*, ExprList*);
2860 int sqlite3WalkSelect(Walker*, Select*);
2861 int sqlite3WalkSelectExpr(Walker*, Select*);
2862 int sqlite3WalkSelectFrom(Walker*, Select*);
2863 
2864 /*
2865 ** Return code from the parse-tree walking primitives and their
2866 ** callbacks.
2867 */
2868 #define WRC_Continue    0   /* Continue down into children */
2869 #define WRC_Prune       1   /* Omit children but continue walking siblings */
2870 #define WRC_Abort       2   /* Abandon the tree walk */
2871 
2872 /*
2873 ** An instance of this structure represents a set of one or more CTEs
2874 ** (common table expressions) created by a single WITH clause.
2875 */
2876 struct With {
2877   int nCte;                       /* Number of CTEs in the WITH clause */
2878   With *pOuter;                   /* Containing WITH clause, or NULL */
2879   struct Cte {                    /* For each CTE in the WITH clause.... */
2880     char *zName;                    /* Name of this CTE */
2881     ExprList *pCols;                /* List of explicit column names, or NULL */
2882     Select *pSelect;                /* The definition of this CTE */
2883     const char *zErr;               /* Error message for circular references */
2884   } a[1];
2885 };
2886 
2887 /*
2888 ** Assuming zIn points to the first byte of a UTF-8 character,
2889 ** advance zIn to point to the first byte of the next UTF-8 character.
2890 */
2891 #define SQLITE_SKIP_UTF8(zIn) {                        \
2892   if( (*(zIn++))>=0xc0 ){                              \
2893     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
2894   }                                                    \
2895 }
2896 
2897 /*
2898 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
2899 ** the same name but without the _BKPT suffix.  These macros invoke
2900 ** routines that report the line-number on which the error originated
2901 ** using sqlite3_log().  The routines also provide a convenient place
2902 ** to set a debugger breakpoint.
2903 */
2904 int sqlite3CorruptError(int);
2905 int sqlite3MisuseError(int);
2906 int sqlite3CantopenError(int);
2907 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
2908 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
2909 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
2910 
2911 
2912 /*
2913 ** FTS4 is really an extension for FTS3.  It is enabled using the
2914 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
2915 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
2916 */
2917 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
2918 # define SQLITE_ENABLE_FTS3
2919 #endif
2920 
2921 /*
2922 ** The ctype.h header is needed for non-ASCII systems.  It is also
2923 ** needed by FTS3 when FTS3 is included in the amalgamation.
2924 */
2925 #if !defined(SQLITE_ASCII) || \
2926     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
2927 # include <ctype.h>
2928 #endif
2929 
2930 /*
2931 ** The following macros mimic the standard library functions toupper(),
2932 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
2933 ** sqlite versions only work for ASCII characters, regardless of locale.
2934 */
2935 #ifdef SQLITE_ASCII
2936 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
2937 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
2938 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
2939 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
2940 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
2941 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
2942 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
2943 #else
2944 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
2945 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
2946 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
2947 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
2948 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
2949 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
2950 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
2951 #endif
2952 
2953 /*
2954 ** Internal function prototypes
2955 */
2956 #define sqlite3StrICmp sqlite3_stricmp
2957 int sqlite3Strlen30(const char*);
2958 #define sqlite3StrNICmp sqlite3_strnicmp
2959 
2960 int sqlite3MallocInit(void);
2961 void sqlite3MallocEnd(void);
2962 void *sqlite3Malloc(int);
2963 void *sqlite3MallocZero(int);
2964 void *sqlite3DbMallocZero(sqlite3*, int);
2965 void *sqlite3DbMallocRaw(sqlite3*, int);
2966 char *sqlite3DbStrDup(sqlite3*,const char*);
2967 char *sqlite3DbStrNDup(sqlite3*,const char*, int);
2968 void *sqlite3Realloc(void*, int);
2969 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
2970 void *sqlite3DbRealloc(sqlite3 *, void *, int);
2971 void sqlite3DbFree(sqlite3*, void*);
2972 int sqlite3MallocSize(void*);
2973 int sqlite3DbMallocSize(sqlite3*, void*);
2974 void *sqlite3ScratchMalloc(int);
2975 void sqlite3ScratchFree(void*);
2976 void *sqlite3PageMalloc(int);
2977 void sqlite3PageFree(void*);
2978 void sqlite3MemSetDefault(void);
2979 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
2980 int sqlite3HeapNearlyFull(void);
2981 
2982 /*
2983 ** On systems with ample stack space and that support alloca(), make
2984 ** use of alloca() to obtain space for large automatic objects.  By default,
2985 ** obtain space from malloc().
2986 **
2987 ** The alloca() routine never returns NULL.  This will cause code paths
2988 ** that deal with sqlite3StackAlloc() failures to be unreachable.
2989 */
2990 #ifdef SQLITE_USE_ALLOCA
2991 # define sqlite3StackAllocRaw(D,N)   alloca(N)
2992 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
2993 # define sqlite3StackFree(D,P)
2994 #else
2995 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
2996 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
2997 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
2998 #endif
2999 
3000 #ifdef SQLITE_ENABLE_MEMSYS3
3001 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
3002 #endif
3003 #ifdef SQLITE_ENABLE_MEMSYS5
3004 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
3005 #endif
3006 
3007 
3008 #ifndef SQLITE_MUTEX_OMIT
3009   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
3010   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
3011   sqlite3_mutex *sqlite3MutexAlloc(int);
3012   int sqlite3MutexInit(void);
3013   int sqlite3MutexEnd(void);
3014 #endif
3015 
3016 int sqlite3StatusValue(int);
3017 void sqlite3StatusAdd(int, int);
3018 void sqlite3StatusSet(int, int);
3019 
3020 #ifndef SQLITE_OMIT_FLOATING_POINT
3021   int sqlite3IsNaN(double);
3022 #else
3023 # define sqlite3IsNaN(X)  0
3024 #endif
3025 
3026 /*
3027 ** An instance of the following structure holds information about SQL
3028 ** functions arguments that are the parameters to the printf() function.
3029 */
3030 struct PrintfArguments {
3031   int nArg;                /* Total number of arguments */
3032   int nUsed;               /* Number of arguments used so far */
3033   sqlite3_value **apArg;   /* The argument values */
3034 };
3035 
3036 #define SQLITE_PRINTF_INTERNAL 0x01
3037 #define SQLITE_PRINTF_SQLFUNC  0x02
3038 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list);
3039 void sqlite3XPrintf(StrAccum*, u32, const char*, ...);
3040 char *sqlite3MPrintf(sqlite3*,const char*, ...);
3041 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
3042 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
3043 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
3044   void sqlite3DebugPrintf(const char*, ...);
3045 #endif
3046 #if defined(SQLITE_TEST)
3047   void *sqlite3TestTextToPtr(const char*);
3048 #endif
3049 
3050 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */
3051 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3052   void sqlite3ExplainBegin(Vdbe*);
3053   void sqlite3ExplainPrintf(Vdbe*, const char*, ...);
3054   void sqlite3ExplainNL(Vdbe*);
3055   void sqlite3ExplainPush(Vdbe*);
3056   void sqlite3ExplainPop(Vdbe*);
3057   void sqlite3ExplainFinish(Vdbe*);
3058   void sqlite3ExplainSelect(Vdbe*, Select*);
3059   void sqlite3ExplainExpr(Vdbe*, Expr*);
3060   void sqlite3ExplainExprList(Vdbe*, ExprList*);
3061   const char *sqlite3VdbeExplanation(Vdbe*);
3062 #else
3063 # define sqlite3ExplainBegin(X)
3064 # define sqlite3ExplainSelect(A,B)
3065 # define sqlite3ExplainExpr(A,B)
3066 # define sqlite3ExplainExprList(A,B)
3067 # define sqlite3ExplainFinish(X)
3068 # define sqlite3VdbeExplanation(X) 0
3069 #endif
3070 
3071 
3072 void sqlite3SetString(char **, sqlite3*, const char*, ...);
3073 void sqlite3ErrorMsg(Parse*, const char*, ...);
3074 int sqlite3Dequote(char*);
3075 int sqlite3KeywordCode(const unsigned char*, int);
3076 int sqlite3RunParser(Parse*, const char*, char **);
3077 void sqlite3FinishCoding(Parse*);
3078 int sqlite3GetTempReg(Parse*);
3079 void sqlite3ReleaseTempReg(Parse*,int);
3080 int sqlite3GetTempRange(Parse*,int);
3081 void sqlite3ReleaseTempRange(Parse*,int,int);
3082 void sqlite3ClearTempRegCache(Parse*);
3083 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
3084 Expr *sqlite3Expr(sqlite3*,int,const char*);
3085 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
3086 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
3087 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
3088 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
3089 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
3090 void sqlite3ExprDelete(sqlite3*, Expr*);
3091 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
3092 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
3093 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
3094 void sqlite3ExprListDelete(sqlite3*, ExprList*);
3095 int sqlite3Init(sqlite3*, char**);
3096 int sqlite3InitCallback(void*, int, char**, char**);
3097 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
3098 void sqlite3ResetAllSchemasOfConnection(sqlite3*);
3099 void sqlite3ResetOneSchema(sqlite3*,int);
3100 void sqlite3CollapseDatabaseArray(sqlite3*);
3101 void sqlite3BeginParse(Parse*,int);
3102 void sqlite3CommitInternalChanges(sqlite3*);
3103 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
3104 void sqlite3OpenMasterTable(Parse *, int);
3105 Index *sqlite3PrimaryKeyIndex(Table*);
3106 i16 sqlite3ColumnOfIndex(Index*, i16);
3107 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
3108 void sqlite3AddColumn(Parse*,Token*);
3109 void sqlite3AddNotNull(Parse*, int);
3110 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
3111 void sqlite3AddCheckConstraint(Parse*, Expr*);
3112 void sqlite3AddColumnType(Parse*,Token*);
3113 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
3114 void sqlite3AddCollateType(Parse*, Token*);
3115 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
3116 int sqlite3ParseUri(const char*,const char*,unsigned int*,
3117                     sqlite3_vfs**,char**,char **);
3118 Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
3119 int sqlite3CodeOnce(Parse *);
3120 
3121 #ifdef SQLITE_OMIT_BUILTIN_TEST
3122 # define sqlite3FaultSim(X) SQLITE_OK
3123 #else
3124   int sqlite3FaultSim(int);
3125 #endif
3126 
3127 Bitvec *sqlite3BitvecCreate(u32);
3128 int sqlite3BitvecTest(Bitvec*, u32);
3129 int sqlite3BitvecSet(Bitvec*, u32);
3130 void sqlite3BitvecClear(Bitvec*, u32, void*);
3131 void sqlite3BitvecDestroy(Bitvec*);
3132 u32 sqlite3BitvecSize(Bitvec*);
3133 int sqlite3BitvecBuiltinTest(int,int*);
3134 
3135 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
3136 void sqlite3RowSetClear(RowSet*);
3137 void sqlite3RowSetInsert(RowSet*, i64);
3138 int sqlite3RowSetTest(RowSet*, int iBatch, i64);
3139 int sqlite3RowSetNext(RowSet*, i64*);
3140 
3141 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
3142 
3143 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3144   int sqlite3ViewGetColumnNames(Parse*,Table*);
3145 #else
3146 # define sqlite3ViewGetColumnNames(A,B) 0
3147 #endif
3148 
3149 #if SQLITE_MAX_ATTACHED>30
3150   int sqlite3DbMaskAllZero(yDbMask);
3151 #endif
3152 void sqlite3DropTable(Parse*, SrcList*, int, int);
3153 void sqlite3CodeDropTable(Parse*, Table*, int, int);
3154 void sqlite3DeleteTable(sqlite3*, Table*);
3155 #ifndef SQLITE_OMIT_AUTOINCREMENT
3156   void sqlite3AutoincrementBegin(Parse *pParse);
3157   void sqlite3AutoincrementEnd(Parse *pParse);
3158 #else
3159 # define sqlite3AutoincrementBegin(X)
3160 # define sqlite3AutoincrementEnd(X)
3161 #endif
3162 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
3163 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
3164 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
3165 int sqlite3IdListIndex(IdList*,const char*);
3166 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
3167 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
3168 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
3169                                       Token*, Select*, Expr*, IdList*);
3170 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
3171 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
3172 void sqlite3SrcListShiftJoinType(SrcList*);
3173 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
3174 void sqlite3IdListDelete(sqlite3*, IdList*);
3175 void sqlite3SrcListDelete(sqlite3*, SrcList*);
3176 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
3177 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
3178                           Expr*, int, int);
3179 void sqlite3DropIndex(Parse*, SrcList*, int);
3180 int sqlite3Select(Parse*, Select*, SelectDest*);
3181 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
3182                          Expr*,ExprList*,u16,Expr*,Expr*);
3183 void sqlite3SelectDelete(sqlite3*, Select*);
3184 Table *sqlite3SrcListLookup(Parse*, SrcList*);
3185 int sqlite3IsReadOnly(Parse*, Table*, int);
3186 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
3187 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
3188 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
3189 #endif
3190 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
3191 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
3192 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
3193 void sqlite3WhereEnd(WhereInfo*);
3194 u64 sqlite3WhereOutputRowCount(WhereInfo*);
3195 int sqlite3WhereIsDistinct(WhereInfo*);
3196 int sqlite3WhereIsOrdered(WhereInfo*);
3197 int sqlite3WhereIsSorted(WhereInfo*);
3198 int sqlite3WhereContinueLabel(WhereInfo*);
3199 int sqlite3WhereBreakLabel(WhereInfo*);
3200 int sqlite3WhereOkOnePass(WhereInfo*, int*);
3201 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
3202 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
3203 void sqlite3ExprCodeMove(Parse*, int, int, int);
3204 void sqlite3ExprCacheStore(Parse*, int, int, int);
3205 void sqlite3ExprCachePush(Parse*);
3206 void sqlite3ExprCachePop(Parse*);
3207 void sqlite3ExprCacheRemove(Parse*, int, int);
3208 void sqlite3ExprCacheClear(Parse*);
3209 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
3210 void sqlite3ExprCode(Parse*, Expr*, int);
3211 void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
3212 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
3213 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
3214 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
3215 void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
3216 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8);
3217 #define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
3218 #define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
3219 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
3220 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
3221 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
3222 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
3223 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
3224 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
3225 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
3226 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
3227 void sqlite3Vacuum(Parse*);
3228 int sqlite3RunVacuum(char**, sqlite3*);
3229 char *sqlite3NameFromToken(sqlite3*, Token*);
3230 int sqlite3ExprCompare(Expr*, Expr*, int);
3231 int sqlite3ExprListCompare(ExprList*, ExprList*, int);
3232 int sqlite3ExprImpliesExpr(Expr*, Expr*, int);
3233 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
3234 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
3235 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
3236 Vdbe *sqlite3GetVdbe(Parse*);
3237 void sqlite3PrngSaveState(void);
3238 void sqlite3PrngRestoreState(void);
3239 void sqlite3RollbackAll(sqlite3*,int);
3240 void sqlite3CodeVerifySchema(Parse*, int);
3241 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
3242 void sqlite3BeginTransaction(Parse*, int);
3243 void sqlite3CommitTransaction(Parse*);
3244 void sqlite3RollbackTransaction(Parse*);
3245 void sqlite3Savepoint(Parse*, int, Token*);
3246 void sqlite3CloseSavepoints(sqlite3 *);
3247 void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
3248 int sqlite3ExprIsConstant(Expr*);
3249 int sqlite3ExprIsConstantNotJoin(Expr*);
3250 int sqlite3ExprIsConstantOrFunction(Expr*);
3251 int sqlite3ExprIsInteger(Expr*, int*);
3252 int sqlite3ExprCanBeNull(const Expr*);
3253 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
3254 int sqlite3IsRowid(const char*);
3255 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
3256 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
3257 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
3258 void sqlite3ResolvePartIdxLabel(Parse*,int);
3259 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
3260                                      u8,u8,int,int*);
3261 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
3262 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
3263 void sqlite3BeginWriteOperation(Parse*, int, int);
3264 void sqlite3MultiWrite(Parse*);
3265 void sqlite3MayAbort(Parse*);
3266 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
3267 void sqlite3UniqueConstraint(Parse*, int, Index*);
3268 void sqlite3RowidConstraint(Parse*, int, Table*);
3269 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
3270 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
3271 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
3272 IdList *sqlite3IdListDup(sqlite3*,IdList*);
3273 Select *sqlite3SelectDup(sqlite3*,Select*,int);
3274 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
3275 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
3276 void sqlite3RegisterBuiltinFunctions(sqlite3*);
3277 void sqlite3RegisterDateTimeFunctions(void);
3278 void sqlite3RegisterGlobalFunctions(void);
3279 int sqlite3SafetyCheckOk(sqlite3*);
3280 int sqlite3SafetyCheckSickOrOk(sqlite3*);
3281 void sqlite3ChangeCookie(Parse*, int);
3282 
3283 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
3284 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
3285 #endif
3286 
3287 #ifndef SQLITE_OMIT_TRIGGER
3288   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
3289                            Expr*,int, int);
3290   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
3291   void sqlite3DropTrigger(Parse*, SrcList*, int);
3292   void sqlite3DropTriggerPtr(Parse*, Trigger*);
3293   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
3294   Trigger *sqlite3TriggerList(Parse *, Table *);
3295   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
3296                             int, int, int);
3297   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
3298   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
3299   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
3300   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
3301   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
3302                                         Select*,u8);
3303   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
3304   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
3305   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
3306   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
3307   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
3308 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
3309 #else
3310 # define sqlite3TriggersExist(B,C,D,E,F) 0
3311 # define sqlite3DeleteTrigger(A,B)
3312 # define sqlite3DropTriggerPtr(A,B)
3313 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
3314 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
3315 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
3316 # define sqlite3TriggerList(X, Y) 0
3317 # define sqlite3ParseToplevel(p) p
3318 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
3319 #endif
3320 
3321 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
3322 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
3323 void sqlite3DeferForeignKey(Parse*, int);
3324 #ifndef SQLITE_OMIT_AUTHORIZATION
3325   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
3326   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
3327   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
3328   void sqlite3AuthContextPop(AuthContext*);
3329   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
3330 #else
3331 # define sqlite3AuthRead(a,b,c,d)
3332 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
3333 # define sqlite3AuthContextPush(a,b,c)
3334 # define sqlite3AuthContextPop(a)  ((void)(a))
3335 #endif
3336 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
3337 void sqlite3Detach(Parse*, Expr*);
3338 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
3339 int sqlite3FixSrcList(DbFixer*, SrcList*);
3340 int sqlite3FixSelect(DbFixer*, Select*);
3341 int sqlite3FixExpr(DbFixer*, Expr*);
3342 int sqlite3FixExprList(DbFixer*, ExprList*);
3343 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
3344 int sqlite3AtoF(const char *z, double*, int, u8);
3345 int sqlite3GetInt32(const char *, int*);
3346 int sqlite3Atoi(const char*);
3347 int sqlite3Utf16ByteLen(const void *pData, int nChar);
3348 int sqlite3Utf8CharLen(const char *pData, int nByte);
3349 u32 sqlite3Utf8Read(const u8**);
3350 LogEst sqlite3LogEst(u64);
3351 LogEst sqlite3LogEstAdd(LogEst,LogEst);
3352 #ifndef SQLITE_OMIT_VIRTUALTABLE
3353 LogEst sqlite3LogEstFromDouble(double);
3354 #endif
3355 u64 sqlite3LogEstToInt(LogEst);
3356 
3357 /*
3358 ** Routines to read and write variable-length integers.  These used to
3359 ** be defined locally, but now we use the varint routines in the util.c
3360 ** file.
3361 */
3362 int sqlite3PutVarint(unsigned char*, u64);
3363 u8 sqlite3GetVarint(const unsigned char *, u64 *);
3364 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
3365 int sqlite3VarintLen(u64 v);
3366 
3367 /*
3368 ** The common case is for a varint to be a single byte.  They following
3369 ** macros handle the common case without a procedure call, but then call
3370 ** the procedure for larger varints.
3371 */
3372 #define getVarint32(A,B)  \
3373   (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
3374 #define putVarint32(A,B)  \
3375   (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
3376   sqlite3PutVarint((A),(B)))
3377 #define getVarint    sqlite3GetVarint
3378 #define putVarint    sqlite3PutVarint
3379 
3380 
3381 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
3382 void sqlite3TableAffinity(Vdbe*, Table*, int);
3383 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
3384 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
3385 char sqlite3ExprAffinity(Expr *pExpr);
3386 int sqlite3Atoi64(const char*, i64*, int, u8);
3387 int sqlite3DecOrHexToI64(const char*, i64*);
3388 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
3389 void sqlite3Error(sqlite3*,int);
3390 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
3391 u8 sqlite3HexToInt(int h);
3392 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
3393 
3394 #if defined(SQLITE_TEST)
3395 const char *sqlite3ErrName(int);
3396 #endif
3397 
3398 const char *sqlite3ErrStr(int);
3399 int sqlite3ReadSchema(Parse *pParse);
3400 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
3401 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
3402 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
3403 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*);
3404 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
3405 Expr *sqlite3ExprSkipCollate(Expr*);
3406 int sqlite3CheckCollSeq(Parse *, CollSeq *);
3407 int sqlite3CheckObjectName(Parse *, const char *);
3408 void sqlite3VdbeSetChanges(sqlite3 *, int);
3409 int sqlite3AddInt64(i64*,i64);
3410 int sqlite3SubInt64(i64*,i64);
3411 int sqlite3MulInt64(i64*,i64);
3412 int sqlite3AbsInt32(int);
3413 #ifdef SQLITE_ENABLE_8_3_NAMES
3414 void sqlite3FileSuffix3(const char*, char*);
3415 #else
3416 # define sqlite3FileSuffix3(X,Y)
3417 #endif
3418 u8 sqlite3GetBoolean(const char *z,u8);
3419 
3420 const void *sqlite3ValueText(sqlite3_value*, u8);
3421 int sqlite3ValueBytes(sqlite3_value*, u8);
3422 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
3423                         void(*)(void*));
3424 void sqlite3ValueSetNull(sqlite3_value*);
3425 void sqlite3ValueFree(sqlite3_value*);
3426 sqlite3_value *sqlite3ValueNew(sqlite3 *);
3427 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
3428 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
3429 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
3430 #ifndef SQLITE_AMALGAMATION
3431 extern const unsigned char sqlite3OpcodeProperty[];
3432 extern const unsigned char sqlite3UpperToLower[];
3433 extern const unsigned char sqlite3CtypeMap[];
3434 extern const Token sqlite3IntTokens[];
3435 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
3436 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
3437 #ifndef SQLITE_OMIT_WSD
3438 extern int sqlite3PendingByte;
3439 #endif
3440 #endif
3441 void sqlite3RootPageMoved(sqlite3*, int, int, int);
3442 void sqlite3Reindex(Parse*, Token*, Token*);
3443 void sqlite3AlterFunctions(void);
3444 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
3445 int sqlite3GetToken(const unsigned char *, int *);
3446 void sqlite3NestedParse(Parse*, const char*, ...);
3447 void sqlite3ExpirePreparedStatements(sqlite3*);
3448 int sqlite3CodeSubselect(Parse *, Expr *, int, int);
3449 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
3450 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
3451 int sqlite3ResolveExprNames(NameContext*, Expr*);
3452 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
3453 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
3454 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
3455 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
3456 void sqlite3AlterFinishAddColumn(Parse *, Token *);
3457 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
3458 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
3459 char sqlite3AffinityType(const char*, u8*);
3460 void sqlite3Analyze(Parse*, Token*, Token*);
3461 int sqlite3InvokeBusyHandler(BusyHandler*);
3462 int sqlite3FindDb(sqlite3*, Token*);
3463 int sqlite3FindDbName(sqlite3 *, const char *);
3464 int sqlite3AnalysisLoad(sqlite3*,int iDB);
3465 void sqlite3DeleteIndexSamples(sqlite3*,Index*);
3466 void sqlite3DefaultRowEst(Index*);
3467 void sqlite3RegisterLikeFunctions(sqlite3*, int);
3468 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
3469 void sqlite3MinimumFileFormat(Parse*, int, int);
3470 void sqlite3SchemaClear(void *);
3471 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
3472 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
3473 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
3474 void sqlite3KeyInfoUnref(KeyInfo*);
3475 KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
3476 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
3477 #ifdef SQLITE_DEBUG
3478 int sqlite3KeyInfoIsWriteable(KeyInfo*);
3479 #endif
3480 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
3481   void (*)(sqlite3_context*,int,sqlite3_value **),
3482   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
3483   FuncDestructor *pDestructor
3484 );
3485 int sqlite3ApiExit(sqlite3 *db, int);
3486 int sqlite3OpenTempDatabase(Parse *);
3487 
3488 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
3489 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
3490 void sqlite3StrAccumAppendAll(StrAccum*,const char*);
3491 void sqlite3AppendSpace(StrAccum*,int);
3492 char *sqlite3StrAccumFinish(StrAccum*);
3493 void sqlite3StrAccumReset(StrAccum*);
3494 void sqlite3SelectDestInit(SelectDest*,int,int);
3495 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
3496 
3497 void sqlite3BackupRestart(sqlite3_backup *);
3498 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
3499 
3500 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3501 void sqlite3AnalyzeFunctions(void);
3502 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
3503 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
3504 void sqlite3Stat4ProbeFree(UnpackedRecord*);
3505 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
3506 #endif
3507 
3508 /*
3509 ** The interface to the LEMON-generated parser
3510 */
3511 void *sqlite3ParserAlloc(void*(*)(size_t));
3512 void sqlite3ParserFree(void*, void(*)(void*));
3513 void sqlite3Parser(void*, int, Token, Parse*);
3514 #ifdef YYTRACKMAXSTACKDEPTH
3515   int sqlite3ParserStackPeak(void*);
3516 #endif
3517 
3518 void sqlite3AutoLoadExtensions(sqlite3*);
3519 #ifndef SQLITE_OMIT_LOAD_EXTENSION
3520   void sqlite3CloseExtensions(sqlite3*);
3521 #else
3522 # define sqlite3CloseExtensions(X)
3523 #endif
3524 
3525 #ifndef SQLITE_OMIT_SHARED_CACHE
3526   void sqlite3TableLock(Parse *, int, int, u8, const char *);
3527 #else
3528   #define sqlite3TableLock(v,w,x,y,z)
3529 #endif
3530 
3531 #ifdef SQLITE_TEST
3532   int sqlite3Utf8To8(unsigned char*);
3533 #endif
3534 
3535 #ifdef SQLITE_OMIT_VIRTUALTABLE
3536 #  define sqlite3VtabClear(Y)
3537 #  define sqlite3VtabSync(X,Y) SQLITE_OK
3538 #  define sqlite3VtabRollback(X)
3539 #  define sqlite3VtabCommit(X)
3540 #  define sqlite3VtabInSync(db) 0
3541 #  define sqlite3VtabLock(X)
3542 #  define sqlite3VtabUnlock(X)
3543 #  define sqlite3VtabUnlockList(X)
3544 #  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
3545 #  define sqlite3GetVTable(X,Y)  ((VTable*)0)
3546 #else
3547    void sqlite3VtabClear(sqlite3 *db, Table*);
3548    void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
3549    int sqlite3VtabSync(sqlite3 *db, Vdbe*);
3550    int sqlite3VtabRollback(sqlite3 *db);
3551    int sqlite3VtabCommit(sqlite3 *db);
3552    void sqlite3VtabLock(VTable *);
3553    void sqlite3VtabUnlock(VTable *);
3554    void sqlite3VtabUnlockList(sqlite3*);
3555    int sqlite3VtabSavepoint(sqlite3 *, int, int);
3556    void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
3557    VTable *sqlite3GetVTable(sqlite3*, Table*);
3558 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
3559 #endif
3560 void sqlite3VtabMakeWritable(Parse*,Table*);
3561 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
3562 void sqlite3VtabFinishParse(Parse*, Token*);
3563 void sqlite3VtabArgInit(Parse*);
3564 void sqlite3VtabArgExtend(Parse*, Token*);
3565 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
3566 int sqlite3VtabCallConnect(Parse*, Table*);
3567 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3568 int sqlite3VtabBegin(sqlite3 *, VTable *);
3569 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3570 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3571 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
3572 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3573 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3574 void sqlite3ParserReset(Parse*);
3575 int sqlite3Reprepare(Vdbe*);
3576 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3577 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3578 int sqlite3TempInMemory(const sqlite3*);
3579 const char *sqlite3JournalModename(int);
3580 #ifndef SQLITE_OMIT_WAL
3581   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
3582   int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3583 #endif
3584 #ifndef SQLITE_OMIT_CTE
3585   With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
3586   void sqlite3WithDelete(sqlite3*,With*);
3587   void sqlite3WithPush(Parse*, With*, u8);
3588 #else
3589 #define sqlite3WithPush(x,y,z)
3590 #define sqlite3WithDelete(x,y)
3591 #endif
3592 
3593 /* Declarations for functions in fkey.c. All of these are replaced by
3594 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3595 ** key functionality is available. If OMIT_TRIGGER is defined but
3596 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3597 ** this case foreign keys are parsed, but no other functionality is
3598 ** provided (enforcement of FK constraints requires the triggers sub-system).
3599 */
3600 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3601   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
3602   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3603   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
3604   int sqlite3FkRequired(Parse*, Table*, int*, int);
3605   u32 sqlite3FkOldmask(Parse*, Table*);
3606   FKey *sqlite3FkReferences(Table *);
3607 #else
3608   #define sqlite3FkActions(a,b,c,d,e,f)
3609   #define sqlite3FkCheck(a,b,c,d,e,f)
3610   #define sqlite3FkDropTable(a,b,c)
3611   #define sqlite3FkOldmask(a,b)         0
3612   #define sqlite3FkRequired(a,b,c,d)    0
3613 #endif
3614 #ifndef SQLITE_OMIT_FOREIGN_KEY
3615   void sqlite3FkDelete(sqlite3 *, Table*);
3616   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
3617 #else
3618   #define sqlite3FkDelete(a,b)
3619   #define sqlite3FkLocateIndex(a,b,c,d,e)
3620 #endif
3621 
3622 
3623 /*
3624 ** Available fault injectors.  Should be numbered beginning with 0.
3625 */
3626 #define SQLITE_FAULTINJECTOR_MALLOC     0
3627 #define SQLITE_FAULTINJECTOR_COUNT      1
3628 
3629 /*
3630 ** The interface to the code in fault.c used for identifying "benign"
3631 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3632 ** is not defined.
3633 */
3634 #ifndef SQLITE_OMIT_BUILTIN_TEST
3635   void sqlite3BeginBenignMalloc(void);
3636   void sqlite3EndBenignMalloc(void);
3637 #else
3638   #define sqlite3BeginBenignMalloc()
3639   #define sqlite3EndBenignMalloc()
3640 #endif
3641 
3642 /*
3643 ** Allowed return values from sqlite3FindInIndex()
3644 */
3645 #define IN_INDEX_ROWID        1   /* Search the rowid of the table */
3646 #define IN_INDEX_EPH          2   /* Search an ephemeral b-tree */
3647 #define IN_INDEX_INDEX_ASC    3   /* Existing index ASCENDING */
3648 #define IN_INDEX_INDEX_DESC   4   /* Existing index DESCENDING */
3649 #define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
3650 /*
3651 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
3652 */
3653 #define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
3654 #define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
3655 #define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
3656 int sqlite3FindInIndex(Parse *, Expr *, u32, int*);
3657 
3658 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3659   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3660   int sqlite3JournalSize(sqlite3_vfs *);
3661   int sqlite3JournalCreate(sqlite3_file *);
3662   int sqlite3JournalExists(sqlite3_file *p);
3663 #else
3664   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
3665   #define sqlite3JournalExists(p) 1
3666 #endif
3667 
3668 void sqlite3MemJournalOpen(sqlite3_file *);
3669 int sqlite3MemJournalSize(void);
3670 int sqlite3IsMemJournal(sqlite3_file *);
3671 
3672 #if SQLITE_MAX_EXPR_DEPTH>0
3673   void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
3674   int sqlite3SelectExprHeight(Select *);
3675   int sqlite3ExprCheckHeight(Parse*, int);
3676 #else
3677   #define sqlite3ExprSetHeight(x,y)
3678   #define sqlite3SelectExprHeight(x) 0
3679   #define sqlite3ExprCheckHeight(x,y)
3680 #endif
3681 
3682 u32 sqlite3Get4byte(const u8*);
3683 void sqlite3Put4byte(u8*, u32);
3684 
3685 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
3686   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
3687   void sqlite3ConnectionUnlocked(sqlite3 *db);
3688   void sqlite3ConnectionClosed(sqlite3 *db);
3689 #else
3690   #define sqlite3ConnectionBlocked(x,y)
3691   #define sqlite3ConnectionUnlocked(x)
3692   #define sqlite3ConnectionClosed(x)
3693 #endif
3694 
3695 #ifdef SQLITE_DEBUG
3696   void sqlite3ParserTrace(FILE*, char *);
3697 #endif
3698 
3699 /*
3700 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
3701 ** sqlite3IoTrace is a pointer to a printf-like routine used to
3702 ** print I/O tracing messages.
3703 */
3704 #ifdef SQLITE_ENABLE_IOTRACE
3705 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3706   void sqlite3VdbeIOTraceSql(Vdbe*);
3707 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
3708 #else
3709 # define IOTRACE(A)
3710 # define sqlite3VdbeIOTraceSql(X)
3711 #endif
3712 
3713 /*
3714 ** These routines are available for the mem2.c debugging memory allocator
3715 ** only.  They are used to verify that different "types" of memory
3716 ** allocations are properly tracked by the system.
3717 **
3718 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
3719 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
3720 ** a single bit set.
3721 **
3722 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
3723 ** argument match the type set by the previous sqlite3MemdebugSetType().
3724 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
3725 **
3726 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
3727 ** argument match the type set by the previous sqlite3MemdebugSetType().
3728 **
3729 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
3730 ** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
3731 ** it might have been allocated by lookaside, except the allocation was
3732 ** too large or lookaside was already full.  It is important to verify
3733 ** that allocations that might have been satisfied by lookaside are not
3734 ** passed back to non-lookaside free() routines.  Asserts such as the
3735 ** example above are placed on the non-lookaside free() routines to verify
3736 ** this constraint.
3737 **
3738 ** All of this is no-op for a production build.  It only comes into
3739 ** play when the SQLITE_MEMDEBUG compile-time option is used.
3740 */
3741 #ifdef SQLITE_MEMDEBUG
3742   void sqlite3MemdebugSetType(void*,u8);
3743   int sqlite3MemdebugHasType(void*,u8);
3744   int sqlite3MemdebugNoType(void*,u8);
3745 #else
3746 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
3747 # define sqlite3MemdebugHasType(X,Y)  1
3748 # define sqlite3MemdebugNoType(X,Y)   1
3749 #endif
3750 #define MEMTYPE_HEAP       0x01  /* General heap allocations */
3751 #define MEMTYPE_LOOKASIDE  0x02  /* Might have been lookaside memory */
3752 #define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
3753 #define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
3754 #define MEMTYPE_DB         0x10  /* Uses sqlite3DbMalloc, not sqlite_malloc */
3755 
3756 /*
3757 ** Threading interface
3758 */
3759 #if SQLITE_MAX_WORKER_THREADS>0
3760 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
3761 int sqlite3ThreadJoin(SQLiteThread*, void**);
3762 #endif
3763 
3764 #endif /* _SQLITEINT_H_ */
3765