1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Include the header file used to customize the compiler options for MSVC. 20 ** This should be done first so that it can successfully prevent spurious 21 ** compiler warnings due to subsequent content in this file and other files 22 ** that are included by this file. 23 */ 24 #include "msvc.h" 25 26 /* 27 ** Special setup for VxWorks 28 */ 29 #include "vxworks.h" 30 31 /* 32 ** These #defines should enable >2GB file support on POSIX if the 33 ** underlying operating system supports it. If the OS lacks 34 ** large file support, or if the OS is windows, these should be no-ops. 35 ** 36 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 37 ** system #includes. Hence, this block of code must be the very first 38 ** code in all source files. 39 ** 40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 41 ** on the compiler command line. This is necessary if you are compiling 42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 43 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 44 ** without this option, LFS is enable. But LFS does not exist in the kernel 45 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 46 ** portability you should omit LFS. 47 ** 48 ** The previous paragraph was written in 2005. (This paragraph is written 49 ** on 2008-11-28.) These days, all Linux kernels support large files, so 50 ** you should probably leave LFS enabled. But some embedded platforms might 51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 52 ** 53 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 54 */ 55 #ifndef SQLITE_DISABLE_LFS 56 # define _LARGE_FILE 1 57 # ifndef _FILE_OFFSET_BITS 58 # define _FILE_OFFSET_BITS 64 59 # endif 60 # define _LARGEFILE_SOURCE 1 61 #endif 62 63 /* What version of GCC is being used. 0 means GCC is not being used */ 64 #ifdef __GNUC__ 65 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 66 #else 67 # define GCC_VERSION 0 68 #endif 69 70 /* Needed for various definitions... */ 71 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 72 # define _GNU_SOURCE 73 #endif 74 75 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 76 # define _BSD_SOURCE 77 #endif 78 79 /* 80 ** For MinGW, check to see if we can include the header file containing its 81 ** version information, among other things. Normally, this internal MinGW 82 ** header file would [only] be included automatically by other MinGW header 83 ** files; however, the contained version information is now required by this 84 ** header file to work around binary compatibility issues (see below) and 85 ** this is the only known way to reliably obtain it. This entire #if block 86 ** would be completely unnecessary if there was any other way of detecting 87 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 88 ** some MinGW-specific macros). When compiling for MinGW, either the 89 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 90 ** defined; otherwise, detection of conditions specific to MinGW will be 91 ** disabled. 92 */ 93 #if defined(_HAVE_MINGW_H) 94 # include "mingw.h" 95 #elif defined(_HAVE__MINGW_H) 96 # include "_mingw.h" 97 #endif 98 99 /* 100 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 101 ** define is required to maintain binary compatibility with the MSVC runtime 102 ** library in use (e.g. for Windows XP). 103 */ 104 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 105 defined(_WIN32) && !defined(_WIN64) && \ 106 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 107 defined(__MSVCRT__) 108 # define _USE_32BIT_TIME_T 109 #endif 110 111 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 112 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 113 ** MinGW. 114 */ 115 #include "sqlite3.h" 116 117 /* 118 ** Include the configuration header output by 'configure' if we're using the 119 ** autoconf-based build 120 */ 121 #ifdef _HAVE_SQLITE_CONFIG_H 122 #include "config.h" 123 #endif 124 125 #include "sqliteLimit.h" 126 127 /* Disable nuisance warnings on Borland compilers */ 128 #if defined(__BORLANDC__) 129 #pragma warn -rch /* unreachable code */ 130 #pragma warn -ccc /* Condition is always true or false */ 131 #pragma warn -aus /* Assigned value is never used */ 132 #pragma warn -csu /* Comparing signed and unsigned */ 133 #pragma warn -spa /* Suspicious pointer arithmetic */ 134 #endif 135 136 /* 137 ** Include standard header files as necessary 138 */ 139 #ifdef HAVE_STDINT_H 140 #include <stdint.h> 141 #endif 142 #ifdef HAVE_INTTYPES_H 143 #include <inttypes.h> 144 #endif 145 146 /* 147 ** The following macros are used to cast pointers to integers and 148 ** integers to pointers. The way you do this varies from one compiler 149 ** to the next, so we have developed the following set of #if statements 150 ** to generate appropriate macros for a wide range of compilers. 151 ** 152 ** The correct "ANSI" way to do this is to use the intptr_t type. 153 ** Unfortunately, that typedef is not available on all compilers, or 154 ** if it is available, it requires an #include of specific headers 155 ** that vary from one machine to the next. 156 ** 157 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 158 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 159 ** So we have to define the macros in different ways depending on the 160 ** compiler. 161 */ 162 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 163 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 164 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 165 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 166 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 167 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 168 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 169 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 170 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 171 #else /* Generates a warning - but it always works */ 172 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 173 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 174 #endif 175 176 /* 177 ** A macro to hint to the compiler that a function should not be 178 ** inlined. 179 */ 180 #if defined(__GNUC__) 181 # define SQLITE_NOINLINE __attribute__((noinline)) 182 #elif defined(_MSC_VER) && _MSC_VER>=1310 183 # define SQLITE_NOINLINE __declspec(noinline) 184 #else 185 # define SQLITE_NOINLINE 186 #endif 187 188 /* 189 ** Make sure that the compiler intrinsics we desire are enabled when 190 ** compiling with an appropriate version of MSVC unless prevented by 191 ** the SQLITE_DISABLE_INTRINSIC define. 192 */ 193 #if !defined(SQLITE_DISABLE_INTRINSIC) 194 # if defined(_MSC_VER) && _MSC_VER>=1300 195 # if !defined(_WIN32_WCE) 196 # include <intrin.h> 197 # pragma intrinsic(_byteswap_ushort) 198 # pragma intrinsic(_byteswap_ulong) 199 # else 200 # include <cmnintrin.h> 201 # endif 202 # endif 203 #endif 204 205 /* 206 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 207 ** 0 means mutexes are permanently disable and the library is never 208 ** threadsafe. 1 means the library is serialized which is the highest 209 ** level of threadsafety. 2 means the library is multithreaded - multiple 210 ** threads can use SQLite as long as no two threads try to use the same 211 ** database connection at the same time. 212 ** 213 ** Older versions of SQLite used an optional THREADSAFE macro. 214 ** We support that for legacy. 215 */ 216 #if !defined(SQLITE_THREADSAFE) 217 # if defined(THREADSAFE) 218 # define SQLITE_THREADSAFE THREADSAFE 219 # else 220 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 221 # endif 222 #endif 223 224 /* 225 ** Powersafe overwrite is on by default. But can be turned off using 226 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 227 */ 228 #ifndef SQLITE_POWERSAFE_OVERWRITE 229 # define SQLITE_POWERSAFE_OVERWRITE 1 230 #endif 231 232 /* 233 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 234 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 235 ** which case memory allocation statistics are disabled by default. 236 */ 237 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 238 # define SQLITE_DEFAULT_MEMSTATUS 1 239 #endif 240 241 /* 242 ** Exactly one of the following macros must be defined in order to 243 ** specify which memory allocation subsystem to use. 244 ** 245 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 246 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 247 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 248 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 249 ** 250 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 251 ** assert() macro is enabled, each call into the Win32 native heap subsystem 252 ** will cause HeapValidate to be called. If heap validation should fail, an 253 ** assertion will be triggered. 254 ** 255 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 256 ** the default. 257 */ 258 #if defined(SQLITE_SYSTEM_MALLOC) \ 259 + defined(SQLITE_WIN32_MALLOC) \ 260 + defined(SQLITE_ZERO_MALLOC) \ 261 + defined(SQLITE_MEMDEBUG)>1 262 # error "Two or more of the following compile-time configuration options\ 263 are defined but at most one is allowed:\ 264 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 265 SQLITE_ZERO_MALLOC" 266 #endif 267 #if defined(SQLITE_SYSTEM_MALLOC) \ 268 + defined(SQLITE_WIN32_MALLOC) \ 269 + defined(SQLITE_ZERO_MALLOC) \ 270 + defined(SQLITE_MEMDEBUG)==0 271 # define SQLITE_SYSTEM_MALLOC 1 272 #endif 273 274 /* 275 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 276 ** sizes of memory allocations below this value where possible. 277 */ 278 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 279 # define SQLITE_MALLOC_SOFT_LIMIT 1024 280 #endif 281 282 /* 283 ** We need to define _XOPEN_SOURCE as follows in order to enable 284 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 285 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 286 ** it. 287 */ 288 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 289 # define _XOPEN_SOURCE 600 290 #endif 291 292 /* 293 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 294 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 295 ** make it true by defining or undefining NDEBUG. 296 ** 297 ** Setting NDEBUG makes the code smaller and faster by disabling the 298 ** assert() statements in the code. So we want the default action 299 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 300 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 301 ** feature. 302 */ 303 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 304 # define NDEBUG 1 305 #endif 306 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 307 # undef NDEBUG 308 #endif 309 310 /* 311 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 312 */ 313 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 314 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 315 #endif 316 317 /* 318 ** The testcase() macro is used to aid in coverage testing. When 319 ** doing coverage testing, the condition inside the argument to 320 ** testcase() must be evaluated both true and false in order to 321 ** get full branch coverage. The testcase() macro is inserted 322 ** to help ensure adequate test coverage in places where simple 323 ** condition/decision coverage is inadequate. For example, testcase() 324 ** can be used to make sure boundary values are tested. For 325 ** bitmask tests, testcase() can be used to make sure each bit 326 ** is significant and used at least once. On switch statements 327 ** where multiple cases go to the same block of code, testcase() 328 ** can insure that all cases are evaluated. 329 ** 330 */ 331 #ifdef SQLITE_COVERAGE_TEST 332 void sqlite3Coverage(int); 333 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 334 #else 335 # define testcase(X) 336 #endif 337 338 /* 339 ** The TESTONLY macro is used to enclose variable declarations or 340 ** other bits of code that are needed to support the arguments 341 ** within testcase() and assert() macros. 342 */ 343 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 344 # define TESTONLY(X) X 345 #else 346 # define TESTONLY(X) 347 #endif 348 349 /* 350 ** Sometimes we need a small amount of code such as a variable initialization 351 ** to setup for a later assert() statement. We do not want this code to 352 ** appear when assert() is disabled. The following macro is therefore 353 ** used to contain that setup code. The "VVA" acronym stands for 354 ** "Verification, Validation, and Accreditation". In other words, the 355 ** code within VVA_ONLY() will only run during verification processes. 356 */ 357 #ifndef NDEBUG 358 # define VVA_ONLY(X) X 359 #else 360 # define VVA_ONLY(X) 361 #endif 362 363 /* 364 ** The ALWAYS and NEVER macros surround boolean expressions which 365 ** are intended to always be true or false, respectively. Such 366 ** expressions could be omitted from the code completely. But they 367 ** are included in a few cases in order to enhance the resilience 368 ** of SQLite to unexpected behavior - to make the code "self-healing" 369 ** or "ductile" rather than being "brittle" and crashing at the first 370 ** hint of unplanned behavior. 371 ** 372 ** In other words, ALWAYS and NEVER are added for defensive code. 373 ** 374 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 375 ** be true and false so that the unreachable code they specify will 376 ** not be counted as untested code. 377 */ 378 #if defined(SQLITE_COVERAGE_TEST) 379 # define ALWAYS(X) (1) 380 # define NEVER(X) (0) 381 #elif !defined(NDEBUG) 382 # define ALWAYS(X) ((X)?1:(assert(0),0)) 383 # define NEVER(X) ((X)?(assert(0),1):0) 384 #else 385 # define ALWAYS(X) (X) 386 # define NEVER(X) (X) 387 #endif 388 389 /* 390 ** Declarations used for tracing the operating system interfaces. 391 */ 392 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 393 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 394 extern int sqlite3OSTrace; 395 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 396 # define SQLITE_HAVE_OS_TRACE 397 #else 398 # define OSTRACE(X) 399 # undef SQLITE_HAVE_OS_TRACE 400 #endif 401 402 /* 403 ** Is the sqlite3ErrName() function needed in the build? Currently, 404 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 405 ** OSTRACE is enabled), and by several "test*.c" files (which are 406 ** compiled using SQLITE_TEST). 407 */ 408 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 409 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 410 # define SQLITE_NEED_ERR_NAME 411 #else 412 # undef SQLITE_NEED_ERR_NAME 413 #endif 414 415 /* 416 ** Return true (non-zero) if the input is an integer that is too large 417 ** to fit in 32-bits. This macro is used inside of various testcase() 418 ** macros to verify that we have tested SQLite for large-file support. 419 */ 420 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 421 422 /* 423 ** The macro unlikely() is a hint that surrounds a boolean 424 ** expression that is usually false. Macro likely() surrounds 425 ** a boolean expression that is usually true. These hints could, 426 ** in theory, be used by the compiler to generate better code, but 427 ** currently they are just comments for human readers. 428 */ 429 #define likely(X) (X) 430 #define unlikely(X) (X) 431 432 #include "hash.h" 433 #include "parse.h" 434 #include <stdio.h> 435 #include <stdlib.h> 436 #include <string.h> 437 #include <assert.h> 438 #include <stddef.h> 439 440 /* 441 ** If compiling for a processor that lacks floating point support, 442 ** substitute integer for floating-point 443 */ 444 #ifdef SQLITE_OMIT_FLOATING_POINT 445 # define double sqlite_int64 446 # define float sqlite_int64 447 # define LONGDOUBLE_TYPE sqlite_int64 448 # ifndef SQLITE_BIG_DBL 449 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 450 # endif 451 # define SQLITE_OMIT_DATETIME_FUNCS 1 452 # define SQLITE_OMIT_TRACE 1 453 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 454 # undef SQLITE_HAVE_ISNAN 455 #endif 456 #ifndef SQLITE_BIG_DBL 457 # define SQLITE_BIG_DBL (1e99) 458 #endif 459 460 /* 461 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 462 ** afterward. Having this macro allows us to cause the C compiler 463 ** to omit code used by TEMP tables without messy #ifndef statements. 464 */ 465 #ifdef SQLITE_OMIT_TEMPDB 466 #define OMIT_TEMPDB 1 467 #else 468 #define OMIT_TEMPDB 0 469 #endif 470 471 /* 472 ** The "file format" number is an integer that is incremented whenever 473 ** the VDBE-level file format changes. The following macros define the 474 ** the default file format for new databases and the maximum file format 475 ** that the library can read. 476 */ 477 #define SQLITE_MAX_FILE_FORMAT 4 478 #ifndef SQLITE_DEFAULT_FILE_FORMAT 479 # define SQLITE_DEFAULT_FILE_FORMAT 4 480 #endif 481 482 /* 483 ** Determine whether triggers are recursive by default. This can be 484 ** changed at run-time using a pragma. 485 */ 486 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 487 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 488 #endif 489 490 /* 491 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 492 ** on the command-line 493 */ 494 #ifndef SQLITE_TEMP_STORE 495 # define SQLITE_TEMP_STORE 1 496 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 497 #endif 498 499 /* 500 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 501 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 502 ** to zero. 503 */ 504 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 505 # undef SQLITE_MAX_WORKER_THREADS 506 # define SQLITE_MAX_WORKER_THREADS 0 507 #endif 508 #ifndef SQLITE_MAX_WORKER_THREADS 509 # define SQLITE_MAX_WORKER_THREADS 8 510 #endif 511 #ifndef SQLITE_DEFAULT_WORKER_THREADS 512 # define SQLITE_DEFAULT_WORKER_THREADS 0 513 #endif 514 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 515 # undef SQLITE_MAX_WORKER_THREADS 516 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 517 #endif 518 519 /* 520 ** The default initial allocation for the pagecache when using separate 521 ** pagecaches for each database connection. A positive number is the 522 ** number of pages. A negative number N translations means that a buffer 523 ** of -1024*N bytes is allocated and used for as many pages as it will hold. 524 */ 525 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ 526 # define SQLITE_DEFAULT_PCACHE_INITSZ 100 527 #endif 528 529 530 /* 531 ** GCC does not define the offsetof() macro so we'll have to do it 532 ** ourselves. 533 */ 534 #ifndef offsetof 535 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 536 #endif 537 538 /* 539 ** Macros to compute minimum and maximum of two numbers. 540 */ 541 #define MIN(A,B) ((A)<(B)?(A):(B)) 542 #define MAX(A,B) ((A)>(B)?(A):(B)) 543 544 /* 545 ** Swap two objects of type TYPE. 546 */ 547 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 548 549 /* 550 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 551 ** not, there are still machines out there that use EBCDIC.) 552 */ 553 #if 'A' == '\301' 554 # define SQLITE_EBCDIC 1 555 #else 556 # define SQLITE_ASCII 1 557 #endif 558 559 /* 560 ** Integers of known sizes. These typedefs might change for architectures 561 ** where the sizes very. Preprocessor macros are available so that the 562 ** types can be conveniently redefined at compile-type. Like this: 563 ** 564 ** cc '-DUINTPTR_TYPE=long long int' ... 565 */ 566 #ifndef UINT32_TYPE 567 # ifdef HAVE_UINT32_T 568 # define UINT32_TYPE uint32_t 569 # else 570 # define UINT32_TYPE unsigned int 571 # endif 572 #endif 573 #ifndef UINT16_TYPE 574 # ifdef HAVE_UINT16_T 575 # define UINT16_TYPE uint16_t 576 # else 577 # define UINT16_TYPE unsigned short int 578 # endif 579 #endif 580 #ifndef INT16_TYPE 581 # ifdef HAVE_INT16_T 582 # define INT16_TYPE int16_t 583 # else 584 # define INT16_TYPE short int 585 # endif 586 #endif 587 #ifndef UINT8_TYPE 588 # ifdef HAVE_UINT8_T 589 # define UINT8_TYPE uint8_t 590 # else 591 # define UINT8_TYPE unsigned char 592 # endif 593 #endif 594 #ifndef INT8_TYPE 595 # ifdef HAVE_INT8_T 596 # define INT8_TYPE int8_t 597 # else 598 # define INT8_TYPE signed char 599 # endif 600 #endif 601 #ifndef LONGDOUBLE_TYPE 602 # define LONGDOUBLE_TYPE long double 603 #endif 604 typedef sqlite_int64 i64; /* 8-byte signed integer */ 605 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 606 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 607 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 608 typedef INT16_TYPE i16; /* 2-byte signed integer */ 609 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 610 typedef INT8_TYPE i8; /* 1-byte signed integer */ 611 612 /* 613 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 614 ** that can be stored in a u32 without loss of data. The value 615 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 616 ** have to specify the value in the less intuitive manner shown: 617 */ 618 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 619 620 /* 621 ** The datatype used to store estimates of the number of rows in a 622 ** table or index. This is an unsigned integer type. For 99.9% of 623 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 624 ** can be used at compile-time if desired. 625 */ 626 #ifdef SQLITE_64BIT_STATS 627 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 628 #else 629 typedef u32 tRowcnt; /* 32-bit is the default */ 630 #endif 631 632 /* 633 ** Estimated quantities used for query planning are stored as 16-bit 634 ** logarithms. For quantity X, the value stored is 10*log2(X). This 635 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 636 ** But the allowed values are "grainy". Not every value is representable. 637 ** For example, quantities 16 and 17 are both represented by a LogEst 638 ** of 40. However, since LogEst quantities are suppose to be estimates, 639 ** not exact values, this imprecision is not a problem. 640 ** 641 ** "LogEst" is short for "Logarithmic Estimate". 642 ** 643 ** Examples: 644 ** 1 -> 0 20 -> 43 10000 -> 132 645 ** 2 -> 10 25 -> 46 25000 -> 146 646 ** 3 -> 16 100 -> 66 1000000 -> 199 647 ** 4 -> 20 1000 -> 99 1048576 -> 200 648 ** 10 -> 33 1024 -> 100 4294967296 -> 320 649 ** 650 ** The LogEst can be negative to indicate fractional values. 651 ** Examples: 652 ** 653 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 654 */ 655 typedef INT16_TYPE LogEst; 656 657 /* 658 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 659 */ 660 #ifndef SQLITE_PTRSIZE 661 # if defined(__SIZEOF_POINTER__) 662 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 663 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 664 defined(_M_ARM) || defined(__arm__) || defined(__x86) 665 # define SQLITE_PTRSIZE 4 666 # else 667 # define SQLITE_PTRSIZE 8 668 # endif 669 #endif 670 671 /* 672 ** Macros to determine whether the machine is big or little endian, 673 ** and whether or not that determination is run-time or compile-time. 674 ** 675 ** For best performance, an attempt is made to guess at the byte-order 676 ** using C-preprocessor macros. If that is unsuccessful, or if 677 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 678 ** at run-time. 679 */ 680 #ifdef SQLITE_AMALGAMATION 681 const int sqlite3one = 1; 682 #else 683 extern const int sqlite3one; 684 #endif 685 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 686 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 687 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 688 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 689 # define SQLITE_BYTEORDER 1234 690 # define SQLITE_BIGENDIAN 0 691 # define SQLITE_LITTLEENDIAN 1 692 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 693 #endif 694 #if (defined(sparc) || defined(__ppc__)) \ 695 && !defined(SQLITE_RUNTIME_BYTEORDER) 696 # define SQLITE_BYTEORDER 4321 697 # define SQLITE_BIGENDIAN 1 698 # define SQLITE_LITTLEENDIAN 0 699 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 700 #endif 701 #if !defined(SQLITE_BYTEORDER) 702 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 703 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 704 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 705 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 706 #endif 707 708 /* 709 ** Constants for the largest and smallest possible 64-bit signed integers. 710 ** These macros are designed to work correctly on both 32-bit and 64-bit 711 ** compilers. 712 */ 713 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 714 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 715 716 /* 717 ** Round up a number to the next larger multiple of 8. This is used 718 ** to force 8-byte alignment on 64-bit architectures. 719 */ 720 #define ROUND8(x) (((x)+7)&~7) 721 722 /* 723 ** Round down to the nearest multiple of 8 724 */ 725 #define ROUNDDOWN8(x) ((x)&~7) 726 727 /* 728 ** Assert that the pointer X is aligned to an 8-byte boundary. This 729 ** macro is used only within assert() to verify that the code gets 730 ** all alignment restrictions correct. 731 ** 732 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 733 ** underlying malloc() implementation might return us 4-byte aligned 734 ** pointers. In that case, only verify 4-byte alignment. 735 */ 736 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 737 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 738 #else 739 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 740 #endif 741 742 /* 743 ** Disable MMAP on platforms where it is known to not work 744 */ 745 #if defined(__OpenBSD__) || defined(__QNXNTO__) 746 # undef SQLITE_MAX_MMAP_SIZE 747 # define SQLITE_MAX_MMAP_SIZE 0 748 #endif 749 750 /* 751 ** Default maximum size of memory used by memory-mapped I/O in the VFS 752 */ 753 #ifdef __APPLE__ 754 # include <TargetConditionals.h> 755 # if TARGET_OS_IPHONE 756 # undef SQLITE_MAX_MMAP_SIZE 757 # define SQLITE_MAX_MMAP_SIZE 0 758 # endif 759 #endif 760 #ifndef SQLITE_MAX_MMAP_SIZE 761 # if defined(__linux__) \ 762 || defined(_WIN32) \ 763 || (defined(__APPLE__) && defined(__MACH__)) \ 764 || defined(__sun) \ 765 || defined(__FreeBSD__) \ 766 || defined(__DragonFly__) 767 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 768 # else 769 # define SQLITE_MAX_MMAP_SIZE 0 770 # endif 771 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 772 #endif 773 774 /* 775 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 776 ** default MMAP_SIZE is specified at compile-time, make sure that it does 777 ** not exceed the maximum mmap size. 778 */ 779 #ifndef SQLITE_DEFAULT_MMAP_SIZE 780 # define SQLITE_DEFAULT_MMAP_SIZE 0 781 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 782 #endif 783 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 784 # undef SQLITE_DEFAULT_MMAP_SIZE 785 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 786 #endif 787 788 /* 789 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 790 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 791 ** define SQLITE_ENABLE_STAT3_OR_STAT4 792 */ 793 #ifdef SQLITE_ENABLE_STAT4 794 # undef SQLITE_ENABLE_STAT3 795 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 796 #elif SQLITE_ENABLE_STAT3 797 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 798 #elif SQLITE_ENABLE_STAT3_OR_STAT4 799 # undef SQLITE_ENABLE_STAT3_OR_STAT4 800 #endif 801 802 /* 803 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 804 ** the Select query generator tracing logic is turned on. 805 */ 806 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 807 # define SELECTTRACE_ENABLED 1 808 #else 809 # define SELECTTRACE_ENABLED 0 810 #endif 811 812 /* 813 ** An instance of the following structure is used to store the busy-handler 814 ** callback for a given sqlite handle. 815 ** 816 ** The sqlite.busyHandler member of the sqlite struct contains the busy 817 ** callback for the database handle. Each pager opened via the sqlite 818 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 819 ** callback is currently invoked only from within pager.c. 820 */ 821 typedef struct BusyHandler BusyHandler; 822 struct BusyHandler { 823 int (*xFunc)(void *,int); /* The busy callback */ 824 void *pArg; /* First arg to busy callback */ 825 int nBusy; /* Incremented with each busy call */ 826 }; 827 828 /* 829 ** Name of the master database table. The master database table 830 ** is a special table that holds the names and attributes of all 831 ** user tables and indices. 832 */ 833 #define MASTER_NAME "sqlite_master" 834 #define TEMP_MASTER_NAME "sqlite_temp_master" 835 836 /* 837 ** The root-page of the master database table. 838 */ 839 #define MASTER_ROOT 1 840 841 /* 842 ** The name of the schema table. 843 */ 844 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 845 846 /* 847 ** A convenience macro that returns the number of elements in 848 ** an array. 849 */ 850 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 851 852 /* 853 ** Determine if the argument is a power of two 854 */ 855 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 856 857 /* 858 ** The following value as a destructor means to use sqlite3DbFree(). 859 ** The sqlite3DbFree() routine requires two parameters instead of the 860 ** one parameter that destructors normally want. So we have to introduce 861 ** this magic value that the code knows to handle differently. Any 862 ** pointer will work here as long as it is distinct from SQLITE_STATIC 863 ** and SQLITE_TRANSIENT. 864 */ 865 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 866 867 /* 868 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 869 ** not support Writable Static Data (WSD) such as global and static variables. 870 ** All variables must either be on the stack or dynamically allocated from 871 ** the heap. When WSD is unsupported, the variable declarations scattered 872 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 873 ** macro is used for this purpose. And instead of referencing the variable 874 ** directly, we use its constant as a key to lookup the run-time allocated 875 ** buffer that holds real variable. The constant is also the initializer 876 ** for the run-time allocated buffer. 877 ** 878 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 879 ** macros become no-ops and have zero performance impact. 880 */ 881 #ifdef SQLITE_OMIT_WSD 882 #define SQLITE_WSD const 883 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 884 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 885 int sqlite3_wsd_init(int N, int J); 886 void *sqlite3_wsd_find(void *K, int L); 887 #else 888 #define SQLITE_WSD 889 #define GLOBAL(t,v) v 890 #define sqlite3GlobalConfig sqlite3Config 891 #endif 892 893 /* 894 ** The following macros are used to suppress compiler warnings and to 895 ** make it clear to human readers when a function parameter is deliberately 896 ** left unused within the body of a function. This usually happens when 897 ** a function is called via a function pointer. For example the 898 ** implementation of an SQL aggregate step callback may not use the 899 ** parameter indicating the number of arguments passed to the aggregate, 900 ** if it knows that this is enforced elsewhere. 901 ** 902 ** When a function parameter is not used at all within the body of a function, 903 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 904 ** However, these macros may also be used to suppress warnings related to 905 ** parameters that may or may not be used depending on compilation options. 906 ** For example those parameters only used in assert() statements. In these 907 ** cases the parameters are named as per the usual conventions. 908 */ 909 #define UNUSED_PARAMETER(x) (void)(x) 910 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 911 912 /* 913 ** Forward references to structures 914 */ 915 typedef struct AggInfo AggInfo; 916 typedef struct AuthContext AuthContext; 917 typedef struct AutoincInfo AutoincInfo; 918 typedef struct Bitvec Bitvec; 919 typedef struct CollSeq CollSeq; 920 typedef struct Column Column; 921 typedef struct Db Db; 922 typedef struct Schema Schema; 923 typedef struct Expr Expr; 924 typedef struct ExprList ExprList; 925 typedef struct ExprSpan ExprSpan; 926 typedef struct FKey FKey; 927 typedef struct FuncDestructor FuncDestructor; 928 typedef struct FuncDef FuncDef; 929 typedef struct FuncDefHash FuncDefHash; 930 typedef struct IdList IdList; 931 typedef struct Index Index; 932 typedef struct IndexSample IndexSample; 933 typedef struct KeyClass KeyClass; 934 typedef struct KeyInfo KeyInfo; 935 typedef struct Lookaside Lookaside; 936 typedef struct LookasideSlot LookasideSlot; 937 typedef struct Module Module; 938 typedef struct NameContext NameContext; 939 typedef struct Parse Parse; 940 typedef struct PrintfArguments PrintfArguments; 941 typedef struct RowSet RowSet; 942 typedef struct Savepoint Savepoint; 943 typedef struct Select Select; 944 typedef struct SQLiteThread SQLiteThread; 945 typedef struct SelectDest SelectDest; 946 typedef struct SrcList SrcList; 947 typedef struct StrAccum StrAccum; 948 typedef struct Table Table; 949 typedef struct TableLock TableLock; 950 typedef struct Token Token; 951 typedef struct TreeView TreeView; 952 typedef struct Trigger Trigger; 953 typedef struct TriggerPrg TriggerPrg; 954 typedef struct TriggerStep TriggerStep; 955 typedef struct UnpackedRecord UnpackedRecord; 956 typedef struct VTable VTable; 957 typedef struct VtabCtx VtabCtx; 958 typedef struct Walker Walker; 959 typedef struct WhereInfo WhereInfo; 960 typedef struct With With; 961 962 /* 963 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 964 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 965 ** pointer types (i.e. FuncDef) defined above. 966 */ 967 #include "btree.h" 968 #include "vdbe.h" 969 #include "pager.h" 970 #include "pcache.h" 971 972 #include "os.h" 973 #include "mutex.h" 974 975 976 /* 977 ** Each database file to be accessed by the system is an instance 978 ** of the following structure. There are normally two of these structures 979 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 980 ** aDb[1] is the database file used to hold temporary tables. Additional 981 ** databases may be attached. 982 */ 983 struct Db { 984 char *zName; /* Name of this database */ 985 Btree *pBt; /* The B*Tree structure for this database file */ 986 u8 safety_level; /* How aggressive at syncing data to disk */ 987 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 988 }; 989 990 /* 991 ** An instance of the following structure stores a database schema. 992 ** 993 ** Most Schema objects are associated with a Btree. The exception is 994 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 995 ** In shared cache mode, a single Schema object can be shared by multiple 996 ** Btrees that refer to the same underlying BtShared object. 997 ** 998 ** Schema objects are automatically deallocated when the last Btree that 999 ** references them is destroyed. The TEMP Schema is manually freed by 1000 ** sqlite3_close(). 1001 * 1002 ** A thread must be holding a mutex on the corresponding Btree in order 1003 ** to access Schema content. This implies that the thread must also be 1004 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 1005 ** For a TEMP Schema, only the connection mutex is required. 1006 */ 1007 struct Schema { 1008 int schema_cookie; /* Database schema version number for this file */ 1009 int iGeneration; /* Generation counter. Incremented with each change */ 1010 Hash tblHash; /* All tables indexed by name */ 1011 Hash idxHash; /* All (named) indices indexed by name */ 1012 Hash trigHash; /* All triggers indexed by name */ 1013 Hash fkeyHash; /* All foreign keys by referenced table name */ 1014 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 1015 u8 file_format; /* Schema format version for this file */ 1016 u8 enc; /* Text encoding used by this database */ 1017 u16 schemaFlags; /* Flags associated with this schema */ 1018 int cache_size; /* Number of pages to use in the cache */ 1019 }; 1020 1021 /* 1022 ** These macros can be used to test, set, or clear bits in the 1023 ** Db.pSchema->flags field. 1024 */ 1025 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 1026 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 1027 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 1028 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 1029 1030 /* 1031 ** Allowed values for the DB.pSchema->flags field. 1032 ** 1033 ** The DB_SchemaLoaded flag is set after the database schema has been 1034 ** read into internal hash tables. 1035 ** 1036 ** DB_UnresetViews means that one or more views have column names that 1037 ** have been filled out. If the schema changes, these column names might 1038 ** changes and so the view will need to be reset. 1039 */ 1040 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1041 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1042 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1043 1044 /* 1045 ** The number of different kinds of things that can be limited 1046 ** using the sqlite3_limit() interface. 1047 */ 1048 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1049 1050 /* 1051 ** Lookaside malloc is a set of fixed-size buffers that can be used 1052 ** to satisfy small transient memory allocation requests for objects 1053 ** associated with a particular database connection. The use of 1054 ** lookaside malloc provides a significant performance enhancement 1055 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1056 ** SQL statements. 1057 ** 1058 ** The Lookaside structure holds configuration information about the 1059 ** lookaside malloc subsystem. Each available memory allocation in 1060 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1061 ** objects. 1062 ** 1063 ** Lookaside allocations are only allowed for objects that are associated 1064 ** with a particular database connection. Hence, schema information cannot 1065 ** be stored in lookaside because in shared cache mode the schema information 1066 ** is shared by multiple database connections. Therefore, while parsing 1067 ** schema information, the Lookaside.bEnabled flag is cleared so that 1068 ** lookaside allocations are not used to construct the schema objects. 1069 */ 1070 struct Lookaside { 1071 u16 sz; /* Size of each buffer in bytes */ 1072 u8 bEnabled; /* False to disable new lookaside allocations */ 1073 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1074 int nOut; /* Number of buffers currently checked out */ 1075 int mxOut; /* Highwater mark for nOut */ 1076 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1077 LookasideSlot *pFree; /* List of available buffers */ 1078 void *pStart; /* First byte of available memory space */ 1079 void *pEnd; /* First byte past end of available space */ 1080 }; 1081 struct LookasideSlot { 1082 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1083 }; 1084 1085 /* 1086 ** A hash table for function definitions. 1087 ** 1088 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1089 ** Collisions are on the FuncDef.pHash chain. 1090 */ 1091 struct FuncDefHash { 1092 FuncDef *a[23]; /* Hash table for functions */ 1093 }; 1094 1095 #ifdef SQLITE_USER_AUTHENTICATION 1096 /* 1097 ** Information held in the "sqlite3" database connection object and used 1098 ** to manage user authentication. 1099 */ 1100 typedef struct sqlite3_userauth sqlite3_userauth; 1101 struct sqlite3_userauth { 1102 u8 authLevel; /* Current authentication level */ 1103 int nAuthPW; /* Size of the zAuthPW in bytes */ 1104 char *zAuthPW; /* Password used to authenticate */ 1105 char *zAuthUser; /* User name used to authenticate */ 1106 }; 1107 1108 /* Allowed values for sqlite3_userauth.authLevel */ 1109 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1110 #define UAUTH_Fail 1 /* User authentication failed */ 1111 #define UAUTH_User 2 /* Authenticated as a normal user */ 1112 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1113 1114 /* Functions used only by user authorization logic */ 1115 int sqlite3UserAuthTable(const char*); 1116 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1117 void sqlite3UserAuthInit(sqlite3*); 1118 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1119 1120 #endif /* SQLITE_USER_AUTHENTICATION */ 1121 1122 /* 1123 ** typedef for the authorization callback function. 1124 */ 1125 #ifdef SQLITE_USER_AUTHENTICATION 1126 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1127 const char*, const char*); 1128 #else 1129 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1130 const char*); 1131 #endif 1132 1133 1134 /* 1135 ** Each database connection is an instance of the following structure. 1136 */ 1137 struct sqlite3 { 1138 sqlite3_vfs *pVfs; /* OS Interface */ 1139 struct Vdbe *pVdbe; /* List of active virtual machines */ 1140 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1141 sqlite3_mutex *mutex; /* Connection mutex */ 1142 Db *aDb; /* All backends */ 1143 int nDb; /* Number of backends currently in use */ 1144 int flags; /* Miscellaneous flags. See below */ 1145 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1146 i64 szMmap; /* Default mmap_size setting */ 1147 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1148 int errCode; /* Most recent error code (SQLITE_*) */ 1149 int errMask; /* & result codes with this before returning */ 1150 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1151 u8 enc; /* Text encoding */ 1152 u8 autoCommit; /* The auto-commit flag. */ 1153 u8 temp_store; /* 1: file 2: memory 0: default */ 1154 u8 mallocFailed; /* True if we have seen a malloc failure */ 1155 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1156 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1157 u8 suppressErr; /* Do not issue error messages if true */ 1158 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1159 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1160 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1161 u32 magic; /* Magic number for detect library misuse */ 1162 int nChange; /* Value returned by sqlite3_changes() */ 1163 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1164 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1165 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1166 struct sqlite3InitInfo { /* Information used during initialization */ 1167 int newTnum; /* Rootpage of table being initialized */ 1168 u8 iDb; /* Which db file is being initialized */ 1169 u8 busy; /* TRUE if currently initializing */ 1170 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1171 u8 imposterTable; /* Building an imposter table */ 1172 } init; 1173 int nVdbeActive; /* Number of VDBEs currently running */ 1174 int nVdbeRead; /* Number of active VDBEs that read or write */ 1175 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1176 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1177 int nVDestroy; /* Number of active OP_VDestroy operations */ 1178 int nExtension; /* Number of loaded extensions */ 1179 void **aExtension; /* Array of shared library handles */ 1180 void (*xTrace)(void*,const char*); /* Trace function */ 1181 void *pTraceArg; /* Argument to the trace function */ 1182 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1183 void *pProfileArg; /* Argument to profile function */ 1184 void *pCommitArg; /* Argument to xCommitCallback() */ 1185 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1186 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1187 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1188 void *pUpdateArg; 1189 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1190 #ifndef SQLITE_OMIT_WAL 1191 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1192 void *pWalArg; 1193 #endif 1194 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1195 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1196 void *pCollNeededArg; 1197 sqlite3_value *pErr; /* Most recent error message */ 1198 union { 1199 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1200 double notUsed1; /* Spacer */ 1201 } u1; 1202 Lookaside lookaside; /* Lookaside malloc configuration */ 1203 #ifndef SQLITE_OMIT_AUTHORIZATION 1204 sqlite3_xauth xAuth; /* Access authorization function */ 1205 void *pAuthArg; /* 1st argument to the access auth function */ 1206 #endif 1207 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1208 int (*xProgress)(void *); /* The progress callback */ 1209 void *pProgressArg; /* Argument to the progress callback */ 1210 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1211 #endif 1212 #ifndef SQLITE_OMIT_VIRTUALTABLE 1213 int nVTrans; /* Allocated size of aVTrans */ 1214 Hash aModule; /* populated by sqlite3_create_module() */ 1215 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1216 VTable **aVTrans; /* Virtual tables with open transactions */ 1217 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1218 #endif 1219 FuncDefHash aFunc; /* Hash table of connection functions */ 1220 Hash aCollSeq; /* All collating sequences */ 1221 BusyHandler busyHandler; /* Busy callback */ 1222 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1223 Savepoint *pSavepoint; /* List of active savepoints */ 1224 int busyTimeout; /* Busy handler timeout, in msec */ 1225 int nSavepoint; /* Number of non-transaction savepoints */ 1226 int nStatement; /* Number of nested statement-transactions */ 1227 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1228 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1229 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1230 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1231 /* The following variables are all protected by the STATIC_MASTER 1232 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1233 ** 1234 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1235 ** unlock so that it can proceed. 1236 ** 1237 ** When X.pBlockingConnection==Y, that means that something that X tried 1238 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1239 ** held by Y. 1240 */ 1241 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1242 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1243 void *pUnlockArg; /* Argument to xUnlockNotify */ 1244 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1245 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1246 #endif 1247 #ifdef SQLITE_USER_AUTHENTICATION 1248 sqlite3_userauth auth; /* User authentication information */ 1249 #endif 1250 }; 1251 1252 /* 1253 ** A macro to discover the encoding of a database. 1254 */ 1255 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1256 #define ENC(db) ((db)->enc) 1257 1258 /* 1259 ** Possible values for the sqlite3.flags. 1260 */ 1261 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1262 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1263 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1264 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1265 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1266 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1267 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1268 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1269 /* DELETE, or UPDATE and return */ 1270 /* the count using a callback. */ 1271 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1272 /* result set is empty */ 1273 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1274 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1275 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1276 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1277 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1278 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1279 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1280 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1281 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1282 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1283 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1284 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1285 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1286 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1287 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1288 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1289 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1290 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1291 #define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */ 1292 #define SQLITE_CellSizeCk 0x10000000 /* Check btree cell sizes on load */ 1293 1294 1295 /* 1296 ** Bits of the sqlite3.dbOptFlags field that are used by the 1297 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1298 ** selectively disable various optimizations. 1299 */ 1300 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1301 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1302 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1303 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1304 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1305 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1306 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1307 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1308 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1309 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1310 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1311 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1312 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1313 1314 /* 1315 ** Macros for testing whether or not optimizations are enabled or disabled. 1316 */ 1317 #ifndef SQLITE_OMIT_BUILTIN_TEST 1318 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1319 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1320 #else 1321 #define OptimizationDisabled(db, mask) 0 1322 #define OptimizationEnabled(db, mask) 1 1323 #endif 1324 1325 /* 1326 ** Return true if it OK to factor constant expressions into the initialization 1327 ** code. The argument is a Parse object for the code generator. 1328 */ 1329 #define ConstFactorOk(P) ((P)->okConstFactor) 1330 1331 /* 1332 ** Possible values for the sqlite.magic field. 1333 ** The numbers are obtained at random and have no special meaning, other 1334 ** than being distinct from one another. 1335 */ 1336 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1337 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1338 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1339 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1340 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1341 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1342 1343 /* 1344 ** Each SQL function is defined by an instance of the following 1345 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1346 ** hash table. When multiple functions have the same name, the hash table 1347 ** points to a linked list of these structures. 1348 */ 1349 struct FuncDef { 1350 i16 nArg; /* Number of arguments. -1 means unlimited */ 1351 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1352 void *pUserData; /* User data parameter */ 1353 FuncDef *pNext; /* Next function with same name */ 1354 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1355 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1356 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1357 char *zName; /* SQL name of the function. */ 1358 FuncDef *pHash; /* Next with a different name but the same hash */ 1359 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1360 }; 1361 1362 /* 1363 ** This structure encapsulates a user-function destructor callback (as 1364 ** configured using create_function_v2()) and a reference counter. When 1365 ** create_function_v2() is called to create a function with a destructor, 1366 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1367 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1368 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1369 ** member of each of the new FuncDef objects is set to point to the allocated 1370 ** FuncDestructor. 1371 ** 1372 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1373 ** count on this object is decremented. When it reaches 0, the destructor 1374 ** is invoked and the FuncDestructor structure freed. 1375 */ 1376 struct FuncDestructor { 1377 int nRef; 1378 void (*xDestroy)(void *); 1379 void *pUserData; 1380 }; 1381 1382 /* 1383 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1384 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1385 ** are assert() statements in the code to verify this. 1386 */ 1387 #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1388 #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ 1389 #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ 1390 #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ 1391 #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ 1392 #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ 1393 #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ 1394 #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ 1395 #define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */ 1396 #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ 1397 #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ 1398 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1399 #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a 1400 ** single query - might change over time */ 1401 1402 /* 1403 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1404 ** used to create the initializers for the FuncDef structures. 1405 ** 1406 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1407 ** Used to create a scalar function definition of a function zName 1408 ** implemented by C function xFunc that accepts nArg arguments. The 1409 ** value passed as iArg is cast to a (void*) and made available 1410 ** as the user-data (sqlite3_user_data()) for the function. If 1411 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1412 ** 1413 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1414 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1415 ** 1416 ** DFUNCTION(zName, nArg, iArg, bNC, xFunc) 1417 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and 1418 ** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions 1419 ** and functions like sqlite_version() that can change, but not during 1420 ** a single query. 1421 ** 1422 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1423 ** Used to create an aggregate function definition implemented by 1424 ** the C functions xStep and xFinal. The first four parameters 1425 ** are interpreted in the same way as the first 4 parameters to 1426 ** FUNCTION(). 1427 ** 1428 ** LIKEFUNC(zName, nArg, pArg, flags) 1429 ** Used to create a scalar function definition of a function zName 1430 ** that accepts nArg arguments and is implemented by a call to C 1431 ** function likeFunc. Argument pArg is cast to a (void *) and made 1432 ** available as the function user-data (sqlite3_user_data()). The 1433 ** FuncDef.flags variable is set to the value passed as the flags 1434 ** parameter. 1435 */ 1436 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1437 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1438 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1439 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1440 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1441 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1442 #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1443 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1444 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1445 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1446 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1447 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1448 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1449 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1450 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1451 #define LIKEFUNC(zName, nArg, arg, flags) \ 1452 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1453 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1454 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1455 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1456 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1457 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1458 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1459 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1460 1461 /* 1462 ** All current savepoints are stored in a linked list starting at 1463 ** sqlite3.pSavepoint. The first element in the list is the most recently 1464 ** opened savepoint. Savepoints are added to the list by the vdbe 1465 ** OP_Savepoint instruction. 1466 */ 1467 struct Savepoint { 1468 char *zName; /* Savepoint name (nul-terminated) */ 1469 i64 nDeferredCons; /* Number of deferred fk violations */ 1470 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1471 Savepoint *pNext; /* Parent savepoint (if any) */ 1472 }; 1473 1474 /* 1475 ** The following are used as the second parameter to sqlite3Savepoint(), 1476 ** and as the P1 argument to the OP_Savepoint instruction. 1477 */ 1478 #define SAVEPOINT_BEGIN 0 1479 #define SAVEPOINT_RELEASE 1 1480 #define SAVEPOINT_ROLLBACK 2 1481 1482 1483 /* 1484 ** Each SQLite module (virtual table definition) is defined by an 1485 ** instance of the following structure, stored in the sqlite3.aModule 1486 ** hash table. 1487 */ 1488 struct Module { 1489 const sqlite3_module *pModule; /* Callback pointers */ 1490 const char *zName; /* Name passed to create_module() */ 1491 void *pAux; /* pAux passed to create_module() */ 1492 void (*xDestroy)(void *); /* Module destructor function */ 1493 Table *pEpoTab; /* Eponymous table for this module */ 1494 }; 1495 1496 /* 1497 ** information about each column of an SQL table is held in an instance 1498 ** of this structure. 1499 */ 1500 struct Column { 1501 char *zName; /* Name of this column */ 1502 Expr *pDflt; /* Default value of this column */ 1503 char *zDflt; /* Original text of the default value */ 1504 char *zType; /* Data type for this column */ 1505 char *zColl; /* Collating sequence. If NULL, use the default */ 1506 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1507 char affinity; /* One of the SQLITE_AFF_... values */ 1508 u8 szEst; /* Estimated size of this column. INT==1 */ 1509 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1510 }; 1511 1512 /* Allowed values for Column.colFlags: 1513 */ 1514 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1515 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1516 1517 /* 1518 ** A "Collating Sequence" is defined by an instance of the following 1519 ** structure. Conceptually, a collating sequence consists of a name and 1520 ** a comparison routine that defines the order of that sequence. 1521 ** 1522 ** If CollSeq.xCmp is NULL, it means that the 1523 ** collating sequence is undefined. Indices built on an undefined 1524 ** collating sequence may not be read or written. 1525 */ 1526 struct CollSeq { 1527 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1528 u8 enc; /* Text encoding handled by xCmp() */ 1529 void *pUser; /* First argument to xCmp() */ 1530 int (*xCmp)(void*,int, const void*, int, const void*); 1531 void (*xDel)(void*); /* Destructor for pUser */ 1532 }; 1533 1534 /* 1535 ** A sort order can be either ASC or DESC. 1536 */ 1537 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1538 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1539 #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */ 1540 1541 /* 1542 ** Column affinity types. 1543 ** 1544 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1545 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1546 ** the speed a little by numbering the values consecutively. 1547 ** 1548 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1549 ** when multiple affinity types are concatenated into a string and 1550 ** used as the P4 operand, they will be more readable. 1551 ** 1552 ** Note also that the numeric types are grouped together so that testing 1553 ** for a numeric type is a single comparison. And the BLOB type is first. 1554 */ 1555 #define SQLITE_AFF_BLOB 'A' 1556 #define SQLITE_AFF_TEXT 'B' 1557 #define SQLITE_AFF_NUMERIC 'C' 1558 #define SQLITE_AFF_INTEGER 'D' 1559 #define SQLITE_AFF_REAL 'E' 1560 1561 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1562 1563 /* 1564 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1565 ** affinity value. 1566 */ 1567 #define SQLITE_AFF_MASK 0x47 1568 1569 /* 1570 ** Additional bit values that can be ORed with an affinity without 1571 ** changing the affinity. 1572 ** 1573 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1574 ** It causes an assert() to fire if either operand to a comparison 1575 ** operator is NULL. It is added to certain comparison operators to 1576 ** prove that the operands are always NOT NULL. 1577 */ 1578 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1579 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1580 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1581 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1582 1583 /* 1584 ** An object of this type is created for each virtual table present in 1585 ** the database schema. 1586 ** 1587 ** If the database schema is shared, then there is one instance of this 1588 ** structure for each database connection (sqlite3*) that uses the shared 1589 ** schema. This is because each database connection requires its own unique 1590 ** instance of the sqlite3_vtab* handle used to access the virtual table 1591 ** implementation. sqlite3_vtab* handles can not be shared between 1592 ** database connections, even when the rest of the in-memory database 1593 ** schema is shared, as the implementation often stores the database 1594 ** connection handle passed to it via the xConnect() or xCreate() method 1595 ** during initialization internally. This database connection handle may 1596 ** then be used by the virtual table implementation to access real tables 1597 ** within the database. So that they appear as part of the callers 1598 ** transaction, these accesses need to be made via the same database 1599 ** connection as that used to execute SQL operations on the virtual table. 1600 ** 1601 ** All VTable objects that correspond to a single table in a shared 1602 ** database schema are initially stored in a linked-list pointed to by 1603 ** the Table.pVTable member variable of the corresponding Table object. 1604 ** When an sqlite3_prepare() operation is required to access the virtual 1605 ** table, it searches the list for the VTable that corresponds to the 1606 ** database connection doing the preparing so as to use the correct 1607 ** sqlite3_vtab* handle in the compiled query. 1608 ** 1609 ** When an in-memory Table object is deleted (for example when the 1610 ** schema is being reloaded for some reason), the VTable objects are not 1611 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1612 ** immediately. Instead, they are moved from the Table.pVTable list to 1613 ** another linked list headed by the sqlite3.pDisconnect member of the 1614 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1615 ** next time a statement is prepared using said sqlite3*. This is done 1616 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1617 ** Refer to comments above function sqlite3VtabUnlockList() for an 1618 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1619 ** list without holding the corresponding sqlite3.mutex mutex. 1620 ** 1621 ** The memory for objects of this type is always allocated by 1622 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1623 ** the first argument. 1624 */ 1625 struct VTable { 1626 sqlite3 *db; /* Database connection associated with this table */ 1627 Module *pMod; /* Pointer to module implementation */ 1628 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1629 int nRef; /* Number of pointers to this structure */ 1630 u8 bConstraint; /* True if constraints are supported */ 1631 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1632 VTable *pNext; /* Next in linked list (see above) */ 1633 }; 1634 1635 /* 1636 ** The schema for each SQL table and view is represented in memory 1637 ** by an instance of the following structure. 1638 */ 1639 struct Table { 1640 char *zName; /* Name of the table or view */ 1641 Column *aCol; /* Information about each column */ 1642 Index *pIndex; /* List of SQL indexes on this table. */ 1643 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1644 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1645 char *zColAff; /* String defining the affinity of each column */ 1646 ExprList *pCheck; /* All CHECK constraints */ 1647 /* ... also used as column name list in a VIEW */ 1648 int tnum; /* Root BTree page for this table */ 1649 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1650 i16 nCol; /* Number of columns in this table */ 1651 u16 nRef; /* Number of pointers to this Table */ 1652 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1653 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1654 #ifdef SQLITE_ENABLE_COSTMULT 1655 LogEst costMult; /* Cost multiplier for using this table */ 1656 #endif 1657 u8 tabFlags; /* Mask of TF_* values */ 1658 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1659 #ifndef SQLITE_OMIT_ALTERTABLE 1660 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1661 #endif 1662 #ifndef SQLITE_OMIT_VIRTUALTABLE 1663 int nModuleArg; /* Number of arguments to the module */ 1664 char **azModuleArg; /* 0: module 1: schema 2: vtab name 3...: args */ 1665 VTable *pVTable; /* List of VTable objects. */ 1666 #endif 1667 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1668 Schema *pSchema; /* Schema that contains this table */ 1669 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1670 }; 1671 1672 /* 1673 ** Allowed values for Table.tabFlags. 1674 ** 1675 ** TF_OOOHidden applies to virtual tables that have hidden columns that are 1676 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1677 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1678 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1679 ** special handling during INSERT processing. 1680 */ 1681 #define TF_Readonly 0x01 /* Read-only system table */ 1682 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1683 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1684 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1685 #define TF_Virtual 0x10 /* Is a virtual table */ 1686 #define TF_WithoutRowid 0x20 /* No rowid. PRIMARY KEY is the key */ 1687 #define TF_NoVisibleRowid 0x40 /* No user-visible "rowid" column */ 1688 #define TF_OOOHidden 0x80 /* Out-of-Order hidden columns */ 1689 1690 1691 /* 1692 ** Test to see whether or not a table is a virtual table. This is 1693 ** done as a macro so that it will be optimized out when virtual 1694 ** table support is omitted from the build. 1695 */ 1696 #ifndef SQLITE_OMIT_VIRTUALTABLE 1697 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1698 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1699 #else 1700 # define IsVirtual(X) 0 1701 # define IsHiddenColumn(X) 0 1702 #endif 1703 1704 /* Does the table have a rowid */ 1705 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1706 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 1707 1708 /* 1709 ** Each foreign key constraint is an instance of the following structure. 1710 ** 1711 ** A foreign key is associated with two tables. The "from" table is 1712 ** the table that contains the REFERENCES clause that creates the foreign 1713 ** key. The "to" table is the table that is named in the REFERENCES clause. 1714 ** Consider this example: 1715 ** 1716 ** CREATE TABLE ex1( 1717 ** a INTEGER PRIMARY KEY, 1718 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1719 ** ); 1720 ** 1721 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1722 ** Equivalent names: 1723 ** 1724 ** from-table == child-table 1725 ** to-table == parent-table 1726 ** 1727 ** Each REFERENCES clause generates an instance of the following structure 1728 ** which is attached to the from-table. The to-table need not exist when 1729 ** the from-table is created. The existence of the to-table is not checked. 1730 ** 1731 ** The list of all parents for child Table X is held at X.pFKey. 1732 ** 1733 ** A list of all children for a table named Z (which might not even exist) 1734 ** is held in Schema.fkeyHash with a hash key of Z. 1735 */ 1736 struct FKey { 1737 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1738 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1739 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1740 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1741 FKey *pPrevTo; /* Previous with the same zTo */ 1742 int nCol; /* Number of columns in this key */ 1743 /* EV: R-30323-21917 */ 1744 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1745 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1746 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1747 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1748 int iFrom; /* Index of column in pFrom */ 1749 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1750 } aCol[1]; /* One entry for each of nCol columns */ 1751 }; 1752 1753 /* 1754 ** SQLite supports many different ways to resolve a constraint 1755 ** error. ROLLBACK processing means that a constraint violation 1756 ** causes the operation in process to fail and for the current transaction 1757 ** to be rolled back. ABORT processing means the operation in process 1758 ** fails and any prior changes from that one operation are backed out, 1759 ** but the transaction is not rolled back. FAIL processing means that 1760 ** the operation in progress stops and returns an error code. But prior 1761 ** changes due to the same operation are not backed out and no rollback 1762 ** occurs. IGNORE means that the particular row that caused the constraint 1763 ** error is not inserted or updated. Processing continues and no error 1764 ** is returned. REPLACE means that preexisting database rows that caused 1765 ** a UNIQUE constraint violation are removed so that the new insert or 1766 ** update can proceed. Processing continues and no error is reported. 1767 ** 1768 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1769 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1770 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1771 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1772 ** referenced table row is propagated into the row that holds the 1773 ** foreign key. 1774 ** 1775 ** The following symbolic values are used to record which type 1776 ** of action to take. 1777 */ 1778 #define OE_None 0 /* There is no constraint to check */ 1779 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1780 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1781 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1782 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1783 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1784 1785 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1786 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1787 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1788 #define OE_Cascade 9 /* Cascade the changes */ 1789 1790 #define OE_Default 10 /* Do whatever the default action is */ 1791 1792 1793 /* 1794 ** An instance of the following structure is passed as the first 1795 ** argument to sqlite3VdbeKeyCompare and is used to control the 1796 ** comparison of the two index keys. 1797 ** 1798 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1799 ** are nField slots for the columns of an index then one extra slot 1800 ** for the rowid at the end. 1801 */ 1802 struct KeyInfo { 1803 u32 nRef; /* Number of references to this KeyInfo object */ 1804 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1805 u16 nField; /* Number of key columns in the index */ 1806 u16 nXField; /* Number of columns beyond the key columns */ 1807 sqlite3 *db; /* The database connection */ 1808 u8 *aSortOrder; /* Sort order for each column. */ 1809 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1810 }; 1811 1812 /* 1813 ** An instance of the following structure holds information about a 1814 ** single index record that has already been parsed out into individual 1815 ** values. 1816 ** 1817 ** A record is an object that contains one or more fields of data. 1818 ** Records are used to store the content of a table row and to store 1819 ** the key of an index. A blob encoding of a record is created by 1820 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1821 ** OP_Column opcode. 1822 ** 1823 ** This structure holds a record that has already been disassembled 1824 ** into its constituent fields. 1825 ** 1826 ** The r1 and r2 member variables are only used by the optimized comparison 1827 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). 1828 */ 1829 struct UnpackedRecord { 1830 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1831 u16 nField; /* Number of entries in apMem[] */ 1832 i8 default_rc; /* Comparison result if keys are equal */ 1833 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1834 Mem *aMem; /* Values */ 1835 int r1; /* Value to return if (lhs > rhs) */ 1836 int r2; /* Value to return if (rhs < lhs) */ 1837 }; 1838 1839 1840 /* 1841 ** Each SQL index is represented in memory by an 1842 ** instance of the following structure. 1843 ** 1844 ** The columns of the table that are to be indexed are described 1845 ** by the aiColumn[] field of this structure. For example, suppose 1846 ** we have the following table and index: 1847 ** 1848 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1849 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1850 ** 1851 ** In the Table structure describing Ex1, nCol==3 because there are 1852 ** three columns in the table. In the Index structure describing 1853 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1854 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1855 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1856 ** The second column to be indexed (c1) has an index of 0 in 1857 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1858 ** 1859 ** The Index.onError field determines whether or not the indexed columns 1860 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1861 ** it means this is not a unique index. Otherwise it is a unique index 1862 ** and the value of Index.onError indicate the which conflict resolution 1863 ** algorithm to employ whenever an attempt is made to insert a non-unique 1864 ** element. 1865 ** 1866 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 1867 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 1868 ** table as part of parsing an existing database schema), transient instances 1869 ** of this structure may be created. In this case the Index.tnum variable is 1870 ** used to store the address of a VDBE instruction, not a database page 1871 ** number (it cannot - the database page is not allocated until the VDBE 1872 ** program is executed). See convertToWithoutRowidTable() for details. 1873 */ 1874 struct Index { 1875 char *zName; /* Name of this index */ 1876 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1877 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1878 Table *pTable; /* The SQL table being indexed */ 1879 char *zColAff; /* String defining the affinity of each column */ 1880 Index *pNext; /* The next index associated with the same table */ 1881 Schema *pSchema; /* Schema containing this index */ 1882 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1883 char **azColl; /* Array of collation sequence names for index */ 1884 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1885 ExprList *aColExpr; /* Column expressions */ 1886 int tnum; /* DB Page containing root of this index */ 1887 LogEst szIdxRow; /* Estimated average row size in bytes */ 1888 u16 nKeyCol; /* Number of columns forming the key */ 1889 u16 nColumn; /* Number of columns stored in the index */ 1890 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1891 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1892 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1893 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1894 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1895 unsigned isCovering:1; /* True if this is a covering index */ 1896 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1897 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1898 int nSample; /* Number of elements in aSample[] */ 1899 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1900 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1901 IndexSample *aSample; /* Samples of the left-most key */ 1902 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1903 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1904 #endif 1905 }; 1906 1907 /* 1908 ** Allowed values for Index.idxType 1909 */ 1910 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1911 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1912 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1913 1914 /* Return true if index X is a PRIMARY KEY index */ 1915 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1916 1917 /* Return true if index X is a UNIQUE index */ 1918 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1919 1920 /* 1921 ** Each sample stored in the sqlite_stat3 table is represented in memory 1922 ** using a structure of this type. See documentation at the top of the 1923 ** analyze.c source file for additional information. 1924 */ 1925 struct IndexSample { 1926 void *p; /* Pointer to sampled record */ 1927 int n; /* Size of record in bytes */ 1928 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1929 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1930 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1931 }; 1932 1933 /* 1934 ** Each token coming out of the lexer is an instance of 1935 ** this structure. Tokens are also used as part of an expression. 1936 ** 1937 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1938 ** may contain random values. Do not make any assumptions about Token.dyn 1939 ** and Token.n when Token.z==0. 1940 */ 1941 struct Token { 1942 const char *z; /* Text of the token. Not NULL-terminated! */ 1943 unsigned int n; /* Number of characters in this token */ 1944 }; 1945 1946 /* 1947 ** An instance of this structure contains information needed to generate 1948 ** code for a SELECT that contains aggregate functions. 1949 ** 1950 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1951 ** pointer to this structure. The Expr.iColumn field is the index in 1952 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1953 ** code for that node. 1954 ** 1955 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1956 ** original Select structure that describes the SELECT statement. These 1957 ** fields do not need to be freed when deallocating the AggInfo structure. 1958 */ 1959 struct AggInfo { 1960 u8 directMode; /* Direct rendering mode means take data directly 1961 ** from source tables rather than from accumulators */ 1962 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1963 ** than the source table */ 1964 int sortingIdx; /* Cursor number of the sorting index */ 1965 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1966 int nSortingColumn; /* Number of columns in the sorting index */ 1967 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1968 ExprList *pGroupBy; /* The group by clause */ 1969 struct AggInfo_col { /* For each column used in source tables */ 1970 Table *pTab; /* Source table */ 1971 int iTable; /* Cursor number of the source table */ 1972 int iColumn; /* Column number within the source table */ 1973 int iSorterColumn; /* Column number in the sorting index */ 1974 int iMem; /* Memory location that acts as accumulator */ 1975 Expr *pExpr; /* The original expression */ 1976 } *aCol; 1977 int nColumn; /* Number of used entries in aCol[] */ 1978 int nAccumulator; /* Number of columns that show through to the output. 1979 ** Additional columns are used only as parameters to 1980 ** aggregate functions */ 1981 struct AggInfo_func { /* For each aggregate function */ 1982 Expr *pExpr; /* Expression encoding the function */ 1983 FuncDef *pFunc; /* The aggregate function implementation */ 1984 int iMem; /* Memory location that acts as accumulator */ 1985 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1986 } *aFunc; 1987 int nFunc; /* Number of entries in aFunc[] */ 1988 }; 1989 1990 /* 1991 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1992 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1993 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1994 ** it uses less memory in the Expr object, which is a big memory user 1995 ** in systems with lots of prepared statements. And few applications 1996 ** need more than about 10 or 20 variables. But some extreme users want 1997 ** to have prepared statements with over 32767 variables, and for them 1998 ** the option is available (at compile-time). 1999 */ 2000 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 2001 typedef i16 ynVar; 2002 #else 2003 typedef int ynVar; 2004 #endif 2005 2006 /* 2007 ** Each node of an expression in the parse tree is an instance 2008 ** of this structure. 2009 ** 2010 ** Expr.op is the opcode. The integer parser token codes are reused 2011 ** as opcodes here. For example, the parser defines TK_GE to be an integer 2012 ** code representing the ">=" operator. This same integer code is reused 2013 ** to represent the greater-than-or-equal-to operator in the expression 2014 ** tree. 2015 ** 2016 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 2017 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 2018 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 2019 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 2020 ** then Expr.token contains the name of the function. 2021 ** 2022 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 2023 ** binary operator. Either or both may be NULL. 2024 ** 2025 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 2026 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 2027 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 2028 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 2029 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 2030 ** valid. 2031 ** 2032 ** An expression of the form ID or ID.ID refers to a column in a table. 2033 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 2034 ** the integer cursor number of a VDBE cursor pointing to that table and 2035 ** Expr.iColumn is the column number for the specific column. If the 2036 ** expression is used as a result in an aggregate SELECT, then the 2037 ** value is also stored in the Expr.iAgg column in the aggregate so that 2038 ** it can be accessed after all aggregates are computed. 2039 ** 2040 ** If the expression is an unbound variable marker (a question mark 2041 ** character '?' in the original SQL) then the Expr.iTable holds the index 2042 ** number for that variable. 2043 ** 2044 ** If the expression is a subquery then Expr.iColumn holds an integer 2045 ** register number containing the result of the subquery. If the 2046 ** subquery gives a constant result, then iTable is -1. If the subquery 2047 ** gives a different answer at different times during statement processing 2048 ** then iTable is the address of a subroutine that computes the subquery. 2049 ** 2050 ** If the Expr is of type OP_Column, and the table it is selecting from 2051 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 2052 ** corresponding table definition. 2053 ** 2054 ** ALLOCATION NOTES: 2055 ** 2056 ** Expr objects can use a lot of memory space in database schema. To 2057 ** help reduce memory requirements, sometimes an Expr object will be 2058 ** truncated. And to reduce the number of memory allocations, sometimes 2059 ** two or more Expr objects will be stored in a single memory allocation, 2060 ** together with Expr.zToken strings. 2061 ** 2062 ** If the EP_Reduced and EP_TokenOnly flags are set when 2063 ** an Expr object is truncated. When EP_Reduced is set, then all 2064 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2065 ** are contained within the same memory allocation. Note, however, that 2066 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2067 ** allocated, regardless of whether or not EP_Reduced is set. 2068 */ 2069 struct Expr { 2070 u8 op; /* Operation performed by this node */ 2071 char affinity; /* The affinity of the column or 0 if not a column */ 2072 u32 flags; /* Various flags. EP_* See below */ 2073 union { 2074 char *zToken; /* Token value. Zero terminated and dequoted */ 2075 int iValue; /* Non-negative integer value if EP_IntValue */ 2076 } u; 2077 2078 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2079 ** space is allocated for the fields below this point. An attempt to 2080 ** access them will result in a segfault or malfunction. 2081 *********************************************************************/ 2082 2083 Expr *pLeft; /* Left subnode */ 2084 Expr *pRight; /* Right subnode */ 2085 union { 2086 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2087 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2088 } x; 2089 2090 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2091 ** space is allocated for the fields below this point. An attempt to 2092 ** access them will result in a segfault or malfunction. 2093 *********************************************************************/ 2094 2095 #if SQLITE_MAX_EXPR_DEPTH>0 2096 int nHeight; /* Height of the tree headed by this node */ 2097 #endif 2098 int iTable; /* TK_COLUMN: cursor number of table holding column 2099 ** TK_REGISTER: register number 2100 ** TK_TRIGGER: 1 -> new, 0 -> old 2101 ** EP_Unlikely: 134217728 times likelihood */ 2102 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2103 ** TK_VARIABLE: variable number (always >= 1). */ 2104 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2105 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2106 u8 op2; /* TK_REGISTER: original value of Expr.op 2107 ** TK_COLUMN: the value of p5 for OP_Column 2108 ** TK_AGG_FUNCTION: nesting depth */ 2109 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2110 Table *pTab; /* Table for TK_COLUMN expressions. */ 2111 }; 2112 2113 /* 2114 ** The following are the meanings of bits in the Expr.flags field. 2115 */ 2116 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2117 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2118 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2119 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2120 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2121 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2122 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2123 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2124 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2125 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2126 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2127 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2128 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2129 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2130 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2131 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2132 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2133 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2134 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2135 #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ 2136 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2137 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2138 2139 /* 2140 ** Combinations of two or more EP_* flags 2141 */ 2142 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2143 2144 /* 2145 ** These macros can be used to test, set, or clear bits in the 2146 ** Expr.flags field. 2147 */ 2148 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2149 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2150 #define ExprSetProperty(E,P) (E)->flags|=(P) 2151 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2152 2153 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2154 ** and Accreditation only. It works like ExprSetProperty() during VVA 2155 ** processes but is a no-op for delivery. 2156 */ 2157 #ifdef SQLITE_DEBUG 2158 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2159 #else 2160 # define ExprSetVVAProperty(E,P) 2161 #endif 2162 2163 /* 2164 ** Macros to determine the number of bytes required by a normal Expr 2165 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2166 ** and an Expr struct with the EP_TokenOnly flag set. 2167 */ 2168 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2169 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2170 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2171 2172 /* 2173 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2174 ** above sqlite3ExprDup() for details. 2175 */ 2176 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2177 2178 /* 2179 ** A list of expressions. Each expression may optionally have a 2180 ** name. An expr/name combination can be used in several ways, such 2181 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2182 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2183 ** also be used as the argument to a function, in which case the a.zName 2184 ** field is not used. 2185 ** 2186 ** By default the Expr.zSpan field holds a human-readable description of 2187 ** the expression that is used in the generation of error messages and 2188 ** column labels. In this case, Expr.zSpan is typically the text of a 2189 ** column expression as it exists in a SELECT statement. However, if 2190 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2191 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2192 ** form is used for name resolution with nested FROM clauses. 2193 */ 2194 struct ExprList { 2195 int nExpr; /* Number of expressions on the list */ 2196 struct ExprList_item { /* For each expression in the list */ 2197 Expr *pExpr; /* The list of expressions */ 2198 char *zName; /* Token associated with this expression */ 2199 char *zSpan; /* Original text of the expression */ 2200 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2201 unsigned done :1; /* A flag to indicate when processing is finished */ 2202 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2203 unsigned reusable :1; /* Constant expression is reusable */ 2204 union { 2205 struct { 2206 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2207 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2208 } x; 2209 int iConstExprReg; /* Register in which Expr value is cached */ 2210 } u; 2211 } *a; /* Alloc a power of two greater or equal to nExpr */ 2212 }; 2213 2214 /* 2215 ** An instance of this structure is used by the parser to record both 2216 ** the parse tree for an expression and the span of input text for an 2217 ** expression. 2218 */ 2219 struct ExprSpan { 2220 Expr *pExpr; /* The expression parse tree */ 2221 const char *zStart; /* First character of input text */ 2222 const char *zEnd; /* One character past the end of input text */ 2223 }; 2224 2225 /* 2226 ** An instance of this structure can hold a simple list of identifiers, 2227 ** such as the list "a,b,c" in the following statements: 2228 ** 2229 ** INSERT INTO t(a,b,c) VALUES ...; 2230 ** CREATE INDEX idx ON t(a,b,c); 2231 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2232 ** 2233 ** The IdList.a.idx field is used when the IdList represents the list of 2234 ** column names after a table name in an INSERT statement. In the statement 2235 ** 2236 ** INSERT INTO t(a,b,c) ... 2237 ** 2238 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2239 */ 2240 struct IdList { 2241 struct IdList_item { 2242 char *zName; /* Name of the identifier */ 2243 int idx; /* Index in some Table.aCol[] of a column named zName */ 2244 } *a; 2245 int nId; /* Number of identifiers on the list */ 2246 }; 2247 2248 /* 2249 ** The bitmask datatype defined below is used for various optimizations. 2250 ** 2251 ** Changing this from a 64-bit to a 32-bit type limits the number of 2252 ** tables in a join to 32 instead of 64. But it also reduces the size 2253 ** of the library by 738 bytes on ix86. 2254 */ 2255 typedef u64 Bitmask; 2256 2257 /* 2258 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2259 */ 2260 #define BMS ((int)(sizeof(Bitmask)*8)) 2261 2262 /* 2263 ** A bit in a Bitmask 2264 */ 2265 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2266 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2267 2268 /* 2269 ** The following structure describes the FROM clause of a SELECT statement. 2270 ** Each table or subquery in the FROM clause is a separate element of 2271 ** the SrcList.a[] array. 2272 ** 2273 ** With the addition of multiple database support, the following structure 2274 ** can also be used to describe a particular table such as the table that 2275 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2276 ** such a table must be a simple name: ID. But in SQLite, the table can 2277 ** now be identified by a database name, a dot, then the table name: ID.ID. 2278 ** 2279 ** The jointype starts out showing the join type between the current table 2280 ** and the next table on the list. The parser builds the list this way. 2281 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2282 ** jointype expresses the join between the table and the previous table. 2283 ** 2284 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2285 ** contains more than 63 columns and the 64-th or later column is used. 2286 */ 2287 struct SrcList { 2288 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2289 u32 nAlloc; /* Number of entries allocated in a[] below */ 2290 struct SrcList_item { 2291 Schema *pSchema; /* Schema to which this item is fixed */ 2292 char *zDatabase; /* Name of database holding this table */ 2293 char *zName; /* Name of the table */ 2294 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2295 Table *pTab; /* An SQL table corresponding to zName */ 2296 Select *pSelect; /* A SELECT statement used in place of a table name */ 2297 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2298 int regReturn; /* Register holding return address of addrFillSub */ 2299 int regResult; /* Registers holding results of a co-routine */ 2300 struct { 2301 u8 jointype; /* Type of join between this able and the previous */ 2302 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2303 unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ 2304 unsigned isTabFunc :1; /* True if table-valued-function syntax */ 2305 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2306 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2307 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2308 } fg; 2309 #ifndef SQLITE_OMIT_EXPLAIN 2310 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2311 #endif 2312 int iCursor; /* The VDBE cursor number used to access this table */ 2313 Expr *pOn; /* The ON clause of a join */ 2314 IdList *pUsing; /* The USING clause of a join */ 2315 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2316 union { 2317 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 2318 ExprList *pFuncArg; /* Arguments to table-valued-function */ 2319 } u1; 2320 Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */ 2321 } a[1]; /* One entry for each identifier on the list */ 2322 }; 2323 2324 /* 2325 ** Permitted values of the SrcList.a.jointype field 2326 */ 2327 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2328 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2329 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2330 #define JT_LEFT 0x0008 /* Left outer join */ 2331 #define JT_RIGHT 0x0010 /* Right outer join */ 2332 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2333 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2334 2335 2336 /* 2337 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2338 ** and the WhereInfo.wctrlFlags member. 2339 */ 2340 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2341 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2342 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2343 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2344 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2345 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2346 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2347 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2348 #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ 2349 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2350 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2351 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2352 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2353 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2354 2355 /* Allowed return values from sqlite3WhereIsDistinct() 2356 */ 2357 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2358 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2359 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2360 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2361 2362 /* 2363 ** A NameContext defines a context in which to resolve table and column 2364 ** names. The context consists of a list of tables (the pSrcList) field and 2365 ** a list of named expression (pEList). The named expression list may 2366 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2367 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2368 ** pEList corresponds to the result set of a SELECT and is NULL for 2369 ** other statements. 2370 ** 2371 ** NameContexts can be nested. When resolving names, the inner-most 2372 ** context is searched first. If no match is found, the next outer 2373 ** context is checked. If there is still no match, the next context 2374 ** is checked. This process continues until either a match is found 2375 ** or all contexts are check. When a match is found, the nRef member of 2376 ** the context containing the match is incremented. 2377 ** 2378 ** Each subquery gets a new NameContext. The pNext field points to the 2379 ** NameContext in the parent query. Thus the process of scanning the 2380 ** NameContext list corresponds to searching through successively outer 2381 ** subqueries looking for a match. 2382 */ 2383 struct NameContext { 2384 Parse *pParse; /* The parser */ 2385 SrcList *pSrcList; /* One or more tables used to resolve names */ 2386 ExprList *pEList; /* Optional list of result-set columns */ 2387 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2388 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2389 int nRef; /* Number of names resolved by this context */ 2390 int nErr; /* Number of errors encountered while resolving names */ 2391 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2392 }; 2393 2394 /* 2395 ** Allowed values for the NameContext, ncFlags field. 2396 ** 2397 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2398 ** SQLITE_FUNC_MINMAX. 2399 ** 2400 */ 2401 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2402 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2403 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2404 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2405 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2406 #define NC_IdxExpr 0x0020 /* True if resolving columns of CREATE INDEX */ 2407 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2408 2409 /* 2410 ** An instance of the following structure contains all information 2411 ** needed to generate code for a single SELECT statement. 2412 ** 2413 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2414 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2415 ** limit and nOffset to the value of the offset (or 0 if there is not 2416 ** offset). But later on, nLimit and nOffset become the memory locations 2417 ** in the VDBE that record the limit and offset counters. 2418 ** 2419 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2420 ** These addresses must be stored so that we can go back and fill in 2421 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2422 ** the number of columns in P2 can be computed at the same time 2423 ** as the OP_OpenEphm instruction is coded because not 2424 ** enough information about the compound query is known at that point. 2425 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2426 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2427 ** sequences for the ORDER BY clause. 2428 */ 2429 struct Select { 2430 ExprList *pEList; /* The fields of the result */ 2431 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2432 u16 selFlags; /* Various SF_* values */ 2433 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2434 #if SELECTTRACE_ENABLED 2435 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2436 #endif 2437 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2438 u64 nSelectRow; /* Estimated number of result rows */ 2439 SrcList *pSrc; /* The FROM clause */ 2440 Expr *pWhere; /* The WHERE clause */ 2441 ExprList *pGroupBy; /* The GROUP BY clause */ 2442 Expr *pHaving; /* The HAVING clause */ 2443 ExprList *pOrderBy; /* The ORDER BY clause */ 2444 Select *pPrior; /* Prior select in a compound select statement */ 2445 Select *pNext; /* Next select to the left in a compound */ 2446 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2447 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2448 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2449 }; 2450 2451 /* 2452 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2453 ** "Select Flag". 2454 */ 2455 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2456 #define SF_All 0x0002 /* Includes the ALL keyword */ 2457 #define SF_Resolved 0x0004 /* Identifiers have been resolved */ 2458 #define SF_Aggregate 0x0008 /* Contains aggregate functions */ 2459 #define SF_UsesEphemeral 0x0010 /* Uses the OpenEphemeral opcode */ 2460 #define SF_Expanded 0x0020 /* sqlite3SelectExpand() called on this */ 2461 #define SF_HasTypeInfo 0x0040 /* FROM subqueries have Table metadata */ 2462 #define SF_Compound 0x0080 /* Part of a compound query */ 2463 #define SF_Values 0x0100 /* Synthesized from VALUES clause */ 2464 #define SF_MultiValue 0x0200 /* Single VALUES term with multiple rows */ 2465 #define SF_NestedFrom 0x0400 /* Part of a parenthesized FROM clause */ 2466 #define SF_MaybeConvert 0x0800 /* Need convertCompoundSelectToSubquery() */ 2467 #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ 2468 #define SF_Recursive 0x2000 /* The recursive part of a recursive CTE */ 2469 #define SF_Converted 0x4000 /* By convertCompoundSelectToSubquery() */ 2470 2471 2472 /* 2473 ** The results of a SELECT can be distributed in several ways, as defined 2474 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2475 ** Type". 2476 ** 2477 ** SRT_Union Store results as a key in a temporary index 2478 ** identified by pDest->iSDParm. 2479 ** 2480 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2481 ** 2482 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2483 ** set is not empty. 2484 ** 2485 ** SRT_Discard Throw the results away. This is used by SELECT 2486 ** statements within triggers whose only purpose is 2487 ** the side-effects of functions. 2488 ** 2489 ** All of the above are free to ignore their ORDER BY clause. Those that 2490 ** follow must honor the ORDER BY clause. 2491 ** 2492 ** SRT_Output Generate a row of output (using the OP_ResultRow 2493 ** opcode) for each row in the result set. 2494 ** 2495 ** SRT_Mem Only valid if the result is a single column. 2496 ** Store the first column of the first result row 2497 ** in register pDest->iSDParm then abandon the rest 2498 ** of the query. This destination implies "LIMIT 1". 2499 ** 2500 ** SRT_Set The result must be a single column. Store each 2501 ** row of result as the key in table pDest->iSDParm. 2502 ** Apply the affinity pDest->affSdst before storing 2503 ** results. Used to implement "IN (SELECT ...)". 2504 ** 2505 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2506 ** the result there. The cursor is left open after 2507 ** returning. This is like SRT_Table except that 2508 ** this destination uses OP_OpenEphemeral to create 2509 ** the table first. 2510 ** 2511 ** SRT_Coroutine Generate a co-routine that returns a new row of 2512 ** results each time it is invoked. The entry point 2513 ** of the co-routine is stored in register pDest->iSDParm 2514 ** and the result row is stored in pDest->nDest registers 2515 ** starting with pDest->iSdst. 2516 ** 2517 ** SRT_Table Store results in temporary table pDest->iSDParm. 2518 ** SRT_Fifo This is like SRT_EphemTab except that the table 2519 ** is assumed to already be open. SRT_Fifo has 2520 ** the additional property of being able to ignore 2521 ** the ORDER BY clause. 2522 ** 2523 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2524 ** But also use temporary table pDest->iSDParm+1 as 2525 ** a record of all prior results and ignore any duplicate 2526 ** rows. Name means: "Distinct Fifo". 2527 ** 2528 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2529 ** an index). Append a sequence number so that all entries 2530 ** are distinct. 2531 ** 2532 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2533 ** the same record has never been stored before. The 2534 ** index at pDest->iSDParm+1 hold all prior stores. 2535 */ 2536 #define SRT_Union 1 /* Store result as keys in an index */ 2537 #define SRT_Except 2 /* Remove result from a UNION index */ 2538 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2539 #define SRT_Discard 4 /* Do not save the results anywhere */ 2540 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2541 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2542 #define SRT_Queue 7 /* Store result in an queue */ 2543 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2544 2545 /* The ORDER BY clause is ignored for all of the above */ 2546 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2547 2548 #define SRT_Output 9 /* Output each row of result */ 2549 #define SRT_Mem 10 /* Store result in a memory cell */ 2550 #define SRT_Set 11 /* Store results as keys in an index */ 2551 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2552 #define SRT_Coroutine 13 /* Generate a single row of result */ 2553 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2554 2555 /* 2556 ** An instance of this object describes where to put of the results of 2557 ** a SELECT statement. 2558 */ 2559 struct SelectDest { 2560 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2561 char affSdst; /* Affinity used when eDest==SRT_Set */ 2562 int iSDParm; /* A parameter used by the eDest disposal method */ 2563 int iSdst; /* Base register where results are written */ 2564 int nSdst; /* Number of registers allocated */ 2565 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2566 }; 2567 2568 /* 2569 ** During code generation of statements that do inserts into AUTOINCREMENT 2570 ** tables, the following information is attached to the Table.u.autoInc.p 2571 ** pointer of each autoincrement table to record some side information that 2572 ** the code generator needs. We have to keep per-table autoincrement 2573 ** information in case inserts are down within triggers. Triggers do not 2574 ** normally coordinate their activities, but we do need to coordinate the 2575 ** loading and saving of autoincrement information. 2576 */ 2577 struct AutoincInfo { 2578 AutoincInfo *pNext; /* Next info block in a list of them all */ 2579 Table *pTab; /* Table this info block refers to */ 2580 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2581 int regCtr; /* Memory register holding the rowid counter */ 2582 }; 2583 2584 /* 2585 ** Size of the column cache 2586 */ 2587 #ifndef SQLITE_N_COLCACHE 2588 # define SQLITE_N_COLCACHE 10 2589 #endif 2590 2591 /* 2592 ** At least one instance of the following structure is created for each 2593 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2594 ** statement. All such objects are stored in the linked list headed at 2595 ** Parse.pTriggerPrg and deleted once statement compilation has been 2596 ** completed. 2597 ** 2598 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2599 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2600 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2601 ** The Parse.pTriggerPrg list never contains two entries with the same 2602 ** values for both pTrigger and orconf. 2603 ** 2604 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2605 ** accessed (or set to 0 for triggers fired as a result of INSERT 2606 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2607 ** a mask of new.* columns used by the program. 2608 */ 2609 struct TriggerPrg { 2610 Trigger *pTrigger; /* Trigger this program was coded from */ 2611 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2612 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2613 int orconf; /* Default ON CONFLICT policy */ 2614 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2615 }; 2616 2617 /* 2618 ** The yDbMask datatype for the bitmask of all attached databases. 2619 */ 2620 #if SQLITE_MAX_ATTACHED>30 2621 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2622 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2623 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2624 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2625 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2626 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2627 #else 2628 typedef unsigned int yDbMask; 2629 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2630 # define DbMaskZero(M) (M)=0 2631 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2632 # define DbMaskAllZero(M) (M)==0 2633 # define DbMaskNonZero(M) (M)!=0 2634 #endif 2635 2636 /* 2637 ** An SQL parser context. A copy of this structure is passed through 2638 ** the parser and down into all the parser action routine in order to 2639 ** carry around information that is global to the entire parse. 2640 ** 2641 ** The structure is divided into two parts. When the parser and code 2642 ** generate call themselves recursively, the first part of the structure 2643 ** is constant but the second part is reset at the beginning and end of 2644 ** each recursion. 2645 ** 2646 ** The nTableLock and aTableLock variables are only used if the shared-cache 2647 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2648 ** used to store the set of table-locks required by the statement being 2649 ** compiled. Function sqlite3TableLock() is used to add entries to the 2650 ** list. 2651 */ 2652 struct Parse { 2653 sqlite3 *db; /* The main database structure */ 2654 char *zErrMsg; /* An error message */ 2655 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2656 int rc; /* Return code from execution */ 2657 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2658 u8 checkSchema; /* Causes schema cookie check after an error */ 2659 u8 nested; /* Number of nested calls to the parser/code generator */ 2660 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2661 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2662 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2663 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2664 u8 okConstFactor; /* OK to factor out constants */ 2665 int aTempReg[8]; /* Holding area for temporary registers */ 2666 int nRangeReg; /* Size of the temporary register block */ 2667 int iRangeReg; /* First register in temporary register block */ 2668 int nErr; /* Number of errors seen */ 2669 int nTab; /* Number of previously allocated VDBE cursors */ 2670 int nMem; /* Number of memory cells used so far */ 2671 int nSet; /* Number of sets used so far */ 2672 int nOnce; /* Number of OP_Once instructions so far */ 2673 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2674 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2675 int ckBase; /* Base register of data during check constraints */ 2676 int iSelfTab; /* Table of an index whose exprs are being coded */ 2677 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2678 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2679 int nLabel; /* Number of labels used */ 2680 int *aLabel; /* Space to hold the labels */ 2681 struct yColCache { 2682 int iTable; /* Table cursor number */ 2683 i16 iColumn; /* Table column number */ 2684 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2685 int iLevel; /* Nesting level */ 2686 int iReg; /* Reg with value of this column. 0 means none. */ 2687 int lru; /* Least recently used entry has the smallest value */ 2688 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2689 ExprList *pConstExpr;/* Constant expressions */ 2690 Token constraintName;/* Name of the constraint currently being parsed */ 2691 yDbMask writeMask; /* Start a write transaction on these databases */ 2692 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2693 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2694 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2695 int regRoot; /* Register holding root page number for new objects */ 2696 int nMaxArg; /* Max args passed to user function by sub-program */ 2697 #if SELECTTRACE_ENABLED 2698 int nSelect; /* Number of SELECT statements seen */ 2699 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2700 #endif 2701 #ifndef SQLITE_OMIT_SHARED_CACHE 2702 int nTableLock; /* Number of locks in aTableLock */ 2703 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2704 #endif 2705 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2706 2707 /* Information used while coding trigger programs. */ 2708 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2709 Table *pTriggerTab; /* Table triggers are being coded for */ 2710 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2711 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2712 u32 oldmask; /* Mask of old.* columns referenced */ 2713 u32 newmask; /* Mask of new.* columns referenced */ 2714 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2715 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2716 u8 disableTriggers; /* True to disable triggers */ 2717 2718 /************************************************************************ 2719 ** Above is constant between recursions. Below is reset before and after 2720 ** each recursion. The boundary between these two regions is determined 2721 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2722 ** in the recursive region. 2723 ************************************************************************/ 2724 2725 int nVar; /* Number of '?' variables seen in the SQL so far */ 2726 int nzVar; /* Number of available slots in azVar[] */ 2727 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2728 u8 bFreeWith; /* True if pWith should be freed with parser */ 2729 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2730 #ifndef SQLITE_OMIT_VIRTUALTABLE 2731 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2732 int nVtabLock; /* Number of virtual tables to lock */ 2733 #endif 2734 int nAlias; /* Number of aliased result set columns */ 2735 int nHeight; /* Expression tree height of current sub-select */ 2736 #ifndef SQLITE_OMIT_EXPLAIN 2737 int iSelectId; /* ID of current select for EXPLAIN output */ 2738 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2739 #endif 2740 char **azVar; /* Pointers to names of parameters */ 2741 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2742 const char *zTail; /* All SQL text past the last semicolon parsed */ 2743 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2744 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2745 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2746 Token sNameToken; /* Token with unqualified schema object name */ 2747 Token sLastToken; /* The last token parsed */ 2748 #ifndef SQLITE_OMIT_VIRTUALTABLE 2749 Token sArg; /* Complete text of a module argument */ 2750 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2751 #endif 2752 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2753 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2754 With *pWith; /* Current WITH clause, or NULL */ 2755 }; 2756 2757 /* 2758 ** Return true if currently inside an sqlite3_declare_vtab() call. 2759 */ 2760 #ifdef SQLITE_OMIT_VIRTUALTABLE 2761 #define IN_DECLARE_VTAB 0 2762 #else 2763 #define IN_DECLARE_VTAB (pParse->declareVtab) 2764 #endif 2765 2766 /* 2767 ** An instance of the following structure can be declared on a stack and used 2768 ** to save the Parse.zAuthContext value so that it can be restored later. 2769 */ 2770 struct AuthContext { 2771 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2772 Parse *pParse; /* The Parse structure */ 2773 }; 2774 2775 /* 2776 ** Bitfield flags for P5 value in various opcodes. 2777 */ 2778 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2779 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2780 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2781 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2782 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2783 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2784 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2785 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2786 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2787 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 2788 #define OPFLAG_P2ISREG 0x04 /* P2 to OP_Open** is a register number */ 2789 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2790 2791 /* 2792 * Each trigger present in the database schema is stored as an instance of 2793 * struct Trigger. 2794 * 2795 * Pointers to instances of struct Trigger are stored in two ways. 2796 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2797 * database). This allows Trigger structures to be retrieved by name. 2798 * 2. All triggers associated with a single table form a linked list, using the 2799 * pNext member of struct Trigger. A pointer to the first element of the 2800 * linked list is stored as the "pTrigger" member of the associated 2801 * struct Table. 2802 * 2803 * The "step_list" member points to the first element of a linked list 2804 * containing the SQL statements specified as the trigger program. 2805 */ 2806 struct Trigger { 2807 char *zName; /* The name of the trigger */ 2808 char *table; /* The table or view to which the trigger applies */ 2809 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2810 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2811 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2812 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2813 the <column-list> is stored here */ 2814 Schema *pSchema; /* Schema containing the trigger */ 2815 Schema *pTabSchema; /* Schema containing the table */ 2816 TriggerStep *step_list; /* Link list of trigger program steps */ 2817 Trigger *pNext; /* Next trigger associated with the table */ 2818 }; 2819 2820 /* 2821 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2822 ** determine which. 2823 ** 2824 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2825 ** In that cases, the constants below can be ORed together. 2826 */ 2827 #define TRIGGER_BEFORE 1 2828 #define TRIGGER_AFTER 2 2829 2830 /* 2831 * An instance of struct TriggerStep is used to store a single SQL statement 2832 * that is a part of a trigger-program. 2833 * 2834 * Instances of struct TriggerStep are stored in a singly linked list (linked 2835 * using the "pNext" member) referenced by the "step_list" member of the 2836 * associated struct Trigger instance. The first element of the linked list is 2837 * the first step of the trigger-program. 2838 * 2839 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2840 * "SELECT" statement. The meanings of the other members is determined by the 2841 * value of "op" as follows: 2842 * 2843 * (op == TK_INSERT) 2844 * orconf -> stores the ON CONFLICT algorithm 2845 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2846 * this stores a pointer to the SELECT statement. Otherwise NULL. 2847 * zTarget -> Dequoted name of the table to insert into. 2848 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2849 * this stores values to be inserted. Otherwise NULL. 2850 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2851 * statement, then this stores the column-names to be 2852 * inserted into. 2853 * 2854 * (op == TK_DELETE) 2855 * zTarget -> Dequoted name of the table to delete from. 2856 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2857 * Otherwise NULL. 2858 * 2859 * (op == TK_UPDATE) 2860 * zTarget -> Dequoted name of the table to update. 2861 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2862 * Otherwise NULL. 2863 * pExprList -> A list of the columns to update and the expressions to update 2864 * them to. See sqlite3Update() documentation of "pChanges" 2865 * argument. 2866 * 2867 */ 2868 struct TriggerStep { 2869 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2870 u8 orconf; /* OE_Rollback etc. */ 2871 Trigger *pTrig; /* The trigger that this step is a part of */ 2872 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 2873 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 2874 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2875 ExprList *pExprList; /* SET clause for UPDATE. */ 2876 IdList *pIdList; /* Column names for INSERT */ 2877 TriggerStep *pNext; /* Next in the link-list */ 2878 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2879 }; 2880 2881 /* 2882 ** The following structure contains information used by the sqliteFix... 2883 ** routines as they walk the parse tree to make database references 2884 ** explicit. 2885 */ 2886 typedef struct DbFixer DbFixer; 2887 struct DbFixer { 2888 Parse *pParse; /* The parsing context. Error messages written here */ 2889 Schema *pSchema; /* Fix items to this schema */ 2890 int bVarOnly; /* Check for variable references only */ 2891 const char *zDb; /* Make sure all objects are contained in this database */ 2892 const char *zType; /* Type of the container - used for error messages */ 2893 const Token *pName; /* Name of the container - used for error messages */ 2894 }; 2895 2896 /* 2897 ** An objected used to accumulate the text of a string where we 2898 ** do not necessarily know how big the string will be in the end. 2899 */ 2900 struct StrAccum { 2901 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2902 char *zBase; /* A base allocation. Not from malloc. */ 2903 char *zText; /* The string collected so far */ 2904 int nChar; /* Length of the string so far */ 2905 int nAlloc; /* Amount of space allocated in zText */ 2906 int mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 2907 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2908 }; 2909 #define STRACCUM_NOMEM 1 2910 #define STRACCUM_TOOBIG 2 2911 2912 /* 2913 ** A pointer to this structure is used to communicate information 2914 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2915 */ 2916 typedef struct { 2917 sqlite3 *db; /* The database being initialized */ 2918 char **pzErrMsg; /* Error message stored here */ 2919 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2920 int rc; /* Result code stored here */ 2921 } InitData; 2922 2923 /* 2924 ** Structure containing global configuration data for the SQLite library. 2925 ** 2926 ** This structure also contains some state information. 2927 */ 2928 struct Sqlite3Config { 2929 int bMemstat; /* True to enable memory status */ 2930 int bCoreMutex; /* True to enable core mutexing */ 2931 int bFullMutex; /* True to enable full mutexing */ 2932 int bOpenUri; /* True to interpret filenames as URIs */ 2933 int bUseCis; /* Use covering indices for full-scans */ 2934 int mxStrlen; /* Maximum string length */ 2935 int neverCorrupt; /* Database is always well-formed */ 2936 int szLookaside; /* Default lookaside buffer size */ 2937 int nLookaside; /* Default lookaside buffer count */ 2938 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2939 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2940 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2941 void *pHeap; /* Heap storage space */ 2942 int nHeap; /* Size of pHeap[] */ 2943 int mnReq, mxReq; /* Min and max heap requests sizes */ 2944 sqlite3_int64 szMmap; /* mmap() space per open file */ 2945 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2946 void *pScratch; /* Scratch memory */ 2947 int szScratch; /* Size of each scratch buffer */ 2948 int nScratch; /* Number of scratch buffers */ 2949 void *pPage; /* Page cache memory */ 2950 int szPage; /* Size of each page in pPage[] */ 2951 int nPage; /* Number of pages in pPage[] */ 2952 int mxParserStack; /* maximum depth of the parser stack */ 2953 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2954 u32 szPma; /* Maximum Sorter PMA size */ 2955 /* The above might be initialized to non-zero. The following need to always 2956 ** initially be zero, however. */ 2957 int isInit; /* True after initialization has finished */ 2958 int inProgress; /* True while initialization in progress */ 2959 int isMutexInit; /* True after mutexes are initialized */ 2960 int isMallocInit; /* True after malloc is initialized */ 2961 int isPCacheInit; /* True after malloc is initialized */ 2962 int nRefInitMutex; /* Number of users of pInitMutex */ 2963 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2964 void (*xLog)(void*,int,const char*); /* Function for logging */ 2965 void *pLogArg; /* First argument to xLog() */ 2966 #ifdef SQLITE_ENABLE_SQLLOG 2967 void(*xSqllog)(void*,sqlite3*,const char*, int); 2968 void *pSqllogArg; 2969 #endif 2970 #ifdef SQLITE_VDBE_COVERAGE 2971 /* The following callback (if not NULL) is invoked on every VDBE branch 2972 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 2973 */ 2974 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 2975 void *pVdbeBranchArg; /* 1st argument */ 2976 #endif 2977 #ifndef SQLITE_OMIT_BUILTIN_TEST 2978 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 2979 #endif 2980 int bLocaltimeFault; /* True to fail localtime() calls */ 2981 }; 2982 2983 /* 2984 ** This macro is used inside of assert() statements to indicate that 2985 ** the assert is only valid on a well-formed database. Instead of: 2986 ** 2987 ** assert( X ); 2988 ** 2989 ** One writes: 2990 ** 2991 ** assert( X || CORRUPT_DB ); 2992 ** 2993 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2994 ** that the database is definitely corrupt, only that it might be corrupt. 2995 ** For most test cases, CORRUPT_DB is set to false using a special 2996 ** sqlite3_test_control(). This enables assert() statements to prove 2997 ** things that are always true for well-formed databases. 2998 */ 2999 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 3000 3001 /* 3002 ** Context pointer passed down through the tree-walk. 3003 */ 3004 struct Walker { 3005 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 3006 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 3007 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 3008 Parse *pParse; /* Parser context. */ 3009 int walkerDepth; /* Number of subqueries */ 3010 u8 eCode; /* A small processing code */ 3011 union { /* Extra data for callback */ 3012 NameContext *pNC; /* Naming context */ 3013 int n; /* A counter */ 3014 int iCur; /* A cursor number */ 3015 SrcList *pSrcList; /* FROM clause */ 3016 struct SrcCount *pSrcCount; /* Counting column references */ 3017 } u; 3018 }; 3019 3020 /* Forward declarations */ 3021 int sqlite3WalkExpr(Walker*, Expr*); 3022 int sqlite3WalkExprList(Walker*, ExprList*); 3023 int sqlite3WalkSelect(Walker*, Select*); 3024 int sqlite3WalkSelectExpr(Walker*, Select*); 3025 int sqlite3WalkSelectFrom(Walker*, Select*); 3026 3027 /* 3028 ** Return code from the parse-tree walking primitives and their 3029 ** callbacks. 3030 */ 3031 #define WRC_Continue 0 /* Continue down into children */ 3032 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 3033 #define WRC_Abort 2 /* Abandon the tree walk */ 3034 3035 /* 3036 ** An instance of this structure represents a set of one or more CTEs 3037 ** (common table expressions) created by a single WITH clause. 3038 */ 3039 struct With { 3040 int nCte; /* Number of CTEs in the WITH clause */ 3041 With *pOuter; /* Containing WITH clause, or NULL */ 3042 struct Cte { /* For each CTE in the WITH clause.... */ 3043 char *zName; /* Name of this CTE */ 3044 ExprList *pCols; /* List of explicit column names, or NULL */ 3045 Select *pSelect; /* The definition of this CTE */ 3046 const char *zCteErr; /* Error message for circular references */ 3047 } a[1]; 3048 }; 3049 3050 #ifdef SQLITE_DEBUG 3051 /* 3052 ** An instance of the TreeView object is used for printing the content of 3053 ** data structures on sqlite3DebugPrintf() using a tree-like view. 3054 */ 3055 struct TreeView { 3056 int iLevel; /* Which level of the tree we are on */ 3057 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 3058 }; 3059 #endif /* SQLITE_DEBUG */ 3060 3061 /* 3062 ** Assuming zIn points to the first byte of a UTF-8 character, 3063 ** advance zIn to point to the first byte of the next UTF-8 character. 3064 */ 3065 #define SQLITE_SKIP_UTF8(zIn) { \ 3066 if( (*(zIn++))>=0xc0 ){ \ 3067 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3068 } \ 3069 } 3070 3071 /* 3072 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3073 ** the same name but without the _BKPT suffix. These macros invoke 3074 ** routines that report the line-number on which the error originated 3075 ** using sqlite3_log(). The routines also provide a convenient place 3076 ** to set a debugger breakpoint. 3077 */ 3078 int sqlite3CorruptError(int); 3079 int sqlite3MisuseError(int); 3080 int sqlite3CantopenError(int); 3081 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3082 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3083 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3084 3085 3086 /* 3087 ** FTS4 is really an extension for FTS3. It is enabled using the 3088 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3089 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3090 */ 3091 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3092 # define SQLITE_ENABLE_FTS3 1 3093 #endif 3094 3095 /* 3096 ** The ctype.h header is needed for non-ASCII systems. It is also 3097 ** needed by FTS3 when FTS3 is included in the amalgamation. 3098 */ 3099 #if !defined(SQLITE_ASCII) || \ 3100 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3101 # include <ctype.h> 3102 #endif 3103 3104 /* 3105 ** The following macros mimic the standard library functions toupper(), 3106 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3107 ** sqlite versions only work for ASCII characters, regardless of locale. 3108 */ 3109 #ifdef SQLITE_ASCII 3110 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3111 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3112 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3113 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3114 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3115 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3116 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3117 #else 3118 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3119 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3120 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3121 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3122 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3123 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3124 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3125 #endif 3126 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 3127 int sqlite3IsIdChar(u8); 3128 #endif 3129 3130 /* 3131 ** Internal function prototypes 3132 */ 3133 #define sqlite3StrICmp sqlite3_stricmp 3134 int sqlite3Strlen30(const char*); 3135 #define sqlite3StrNICmp sqlite3_strnicmp 3136 3137 int sqlite3MallocInit(void); 3138 void sqlite3MallocEnd(void); 3139 void *sqlite3Malloc(u64); 3140 void *sqlite3MallocZero(u64); 3141 void *sqlite3DbMallocZero(sqlite3*, u64); 3142 void *sqlite3DbMallocRaw(sqlite3*, u64); 3143 char *sqlite3DbStrDup(sqlite3*,const char*); 3144 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3145 void *sqlite3Realloc(void*, u64); 3146 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3147 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3148 void sqlite3DbFree(sqlite3*, void*); 3149 int sqlite3MallocSize(void*); 3150 int sqlite3DbMallocSize(sqlite3*, void*); 3151 void *sqlite3ScratchMalloc(int); 3152 void sqlite3ScratchFree(void*); 3153 void *sqlite3PageMalloc(int); 3154 void sqlite3PageFree(void*); 3155 void sqlite3MemSetDefault(void); 3156 #ifndef SQLITE_OMIT_BUILTIN_TEST 3157 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3158 #endif 3159 int sqlite3HeapNearlyFull(void); 3160 3161 /* 3162 ** On systems with ample stack space and that support alloca(), make 3163 ** use of alloca() to obtain space for large automatic objects. By default, 3164 ** obtain space from malloc(). 3165 ** 3166 ** The alloca() routine never returns NULL. This will cause code paths 3167 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3168 */ 3169 #ifdef SQLITE_USE_ALLOCA 3170 # define sqlite3StackAllocRaw(D,N) alloca(N) 3171 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3172 # define sqlite3StackFree(D,P) 3173 #else 3174 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3175 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3176 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3177 #endif 3178 3179 #ifdef SQLITE_ENABLE_MEMSYS3 3180 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3181 #endif 3182 #ifdef SQLITE_ENABLE_MEMSYS5 3183 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3184 #endif 3185 3186 3187 #ifndef SQLITE_MUTEX_OMIT 3188 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3189 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3190 sqlite3_mutex *sqlite3MutexAlloc(int); 3191 int sqlite3MutexInit(void); 3192 int sqlite3MutexEnd(void); 3193 #endif 3194 3195 sqlite3_int64 sqlite3StatusValue(int); 3196 void sqlite3StatusUp(int, int); 3197 void sqlite3StatusDown(int, int); 3198 void sqlite3StatusSet(int, int); 3199 3200 /* Access to mutexes used by sqlite3_status() */ 3201 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3202 sqlite3_mutex *sqlite3MallocMutex(void); 3203 3204 #ifndef SQLITE_OMIT_FLOATING_POINT 3205 int sqlite3IsNaN(double); 3206 #else 3207 # define sqlite3IsNaN(X) 0 3208 #endif 3209 3210 /* 3211 ** An instance of the following structure holds information about SQL 3212 ** functions arguments that are the parameters to the printf() function. 3213 */ 3214 struct PrintfArguments { 3215 int nArg; /* Total number of arguments */ 3216 int nUsed; /* Number of arguments used so far */ 3217 sqlite3_value **apArg; /* The argument values */ 3218 }; 3219 3220 #define SQLITE_PRINTF_INTERNAL 0x01 3221 #define SQLITE_PRINTF_SQLFUNC 0x02 3222 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3223 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3224 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3225 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3226 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3227 void sqlite3DebugPrintf(const char*, ...); 3228 #endif 3229 #if defined(SQLITE_TEST) 3230 void *sqlite3TestTextToPtr(const char*); 3231 #endif 3232 3233 #if defined(SQLITE_DEBUG) 3234 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3235 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3236 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3237 #endif 3238 3239 3240 void sqlite3SetString(char **, sqlite3*, const char*); 3241 void sqlite3ErrorMsg(Parse*, const char*, ...); 3242 int sqlite3Dequote(char*); 3243 int sqlite3KeywordCode(const unsigned char*, int); 3244 int sqlite3RunParser(Parse*, const char*, char **); 3245 void sqlite3FinishCoding(Parse*); 3246 int sqlite3GetTempReg(Parse*); 3247 void sqlite3ReleaseTempReg(Parse*,int); 3248 int sqlite3GetTempRange(Parse*,int); 3249 void sqlite3ReleaseTempRange(Parse*,int,int); 3250 void sqlite3ClearTempRegCache(Parse*); 3251 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3252 Expr *sqlite3Expr(sqlite3*,int,const char*); 3253 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3254 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3255 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3256 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3257 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3258 void sqlite3ExprDelete(sqlite3*, Expr*); 3259 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3260 void sqlite3ExprListSetSortOrder(ExprList*,int); 3261 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3262 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3263 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3264 u32 sqlite3ExprListFlags(const ExprList*); 3265 int sqlite3Init(sqlite3*, char**); 3266 int sqlite3InitCallback(void*, int, char**, char**); 3267 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3268 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3269 void sqlite3ResetOneSchema(sqlite3*,int); 3270 void sqlite3CollapseDatabaseArray(sqlite3*); 3271 void sqlite3BeginParse(Parse*,int); 3272 void sqlite3CommitInternalChanges(sqlite3*); 3273 void sqlite3DeleteColumnNames(sqlite3*,Table*); 3274 int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**); 3275 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3276 void sqlite3OpenMasterTable(Parse *, int); 3277 Index *sqlite3PrimaryKeyIndex(Table*); 3278 i16 sqlite3ColumnOfIndex(Index*, i16); 3279 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3280 void sqlite3AddColumn(Parse*,Token*); 3281 void sqlite3AddNotNull(Parse*, int); 3282 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3283 void sqlite3AddCheckConstraint(Parse*, Expr*); 3284 void sqlite3AddColumnType(Parse*,Token*); 3285 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3286 void sqlite3AddCollateType(Parse*, Token*); 3287 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3288 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3289 sqlite3_vfs**,char**,char **); 3290 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3291 int sqlite3CodeOnce(Parse *); 3292 3293 #ifdef SQLITE_OMIT_BUILTIN_TEST 3294 # define sqlite3FaultSim(X) SQLITE_OK 3295 #else 3296 int sqlite3FaultSim(int); 3297 #endif 3298 3299 Bitvec *sqlite3BitvecCreate(u32); 3300 int sqlite3BitvecTest(Bitvec*, u32); 3301 int sqlite3BitvecTestNotNull(Bitvec*, u32); 3302 int sqlite3BitvecSet(Bitvec*, u32); 3303 void sqlite3BitvecClear(Bitvec*, u32, void*); 3304 void sqlite3BitvecDestroy(Bitvec*); 3305 u32 sqlite3BitvecSize(Bitvec*); 3306 #ifndef SQLITE_OMIT_BUILTIN_TEST 3307 int sqlite3BitvecBuiltinTest(int,int*); 3308 #endif 3309 3310 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3311 void sqlite3RowSetClear(RowSet*); 3312 void sqlite3RowSetInsert(RowSet*, i64); 3313 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3314 int sqlite3RowSetNext(RowSet*, i64*); 3315 3316 void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int); 3317 3318 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3319 int sqlite3ViewGetColumnNames(Parse*,Table*); 3320 #else 3321 # define sqlite3ViewGetColumnNames(A,B) 0 3322 #endif 3323 3324 #if SQLITE_MAX_ATTACHED>30 3325 int sqlite3DbMaskAllZero(yDbMask); 3326 #endif 3327 void sqlite3DropTable(Parse*, SrcList*, int, int); 3328 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3329 void sqlite3DeleteTable(sqlite3*, Table*); 3330 #ifndef SQLITE_OMIT_AUTOINCREMENT 3331 void sqlite3AutoincrementBegin(Parse *pParse); 3332 void sqlite3AutoincrementEnd(Parse *pParse); 3333 #else 3334 # define sqlite3AutoincrementBegin(X) 3335 # define sqlite3AutoincrementEnd(X) 3336 #endif 3337 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3338 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3339 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3340 int sqlite3IdListIndex(IdList*,const char*); 3341 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3342 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3343 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3344 Token*, Select*, Expr*, IdList*); 3345 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3346 void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*); 3347 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3348 void sqlite3SrcListShiftJoinType(SrcList*); 3349 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3350 void sqlite3IdListDelete(sqlite3*, IdList*); 3351 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3352 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3353 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3354 Expr*, int, int); 3355 void sqlite3DropIndex(Parse*, SrcList*, int); 3356 int sqlite3Select(Parse*, Select*, SelectDest*); 3357 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3358 Expr*,ExprList*,u16,Expr*,Expr*); 3359 void sqlite3SelectDelete(sqlite3*, Select*); 3360 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3361 int sqlite3IsReadOnly(Parse*, Table*, int); 3362 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3363 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3364 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3365 #endif 3366 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3367 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3368 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3369 void sqlite3WhereEnd(WhereInfo*); 3370 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3371 int sqlite3WhereIsDistinct(WhereInfo*); 3372 int sqlite3WhereIsOrdered(WhereInfo*); 3373 int sqlite3WhereIsSorted(WhereInfo*); 3374 int sqlite3WhereContinueLabel(WhereInfo*); 3375 int sqlite3WhereBreakLabel(WhereInfo*); 3376 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3377 void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int); 3378 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3379 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3380 void sqlite3ExprCodeMove(Parse*, int, int, int); 3381 void sqlite3ExprCacheStore(Parse*, int, int, int); 3382 void sqlite3ExprCachePush(Parse*); 3383 void sqlite3ExprCachePop(Parse*); 3384 void sqlite3ExprCacheRemove(Parse*, int, int); 3385 void sqlite3ExprCacheClear(Parse*); 3386 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3387 void sqlite3ExprCode(Parse*, Expr*, int); 3388 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3389 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3390 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3391 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3392 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3393 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8); 3394 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3395 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3396 #define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */ 3397 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3398 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3399 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 3400 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3401 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3402 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3403 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3404 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3405 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3406 void sqlite3Vacuum(Parse*); 3407 int sqlite3RunVacuum(char**, sqlite3*); 3408 char *sqlite3NameFromToken(sqlite3*, Token*); 3409 int sqlite3ExprCompare(Expr*, Expr*, int); 3410 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3411 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3412 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3413 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3414 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3415 Vdbe *sqlite3GetVdbe(Parse*); 3416 #ifndef SQLITE_OMIT_BUILTIN_TEST 3417 void sqlite3PrngSaveState(void); 3418 void sqlite3PrngRestoreState(void); 3419 #endif 3420 void sqlite3RollbackAll(sqlite3*,int); 3421 void sqlite3CodeVerifySchema(Parse*, int); 3422 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3423 void sqlite3BeginTransaction(Parse*, int); 3424 void sqlite3CommitTransaction(Parse*); 3425 void sqlite3RollbackTransaction(Parse*); 3426 void sqlite3Savepoint(Parse*, int, Token*); 3427 void sqlite3CloseSavepoints(sqlite3 *); 3428 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3429 int sqlite3ExprIsConstant(Expr*); 3430 int sqlite3ExprIsConstantNotJoin(Expr*); 3431 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3432 int sqlite3ExprIsTableConstant(Expr*,int); 3433 int sqlite3ExprIsInteger(Expr*, int*); 3434 int sqlite3ExprCanBeNull(const Expr*); 3435 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3436 int sqlite3IsRowid(const char*); 3437 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3438 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3439 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3440 void sqlite3ResolvePartIdxLabel(Parse*,int); 3441 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3442 u8,u8,int,int*); 3443 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3444 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3445 void sqlite3BeginWriteOperation(Parse*, int, int); 3446 void sqlite3MultiWrite(Parse*); 3447 void sqlite3MayAbort(Parse*); 3448 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3449 void sqlite3UniqueConstraint(Parse*, int, Index*); 3450 void sqlite3RowidConstraint(Parse*, int, Table*); 3451 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3452 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3453 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3454 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3455 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3456 #if SELECTTRACE_ENABLED 3457 void sqlite3SelectSetName(Select*,const char*); 3458 #else 3459 # define sqlite3SelectSetName(A,B) 3460 #endif 3461 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3462 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3463 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3464 void sqlite3RegisterDateTimeFunctions(void); 3465 void sqlite3RegisterGlobalFunctions(void); 3466 int sqlite3SafetyCheckOk(sqlite3*); 3467 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3468 void sqlite3ChangeCookie(Parse*, int); 3469 3470 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3471 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3472 #endif 3473 3474 #ifndef SQLITE_OMIT_TRIGGER 3475 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3476 Expr*,int, int); 3477 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3478 void sqlite3DropTrigger(Parse*, SrcList*, int); 3479 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3480 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3481 Trigger *sqlite3TriggerList(Parse *, Table *); 3482 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3483 int, int, int); 3484 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3485 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3486 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3487 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3488 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3489 Select*,u8); 3490 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3491 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3492 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3493 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3494 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3495 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3496 #else 3497 # define sqlite3TriggersExist(B,C,D,E,F) 0 3498 # define sqlite3DeleteTrigger(A,B) 3499 # define sqlite3DropTriggerPtr(A,B) 3500 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3501 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3502 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3503 # define sqlite3TriggerList(X, Y) 0 3504 # define sqlite3ParseToplevel(p) p 3505 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3506 #endif 3507 3508 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3509 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3510 void sqlite3DeferForeignKey(Parse*, int); 3511 #ifndef SQLITE_OMIT_AUTHORIZATION 3512 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3513 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3514 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3515 void sqlite3AuthContextPop(AuthContext*); 3516 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3517 #else 3518 # define sqlite3AuthRead(a,b,c,d) 3519 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3520 # define sqlite3AuthContextPush(a,b,c) 3521 # define sqlite3AuthContextPop(a) ((void)(a)) 3522 #endif 3523 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3524 void sqlite3Detach(Parse*, Expr*); 3525 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3526 int sqlite3FixSrcList(DbFixer*, SrcList*); 3527 int sqlite3FixSelect(DbFixer*, Select*); 3528 int sqlite3FixExpr(DbFixer*, Expr*); 3529 int sqlite3FixExprList(DbFixer*, ExprList*); 3530 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3531 int sqlite3AtoF(const char *z, double*, int, u8); 3532 int sqlite3GetInt32(const char *, int*); 3533 int sqlite3Atoi(const char*); 3534 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3535 int sqlite3Utf8CharLen(const char *pData, int nByte); 3536 u32 sqlite3Utf8Read(const u8**); 3537 LogEst sqlite3LogEst(u64); 3538 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3539 #ifndef SQLITE_OMIT_VIRTUALTABLE 3540 LogEst sqlite3LogEstFromDouble(double); 3541 #endif 3542 u64 sqlite3LogEstToInt(LogEst); 3543 3544 /* 3545 ** Routines to read and write variable-length integers. These used to 3546 ** be defined locally, but now we use the varint routines in the util.c 3547 ** file. 3548 */ 3549 int sqlite3PutVarint(unsigned char*, u64); 3550 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3551 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3552 int sqlite3VarintLen(u64 v); 3553 3554 /* 3555 ** The common case is for a varint to be a single byte. They following 3556 ** macros handle the common case without a procedure call, but then call 3557 ** the procedure for larger varints. 3558 */ 3559 #define getVarint32(A,B) \ 3560 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3561 #define putVarint32(A,B) \ 3562 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3563 sqlite3PutVarint((A),(B))) 3564 #define getVarint sqlite3GetVarint 3565 #define putVarint sqlite3PutVarint 3566 3567 3568 const char *sqlite3IndexAffinityStr(sqlite3*, Index*); 3569 void sqlite3TableAffinity(Vdbe*, Table*, int); 3570 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3571 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3572 char sqlite3ExprAffinity(Expr *pExpr); 3573 int sqlite3Atoi64(const char*, i64*, int, u8); 3574 int sqlite3DecOrHexToI64(const char*, i64*); 3575 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3576 void sqlite3Error(sqlite3*,int); 3577 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3578 u8 sqlite3HexToInt(int h); 3579 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3580 3581 #if defined(SQLITE_NEED_ERR_NAME) 3582 const char *sqlite3ErrName(int); 3583 #endif 3584 3585 const char *sqlite3ErrStr(int); 3586 int sqlite3ReadSchema(Parse *pParse); 3587 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3588 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3589 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3590 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3591 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3592 Expr *sqlite3ExprSkipCollate(Expr*); 3593 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3594 int sqlite3CheckObjectName(Parse *, const char *); 3595 void sqlite3VdbeSetChanges(sqlite3 *, int); 3596 int sqlite3AddInt64(i64*,i64); 3597 int sqlite3SubInt64(i64*,i64); 3598 int sqlite3MulInt64(i64*,i64); 3599 int sqlite3AbsInt32(int); 3600 #ifdef SQLITE_ENABLE_8_3_NAMES 3601 void sqlite3FileSuffix3(const char*, char*); 3602 #else 3603 # define sqlite3FileSuffix3(X,Y) 3604 #endif 3605 u8 sqlite3GetBoolean(const char *z,u8); 3606 3607 const void *sqlite3ValueText(sqlite3_value*, u8); 3608 int sqlite3ValueBytes(sqlite3_value*, u8); 3609 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3610 void(*)(void*)); 3611 void sqlite3ValueSetNull(sqlite3_value*); 3612 void sqlite3ValueFree(sqlite3_value*); 3613 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3614 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3615 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3616 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3617 #ifndef SQLITE_AMALGAMATION 3618 extern const unsigned char sqlite3OpcodeProperty[]; 3619 extern const unsigned char sqlite3UpperToLower[]; 3620 extern const unsigned char sqlite3CtypeMap[]; 3621 extern const Token sqlite3IntTokens[]; 3622 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3623 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3624 #ifndef SQLITE_OMIT_WSD 3625 extern int sqlite3PendingByte; 3626 #endif 3627 #endif 3628 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3629 void sqlite3Reindex(Parse*, Token*, Token*); 3630 void sqlite3AlterFunctions(void); 3631 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3632 int sqlite3GetToken(const unsigned char *, int *); 3633 void sqlite3NestedParse(Parse*, const char*, ...); 3634 void sqlite3ExpirePreparedStatements(sqlite3*); 3635 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3636 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3637 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 3638 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3639 int sqlite3ResolveExprNames(NameContext*, Expr*); 3640 int sqlite3ResolveExprListNames(NameContext*, ExprList*); 3641 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3642 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3643 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3644 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3645 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3646 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3647 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3648 char sqlite3AffinityType(const char*, u8*); 3649 void sqlite3Analyze(Parse*, Token*, Token*); 3650 int sqlite3InvokeBusyHandler(BusyHandler*); 3651 int sqlite3FindDb(sqlite3*, Token*); 3652 int sqlite3FindDbName(sqlite3 *, const char *); 3653 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3654 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3655 void sqlite3DefaultRowEst(Index*); 3656 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3657 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3658 void sqlite3MinimumFileFormat(Parse*, int, int); 3659 void sqlite3SchemaClear(void *); 3660 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3661 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3662 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3663 void sqlite3KeyInfoUnref(KeyInfo*); 3664 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3665 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3666 #ifdef SQLITE_DEBUG 3667 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3668 #endif 3669 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3670 void (*)(sqlite3_context*,int,sqlite3_value **), 3671 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3672 FuncDestructor *pDestructor 3673 ); 3674 int sqlite3ApiExit(sqlite3 *db, int); 3675 int sqlite3OpenTempDatabase(Parse *); 3676 3677 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 3678 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3679 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3680 void sqlite3AppendChar(StrAccum*,int,char); 3681 char *sqlite3StrAccumFinish(StrAccum*); 3682 void sqlite3StrAccumReset(StrAccum*); 3683 void sqlite3SelectDestInit(SelectDest*,int,int); 3684 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3685 3686 void sqlite3BackupRestart(sqlite3_backup *); 3687 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3688 3689 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3690 void sqlite3AnalyzeFunctions(void); 3691 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3692 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3693 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3694 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3695 #endif 3696 3697 /* 3698 ** The interface to the LEMON-generated parser 3699 */ 3700 void *sqlite3ParserAlloc(void*(*)(u64)); 3701 void sqlite3ParserFree(void*, void(*)(void*)); 3702 void sqlite3Parser(void*, int, Token, Parse*); 3703 #ifdef YYTRACKMAXSTACKDEPTH 3704 int sqlite3ParserStackPeak(void*); 3705 #endif 3706 3707 void sqlite3AutoLoadExtensions(sqlite3*); 3708 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3709 void sqlite3CloseExtensions(sqlite3*); 3710 #else 3711 # define sqlite3CloseExtensions(X) 3712 #endif 3713 3714 #ifndef SQLITE_OMIT_SHARED_CACHE 3715 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3716 #else 3717 #define sqlite3TableLock(v,w,x,y,z) 3718 #endif 3719 3720 #ifdef SQLITE_TEST 3721 int sqlite3Utf8To8(unsigned char*); 3722 #endif 3723 3724 #ifdef SQLITE_OMIT_VIRTUALTABLE 3725 # define sqlite3VtabClear(Y) 3726 # define sqlite3VtabSync(X,Y) SQLITE_OK 3727 # define sqlite3VtabRollback(X) 3728 # define sqlite3VtabCommit(X) 3729 # define sqlite3VtabInSync(db) 0 3730 # define sqlite3VtabLock(X) 3731 # define sqlite3VtabUnlock(X) 3732 # define sqlite3VtabUnlockList(X) 3733 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3734 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3735 #else 3736 void sqlite3VtabClear(sqlite3 *db, Table*); 3737 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3738 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3739 int sqlite3VtabRollback(sqlite3 *db); 3740 int sqlite3VtabCommit(sqlite3 *db); 3741 void sqlite3VtabLock(VTable *); 3742 void sqlite3VtabUnlock(VTable *); 3743 void sqlite3VtabUnlockList(sqlite3*); 3744 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3745 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3746 VTable *sqlite3GetVTable(sqlite3*, Table*); 3747 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3748 #endif 3749 int sqlite3VtabEponymousTableInit(Parse*,Module*); 3750 void sqlite3VtabEponymousTableClear(sqlite3*,Module*); 3751 void sqlite3VtabMakeWritable(Parse*,Table*); 3752 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3753 void sqlite3VtabFinishParse(Parse*, Token*); 3754 void sqlite3VtabArgInit(Parse*); 3755 void sqlite3VtabArgExtend(Parse*, Token*); 3756 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3757 int sqlite3VtabCallConnect(Parse*, Table*); 3758 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3759 int sqlite3VtabBegin(sqlite3 *, VTable *); 3760 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3761 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3762 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3763 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3764 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3765 void sqlite3ParserReset(Parse*); 3766 int sqlite3Reprepare(Vdbe*); 3767 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3768 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3769 int sqlite3TempInMemory(const sqlite3*); 3770 const char *sqlite3JournalModename(int); 3771 #ifndef SQLITE_OMIT_WAL 3772 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3773 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3774 #endif 3775 #ifndef SQLITE_OMIT_CTE 3776 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3777 void sqlite3WithDelete(sqlite3*,With*); 3778 void sqlite3WithPush(Parse*, With*, u8); 3779 #else 3780 #define sqlite3WithPush(x,y,z) 3781 #define sqlite3WithDelete(x,y) 3782 #endif 3783 3784 /* Declarations for functions in fkey.c. All of these are replaced by 3785 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3786 ** key functionality is available. If OMIT_TRIGGER is defined but 3787 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3788 ** this case foreign keys are parsed, but no other functionality is 3789 ** provided (enforcement of FK constraints requires the triggers sub-system). 3790 */ 3791 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3792 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3793 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3794 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3795 int sqlite3FkRequired(Parse*, Table*, int*, int); 3796 u32 sqlite3FkOldmask(Parse*, Table*); 3797 FKey *sqlite3FkReferences(Table *); 3798 #else 3799 #define sqlite3FkActions(a,b,c,d,e,f) 3800 #define sqlite3FkCheck(a,b,c,d,e,f) 3801 #define sqlite3FkDropTable(a,b,c) 3802 #define sqlite3FkOldmask(a,b) 0 3803 #define sqlite3FkRequired(a,b,c,d) 0 3804 #endif 3805 #ifndef SQLITE_OMIT_FOREIGN_KEY 3806 void sqlite3FkDelete(sqlite3 *, Table*); 3807 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3808 #else 3809 #define sqlite3FkDelete(a,b) 3810 #define sqlite3FkLocateIndex(a,b,c,d,e) 3811 #endif 3812 3813 3814 /* 3815 ** Available fault injectors. Should be numbered beginning with 0. 3816 */ 3817 #define SQLITE_FAULTINJECTOR_MALLOC 0 3818 #define SQLITE_FAULTINJECTOR_COUNT 1 3819 3820 /* 3821 ** The interface to the code in fault.c used for identifying "benign" 3822 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3823 ** is not defined. 3824 */ 3825 #ifndef SQLITE_OMIT_BUILTIN_TEST 3826 void sqlite3BeginBenignMalloc(void); 3827 void sqlite3EndBenignMalloc(void); 3828 #else 3829 #define sqlite3BeginBenignMalloc() 3830 #define sqlite3EndBenignMalloc() 3831 #endif 3832 3833 /* 3834 ** Allowed return values from sqlite3FindInIndex() 3835 */ 3836 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3837 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3838 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3839 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3840 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3841 /* 3842 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3843 */ 3844 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3845 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3846 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3847 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3848 3849 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3850 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3851 int sqlite3JournalSize(sqlite3_vfs *); 3852 int sqlite3JournalCreate(sqlite3_file *); 3853 int sqlite3JournalExists(sqlite3_file *p); 3854 #else 3855 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3856 #define sqlite3JournalExists(p) 1 3857 #endif 3858 3859 void sqlite3MemJournalOpen(sqlite3_file *); 3860 int sqlite3MemJournalSize(void); 3861 int sqlite3IsMemJournal(sqlite3_file *); 3862 3863 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 3864 #if SQLITE_MAX_EXPR_DEPTH>0 3865 int sqlite3SelectExprHeight(Select *); 3866 int sqlite3ExprCheckHeight(Parse*, int); 3867 #else 3868 #define sqlite3SelectExprHeight(x) 0 3869 #define sqlite3ExprCheckHeight(x,y) 3870 #endif 3871 3872 u32 sqlite3Get4byte(const u8*); 3873 void sqlite3Put4byte(u8*, u32); 3874 3875 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3876 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3877 void sqlite3ConnectionUnlocked(sqlite3 *db); 3878 void sqlite3ConnectionClosed(sqlite3 *db); 3879 #else 3880 #define sqlite3ConnectionBlocked(x,y) 3881 #define sqlite3ConnectionUnlocked(x) 3882 #define sqlite3ConnectionClosed(x) 3883 #endif 3884 3885 #ifdef SQLITE_DEBUG 3886 void sqlite3ParserTrace(FILE*, char *); 3887 #endif 3888 3889 /* 3890 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3891 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3892 ** print I/O tracing messages. 3893 */ 3894 #ifdef SQLITE_ENABLE_IOTRACE 3895 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3896 void sqlite3VdbeIOTraceSql(Vdbe*); 3897 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 3898 #else 3899 # define IOTRACE(A) 3900 # define sqlite3VdbeIOTraceSql(X) 3901 #endif 3902 3903 /* 3904 ** These routines are available for the mem2.c debugging memory allocator 3905 ** only. They are used to verify that different "types" of memory 3906 ** allocations are properly tracked by the system. 3907 ** 3908 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3909 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3910 ** a single bit set. 3911 ** 3912 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3913 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3914 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3915 ** 3916 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3917 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3918 ** 3919 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3920 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3921 ** it might have been allocated by lookaside, except the allocation was 3922 ** too large or lookaside was already full. It is important to verify 3923 ** that allocations that might have been satisfied by lookaside are not 3924 ** passed back to non-lookaside free() routines. Asserts such as the 3925 ** example above are placed on the non-lookaside free() routines to verify 3926 ** this constraint. 3927 ** 3928 ** All of this is no-op for a production build. It only comes into 3929 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3930 */ 3931 #ifdef SQLITE_MEMDEBUG 3932 void sqlite3MemdebugSetType(void*,u8); 3933 int sqlite3MemdebugHasType(void*,u8); 3934 int sqlite3MemdebugNoType(void*,u8); 3935 #else 3936 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3937 # define sqlite3MemdebugHasType(X,Y) 1 3938 # define sqlite3MemdebugNoType(X,Y) 1 3939 #endif 3940 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3941 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 3942 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3943 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3944 3945 /* 3946 ** Threading interface 3947 */ 3948 #if SQLITE_MAX_WORKER_THREADS>0 3949 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 3950 int sqlite3ThreadJoin(SQLiteThread*, void**); 3951 #endif 3952 3953 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 3954 int sqlite3DbstatRegister(sqlite3*); 3955 #endif 3956 3957 #endif /* _SQLITEINT_H_ */ 3958