1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 70 # define _BSD_SOURCE 71 #endif 72 73 /* 74 ** Include standard header files as necessary 75 */ 76 #ifdef HAVE_STDINT_H 77 #include <stdint.h> 78 #endif 79 #ifdef HAVE_INTTYPES_H 80 #include <inttypes.h> 81 #endif 82 83 /* 84 ** The following macros are used to cast pointers to integers and 85 ** integers to pointers. The way you do this varies from one compiler 86 ** to the next, so we have developed the following set of #if statements 87 ** to generate appropriate macros for a wide range of compilers. 88 ** 89 ** The correct "ANSI" way to do this is to use the intptr_t type. 90 ** Unfortunately, that typedef is not available on all compilers, or 91 ** if it is available, it requires an #include of specific headers 92 ** that vary from one machine to the next. 93 ** 94 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 95 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 96 ** So we have to define the macros in different ways depending on the 97 ** compiler. 98 */ 99 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 100 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 101 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 102 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 103 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 104 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 105 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 106 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 107 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 108 #else /* Generates a warning - but it always works */ 109 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 110 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 111 #endif 112 113 /* 114 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 115 ** 0 means mutexes are permanently disable and the library is never 116 ** threadsafe. 1 means the library is serialized which is the highest 117 ** level of threadsafety. 2 means the libary is multithreaded - multiple 118 ** threads can use SQLite as long as no two threads try to use the same 119 ** database connection at the same time. 120 ** 121 ** Older versions of SQLite used an optional THREADSAFE macro. 122 ** We support that for legacy. 123 */ 124 #if !defined(SQLITE_THREADSAFE) 125 # if defined(THREADSAFE) 126 # define SQLITE_THREADSAFE THREADSAFE 127 # else 128 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 129 # endif 130 #endif 131 132 /* 133 ** Powersafe overwrite is on by default. But can be turned off using 134 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 135 */ 136 #ifndef SQLITE_POWERSAFE_OVERWRITE 137 # define SQLITE_POWERSAFE_OVERWRITE 1 138 #endif 139 140 /* 141 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 142 ** It determines whether or not the features related to 143 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 144 ** be overridden at runtime using the sqlite3_config() API. 145 */ 146 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 147 # define SQLITE_DEFAULT_MEMSTATUS 1 148 #endif 149 150 /* 151 ** Exactly one of the following macros must be defined in order to 152 ** specify which memory allocation subsystem to use. 153 ** 154 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 155 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 156 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 157 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 158 ** 159 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 160 ** assert() macro is enabled, each call into the Win32 native heap subsystem 161 ** will cause HeapValidate to be called. If heap validation should fail, an 162 ** assertion will be triggered. 163 ** 164 ** (Historical note: There used to be several other options, but we've 165 ** pared it down to just these three.) 166 ** 167 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 168 ** the default. 169 */ 170 #if defined(SQLITE_SYSTEM_MALLOC) \ 171 + defined(SQLITE_WIN32_MALLOC) \ 172 + defined(SQLITE_ZERO_MALLOC) \ 173 + defined(SQLITE_MEMDEBUG)>1 174 # error "Two or more of the following compile-time configuration options\ 175 are defined but at most one is allowed:\ 176 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 177 SQLITE_ZERO_MALLOC" 178 #endif 179 #if defined(SQLITE_SYSTEM_MALLOC) \ 180 + defined(SQLITE_WIN32_MALLOC) \ 181 + defined(SQLITE_ZERO_MALLOC) \ 182 + defined(SQLITE_MEMDEBUG)==0 183 # define SQLITE_SYSTEM_MALLOC 1 184 #endif 185 186 /* 187 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 188 ** sizes of memory allocations below this value where possible. 189 */ 190 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 191 # define SQLITE_MALLOC_SOFT_LIMIT 1024 192 #endif 193 194 /* 195 ** We need to define _XOPEN_SOURCE as follows in order to enable 196 ** recursive mutexes on most Unix systems. But Mac OS X is different. 197 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 198 ** so it is omitted there. See ticket #2673. 199 ** 200 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 201 ** implemented on some systems. So we avoid defining it at all 202 ** if it is already defined or if it is unneeded because we are 203 ** not doing a threadsafe build. Ticket #2681. 204 ** 205 ** See also ticket #2741. 206 */ 207 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) \ 208 && !defined(__APPLE__) && SQLITE_THREADSAFE 209 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 210 #endif 211 212 /* 213 ** The TCL headers are only needed when compiling the TCL bindings. 214 */ 215 #if defined(SQLITE_TCL) || defined(TCLSH) 216 # include <tcl.h> 217 #endif 218 219 /* 220 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 221 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 222 ** make it true by defining or undefining NDEBUG. 223 ** 224 ** Setting NDEBUG makes the code smaller and run faster by disabling the 225 ** number assert() statements in the code. So we want the default action 226 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 227 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 228 ** feature. 229 */ 230 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 231 # define NDEBUG 1 232 #endif 233 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 234 # undef NDEBUG 235 #endif 236 237 /* 238 ** The testcase() macro is used to aid in coverage testing. When 239 ** doing coverage testing, the condition inside the argument to 240 ** testcase() must be evaluated both true and false in order to 241 ** get full branch coverage. The testcase() macro is inserted 242 ** to help ensure adequate test coverage in places where simple 243 ** condition/decision coverage is inadequate. For example, testcase() 244 ** can be used to make sure boundary values are tested. For 245 ** bitmask tests, testcase() can be used to make sure each bit 246 ** is significant and used at least once. On switch statements 247 ** where multiple cases go to the same block of code, testcase() 248 ** can insure that all cases are evaluated. 249 ** 250 */ 251 #ifdef SQLITE_COVERAGE_TEST 252 void sqlite3Coverage(int); 253 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 254 #else 255 # define testcase(X) 256 #endif 257 258 /* 259 ** The TESTONLY macro is used to enclose variable declarations or 260 ** other bits of code that are needed to support the arguments 261 ** within testcase() and assert() macros. 262 */ 263 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 264 # define TESTONLY(X) X 265 #else 266 # define TESTONLY(X) 267 #endif 268 269 /* 270 ** Sometimes we need a small amount of code such as a variable initialization 271 ** to setup for a later assert() statement. We do not want this code to 272 ** appear when assert() is disabled. The following macro is therefore 273 ** used to contain that setup code. The "VVA" acronym stands for 274 ** "Verification, Validation, and Accreditation". In other words, the 275 ** code within VVA_ONLY() will only run during verification processes. 276 */ 277 #ifndef NDEBUG 278 # define VVA_ONLY(X) X 279 #else 280 # define VVA_ONLY(X) 281 #endif 282 283 /* 284 ** The ALWAYS and NEVER macros surround boolean expressions which 285 ** are intended to always be true or false, respectively. Such 286 ** expressions could be omitted from the code completely. But they 287 ** are included in a few cases in order to enhance the resilience 288 ** of SQLite to unexpected behavior - to make the code "self-healing" 289 ** or "ductile" rather than being "brittle" and crashing at the first 290 ** hint of unplanned behavior. 291 ** 292 ** In other words, ALWAYS and NEVER are added for defensive code. 293 ** 294 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 295 ** be true and false so that the unreachable code then specify will 296 ** not be counted as untested code. 297 */ 298 #if defined(SQLITE_COVERAGE_TEST) 299 # define ALWAYS(X) (1) 300 # define NEVER(X) (0) 301 #elif !defined(NDEBUG) 302 # define ALWAYS(X) ((X)?1:(assert(0),0)) 303 # define NEVER(X) ((X)?(assert(0),1):0) 304 #else 305 # define ALWAYS(X) (X) 306 # define NEVER(X) (X) 307 #endif 308 309 /* 310 ** Return true (non-zero) if the input is a integer that is too large 311 ** to fit in 32-bits. This macro is used inside of various testcase() 312 ** macros to verify that we have tested SQLite for large-file support. 313 */ 314 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 315 316 /* 317 ** The macro unlikely() is a hint that surrounds a boolean 318 ** expression that is usually false. Macro likely() surrounds 319 ** a boolean expression that is usually true. GCC is able to 320 ** use these hints to generate better code, sometimes. 321 */ 322 #if defined(__GNUC__) && 0 323 # define likely(X) __builtin_expect((X),1) 324 # define unlikely(X) __builtin_expect((X),0) 325 #else 326 # define likely(X) !!(X) 327 # define unlikely(X) !!(X) 328 #endif 329 330 #include "sqlite3.h" 331 #include "hash.h" 332 #include "parse.h" 333 #include <stdio.h> 334 #include <stdlib.h> 335 #include <string.h> 336 #include <assert.h> 337 #include <stddef.h> 338 339 /* 340 ** If compiling for a processor that lacks floating point support, 341 ** substitute integer for floating-point 342 */ 343 #ifdef SQLITE_OMIT_FLOATING_POINT 344 # define double sqlite_int64 345 # define float sqlite_int64 346 # define LONGDOUBLE_TYPE sqlite_int64 347 # ifndef SQLITE_BIG_DBL 348 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 349 # endif 350 # define SQLITE_OMIT_DATETIME_FUNCS 1 351 # define SQLITE_OMIT_TRACE 1 352 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 353 # undef SQLITE_HAVE_ISNAN 354 #endif 355 #ifndef SQLITE_BIG_DBL 356 # define SQLITE_BIG_DBL (1e99) 357 #endif 358 359 /* 360 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 361 ** afterward. Having this macro allows us to cause the C compiler 362 ** to omit code used by TEMP tables without messy #ifndef statements. 363 */ 364 #ifdef SQLITE_OMIT_TEMPDB 365 #define OMIT_TEMPDB 1 366 #else 367 #define OMIT_TEMPDB 0 368 #endif 369 370 /* 371 ** The "file format" number is an integer that is incremented whenever 372 ** the VDBE-level file format changes. The following macros define the 373 ** the default file format for new databases and the maximum file format 374 ** that the library can read. 375 */ 376 #define SQLITE_MAX_FILE_FORMAT 4 377 #ifndef SQLITE_DEFAULT_FILE_FORMAT 378 # define SQLITE_DEFAULT_FILE_FORMAT 4 379 #endif 380 381 /* 382 ** Determine whether triggers are recursive by default. This can be 383 ** changed at run-time using a pragma. 384 */ 385 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 386 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 387 #endif 388 389 /* 390 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 391 ** on the command-line 392 */ 393 #ifndef SQLITE_TEMP_STORE 394 # define SQLITE_TEMP_STORE 1 395 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 396 #endif 397 398 /* 399 ** GCC does not define the offsetof() macro so we'll have to do it 400 ** ourselves. 401 */ 402 #ifndef offsetof 403 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 404 #endif 405 406 /* 407 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 408 ** not, there are still machines out there that use EBCDIC.) 409 */ 410 #if 'A' == '\301' 411 # define SQLITE_EBCDIC 1 412 #else 413 # define SQLITE_ASCII 1 414 #endif 415 416 /* 417 ** Integers of known sizes. These typedefs might change for architectures 418 ** where the sizes very. Preprocessor macros are available so that the 419 ** types can be conveniently redefined at compile-type. Like this: 420 ** 421 ** cc '-DUINTPTR_TYPE=long long int' ... 422 */ 423 #ifndef UINT32_TYPE 424 # ifdef HAVE_UINT32_T 425 # define UINT32_TYPE uint32_t 426 # else 427 # define UINT32_TYPE unsigned int 428 # endif 429 #endif 430 #ifndef UINT16_TYPE 431 # ifdef HAVE_UINT16_T 432 # define UINT16_TYPE uint16_t 433 # else 434 # define UINT16_TYPE unsigned short int 435 # endif 436 #endif 437 #ifndef INT16_TYPE 438 # ifdef HAVE_INT16_T 439 # define INT16_TYPE int16_t 440 # else 441 # define INT16_TYPE short int 442 # endif 443 #endif 444 #ifndef UINT8_TYPE 445 # ifdef HAVE_UINT8_T 446 # define UINT8_TYPE uint8_t 447 # else 448 # define UINT8_TYPE unsigned char 449 # endif 450 #endif 451 #ifndef INT8_TYPE 452 # ifdef HAVE_INT8_T 453 # define INT8_TYPE int8_t 454 # else 455 # define INT8_TYPE signed char 456 # endif 457 #endif 458 #ifndef LONGDOUBLE_TYPE 459 # define LONGDOUBLE_TYPE long double 460 #endif 461 typedef sqlite_int64 i64; /* 8-byte signed integer */ 462 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 463 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 464 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 465 typedef INT16_TYPE i16; /* 2-byte signed integer */ 466 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 467 typedef INT8_TYPE i8; /* 1-byte signed integer */ 468 469 /* 470 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 471 ** that can be stored in a u32 without loss of data. The value 472 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 473 ** have to specify the value in the less intuitive manner shown: 474 */ 475 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 476 477 /* 478 ** The datatype used to store estimates of the number of rows in a 479 ** table or index. This is an unsigned integer type. For 99.9% of 480 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 481 ** can be used at compile-time if desired. 482 */ 483 #ifdef SQLITE_64BIT_STATS 484 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 485 #else 486 typedef u32 tRowcnt; /* 32-bit is the default */ 487 #endif 488 489 /* 490 ** Macros to determine whether the machine is big or little endian, 491 ** evaluated at runtime. 492 */ 493 #ifdef SQLITE_AMALGAMATION 494 const int sqlite3one = 1; 495 #else 496 extern const int sqlite3one; 497 #endif 498 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 499 || defined(__x86_64) || defined(__x86_64__) 500 # define SQLITE_BIGENDIAN 0 501 # define SQLITE_LITTLEENDIAN 1 502 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 503 #else 504 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 505 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 506 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 507 #endif 508 509 /* 510 ** Constants for the largest and smallest possible 64-bit signed integers. 511 ** These macros are designed to work correctly on both 32-bit and 64-bit 512 ** compilers. 513 */ 514 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 515 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 516 517 /* 518 ** Round up a number to the next larger multiple of 8. This is used 519 ** to force 8-byte alignment on 64-bit architectures. 520 */ 521 #define ROUND8(x) (((x)+7)&~7) 522 523 /* 524 ** Round down to the nearest multiple of 8 525 */ 526 #define ROUNDDOWN8(x) ((x)&~7) 527 528 /* 529 ** Assert that the pointer X is aligned to an 8-byte boundary. This 530 ** macro is used only within assert() to verify that the code gets 531 ** all alignment restrictions correct. 532 ** 533 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 534 ** underlying malloc() implemention might return us 4-byte aligned 535 ** pointers. In that case, only verify 4-byte alignment. 536 */ 537 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 538 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 539 #else 540 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 541 #endif 542 543 /* 544 ** Disable MMAP on platforms where it is known to not work 545 */ 546 #if defined(__OpenBSD__) || defined(__QNXNTO__) 547 # undef SQLITE_MAX_MMAP_SIZE 548 # define SQLITE_MAX_MMAP_SIZE 0 549 #endif 550 551 /* 552 ** Default maximum size of memory used by memory-mapped I/O in the VFS 553 */ 554 #ifdef __APPLE__ 555 # include <TargetConditionals.h> 556 # if TARGET_OS_IPHONE 557 # undef SQLITE_MAX_MMAP_SIZE 558 # define SQLITE_MAX_MMAP_SIZE 0 559 # endif 560 #endif 561 #ifndef SQLITE_MAX_MMAP_SIZE 562 # if defined(__linux__) \ 563 || defined(_WIN32) \ 564 || (defined(__APPLE__) && defined(__MACH__)) \ 565 || defined(__sun) 566 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 567 # else 568 # define SQLITE_MAX_MMAP_SIZE 0 569 # endif 570 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 571 #endif 572 573 /* 574 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 575 ** default MMAP_SIZE is specified at compile-time, make sure that it does 576 ** not exceed the maximum mmap size. 577 */ 578 #ifndef SQLITE_DEFAULT_MMAP_SIZE 579 # define SQLITE_DEFAULT_MMAP_SIZE 0 580 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 581 #endif 582 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 583 # undef SQLITE_DEFAULT_MMAP_SIZE 584 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 585 #endif 586 587 /* 588 ** An instance of the following structure is used to store the busy-handler 589 ** callback for a given sqlite handle. 590 ** 591 ** The sqlite.busyHandler member of the sqlite struct contains the busy 592 ** callback for the database handle. Each pager opened via the sqlite 593 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 594 ** callback is currently invoked only from within pager.c. 595 */ 596 typedef struct BusyHandler BusyHandler; 597 struct BusyHandler { 598 int (*xFunc)(void *,int); /* The busy callback */ 599 void *pArg; /* First arg to busy callback */ 600 int nBusy; /* Incremented with each busy call */ 601 }; 602 603 /* 604 ** Name of the master database table. The master database table 605 ** is a special table that holds the names and attributes of all 606 ** user tables and indices. 607 */ 608 #define MASTER_NAME "sqlite_master" 609 #define TEMP_MASTER_NAME "sqlite_temp_master" 610 611 /* 612 ** The root-page of the master database table. 613 */ 614 #define MASTER_ROOT 1 615 616 /* 617 ** The name of the schema table. 618 */ 619 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 620 621 /* 622 ** A convenience macro that returns the number of elements in 623 ** an array. 624 */ 625 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 626 627 /* 628 ** Determine if the argument is a power of two 629 */ 630 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 631 632 /* 633 ** The following value as a destructor means to use sqlite3DbFree(). 634 ** The sqlite3DbFree() routine requires two parameters instead of the 635 ** one parameter that destructors normally want. So we have to introduce 636 ** this magic value that the code knows to handle differently. Any 637 ** pointer will work here as long as it is distinct from SQLITE_STATIC 638 ** and SQLITE_TRANSIENT. 639 */ 640 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 641 642 /* 643 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 644 ** not support Writable Static Data (WSD) such as global and static variables. 645 ** All variables must either be on the stack or dynamically allocated from 646 ** the heap. When WSD is unsupported, the variable declarations scattered 647 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 648 ** macro is used for this purpose. And instead of referencing the variable 649 ** directly, we use its constant as a key to lookup the run-time allocated 650 ** buffer that holds real variable. The constant is also the initializer 651 ** for the run-time allocated buffer. 652 ** 653 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 654 ** macros become no-ops and have zero performance impact. 655 */ 656 #ifdef SQLITE_OMIT_WSD 657 #define SQLITE_WSD const 658 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 659 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 660 int sqlite3_wsd_init(int N, int J); 661 void *sqlite3_wsd_find(void *K, int L); 662 #else 663 #define SQLITE_WSD 664 #define GLOBAL(t,v) v 665 #define sqlite3GlobalConfig sqlite3Config 666 #endif 667 668 /* 669 ** The following macros are used to suppress compiler warnings and to 670 ** make it clear to human readers when a function parameter is deliberately 671 ** left unused within the body of a function. This usually happens when 672 ** a function is called via a function pointer. For example the 673 ** implementation of an SQL aggregate step callback may not use the 674 ** parameter indicating the number of arguments passed to the aggregate, 675 ** if it knows that this is enforced elsewhere. 676 ** 677 ** When a function parameter is not used at all within the body of a function, 678 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 679 ** However, these macros may also be used to suppress warnings related to 680 ** parameters that may or may not be used depending on compilation options. 681 ** For example those parameters only used in assert() statements. In these 682 ** cases the parameters are named as per the usual conventions. 683 */ 684 #define UNUSED_PARAMETER(x) (void)(x) 685 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 686 687 /* 688 ** Forward references to structures 689 */ 690 typedef struct AggInfo AggInfo; 691 typedef struct AuthContext AuthContext; 692 typedef struct AutoincInfo AutoincInfo; 693 typedef struct Bitvec Bitvec; 694 typedef struct CollSeq CollSeq; 695 typedef struct Column Column; 696 typedef struct Db Db; 697 typedef struct Schema Schema; 698 typedef struct Expr Expr; 699 typedef struct ExprList ExprList; 700 typedef struct ExprSpan ExprSpan; 701 typedef struct FKey FKey; 702 typedef struct FuncDestructor FuncDestructor; 703 typedef struct FuncDef FuncDef; 704 typedef struct FuncDefHash FuncDefHash; 705 typedef struct IdList IdList; 706 typedef struct Index Index; 707 typedef struct IndexSample IndexSample; 708 typedef struct KeyClass KeyClass; 709 typedef struct KeyInfo KeyInfo; 710 typedef struct Lookaside Lookaside; 711 typedef struct LookasideSlot LookasideSlot; 712 typedef struct Module Module; 713 typedef struct NameContext NameContext; 714 typedef struct Parse Parse; 715 typedef struct RowSet RowSet; 716 typedef struct Savepoint Savepoint; 717 typedef struct Select Select; 718 typedef struct SelectDest SelectDest; 719 typedef struct SrcList SrcList; 720 typedef struct StrAccum StrAccum; 721 typedef struct Table Table; 722 typedef struct TableLock TableLock; 723 typedef struct Token Token; 724 typedef struct Trigger Trigger; 725 typedef struct TriggerPrg TriggerPrg; 726 typedef struct TriggerStep TriggerStep; 727 typedef struct UnpackedRecord UnpackedRecord; 728 typedef struct VTable VTable; 729 typedef struct VtabCtx VtabCtx; 730 typedef struct Walker Walker; 731 typedef struct WherePlan WherePlan; 732 typedef struct WhereInfo WhereInfo; 733 typedef struct WhereLevel WhereLevel; 734 735 /* 736 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 737 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 738 ** pointer types (i.e. FuncDef) defined above. 739 */ 740 #include "btree.h" 741 #include "vdbe.h" 742 #include "pager.h" 743 #include "pcache.h" 744 745 #include "os.h" 746 #include "mutex.h" 747 748 749 /* 750 ** Each database file to be accessed by the system is an instance 751 ** of the following structure. There are normally two of these structures 752 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 753 ** aDb[1] is the database file used to hold temporary tables. Additional 754 ** databases may be attached. 755 */ 756 struct Db { 757 char *zName; /* Name of this database */ 758 Btree *pBt; /* The B*Tree structure for this database file */ 759 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 760 u8 safety_level; /* How aggressive at syncing data to disk */ 761 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 762 }; 763 764 /* 765 ** An instance of the following structure stores a database schema. 766 ** 767 ** Most Schema objects are associated with a Btree. The exception is 768 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 769 ** In shared cache mode, a single Schema object can be shared by multiple 770 ** Btrees that refer to the same underlying BtShared object. 771 ** 772 ** Schema objects are automatically deallocated when the last Btree that 773 ** references them is destroyed. The TEMP Schema is manually freed by 774 ** sqlite3_close(). 775 * 776 ** A thread must be holding a mutex on the corresponding Btree in order 777 ** to access Schema content. This implies that the thread must also be 778 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 779 ** For a TEMP Schema, only the connection mutex is required. 780 */ 781 struct Schema { 782 int schema_cookie; /* Database schema version number for this file */ 783 int iGeneration; /* Generation counter. Incremented with each change */ 784 Hash tblHash; /* All tables indexed by name */ 785 Hash idxHash; /* All (named) indices indexed by name */ 786 Hash trigHash; /* All triggers indexed by name */ 787 Hash fkeyHash; /* All foreign keys by referenced table name */ 788 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 789 u8 file_format; /* Schema format version for this file */ 790 u8 enc; /* Text encoding used by this database */ 791 u16 flags; /* Flags associated with this schema */ 792 int cache_size; /* Number of pages to use in the cache */ 793 }; 794 795 /* 796 ** These macros can be used to test, set, or clear bits in the 797 ** Db.pSchema->flags field. 798 */ 799 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 800 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 801 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 802 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 803 804 /* 805 ** Allowed values for the DB.pSchema->flags field. 806 ** 807 ** The DB_SchemaLoaded flag is set after the database schema has been 808 ** read into internal hash tables. 809 ** 810 ** DB_UnresetViews means that one or more views have column names that 811 ** have been filled out. If the schema changes, these column names might 812 ** changes and so the view will need to be reset. 813 */ 814 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 815 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 816 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 817 818 /* 819 ** The number of different kinds of things that can be limited 820 ** using the sqlite3_limit() interface. 821 */ 822 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 823 824 /* 825 ** Lookaside malloc is a set of fixed-size buffers that can be used 826 ** to satisfy small transient memory allocation requests for objects 827 ** associated with a particular database connection. The use of 828 ** lookaside malloc provides a significant performance enhancement 829 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 830 ** SQL statements. 831 ** 832 ** The Lookaside structure holds configuration information about the 833 ** lookaside malloc subsystem. Each available memory allocation in 834 ** the lookaside subsystem is stored on a linked list of LookasideSlot 835 ** objects. 836 ** 837 ** Lookaside allocations are only allowed for objects that are associated 838 ** with a particular database connection. Hence, schema information cannot 839 ** be stored in lookaside because in shared cache mode the schema information 840 ** is shared by multiple database connections. Therefore, while parsing 841 ** schema information, the Lookaside.bEnabled flag is cleared so that 842 ** lookaside allocations are not used to construct the schema objects. 843 */ 844 struct Lookaside { 845 u16 sz; /* Size of each buffer in bytes */ 846 u8 bEnabled; /* False to disable new lookaside allocations */ 847 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 848 int nOut; /* Number of buffers currently checked out */ 849 int mxOut; /* Highwater mark for nOut */ 850 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 851 LookasideSlot *pFree; /* List of available buffers */ 852 void *pStart; /* First byte of available memory space */ 853 void *pEnd; /* First byte past end of available space */ 854 }; 855 struct LookasideSlot { 856 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 857 }; 858 859 /* 860 ** A hash table for function definitions. 861 ** 862 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 863 ** Collisions are on the FuncDef.pHash chain. 864 */ 865 struct FuncDefHash { 866 FuncDef *a[23]; /* Hash table for functions */ 867 }; 868 869 /* 870 ** Each database connection is an instance of the following structure. 871 */ 872 struct sqlite3 { 873 sqlite3_vfs *pVfs; /* OS Interface */ 874 struct Vdbe *pVdbe; /* List of active virtual machines */ 875 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 876 sqlite3_mutex *mutex; /* Connection mutex */ 877 Db *aDb; /* All backends */ 878 int nDb; /* Number of backends currently in use */ 879 int flags; /* Miscellaneous flags. See below */ 880 i64 lastRowid; /* ROWID of most recent insert (see above) */ 881 i64 szMmap; /* Default mmap_size setting */ 882 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 883 int errCode; /* Most recent error code (SQLITE_*) */ 884 int errMask; /* & result codes with this before returning */ 885 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 886 u8 autoCommit; /* The auto-commit flag. */ 887 u8 temp_store; /* 1: file 2: memory 0: default */ 888 u8 mallocFailed; /* True if we have seen a malloc failure */ 889 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 890 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 891 u8 suppressErr; /* Do not issue error messages if true */ 892 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 893 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 894 int nextPagesize; /* Pagesize after VACUUM if >0 */ 895 u32 magic; /* Magic number for detect library misuse */ 896 int nChange; /* Value returned by sqlite3_changes() */ 897 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 898 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 899 struct sqlite3InitInfo { /* Information used during initialization */ 900 int newTnum; /* Rootpage of table being initialized */ 901 u8 iDb; /* Which db file is being initialized */ 902 u8 busy; /* TRUE if currently initializing */ 903 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 904 } init; 905 int activeVdbeCnt; /* Number of VDBEs currently executing */ 906 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 907 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ 908 int nExtension; /* Number of loaded extensions */ 909 void **aExtension; /* Array of shared library handles */ 910 void (*xTrace)(void*,const char*); /* Trace function */ 911 void *pTraceArg; /* Argument to the trace function */ 912 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 913 void *pProfileArg; /* Argument to profile function */ 914 void *pCommitArg; /* Argument to xCommitCallback() */ 915 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 916 void *pRollbackArg; /* Argument to xRollbackCallback() */ 917 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 918 void *pUpdateArg; 919 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 920 #ifndef SQLITE_OMIT_WAL 921 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 922 void *pWalArg; 923 #endif 924 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 925 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 926 void *pCollNeededArg; 927 sqlite3_value *pErr; /* Most recent error message */ 928 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 929 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 930 union { 931 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 932 double notUsed1; /* Spacer */ 933 } u1; 934 Lookaside lookaside; /* Lookaside malloc configuration */ 935 #ifndef SQLITE_OMIT_AUTHORIZATION 936 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 937 /* Access authorization function */ 938 void *pAuthArg; /* 1st argument to the access auth function */ 939 #endif 940 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 941 int (*xProgress)(void *); /* The progress callback */ 942 void *pProgressArg; /* Argument to the progress callback */ 943 int nProgressOps; /* Number of opcodes for progress callback */ 944 #endif 945 #ifndef SQLITE_OMIT_VIRTUALTABLE 946 int nVTrans; /* Allocated size of aVTrans */ 947 Hash aModule; /* populated by sqlite3_create_module() */ 948 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 949 VTable **aVTrans; /* Virtual tables with open transactions */ 950 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 951 #endif 952 FuncDefHash aFunc; /* Hash table of connection functions */ 953 Hash aCollSeq; /* All collating sequences */ 954 BusyHandler busyHandler; /* Busy callback */ 955 Db aDbStatic[2]; /* Static space for the 2 default backends */ 956 Savepoint *pSavepoint; /* List of active savepoints */ 957 int busyTimeout; /* Busy handler timeout, in msec */ 958 int nSavepoint; /* Number of non-transaction savepoints */ 959 int nStatement; /* Number of nested statement-transactions */ 960 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 961 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 962 963 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 964 /* The following variables are all protected by the STATIC_MASTER 965 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 966 ** 967 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 968 ** unlock so that it can proceed. 969 ** 970 ** When X.pBlockingConnection==Y, that means that something that X tried 971 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 972 ** held by Y. 973 */ 974 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 975 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 976 void *pUnlockArg; /* Argument to xUnlockNotify */ 977 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 978 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 979 #endif 980 }; 981 982 /* 983 ** A macro to discover the encoding of a database. 984 */ 985 #define ENC(db) ((db)->aDb[0].pSchema->enc) 986 987 /* 988 ** Possible values for the sqlite3.flags. 989 */ 990 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 991 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 992 #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ 993 #define SQLITE_ShortColNames 0x00000008 /* Show short columns names */ 994 #define SQLITE_CountRows 0x00000010 /* Count rows changed by INSERT, */ 995 /* DELETE, or UPDATE and return */ 996 /* the count using a callback. */ 997 #define SQLITE_NullCallback 0x00000020 /* Invoke the callback once if the */ 998 /* result set is empty */ 999 #define SQLITE_SqlTrace 0x00000040 /* Debug print SQL as it executes */ 1000 #define SQLITE_VdbeListing 0x00000080 /* Debug listings of VDBE programs */ 1001 #define SQLITE_WriteSchema 0x00000100 /* OK to update SQLITE_MASTER */ 1002 #define SQLITE_VdbeAddopTrace 0x00000200 /* Trace sqlite3VdbeAddOp() calls */ 1003 #define SQLITE_IgnoreChecks 0x00000400 /* Do not enforce check constraints */ 1004 #define SQLITE_ReadUncommitted 0x0000800 /* For shared-cache mode */ 1005 #define SQLITE_LegacyFileFmt 0x00001000 /* Create new databases in format 1 */ 1006 #define SQLITE_FullFSync 0x00002000 /* Use full fsync on the backend */ 1007 #define SQLITE_CkptFullFSync 0x00004000 /* Use full fsync for checkpoint */ 1008 #define SQLITE_RecoveryMode 0x00008000 /* Ignore schema errors */ 1009 #define SQLITE_ReverseOrder 0x00010000 /* Reverse unordered SELECTs */ 1010 #define SQLITE_RecTriggers 0x00020000 /* Enable recursive triggers */ 1011 #define SQLITE_ForeignKeys 0x00040000 /* Enforce foreign key constraints */ 1012 #define SQLITE_AutoIndex 0x00080000 /* Enable automatic indexes */ 1013 #define SQLITE_PreferBuiltin 0x00100000 /* Preference to built-in funcs */ 1014 #define SQLITE_LoadExtension 0x00200000 /* Enable load_extension */ 1015 #define SQLITE_EnableTrigger 0x00400000 /* True to enable triggers */ 1016 1017 /* 1018 ** Bits of the sqlite3.dbOptFlags field that are used by the 1019 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1020 ** selectively disable various optimizations. 1021 */ 1022 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1023 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1024 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1025 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1026 #define SQLITE_IdxRealAsInt 0x0010 /* Store REAL as INT in indices */ 1027 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1028 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1029 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1030 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1031 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1032 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1033 1034 /* 1035 ** Macros for testing whether or not optimizations are enabled or disabled. 1036 */ 1037 #ifndef SQLITE_OMIT_BUILTIN_TEST 1038 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1039 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1040 #else 1041 #define OptimizationDisabled(db, mask) 0 1042 #define OptimizationEnabled(db, mask) 1 1043 #endif 1044 1045 /* 1046 ** Possible values for the sqlite.magic field. 1047 ** The numbers are obtained at random and have no special meaning, other 1048 ** than being distinct from one another. 1049 */ 1050 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1051 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1052 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1053 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1054 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1055 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1056 1057 /* 1058 ** Each SQL function is defined by an instance of the following 1059 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1060 ** hash table. When multiple functions have the same name, the hash table 1061 ** points to a linked list of these structures. 1062 */ 1063 struct FuncDef { 1064 i16 nArg; /* Number of arguments. -1 means unlimited */ 1065 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 1066 u8 flags; /* Some combination of SQLITE_FUNC_* */ 1067 void *pUserData; /* User data parameter */ 1068 FuncDef *pNext; /* Next function with same name */ 1069 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1070 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1071 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1072 char *zName; /* SQL name of the function. */ 1073 FuncDef *pHash; /* Next with a different name but the same hash */ 1074 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1075 }; 1076 1077 /* 1078 ** This structure encapsulates a user-function destructor callback (as 1079 ** configured using create_function_v2()) and a reference counter. When 1080 ** create_function_v2() is called to create a function with a destructor, 1081 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1082 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1083 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1084 ** member of each of the new FuncDef objects is set to point to the allocated 1085 ** FuncDestructor. 1086 ** 1087 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1088 ** count on this object is decremented. When it reaches 0, the destructor 1089 ** is invoked and the FuncDestructor structure freed. 1090 */ 1091 struct FuncDestructor { 1092 int nRef; 1093 void (*xDestroy)(void *); 1094 void *pUserData; 1095 }; 1096 1097 /* 1098 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1099 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1100 ** are assert() statements in the code to verify this. 1101 */ 1102 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 1103 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 1104 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 1105 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 1106 #define SQLITE_FUNC_COUNT 0x10 /* Built-in count(*) aggregate */ 1107 #define SQLITE_FUNC_COALESCE 0x20 /* Built-in coalesce() or ifnull() function */ 1108 #define SQLITE_FUNC_LENGTH 0x40 /* Built-in length() function */ 1109 #define SQLITE_FUNC_TYPEOF 0x80 /* Built-in typeof() function */ 1110 1111 /* 1112 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1113 ** used to create the initializers for the FuncDef structures. 1114 ** 1115 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1116 ** Used to create a scalar function definition of a function zName 1117 ** implemented by C function xFunc that accepts nArg arguments. The 1118 ** value passed as iArg is cast to a (void*) and made available 1119 ** as the user-data (sqlite3_user_data()) for the function. If 1120 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1121 ** 1122 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1123 ** Used to create an aggregate function definition implemented by 1124 ** the C functions xStep and xFinal. The first four parameters 1125 ** are interpreted in the same way as the first 4 parameters to 1126 ** FUNCTION(). 1127 ** 1128 ** LIKEFUNC(zName, nArg, pArg, flags) 1129 ** Used to create a scalar function definition of a function zName 1130 ** that accepts nArg arguments and is implemented by a call to C 1131 ** function likeFunc. Argument pArg is cast to a (void *) and made 1132 ** available as the function user-data (sqlite3_user_data()). The 1133 ** FuncDef.flags variable is set to the value passed as the flags 1134 ** parameter. 1135 */ 1136 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1137 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL), \ 1138 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1139 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1140 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1141 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1142 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1143 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1144 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1145 #define LIKEFUNC(zName, nArg, arg, flags) \ 1146 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1147 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1148 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1149 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1150 1151 /* 1152 ** All current savepoints are stored in a linked list starting at 1153 ** sqlite3.pSavepoint. The first element in the list is the most recently 1154 ** opened savepoint. Savepoints are added to the list by the vdbe 1155 ** OP_Savepoint instruction. 1156 */ 1157 struct Savepoint { 1158 char *zName; /* Savepoint name (nul-terminated) */ 1159 i64 nDeferredCons; /* Number of deferred fk violations */ 1160 Savepoint *pNext; /* Parent savepoint (if any) */ 1161 }; 1162 1163 /* 1164 ** The following are used as the second parameter to sqlite3Savepoint(), 1165 ** and as the P1 argument to the OP_Savepoint instruction. 1166 */ 1167 #define SAVEPOINT_BEGIN 0 1168 #define SAVEPOINT_RELEASE 1 1169 #define SAVEPOINT_ROLLBACK 2 1170 1171 1172 /* 1173 ** Each SQLite module (virtual table definition) is defined by an 1174 ** instance of the following structure, stored in the sqlite3.aModule 1175 ** hash table. 1176 */ 1177 struct Module { 1178 const sqlite3_module *pModule; /* Callback pointers */ 1179 const char *zName; /* Name passed to create_module() */ 1180 void *pAux; /* pAux passed to create_module() */ 1181 void (*xDestroy)(void *); /* Module destructor function */ 1182 }; 1183 1184 /* 1185 ** information about each column of an SQL table is held in an instance 1186 ** of this structure. 1187 */ 1188 struct Column { 1189 char *zName; /* Name of this column */ 1190 Expr *pDflt; /* Default value of this column */ 1191 char *zDflt; /* Original text of the default value */ 1192 char *zType; /* Data type for this column */ 1193 char *zColl; /* Collating sequence. If NULL, use the default */ 1194 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1195 char affinity; /* One of the SQLITE_AFF_... values */ 1196 u16 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1197 }; 1198 1199 /* Allowed values for Column.colFlags: 1200 */ 1201 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1202 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1203 1204 /* 1205 ** A "Collating Sequence" is defined by an instance of the following 1206 ** structure. Conceptually, a collating sequence consists of a name and 1207 ** a comparison routine that defines the order of that sequence. 1208 ** 1209 ** If CollSeq.xCmp is NULL, it means that the 1210 ** collating sequence is undefined. Indices built on an undefined 1211 ** collating sequence may not be read or written. 1212 */ 1213 struct CollSeq { 1214 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1215 u8 enc; /* Text encoding handled by xCmp() */ 1216 void *pUser; /* First argument to xCmp() */ 1217 int (*xCmp)(void*,int, const void*, int, const void*); 1218 void (*xDel)(void*); /* Destructor for pUser */ 1219 }; 1220 1221 /* 1222 ** A sort order can be either ASC or DESC. 1223 */ 1224 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1225 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1226 1227 /* 1228 ** Column affinity types. 1229 ** 1230 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1231 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1232 ** the speed a little by numbering the values consecutively. 1233 ** 1234 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1235 ** when multiple affinity types are concatenated into a string and 1236 ** used as the P4 operand, they will be more readable. 1237 ** 1238 ** Note also that the numeric types are grouped together so that testing 1239 ** for a numeric type is a single comparison. 1240 */ 1241 #define SQLITE_AFF_TEXT 'a' 1242 #define SQLITE_AFF_NONE 'b' 1243 #define SQLITE_AFF_NUMERIC 'c' 1244 #define SQLITE_AFF_INTEGER 'd' 1245 #define SQLITE_AFF_REAL 'e' 1246 1247 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1248 1249 /* 1250 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1251 ** affinity value. 1252 */ 1253 #define SQLITE_AFF_MASK 0x67 1254 1255 /* 1256 ** Additional bit values that can be ORed with an affinity without 1257 ** changing the affinity. 1258 */ 1259 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1260 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1261 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1262 1263 /* 1264 ** An object of this type is created for each virtual table present in 1265 ** the database schema. 1266 ** 1267 ** If the database schema is shared, then there is one instance of this 1268 ** structure for each database connection (sqlite3*) that uses the shared 1269 ** schema. This is because each database connection requires its own unique 1270 ** instance of the sqlite3_vtab* handle used to access the virtual table 1271 ** implementation. sqlite3_vtab* handles can not be shared between 1272 ** database connections, even when the rest of the in-memory database 1273 ** schema is shared, as the implementation often stores the database 1274 ** connection handle passed to it via the xConnect() or xCreate() method 1275 ** during initialization internally. This database connection handle may 1276 ** then be used by the virtual table implementation to access real tables 1277 ** within the database. So that they appear as part of the callers 1278 ** transaction, these accesses need to be made via the same database 1279 ** connection as that used to execute SQL operations on the virtual table. 1280 ** 1281 ** All VTable objects that correspond to a single table in a shared 1282 ** database schema are initially stored in a linked-list pointed to by 1283 ** the Table.pVTable member variable of the corresponding Table object. 1284 ** When an sqlite3_prepare() operation is required to access the virtual 1285 ** table, it searches the list for the VTable that corresponds to the 1286 ** database connection doing the preparing so as to use the correct 1287 ** sqlite3_vtab* handle in the compiled query. 1288 ** 1289 ** When an in-memory Table object is deleted (for example when the 1290 ** schema is being reloaded for some reason), the VTable objects are not 1291 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1292 ** immediately. Instead, they are moved from the Table.pVTable list to 1293 ** another linked list headed by the sqlite3.pDisconnect member of the 1294 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1295 ** next time a statement is prepared using said sqlite3*. This is done 1296 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1297 ** Refer to comments above function sqlite3VtabUnlockList() for an 1298 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1299 ** list without holding the corresponding sqlite3.mutex mutex. 1300 ** 1301 ** The memory for objects of this type is always allocated by 1302 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1303 ** the first argument. 1304 */ 1305 struct VTable { 1306 sqlite3 *db; /* Database connection associated with this table */ 1307 Module *pMod; /* Pointer to module implementation */ 1308 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1309 int nRef; /* Number of pointers to this structure */ 1310 u8 bConstraint; /* True if constraints are supported */ 1311 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1312 VTable *pNext; /* Next in linked list (see above) */ 1313 }; 1314 1315 /* 1316 ** Each SQL table is represented in memory by an instance of the 1317 ** following structure. 1318 ** 1319 ** Table.zName is the name of the table. The case of the original 1320 ** CREATE TABLE statement is stored, but case is not significant for 1321 ** comparisons. 1322 ** 1323 ** Table.nCol is the number of columns in this table. Table.aCol is a 1324 ** pointer to an array of Column structures, one for each column. 1325 ** 1326 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1327 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1328 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1329 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1330 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1331 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1332 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1333 ** 1334 ** Table.tnum is the page number for the root BTree page of the table in the 1335 ** database file. If Table.iDb is the index of the database table backend 1336 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1337 ** holds temporary tables and indices. If TF_Ephemeral is set 1338 ** then the table is stored in a file that is automatically deleted 1339 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1340 ** refers VDBE cursor number that holds the table open, not to the root 1341 ** page number. Transient tables are used to hold the results of a 1342 ** sub-query that appears instead of a real table name in the FROM clause 1343 ** of a SELECT statement. 1344 */ 1345 struct Table { 1346 char *zName; /* Name of the table or view */ 1347 Column *aCol; /* Information about each column */ 1348 Index *pIndex; /* List of SQL indexes on this table. */ 1349 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1350 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1351 char *zColAff; /* String defining the affinity of each column */ 1352 #ifndef SQLITE_OMIT_CHECK 1353 ExprList *pCheck; /* All CHECK constraints */ 1354 #endif 1355 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1356 int tnum; /* Root BTree node for this table (see note above) */ 1357 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1358 i16 nCol; /* Number of columns in this table */ 1359 u16 nRef; /* Number of pointers to this Table */ 1360 u8 tabFlags; /* Mask of TF_* values */ 1361 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1362 #ifndef SQLITE_OMIT_ALTERTABLE 1363 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1364 #endif 1365 #ifndef SQLITE_OMIT_VIRTUALTABLE 1366 int nModuleArg; /* Number of arguments to the module */ 1367 char **azModuleArg; /* Text of all module args. [0] is module name */ 1368 VTable *pVTable; /* List of VTable objects. */ 1369 #endif 1370 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1371 Schema *pSchema; /* Schema that contains this table */ 1372 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1373 }; 1374 1375 /* 1376 ** Allowed values for Tabe.tabFlags. 1377 */ 1378 #define TF_Readonly 0x01 /* Read-only system table */ 1379 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1380 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1381 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1382 #define TF_Virtual 0x10 /* Is a virtual table */ 1383 1384 1385 /* 1386 ** Test to see whether or not a table is a virtual table. This is 1387 ** done as a macro so that it will be optimized out when virtual 1388 ** table support is omitted from the build. 1389 */ 1390 #ifndef SQLITE_OMIT_VIRTUALTABLE 1391 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1392 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1393 #else 1394 # define IsVirtual(X) 0 1395 # define IsHiddenColumn(X) 0 1396 #endif 1397 1398 /* 1399 ** Each foreign key constraint is an instance of the following structure. 1400 ** 1401 ** A foreign key is associated with two tables. The "from" table is 1402 ** the table that contains the REFERENCES clause that creates the foreign 1403 ** key. The "to" table is the table that is named in the REFERENCES clause. 1404 ** Consider this example: 1405 ** 1406 ** CREATE TABLE ex1( 1407 ** a INTEGER PRIMARY KEY, 1408 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1409 ** ); 1410 ** 1411 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1412 ** 1413 ** Each REFERENCES clause generates an instance of the following structure 1414 ** which is attached to the from-table. The to-table need not exist when 1415 ** the from-table is created. The existence of the to-table is not checked. 1416 */ 1417 struct FKey { 1418 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1419 FKey *pNextFrom; /* Next foreign key in pFrom */ 1420 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1421 FKey *pNextTo; /* Next foreign key on table named zTo */ 1422 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1423 int nCol; /* Number of columns in this key */ 1424 /* EV: R-30323-21917 */ 1425 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1426 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1427 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1428 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1429 int iFrom; /* Index of column in pFrom */ 1430 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1431 } aCol[1]; /* One entry for each of nCol column s */ 1432 }; 1433 1434 /* 1435 ** SQLite supports many different ways to resolve a constraint 1436 ** error. ROLLBACK processing means that a constraint violation 1437 ** causes the operation in process to fail and for the current transaction 1438 ** to be rolled back. ABORT processing means the operation in process 1439 ** fails and any prior changes from that one operation are backed out, 1440 ** but the transaction is not rolled back. FAIL processing means that 1441 ** the operation in progress stops and returns an error code. But prior 1442 ** changes due to the same operation are not backed out and no rollback 1443 ** occurs. IGNORE means that the particular row that caused the constraint 1444 ** error is not inserted or updated. Processing continues and no error 1445 ** is returned. REPLACE means that preexisting database rows that caused 1446 ** a UNIQUE constraint violation are removed so that the new insert or 1447 ** update can proceed. Processing continues and no error is reported. 1448 ** 1449 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1450 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1451 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1452 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1453 ** referenced table row is propagated into the row that holds the 1454 ** foreign key. 1455 ** 1456 ** The following symbolic values are used to record which type 1457 ** of action to take. 1458 */ 1459 #define OE_None 0 /* There is no constraint to check */ 1460 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1461 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1462 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1463 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1464 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1465 1466 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1467 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1468 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1469 #define OE_Cascade 9 /* Cascade the changes */ 1470 1471 #define OE_Default 99 /* Do whatever the default action is */ 1472 1473 1474 /* 1475 ** An instance of the following structure is passed as the first 1476 ** argument to sqlite3VdbeKeyCompare and is used to control the 1477 ** comparison of the two index keys. 1478 */ 1479 struct KeyInfo { 1480 sqlite3 *db; /* The database connection */ 1481 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1482 u16 nField; /* Number of entries in aColl[] */ 1483 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1484 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1485 }; 1486 1487 /* 1488 ** An instance of the following structure holds information about a 1489 ** single index record that has already been parsed out into individual 1490 ** values. 1491 ** 1492 ** A record is an object that contains one or more fields of data. 1493 ** Records are used to store the content of a table row and to store 1494 ** the key of an index. A blob encoding of a record is created by 1495 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1496 ** OP_Column opcode. 1497 ** 1498 ** This structure holds a record that has already been disassembled 1499 ** into its constituent fields. 1500 */ 1501 struct UnpackedRecord { 1502 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1503 u16 nField; /* Number of entries in apMem[] */ 1504 u8 flags; /* Boolean settings. UNPACKED_... below */ 1505 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1506 Mem *aMem; /* Values */ 1507 }; 1508 1509 /* 1510 ** Allowed values of UnpackedRecord.flags 1511 */ 1512 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1513 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1514 #define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */ 1515 1516 /* 1517 ** Each SQL index is represented in memory by an 1518 ** instance of the following structure. 1519 ** 1520 ** The columns of the table that are to be indexed are described 1521 ** by the aiColumn[] field of this structure. For example, suppose 1522 ** we have the following table and index: 1523 ** 1524 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1525 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1526 ** 1527 ** In the Table structure describing Ex1, nCol==3 because there are 1528 ** three columns in the table. In the Index structure describing 1529 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1530 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1531 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1532 ** The second column to be indexed (c1) has an index of 0 in 1533 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1534 ** 1535 ** The Index.onError field determines whether or not the indexed columns 1536 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1537 ** it means this is not a unique index. Otherwise it is a unique index 1538 ** and the value of Index.onError indicate the which conflict resolution 1539 ** algorithm to employ whenever an attempt is made to insert a non-unique 1540 ** element. 1541 */ 1542 struct Index { 1543 char *zName; /* Name of this index */ 1544 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1545 tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ 1546 Table *pTable; /* The SQL table being indexed */ 1547 char *zColAff; /* String defining the affinity of each column */ 1548 Index *pNext; /* The next index associated with the same table */ 1549 Schema *pSchema; /* Schema containing this index */ 1550 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1551 char **azColl; /* Array of collation sequence names for index */ 1552 int tnum; /* DB Page containing root of this index */ 1553 u16 nColumn; /* Number of columns in table used by this index */ 1554 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1555 unsigned autoIndex:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1556 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1557 #ifdef SQLITE_ENABLE_STAT3 1558 int nSample; /* Number of elements in aSample[] */ 1559 tRowcnt avgEq; /* Average nEq value for key values not in aSample */ 1560 IndexSample *aSample; /* Samples of the left-most key */ 1561 #endif 1562 }; 1563 1564 /* 1565 ** Each sample stored in the sqlite_stat3 table is represented in memory 1566 ** using a structure of this type. See documentation at the top of the 1567 ** analyze.c source file for additional information. 1568 */ 1569 struct IndexSample { 1570 union { 1571 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1572 double r; /* Value if eType is SQLITE_FLOAT */ 1573 i64 i; /* Value if eType is SQLITE_INTEGER */ 1574 } u; 1575 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1576 int nByte; /* Size in byte of text or blob. */ 1577 tRowcnt nEq; /* Est. number of rows where the key equals this sample */ 1578 tRowcnt nLt; /* Est. number of rows where key is less than this sample */ 1579 tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ 1580 }; 1581 1582 /* 1583 ** Each token coming out of the lexer is an instance of 1584 ** this structure. Tokens are also used as part of an expression. 1585 ** 1586 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1587 ** may contain random values. Do not make any assumptions about Token.dyn 1588 ** and Token.n when Token.z==0. 1589 */ 1590 struct Token { 1591 const char *z; /* Text of the token. Not NULL-terminated! */ 1592 unsigned int n; /* Number of characters in this token */ 1593 }; 1594 1595 /* 1596 ** An instance of this structure contains information needed to generate 1597 ** code for a SELECT that contains aggregate functions. 1598 ** 1599 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1600 ** pointer to this structure. The Expr.iColumn field is the index in 1601 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1602 ** code for that node. 1603 ** 1604 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1605 ** original Select structure that describes the SELECT statement. These 1606 ** fields do not need to be freed when deallocating the AggInfo structure. 1607 */ 1608 struct AggInfo { 1609 u8 directMode; /* Direct rendering mode means take data directly 1610 ** from source tables rather than from accumulators */ 1611 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1612 ** than the source table */ 1613 int sortingIdx; /* Cursor number of the sorting index */ 1614 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1615 int nSortingColumn; /* Number of columns in the sorting index */ 1616 ExprList *pGroupBy; /* The group by clause */ 1617 struct AggInfo_col { /* For each column used in source tables */ 1618 Table *pTab; /* Source table */ 1619 int iTable; /* Cursor number of the source table */ 1620 int iColumn; /* Column number within the source table */ 1621 int iSorterColumn; /* Column number in the sorting index */ 1622 int iMem; /* Memory location that acts as accumulator */ 1623 Expr *pExpr; /* The original expression */ 1624 } *aCol; 1625 int nColumn; /* Number of used entries in aCol[] */ 1626 int nAccumulator; /* Number of columns that show through to the output. 1627 ** Additional columns are used only as parameters to 1628 ** aggregate functions */ 1629 struct AggInfo_func { /* For each aggregate function */ 1630 Expr *pExpr; /* Expression encoding the function */ 1631 FuncDef *pFunc; /* The aggregate function implementation */ 1632 int iMem; /* Memory location that acts as accumulator */ 1633 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1634 } *aFunc; 1635 int nFunc; /* Number of entries in aFunc[] */ 1636 }; 1637 1638 /* 1639 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1640 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1641 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1642 ** it uses less memory in the Expr object, which is a big memory user 1643 ** in systems with lots of prepared statements. And few applications 1644 ** need more than about 10 or 20 variables. But some extreme users want 1645 ** to have prepared statements with over 32767 variables, and for them 1646 ** the option is available (at compile-time). 1647 */ 1648 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1649 typedef i16 ynVar; 1650 #else 1651 typedef int ynVar; 1652 #endif 1653 1654 /* 1655 ** Each node of an expression in the parse tree is an instance 1656 ** of this structure. 1657 ** 1658 ** Expr.op is the opcode. The integer parser token codes are reused 1659 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1660 ** code representing the ">=" operator. This same integer code is reused 1661 ** to represent the greater-than-or-equal-to operator in the expression 1662 ** tree. 1663 ** 1664 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1665 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1666 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1667 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1668 ** then Expr.token contains the name of the function. 1669 ** 1670 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1671 ** binary operator. Either or both may be NULL. 1672 ** 1673 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1674 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1675 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1676 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1677 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1678 ** valid. 1679 ** 1680 ** An expression of the form ID or ID.ID refers to a column in a table. 1681 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1682 ** the integer cursor number of a VDBE cursor pointing to that table and 1683 ** Expr.iColumn is the column number for the specific column. If the 1684 ** expression is used as a result in an aggregate SELECT, then the 1685 ** value is also stored in the Expr.iAgg column in the aggregate so that 1686 ** it can be accessed after all aggregates are computed. 1687 ** 1688 ** If the expression is an unbound variable marker (a question mark 1689 ** character '?' in the original SQL) then the Expr.iTable holds the index 1690 ** number for that variable. 1691 ** 1692 ** If the expression is a subquery then Expr.iColumn holds an integer 1693 ** register number containing the result of the subquery. If the 1694 ** subquery gives a constant result, then iTable is -1. If the subquery 1695 ** gives a different answer at different times during statement processing 1696 ** then iTable is the address of a subroutine that computes the subquery. 1697 ** 1698 ** If the Expr is of type OP_Column, and the table it is selecting from 1699 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1700 ** corresponding table definition. 1701 ** 1702 ** ALLOCATION NOTES: 1703 ** 1704 ** Expr objects can use a lot of memory space in database schema. To 1705 ** help reduce memory requirements, sometimes an Expr object will be 1706 ** truncated. And to reduce the number of memory allocations, sometimes 1707 ** two or more Expr objects will be stored in a single memory allocation, 1708 ** together with Expr.zToken strings. 1709 ** 1710 ** If the EP_Reduced and EP_TokenOnly flags are set when 1711 ** an Expr object is truncated. When EP_Reduced is set, then all 1712 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1713 ** are contained within the same memory allocation. Note, however, that 1714 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1715 ** allocated, regardless of whether or not EP_Reduced is set. 1716 */ 1717 struct Expr { 1718 u8 op; /* Operation performed by this node */ 1719 char affinity; /* The affinity of the column or 0 if not a column */ 1720 u16 flags; /* Various flags. EP_* See below */ 1721 union { 1722 char *zToken; /* Token value. Zero terminated and dequoted */ 1723 int iValue; /* Non-negative integer value if EP_IntValue */ 1724 } u; 1725 1726 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1727 ** space is allocated for the fields below this point. An attempt to 1728 ** access them will result in a segfault or malfunction. 1729 *********************************************************************/ 1730 1731 Expr *pLeft; /* Left subnode */ 1732 Expr *pRight; /* Right subnode */ 1733 union { 1734 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1735 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1736 } x; 1737 1738 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1739 ** space is allocated for the fields below this point. An attempt to 1740 ** access them will result in a segfault or malfunction. 1741 *********************************************************************/ 1742 1743 #if SQLITE_MAX_EXPR_DEPTH>0 1744 int nHeight; /* Height of the tree headed by this node */ 1745 #endif 1746 int iTable; /* TK_COLUMN: cursor number of table holding column 1747 ** TK_REGISTER: register number 1748 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1749 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1750 ** TK_VARIABLE: variable number (always >= 1). */ 1751 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1752 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1753 u8 flags2; /* Second set of flags. EP2_... */ 1754 u8 op2; /* TK_REGISTER: original value of Expr.op 1755 ** TK_COLUMN: the value of p5 for OP_Column 1756 ** TK_AGG_FUNCTION: nesting depth */ 1757 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1758 Table *pTab; /* Table for TK_COLUMN expressions. */ 1759 }; 1760 1761 /* 1762 ** The following are the meanings of bits in the Expr.flags field. 1763 */ 1764 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1765 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1766 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1767 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1768 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1769 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1770 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1771 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1772 #define EP_Collate 0x0100 /* Tree contains a TK_COLLATE opeartor */ 1773 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1774 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1775 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1776 #define EP_Hint 0x1000 /* Not used */ 1777 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1778 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1779 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1780 1781 /* 1782 ** The following are the meanings of bits in the Expr.flags2 field. 1783 */ 1784 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1785 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1786 1787 /* 1788 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1789 ** flag on an expression structure. This flag is used for VV&A only. The 1790 ** routine is implemented as a macro that only works when in debugging mode, 1791 ** so as not to burden production code. 1792 */ 1793 #ifdef SQLITE_DEBUG 1794 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1795 #else 1796 # define ExprSetIrreducible(X) 1797 #endif 1798 1799 /* 1800 ** These macros can be used to test, set, or clear bits in the 1801 ** Expr.flags field. 1802 */ 1803 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1804 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1805 #define ExprSetProperty(E,P) (E)->flags|=(P) 1806 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1807 1808 /* 1809 ** Macros to determine the number of bytes required by a normal Expr 1810 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1811 ** and an Expr struct with the EP_TokenOnly flag set. 1812 */ 1813 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1814 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1815 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1816 1817 /* 1818 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1819 ** above sqlite3ExprDup() for details. 1820 */ 1821 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1822 1823 /* 1824 ** A list of expressions. Each expression may optionally have a 1825 ** name. An expr/name combination can be used in several ways, such 1826 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1827 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1828 ** also be used as the argument to a function, in which case the a.zName 1829 ** field is not used. 1830 ** 1831 ** By default the Expr.zSpan field holds a human-readable description of 1832 ** the expression that is used in the generation of error messages and 1833 ** column labels. In this case, Expr.zSpan is typically the text of a 1834 ** column expression as it exists in a SELECT statement. However, if 1835 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 1836 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 1837 ** form is used for name resolution with nested FROM clauses. 1838 */ 1839 struct ExprList { 1840 int nExpr; /* Number of expressions on the list */ 1841 int iECursor; /* VDBE Cursor associated with this ExprList */ 1842 struct ExprList_item { /* For each expression in the list */ 1843 Expr *pExpr; /* The list of expressions */ 1844 char *zName; /* Token associated with this expression */ 1845 char *zSpan; /* Original text of the expression */ 1846 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1847 unsigned done :1; /* A flag to indicate when processing is finished */ 1848 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 1849 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1850 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1851 } *a; /* Alloc a power of two greater or equal to nExpr */ 1852 }; 1853 1854 /* 1855 ** An instance of this structure is used by the parser to record both 1856 ** the parse tree for an expression and the span of input text for an 1857 ** expression. 1858 */ 1859 struct ExprSpan { 1860 Expr *pExpr; /* The expression parse tree */ 1861 const char *zStart; /* First character of input text */ 1862 const char *zEnd; /* One character past the end of input text */ 1863 }; 1864 1865 /* 1866 ** An instance of this structure can hold a simple list of identifiers, 1867 ** such as the list "a,b,c" in the following statements: 1868 ** 1869 ** INSERT INTO t(a,b,c) VALUES ...; 1870 ** CREATE INDEX idx ON t(a,b,c); 1871 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1872 ** 1873 ** The IdList.a.idx field is used when the IdList represents the list of 1874 ** column names after a table name in an INSERT statement. In the statement 1875 ** 1876 ** INSERT INTO t(a,b,c) ... 1877 ** 1878 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1879 */ 1880 struct IdList { 1881 struct IdList_item { 1882 char *zName; /* Name of the identifier */ 1883 int idx; /* Index in some Table.aCol[] of a column named zName */ 1884 } *a; 1885 int nId; /* Number of identifiers on the list */ 1886 }; 1887 1888 /* 1889 ** The bitmask datatype defined below is used for various optimizations. 1890 ** 1891 ** Changing this from a 64-bit to a 32-bit type limits the number of 1892 ** tables in a join to 32 instead of 64. But it also reduces the size 1893 ** of the library by 738 bytes on ix86. 1894 */ 1895 typedef u64 Bitmask; 1896 1897 /* 1898 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1899 */ 1900 #define BMS ((int)(sizeof(Bitmask)*8)) 1901 1902 /* 1903 ** The following structure describes the FROM clause of a SELECT statement. 1904 ** Each table or subquery in the FROM clause is a separate element of 1905 ** the SrcList.a[] array. 1906 ** 1907 ** With the addition of multiple database support, the following structure 1908 ** can also be used to describe a particular table such as the table that 1909 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1910 ** such a table must be a simple name: ID. But in SQLite, the table can 1911 ** now be identified by a database name, a dot, then the table name: ID.ID. 1912 ** 1913 ** The jointype starts out showing the join type between the current table 1914 ** and the next table on the list. The parser builds the list this way. 1915 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1916 ** jointype expresses the join between the table and the previous table. 1917 ** 1918 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1919 ** contains more than 63 columns and the 64-th or later column is used. 1920 */ 1921 struct SrcList { 1922 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1923 i16 nAlloc; /* Number of entries allocated in a[] below */ 1924 struct SrcList_item { 1925 Schema *pSchema; /* Schema to which this item is fixed */ 1926 char *zDatabase; /* Name of database holding this table */ 1927 char *zName; /* Name of the table */ 1928 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1929 Table *pTab; /* An SQL table corresponding to zName */ 1930 Select *pSelect; /* A SELECT statement used in place of a table name */ 1931 int addrFillSub; /* Address of subroutine to manifest a subquery */ 1932 int regReturn; /* Register holding return address of addrFillSub */ 1933 u8 jointype; /* Type of join between this able and the previous */ 1934 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 1935 unsigned isCorrelated :1; /* True if sub-query is correlated */ 1936 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 1937 #ifndef SQLITE_OMIT_EXPLAIN 1938 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 1939 #endif 1940 int iCursor; /* The VDBE cursor number used to access this table */ 1941 Expr *pOn; /* The ON clause of a join */ 1942 IdList *pUsing; /* The USING clause of a join */ 1943 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1944 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1945 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1946 } a[1]; /* One entry for each identifier on the list */ 1947 }; 1948 1949 /* 1950 ** Permitted values of the SrcList.a.jointype field 1951 */ 1952 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1953 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1954 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1955 #define JT_LEFT 0x0008 /* Left outer join */ 1956 #define JT_RIGHT 0x0010 /* Right outer join */ 1957 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1958 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1959 1960 1961 /* 1962 ** A WherePlan object holds information that describes a lookup 1963 ** strategy. 1964 ** 1965 ** This object is intended to be opaque outside of the where.c module. 1966 ** It is included here only so that that compiler will know how big it 1967 ** is. None of the fields in this object should be used outside of 1968 ** the where.c module. 1969 ** 1970 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1971 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1972 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1973 ** case that more than one of these conditions is true. 1974 */ 1975 struct WherePlan { 1976 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1977 u16 nEq; /* Number of == constraints */ 1978 u16 nOBSat; /* Number of ORDER BY terms satisfied */ 1979 double nRow; /* Estimated number of rows (for EQP) */ 1980 union { 1981 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1982 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1983 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1984 } u; 1985 }; 1986 1987 /* 1988 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1989 ** structure contains a single instance of this structure. This structure 1990 ** is intended to be private to the where.c module and should not be 1991 ** access or modified by other modules. 1992 ** 1993 ** The pIdxInfo field is used to help pick the best index on a 1994 ** virtual table. The pIdxInfo pointer contains indexing 1995 ** information for the i-th table in the FROM clause before reordering. 1996 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1997 ** All other information in the i-th WhereLevel object for the i-th table 1998 ** after FROM clause ordering. 1999 */ 2000 struct WhereLevel { 2001 WherePlan plan; /* query plan for this element of the FROM clause */ 2002 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 2003 int iTabCur; /* The VDBE cursor used to access the table */ 2004 int iIdxCur; /* The VDBE cursor used to access pIdx */ 2005 int addrBrk; /* Jump here to break out of the loop */ 2006 int addrNxt; /* Jump here to start the next IN combination */ 2007 int addrCont; /* Jump here to continue with the next loop cycle */ 2008 int addrFirst; /* First instruction of interior of the loop */ 2009 u8 iFrom; /* Which entry in the FROM clause */ 2010 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 2011 int p1, p2; /* Operands of the opcode used to ends the loop */ 2012 union { /* Information that depends on plan.wsFlags */ 2013 struct { 2014 int nIn; /* Number of entries in aInLoop[] */ 2015 struct InLoop { 2016 int iCur; /* The VDBE cursor used by this IN operator */ 2017 int addrInTop; /* Top of the IN loop */ 2018 u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ 2019 } *aInLoop; /* Information about each nested IN operator */ 2020 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 2021 Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ 2022 } u; 2023 double rOptCost; /* "Optimal" cost for this level */ 2024 2025 /* The following field is really not part of the current level. But 2026 ** we need a place to cache virtual table index information for each 2027 ** virtual table in the FROM clause and the WhereLevel structure is 2028 ** a convenient place since there is one WhereLevel for each FROM clause 2029 ** element. 2030 */ 2031 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 2032 }; 2033 2034 /* 2035 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2036 ** and the WhereInfo.wctrlFlags member. 2037 */ 2038 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2039 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2040 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2041 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2042 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2043 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2044 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2045 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2046 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 2047 2048 /* 2049 ** The WHERE clause processing routine has two halves. The 2050 ** first part does the start of the WHERE loop and the second 2051 ** half does the tail of the WHERE loop. An instance of 2052 ** this structure is returned by the first half and passed 2053 ** into the second half to give some continuity. 2054 */ 2055 struct WhereInfo { 2056 Parse *pParse; /* Parsing and code generating context */ 2057 SrcList *pTabList; /* List of tables in the join */ 2058 u16 nOBSat; /* Number of ORDER BY terms satisfied by indices */ 2059 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 2060 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE/DELETE */ 2061 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 2062 u8 eDistinct; /* One of the WHERE_DISTINCT_* values below */ 2063 int iTop; /* The very beginning of the WHERE loop */ 2064 int iContinue; /* Jump here to continue with next record */ 2065 int iBreak; /* Jump here to break out of the loop */ 2066 int nLevel; /* Number of nested loop */ 2067 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 2068 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 2069 double nRowOut; /* Estimated number of output rows */ 2070 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 2071 }; 2072 2073 /* Allowed values for WhereInfo.eDistinct and DistinctCtx.eTnctType */ 2074 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2075 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2076 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2077 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2078 2079 /* 2080 ** A NameContext defines a context in which to resolve table and column 2081 ** names. The context consists of a list of tables (the pSrcList) field and 2082 ** a list of named expression (pEList). The named expression list may 2083 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2084 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2085 ** pEList corresponds to the result set of a SELECT and is NULL for 2086 ** other statements. 2087 ** 2088 ** NameContexts can be nested. When resolving names, the inner-most 2089 ** context is searched first. If no match is found, the next outer 2090 ** context is checked. If there is still no match, the next context 2091 ** is checked. This process continues until either a match is found 2092 ** or all contexts are check. When a match is found, the nRef member of 2093 ** the context containing the match is incremented. 2094 ** 2095 ** Each subquery gets a new NameContext. The pNext field points to the 2096 ** NameContext in the parent query. Thus the process of scanning the 2097 ** NameContext list corresponds to searching through successively outer 2098 ** subqueries looking for a match. 2099 */ 2100 struct NameContext { 2101 Parse *pParse; /* The parser */ 2102 SrcList *pSrcList; /* One or more tables used to resolve names */ 2103 ExprList *pEList; /* Optional list of named expressions */ 2104 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2105 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2106 int nRef; /* Number of names resolved by this context */ 2107 int nErr; /* Number of errors encountered while resolving names */ 2108 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2109 }; 2110 2111 /* 2112 ** Allowed values for the NameContext, ncFlags field. 2113 */ 2114 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2115 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2116 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2117 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2118 #define NC_AsMaybe 0x10 /* Resolve to AS terms of the result set only 2119 ** if no other resolution is available */ 2120 2121 /* 2122 ** An instance of the following structure contains all information 2123 ** needed to generate code for a single SELECT statement. 2124 ** 2125 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2126 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2127 ** limit and nOffset to the value of the offset (or 0 if there is not 2128 ** offset). But later on, nLimit and nOffset become the memory locations 2129 ** in the VDBE that record the limit and offset counters. 2130 ** 2131 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2132 ** These addresses must be stored so that we can go back and fill in 2133 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2134 ** the number of columns in P2 can be computed at the same time 2135 ** as the OP_OpenEphm instruction is coded because not 2136 ** enough information about the compound query is known at that point. 2137 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2138 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2139 ** sequences for the ORDER BY clause. 2140 */ 2141 struct Select { 2142 ExprList *pEList; /* The fields of the result */ 2143 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2144 u16 selFlags; /* Various SF_* values */ 2145 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2146 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2147 double nSelectRow; /* Estimated number of result rows */ 2148 SrcList *pSrc; /* The FROM clause */ 2149 Expr *pWhere; /* The WHERE clause */ 2150 ExprList *pGroupBy; /* The GROUP BY clause */ 2151 Expr *pHaving; /* The HAVING clause */ 2152 ExprList *pOrderBy; /* The ORDER BY clause */ 2153 Select *pPrior; /* Prior select in a compound select statement */ 2154 Select *pNext; /* Next select to the left in a compound */ 2155 Select *pRightmost; /* Right-most select in a compound select statement */ 2156 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2157 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2158 }; 2159 2160 /* 2161 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2162 ** "Select Flag". 2163 */ 2164 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2165 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2166 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2167 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2168 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2169 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2170 #define SF_UseSorter 0x0040 /* Sort using a sorter */ 2171 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2172 #define SF_Materialize 0x0100 /* Force materialization of views */ 2173 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2174 2175 2176 /* 2177 ** The results of a select can be distributed in several ways. The 2178 ** "SRT" prefix means "SELECT Result Type". 2179 */ 2180 #define SRT_Union 1 /* Store result as keys in an index */ 2181 #define SRT_Except 2 /* Remove result from a UNION index */ 2182 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2183 #define SRT_Discard 4 /* Do not save the results anywhere */ 2184 2185 /* The ORDER BY clause is ignored for all of the above */ 2186 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2187 2188 #define SRT_Output 5 /* Output each row of result */ 2189 #define SRT_Mem 6 /* Store result in a memory cell */ 2190 #define SRT_Set 7 /* Store results as keys in an index */ 2191 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2192 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2193 #define SRT_Coroutine 10 /* Generate a single row of result */ 2194 2195 /* 2196 ** An instance of this object describes where to put of the results of 2197 ** a SELECT statement. 2198 */ 2199 struct SelectDest { 2200 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2201 char affSdst; /* Affinity used when eDest==SRT_Set */ 2202 int iSDParm; /* A parameter used by the eDest disposal method */ 2203 int iSdst; /* Base register where results are written */ 2204 int nSdst; /* Number of registers allocated */ 2205 }; 2206 2207 /* 2208 ** During code generation of statements that do inserts into AUTOINCREMENT 2209 ** tables, the following information is attached to the Table.u.autoInc.p 2210 ** pointer of each autoincrement table to record some side information that 2211 ** the code generator needs. We have to keep per-table autoincrement 2212 ** information in case inserts are down within triggers. Triggers do not 2213 ** normally coordinate their activities, but we do need to coordinate the 2214 ** loading and saving of autoincrement information. 2215 */ 2216 struct AutoincInfo { 2217 AutoincInfo *pNext; /* Next info block in a list of them all */ 2218 Table *pTab; /* Table this info block refers to */ 2219 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2220 int regCtr; /* Memory register holding the rowid counter */ 2221 }; 2222 2223 /* 2224 ** Size of the column cache 2225 */ 2226 #ifndef SQLITE_N_COLCACHE 2227 # define SQLITE_N_COLCACHE 10 2228 #endif 2229 2230 /* 2231 ** At least one instance of the following structure is created for each 2232 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2233 ** statement. All such objects are stored in the linked list headed at 2234 ** Parse.pTriggerPrg and deleted once statement compilation has been 2235 ** completed. 2236 ** 2237 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2238 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2239 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2240 ** The Parse.pTriggerPrg list never contains two entries with the same 2241 ** values for both pTrigger and orconf. 2242 ** 2243 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2244 ** accessed (or set to 0 for triggers fired as a result of INSERT 2245 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2246 ** a mask of new.* columns used by the program. 2247 */ 2248 struct TriggerPrg { 2249 Trigger *pTrigger; /* Trigger this program was coded from */ 2250 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2251 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2252 int orconf; /* Default ON CONFLICT policy */ 2253 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2254 }; 2255 2256 /* 2257 ** The yDbMask datatype for the bitmask of all attached databases. 2258 */ 2259 #if SQLITE_MAX_ATTACHED>30 2260 typedef sqlite3_uint64 yDbMask; 2261 #else 2262 typedef unsigned int yDbMask; 2263 #endif 2264 2265 /* 2266 ** An SQL parser context. A copy of this structure is passed through 2267 ** the parser and down into all the parser action routine in order to 2268 ** carry around information that is global to the entire parse. 2269 ** 2270 ** The structure is divided into two parts. When the parser and code 2271 ** generate call themselves recursively, the first part of the structure 2272 ** is constant but the second part is reset at the beginning and end of 2273 ** each recursion. 2274 ** 2275 ** The nTableLock and aTableLock variables are only used if the shared-cache 2276 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2277 ** used to store the set of table-locks required by the statement being 2278 ** compiled. Function sqlite3TableLock() is used to add entries to the 2279 ** list. 2280 */ 2281 struct Parse { 2282 sqlite3 *db; /* The main database structure */ 2283 char *zErrMsg; /* An error message */ 2284 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2285 int rc; /* Return code from execution */ 2286 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2287 u8 checkSchema; /* Causes schema cookie check after an error */ 2288 u8 nested; /* Number of nested calls to the parser/code generator */ 2289 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2290 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2291 u8 nColCache; /* Number of entries in aColCache[] */ 2292 u8 iColCache; /* Next entry in aColCache[] to replace */ 2293 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2294 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2295 int aTempReg[8]; /* Holding area for temporary registers */ 2296 int nRangeReg; /* Size of the temporary register block */ 2297 int iRangeReg; /* First register in temporary register block */ 2298 int nErr; /* Number of errors seen */ 2299 int nTab; /* Number of previously allocated VDBE cursors */ 2300 int nMem; /* Number of memory cells used so far */ 2301 int nSet; /* Number of sets used so far */ 2302 int nOnce; /* Number of OP_Once instructions so far */ 2303 int ckBase; /* Base register of data during check constraints */ 2304 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2305 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2306 struct yColCache { 2307 int iTable; /* Table cursor number */ 2308 int iColumn; /* Table column number */ 2309 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2310 int iLevel; /* Nesting level */ 2311 int iReg; /* Reg with value of this column. 0 means none. */ 2312 int lru; /* Least recently used entry has the smallest value */ 2313 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2314 yDbMask writeMask; /* Start a write transaction on these databases */ 2315 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2316 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2317 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2318 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2319 int regRoot; /* Register holding root page number for new objects */ 2320 int nMaxArg; /* Max args passed to user function by sub-program */ 2321 Token constraintName;/* Name of the constraint currently being parsed */ 2322 #ifndef SQLITE_OMIT_SHARED_CACHE 2323 int nTableLock; /* Number of locks in aTableLock */ 2324 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2325 #endif 2326 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2327 2328 /* Information used while coding trigger programs. */ 2329 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2330 Table *pTriggerTab; /* Table triggers are being coded for */ 2331 double nQueryLoop; /* Estimated number of iterations of a query */ 2332 u32 oldmask; /* Mask of old.* columns referenced */ 2333 u32 newmask; /* Mask of new.* columns referenced */ 2334 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2335 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2336 u8 disableTriggers; /* True to disable triggers */ 2337 2338 /* Above is constant between recursions. Below is reset before and after 2339 ** each recursion */ 2340 2341 int nVar; /* Number of '?' variables seen in the SQL so far */ 2342 int nzVar; /* Number of available slots in azVar[] */ 2343 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2344 #ifndef SQLITE_OMIT_VIRTUALTABLE 2345 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2346 int nVtabLock; /* Number of virtual tables to lock */ 2347 #endif 2348 int nAlias; /* Number of aliased result set columns */ 2349 int nHeight; /* Expression tree height of current sub-select */ 2350 #ifndef SQLITE_OMIT_EXPLAIN 2351 int iSelectId; /* ID of current select for EXPLAIN output */ 2352 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2353 #endif 2354 char **azVar; /* Pointers to names of parameters */ 2355 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2356 int *aAlias; /* Register used to hold aliased result */ 2357 const char *zTail; /* All SQL text past the last semicolon parsed */ 2358 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2359 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2360 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2361 Token sNameToken; /* Token with unqualified schema object name */ 2362 Token sLastToken; /* The last token parsed */ 2363 #ifndef SQLITE_OMIT_VIRTUALTABLE 2364 Token sArg; /* Complete text of a module argument */ 2365 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2366 #endif 2367 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2368 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2369 }; 2370 2371 /* 2372 ** Return true if currently inside an sqlite3_declare_vtab() call. 2373 */ 2374 #ifdef SQLITE_OMIT_VIRTUALTABLE 2375 #define IN_DECLARE_VTAB 0 2376 #else 2377 #define IN_DECLARE_VTAB (pParse->declareVtab) 2378 #endif 2379 2380 /* 2381 ** An instance of the following structure can be declared on a stack and used 2382 ** to save the Parse.zAuthContext value so that it can be restored later. 2383 */ 2384 struct AuthContext { 2385 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2386 Parse *pParse; /* The Parse structure */ 2387 }; 2388 2389 /* 2390 ** Bitfield flags for P5 value in various opcodes. 2391 */ 2392 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2393 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2394 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2395 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2396 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2397 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2398 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2399 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2400 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2401 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2402 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2403 2404 /* 2405 * Each trigger present in the database schema is stored as an instance of 2406 * struct Trigger. 2407 * 2408 * Pointers to instances of struct Trigger are stored in two ways. 2409 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2410 * database). This allows Trigger structures to be retrieved by name. 2411 * 2. All triggers associated with a single table form a linked list, using the 2412 * pNext member of struct Trigger. A pointer to the first element of the 2413 * linked list is stored as the "pTrigger" member of the associated 2414 * struct Table. 2415 * 2416 * The "step_list" member points to the first element of a linked list 2417 * containing the SQL statements specified as the trigger program. 2418 */ 2419 struct Trigger { 2420 char *zName; /* The name of the trigger */ 2421 char *table; /* The table or view to which the trigger applies */ 2422 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2423 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2424 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2425 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2426 the <column-list> is stored here */ 2427 Schema *pSchema; /* Schema containing the trigger */ 2428 Schema *pTabSchema; /* Schema containing the table */ 2429 TriggerStep *step_list; /* Link list of trigger program steps */ 2430 Trigger *pNext; /* Next trigger associated with the table */ 2431 }; 2432 2433 /* 2434 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2435 ** determine which. 2436 ** 2437 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2438 ** In that cases, the constants below can be ORed together. 2439 */ 2440 #define TRIGGER_BEFORE 1 2441 #define TRIGGER_AFTER 2 2442 2443 /* 2444 * An instance of struct TriggerStep is used to store a single SQL statement 2445 * that is a part of a trigger-program. 2446 * 2447 * Instances of struct TriggerStep are stored in a singly linked list (linked 2448 * using the "pNext" member) referenced by the "step_list" member of the 2449 * associated struct Trigger instance. The first element of the linked list is 2450 * the first step of the trigger-program. 2451 * 2452 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2453 * "SELECT" statement. The meanings of the other members is determined by the 2454 * value of "op" as follows: 2455 * 2456 * (op == TK_INSERT) 2457 * orconf -> stores the ON CONFLICT algorithm 2458 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2459 * this stores a pointer to the SELECT statement. Otherwise NULL. 2460 * target -> A token holding the quoted name of the table to insert into. 2461 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2462 * this stores values to be inserted. Otherwise NULL. 2463 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2464 * statement, then this stores the column-names to be 2465 * inserted into. 2466 * 2467 * (op == TK_DELETE) 2468 * target -> A token holding the quoted name of the table to delete from. 2469 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2470 * Otherwise NULL. 2471 * 2472 * (op == TK_UPDATE) 2473 * target -> A token holding the quoted name of the table to update rows of. 2474 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2475 * Otherwise NULL. 2476 * pExprList -> A list of the columns to update and the expressions to update 2477 * them to. See sqlite3Update() documentation of "pChanges" 2478 * argument. 2479 * 2480 */ 2481 struct TriggerStep { 2482 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2483 u8 orconf; /* OE_Rollback etc. */ 2484 Trigger *pTrig; /* The trigger that this step is a part of */ 2485 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2486 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2487 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2488 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2489 IdList *pIdList; /* Column names for INSERT */ 2490 TriggerStep *pNext; /* Next in the link-list */ 2491 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2492 }; 2493 2494 /* 2495 ** The following structure contains information used by the sqliteFix... 2496 ** routines as they walk the parse tree to make database references 2497 ** explicit. 2498 */ 2499 typedef struct DbFixer DbFixer; 2500 struct DbFixer { 2501 Parse *pParse; /* The parsing context. Error messages written here */ 2502 Schema *pSchema; /* Fix items to this schema */ 2503 const char *zDb; /* Make sure all objects are contained in this database */ 2504 const char *zType; /* Type of the container - used for error messages */ 2505 const Token *pName; /* Name of the container - used for error messages */ 2506 }; 2507 2508 /* 2509 ** An objected used to accumulate the text of a string where we 2510 ** do not necessarily know how big the string will be in the end. 2511 */ 2512 struct StrAccum { 2513 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2514 char *zBase; /* A base allocation. Not from malloc. */ 2515 char *zText; /* The string collected so far */ 2516 int nChar; /* Length of the string so far */ 2517 int nAlloc; /* Amount of space allocated in zText */ 2518 int mxAlloc; /* Maximum allowed string length */ 2519 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2520 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2521 u8 tooBig; /* Becomes true if string size exceeds limits */ 2522 }; 2523 2524 /* 2525 ** A pointer to this structure is used to communicate information 2526 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2527 */ 2528 typedef struct { 2529 sqlite3 *db; /* The database being initialized */ 2530 char **pzErrMsg; /* Error message stored here */ 2531 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2532 int rc; /* Result code stored here */ 2533 } InitData; 2534 2535 /* 2536 ** Structure containing global configuration data for the SQLite library. 2537 ** 2538 ** This structure also contains some state information. 2539 */ 2540 struct Sqlite3Config { 2541 int bMemstat; /* True to enable memory status */ 2542 int bCoreMutex; /* True to enable core mutexing */ 2543 int bFullMutex; /* True to enable full mutexing */ 2544 int bOpenUri; /* True to interpret filenames as URIs */ 2545 int bUseCis; /* Use covering indices for full-scans */ 2546 int mxStrlen; /* Maximum string length */ 2547 int szLookaside; /* Default lookaside buffer size */ 2548 int nLookaside; /* Default lookaside buffer count */ 2549 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2550 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2551 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2552 void *pHeap; /* Heap storage space */ 2553 int nHeap; /* Size of pHeap[] */ 2554 int mnReq, mxReq; /* Min and max heap requests sizes */ 2555 sqlite3_int64 szMmap; /* mmap() space per open file */ 2556 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2557 void *pScratch; /* Scratch memory */ 2558 int szScratch; /* Size of each scratch buffer */ 2559 int nScratch; /* Number of scratch buffers */ 2560 void *pPage; /* Page cache memory */ 2561 int szPage; /* Size of each page in pPage[] */ 2562 int nPage; /* Number of pages in pPage[] */ 2563 int mxParserStack; /* maximum depth of the parser stack */ 2564 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2565 /* The above might be initialized to non-zero. The following need to always 2566 ** initially be zero, however. */ 2567 int isInit; /* True after initialization has finished */ 2568 int inProgress; /* True while initialization in progress */ 2569 int isMutexInit; /* True after mutexes are initialized */ 2570 int isMallocInit; /* True after malloc is initialized */ 2571 int isPCacheInit; /* True after malloc is initialized */ 2572 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2573 int nRefInitMutex; /* Number of users of pInitMutex */ 2574 void (*xLog)(void*,int,const char*); /* Function for logging */ 2575 void *pLogArg; /* First argument to xLog() */ 2576 int bLocaltimeFault; /* True to fail localtime() calls */ 2577 #ifdef SQLITE_ENABLE_SQLLOG 2578 void(*xSqllog)(void*,sqlite3*,const char*, int); 2579 void *pSqllogArg; 2580 #endif 2581 }; 2582 2583 /* 2584 ** Context pointer passed down through the tree-walk. 2585 */ 2586 struct Walker { 2587 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2588 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2589 Parse *pParse; /* Parser context. */ 2590 int walkerDepth; /* Number of subqueries */ 2591 u8 bSelectDepthFirst; /* Do subqueries first */ 2592 union { /* Extra data for callback */ 2593 NameContext *pNC; /* Naming context */ 2594 int i; /* Integer value */ 2595 SrcList *pSrcList; /* FROM clause */ 2596 struct SrcCount *pSrcCount; /* Counting column references */ 2597 } u; 2598 }; 2599 2600 /* Forward declarations */ 2601 int sqlite3WalkExpr(Walker*, Expr*); 2602 int sqlite3WalkExprList(Walker*, ExprList*); 2603 int sqlite3WalkSelect(Walker*, Select*); 2604 int sqlite3WalkSelectExpr(Walker*, Select*); 2605 int sqlite3WalkSelectFrom(Walker*, Select*); 2606 2607 /* 2608 ** Return code from the parse-tree walking primitives and their 2609 ** callbacks. 2610 */ 2611 #define WRC_Continue 0 /* Continue down into children */ 2612 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2613 #define WRC_Abort 2 /* Abandon the tree walk */ 2614 2615 /* 2616 ** Assuming zIn points to the first byte of a UTF-8 character, 2617 ** advance zIn to point to the first byte of the next UTF-8 character. 2618 */ 2619 #define SQLITE_SKIP_UTF8(zIn) { \ 2620 if( (*(zIn++))>=0xc0 ){ \ 2621 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2622 } \ 2623 } 2624 2625 /* 2626 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2627 ** the same name but without the _BKPT suffix. These macros invoke 2628 ** routines that report the line-number on which the error originated 2629 ** using sqlite3_log(). The routines also provide a convenient place 2630 ** to set a debugger breakpoint. 2631 */ 2632 int sqlite3CorruptError(int); 2633 int sqlite3MisuseError(int); 2634 int sqlite3CantopenError(int); 2635 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2636 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2637 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2638 2639 2640 /* 2641 ** FTS4 is really an extension for FTS3. It is enabled using the 2642 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2643 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2644 */ 2645 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2646 # define SQLITE_ENABLE_FTS3 2647 #endif 2648 2649 /* 2650 ** The ctype.h header is needed for non-ASCII systems. It is also 2651 ** needed by FTS3 when FTS3 is included in the amalgamation. 2652 */ 2653 #if !defined(SQLITE_ASCII) || \ 2654 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2655 # include <ctype.h> 2656 #endif 2657 2658 /* 2659 ** The following macros mimic the standard library functions toupper(), 2660 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2661 ** sqlite versions only work for ASCII characters, regardless of locale. 2662 */ 2663 #ifdef SQLITE_ASCII 2664 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2665 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2666 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2667 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2668 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2669 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2670 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2671 #else 2672 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2673 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2674 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2675 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2676 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2677 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2678 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2679 #endif 2680 2681 /* 2682 ** Internal function prototypes 2683 */ 2684 #define sqlite3StrICmp sqlite3_stricmp 2685 int sqlite3Strlen30(const char*); 2686 #define sqlite3StrNICmp sqlite3_strnicmp 2687 2688 int sqlite3MallocInit(void); 2689 void sqlite3MallocEnd(void); 2690 void *sqlite3Malloc(int); 2691 void *sqlite3MallocZero(int); 2692 void *sqlite3DbMallocZero(sqlite3*, int); 2693 void *sqlite3DbMallocRaw(sqlite3*, int); 2694 char *sqlite3DbStrDup(sqlite3*,const char*); 2695 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2696 void *sqlite3Realloc(void*, int); 2697 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2698 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2699 void sqlite3DbFree(sqlite3*, void*); 2700 int sqlite3MallocSize(void*); 2701 int sqlite3DbMallocSize(sqlite3*, void*); 2702 void *sqlite3ScratchMalloc(int); 2703 void sqlite3ScratchFree(void*); 2704 void *sqlite3PageMalloc(int); 2705 void sqlite3PageFree(void*); 2706 void sqlite3MemSetDefault(void); 2707 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2708 int sqlite3HeapNearlyFull(void); 2709 2710 /* 2711 ** On systems with ample stack space and that support alloca(), make 2712 ** use of alloca() to obtain space for large automatic objects. By default, 2713 ** obtain space from malloc(). 2714 ** 2715 ** The alloca() routine never returns NULL. This will cause code paths 2716 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2717 */ 2718 #ifdef SQLITE_USE_ALLOCA 2719 # define sqlite3StackAllocRaw(D,N) alloca(N) 2720 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2721 # define sqlite3StackFree(D,P) 2722 #else 2723 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2724 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2725 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2726 #endif 2727 2728 #ifdef SQLITE_ENABLE_MEMSYS3 2729 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2730 #endif 2731 #ifdef SQLITE_ENABLE_MEMSYS5 2732 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2733 #endif 2734 2735 2736 #ifndef SQLITE_MUTEX_OMIT 2737 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2738 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2739 sqlite3_mutex *sqlite3MutexAlloc(int); 2740 int sqlite3MutexInit(void); 2741 int sqlite3MutexEnd(void); 2742 #endif 2743 2744 int sqlite3StatusValue(int); 2745 void sqlite3StatusAdd(int, int); 2746 void sqlite3StatusSet(int, int); 2747 2748 #ifndef SQLITE_OMIT_FLOATING_POINT 2749 int sqlite3IsNaN(double); 2750 #else 2751 # define sqlite3IsNaN(X) 0 2752 #endif 2753 2754 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2755 #ifndef SQLITE_OMIT_TRACE 2756 void sqlite3XPrintf(StrAccum*, const char*, ...); 2757 #endif 2758 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2759 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2760 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2761 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2762 void sqlite3DebugPrintf(const char*, ...); 2763 #endif 2764 #if defined(SQLITE_TEST) 2765 void *sqlite3TestTextToPtr(const char*); 2766 #endif 2767 2768 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2769 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2770 void sqlite3ExplainBegin(Vdbe*); 2771 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2772 void sqlite3ExplainNL(Vdbe*); 2773 void sqlite3ExplainPush(Vdbe*); 2774 void sqlite3ExplainPop(Vdbe*); 2775 void sqlite3ExplainFinish(Vdbe*); 2776 void sqlite3ExplainSelect(Vdbe*, Select*); 2777 void sqlite3ExplainExpr(Vdbe*, Expr*); 2778 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2779 const char *sqlite3VdbeExplanation(Vdbe*); 2780 #else 2781 # define sqlite3ExplainBegin(X) 2782 # define sqlite3ExplainSelect(A,B) 2783 # define sqlite3ExplainExpr(A,B) 2784 # define sqlite3ExplainExprList(A,B) 2785 # define sqlite3ExplainFinish(X) 2786 # define sqlite3VdbeExplanation(X) 0 2787 #endif 2788 2789 2790 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2791 void sqlite3ErrorMsg(Parse*, const char*, ...); 2792 int sqlite3Dequote(char*); 2793 int sqlite3KeywordCode(const unsigned char*, int); 2794 int sqlite3RunParser(Parse*, const char*, char **); 2795 void sqlite3FinishCoding(Parse*); 2796 int sqlite3GetTempReg(Parse*); 2797 void sqlite3ReleaseTempReg(Parse*,int); 2798 int sqlite3GetTempRange(Parse*,int); 2799 void sqlite3ReleaseTempRange(Parse*,int,int); 2800 void sqlite3ClearTempRegCache(Parse*); 2801 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2802 Expr *sqlite3Expr(sqlite3*,int,const char*); 2803 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2804 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2805 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2806 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2807 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2808 void sqlite3ExprDelete(sqlite3*, Expr*); 2809 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2810 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2811 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2812 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2813 int sqlite3Init(sqlite3*, char**); 2814 int sqlite3InitCallback(void*, int, char**, char**); 2815 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2816 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 2817 void sqlite3ResetOneSchema(sqlite3*,int); 2818 void sqlite3CollapseDatabaseArray(sqlite3*); 2819 void sqlite3BeginParse(Parse*,int); 2820 void sqlite3CommitInternalChanges(sqlite3*); 2821 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2822 void sqlite3OpenMasterTable(Parse *, int); 2823 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2824 void sqlite3AddColumn(Parse*,Token*); 2825 void sqlite3AddNotNull(Parse*, int); 2826 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2827 void sqlite3AddCheckConstraint(Parse*, Expr*); 2828 void sqlite3AddColumnType(Parse*,Token*); 2829 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2830 void sqlite3AddCollateType(Parse*, Token*); 2831 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2832 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2833 sqlite3_vfs**,char**,char **); 2834 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 2835 int sqlite3CodeOnce(Parse *); 2836 2837 Bitvec *sqlite3BitvecCreate(u32); 2838 int sqlite3BitvecTest(Bitvec*, u32); 2839 int sqlite3BitvecSet(Bitvec*, u32); 2840 void sqlite3BitvecClear(Bitvec*, u32, void*); 2841 void sqlite3BitvecDestroy(Bitvec*); 2842 u32 sqlite3BitvecSize(Bitvec*); 2843 int sqlite3BitvecBuiltinTest(int,int*); 2844 2845 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2846 void sqlite3RowSetClear(RowSet*); 2847 void sqlite3RowSetInsert(RowSet*, i64); 2848 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2849 int sqlite3RowSetNext(RowSet*, i64*); 2850 2851 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2852 2853 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2854 int sqlite3ViewGetColumnNames(Parse*,Table*); 2855 #else 2856 # define sqlite3ViewGetColumnNames(A,B) 0 2857 #endif 2858 2859 void sqlite3DropTable(Parse*, SrcList*, int, int); 2860 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2861 void sqlite3DeleteTable(sqlite3*, Table*); 2862 #ifndef SQLITE_OMIT_AUTOINCREMENT 2863 void sqlite3AutoincrementBegin(Parse *pParse); 2864 void sqlite3AutoincrementEnd(Parse *pParse); 2865 #else 2866 # define sqlite3AutoincrementBegin(X) 2867 # define sqlite3AutoincrementEnd(X) 2868 #endif 2869 int sqlite3CodeCoroutine(Parse*, Select*, SelectDest*); 2870 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2871 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 2872 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2873 int sqlite3IdListIndex(IdList*,const char*); 2874 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2875 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2876 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2877 Token*, Select*, Expr*, IdList*); 2878 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2879 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2880 void sqlite3SrcListShiftJoinType(SrcList*); 2881 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2882 void sqlite3IdListDelete(sqlite3*, IdList*); 2883 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2884 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2885 Token*, int, int); 2886 void sqlite3DropIndex(Parse*, SrcList*, int); 2887 int sqlite3Select(Parse*, Select*, SelectDest*); 2888 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2889 Expr*,ExprList*,u16,Expr*,Expr*); 2890 void sqlite3SelectDelete(sqlite3*, Select*); 2891 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2892 int sqlite3IsReadOnly(Parse*, Table*, int); 2893 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2894 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2895 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 2896 #endif 2897 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2898 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2899 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 2900 void sqlite3WhereEnd(WhereInfo*); 2901 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 2902 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2903 void sqlite3ExprCodeMove(Parse*, int, int, int); 2904 void sqlite3ExprCacheStore(Parse*, int, int, int); 2905 void sqlite3ExprCachePush(Parse*); 2906 void sqlite3ExprCachePop(Parse*, int); 2907 void sqlite3ExprCacheRemove(Parse*, int, int); 2908 void sqlite3ExprCacheClear(Parse*); 2909 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2910 int sqlite3ExprCode(Parse*, Expr*, int); 2911 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2912 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2913 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2914 void sqlite3ExprCodeConstants(Parse*, Expr*); 2915 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2916 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2917 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2918 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2919 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2920 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 2921 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2922 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2923 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2924 void sqlite3Vacuum(Parse*); 2925 int sqlite3RunVacuum(char**, sqlite3*); 2926 char *sqlite3NameFromToken(sqlite3*, Token*); 2927 int sqlite3ExprCompare(Expr*, Expr*); 2928 int sqlite3ExprListCompare(ExprList*, ExprList*); 2929 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2930 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2931 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 2932 Vdbe *sqlite3GetVdbe(Parse*); 2933 void sqlite3PrngSaveState(void); 2934 void sqlite3PrngRestoreState(void); 2935 void sqlite3PrngResetState(void); 2936 void sqlite3RollbackAll(sqlite3*,int); 2937 void sqlite3CodeVerifySchema(Parse*, int); 2938 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 2939 void sqlite3BeginTransaction(Parse*, int); 2940 void sqlite3CommitTransaction(Parse*); 2941 void sqlite3RollbackTransaction(Parse*); 2942 void sqlite3Savepoint(Parse*, int, Token*); 2943 void sqlite3CloseSavepoints(sqlite3 *); 2944 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 2945 int sqlite3ExprIsConstant(Expr*); 2946 int sqlite3ExprIsConstantNotJoin(Expr*); 2947 int sqlite3ExprIsConstantOrFunction(Expr*); 2948 int sqlite3ExprIsInteger(Expr*, int*); 2949 int sqlite3ExprCanBeNull(const Expr*); 2950 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2951 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2952 int sqlite3IsRowid(const char*); 2953 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2954 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2955 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2956 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2957 int*,int,int,int,int,int*); 2958 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2959 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2960 void sqlite3BeginWriteOperation(Parse*, int, int); 2961 void sqlite3MultiWrite(Parse*); 2962 void sqlite3MayAbort(Parse*); 2963 void sqlite3HaltConstraint(Parse*, int, int, char*, int); 2964 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2965 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2966 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2967 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2968 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2969 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2970 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 2971 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2972 void sqlite3RegisterDateTimeFunctions(void); 2973 void sqlite3RegisterGlobalFunctions(void); 2974 int sqlite3SafetyCheckOk(sqlite3*); 2975 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2976 void sqlite3ChangeCookie(Parse*, int); 2977 2978 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2979 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2980 #endif 2981 2982 #ifndef SQLITE_OMIT_TRIGGER 2983 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2984 Expr*,int, int); 2985 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2986 void sqlite3DropTrigger(Parse*, SrcList*, int); 2987 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2988 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2989 Trigger *sqlite3TriggerList(Parse *, Table *); 2990 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2991 int, int, int); 2992 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2993 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2994 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2995 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2996 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2997 ExprList*,Select*,u8); 2998 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2999 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3000 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3001 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3002 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3003 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3004 #else 3005 # define sqlite3TriggersExist(B,C,D,E,F) 0 3006 # define sqlite3DeleteTrigger(A,B) 3007 # define sqlite3DropTriggerPtr(A,B) 3008 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3009 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3010 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3011 # define sqlite3TriggerList(X, Y) 0 3012 # define sqlite3ParseToplevel(p) p 3013 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3014 #endif 3015 3016 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3017 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3018 void sqlite3DeferForeignKey(Parse*, int); 3019 #ifndef SQLITE_OMIT_AUTHORIZATION 3020 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3021 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3022 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3023 void sqlite3AuthContextPop(AuthContext*); 3024 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3025 #else 3026 # define sqlite3AuthRead(a,b,c,d) 3027 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3028 # define sqlite3AuthContextPush(a,b,c) 3029 # define sqlite3AuthContextPop(a) ((void)(a)) 3030 #endif 3031 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3032 void sqlite3Detach(Parse*, Expr*); 3033 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3034 int sqlite3FixSrcList(DbFixer*, SrcList*); 3035 int sqlite3FixSelect(DbFixer*, Select*); 3036 int sqlite3FixExpr(DbFixer*, Expr*); 3037 int sqlite3FixExprList(DbFixer*, ExprList*); 3038 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3039 int sqlite3AtoF(const char *z, double*, int, u8); 3040 int sqlite3GetInt32(const char *, int*); 3041 int sqlite3Atoi(const char*); 3042 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3043 int sqlite3Utf8CharLen(const char *pData, int nByte); 3044 u32 sqlite3Utf8Read(const u8**); 3045 3046 /* 3047 ** Routines to read and write variable-length integers. These used to 3048 ** be defined locally, but now we use the varint routines in the util.c 3049 ** file. Code should use the MACRO forms below, as the Varint32 versions 3050 ** are coded to assume the single byte case is already handled (which 3051 ** the MACRO form does). 3052 */ 3053 int sqlite3PutVarint(unsigned char*, u64); 3054 int sqlite3PutVarint32(unsigned char*, u32); 3055 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3056 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3057 int sqlite3VarintLen(u64 v); 3058 3059 /* 3060 ** The header of a record consists of a sequence variable-length integers. 3061 ** These integers are almost always small and are encoded as a single byte. 3062 ** The following macros take advantage this fact to provide a fast encode 3063 ** and decode of the integers in a record header. It is faster for the common 3064 ** case where the integer is a single byte. It is a little slower when the 3065 ** integer is two or more bytes. But overall it is faster. 3066 ** 3067 ** The following expressions are equivalent: 3068 ** 3069 ** x = sqlite3GetVarint32( A, &B ); 3070 ** x = sqlite3PutVarint32( A, B ); 3071 ** 3072 ** x = getVarint32( A, B ); 3073 ** x = putVarint32( A, B ); 3074 ** 3075 */ 3076 #define getVarint32(A,B) \ 3077 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3078 #define putVarint32(A,B) \ 3079 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3080 sqlite3PutVarint32((A),(B))) 3081 #define getVarint sqlite3GetVarint 3082 #define putVarint sqlite3PutVarint 3083 3084 3085 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3086 void sqlite3TableAffinityStr(Vdbe *, Table *); 3087 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3088 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3089 char sqlite3ExprAffinity(Expr *pExpr); 3090 int sqlite3Atoi64(const char*, i64*, int, u8); 3091 void sqlite3Error(sqlite3*, int, const char*,...); 3092 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3093 u8 sqlite3HexToInt(int h); 3094 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3095 3096 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) || \ 3097 defined(SQLITE_DEBUG_OS_TRACE) 3098 const char *sqlite3ErrName(int); 3099 #endif 3100 3101 const char *sqlite3ErrStr(int); 3102 int sqlite3ReadSchema(Parse *pParse); 3103 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3104 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3105 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3106 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*); 3107 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3108 Expr *sqlite3ExprSkipCollate(Expr*); 3109 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3110 int sqlite3CheckObjectName(Parse *, const char *); 3111 void sqlite3VdbeSetChanges(sqlite3 *, int); 3112 int sqlite3AddInt64(i64*,i64); 3113 int sqlite3SubInt64(i64*,i64); 3114 int sqlite3MulInt64(i64*,i64); 3115 int sqlite3AbsInt32(int); 3116 #ifdef SQLITE_ENABLE_8_3_NAMES 3117 void sqlite3FileSuffix3(const char*, char*); 3118 #else 3119 # define sqlite3FileSuffix3(X,Y) 3120 #endif 3121 u8 sqlite3GetBoolean(const char *z,int); 3122 3123 const void *sqlite3ValueText(sqlite3_value*, u8); 3124 int sqlite3ValueBytes(sqlite3_value*, u8); 3125 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3126 void(*)(void*)); 3127 void sqlite3ValueFree(sqlite3_value*); 3128 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3129 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3130 #ifdef SQLITE_ENABLE_STAT3 3131 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 3132 #endif 3133 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3134 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3135 #ifndef SQLITE_AMALGAMATION 3136 extern const unsigned char sqlite3OpcodeProperty[]; 3137 extern const unsigned char sqlite3UpperToLower[]; 3138 extern const unsigned char sqlite3CtypeMap[]; 3139 extern const Token sqlite3IntTokens[]; 3140 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3141 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3142 #ifndef SQLITE_OMIT_WSD 3143 extern int sqlite3PendingByte; 3144 #endif 3145 #endif 3146 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3147 void sqlite3Reindex(Parse*, Token*, Token*); 3148 void sqlite3AlterFunctions(void); 3149 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3150 int sqlite3GetToken(const unsigned char *, int *); 3151 void sqlite3NestedParse(Parse*, const char*, ...); 3152 void sqlite3ExpirePreparedStatements(sqlite3*); 3153 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3154 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3155 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3156 int sqlite3ResolveExprNames(NameContext*, Expr*); 3157 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3158 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3159 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3160 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3161 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3162 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3163 char sqlite3AffinityType(const char*); 3164 void sqlite3Analyze(Parse*, Token*, Token*); 3165 int sqlite3InvokeBusyHandler(BusyHandler*); 3166 int sqlite3FindDb(sqlite3*, Token*); 3167 int sqlite3FindDbName(sqlite3 *, const char *); 3168 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3169 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3170 void sqlite3DefaultRowEst(Index*); 3171 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3172 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3173 void sqlite3MinimumFileFormat(Parse*, int, int); 3174 void sqlite3SchemaClear(void *); 3175 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3176 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3177 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 3178 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3179 void (*)(sqlite3_context*,int,sqlite3_value **), 3180 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3181 FuncDestructor *pDestructor 3182 ); 3183 int sqlite3ApiExit(sqlite3 *db, int); 3184 int sqlite3OpenTempDatabase(Parse *); 3185 3186 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3187 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3188 void sqlite3AppendSpace(StrAccum*,int); 3189 char *sqlite3StrAccumFinish(StrAccum*); 3190 void sqlite3StrAccumReset(StrAccum*); 3191 void sqlite3SelectDestInit(SelectDest*,int,int); 3192 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3193 3194 void sqlite3BackupRestart(sqlite3_backup *); 3195 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3196 3197 /* 3198 ** The interface to the LEMON-generated parser 3199 */ 3200 void *sqlite3ParserAlloc(void*(*)(size_t)); 3201 void sqlite3ParserFree(void*, void(*)(void*)); 3202 void sqlite3Parser(void*, int, Token, Parse*); 3203 #ifdef YYTRACKMAXSTACKDEPTH 3204 int sqlite3ParserStackPeak(void*); 3205 #endif 3206 3207 void sqlite3AutoLoadExtensions(sqlite3*); 3208 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3209 void sqlite3CloseExtensions(sqlite3*); 3210 #else 3211 # define sqlite3CloseExtensions(X) 3212 #endif 3213 3214 #ifndef SQLITE_OMIT_SHARED_CACHE 3215 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3216 #else 3217 #define sqlite3TableLock(v,w,x,y,z) 3218 #endif 3219 3220 #ifdef SQLITE_TEST 3221 int sqlite3Utf8To8(unsigned char*); 3222 #endif 3223 3224 #ifdef SQLITE_OMIT_VIRTUALTABLE 3225 # define sqlite3VtabClear(Y) 3226 # define sqlite3VtabSync(X,Y) SQLITE_OK 3227 # define sqlite3VtabRollback(X) 3228 # define sqlite3VtabCommit(X) 3229 # define sqlite3VtabInSync(db) 0 3230 # define sqlite3VtabLock(X) 3231 # define sqlite3VtabUnlock(X) 3232 # define sqlite3VtabUnlockList(X) 3233 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3234 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3235 #else 3236 void sqlite3VtabClear(sqlite3 *db, Table*); 3237 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3238 int sqlite3VtabSync(sqlite3 *db, char **); 3239 int sqlite3VtabRollback(sqlite3 *db); 3240 int sqlite3VtabCommit(sqlite3 *db); 3241 void sqlite3VtabLock(VTable *); 3242 void sqlite3VtabUnlock(VTable *); 3243 void sqlite3VtabUnlockList(sqlite3*); 3244 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3245 VTable *sqlite3GetVTable(sqlite3*, Table*); 3246 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3247 #endif 3248 void sqlite3VtabMakeWritable(Parse*,Table*); 3249 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3250 void sqlite3VtabFinishParse(Parse*, Token*); 3251 void sqlite3VtabArgInit(Parse*); 3252 void sqlite3VtabArgExtend(Parse*, Token*); 3253 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3254 int sqlite3VtabCallConnect(Parse*, Table*); 3255 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3256 int sqlite3VtabBegin(sqlite3 *, VTable *); 3257 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3258 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3259 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3260 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3261 int sqlite3Reprepare(Vdbe*); 3262 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3263 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3264 int sqlite3TempInMemory(const sqlite3*); 3265 const char *sqlite3JournalModename(int); 3266 #ifndef SQLITE_OMIT_WAL 3267 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3268 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3269 #endif 3270 3271 /* Declarations for functions in fkey.c. All of these are replaced by 3272 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3273 ** key functionality is available. If OMIT_TRIGGER is defined but 3274 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3275 ** this case foreign keys are parsed, but no other functionality is 3276 ** provided (enforcement of FK constraints requires the triggers sub-system). 3277 */ 3278 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3279 void sqlite3FkCheck(Parse*, Table*, int, int); 3280 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3281 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3282 int sqlite3FkRequired(Parse*, Table*, int*, int); 3283 u32 sqlite3FkOldmask(Parse*, Table*); 3284 FKey *sqlite3FkReferences(Table *); 3285 #else 3286 #define sqlite3FkActions(a,b,c,d) 3287 #define sqlite3FkCheck(a,b,c,d) 3288 #define sqlite3FkDropTable(a,b,c) 3289 #define sqlite3FkOldmask(a,b) 0 3290 #define sqlite3FkRequired(a,b,c,d) 0 3291 #endif 3292 #ifndef SQLITE_OMIT_FOREIGN_KEY 3293 void sqlite3FkDelete(sqlite3 *, Table*); 3294 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3295 #else 3296 #define sqlite3FkDelete(a,b) 3297 #define sqlite3FkLocateIndex(a,b,c,d,e) 3298 #endif 3299 3300 3301 /* 3302 ** Available fault injectors. Should be numbered beginning with 0. 3303 */ 3304 #define SQLITE_FAULTINJECTOR_MALLOC 0 3305 #define SQLITE_FAULTINJECTOR_COUNT 1 3306 3307 /* 3308 ** The interface to the code in fault.c used for identifying "benign" 3309 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3310 ** is not defined. 3311 */ 3312 #ifndef SQLITE_OMIT_BUILTIN_TEST 3313 void sqlite3BeginBenignMalloc(void); 3314 void sqlite3EndBenignMalloc(void); 3315 #else 3316 #define sqlite3BeginBenignMalloc() 3317 #define sqlite3EndBenignMalloc() 3318 #endif 3319 3320 #define IN_INDEX_ROWID 1 3321 #define IN_INDEX_EPH 2 3322 #define IN_INDEX_INDEX_ASC 3 3323 #define IN_INDEX_INDEX_DESC 4 3324 int sqlite3FindInIndex(Parse *, Expr *, int*); 3325 3326 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3327 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3328 int sqlite3JournalSize(sqlite3_vfs *); 3329 int sqlite3JournalCreate(sqlite3_file *); 3330 int sqlite3JournalExists(sqlite3_file *p); 3331 #else 3332 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3333 #define sqlite3JournalExists(p) 1 3334 #endif 3335 3336 void sqlite3MemJournalOpen(sqlite3_file *); 3337 int sqlite3MemJournalSize(void); 3338 int sqlite3IsMemJournal(sqlite3_file *); 3339 3340 #if SQLITE_MAX_EXPR_DEPTH>0 3341 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3342 int sqlite3SelectExprHeight(Select *); 3343 int sqlite3ExprCheckHeight(Parse*, int); 3344 #else 3345 #define sqlite3ExprSetHeight(x,y) 3346 #define sqlite3SelectExprHeight(x) 0 3347 #define sqlite3ExprCheckHeight(x,y) 3348 #endif 3349 3350 u32 sqlite3Get4byte(const u8*); 3351 void sqlite3Put4byte(u8*, u32); 3352 3353 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3354 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3355 void sqlite3ConnectionUnlocked(sqlite3 *db); 3356 void sqlite3ConnectionClosed(sqlite3 *db); 3357 #else 3358 #define sqlite3ConnectionBlocked(x,y) 3359 #define sqlite3ConnectionUnlocked(x) 3360 #define sqlite3ConnectionClosed(x) 3361 #endif 3362 3363 #ifdef SQLITE_DEBUG 3364 void sqlite3ParserTrace(FILE*, char *); 3365 #endif 3366 3367 /* 3368 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3369 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3370 ** print I/O tracing messages. 3371 */ 3372 #ifdef SQLITE_ENABLE_IOTRACE 3373 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3374 void sqlite3VdbeIOTraceSql(Vdbe*); 3375 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3376 #else 3377 # define IOTRACE(A) 3378 # define sqlite3VdbeIOTraceSql(X) 3379 #endif 3380 3381 /* 3382 ** These routines are available for the mem2.c debugging memory allocator 3383 ** only. They are used to verify that different "types" of memory 3384 ** allocations are properly tracked by the system. 3385 ** 3386 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3387 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3388 ** a single bit set. 3389 ** 3390 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3391 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3392 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3393 ** 3394 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3395 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3396 ** 3397 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3398 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3399 ** it might have been allocated by lookaside, except the allocation was 3400 ** too large or lookaside was already full. It is important to verify 3401 ** that allocations that might have been satisfied by lookaside are not 3402 ** passed back to non-lookaside free() routines. Asserts such as the 3403 ** example above are placed on the non-lookaside free() routines to verify 3404 ** this constraint. 3405 ** 3406 ** All of this is no-op for a production build. It only comes into 3407 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3408 */ 3409 #ifdef SQLITE_MEMDEBUG 3410 void sqlite3MemdebugSetType(void*,u8); 3411 int sqlite3MemdebugHasType(void*,u8); 3412 int sqlite3MemdebugNoType(void*,u8); 3413 #else 3414 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3415 # define sqlite3MemdebugHasType(X,Y) 1 3416 # define sqlite3MemdebugNoType(X,Y) 1 3417 #endif 3418 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3419 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3420 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3421 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3422 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3423 3424 #endif /* _SQLITEINT_H_ */ 3425