xref: /sqlite-3.40.0/src/sqliteInt.h (revision dca92904)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17 
18 /*
19 ** Include the header file used to customize the compiler options for MSVC.
20 ** This should be done first so that it can successfully prevent spurious
21 ** compiler warnings due to subsequent content in this file and other files
22 ** that are included by this file.
23 */
24 #include "msvc.h"
25 
26 /*
27 ** Special setup for VxWorks
28 */
29 #include "vxworks.h"
30 
31 /*
32 ** These #defines should enable >2GB file support on POSIX if the
33 ** underlying operating system supports it.  If the OS lacks
34 ** large file support, or if the OS is windows, these should be no-ops.
35 **
36 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
37 ** system #includes.  Hence, this block of code must be the very first
38 ** code in all source files.
39 **
40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
41 ** on the compiler command line.  This is necessary if you are compiling
42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
43 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
44 ** without this option, LFS is enable.  But LFS does not exist in the kernel
45 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
46 ** portability you should omit LFS.
47 **
48 ** The previous paragraph was written in 2005.  (This paragraph is written
49 ** on 2008-11-28.) These days, all Linux kernels support large files, so
50 ** you should probably leave LFS enabled.  But some embedded platforms might
51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
52 **
53 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
54 */
55 #ifndef SQLITE_DISABLE_LFS
56 # define _LARGE_FILE       1
57 # ifndef _FILE_OFFSET_BITS
58 #   define _FILE_OFFSET_BITS 64
59 # endif
60 # define _LARGEFILE_SOURCE 1
61 #endif
62 
63 /* What version of GCC is being used.  0 means GCC is not being used */
64 #ifdef __GNUC__
65 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
66 #else
67 # define GCC_VERSION 0
68 #endif
69 
70 /* Needed for various definitions... */
71 #if defined(__GNUC__) && !defined(_GNU_SOURCE)
72 # define _GNU_SOURCE
73 #endif
74 
75 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
76 # define _BSD_SOURCE
77 #endif
78 
79 /*
80 ** For MinGW, check to see if we can include the header file containing its
81 ** version information, among other things.  Normally, this internal MinGW
82 ** header file would [only] be included automatically by other MinGW header
83 ** files; however, the contained version information is now required by this
84 ** header file to work around binary compatibility issues (see below) and
85 ** this is the only known way to reliably obtain it.  This entire #if block
86 ** would be completely unnecessary if there was any other way of detecting
87 ** MinGW via their preprocessor (e.g. if they customized their GCC to define
88 ** some MinGW-specific macros).  When compiling for MinGW, either the
89 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
90 ** defined; otherwise, detection of conditions specific to MinGW will be
91 ** disabled.
92 */
93 #if defined(_HAVE_MINGW_H)
94 # include "mingw.h"
95 #elif defined(_HAVE__MINGW_H)
96 # include "_mingw.h"
97 #endif
98 
99 /*
100 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
101 ** define is required to maintain binary compatibility with the MSVC runtime
102 ** library in use (e.g. for Windows XP).
103 */
104 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
105     defined(_WIN32) && !defined(_WIN64) && \
106     defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
107     defined(__MSVCRT__)
108 # define _USE_32BIT_TIME_T
109 #endif
110 
111 /* The public SQLite interface.  The _FILE_OFFSET_BITS macro must appear
112 ** first in QNX.  Also, the _USE_32BIT_TIME_T macro must appear first for
113 ** MinGW.
114 */
115 #include "sqlite3.h"
116 
117 /*
118 ** Include the configuration header output by 'configure' if we're using the
119 ** autoconf-based build
120 */
121 #ifdef _HAVE_SQLITE_CONFIG_H
122 #include "config.h"
123 #endif
124 
125 #include "sqliteLimit.h"
126 
127 /* Disable nuisance warnings on Borland compilers */
128 #if defined(__BORLANDC__)
129 #pragma warn -rch /* unreachable code */
130 #pragma warn -ccc /* Condition is always true or false */
131 #pragma warn -aus /* Assigned value is never used */
132 #pragma warn -csu /* Comparing signed and unsigned */
133 #pragma warn -spa /* Suspicious pointer arithmetic */
134 #endif
135 
136 /*
137 ** Include standard header files as necessary
138 */
139 #ifdef HAVE_STDINT_H
140 #include <stdint.h>
141 #endif
142 #ifdef HAVE_INTTYPES_H
143 #include <inttypes.h>
144 #endif
145 
146 /*
147 ** The following macros are used to cast pointers to integers and
148 ** integers to pointers.  The way you do this varies from one compiler
149 ** to the next, so we have developed the following set of #if statements
150 ** to generate appropriate macros for a wide range of compilers.
151 **
152 ** The correct "ANSI" way to do this is to use the intptr_t type.
153 ** Unfortunately, that typedef is not available on all compilers, or
154 ** if it is available, it requires an #include of specific headers
155 ** that vary from one machine to the next.
156 **
157 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
158 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
159 ** So we have to define the macros in different ways depending on the
160 ** compiler.
161 */
162 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
163 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
164 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
165 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
166 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
167 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
168 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
169 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
170 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
171 #else                          /* Generates a warning - but it always works */
172 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
173 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
174 #endif
175 
176 /*
177 ** A macro to hint to the compiler that a function should not be
178 ** inlined.
179 */
180 #if defined(__GNUC__)
181 #  define SQLITE_NOINLINE  __attribute__((noinline))
182 #elif defined(_MSC_VER) && _MSC_VER>=1310
183 #  define SQLITE_NOINLINE  __declspec(noinline)
184 #else
185 #  define SQLITE_NOINLINE
186 #endif
187 
188 /*
189 ** Make sure that the compiler intrinsics we desire are enabled when
190 ** compiling with an appropriate version of MSVC unless prevented by
191 ** the SQLITE_DISABLE_INTRINSIC define.
192 */
193 #if !defined(SQLITE_DISABLE_INTRINSIC)
194 #  if defined(_MSC_VER) && _MSC_VER>=1300
195 #    if !defined(_WIN32_WCE)
196 #      include <intrin.h>
197 #      pragma intrinsic(_byteswap_ushort)
198 #      pragma intrinsic(_byteswap_ulong)
199 #    else
200 #      include <cmnintrin.h>
201 #    endif
202 #  endif
203 #endif
204 
205 /*
206 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
207 ** 0 means mutexes are permanently disable and the library is never
208 ** threadsafe.  1 means the library is serialized which is the highest
209 ** level of threadsafety.  2 means the library is multithreaded - multiple
210 ** threads can use SQLite as long as no two threads try to use the same
211 ** database connection at the same time.
212 **
213 ** Older versions of SQLite used an optional THREADSAFE macro.
214 ** We support that for legacy.
215 */
216 #if !defined(SQLITE_THREADSAFE)
217 # if defined(THREADSAFE)
218 #   define SQLITE_THREADSAFE THREADSAFE
219 # else
220 #   define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
221 # endif
222 #endif
223 
224 /*
225 ** Powersafe overwrite is on by default.  But can be turned off using
226 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
227 */
228 #ifndef SQLITE_POWERSAFE_OVERWRITE
229 # define SQLITE_POWERSAFE_OVERWRITE 1
230 #endif
231 
232 /*
233 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
234 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
235 ** which case memory allocation statistics are disabled by default.
236 */
237 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
238 # define SQLITE_DEFAULT_MEMSTATUS 1
239 #endif
240 
241 /*
242 ** Exactly one of the following macros must be defined in order to
243 ** specify which memory allocation subsystem to use.
244 **
245 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
246 **     SQLITE_WIN32_MALLOC           // Use Win32 native heap API
247 **     SQLITE_ZERO_MALLOC            // Use a stub allocator that always fails
248 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
249 **
250 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
251 ** assert() macro is enabled, each call into the Win32 native heap subsystem
252 ** will cause HeapValidate to be called.  If heap validation should fail, an
253 ** assertion will be triggered.
254 **
255 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
256 ** the default.
257 */
258 #if defined(SQLITE_SYSTEM_MALLOC) \
259   + defined(SQLITE_WIN32_MALLOC) \
260   + defined(SQLITE_ZERO_MALLOC) \
261   + defined(SQLITE_MEMDEBUG)>1
262 # error "Two or more of the following compile-time configuration options\
263  are defined but at most one is allowed:\
264  SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
265  SQLITE_ZERO_MALLOC"
266 #endif
267 #if defined(SQLITE_SYSTEM_MALLOC) \
268   + defined(SQLITE_WIN32_MALLOC) \
269   + defined(SQLITE_ZERO_MALLOC) \
270   + defined(SQLITE_MEMDEBUG)==0
271 # define SQLITE_SYSTEM_MALLOC 1
272 #endif
273 
274 /*
275 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
276 ** sizes of memory allocations below this value where possible.
277 */
278 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
279 # define SQLITE_MALLOC_SOFT_LIMIT 1024
280 #endif
281 
282 /*
283 ** We need to define _XOPEN_SOURCE as follows in order to enable
284 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
285 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
286 ** it.
287 */
288 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
289 #  define _XOPEN_SOURCE 600
290 #endif
291 
292 /*
293 ** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
294 ** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
295 ** make it true by defining or undefining NDEBUG.
296 **
297 ** Setting NDEBUG makes the code smaller and faster by disabling the
298 ** assert() statements in the code.  So we want the default action
299 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
300 ** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
301 ** feature.
302 */
303 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
304 # define NDEBUG 1
305 #endif
306 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
307 # undef NDEBUG
308 #endif
309 
310 /*
311 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
312 */
313 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
314 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
315 #endif
316 
317 /*
318 ** The testcase() macro is used to aid in coverage testing.  When
319 ** doing coverage testing, the condition inside the argument to
320 ** testcase() must be evaluated both true and false in order to
321 ** get full branch coverage.  The testcase() macro is inserted
322 ** to help ensure adequate test coverage in places where simple
323 ** condition/decision coverage is inadequate.  For example, testcase()
324 ** can be used to make sure boundary values are tested.  For
325 ** bitmask tests, testcase() can be used to make sure each bit
326 ** is significant and used at least once.  On switch statements
327 ** where multiple cases go to the same block of code, testcase()
328 ** can insure that all cases are evaluated.
329 **
330 */
331 #ifdef SQLITE_COVERAGE_TEST
332   void sqlite3Coverage(int);
333 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
334 #else
335 # define testcase(X)
336 #endif
337 
338 /*
339 ** The TESTONLY macro is used to enclose variable declarations or
340 ** other bits of code that are needed to support the arguments
341 ** within testcase() and assert() macros.
342 */
343 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
344 # define TESTONLY(X)  X
345 #else
346 # define TESTONLY(X)
347 #endif
348 
349 /*
350 ** Sometimes we need a small amount of code such as a variable initialization
351 ** to setup for a later assert() statement.  We do not want this code to
352 ** appear when assert() is disabled.  The following macro is therefore
353 ** used to contain that setup code.  The "VVA" acronym stands for
354 ** "Verification, Validation, and Accreditation".  In other words, the
355 ** code within VVA_ONLY() will only run during verification processes.
356 */
357 #ifndef NDEBUG
358 # define VVA_ONLY(X)  X
359 #else
360 # define VVA_ONLY(X)
361 #endif
362 
363 /*
364 ** The ALWAYS and NEVER macros surround boolean expressions which
365 ** are intended to always be true or false, respectively.  Such
366 ** expressions could be omitted from the code completely.  But they
367 ** are included in a few cases in order to enhance the resilience
368 ** of SQLite to unexpected behavior - to make the code "self-healing"
369 ** or "ductile" rather than being "brittle" and crashing at the first
370 ** hint of unplanned behavior.
371 **
372 ** In other words, ALWAYS and NEVER are added for defensive code.
373 **
374 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
375 ** be true and false so that the unreachable code they specify will
376 ** not be counted as untested code.
377 */
378 #if defined(SQLITE_COVERAGE_TEST)
379 # define ALWAYS(X)      (1)
380 # define NEVER(X)       (0)
381 #elif !defined(NDEBUG)
382 # define ALWAYS(X)      ((X)?1:(assert(0),0))
383 # define NEVER(X)       ((X)?(assert(0),1):0)
384 #else
385 # define ALWAYS(X)      (X)
386 # define NEVER(X)       (X)
387 #endif
388 
389 /*
390 ** Declarations used for tracing the operating system interfaces.
391 */
392 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \
393     (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
394   extern int sqlite3OSTrace;
395 # define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
396 # define SQLITE_HAVE_OS_TRACE
397 #else
398 # define OSTRACE(X)
399 # undef  SQLITE_HAVE_OS_TRACE
400 #endif
401 
402 /*
403 ** Is the sqlite3ErrName() function needed in the build?  Currently,
404 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when
405 ** OSTRACE is enabled), and by several "test*.c" files (which are
406 ** compiled using SQLITE_TEST).
407 */
408 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \
409     (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
410 # define SQLITE_NEED_ERR_NAME
411 #else
412 # undef  SQLITE_NEED_ERR_NAME
413 #endif
414 
415 /*
416 ** Return true (non-zero) if the input is an integer that is too large
417 ** to fit in 32-bits.  This macro is used inside of various testcase()
418 ** macros to verify that we have tested SQLite for large-file support.
419 */
420 #define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
421 
422 /*
423 ** The macro unlikely() is a hint that surrounds a boolean
424 ** expression that is usually false.  Macro likely() surrounds
425 ** a boolean expression that is usually true.  These hints could,
426 ** in theory, be used by the compiler to generate better code, but
427 ** currently they are just comments for human readers.
428 */
429 #define likely(X)    (X)
430 #define unlikely(X)  (X)
431 
432 #include "hash.h"
433 #include "parse.h"
434 #include <stdio.h>
435 #include <stdlib.h>
436 #include <string.h>
437 #include <assert.h>
438 #include <stddef.h>
439 
440 /*
441 ** If compiling for a processor that lacks floating point support,
442 ** substitute integer for floating-point
443 */
444 #ifdef SQLITE_OMIT_FLOATING_POINT
445 # define double sqlite_int64
446 # define float sqlite_int64
447 # define LONGDOUBLE_TYPE sqlite_int64
448 # ifndef SQLITE_BIG_DBL
449 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
450 # endif
451 # define SQLITE_OMIT_DATETIME_FUNCS 1
452 # define SQLITE_OMIT_TRACE 1
453 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
454 # undef SQLITE_HAVE_ISNAN
455 #endif
456 #ifndef SQLITE_BIG_DBL
457 # define SQLITE_BIG_DBL (1e99)
458 #endif
459 
460 /*
461 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
462 ** afterward. Having this macro allows us to cause the C compiler
463 ** to omit code used by TEMP tables without messy #ifndef statements.
464 */
465 #ifdef SQLITE_OMIT_TEMPDB
466 #define OMIT_TEMPDB 1
467 #else
468 #define OMIT_TEMPDB 0
469 #endif
470 
471 /*
472 ** The "file format" number is an integer that is incremented whenever
473 ** the VDBE-level file format changes.  The following macros define the
474 ** the default file format for new databases and the maximum file format
475 ** that the library can read.
476 */
477 #define SQLITE_MAX_FILE_FORMAT 4
478 #ifndef SQLITE_DEFAULT_FILE_FORMAT
479 # define SQLITE_DEFAULT_FILE_FORMAT 4
480 #endif
481 
482 /*
483 ** Determine whether triggers are recursive by default.  This can be
484 ** changed at run-time using a pragma.
485 */
486 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
487 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
488 #endif
489 
490 /*
491 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
492 ** on the command-line
493 */
494 #ifndef SQLITE_TEMP_STORE
495 # define SQLITE_TEMP_STORE 1
496 # define SQLITE_TEMP_STORE_xc 1  /* Exclude from ctime.c */
497 #endif
498 
499 /*
500 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
501 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
502 ** to zero.
503 */
504 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
505 # undef SQLITE_MAX_WORKER_THREADS
506 # define SQLITE_MAX_WORKER_THREADS 0
507 #endif
508 #ifndef SQLITE_MAX_WORKER_THREADS
509 # define SQLITE_MAX_WORKER_THREADS 8
510 #endif
511 #ifndef SQLITE_DEFAULT_WORKER_THREADS
512 # define SQLITE_DEFAULT_WORKER_THREADS 0
513 #endif
514 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
515 # undef SQLITE_MAX_WORKER_THREADS
516 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
517 #endif
518 
519 /*
520 ** The default initial allocation for the pagecache when using separate
521 ** pagecaches for each database connection.  A positive number is the
522 ** number of pages.  A negative number N translations means that a buffer
523 ** of -1024*N bytes is allocated and used for as many pages as it will hold.
524 */
525 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ
526 # define SQLITE_DEFAULT_PCACHE_INITSZ 100
527 #endif
528 
529 
530 /*
531 ** GCC does not define the offsetof() macro so we'll have to do it
532 ** ourselves.
533 */
534 #ifndef offsetof
535 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
536 #endif
537 
538 /*
539 ** Macros to compute minimum and maximum of two numbers.
540 */
541 #define MIN(A,B) ((A)<(B)?(A):(B))
542 #define MAX(A,B) ((A)>(B)?(A):(B))
543 
544 /*
545 ** Swap two objects of type TYPE.
546 */
547 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
548 
549 /*
550 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
551 ** not, there are still machines out there that use EBCDIC.)
552 */
553 #if 'A' == '\301'
554 # define SQLITE_EBCDIC 1
555 #else
556 # define SQLITE_ASCII 1
557 #endif
558 
559 /*
560 ** Integers of known sizes.  These typedefs might change for architectures
561 ** where the sizes very.  Preprocessor macros are available so that the
562 ** types can be conveniently redefined at compile-type.  Like this:
563 **
564 **         cc '-DUINTPTR_TYPE=long long int' ...
565 */
566 #ifndef UINT32_TYPE
567 # ifdef HAVE_UINT32_T
568 #  define UINT32_TYPE uint32_t
569 # else
570 #  define UINT32_TYPE unsigned int
571 # endif
572 #endif
573 #ifndef UINT16_TYPE
574 # ifdef HAVE_UINT16_T
575 #  define UINT16_TYPE uint16_t
576 # else
577 #  define UINT16_TYPE unsigned short int
578 # endif
579 #endif
580 #ifndef INT16_TYPE
581 # ifdef HAVE_INT16_T
582 #  define INT16_TYPE int16_t
583 # else
584 #  define INT16_TYPE short int
585 # endif
586 #endif
587 #ifndef UINT8_TYPE
588 # ifdef HAVE_UINT8_T
589 #  define UINT8_TYPE uint8_t
590 # else
591 #  define UINT8_TYPE unsigned char
592 # endif
593 #endif
594 #ifndef INT8_TYPE
595 # ifdef HAVE_INT8_T
596 #  define INT8_TYPE int8_t
597 # else
598 #  define INT8_TYPE signed char
599 # endif
600 #endif
601 #ifndef LONGDOUBLE_TYPE
602 # define LONGDOUBLE_TYPE long double
603 #endif
604 typedef sqlite_int64 i64;          /* 8-byte signed integer */
605 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
606 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
607 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
608 typedef INT16_TYPE i16;            /* 2-byte signed integer */
609 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
610 typedef INT8_TYPE i8;              /* 1-byte signed integer */
611 
612 /*
613 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
614 ** that can be stored in a u32 without loss of data.  The value
615 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
616 ** have to specify the value in the less intuitive manner shown:
617 */
618 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
619 
620 /*
621 ** The datatype used to store estimates of the number of rows in a
622 ** table or index.  This is an unsigned integer type.  For 99.9% of
623 ** the world, a 32-bit integer is sufficient.  But a 64-bit integer
624 ** can be used at compile-time if desired.
625 */
626 #ifdef SQLITE_64BIT_STATS
627  typedef u64 tRowcnt;    /* 64-bit only if requested at compile-time */
628 #else
629  typedef u32 tRowcnt;    /* 32-bit is the default */
630 #endif
631 
632 /*
633 ** Estimated quantities used for query planning are stored as 16-bit
634 ** logarithms.  For quantity X, the value stored is 10*log2(X).  This
635 ** gives a possible range of values of approximately 1.0e986 to 1e-986.
636 ** But the allowed values are "grainy".  Not every value is representable.
637 ** For example, quantities 16 and 17 are both represented by a LogEst
638 ** of 40.  However, since LogEst quantities are suppose to be estimates,
639 ** not exact values, this imprecision is not a problem.
640 **
641 ** "LogEst" is short for "Logarithmic Estimate".
642 **
643 ** Examples:
644 **      1 -> 0              20 -> 43          10000 -> 132
645 **      2 -> 10             25 -> 46          25000 -> 146
646 **      3 -> 16            100 -> 66        1000000 -> 199
647 **      4 -> 20           1000 -> 99        1048576 -> 200
648 **     10 -> 33           1024 -> 100    4294967296 -> 320
649 **
650 ** The LogEst can be negative to indicate fractional values.
651 ** Examples:
652 **
653 **    0.5 -> -10           0.1 -> -33        0.0625 -> -40
654 */
655 typedef INT16_TYPE LogEst;
656 
657 /*
658 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
659 */
660 #ifndef SQLITE_PTRSIZE
661 # if defined(__SIZEOF_POINTER__)
662 #   define SQLITE_PTRSIZE __SIZEOF_POINTER__
663 # elif defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
664        defined(_M_ARM)   || defined(__arm__)    || defined(__x86)
665 #   define SQLITE_PTRSIZE 4
666 # else
667 #   define SQLITE_PTRSIZE 8
668 # endif
669 #endif
670 
671 /*
672 ** Macros to determine whether the machine is big or little endian,
673 ** and whether or not that determination is run-time or compile-time.
674 **
675 ** For best performance, an attempt is made to guess at the byte-order
676 ** using C-preprocessor macros.  If that is unsuccessful, or if
677 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
678 ** at run-time.
679 */
680 #ifdef SQLITE_AMALGAMATION
681 const int sqlite3one = 1;
682 #else
683 extern const int sqlite3one;
684 #endif
685 #if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
686      defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
687      defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
688      defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
689 # define SQLITE_BYTEORDER    1234
690 # define SQLITE_BIGENDIAN    0
691 # define SQLITE_LITTLEENDIAN 1
692 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
693 #endif
694 #if (defined(sparc)    || defined(__ppc__))  \
695     && !defined(SQLITE_RUNTIME_BYTEORDER)
696 # define SQLITE_BYTEORDER    4321
697 # define SQLITE_BIGENDIAN    1
698 # define SQLITE_LITTLEENDIAN 0
699 # define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
700 #endif
701 #if !defined(SQLITE_BYTEORDER)
702 # define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
703 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
704 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
705 # define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
706 #endif
707 
708 /*
709 ** Constants for the largest and smallest possible 64-bit signed integers.
710 ** These macros are designed to work correctly on both 32-bit and 64-bit
711 ** compilers.
712 */
713 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
714 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
715 
716 /*
717 ** Round up a number to the next larger multiple of 8.  This is used
718 ** to force 8-byte alignment on 64-bit architectures.
719 */
720 #define ROUND8(x)     (((x)+7)&~7)
721 
722 /*
723 ** Round down to the nearest multiple of 8
724 */
725 #define ROUNDDOWN8(x) ((x)&~7)
726 
727 /*
728 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
729 ** macro is used only within assert() to verify that the code gets
730 ** all alignment restrictions correct.
731 **
732 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
733 ** underlying malloc() implementation might return us 4-byte aligned
734 ** pointers.  In that case, only verify 4-byte alignment.
735 */
736 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
737 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
738 #else
739 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
740 #endif
741 
742 /*
743 ** Disable MMAP on platforms where it is known to not work
744 */
745 #if defined(__OpenBSD__) || defined(__QNXNTO__)
746 # undef SQLITE_MAX_MMAP_SIZE
747 # define SQLITE_MAX_MMAP_SIZE 0
748 #endif
749 
750 /*
751 ** Default maximum size of memory used by memory-mapped I/O in the VFS
752 */
753 #ifdef __APPLE__
754 # include <TargetConditionals.h>
755 # if TARGET_OS_IPHONE
756 #   undef SQLITE_MAX_MMAP_SIZE
757 #   define SQLITE_MAX_MMAP_SIZE 0
758 # endif
759 #endif
760 #ifndef SQLITE_MAX_MMAP_SIZE
761 # if defined(__linux__) \
762   || defined(_WIN32) \
763   || (defined(__APPLE__) && defined(__MACH__)) \
764   || defined(__sun) \
765   || defined(__FreeBSD__) \
766   || defined(__DragonFly__)
767 #   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
768 # else
769 #   define SQLITE_MAX_MMAP_SIZE 0
770 # endif
771 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
772 #endif
773 
774 /*
775 ** The default MMAP_SIZE is zero on all platforms.  Or, even if a larger
776 ** default MMAP_SIZE is specified at compile-time, make sure that it does
777 ** not exceed the maximum mmap size.
778 */
779 #ifndef SQLITE_DEFAULT_MMAP_SIZE
780 # define SQLITE_DEFAULT_MMAP_SIZE 0
781 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1  /* Exclude from ctime.c */
782 #endif
783 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
784 # undef SQLITE_DEFAULT_MMAP_SIZE
785 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
786 #endif
787 
788 /*
789 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
790 ** Priority is given to SQLITE_ENABLE_STAT4.  If either are defined, also
791 ** define SQLITE_ENABLE_STAT3_OR_STAT4
792 */
793 #ifdef SQLITE_ENABLE_STAT4
794 # undef SQLITE_ENABLE_STAT3
795 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
796 #elif SQLITE_ENABLE_STAT3
797 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
798 #elif SQLITE_ENABLE_STAT3_OR_STAT4
799 # undef SQLITE_ENABLE_STAT3_OR_STAT4
800 #endif
801 
802 /*
803 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not
804 ** the Select query generator tracing logic is turned on.
805 */
806 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE)
807 # define SELECTTRACE_ENABLED 1
808 #else
809 # define SELECTTRACE_ENABLED 0
810 #endif
811 
812 /*
813 ** An instance of the following structure is used to store the busy-handler
814 ** callback for a given sqlite handle.
815 **
816 ** The sqlite.busyHandler member of the sqlite struct contains the busy
817 ** callback for the database handle. Each pager opened via the sqlite
818 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
819 ** callback is currently invoked only from within pager.c.
820 */
821 typedef struct BusyHandler BusyHandler;
822 struct BusyHandler {
823   int (*xFunc)(void *,int);  /* The busy callback */
824   void *pArg;                /* First arg to busy callback */
825   int nBusy;                 /* Incremented with each busy call */
826 };
827 
828 /*
829 ** Name of the master database table.  The master database table
830 ** is a special table that holds the names and attributes of all
831 ** user tables and indices.
832 */
833 #define MASTER_NAME       "sqlite_master"
834 #define TEMP_MASTER_NAME  "sqlite_temp_master"
835 
836 /*
837 ** The root-page of the master database table.
838 */
839 #define MASTER_ROOT       1
840 
841 /*
842 ** The name of the schema table.
843 */
844 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
845 
846 /*
847 ** A convenience macro that returns the number of elements in
848 ** an array.
849 */
850 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
851 
852 /*
853 ** Determine if the argument is a power of two
854 */
855 #define IsPowerOfTwo(X) (((X)&((X)-1))==0)
856 
857 /*
858 ** The following value as a destructor means to use sqlite3DbFree().
859 ** The sqlite3DbFree() routine requires two parameters instead of the
860 ** one parameter that destructors normally want.  So we have to introduce
861 ** this magic value that the code knows to handle differently.  Any
862 ** pointer will work here as long as it is distinct from SQLITE_STATIC
863 ** and SQLITE_TRANSIENT.
864 */
865 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3MallocSize)
866 
867 /*
868 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
869 ** not support Writable Static Data (WSD) such as global and static variables.
870 ** All variables must either be on the stack or dynamically allocated from
871 ** the heap.  When WSD is unsupported, the variable declarations scattered
872 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
873 ** macro is used for this purpose.  And instead of referencing the variable
874 ** directly, we use its constant as a key to lookup the run-time allocated
875 ** buffer that holds real variable.  The constant is also the initializer
876 ** for the run-time allocated buffer.
877 **
878 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
879 ** macros become no-ops and have zero performance impact.
880 */
881 #ifdef SQLITE_OMIT_WSD
882   #define SQLITE_WSD const
883   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
884   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
885   int sqlite3_wsd_init(int N, int J);
886   void *sqlite3_wsd_find(void *K, int L);
887 #else
888   #define SQLITE_WSD
889   #define GLOBAL(t,v) v
890   #define sqlite3GlobalConfig sqlite3Config
891 #endif
892 
893 /*
894 ** The following macros are used to suppress compiler warnings and to
895 ** make it clear to human readers when a function parameter is deliberately
896 ** left unused within the body of a function. This usually happens when
897 ** a function is called via a function pointer. For example the
898 ** implementation of an SQL aggregate step callback may not use the
899 ** parameter indicating the number of arguments passed to the aggregate,
900 ** if it knows that this is enforced elsewhere.
901 **
902 ** When a function parameter is not used at all within the body of a function,
903 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
904 ** However, these macros may also be used to suppress warnings related to
905 ** parameters that may or may not be used depending on compilation options.
906 ** For example those parameters only used in assert() statements. In these
907 ** cases the parameters are named as per the usual conventions.
908 */
909 #define UNUSED_PARAMETER(x) (void)(x)
910 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
911 
912 /*
913 ** Forward references to structures
914 */
915 typedef struct AggInfo AggInfo;
916 typedef struct AuthContext AuthContext;
917 typedef struct AutoincInfo AutoincInfo;
918 typedef struct Bitvec Bitvec;
919 typedef struct CollSeq CollSeq;
920 typedef struct Column Column;
921 typedef struct Db Db;
922 typedef struct Schema Schema;
923 typedef struct Expr Expr;
924 typedef struct ExprList ExprList;
925 typedef struct ExprSpan ExprSpan;
926 typedef struct FKey FKey;
927 typedef struct FuncDestructor FuncDestructor;
928 typedef struct FuncDef FuncDef;
929 typedef struct FuncDefHash FuncDefHash;
930 typedef struct IdList IdList;
931 typedef struct Index Index;
932 typedef struct IndexSample IndexSample;
933 typedef struct KeyClass KeyClass;
934 typedef struct KeyInfo KeyInfo;
935 typedef struct Lookaside Lookaside;
936 typedef struct LookasideSlot LookasideSlot;
937 typedef struct Module Module;
938 typedef struct NameContext NameContext;
939 typedef struct Parse Parse;
940 typedef struct PrintfArguments PrintfArguments;
941 typedef struct RowSet RowSet;
942 typedef struct Savepoint Savepoint;
943 typedef struct Select Select;
944 typedef struct SQLiteThread SQLiteThread;
945 typedef struct SelectDest SelectDest;
946 typedef struct SrcList SrcList;
947 typedef struct StrAccum StrAccum;
948 typedef struct Table Table;
949 typedef struct TableLock TableLock;
950 typedef struct Token Token;
951 typedef struct TreeView TreeView;
952 typedef struct Trigger Trigger;
953 typedef struct TriggerPrg TriggerPrg;
954 typedef struct TriggerStep TriggerStep;
955 typedef struct UnpackedRecord UnpackedRecord;
956 typedef struct VTable VTable;
957 typedef struct VtabCtx VtabCtx;
958 typedef struct Walker Walker;
959 typedef struct WhereInfo WhereInfo;
960 typedef struct With With;
961 
962 /*
963 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
964 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
965 ** pointer types (i.e. FuncDef) defined above.
966 */
967 #include "btree.h"
968 #include "vdbe.h"
969 #include "pager.h"
970 #include "pcache.h"
971 
972 #include "os.h"
973 #include "mutex.h"
974 
975 
976 /*
977 ** Each database file to be accessed by the system is an instance
978 ** of the following structure.  There are normally two of these structures
979 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
980 ** aDb[1] is the database file used to hold temporary tables.  Additional
981 ** databases may be attached.
982 */
983 struct Db {
984   char *zName;         /* Name of this database */
985   Btree *pBt;          /* The B*Tree structure for this database file */
986   u8 safety_level;     /* How aggressive at syncing data to disk */
987   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
988 };
989 
990 /*
991 ** An instance of the following structure stores a database schema.
992 **
993 ** Most Schema objects are associated with a Btree.  The exception is
994 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
995 ** In shared cache mode, a single Schema object can be shared by multiple
996 ** Btrees that refer to the same underlying BtShared object.
997 **
998 ** Schema objects are automatically deallocated when the last Btree that
999 ** references them is destroyed.   The TEMP Schema is manually freed by
1000 ** sqlite3_close().
1001 *
1002 ** A thread must be holding a mutex on the corresponding Btree in order
1003 ** to access Schema content.  This implies that the thread must also be
1004 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
1005 ** For a TEMP Schema, only the connection mutex is required.
1006 */
1007 struct Schema {
1008   int schema_cookie;   /* Database schema version number for this file */
1009   int iGeneration;     /* Generation counter.  Incremented with each change */
1010   Hash tblHash;        /* All tables indexed by name */
1011   Hash idxHash;        /* All (named) indices indexed by name */
1012   Hash trigHash;       /* All triggers indexed by name */
1013   Hash fkeyHash;       /* All foreign keys by referenced table name */
1014   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
1015   u8 file_format;      /* Schema format version for this file */
1016   u8 enc;              /* Text encoding used by this database */
1017   u16 schemaFlags;     /* Flags associated with this schema */
1018   int cache_size;      /* Number of pages to use in the cache */
1019 };
1020 
1021 /*
1022 ** These macros can be used to test, set, or clear bits in the
1023 ** Db.pSchema->flags field.
1024 */
1025 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
1026 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
1027 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->schemaFlags|=(P)
1028 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->schemaFlags&=~(P)
1029 
1030 /*
1031 ** Allowed values for the DB.pSchema->flags field.
1032 **
1033 ** The DB_SchemaLoaded flag is set after the database schema has been
1034 ** read into internal hash tables.
1035 **
1036 ** DB_UnresetViews means that one or more views have column names that
1037 ** have been filled out.  If the schema changes, these column names might
1038 ** changes and so the view will need to be reset.
1039 */
1040 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
1041 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
1042 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
1043 
1044 /*
1045 ** The number of different kinds of things that can be limited
1046 ** using the sqlite3_limit() interface.
1047 */
1048 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
1049 
1050 /*
1051 ** Lookaside malloc is a set of fixed-size buffers that can be used
1052 ** to satisfy small transient memory allocation requests for objects
1053 ** associated with a particular database connection.  The use of
1054 ** lookaside malloc provides a significant performance enhancement
1055 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
1056 ** SQL statements.
1057 **
1058 ** The Lookaside structure holds configuration information about the
1059 ** lookaside malloc subsystem.  Each available memory allocation in
1060 ** the lookaside subsystem is stored on a linked list of LookasideSlot
1061 ** objects.
1062 **
1063 ** Lookaside allocations are only allowed for objects that are associated
1064 ** with a particular database connection.  Hence, schema information cannot
1065 ** be stored in lookaside because in shared cache mode the schema information
1066 ** is shared by multiple database connections.  Therefore, while parsing
1067 ** schema information, the Lookaside.bEnabled flag is cleared so that
1068 ** lookaside allocations are not used to construct the schema objects.
1069 */
1070 struct Lookaside {
1071   u16 sz;                 /* Size of each buffer in bytes */
1072   u8 bEnabled;            /* False to disable new lookaside allocations */
1073   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
1074   int nOut;               /* Number of buffers currently checked out */
1075   int mxOut;              /* Highwater mark for nOut */
1076   int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
1077   LookasideSlot *pFree;   /* List of available buffers */
1078   void *pStart;           /* First byte of available memory space */
1079   void *pEnd;             /* First byte past end of available space */
1080 };
1081 struct LookasideSlot {
1082   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
1083 };
1084 
1085 /*
1086 ** A hash table for function definitions.
1087 **
1088 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
1089 ** Collisions are on the FuncDef.pHash chain.
1090 */
1091 struct FuncDefHash {
1092   FuncDef *a[23];       /* Hash table for functions */
1093 };
1094 
1095 #ifdef SQLITE_USER_AUTHENTICATION
1096 /*
1097 ** Information held in the "sqlite3" database connection object and used
1098 ** to manage user authentication.
1099 */
1100 typedef struct sqlite3_userauth sqlite3_userauth;
1101 struct sqlite3_userauth {
1102   u8 authLevel;                 /* Current authentication level */
1103   int nAuthPW;                  /* Size of the zAuthPW in bytes */
1104   char *zAuthPW;                /* Password used to authenticate */
1105   char *zAuthUser;              /* User name used to authenticate */
1106 };
1107 
1108 /* Allowed values for sqlite3_userauth.authLevel */
1109 #define UAUTH_Unknown     0     /* Authentication not yet checked */
1110 #define UAUTH_Fail        1     /* User authentication failed */
1111 #define UAUTH_User        2     /* Authenticated as a normal user */
1112 #define UAUTH_Admin       3     /* Authenticated as an administrator */
1113 
1114 /* Functions used only by user authorization logic */
1115 int sqlite3UserAuthTable(const char*);
1116 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
1117 void sqlite3UserAuthInit(sqlite3*);
1118 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);
1119 
1120 #endif /* SQLITE_USER_AUTHENTICATION */
1121 
1122 /*
1123 ** typedef for the authorization callback function.
1124 */
1125 #ifdef SQLITE_USER_AUTHENTICATION
1126   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1127                                const char*, const char*);
1128 #else
1129   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1130                                const char*);
1131 #endif
1132 
1133 
1134 /*
1135 ** Each database connection is an instance of the following structure.
1136 */
1137 struct sqlite3 {
1138   sqlite3_vfs *pVfs;            /* OS Interface */
1139   struct Vdbe *pVdbe;           /* List of active virtual machines */
1140   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
1141   sqlite3_mutex *mutex;         /* Connection mutex */
1142   Db *aDb;                      /* All backends */
1143   int nDb;                      /* Number of backends currently in use */
1144   int flags;                    /* Miscellaneous flags. See below */
1145   i64 lastRowid;                /* ROWID of most recent insert (see above) */
1146   i64 szMmap;                   /* Default mmap_size setting */
1147   unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
1148   int errCode;                  /* Most recent error code (SQLITE_*) */
1149   int errMask;                  /* & result codes with this before returning */
1150   u16 dbOptFlags;               /* Flags to enable/disable optimizations */
1151   u8 enc;                       /* Text encoding */
1152   u8 autoCommit;                /* The auto-commit flag. */
1153   u8 temp_store;                /* 1: file 2: memory 0: default */
1154   u8 mallocFailed;              /* True if we have seen a malloc failure */
1155   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
1156   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
1157   u8 suppressErr;               /* Do not issue error messages if true */
1158   u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
1159   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
1160   int nextPagesize;             /* Pagesize after VACUUM if >0 */
1161   u32 magic;                    /* Magic number for detect library misuse */
1162   int nChange;                  /* Value returned by sqlite3_changes() */
1163   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
1164   int aLimit[SQLITE_N_LIMIT];   /* Limits */
1165   int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
1166   struct sqlite3InitInfo {      /* Information used during initialization */
1167     int newTnum;                /* Rootpage of table being initialized */
1168     u8 iDb;                     /* Which db file is being initialized */
1169     u8 busy;                    /* TRUE if currently initializing */
1170     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
1171     u8 imposterTable;           /* Building an imposter table */
1172   } init;
1173   int nVdbeActive;              /* Number of VDBEs currently running */
1174   int nVdbeRead;                /* Number of active VDBEs that read or write */
1175   int nVdbeWrite;               /* Number of active VDBEs that read and write */
1176   int nVdbeExec;                /* Number of nested calls to VdbeExec() */
1177   int nVDestroy;                /* Number of active OP_VDestroy operations */
1178   int nExtension;               /* Number of loaded extensions */
1179   void **aExtension;            /* Array of shared library handles */
1180   void (*xTrace)(void*,const char*);        /* Trace function */
1181   void *pTraceArg;                          /* Argument to the trace function */
1182   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
1183   void *pProfileArg;                        /* Argument to profile function */
1184   void *pCommitArg;                 /* Argument to xCommitCallback() */
1185   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
1186   void *pRollbackArg;               /* Argument to xRollbackCallback() */
1187   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
1188   void *pUpdateArg;
1189   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
1190 #ifndef SQLITE_OMIT_WAL
1191   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
1192   void *pWalArg;
1193 #endif
1194   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
1195   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
1196   void *pCollNeededArg;
1197   sqlite3_value *pErr;          /* Most recent error message */
1198   union {
1199     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
1200     double notUsed1;            /* Spacer */
1201   } u1;
1202   Lookaside lookaside;          /* Lookaside malloc configuration */
1203 #ifndef SQLITE_OMIT_AUTHORIZATION
1204   sqlite3_xauth xAuth;          /* Access authorization function */
1205   void *pAuthArg;               /* 1st argument to the access auth function */
1206 #endif
1207 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1208   int (*xProgress)(void *);     /* The progress callback */
1209   void *pProgressArg;           /* Argument to the progress callback */
1210   unsigned nProgressOps;        /* Number of opcodes for progress callback */
1211 #endif
1212 #ifndef SQLITE_OMIT_VIRTUALTABLE
1213   int nVTrans;                  /* Allocated size of aVTrans */
1214   Hash aModule;                 /* populated by sqlite3_create_module() */
1215   VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
1216   VTable **aVTrans;             /* Virtual tables with open transactions */
1217   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
1218 #endif
1219   FuncDefHash aFunc;            /* Hash table of connection functions */
1220   Hash aCollSeq;                /* All collating sequences */
1221   BusyHandler busyHandler;      /* Busy callback */
1222   Db aDbStatic[2];              /* Static space for the 2 default backends */
1223   Savepoint *pSavepoint;        /* List of active savepoints */
1224   int busyTimeout;              /* Busy handler timeout, in msec */
1225   int nSavepoint;               /* Number of non-transaction savepoints */
1226   int nStatement;               /* Number of nested statement-transactions  */
1227   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
1228   i64 nDeferredImmCons;         /* Net deferred immediate constraints */
1229   int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
1230 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
1231   /* The following variables are all protected by the STATIC_MASTER
1232   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
1233   **
1234   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
1235   ** unlock so that it can proceed.
1236   **
1237   ** When X.pBlockingConnection==Y, that means that something that X tried
1238   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
1239   ** held by Y.
1240   */
1241   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
1242   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
1243   void *pUnlockArg;                     /* Argument to xUnlockNotify */
1244   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
1245   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
1246 #endif
1247 #ifdef SQLITE_USER_AUTHENTICATION
1248   sqlite3_userauth auth;        /* User authentication information */
1249 #endif
1250 };
1251 
1252 /*
1253 ** A macro to discover the encoding of a database.
1254 */
1255 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
1256 #define ENC(db)        ((db)->enc)
1257 
1258 /*
1259 ** Possible values for the sqlite3.flags.
1260 */
1261 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
1262 #define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
1263 #define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
1264 #define SQLITE_CkptFullFSync  0x00000008  /* Use full fsync for checkpoint */
1265 #define SQLITE_CacheSpill     0x00000010  /* OK to spill pager cache */
1266 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
1267 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
1268 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
1269                                           /*   DELETE, or UPDATE and return */
1270                                           /*   the count using a callback. */
1271 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
1272                                           /*   result set is empty */
1273 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
1274 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
1275 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
1276 #define SQLITE_VdbeAddopTrace 0x00001000  /* Trace sqlite3VdbeAddOp() calls */
1277 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
1278 #define SQLITE_ReadUncommitted 0x0004000  /* For shared-cache mode */
1279 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
1280 #define SQLITE_RecoveryMode   0x00010000  /* Ignore schema errors */
1281 #define SQLITE_ReverseOrder   0x00020000  /* Reverse unordered SELECTs */
1282 #define SQLITE_RecTriggers    0x00040000  /* Enable recursive triggers */
1283 #define SQLITE_ForeignKeys    0x00080000  /* Enforce foreign key constraints  */
1284 #define SQLITE_AutoIndex      0x00100000  /* Enable automatic indexes */
1285 #define SQLITE_PreferBuiltin  0x00200000  /* Preference to built-in funcs */
1286 #define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
1287 #define SQLITE_EnableTrigger  0x00800000  /* True to enable triggers */
1288 #define SQLITE_DeferFKs       0x01000000  /* Defer all FK constraints */
1289 #define SQLITE_QueryOnly      0x02000000  /* Disable database changes */
1290 #define SQLITE_VdbeEQP        0x04000000  /* Debug EXPLAIN QUERY PLAN */
1291 #define SQLITE_Vacuum         0x08000000  /* Currently in a VACUUM */
1292 #define SQLITE_CellSizeCk     0x10000000  /* Check btree cell sizes on load */
1293 
1294 
1295 /*
1296 ** Bits of the sqlite3.dbOptFlags field that are used by the
1297 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
1298 ** selectively disable various optimizations.
1299 */
1300 #define SQLITE_QueryFlattener 0x0001   /* Query flattening */
1301 #define SQLITE_ColumnCache    0x0002   /* Column cache */
1302 #define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
1303 #define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
1304 /*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
1305 #define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
1306 #define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
1307 #define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
1308 #define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
1309 #define SQLITE_Transitive     0x0200   /* Transitive constraints */
1310 #define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
1311 #define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */
1312 #define SQLITE_AllOpts        0xffff   /* All optimizations */
1313 
1314 /*
1315 ** Macros for testing whether or not optimizations are enabled or disabled.
1316 */
1317 #ifndef SQLITE_OMIT_BUILTIN_TEST
1318 #define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1319 #define OptimizationEnabled(db, mask)   (((db)->dbOptFlags&(mask))==0)
1320 #else
1321 #define OptimizationDisabled(db, mask)  0
1322 #define OptimizationEnabled(db, mask)   1
1323 #endif
1324 
1325 /*
1326 ** Return true if it OK to factor constant expressions into the initialization
1327 ** code. The argument is a Parse object for the code generator.
1328 */
1329 #define ConstFactorOk(P) ((P)->okConstFactor)
1330 
1331 /*
1332 ** Possible values for the sqlite.magic field.
1333 ** The numbers are obtained at random and have no special meaning, other
1334 ** than being distinct from one another.
1335 */
1336 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
1337 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
1338 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
1339 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
1340 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
1341 #define SQLITE_MAGIC_ZOMBIE   0x64cffc7f  /* Close with last statement close */
1342 
1343 /*
1344 ** Each SQL function is defined by an instance of the following
1345 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
1346 ** hash table.  When multiple functions have the same name, the hash table
1347 ** points to a linked list of these structures.
1348 */
1349 struct FuncDef {
1350   i16 nArg;            /* Number of arguments.  -1 means unlimited */
1351   u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
1352   void *pUserData;     /* User data parameter */
1353   FuncDef *pNext;      /* Next function with same name */
1354   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
1355   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
1356   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
1357   char *zName;         /* SQL name of the function. */
1358   FuncDef *pHash;      /* Next with a different name but the same hash */
1359   FuncDestructor *pDestructor;   /* Reference counted destructor function */
1360 };
1361 
1362 /*
1363 ** This structure encapsulates a user-function destructor callback (as
1364 ** configured using create_function_v2()) and a reference counter. When
1365 ** create_function_v2() is called to create a function with a destructor,
1366 ** a single object of this type is allocated. FuncDestructor.nRef is set to
1367 ** the number of FuncDef objects created (either 1 or 3, depending on whether
1368 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
1369 ** member of each of the new FuncDef objects is set to point to the allocated
1370 ** FuncDestructor.
1371 **
1372 ** Thereafter, when one of the FuncDef objects is deleted, the reference
1373 ** count on this object is decremented. When it reaches 0, the destructor
1374 ** is invoked and the FuncDestructor structure freed.
1375 */
1376 struct FuncDestructor {
1377   int nRef;
1378   void (*xDestroy)(void *);
1379   void *pUserData;
1380 };
1381 
1382 /*
1383 ** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
1384 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  There
1385 ** are assert() statements in the code to verify this.
1386 */
1387 #define SQLITE_FUNC_ENCMASK  0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
1388 #define SQLITE_FUNC_LIKE     0x004 /* Candidate for the LIKE optimization */
1389 #define SQLITE_FUNC_CASE     0x008 /* Case-sensitive LIKE-type function */
1390 #define SQLITE_FUNC_EPHEM    0x010 /* Ephemeral.  Delete with VDBE */
1391 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
1392 #define SQLITE_FUNC_LENGTH   0x040 /* Built-in length() function */
1393 #define SQLITE_FUNC_TYPEOF   0x080 /* Built-in typeof() function */
1394 #define SQLITE_FUNC_COUNT    0x100 /* Built-in count(*) aggregate */
1395 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
1396 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */
1397 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */
1398 #define SQLITE_FUNC_MINMAX  0x1000 /* True for min() and max() aggregates */
1399 
1400 /*
1401 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1402 ** used to create the initializers for the FuncDef structures.
1403 **
1404 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
1405 **     Used to create a scalar function definition of a function zName
1406 **     implemented by C function xFunc that accepts nArg arguments. The
1407 **     value passed as iArg is cast to a (void*) and made available
1408 **     as the user-data (sqlite3_user_data()) for the function. If
1409 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1410 **
1411 **   VFUNCTION(zName, nArg, iArg, bNC, xFunc)
1412 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
1413 **
1414 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1415 **     Used to create an aggregate function definition implemented by
1416 **     the C functions xStep and xFinal. The first four parameters
1417 **     are interpreted in the same way as the first 4 parameters to
1418 **     FUNCTION().
1419 **
1420 **   LIKEFUNC(zName, nArg, pArg, flags)
1421 **     Used to create a scalar function definition of a function zName
1422 **     that accepts nArg arguments and is implemented by a call to C
1423 **     function likeFunc. Argument pArg is cast to a (void *) and made
1424 **     available as the function user-data (sqlite3_user_data()). The
1425 **     FuncDef.flags variable is set to the value passed as the flags
1426 **     parameter.
1427 */
1428 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1429   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1430    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1431 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
1432   {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1433    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1434 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
1435   {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
1436    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1437 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1438   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1439    pArg, 0, xFunc, 0, 0, #zName, 0, 0}
1440 #define LIKEFUNC(zName, nArg, arg, flags) \
1441   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
1442    (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
1443 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1444   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
1445    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1446 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
1447   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
1448    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1449 
1450 /*
1451 ** All current savepoints are stored in a linked list starting at
1452 ** sqlite3.pSavepoint. The first element in the list is the most recently
1453 ** opened savepoint. Savepoints are added to the list by the vdbe
1454 ** OP_Savepoint instruction.
1455 */
1456 struct Savepoint {
1457   char *zName;                        /* Savepoint name (nul-terminated) */
1458   i64 nDeferredCons;                  /* Number of deferred fk violations */
1459   i64 nDeferredImmCons;               /* Number of deferred imm fk. */
1460   Savepoint *pNext;                   /* Parent savepoint (if any) */
1461 };
1462 
1463 /*
1464 ** The following are used as the second parameter to sqlite3Savepoint(),
1465 ** and as the P1 argument to the OP_Savepoint instruction.
1466 */
1467 #define SAVEPOINT_BEGIN      0
1468 #define SAVEPOINT_RELEASE    1
1469 #define SAVEPOINT_ROLLBACK   2
1470 
1471 
1472 /*
1473 ** Each SQLite module (virtual table definition) is defined by an
1474 ** instance of the following structure, stored in the sqlite3.aModule
1475 ** hash table.
1476 */
1477 struct Module {
1478   const sqlite3_module *pModule;       /* Callback pointers */
1479   const char *zName;                   /* Name passed to create_module() */
1480   void *pAux;                          /* pAux passed to create_module() */
1481   void (*xDestroy)(void *);            /* Module destructor function */
1482 };
1483 
1484 /*
1485 ** information about each column of an SQL table is held in an instance
1486 ** of this structure.
1487 */
1488 struct Column {
1489   char *zName;     /* Name of this column */
1490   Expr *pDflt;     /* Default value of this column */
1491   char *zDflt;     /* Original text of the default value */
1492   char *zType;     /* Data type for this column */
1493   char *zColl;     /* Collating sequence.  If NULL, use the default */
1494   u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
1495   char affinity;   /* One of the SQLITE_AFF_... values */
1496   u8 szEst;        /* Estimated size of this column.  INT==1 */
1497   u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
1498 };
1499 
1500 /* Allowed values for Column.colFlags:
1501 */
1502 #define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
1503 #define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
1504 
1505 /*
1506 ** A "Collating Sequence" is defined by an instance of the following
1507 ** structure. Conceptually, a collating sequence consists of a name and
1508 ** a comparison routine that defines the order of that sequence.
1509 **
1510 ** If CollSeq.xCmp is NULL, it means that the
1511 ** collating sequence is undefined.  Indices built on an undefined
1512 ** collating sequence may not be read or written.
1513 */
1514 struct CollSeq {
1515   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1516   u8 enc;               /* Text encoding handled by xCmp() */
1517   void *pUser;          /* First argument to xCmp() */
1518   int (*xCmp)(void*,int, const void*, int, const void*);
1519   void (*xDel)(void*);  /* Destructor for pUser */
1520 };
1521 
1522 /*
1523 ** A sort order can be either ASC or DESC.
1524 */
1525 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1526 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1527 
1528 /*
1529 ** Column affinity types.
1530 **
1531 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1532 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1533 ** the speed a little by numbering the values consecutively.
1534 **
1535 ** But rather than start with 0 or 1, we begin with 'A'.  That way,
1536 ** when multiple affinity types are concatenated into a string and
1537 ** used as the P4 operand, they will be more readable.
1538 **
1539 ** Note also that the numeric types are grouped together so that testing
1540 ** for a numeric type is a single comparison.  And the BLOB type is first.
1541 */
1542 #define SQLITE_AFF_BLOB     'A'
1543 #define SQLITE_AFF_TEXT     'B'
1544 #define SQLITE_AFF_NUMERIC  'C'
1545 #define SQLITE_AFF_INTEGER  'D'
1546 #define SQLITE_AFF_REAL     'E'
1547 
1548 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1549 
1550 /*
1551 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1552 ** affinity value.
1553 */
1554 #define SQLITE_AFF_MASK     0x47
1555 
1556 /*
1557 ** Additional bit values that can be ORed with an affinity without
1558 ** changing the affinity.
1559 **
1560 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
1561 ** It causes an assert() to fire if either operand to a comparison
1562 ** operator is NULL.  It is added to certain comparison operators to
1563 ** prove that the operands are always NOT NULL.
1564 */
1565 #define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
1566 #define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
1567 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1568 #define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */
1569 
1570 /*
1571 ** An object of this type is created for each virtual table present in
1572 ** the database schema.
1573 **
1574 ** If the database schema is shared, then there is one instance of this
1575 ** structure for each database connection (sqlite3*) that uses the shared
1576 ** schema. This is because each database connection requires its own unique
1577 ** instance of the sqlite3_vtab* handle used to access the virtual table
1578 ** implementation. sqlite3_vtab* handles can not be shared between
1579 ** database connections, even when the rest of the in-memory database
1580 ** schema is shared, as the implementation often stores the database
1581 ** connection handle passed to it via the xConnect() or xCreate() method
1582 ** during initialization internally. This database connection handle may
1583 ** then be used by the virtual table implementation to access real tables
1584 ** within the database. So that they appear as part of the callers
1585 ** transaction, these accesses need to be made via the same database
1586 ** connection as that used to execute SQL operations on the virtual table.
1587 **
1588 ** All VTable objects that correspond to a single table in a shared
1589 ** database schema are initially stored in a linked-list pointed to by
1590 ** the Table.pVTable member variable of the corresponding Table object.
1591 ** When an sqlite3_prepare() operation is required to access the virtual
1592 ** table, it searches the list for the VTable that corresponds to the
1593 ** database connection doing the preparing so as to use the correct
1594 ** sqlite3_vtab* handle in the compiled query.
1595 **
1596 ** When an in-memory Table object is deleted (for example when the
1597 ** schema is being reloaded for some reason), the VTable objects are not
1598 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1599 ** immediately. Instead, they are moved from the Table.pVTable list to
1600 ** another linked list headed by the sqlite3.pDisconnect member of the
1601 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1602 ** next time a statement is prepared using said sqlite3*. This is done
1603 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1604 ** Refer to comments above function sqlite3VtabUnlockList() for an
1605 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1606 ** list without holding the corresponding sqlite3.mutex mutex.
1607 **
1608 ** The memory for objects of this type is always allocated by
1609 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1610 ** the first argument.
1611 */
1612 struct VTable {
1613   sqlite3 *db;              /* Database connection associated with this table */
1614   Module *pMod;             /* Pointer to module implementation */
1615   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1616   int nRef;                 /* Number of pointers to this structure */
1617   u8 bConstraint;           /* True if constraints are supported */
1618   int iSavepoint;           /* Depth of the SAVEPOINT stack */
1619   VTable *pNext;            /* Next in linked list (see above) */
1620 };
1621 
1622 /*
1623 ** The schema for each SQL table and view is represented in memory
1624 ** by an instance of the following structure.
1625 */
1626 struct Table {
1627   char *zName;         /* Name of the table or view */
1628   Column *aCol;        /* Information about each column */
1629   Index *pIndex;       /* List of SQL indexes on this table. */
1630   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1631   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1632   char *zColAff;       /* String defining the affinity of each column */
1633 #ifndef SQLITE_OMIT_CHECK
1634   ExprList *pCheck;    /* All CHECK constraints */
1635 #endif
1636   int tnum;            /* Root BTree page for this table */
1637   i16 iPKey;           /* If not negative, use aCol[iPKey] as the rowid */
1638   i16 nCol;            /* Number of columns in this table */
1639   u16 nRef;            /* Number of pointers to this Table */
1640   LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
1641   LogEst szTabRow;     /* Estimated size of each table row in bytes */
1642 #ifdef SQLITE_ENABLE_COSTMULT
1643   LogEst costMult;     /* Cost multiplier for using this table */
1644 #endif
1645   u8 tabFlags;         /* Mask of TF_* values */
1646   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1647 #ifndef SQLITE_OMIT_ALTERTABLE
1648   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1649 #endif
1650 #ifndef SQLITE_OMIT_VIRTUALTABLE
1651   int nModuleArg;      /* Number of arguments to the module */
1652   char **azModuleArg;  /* Text of all module args. [0] is module name */
1653   VTable *pVTable;     /* List of VTable objects. */
1654 #endif
1655   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1656   Schema *pSchema;     /* Schema that contains this table */
1657   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1658 };
1659 
1660 /*
1661 ** Allowed values for Table.tabFlags.
1662 **
1663 ** TF_OOOHidden applies to virtual tables that have hidden columns that are
1664 ** followed by non-hidden columns.  Example:  "CREATE VIRTUAL TABLE x USING
1665 ** vtab1(a HIDDEN, b);".  Since "b" is a non-hidden column but "a" is hidden,
1666 ** the TF_OOOHidden attribute would apply in this case.  Such tables require
1667 ** special handling during INSERT processing.
1668 */
1669 #define TF_Readonly        0x01    /* Read-only system table */
1670 #define TF_Ephemeral       0x02    /* An ephemeral table */
1671 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1672 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1673 #define TF_Virtual         0x10    /* Is a virtual table */
1674 #define TF_WithoutRowid    0x20    /* No rowid.  PRIMARY KEY is the key */
1675 #define TF_NoVisibleRowid  0x40    /* No user-visible "rowid" column */
1676 #define TF_OOOHidden       0x80    /* Out-of-Order hidden columns */
1677 
1678 
1679 /*
1680 ** Test to see whether or not a table is a virtual table.  This is
1681 ** done as a macro so that it will be optimized out when virtual
1682 ** table support is omitted from the build.
1683 */
1684 #ifndef SQLITE_OMIT_VIRTUALTABLE
1685 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1686 #  define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1687 #else
1688 #  define IsVirtual(X)      0
1689 #  define IsHiddenColumn(X) 0
1690 #endif
1691 
1692 /* Does the table have a rowid */
1693 #define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
1694 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0)
1695 
1696 /*
1697 ** Each foreign key constraint is an instance of the following structure.
1698 **
1699 ** A foreign key is associated with two tables.  The "from" table is
1700 ** the table that contains the REFERENCES clause that creates the foreign
1701 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1702 ** Consider this example:
1703 **
1704 **     CREATE TABLE ex1(
1705 **       a INTEGER PRIMARY KEY,
1706 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1707 **     );
1708 **
1709 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1710 ** Equivalent names:
1711 **
1712 **     from-table == child-table
1713 **       to-table == parent-table
1714 **
1715 ** Each REFERENCES clause generates an instance of the following structure
1716 ** which is attached to the from-table.  The to-table need not exist when
1717 ** the from-table is created.  The existence of the to-table is not checked.
1718 **
1719 ** The list of all parents for child Table X is held at X.pFKey.
1720 **
1721 ** A list of all children for a table named Z (which might not even exist)
1722 ** is held in Schema.fkeyHash with a hash key of Z.
1723 */
1724 struct FKey {
1725   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1726   FKey *pNextFrom;  /* Next FKey with the same in pFrom. Next parent of pFrom */
1727   char *zTo;        /* Name of table that the key points to (aka: Parent) */
1728   FKey *pNextTo;    /* Next with the same zTo. Next child of zTo. */
1729   FKey *pPrevTo;    /* Previous with the same zTo */
1730   int nCol;         /* Number of columns in this key */
1731   /* EV: R-30323-21917 */
1732   u8 isDeferred;       /* True if constraint checking is deferred till COMMIT */
1733   u8 aAction[2];        /* ON DELETE and ON UPDATE actions, respectively */
1734   Trigger *apTrigger[2];/* Triggers for aAction[] actions */
1735   struct sColMap {      /* Mapping of columns in pFrom to columns in zTo */
1736     int iFrom;            /* Index of column in pFrom */
1737     char *zCol;           /* Name of column in zTo.  If NULL use PRIMARY KEY */
1738   } aCol[1];            /* One entry for each of nCol columns */
1739 };
1740 
1741 /*
1742 ** SQLite supports many different ways to resolve a constraint
1743 ** error.  ROLLBACK processing means that a constraint violation
1744 ** causes the operation in process to fail and for the current transaction
1745 ** to be rolled back.  ABORT processing means the operation in process
1746 ** fails and any prior changes from that one operation are backed out,
1747 ** but the transaction is not rolled back.  FAIL processing means that
1748 ** the operation in progress stops and returns an error code.  But prior
1749 ** changes due to the same operation are not backed out and no rollback
1750 ** occurs.  IGNORE means that the particular row that caused the constraint
1751 ** error is not inserted or updated.  Processing continues and no error
1752 ** is returned.  REPLACE means that preexisting database rows that caused
1753 ** a UNIQUE constraint violation are removed so that the new insert or
1754 ** update can proceed.  Processing continues and no error is reported.
1755 **
1756 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1757 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1758 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1759 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1760 ** referenced table row is propagated into the row that holds the
1761 ** foreign key.
1762 **
1763 ** The following symbolic values are used to record which type
1764 ** of action to take.
1765 */
1766 #define OE_None     0   /* There is no constraint to check */
1767 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1768 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1769 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1770 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1771 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1772 
1773 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1774 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1775 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1776 #define OE_Cascade  9   /* Cascade the changes */
1777 
1778 #define OE_Default  10  /* Do whatever the default action is */
1779 
1780 
1781 /*
1782 ** An instance of the following structure is passed as the first
1783 ** argument to sqlite3VdbeKeyCompare and is used to control the
1784 ** comparison of the two index keys.
1785 **
1786 ** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
1787 ** are nField slots for the columns of an index then one extra slot
1788 ** for the rowid at the end.
1789 */
1790 struct KeyInfo {
1791   u32 nRef;           /* Number of references to this KeyInfo object */
1792   u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
1793   u16 nField;         /* Number of key columns in the index */
1794   u16 nXField;        /* Number of columns beyond the key columns */
1795   sqlite3 *db;        /* The database connection */
1796   u8 *aSortOrder;     /* Sort order for each column. */
1797   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1798 };
1799 
1800 /*
1801 ** An instance of the following structure holds information about a
1802 ** single index record that has already been parsed out into individual
1803 ** values.
1804 **
1805 ** A record is an object that contains one or more fields of data.
1806 ** Records are used to store the content of a table row and to store
1807 ** the key of an index.  A blob encoding of a record is created by
1808 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1809 ** OP_Column opcode.
1810 **
1811 ** This structure holds a record that has already been disassembled
1812 ** into its constituent fields.
1813 **
1814 ** The r1 and r2 member variables are only used by the optimized comparison
1815 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
1816 */
1817 struct UnpackedRecord {
1818   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1819   u16 nField;         /* Number of entries in apMem[] */
1820   i8 default_rc;      /* Comparison result if keys are equal */
1821   u8 errCode;         /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
1822   Mem *aMem;          /* Values */
1823   int r1;             /* Value to return if (lhs > rhs) */
1824   int r2;             /* Value to return if (rhs < lhs) */
1825 };
1826 
1827 
1828 /*
1829 ** Each SQL index is represented in memory by an
1830 ** instance of the following structure.
1831 **
1832 ** The columns of the table that are to be indexed are described
1833 ** by the aiColumn[] field of this structure.  For example, suppose
1834 ** we have the following table and index:
1835 **
1836 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1837 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1838 **
1839 ** In the Table structure describing Ex1, nCol==3 because there are
1840 ** three columns in the table.  In the Index structure describing
1841 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1842 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1843 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1844 ** The second column to be indexed (c1) has an index of 0 in
1845 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1846 **
1847 ** The Index.onError field determines whether or not the indexed columns
1848 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1849 ** it means this is not a unique index.  Otherwise it is a unique index
1850 ** and the value of Index.onError indicate the which conflict resolution
1851 ** algorithm to employ whenever an attempt is made to insert a non-unique
1852 ** element.
1853 **
1854 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to
1855 ** generate VDBE code (as opposed to parsing one read from an sqlite_master
1856 ** table as part of parsing an existing database schema), transient instances
1857 ** of this structure may be created. In this case the Index.tnum variable is
1858 ** used to store the address of a VDBE instruction, not a database page
1859 ** number (it cannot - the database page is not allocated until the VDBE
1860 ** program is executed). See convertToWithoutRowidTable() for details.
1861 */
1862 struct Index {
1863   char *zName;             /* Name of this index */
1864   i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
1865   LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
1866   Table *pTable;           /* The SQL table being indexed */
1867   char *zColAff;           /* String defining the affinity of each column */
1868   Index *pNext;            /* The next index associated with the same table */
1869   Schema *pSchema;         /* Schema containing this index */
1870   u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
1871   char **azColl;           /* Array of collation sequence names for index */
1872   Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
1873   int tnum;                /* DB Page containing root of this index */
1874   LogEst szIdxRow;         /* Estimated average row size in bytes */
1875   u16 nKeyCol;             /* Number of columns forming the key */
1876   u16 nColumn;             /* Number of columns stored in the index */
1877   u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1878   unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
1879   unsigned bUnordered:1;   /* Use this index for == or IN queries only */
1880   unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
1881   unsigned isResized:1;    /* True if resizeIndexObject() has been called */
1882   unsigned isCovering:1;   /* True if this is a covering index */
1883   unsigned noSkipScan:1;   /* Do not try to use skip-scan if true */
1884 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1885   int nSample;             /* Number of elements in aSample[] */
1886   int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
1887   tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
1888   IndexSample *aSample;    /* Samples of the left-most key */
1889   tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this index */
1890   tRowcnt nRowEst0;        /* Non-logarithmic number of rows in the index */
1891 #endif
1892 };
1893 
1894 /*
1895 ** Allowed values for Index.idxType
1896 */
1897 #define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
1898 #define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
1899 #define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */
1900 
1901 /* Return true if index X is a PRIMARY KEY index */
1902 #define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
1903 
1904 /* Return true if index X is a UNIQUE index */
1905 #define IsUniqueIndex(X)      ((X)->onError!=OE_None)
1906 
1907 /*
1908 ** Each sample stored in the sqlite_stat3 table is represented in memory
1909 ** using a structure of this type.  See documentation at the top of the
1910 ** analyze.c source file for additional information.
1911 */
1912 struct IndexSample {
1913   void *p;          /* Pointer to sampled record */
1914   int n;            /* Size of record in bytes */
1915   tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
1916   tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
1917   tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
1918 };
1919 
1920 /*
1921 ** Each token coming out of the lexer is an instance of
1922 ** this structure.  Tokens are also used as part of an expression.
1923 **
1924 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1925 ** may contain random values.  Do not make any assumptions about Token.dyn
1926 ** and Token.n when Token.z==0.
1927 */
1928 struct Token {
1929   const char *z;     /* Text of the token.  Not NULL-terminated! */
1930   unsigned int n;    /* Number of characters in this token */
1931 };
1932 
1933 /*
1934 ** An instance of this structure contains information needed to generate
1935 ** code for a SELECT that contains aggregate functions.
1936 **
1937 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1938 ** pointer to this structure.  The Expr.iColumn field is the index in
1939 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1940 ** code for that node.
1941 **
1942 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1943 ** original Select structure that describes the SELECT statement.  These
1944 ** fields do not need to be freed when deallocating the AggInfo structure.
1945 */
1946 struct AggInfo {
1947   u8 directMode;          /* Direct rendering mode means take data directly
1948                           ** from source tables rather than from accumulators */
1949   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1950                           ** than the source table */
1951   int sortingIdx;         /* Cursor number of the sorting index */
1952   int sortingIdxPTab;     /* Cursor number of pseudo-table */
1953   int nSortingColumn;     /* Number of columns in the sorting index */
1954   int mnReg, mxReg;       /* Range of registers allocated for aCol and aFunc */
1955   ExprList *pGroupBy;     /* The group by clause */
1956   struct AggInfo_col {    /* For each column used in source tables */
1957     Table *pTab;             /* Source table */
1958     int iTable;              /* Cursor number of the source table */
1959     int iColumn;             /* Column number within the source table */
1960     int iSorterColumn;       /* Column number in the sorting index */
1961     int iMem;                /* Memory location that acts as accumulator */
1962     Expr *pExpr;             /* The original expression */
1963   } *aCol;
1964   int nColumn;            /* Number of used entries in aCol[] */
1965   int nAccumulator;       /* Number of columns that show through to the output.
1966                           ** Additional columns are used only as parameters to
1967                           ** aggregate functions */
1968   struct AggInfo_func {   /* For each aggregate function */
1969     Expr *pExpr;             /* Expression encoding the function */
1970     FuncDef *pFunc;          /* The aggregate function implementation */
1971     int iMem;                /* Memory location that acts as accumulator */
1972     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1973   } *aFunc;
1974   int nFunc;              /* Number of entries in aFunc[] */
1975 };
1976 
1977 /*
1978 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
1979 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
1980 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
1981 ** it uses less memory in the Expr object, which is a big memory user
1982 ** in systems with lots of prepared statements.  And few applications
1983 ** need more than about 10 or 20 variables.  But some extreme users want
1984 ** to have prepared statements with over 32767 variables, and for them
1985 ** the option is available (at compile-time).
1986 */
1987 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
1988 typedef i16 ynVar;
1989 #else
1990 typedef int ynVar;
1991 #endif
1992 
1993 /*
1994 ** Each node of an expression in the parse tree is an instance
1995 ** of this structure.
1996 **
1997 ** Expr.op is the opcode. The integer parser token codes are reused
1998 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1999 ** code representing the ">=" operator. This same integer code is reused
2000 ** to represent the greater-than-or-equal-to operator in the expression
2001 ** tree.
2002 **
2003 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
2004 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
2005 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
2006 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
2007 ** then Expr.token contains the name of the function.
2008 **
2009 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
2010 ** binary operator. Either or both may be NULL.
2011 **
2012 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
2013 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
2014 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
2015 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
2016 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
2017 ** valid.
2018 **
2019 ** An expression of the form ID or ID.ID refers to a column in a table.
2020 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
2021 ** the integer cursor number of a VDBE cursor pointing to that table and
2022 ** Expr.iColumn is the column number for the specific column.  If the
2023 ** expression is used as a result in an aggregate SELECT, then the
2024 ** value is also stored in the Expr.iAgg column in the aggregate so that
2025 ** it can be accessed after all aggregates are computed.
2026 **
2027 ** If the expression is an unbound variable marker (a question mark
2028 ** character '?' in the original SQL) then the Expr.iTable holds the index
2029 ** number for that variable.
2030 **
2031 ** If the expression is a subquery then Expr.iColumn holds an integer
2032 ** register number containing the result of the subquery.  If the
2033 ** subquery gives a constant result, then iTable is -1.  If the subquery
2034 ** gives a different answer at different times during statement processing
2035 ** then iTable is the address of a subroutine that computes the subquery.
2036 **
2037 ** If the Expr is of type OP_Column, and the table it is selecting from
2038 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
2039 ** corresponding table definition.
2040 **
2041 ** ALLOCATION NOTES:
2042 **
2043 ** Expr objects can use a lot of memory space in database schema.  To
2044 ** help reduce memory requirements, sometimes an Expr object will be
2045 ** truncated.  And to reduce the number of memory allocations, sometimes
2046 ** two or more Expr objects will be stored in a single memory allocation,
2047 ** together with Expr.zToken strings.
2048 **
2049 ** If the EP_Reduced and EP_TokenOnly flags are set when
2050 ** an Expr object is truncated.  When EP_Reduced is set, then all
2051 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
2052 ** are contained within the same memory allocation.  Note, however, that
2053 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
2054 ** allocated, regardless of whether or not EP_Reduced is set.
2055 */
2056 struct Expr {
2057   u8 op;                 /* Operation performed by this node */
2058   char affinity;         /* The affinity of the column or 0 if not a column */
2059   u32 flags;             /* Various flags.  EP_* See below */
2060   union {
2061     char *zToken;          /* Token value. Zero terminated and dequoted */
2062     int iValue;            /* Non-negative integer value if EP_IntValue */
2063   } u;
2064 
2065   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
2066   ** space is allocated for the fields below this point. An attempt to
2067   ** access them will result in a segfault or malfunction.
2068   *********************************************************************/
2069 
2070   Expr *pLeft;           /* Left subnode */
2071   Expr *pRight;          /* Right subnode */
2072   union {
2073     ExprList *pList;     /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
2074     Select *pSelect;     /* EP_xIsSelect and op = IN, EXISTS, SELECT */
2075   } x;
2076 
2077   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
2078   ** space is allocated for the fields below this point. An attempt to
2079   ** access them will result in a segfault or malfunction.
2080   *********************************************************************/
2081 
2082 #if SQLITE_MAX_EXPR_DEPTH>0
2083   int nHeight;           /* Height of the tree headed by this node */
2084 #endif
2085   int iTable;            /* TK_COLUMN: cursor number of table holding column
2086                          ** TK_REGISTER: register number
2087                          ** TK_TRIGGER: 1 -> new, 0 -> old
2088                          ** EP_Unlikely:  134217728 times likelihood */
2089   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
2090                          ** TK_VARIABLE: variable number (always >= 1). */
2091   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
2092   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
2093   u8 op2;                /* TK_REGISTER: original value of Expr.op
2094                          ** TK_COLUMN: the value of p5 for OP_Column
2095                          ** TK_AGG_FUNCTION: nesting depth */
2096   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
2097   Table *pTab;           /* Table for TK_COLUMN expressions. */
2098 };
2099 
2100 /*
2101 ** The following are the meanings of bits in the Expr.flags field.
2102 */
2103 #define EP_FromJoin  0x000001 /* Originates in ON/USING clause of outer join */
2104 #define EP_Agg       0x000002 /* Contains one or more aggregate functions */
2105 #define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
2106 #define EP_Error     0x000008 /* Expression contains one or more errors */
2107 #define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
2108 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
2109 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
2110 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
2111 #define EP_Collate   0x000100 /* Tree contains a TK_COLLATE operator */
2112 #define EP_Generic   0x000200 /* Ignore COLLATE or affinity on this tree */
2113 #define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
2114 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
2115 #define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
2116 #define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
2117 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
2118 #define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
2119 #define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
2120 #define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
2121 #define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
2122 #define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */
2123 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
2124 #define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */
2125 
2126 /*
2127 ** Combinations of two or more EP_* flags
2128 */
2129 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */
2130 
2131 /*
2132 ** These macros can be used to test, set, or clear bits in the
2133 ** Expr.flags field.
2134 */
2135 #define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
2136 #define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
2137 #define ExprSetProperty(E,P)     (E)->flags|=(P)
2138 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
2139 
2140 /* The ExprSetVVAProperty() macro is used for Verification, Validation,
2141 ** and Accreditation only.  It works like ExprSetProperty() during VVA
2142 ** processes but is a no-op for delivery.
2143 */
2144 #ifdef SQLITE_DEBUG
2145 # define ExprSetVVAProperty(E,P)  (E)->flags|=(P)
2146 #else
2147 # define ExprSetVVAProperty(E,P)
2148 #endif
2149 
2150 /*
2151 ** Macros to determine the number of bytes required by a normal Expr
2152 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
2153 ** and an Expr struct with the EP_TokenOnly flag set.
2154 */
2155 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
2156 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
2157 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
2158 
2159 /*
2160 ** Flags passed to the sqlite3ExprDup() function. See the header comment
2161 ** above sqlite3ExprDup() for details.
2162 */
2163 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
2164 
2165 /*
2166 ** A list of expressions.  Each expression may optionally have a
2167 ** name.  An expr/name combination can be used in several ways, such
2168 ** as the list of "expr AS ID" fields following a "SELECT" or in the
2169 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
2170 ** also be used as the argument to a function, in which case the a.zName
2171 ** field is not used.
2172 **
2173 ** By default the Expr.zSpan field holds a human-readable description of
2174 ** the expression that is used in the generation of error messages and
2175 ** column labels.  In this case, Expr.zSpan is typically the text of a
2176 ** column expression as it exists in a SELECT statement.  However, if
2177 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
2178 ** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
2179 ** form is used for name resolution with nested FROM clauses.
2180 */
2181 struct ExprList {
2182   int nExpr;             /* Number of expressions on the list */
2183   struct ExprList_item { /* For each expression in the list */
2184     Expr *pExpr;            /* The list of expressions */
2185     char *zName;            /* Token associated with this expression */
2186     char *zSpan;            /* Original text of the expression */
2187     u8 sortOrder;           /* 1 for DESC or 0 for ASC */
2188     unsigned done :1;       /* A flag to indicate when processing is finished */
2189     unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
2190     unsigned reusable :1;   /* Constant expression is reusable */
2191     union {
2192       struct {
2193         u16 iOrderByCol;      /* For ORDER BY, column number in result set */
2194         u16 iAlias;           /* Index into Parse.aAlias[] for zName */
2195       } x;
2196       int iConstExprReg;      /* Register in which Expr value is cached */
2197     } u;
2198   } *a;                  /* Alloc a power of two greater or equal to nExpr */
2199 };
2200 
2201 /*
2202 ** An instance of this structure is used by the parser to record both
2203 ** the parse tree for an expression and the span of input text for an
2204 ** expression.
2205 */
2206 struct ExprSpan {
2207   Expr *pExpr;          /* The expression parse tree */
2208   const char *zStart;   /* First character of input text */
2209   const char *zEnd;     /* One character past the end of input text */
2210 };
2211 
2212 /*
2213 ** An instance of this structure can hold a simple list of identifiers,
2214 ** such as the list "a,b,c" in the following statements:
2215 **
2216 **      INSERT INTO t(a,b,c) VALUES ...;
2217 **      CREATE INDEX idx ON t(a,b,c);
2218 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
2219 **
2220 ** The IdList.a.idx field is used when the IdList represents the list of
2221 ** column names after a table name in an INSERT statement.  In the statement
2222 **
2223 **     INSERT INTO t(a,b,c) ...
2224 **
2225 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
2226 */
2227 struct IdList {
2228   struct IdList_item {
2229     char *zName;      /* Name of the identifier */
2230     int idx;          /* Index in some Table.aCol[] of a column named zName */
2231   } *a;
2232   int nId;         /* Number of identifiers on the list */
2233 };
2234 
2235 /*
2236 ** The bitmask datatype defined below is used for various optimizations.
2237 **
2238 ** Changing this from a 64-bit to a 32-bit type limits the number of
2239 ** tables in a join to 32 instead of 64.  But it also reduces the size
2240 ** of the library by 738 bytes on ix86.
2241 */
2242 typedef u64 Bitmask;
2243 
2244 /*
2245 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
2246 */
2247 #define BMS  ((int)(sizeof(Bitmask)*8))
2248 
2249 /*
2250 ** A bit in a Bitmask
2251 */
2252 #define MASKBIT(n)   (((Bitmask)1)<<(n))
2253 #define MASKBIT32(n) (((unsigned int)1)<<(n))
2254 
2255 /*
2256 ** The following structure describes the FROM clause of a SELECT statement.
2257 ** Each table or subquery in the FROM clause is a separate element of
2258 ** the SrcList.a[] array.
2259 **
2260 ** With the addition of multiple database support, the following structure
2261 ** can also be used to describe a particular table such as the table that
2262 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
2263 ** such a table must be a simple name: ID.  But in SQLite, the table can
2264 ** now be identified by a database name, a dot, then the table name: ID.ID.
2265 **
2266 ** The jointype starts out showing the join type between the current table
2267 ** and the next table on the list.  The parser builds the list this way.
2268 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
2269 ** jointype expresses the join between the table and the previous table.
2270 **
2271 ** In the colUsed field, the high-order bit (bit 63) is set if the table
2272 ** contains more than 63 columns and the 64-th or later column is used.
2273 */
2274 struct SrcList {
2275   int nSrc;        /* Number of tables or subqueries in the FROM clause */
2276   u32 nAlloc;      /* Number of entries allocated in a[] below */
2277   struct SrcList_item {
2278     Schema *pSchema;  /* Schema to which this item is fixed */
2279     char *zDatabase;  /* Name of database holding this table */
2280     char *zName;      /* Name of the table */
2281     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
2282     Table *pTab;      /* An SQL table corresponding to zName */
2283     Select *pSelect;  /* A SELECT statement used in place of a table name */
2284     int addrFillSub;  /* Address of subroutine to manifest a subquery */
2285     int regReturn;    /* Register holding return address of addrFillSub */
2286     int regResult;    /* Registers holding results of a co-routine */
2287     u8 jointype;      /* Type of join between this able and the previous */
2288     unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
2289     unsigned isCorrelated :1;  /* True if sub-query is correlated */
2290     unsigned viaCoroutine :1;  /* Implemented as a co-routine */
2291     unsigned isRecursive :1;   /* True for recursive reference in WITH */
2292 #ifndef SQLITE_OMIT_EXPLAIN
2293     u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
2294 #endif
2295     int iCursor;      /* The VDBE cursor number used to access this table */
2296     Expr *pOn;        /* The ON clause of a join */
2297     IdList *pUsing;   /* The USING clause of a join */
2298     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
2299     char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */
2300     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
2301   } a[1];             /* One entry for each identifier on the list */
2302 };
2303 
2304 /*
2305 ** Permitted values of the SrcList.a.jointype field
2306 */
2307 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
2308 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
2309 #define JT_NATURAL   0x0004    /* True for a "natural" join */
2310 #define JT_LEFT      0x0008    /* Left outer join */
2311 #define JT_RIGHT     0x0010    /* Right outer join */
2312 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
2313 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
2314 
2315 
2316 /*
2317 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
2318 ** and the WhereInfo.wctrlFlags member.
2319 */
2320 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
2321 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
2322 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
2323 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
2324 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
2325 #define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
2326 #define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
2327 #define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
2328 #define WHERE_NO_AUTOINDEX     0x0080 /* Disallow automatic indexes */
2329 #define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
2330 #define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
2331 #define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
2332 #define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
2333 #define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */
2334 
2335 /* Allowed return values from sqlite3WhereIsDistinct()
2336 */
2337 #define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
2338 #define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
2339 #define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
2340 #define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
2341 
2342 /*
2343 ** A NameContext defines a context in which to resolve table and column
2344 ** names.  The context consists of a list of tables (the pSrcList) field and
2345 ** a list of named expression (pEList).  The named expression list may
2346 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
2347 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
2348 ** pEList corresponds to the result set of a SELECT and is NULL for
2349 ** other statements.
2350 **
2351 ** NameContexts can be nested.  When resolving names, the inner-most
2352 ** context is searched first.  If no match is found, the next outer
2353 ** context is checked.  If there is still no match, the next context
2354 ** is checked.  This process continues until either a match is found
2355 ** or all contexts are check.  When a match is found, the nRef member of
2356 ** the context containing the match is incremented.
2357 **
2358 ** Each subquery gets a new NameContext.  The pNext field points to the
2359 ** NameContext in the parent query.  Thus the process of scanning the
2360 ** NameContext list corresponds to searching through successively outer
2361 ** subqueries looking for a match.
2362 */
2363 struct NameContext {
2364   Parse *pParse;       /* The parser */
2365   SrcList *pSrcList;   /* One or more tables used to resolve names */
2366   ExprList *pEList;    /* Optional list of result-set columns */
2367   AggInfo *pAggInfo;   /* Information about aggregates at this level */
2368   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
2369   int nRef;            /* Number of names resolved by this context */
2370   int nErr;            /* Number of errors encountered while resolving names */
2371   u16 ncFlags;         /* Zero or more NC_* flags defined below */
2372 };
2373 
2374 /*
2375 ** Allowed values for the NameContext, ncFlags field.
2376 **
2377 ** Note:  NC_MinMaxAgg must have the same value as SF_MinMaxAgg and
2378 ** SQLITE_FUNC_MINMAX.
2379 **
2380 */
2381 #define NC_AllowAgg  0x0001  /* Aggregate functions are allowed here */
2382 #define NC_HasAgg    0x0002  /* One or more aggregate functions seen */
2383 #define NC_IsCheck   0x0004  /* True if resolving names in a CHECK constraint */
2384 #define NC_InAggFunc 0x0008  /* True if analyzing arguments to an agg func */
2385 #define NC_PartIdx   0x0010  /* True if resolving a partial index WHERE */
2386 #define NC_MinMaxAgg 0x1000  /* min/max aggregates seen.  See note above */
2387 
2388 /*
2389 ** An instance of the following structure contains all information
2390 ** needed to generate code for a single SELECT statement.
2391 **
2392 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
2393 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
2394 ** limit and nOffset to the value of the offset (or 0 if there is not
2395 ** offset).  But later on, nLimit and nOffset become the memory locations
2396 ** in the VDBE that record the limit and offset counters.
2397 **
2398 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
2399 ** These addresses must be stored so that we can go back and fill in
2400 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
2401 ** the number of columns in P2 can be computed at the same time
2402 ** as the OP_OpenEphm instruction is coded because not
2403 ** enough information about the compound query is known at that point.
2404 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2405 ** for the result set.  The KeyInfo for addrOpenEphm[2] contains collating
2406 ** sequences for the ORDER BY clause.
2407 */
2408 struct Select {
2409   ExprList *pEList;      /* The fields of the result */
2410   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2411   u16 selFlags;          /* Various SF_* values */
2412   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2413 #if SELECTTRACE_ENABLED
2414   char zSelName[12];     /* Symbolic name of this SELECT use for debugging */
2415 #endif
2416   int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
2417   u64 nSelectRow;        /* Estimated number of result rows */
2418   SrcList *pSrc;         /* The FROM clause */
2419   Expr *pWhere;          /* The WHERE clause */
2420   ExprList *pGroupBy;    /* The GROUP BY clause */
2421   Expr *pHaving;         /* The HAVING clause */
2422   ExprList *pOrderBy;    /* The ORDER BY clause */
2423   Select *pPrior;        /* Prior select in a compound select statement */
2424   Select *pNext;         /* Next select to the left in a compound */
2425   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2426   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2427   With *pWith;           /* WITH clause attached to this select. Or NULL. */
2428 };
2429 
2430 /*
2431 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
2432 ** "Select Flag".
2433 */
2434 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
2435 #define SF_All             0x0002  /* Includes the ALL keyword */
2436 #define SF_Resolved        0x0004  /* Identifiers have been resolved */
2437 #define SF_Aggregate       0x0008  /* Contains aggregate functions */
2438 #define SF_UsesEphemeral   0x0010  /* Uses the OpenEphemeral opcode */
2439 #define SF_Expanded        0x0020  /* sqlite3SelectExpand() called on this */
2440 #define SF_HasTypeInfo     0x0040  /* FROM subqueries have Table metadata */
2441 #define SF_Compound        0x0080  /* Part of a compound query */
2442 #define SF_Values          0x0100  /* Synthesized from VALUES clause */
2443 #define SF_MultiValue      0x0200  /* Single VALUES term with multiple rows */
2444 #define SF_NestedFrom      0x0400  /* Part of a parenthesized FROM clause */
2445 #define SF_MaybeConvert    0x0800  /* Need convertCompoundSelectToSubquery() */
2446 #define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */
2447 #define SF_Recursive       0x2000  /* The recursive part of a recursive CTE */
2448 #define SF_Converted       0x4000  /* By convertCompoundSelectToSubquery() */
2449 
2450 
2451 /*
2452 ** The results of a SELECT can be distributed in several ways, as defined
2453 ** by one of the following macros.  The "SRT" prefix means "SELECT Result
2454 ** Type".
2455 **
2456 **     SRT_Union       Store results as a key in a temporary index
2457 **                     identified by pDest->iSDParm.
2458 **
2459 **     SRT_Except      Remove results from the temporary index pDest->iSDParm.
2460 **
2461 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
2462 **                     set is not empty.
2463 **
2464 **     SRT_Discard     Throw the results away.  This is used by SELECT
2465 **                     statements within triggers whose only purpose is
2466 **                     the side-effects of functions.
2467 **
2468 ** All of the above are free to ignore their ORDER BY clause. Those that
2469 ** follow must honor the ORDER BY clause.
2470 **
2471 **     SRT_Output      Generate a row of output (using the OP_ResultRow
2472 **                     opcode) for each row in the result set.
2473 **
2474 **     SRT_Mem         Only valid if the result is a single column.
2475 **                     Store the first column of the first result row
2476 **                     in register pDest->iSDParm then abandon the rest
2477 **                     of the query.  This destination implies "LIMIT 1".
2478 **
2479 **     SRT_Set         The result must be a single column.  Store each
2480 **                     row of result as the key in table pDest->iSDParm.
2481 **                     Apply the affinity pDest->affSdst before storing
2482 **                     results.  Used to implement "IN (SELECT ...)".
2483 **
2484 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
2485 **                     the result there. The cursor is left open after
2486 **                     returning.  This is like SRT_Table except that
2487 **                     this destination uses OP_OpenEphemeral to create
2488 **                     the table first.
2489 **
2490 **     SRT_Coroutine   Generate a co-routine that returns a new row of
2491 **                     results each time it is invoked.  The entry point
2492 **                     of the co-routine is stored in register pDest->iSDParm
2493 **                     and the result row is stored in pDest->nDest registers
2494 **                     starting with pDest->iSdst.
2495 **
2496 **     SRT_Table       Store results in temporary table pDest->iSDParm.
2497 **     SRT_Fifo        This is like SRT_EphemTab except that the table
2498 **                     is assumed to already be open.  SRT_Fifo has
2499 **                     the additional property of being able to ignore
2500 **                     the ORDER BY clause.
2501 **
2502 **     SRT_DistFifo    Store results in a temporary table pDest->iSDParm.
2503 **                     But also use temporary table pDest->iSDParm+1 as
2504 **                     a record of all prior results and ignore any duplicate
2505 **                     rows.  Name means:  "Distinct Fifo".
2506 **
2507 **     SRT_Queue       Store results in priority queue pDest->iSDParm (really
2508 **                     an index).  Append a sequence number so that all entries
2509 **                     are distinct.
2510 **
2511 **     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
2512 **                     the same record has never been stored before.  The
2513 **                     index at pDest->iSDParm+1 hold all prior stores.
2514 */
2515 #define SRT_Union        1  /* Store result as keys in an index */
2516 #define SRT_Except       2  /* Remove result from a UNION index */
2517 #define SRT_Exists       3  /* Store 1 if the result is not empty */
2518 #define SRT_Discard      4  /* Do not save the results anywhere */
2519 #define SRT_Fifo         5  /* Store result as data with an automatic rowid */
2520 #define SRT_DistFifo     6  /* Like SRT_Fifo, but unique results only */
2521 #define SRT_Queue        7  /* Store result in an queue */
2522 #define SRT_DistQueue    8  /* Like SRT_Queue, but unique results only */
2523 
2524 /* The ORDER BY clause is ignored for all of the above */
2525 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)
2526 
2527 #define SRT_Output       9  /* Output each row of result */
2528 #define SRT_Mem         10  /* Store result in a memory cell */
2529 #define SRT_Set         11  /* Store results as keys in an index */
2530 #define SRT_EphemTab    12  /* Create transient tab and store like SRT_Table */
2531 #define SRT_Coroutine   13  /* Generate a single row of result */
2532 #define SRT_Table       14  /* Store result as data with an automatic rowid */
2533 
2534 /*
2535 ** An instance of this object describes where to put of the results of
2536 ** a SELECT statement.
2537 */
2538 struct SelectDest {
2539   u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
2540   char affSdst;        /* Affinity used when eDest==SRT_Set */
2541   int iSDParm;         /* A parameter used by the eDest disposal method */
2542   int iSdst;           /* Base register where results are written */
2543   int nSdst;           /* Number of registers allocated */
2544   ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
2545 };
2546 
2547 /*
2548 ** During code generation of statements that do inserts into AUTOINCREMENT
2549 ** tables, the following information is attached to the Table.u.autoInc.p
2550 ** pointer of each autoincrement table to record some side information that
2551 ** the code generator needs.  We have to keep per-table autoincrement
2552 ** information in case inserts are down within triggers.  Triggers do not
2553 ** normally coordinate their activities, but we do need to coordinate the
2554 ** loading and saving of autoincrement information.
2555 */
2556 struct AutoincInfo {
2557   AutoincInfo *pNext;   /* Next info block in a list of them all */
2558   Table *pTab;          /* Table this info block refers to */
2559   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2560   int regCtr;           /* Memory register holding the rowid counter */
2561 };
2562 
2563 /*
2564 ** Size of the column cache
2565 */
2566 #ifndef SQLITE_N_COLCACHE
2567 # define SQLITE_N_COLCACHE 10
2568 #endif
2569 
2570 /*
2571 ** At least one instance of the following structure is created for each
2572 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2573 ** statement. All such objects are stored in the linked list headed at
2574 ** Parse.pTriggerPrg and deleted once statement compilation has been
2575 ** completed.
2576 **
2577 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2578 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2579 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2580 ** The Parse.pTriggerPrg list never contains two entries with the same
2581 ** values for both pTrigger and orconf.
2582 **
2583 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2584 ** accessed (or set to 0 for triggers fired as a result of INSERT
2585 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2586 ** a mask of new.* columns used by the program.
2587 */
2588 struct TriggerPrg {
2589   Trigger *pTrigger;      /* Trigger this program was coded from */
2590   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2591   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2592   int orconf;             /* Default ON CONFLICT policy */
2593   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2594 };
2595 
2596 /*
2597 ** The yDbMask datatype for the bitmask of all attached databases.
2598 */
2599 #if SQLITE_MAX_ATTACHED>30
2600   typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
2601 # define DbMaskTest(M,I)    (((M)[(I)/8]&(1<<((I)&7)))!=0)
2602 # define DbMaskZero(M)      memset((M),0,sizeof(M))
2603 # define DbMaskSet(M,I)     (M)[(I)/8]|=(1<<((I)&7))
2604 # define DbMaskAllZero(M)   sqlite3DbMaskAllZero(M)
2605 # define DbMaskNonZero(M)   (sqlite3DbMaskAllZero(M)==0)
2606 #else
2607   typedef unsigned int yDbMask;
2608 # define DbMaskTest(M,I)    (((M)&(((yDbMask)1)<<(I)))!=0)
2609 # define DbMaskZero(M)      (M)=0
2610 # define DbMaskSet(M,I)     (M)|=(((yDbMask)1)<<(I))
2611 # define DbMaskAllZero(M)   (M)==0
2612 # define DbMaskNonZero(M)   (M)!=0
2613 #endif
2614 
2615 /*
2616 ** An SQL parser context.  A copy of this structure is passed through
2617 ** the parser and down into all the parser action routine in order to
2618 ** carry around information that is global to the entire parse.
2619 **
2620 ** The structure is divided into two parts.  When the parser and code
2621 ** generate call themselves recursively, the first part of the structure
2622 ** is constant but the second part is reset at the beginning and end of
2623 ** each recursion.
2624 **
2625 ** The nTableLock and aTableLock variables are only used if the shared-cache
2626 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2627 ** used to store the set of table-locks required by the statement being
2628 ** compiled. Function sqlite3TableLock() is used to add entries to the
2629 ** list.
2630 */
2631 struct Parse {
2632   sqlite3 *db;         /* The main database structure */
2633   char *zErrMsg;       /* An error message */
2634   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2635   int rc;              /* Return code from execution */
2636   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2637   u8 checkSchema;      /* Causes schema cookie check after an error */
2638   u8 nested;           /* Number of nested calls to the parser/code generator */
2639   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2640   u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
2641   u8 mayAbort;         /* True if statement may throw an ABORT exception */
2642   u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
2643   u8 okConstFactor;    /* OK to factor out constants */
2644   int aTempReg[8];     /* Holding area for temporary registers */
2645   int nRangeReg;       /* Size of the temporary register block */
2646   int iRangeReg;       /* First register in temporary register block */
2647   int nErr;            /* Number of errors seen */
2648   int nTab;            /* Number of previously allocated VDBE cursors */
2649   int nMem;            /* Number of memory cells used so far */
2650   int nSet;            /* Number of sets used so far */
2651   int nOnce;           /* Number of OP_Once instructions so far */
2652   int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */
2653   int iFixedOp;        /* Never back out opcodes iFixedOp-1 or earlier */
2654   int ckBase;          /* Base register of data during check constraints */
2655   int iPartIdxTab;     /* Table corresponding to a partial index */
2656   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2657   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2658   int nLabel;          /* Number of labels used */
2659   int *aLabel;         /* Space to hold the labels */
2660   struct yColCache {
2661     int iTable;           /* Table cursor number */
2662     i16 iColumn;          /* Table column number */
2663     u8 tempReg;           /* iReg is a temp register that needs to be freed */
2664     int iLevel;           /* Nesting level */
2665     int iReg;             /* Reg with value of this column. 0 means none. */
2666     int lru;              /* Least recently used entry has the smallest value */
2667   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2668   ExprList *pConstExpr;/* Constant expressions */
2669   Token constraintName;/* Name of the constraint currently being parsed */
2670   yDbMask writeMask;   /* Start a write transaction on these databases */
2671   yDbMask cookieMask;  /* Bitmask of schema verified databases */
2672   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2673   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2674   int regRoot;         /* Register holding root page number for new objects */
2675   int nMaxArg;         /* Max args passed to user function by sub-program */
2676 #if SELECTTRACE_ENABLED
2677   int nSelect;         /* Number of SELECT statements seen */
2678   int nSelectIndent;   /* How far to indent SELECTTRACE() output */
2679 #endif
2680 #ifndef SQLITE_OMIT_SHARED_CACHE
2681   int nTableLock;        /* Number of locks in aTableLock */
2682   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2683 #endif
2684   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2685 
2686   /* Information used while coding trigger programs. */
2687   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
2688   Table *pTriggerTab;  /* Table triggers are being coded for */
2689   int addrCrTab;       /* Address of OP_CreateTable opcode on CREATE TABLE */
2690   u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
2691   u32 oldmask;         /* Mask of old.* columns referenced */
2692   u32 newmask;         /* Mask of new.* columns referenced */
2693   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
2694   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
2695   u8 disableTriggers;  /* True to disable triggers */
2696 
2697   /************************************************************************
2698   ** Above is constant between recursions.  Below is reset before and after
2699   ** each recursion.  The boundary between these two regions is determined
2700   ** using offsetof(Parse,nVar) so the nVar field must be the first field
2701   ** in the recursive region.
2702   ************************************************************************/
2703 
2704   int nVar;                 /* Number of '?' variables seen in the SQL so far */
2705   int nzVar;                /* Number of available slots in azVar[] */
2706   u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
2707   u8 bFreeWith;             /* True if pWith should be freed with parser */
2708   u8 explain;               /* True if the EXPLAIN flag is found on the query */
2709 #ifndef SQLITE_OMIT_VIRTUALTABLE
2710   u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
2711   int nVtabLock;            /* Number of virtual tables to lock */
2712 #endif
2713   int nAlias;               /* Number of aliased result set columns */
2714   int nHeight;              /* Expression tree height of current sub-select */
2715 #ifndef SQLITE_OMIT_EXPLAIN
2716   int iSelectId;            /* ID of current select for EXPLAIN output */
2717   int iNextSelectId;        /* Next available select ID for EXPLAIN output */
2718 #endif
2719   char **azVar;             /* Pointers to names of parameters */
2720   Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
2721   const char *zTail;        /* All SQL text past the last semicolon parsed */
2722   Table *pNewTable;         /* A table being constructed by CREATE TABLE */
2723   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2724   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2725   Token sNameToken;         /* Token with unqualified schema object name */
2726   Token sLastToken;         /* The last token parsed */
2727 #ifndef SQLITE_OMIT_VIRTUALTABLE
2728   Token sArg;               /* Complete text of a module argument */
2729   Table **apVtabLock;       /* Pointer to virtual tables needing locking */
2730 #endif
2731   Table *pZombieTab;        /* List of Table objects to delete after code gen */
2732   TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
2733   With *pWith;              /* Current WITH clause, or NULL */
2734 };
2735 
2736 /*
2737 ** Return true if currently inside an sqlite3_declare_vtab() call.
2738 */
2739 #ifdef SQLITE_OMIT_VIRTUALTABLE
2740   #define IN_DECLARE_VTAB 0
2741 #else
2742   #define IN_DECLARE_VTAB (pParse->declareVtab)
2743 #endif
2744 
2745 /*
2746 ** An instance of the following structure can be declared on a stack and used
2747 ** to save the Parse.zAuthContext value so that it can be restored later.
2748 */
2749 struct AuthContext {
2750   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2751   Parse *pParse;              /* The Parse structure */
2752 };
2753 
2754 /*
2755 ** Bitfield flags for P5 value in various opcodes.
2756 */
2757 #define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
2758 #define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
2759 #define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
2760 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
2761 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
2762 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
2763 #define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
2764 #define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
2765 #define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
2766 #define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
2767 #define OPFLAG_P2ISREG       0x04    /* P2 to OP_Open** is a register number */
2768 #define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
2769 
2770 /*
2771  * Each trigger present in the database schema is stored as an instance of
2772  * struct Trigger.
2773  *
2774  * Pointers to instances of struct Trigger are stored in two ways.
2775  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2776  *    database). This allows Trigger structures to be retrieved by name.
2777  * 2. All triggers associated with a single table form a linked list, using the
2778  *    pNext member of struct Trigger. A pointer to the first element of the
2779  *    linked list is stored as the "pTrigger" member of the associated
2780  *    struct Table.
2781  *
2782  * The "step_list" member points to the first element of a linked list
2783  * containing the SQL statements specified as the trigger program.
2784  */
2785 struct Trigger {
2786   char *zName;            /* The name of the trigger                        */
2787   char *table;            /* The table or view to which the trigger applies */
2788   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2789   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2790   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2791   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2792                              the <column-list> is stored here */
2793   Schema *pSchema;        /* Schema containing the trigger */
2794   Schema *pTabSchema;     /* Schema containing the table */
2795   TriggerStep *step_list; /* Link list of trigger program steps             */
2796   Trigger *pNext;         /* Next trigger associated with the table */
2797 };
2798 
2799 /*
2800 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2801 ** determine which.
2802 **
2803 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2804 ** In that cases, the constants below can be ORed together.
2805 */
2806 #define TRIGGER_BEFORE  1
2807 #define TRIGGER_AFTER   2
2808 
2809 /*
2810  * An instance of struct TriggerStep is used to store a single SQL statement
2811  * that is a part of a trigger-program.
2812  *
2813  * Instances of struct TriggerStep are stored in a singly linked list (linked
2814  * using the "pNext" member) referenced by the "step_list" member of the
2815  * associated struct Trigger instance. The first element of the linked list is
2816  * the first step of the trigger-program.
2817  *
2818  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2819  * "SELECT" statement. The meanings of the other members is determined by the
2820  * value of "op" as follows:
2821  *
2822  * (op == TK_INSERT)
2823  * orconf    -> stores the ON CONFLICT algorithm
2824  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2825  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2826  * zTarget   -> Dequoted name of the table to insert into.
2827  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2828  *              this stores values to be inserted. Otherwise NULL.
2829  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2830  *              statement, then this stores the column-names to be
2831  *              inserted into.
2832  *
2833  * (op == TK_DELETE)
2834  * zTarget   -> Dequoted name of the table to delete from.
2835  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2836  *              Otherwise NULL.
2837  *
2838  * (op == TK_UPDATE)
2839  * zTarget   -> Dequoted name of the table to update.
2840  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2841  *              Otherwise NULL.
2842  * pExprList -> A list of the columns to update and the expressions to update
2843  *              them to. See sqlite3Update() documentation of "pChanges"
2844  *              argument.
2845  *
2846  */
2847 struct TriggerStep {
2848   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2849   u8 orconf;           /* OE_Rollback etc. */
2850   Trigger *pTrig;      /* The trigger that this step is a part of */
2851   Select *pSelect;     /* SELECT statement or RHS of INSERT INTO SELECT ... */
2852   char *zTarget;       /* Target table for DELETE, UPDATE, INSERT */
2853   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2854   ExprList *pExprList; /* SET clause for UPDATE. */
2855   IdList *pIdList;     /* Column names for INSERT */
2856   TriggerStep *pNext;  /* Next in the link-list */
2857   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2858 };
2859 
2860 /*
2861 ** The following structure contains information used by the sqliteFix...
2862 ** routines as they walk the parse tree to make database references
2863 ** explicit.
2864 */
2865 typedef struct DbFixer DbFixer;
2866 struct DbFixer {
2867   Parse *pParse;      /* The parsing context.  Error messages written here */
2868   Schema *pSchema;    /* Fix items to this schema */
2869   int bVarOnly;       /* Check for variable references only */
2870   const char *zDb;    /* Make sure all objects are contained in this database */
2871   const char *zType;  /* Type of the container - used for error messages */
2872   const Token *pName; /* Name of the container - used for error messages */
2873 };
2874 
2875 /*
2876 ** An objected used to accumulate the text of a string where we
2877 ** do not necessarily know how big the string will be in the end.
2878 */
2879 struct StrAccum {
2880   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2881   char *zBase;         /* A base allocation.  Not from malloc. */
2882   char *zText;         /* The string collected so far */
2883   int  nChar;          /* Length of the string so far */
2884   int  nAlloc;         /* Amount of space allocated in zText */
2885   int  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
2886   u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
2887 };
2888 #define STRACCUM_NOMEM   1
2889 #define STRACCUM_TOOBIG  2
2890 
2891 /*
2892 ** A pointer to this structure is used to communicate information
2893 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2894 */
2895 typedef struct {
2896   sqlite3 *db;        /* The database being initialized */
2897   char **pzErrMsg;    /* Error message stored here */
2898   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2899   int rc;             /* Result code stored here */
2900 } InitData;
2901 
2902 /*
2903 ** Structure containing global configuration data for the SQLite library.
2904 **
2905 ** This structure also contains some state information.
2906 */
2907 struct Sqlite3Config {
2908   int bMemstat;                     /* True to enable memory status */
2909   int bCoreMutex;                   /* True to enable core mutexing */
2910   int bFullMutex;                   /* True to enable full mutexing */
2911   int bOpenUri;                     /* True to interpret filenames as URIs */
2912   int bUseCis;                      /* Use covering indices for full-scans */
2913   int mxStrlen;                     /* Maximum string length */
2914   int neverCorrupt;                 /* Database is always well-formed */
2915   int szLookaside;                  /* Default lookaside buffer size */
2916   int nLookaside;                   /* Default lookaside buffer count */
2917   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2918   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2919   sqlite3_pcache_methods2 pcache2;  /* Low-level page-cache interface */
2920   void *pHeap;                      /* Heap storage space */
2921   int nHeap;                        /* Size of pHeap[] */
2922   int mnReq, mxReq;                 /* Min and max heap requests sizes */
2923   sqlite3_int64 szMmap;             /* mmap() space per open file */
2924   sqlite3_int64 mxMmap;             /* Maximum value for szMmap */
2925   void *pScratch;                   /* Scratch memory */
2926   int szScratch;                    /* Size of each scratch buffer */
2927   int nScratch;                     /* Number of scratch buffers */
2928   void *pPage;                      /* Page cache memory */
2929   int szPage;                       /* Size of each page in pPage[] */
2930   int nPage;                        /* Number of pages in pPage[] */
2931   int mxParserStack;                /* maximum depth of the parser stack */
2932   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2933   u32 szPma;                        /* Maximum Sorter PMA size */
2934   /* The above might be initialized to non-zero.  The following need to always
2935   ** initially be zero, however. */
2936   int isInit;                       /* True after initialization has finished */
2937   int inProgress;                   /* True while initialization in progress */
2938   int isMutexInit;                  /* True after mutexes are initialized */
2939   int isMallocInit;                 /* True after malloc is initialized */
2940   int isPCacheInit;                 /* True after malloc is initialized */
2941   int nRefInitMutex;                /* Number of users of pInitMutex */
2942   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2943   void (*xLog)(void*,int,const char*); /* Function for logging */
2944   void *pLogArg;                       /* First argument to xLog() */
2945 #ifdef SQLITE_ENABLE_SQLLOG
2946   void(*xSqllog)(void*,sqlite3*,const char*, int);
2947   void *pSqllogArg;
2948 #endif
2949 #ifdef SQLITE_VDBE_COVERAGE
2950   /* The following callback (if not NULL) is invoked on every VDBE branch
2951   ** operation.  Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
2952   */
2953   void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx);  /* Callback */
2954   void *pVdbeBranchArg;                                     /* 1st argument */
2955 #endif
2956 #ifndef SQLITE_OMIT_BUILTIN_TEST
2957   int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
2958 #endif
2959   int bLocaltimeFault;              /* True to fail localtime() calls */
2960 };
2961 
2962 /*
2963 ** This macro is used inside of assert() statements to indicate that
2964 ** the assert is only valid on a well-formed database.  Instead of:
2965 **
2966 **     assert( X );
2967 **
2968 ** One writes:
2969 **
2970 **     assert( X || CORRUPT_DB );
2971 **
2972 ** CORRUPT_DB is true during normal operation.  CORRUPT_DB does not indicate
2973 ** that the database is definitely corrupt, only that it might be corrupt.
2974 ** For most test cases, CORRUPT_DB is set to false using a special
2975 ** sqlite3_test_control().  This enables assert() statements to prove
2976 ** things that are always true for well-formed databases.
2977 */
2978 #define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)
2979 
2980 /*
2981 ** Context pointer passed down through the tree-walk.
2982 */
2983 struct Walker {
2984   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2985   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2986   void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
2987   Parse *pParse;                            /* Parser context.  */
2988   int walkerDepth;                          /* Number of subqueries */
2989   u8 eCode;                                 /* A small processing code */
2990   union {                                   /* Extra data for callback */
2991     NameContext *pNC;                          /* Naming context */
2992     int n;                                     /* A counter */
2993     int iCur;                                  /* A cursor number */
2994     SrcList *pSrcList;                         /* FROM clause */
2995     struct SrcCount *pSrcCount;                /* Counting column references */
2996   } u;
2997 };
2998 
2999 /* Forward declarations */
3000 int sqlite3WalkExpr(Walker*, Expr*);
3001 int sqlite3WalkExprList(Walker*, ExprList*);
3002 int sqlite3WalkSelect(Walker*, Select*);
3003 int sqlite3WalkSelectExpr(Walker*, Select*);
3004 int sqlite3WalkSelectFrom(Walker*, Select*);
3005 
3006 /*
3007 ** Return code from the parse-tree walking primitives and their
3008 ** callbacks.
3009 */
3010 #define WRC_Continue    0   /* Continue down into children */
3011 #define WRC_Prune       1   /* Omit children but continue walking siblings */
3012 #define WRC_Abort       2   /* Abandon the tree walk */
3013 
3014 /*
3015 ** An instance of this structure represents a set of one or more CTEs
3016 ** (common table expressions) created by a single WITH clause.
3017 */
3018 struct With {
3019   int nCte;                       /* Number of CTEs in the WITH clause */
3020   With *pOuter;                   /* Containing WITH clause, or NULL */
3021   struct Cte {                    /* For each CTE in the WITH clause.... */
3022     char *zName;                    /* Name of this CTE */
3023     ExprList *pCols;                /* List of explicit column names, or NULL */
3024     Select *pSelect;                /* The definition of this CTE */
3025     const char *zErr;               /* Error message for circular references */
3026   } a[1];
3027 };
3028 
3029 #ifdef SQLITE_DEBUG
3030 /*
3031 ** An instance of the TreeView object is used for printing the content of
3032 ** data structures on sqlite3DebugPrintf() using a tree-like view.
3033 */
3034 struct TreeView {
3035   int iLevel;             /* Which level of the tree we are on */
3036   u8  bLine[100];         /* Draw vertical in column i if bLine[i] is true */
3037 };
3038 #endif /* SQLITE_DEBUG */
3039 
3040 /*
3041 ** Assuming zIn points to the first byte of a UTF-8 character,
3042 ** advance zIn to point to the first byte of the next UTF-8 character.
3043 */
3044 #define SQLITE_SKIP_UTF8(zIn) {                        \
3045   if( (*(zIn++))>=0xc0 ){                              \
3046     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
3047   }                                                    \
3048 }
3049 
3050 /*
3051 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
3052 ** the same name but without the _BKPT suffix.  These macros invoke
3053 ** routines that report the line-number on which the error originated
3054 ** using sqlite3_log().  The routines also provide a convenient place
3055 ** to set a debugger breakpoint.
3056 */
3057 int sqlite3CorruptError(int);
3058 int sqlite3MisuseError(int);
3059 int sqlite3CantopenError(int);
3060 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
3061 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
3062 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
3063 
3064 
3065 /*
3066 ** FTS4 is really an extension for FTS3.  It is enabled using the
3067 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
3068 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
3069 */
3070 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
3071 # define SQLITE_ENABLE_FTS3 1
3072 #endif
3073 
3074 /*
3075 ** The ctype.h header is needed for non-ASCII systems.  It is also
3076 ** needed by FTS3 when FTS3 is included in the amalgamation.
3077 */
3078 #if !defined(SQLITE_ASCII) || \
3079     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
3080 # include <ctype.h>
3081 #endif
3082 
3083 /*
3084 ** The following macros mimic the standard library functions toupper(),
3085 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
3086 ** sqlite versions only work for ASCII characters, regardless of locale.
3087 */
3088 #ifdef SQLITE_ASCII
3089 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
3090 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
3091 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
3092 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
3093 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
3094 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
3095 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
3096 #else
3097 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
3098 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
3099 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
3100 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
3101 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
3102 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
3103 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
3104 #endif
3105 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
3106 int sqlite3IsIdChar(u8);
3107 #endif
3108 
3109 /*
3110 ** Internal function prototypes
3111 */
3112 #define sqlite3StrICmp sqlite3_stricmp
3113 int sqlite3Strlen30(const char*);
3114 #define sqlite3StrNICmp sqlite3_strnicmp
3115 
3116 int sqlite3MallocInit(void);
3117 void sqlite3MallocEnd(void);
3118 void *sqlite3Malloc(u64);
3119 void *sqlite3MallocZero(u64);
3120 void *sqlite3DbMallocZero(sqlite3*, u64);
3121 void *sqlite3DbMallocRaw(sqlite3*, u64);
3122 char *sqlite3DbStrDup(sqlite3*,const char*);
3123 char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
3124 void *sqlite3Realloc(void*, u64);
3125 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
3126 void *sqlite3DbRealloc(sqlite3 *, void *, u64);
3127 void sqlite3DbFree(sqlite3*, void*);
3128 int sqlite3MallocSize(void*);
3129 int sqlite3DbMallocSize(sqlite3*, void*);
3130 void *sqlite3ScratchMalloc(int);
3131 void sqlite3ScratchFree(void*);
3132 void *sqlite3PageMalloc(int);
3133 void sqlite3PageFree(void*);
3134 void sqlite3MemSetDefault(void);
3135 #ifndef SQLITE_OMIT_BUILTIN_TEST
3136 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
3137 #endif
3138 int sqlite3HeapNearlyFull(void);
3139 
3140 /*
3141 ** On systems with ample stack space and that support alloca(), make
3142 ** use of alloca() to obtain space for large automatic objects.  By default,
3143 ** obtain space from malloc().
3144 **
3145 ** The alloca() routine never returns NULL.  This will cause code paths
3146 ** that deal with sqlite3StackAlloc() failures to be unreachable.
3147 */
3148 #ifdef SQLITE_USE_ALLOCA
3149 # define sqlite3StackAllocRaw(D,N)   alloca(N)
3150 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
3151 # define sqlite3StackFree(D,P)
3152 #else
3153 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
3154 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
3155 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
3156 #endif
3157 
3158 #ifdef SQLITE_ENABLE_MEMSYS3
3159 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
3160 #endif
3161 #ifdef SQLITE_ENABLE_MEMSYS5
3162 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
3163 #endif
3164 
3165 
3166 #ifndef SQLITE_MUTEX_OMIT
3167   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
3168   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
3169   sqlite3_mutex *sqlite3MutexAlloc(int);
3170   int sqlite3MutexInit(void);
3171   int sqlite3MutexEnd(void);
3172 #endif
3173 
3174 sqlite3_int64 sqlite3StatusValue(int);
3175 void sqlite3StatusUp(int, int);
3176 void sqlite3StatusDown(int, int);
3177 void sqlite3StatusSet(int, int);
3178 
3179 /* Access to mutexes used by sqlite3_status() */
3180 sqlite3_mutex *sqlite3Pcache1Mutex(void);
3181 sqlite3_mutex *sqlite3MallocMutex(void);
3182 
3183 #ifndef SQLITE_OMIT_FLOATING_POINT
3184   int sqlite3IsNaN(double);
3185 #else
3186 # define sqlite3IsNaN(X)  0
3187 #endif
3188 
3189 /*
3190 ** An instance of the following structure holds information about SQL
3191 ** functions arguments that are the parameters to the printf() function.
3192 */
3193 struct PrintfArguments {
3194   int nArg;                /* Total number of arguments */
3195   int nUsed;               /* Number of arguments used so far */
3196   sqlite3_value **apArg;   /* The argument values */
3197 };
3198 
3199 #define SQLITE_PRINTF_INTERNAL 0x01
3200 #define SQLITE_PRINTF_SQLFUNC  0x02
3201 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list);
3202 void sqlite3XPrintf(StrAccum*, u32, const char*, ...);
3203 char *sqlite3MPrintf(sqlite3*,const char*, ...);
3204 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
3205 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
3206   void sqlite3DebugPrintf(const char*, ...);
3207 #endif
3208 #if defined(SQLITE_TEST)
3209   void *sqlite3TestTextToPtr(const char*);
3210 #endif
3211 
3212 #if defined(SQLITE_DEBUG)
3213   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
3214   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
3215   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
3216 #endif
3217 
3218 
3219 void sqlite3SetString(char **, sqlite3*, const char*);
3220 void sqlite3ErrorMsg(Parse*, const char*, ...);
3221 int sqlite3Dequote(char*);
3222 int sqlite3KeywordCode(const unsigned char*, int);
3223 int sqlite3RunParser(Parse*, const char*, char **);
3224 void sqlite3FinishCoding(Parse*);
3225 int sqlite3GetTempReg(Parse*);
3226 void sqlite3ReleaseTempReg(Parse*,int);
3227 int sqlite3GetTempRange(Parse*,int);
3228 void sqlite3ReleaseTempRange(Parse*,int,int);
3229 void sqlite3ClearTempRegCache(Parse*);
3230 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
3231 Expr *sqlite3Expr(sqlite3*,int,const char*);
3232 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
3233 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
3234 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
3235 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
3236 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
3237 void sqlite3ExprDelete(sqlite3*, Expr*);
3238 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
3239 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
3240 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
3241 void sqlite3ExprListDelete(sqlite3*, ExprList*);
3242 u32 sqlite3ExprListFlags(const ExprList*);
3243 int sqlite3Init(sqlite3*, char**);
3244 int sqlite3InitCallback(void*, int, char**, char**);
3245 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
3246 void sqlite3ResetAllSchemasOfConnection(sqlite3*);
3247 void sqlite3ResetOneSchema(sqlite3*,int);
3248 void sqlite3CollapseDatabaseArray(sqlite3*);
3249 void sqlite3BeginParse(Parse*,int);
3250 void sqlite3CommitInternalChanges(sqlite3*);
3251 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
3252 void sqlite3OpenMasterTable(Parse *, int);
3253 Index *sqlite3PrimaryKeyIndex(Table*);
3254 i16 sqlite3ColumnOfIndex(Index*, i16);
3255 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
3256 void sqlite3AddColumn(Parse*,Token*);
3257 void sqlite3AddNotNull(Parse*, int);
3258 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
3259 void sqlite3AddCheckConstraint(Parse*, Expr*);
3260 void sqlite3AddColumnType(Parse*,Token*);
3261 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
3262 void sqlite3AddCollateType(Parse*, Token*);
3263 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
3264 int sqlite3ParseUri(const char*,const char*,unsigned int*,
3265                     sqlite3_vfs**,char**,char **);
3266 Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
3267 int sqlite3CodeOnce(Parse *);
3268 
3269 #ifdef SQLITE_OMIT_BUILTIN_TEST
3270 # define sqlite3FaultSim(X) SQLITE_OK
3271 #else
3272   int sqlite3FaultSim(int);
3273 #endif
3274 
3275 Bitvec *sqlite3BitvecCreate(u32);
3276 int sqlite3BitvecTest(Bitvec*, u32);
3277 int sqlite3BitvecTestNotNull(Bitvec*, u32);
3278 int sqlite3BitvecSet(Bitvec*, u32);
3279 void sqlite3BitvecClear(Bitvec*, u32, void*);
3280 void sqlite3BitvecDestroy(Bitvec*);
3281 u32 sqlite3BitvecSize(Bitvec*);
3282 #ifndef SQLITE_OMIT_BUILTIN_TEST
3283 int sqlite3BitvecBuiltinTest(int,int*);
3284 #endif
3285 
3286 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
3287 void sqlite3RowSetClear(RowSet*);
3288 void sqlite3RowSetInsert(RowSet*, i64);
3289 int sqlite3RowSetTest(RowSet*, int iBatch, i64);
3290 int sqlite3RowSetNext(RowSet*, i64*);
3291 
3292 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
3293 
3294 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3295   int sqlite3ViewGetColumnNames(Parse*,Table*);
3296 #else
3297 # define sqlite3ViewGetColumnNames(A,B) 0
3298 #endif
3299 
3300 #if SQLITE_MAX_ATTACHED>30
3301   int sqlite3DbMaskAllZero(yDbMask);
3302 #endif
3303 void sqlite3DropTable(Parse*, SrcList*, int, int);
3304 void sqlite3CodeDropTable(Parse*, Table*, int, int);
3305 void sqlite3DeleteTable(sqlite3*, Table*);
3306 #ifndef SQLITE_OMIT_AUTOINCREMENT
3307   void sqlite3AutoincrementBegin(Parse *pParse);
3308   void sqlite3AutoincrementEnd(Parse *pParse);
3309 #else
3310 # define sqlite3AutoincrementBegin(X)
3311 # define sqlite3AutoincrementEnd(X)
3312 #endif
3313 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
3314 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
3315 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
3316 int sqlite3IdListIndex(IdList*,const char*);
3317 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
3318 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
3319 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
3320                                       Token*, Select*, Expr*, IdList*);
3321 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
3322 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
3323 void sqlite3SrcListShiftJoinType(SrcList*);
3324 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
3325 void sqlite3IdListDelete(sqlite3*, IdList*);
3326 void sqlite3SrcListDelete(sqlite3*, SrcList*);
3327 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
3328 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
3329                           Expr*, int, int);
3330 void sqlite3DropIndex(Parse*, SrcList*, int);
3331 int sqlite3Select(Parse*, Select*, SelectDest*);
3332 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
3333                          Expr*,ExprList*,u16,Expr*,Expr*);
3334 void sqlite3SelectDelete(sqlite3*, Select*);
3335 Table *sqlite3SrcListLookup(Parse*, SrcList*);
3336 int sqlite3IsReadOnly(Parse*, Table*, int);
3337 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
3338 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
3339 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
3340 #endif
3341 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
3342 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
3343 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
3344 void sqlite3WhereEnd(WhereInfo*);
3345 u64 sqlite3WhereOutputRowCount(WhereInfo*);
3346 int sqlite3WhereIsDistinct(WhereInfo*);
3347 int sqlite3WhereIsOrdered(WhereInfo*);
3348 int sqlite3WhereIsSorted(WhereInfo*);
3349 int sqlite3WhereContinueLabel(WhereInfo*);
3350 int sqlite3WhereBreakLabel(WhereInfo*);
3351 int sqlite3WhereOkOnePass(WhereInfo*, int*);
3352 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
3353 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
3354 void sqlite3ExprCodeMove(Parse*, int, int, int);
3355 void sqlite3ExprCacheStore(Parse*, int, int, int);
3356 void sqlite3ExprCachePush(Parse*);
3357 void sqlite3ExprCachePop(Parse*);
3358 void sqlite3ExprCacheRemove(Parse*, int, int);
3359 void sqlite3ExprCacheClear(Parse*);
3360 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
3361 void sqlite3ExprCode(Parse*, Expr*, int);
3362 void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
3363 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
3364 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
3365 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
3366 void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
3367 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8);
3368 #define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
3369 #define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
3370 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
3371 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
3372 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int);
3373 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
3374 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
3375 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
3376 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
3377 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
3378 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
3379 void sqlite3Vacuum(Parse*);
3380 int sqlite3RunVacuum(char**, sqlite3*);
3381 char *sqlite3NameFromToken(sqlite3*, Token*);
3382 int sqlite3ExprCompare(Expr*, Expr*, int);
3383 int sqlite3ExprListCompare(ExprList*, ExprList*, int);
3384 int sqlite3ExprImpliesExpr(Expr*, Expr*, int);
3385 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
3386 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
3387 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
3388 Vdbe *sqlite3GetVdbe(Parse*);
3389 #ifndef SQLITE_OMIT_BUILTIN_TEST
3390 void sqlite3PrngSaveState(void);
3391 void sqlite3PrngRestoreState(void);
3392 #endif
3393 void sqlite3RollbackAll(sqlite3*,int);
3394 void sqlite3CodeVerifySchema(Parse*, int);
3395 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
3396 void sqlite3BeginTransaction(Parse*, int);
3397 void sqlite3CommitTransaction(Parse*);
3398 void sqlite3RollbackTransaction(Parse*);
3399 void sqlite3Savepoint(Parse*, int, Token*);
3400 void sqlite3CloseSavepoints(sqlite3 *);
3401 void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
3402 int sqlite3ExprIsConstant(Expr*);
3403 int sqlite3ExprIsConstantNotJoin(Expr*);
3404 int sqlite3ExprIsConstantOrFunction(Expr*, u8);
3405 int sqlite3ExprIsTableConstant(Expr*,int);
3406 int sqlite3ExprIsInteger(Expr*, int*);
3407 int sqlite3ExprCanBeNull(const Expr*);
3408 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
3409 int sqlite3IsRowid(const char*);
3410 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
3411 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
3412 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
3413 void sqlite3ResolvePartIdxLabel(Parse*,int);
3414 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
3415                                      u8,u8,int,int*);
3416 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
3417 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
3418 void sqlite3BeginWriteOperation(Parse*, int, int);
3419 void sqlite3MultiWrite(Parse*);
3420 void sqlite3MayAbort(Parse*);
3421 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
3422 void sqlite3UniqueConstraint(Parse*, int, Index*);
3423 void sqlite3RowidConstraint(Parse*, int, Table*);
3424 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
3425 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
3426 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
3427 IdList *sqlite3IdListDup(sqlite3*,IdList*);
3428 Select *sqlite3SelectDup(sqlite3*,Select*,int);
3429 #if SELECTTRACE_ENABLED
3430 void sqlite3SelectSetName(Select*,const char*);
3431 #else
3432 # define sqlite3SelectSetName(A,B)
3433 #endif
3434 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
3435 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
3436 void sqlite3RegisterBuiltinFunctions(sqlite3*);
3437 void sqlite3RegisterDateTimeFunctions(void);
3438 void sqlite3RegisterGlobalFunctions(void);
3439 int sqlite3SafetyCheckOk(sqlite3*);
3440 int sqlite3SafetyCheckSickOrOk(sqlite3*);
3441 void sqlite3ChangeCookie(Parse*, int);
3442 
3443 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
3444 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
3445 #endif
3446 
3447 #ifndef SQLITE_OMIT_TRIGGER
3448   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
3449                            Expr*,int, int);
3450   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
3451   void sqlite3DropTrigger(Parse*, SrcList*, int);
3452   void sqlite3DropTriggerPtr(Parse*, Trigger*);
3453   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
3454   Trigger *sqlite3TriggerList(Parse *, Table *);
3455   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
3456                             int, int, int);
3457   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
3458   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
3459   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
3460   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
3461   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
3462                                         Select*,u8);
3463   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
3464   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
3465   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
3466   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
3467   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
3468 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
3469 #else
3470 # define sqlite3TriggersExist(B,C,D,E,F) 0
3471 # define sqlite3DeleteTrigger(A,B)
3472 # define sqlite3DropTriggerPtr(A,B)
3473 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
3474 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
3475 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
3476 # define sqlite3TriggerList(X, Y) 0
3477 # define sqlite3ParseToplevel(p) p
3478 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
3479 #endif
3480 
3481 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
3482 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
3483 void sqlite3DeferForeignKey(Parse*, int);
3484 #ifndef SQLITE_OMIT_AUTHORIZATION
3485   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
3486   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
3487   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
3488   void sqlite3AuthContextPop(AuthContext*);
3489   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
3490 #else
3491 # define sqlite3AuthRead(a,b,c,d)
3492 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
3493 # define sqlite3AuthContextPush(a,b,c)
3494 # define sqlite3AuthContextPop(a)  ((void)(a))
3495 #endif
3496 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
3497 void sqlite3Detach(Parse*, Expr*);
3498 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
3499 int sqlite3FixSrcList(DbFixer*, SrcList*);
3500 int sqlite3FixSelect(DbFixer*, Select*);
3501 int sqlite3FixExpr(DbFixer*, Expr*);
3502 int sqlite3FixExprList(DbFixer*, ExprList*);
3503 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
3504 int sqlite3AtoF(const char *z, double*, int, u8);
3505 int sqlite3GetInt32(const char *, int*);
3506 int sqlite3Atoi(const char*);
3507 int sqlite3Utf16ByteLen(const void *pData, int nChar);
3508 int sqlite3Utf8CharLen(const char *pData, int nByte);
3509 u32 sqlite3Utf8Read(const u8**);
3510 LogEst sqlite3LogEst(u64);
3511 LogEst sqlite3LogEstAdd(LogEst,LogEst);
3512 #ifndef SQLITE_OMIT_VIRTUALTABLE
3513 LogEst sqlite3LogEstFromDouble(double);
3514 #endif
3515 u64 sqlite3LogEstToInt(LogEst);
3516 
3517 /*
3518 ** Routines to read and write variable-length integers.  These used to
3519 ** be defined locally, but now we use the varint routines in the util.c
3520 ** file.
3521 */
3522 int sqlite3PutVarint(unsigned char*, u64);
3523 u8 sqlite3GetVarint(const unsigned char *, u64 *);
3524 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
3525 int sqlite3VarintLen(u64 v);
3526 
3527 /*
3528 ** The common case is for a varint to be a single byte.  They following
3529 ** macros handle the common case without a procedure call, but then call
3530 ** the procedure for larger varints.
3531 */
3532 #define getVarint32(A,B)  \
3533   (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
3534 #define putVarint32(A,B)  \
3535   (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
3536   sqlite3PutVarint((A),(B)))
3537 #define getVarint    sqlite3GetVarint
3538 #define putVarint    sqlite3PutVarint
3539 
3540 
3541 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
3542 void sqlite3TableAffinity(Vdbe*, Table*, int);
3543 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
3544 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
3545 char sqlite3ExprAffinity(Expr *pExpr);
3546 int sqlite3Atoi64(const char*, i64*, int, u8);
3547 int sqlite3DecOrHexToI64(const char*, i64*);
3548 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
3549 void sqlite3Error(sqlite3*,int);
3550 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
3551 u8 sqlite3HexToInt(int h);
3552 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
3553 
3554 #if defined(SQLITE_NEED_ERR_NAME)
3555 const char *sqlite3ErrName(int);
3556 #endif
3557 
3558 const char *sqlite3ErrStr(int);
3559 int sqlite3ReadSchema(Parse *pParse);
3560 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
3561 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
3562 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
3563 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int);
3564 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
3565 Expr *sqlite3ExprSkipCollate(Expr*);
3566 int sqlite3CheckCollSeq(Parse *, CollSeq *);
3567 int sqlite3CheckObjectName(Parse *, const char *);
3568 void sqlite3VdbeSetChanges(sqlite3 *, int);
3569 int sqlite3AddInt64(i64*,i64);
3570 int sqlite3SubInt64(i64*,i64);
3571 int sqlite3MulInt64(i64*,i64);
3572 int sqlite3AbsInt32(int);
3573 #ifdef SQLITE_ENABLE_8_3_NAMES
3574 void sqlite3FileSuffix3(const char*, char*);
3575 #else
3576 # define sqlite3FileSuffix3(X,Y)
3577 #endif
3578 u8 sqlite3GetBoolean(const char *z,u8);
3579 
3580 const void *sqlite3ValueText(sqlite3_value*, u8);
3581 int sqlite3ValueBytes(sqlite3_value*, u8);
3582 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
3583                         void(*)(void*));
3584 void sqlite3ValueSetNull(sqlite3_value*);
3585 void sqlite3ValueFree(sqlite3_value*);
3586 sqlite3_value *sqlite3ValueNew(sqlite3 *);
3587 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
3588 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
3589 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
3590 #ifndef SQLITE_AMALGAMATION
3591 extern const unsigned char sqlite3OpcodeProperty[];
3592 extern const unsigned char sqlite3UpperToLower[];
3593 extern const unsigned char sqlite3CtypeMap[];
3594 extern const Token sqlite3IntTokens[];
3595 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
3596 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
3597 #ifndef SQLITE_OMIT_WSD
3598 extern int sqlite3PendingByte;
3599 #endif
3600 #endif
3601 void sqlite3RootPageMoved(sqlite3*, int, int, int);
3602 void sqlite3Reindex(Parse*, Token*, Token*);
3603 void sqlite3AlterFunctions(void);
3604 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
3605 int sqlite3GetToken(const unsigned char *, int *);
3606 void sqlite3NestedParse(Parse*, const char*, ...);
3607 void sqlite3ExpirePreparedStatements(sqlite3*);
3608 int sqlite3CodeSubselect(Parse *, Expr *, int, int);
3609 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
3610 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
3611 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
3612 int sqlite3ResolveExprNames(NameContext*, Expr*);
3613 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
3614 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
3615 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
3616 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
3617 void sqlite3AlterFinishAddColumn(Parse *, Token *);
3618 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
3619 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
3620 char sqlite3AffinityType(const char*, u8*);
3621 void sqlite3Analyze(Parse*, Token*, Token*);
3622 int sqlite3InvokeBusyHandler(BusyHandler*);
3623 int sqlite3FindDb(sqlite3*, Token*);
3624 int sqlite3FindDbName(sqlite3 *, const char *);
3625 int sqlite3AnalysisLoad(sqlite3*,int iDB);
3626 void sqlite3DeleteIndexSamples(sqlite3*,Index*);
3627 void sqlite3DefaultRowEst(Index*);
3628 void sqlite3RegisterLikeFunctions(sqlite3*, int);
3629 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
3630 void sqlite3MinimumFileFormat(Parse*, int, int);
3631 void sqlite3SchemaClear(void *);
3632 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
3633 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
3634 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
3635 void sqlite3KeyInfoUnref(KeyInfo*);
3636 KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
3637 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
3638 #ifdef SQLITE_DEBUG
3639 int sqlite3KeyInfoIsWriteable(KeyInfo*);
3640 #endif
3641 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
3642   void (*)(sqlite3_context*,int,sqlite3_value **),
3643   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
3644   FuncDestructor *pDestructor
3645 );
3646 int sqlite3ApiExit(sqlite3 *db, int);
3647 int sqlite3OpenTempDatabase(Parse *);
3648 
3649 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
3650 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
3651 void sqlite3StrAccumAppendAll(StrAccum*,const char*);
3652 void sqlite3AppendChar(StrAccum*,int,char);
3653 char *sqlite3StrAccumFinish(StrAccum*);
3654 void sqlite3StrAccumReset(StrAccum*);
3655 void sqlite3SelectDestInit(SelectDest*,int,int);
3656 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
3657 
3658 void sqlite3BackupRestart(sqlite3_backup *);
3659 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
3660 
3661 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3662 void sqlite3AnalyzeFunctions(void);
3663 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
3664 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
3665 void sqlite3Stat4ProbeFree(UnpackedRecord*);
3666 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
3667 #endif
3668 
3669 /*
3670 ** The interface to the LEMON-generated parser
3671 */
3672 void *sqlite3ParserAlloc(void*(*)(u64));
3673 void sqlite3ParserFree(void*, void(*)(void*));
3674 void sqlite3Parser(void*, int, Token, Parse*);
3675 #ifdef YYTRACKMAXSTACKDEPTH
3676   int sqlite3ParserStackPeak(void*);
3677 #endif
3678 
3679 void sqlite3AutoLoadExtensions(sqlite3*);
3680 #ifndef SQLITE_OMIT_LOAD_EXTENSION
3681   void sqlite3CloseExtensions(sqlite3*);
3682 #else
3683 # define sqlite3CloseExtensions(X)
3684 #endif
3685 
3686 #ifndef SQLITE_OMIT_SHARED_CACHE
3687   void sqlite3TableLock(Parse *, int, int, u8, const char *);
3688 #else
3689   #define sqlite3TableLock(v,w,x,y,z)
3690 #endif
3691 
3692 #ifdef SQLITE_TEST
3693   int sqlite3Utf8To8(unsigned char*);
3694 #endif
3695 
3696 #ifdef SQLITE_OMIT_VIRTUALTABLE
3697 #  define sqlite3VtabClear(Y)
3698 #  define sqlite3VtabSync(X,Y) SQLITE_OK
3699 #  define sqlite3VtabRollback(X)
3700 #  define sqlite3VtabCommit(X)
3701 #  define sqlite3VtabInSync(db) 0
3702 #  define sqlite3VtabLock(X)
3703 #  define sqlite3VtabUnlock(X)
3704 #  define sqlite3VtabUnlockList(X)
3705 #  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
3706 #  define sqlite3GetVTable(X,Y)  ((VTable*)0)
3707 #else
3708    void sqlite3VtabClear(sqlite3 *db, Table*);
3709    void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
3710    int sqlite3VtabSync(sqlite3 *db, Vdbe*);
3711    int sqlite3VtabRollback(sqlite3 *db);
3712    int sqlite3VtabCommit(sqlite3 *db);
3713    void sqlite3VtabLock(VTable *);
3714    void sqlite3VtabUnlock(VTable *);
3715    void sqlite3VtabUnlockList(sqlite3*);
3716    int sqlite3VtabSavepoint(sqlite3 *, int, int);
3717    void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
3718    VTable *sqlite3GetVTable(sqlite3*, Table*);
3719 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
3720 #endif
3721 void sqlite3VtabMakeWritable(Parse*,Table*);
3722 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
3723 void sqlite3VtabFinishParse(Parse*, Token*);
3724 void sqlite3VtabArgInit(Parse*);
3725 void sqlite3VtabArgExtend(Parse*, Token*);
3726 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
3727 int sqlite3VtabCallConnect(Parse*, Table*);
3728 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3729 int sqlite3VtabBegin(sqlite3 *, VTable *);
3730 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3731 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3732 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
3733 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3734 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3735 void sqlite3ParserReset(Parse*);
3736 int sqlite3Reprepare(Vdbe*);
3737 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3738 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3739 int sqlite3TempInMemory(const sqlite3*);
3740 const char *sqlite3JournalModename(int);
3741 #ifndef SQLITE_OMIT_WAL
3742   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
3743   int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3744 #endif
3745 #ifndef SQLITE_OMIT_CTE
3746   With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
3747   void sqlite3WithDelete(sqlite3*,With*);
3748   void sqlite3WithPush(Parse*, With*, u8);
3749 #else
3750 #define sqlite3WithPush(x,y,z)
3751 #define sqlite3WithDelete(x,y)
3752 #endif
3753 
3754 /* Declarations for functions in fkey.c. All of these are replaced by
3755 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3756 ** key functionality is available. If OMIT_TRIGGER is defined but
3757 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3758 ** this case foreign keys are parsed, but no other functionality is
3759 ** provided (enforcement of FK constraints requires the triggers sub-system).
3760 */
3761 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3762   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
3763   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3764   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
3765   int sqlite3FkRequired(Parse*, Table*, int*, int);
3766   u32 sqlite3FkOldmask(Parse*, Table*);
3767   FKey *sqlite3FkReferences(Table *);
3768 #else
3769   #define sqlite3FkActions(a,b,c,d,e,f)
3770   #define sqlite3FkCheck(a,b,c,d,e,f)
3771   #define sqlite3FkDropTable(a,b,c)
3772   #define sqlite3FkOldmask(a,b)         0
3773   #define sqlite3FkRequired(a,b,c,d)    0
3774 #endif
3775 #ifndef SQLITE_OMIT_FOREIGN_KEY
3776   void sqlite3FkDelete(sqlite3 *, Table*);
3777   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
3778 #else
3779   #define sqlite3FkDelete(a,b)
3780   #define sqlite3FkLocateIndex(a,b,c,d,e)
3781 #endif
3782 
3783 
3784 /*
3785 ** Available fault injectors.  Should be numbered beginning with 0.
3786 */
3787 #define SQLITE_FAULTINJECTOR_MALLOC     0
3788 #define SQLITE_FAULTINJECTOR_COUNT      1
3789 
3790 /*
3791 ** The interface to the code in fault.c used for identifying "benign"
3792 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3793 ** is not defined.
3794 */
3795 #ifndef SQLITE_OMIT_BUILTIN_TEST
3796   void sqlite3BeginBenignMalloc(void);
3797   void sqlite3EndBenignMalloc(void);
3798 #else
3799   #define sqlite3BeginBenignMalloc()
3800   #define sqlite3EndBenignMalloc()
3801 #endif
3802 
3803 /*
3804 ** Allowed return values from sqlite3FindInIndex()
3805 */
3806 #define IN_INDEX_ROWID        1   /* Search the rowid of the table */
3807 #define IN_INDEX_EPH          2   /* Search an ephemeral b-tree */
3808 #define IN_INDEX_INDEX_ASC    3   /* Existing index ASCENDING */
3809 #define IN_INDEX_INDEX_DESC   4   /* Existing index DESCENDING */
3810 #define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
3811 /*
3812 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
3813 */
3814 #define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
3815 #define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
3816 #define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
3817 int sqlite3FindInIndex(Parse *, Expr *, u32, int*);
3818 
3819 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3820   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3821   int sqlite3JournalSize(sqlite3_vfs *);
3822   int sqlite3JournalCreate(sqlite3_file *);
3823   int sqlite3JournalExists(sqlite3_file *p);
3824 #else
3825   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
3826   #define sqlite3JournalExists(p) 1
3827 #endif
3828 
3829 void sqlite3MemJournalOpen(sqlite3_file *);
3830 int sqlite3MemJournalSize(void);
3831 int sqlite3IsMemJournal(sqlite3_file *);
3832 
3833 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p);
3834 #if SQLITE_MAX_EXPR_DEPTH>0
3835   int sqlite3SelectExprHeight(Select *);
3836   int sqlite3ExprCheckHeight(Parse*, int);
3837 #else
3838   #define sqlite3SelectExprHeight(x) 0
3839   #define sqlite3ExprCheckHeight(x,y)
3840 #endif
3841 
3842 u32 sqlite3Get4byte(const u8*);
3843 void sqlite3Put4byte(u8*, u32);
3844 
3845 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
3846   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
3847   void sqlite3ConnectionUnlocked(sqlite3 *db);
3848   void sqlite3ConnectionClosed(sqlite3 *db);
3849 #else
3850   #define sqlite3ConnectionBlocked(x,y)
3851   #define sqlite3ConnectionUnlocked(x)
3852   #define sqlite3ConnectionClosed(x)
3853 #endif
3854 
3855 #ifdef SQLITE_DEBUG
3856   void sqlite3ParserTrace(FILE*, char *);
3857 #endif
3858 
3859 /*
3860 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
3861 ** sqlite3IoTrace is a pointer to a printf-like routine used to
3862 ** print I/O tracing messages.
3863 */
3864 #ifdef SQLITE_ENABLE_IOTRACE
3865 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3866   void sqlite3VdbeIOTraceSql(Vdbe*);
3867 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...);
3868 #else
3869 # define IOTRACE(A)
3870 # define sqlite3VdbeIOTraceSql(X)
3871 #endif
3872 
3873 /*
3874 ** These routines are available for the mem2.c debugging memory allocator
3875 ** only.  They are used to verify that different "types" of memory
3876 ** allocations are properly tracked by the system.
3877 **
3878 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
3879 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
3880 ** a single bit set.
3881 **
3882 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
3883 ** argument match the type set by the previous sqlite3MemdebugSetType().
3884 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
3885 **
3886 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
3887 ** argument match the type set by the previous sqlite3MemdebugSetType().
3888 **
3889 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
3890 ** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
3891 ** it might have been allocated by lookaside, except the allocation was
3892 ** too large or lookaside was already full.  It is important to verify
3893 ** that allocations that might have been satisfied by lookaside are not
3894 ** passed back to non-lookaside free() routines.  Asserts such as the
3895 ** example above are placed on the non-lookaside free() routines to verify
3896 ** this constraint.
3897 **
3898 ** All of this is no-op for a production build.  It only comes into
3899 ** play when the SQLITE_MEMDEBUG compile-time option is used.
3900 */
3901 #ifdef SQLITE_MEMDEBUG
3902   void sqlite3MemdebugSetType(void*,u8);
3903   int sqlite3MemdebugHasType(void*,u8);
3904   int sqlite3MemdebugNoType(void*,u8);
3905 #else
3906 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
3907 # define sqlite3MemdebugHasType(X,Y)  1
3908 # define sqlite3MemdebugNoType(X,Y)   1
3909 #endif
3910 #define MEMTYPE_HEAP       0x01  /* General heap allocations */
3911 #define MEMTYPE_LOOKASIDE  0x02  /* Heap that might have been lookaside */
3912 #define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
3913 #define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
3914 
3915 /*
3916 ** Threading interface
3917 */
3918 #if SQLITE_MAX_WORKER_THREADS>0
3919 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
3920 int sqlite3ThreadJoin(SQLiteThread*, void**);
3921 #endif
3922 
3923 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)
3924 int sqlite3DbstatRegister(sqlite3*);
3925 #endif
3926 
3927 #endif /* _SQLITEINT_H_ */
3928