1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Include the header file used to customize the compiler options for MSVC. 20 ** This should be done first so that it can successfully prevent spurious 21 ** compiler warnings due to subsequent content in this file and other files 22 ** that are included by this file. 23 */ 24 #include "msvc.h" 25 26 /* 27 ** Special setup for VxWorks 28 */ 29 #include "vxworks.h" 30 31 /* 32 ** These #defines should enable >2GB file support on POSIX if the 33 ** underlying operating system supports it. If the OS lacks 34 ** large file support, or if the OS is windows, these should be no-ops. 35 ** 36 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 37 ** system #includes. Hence, this block of code must be the very first 38 ** code in all source files. 39 ** 40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 41 ** on the compiler command line. This is necessary if you are compiling 42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 43 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 44 ** without this option, LFS is enable. But LFS does not exist in the kernel 45 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 46 ** portability you should omit LFS. 47 ** 48 ** The previous paragraph was written in 2005. (This paragraph is written 49 ** on 2008-11-28.) These days, all Linux kernels support large files, so 50 ** you should probably leave LFS enabled. But some embedded platforms might 51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 52 ** 53 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 54 */ 55 #ifndef SQLITE_DISABLE_LFS 56 # define _LARGE_FILE 1 57 # ifndef _FILE_OFFSET_BITS 58 # define _FILE_OFFSET_BITS 64 59 # endif 60 # define _LARGEFILE_SOURCE 1 61 #endif 62 63 /* What version of GCC is being used. 0 means GCC is not being used */ 64 #ifdef __GNUC__ 65 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 66 #else 67 # define GCC_VERSION 0 68 #endif 69 70 /* Needed for various definitions... */ 71 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 72 # define _GNU_SOURCE 73 #endif 74 75 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 76 # define _BSD_SOURCE 77 #endif 78 79 /* 80 ** For MinGW, check to see if we can include the header file containing its 81 ** version information, among other things. Normally, this internal MinGW 82 ** header file would [only] be included automatically by other MinGW header 83 ** files; however, the contained version information is now required by this 84 ** header file to work around binary compatibility issues (see below) and 85 ** this is the only known way to reliably obtain it. This entire #if block 86 ** would be completely unnecessary if there was any other way of detecting 87 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 88 ** some MinGW-specific macros). When compiling for MinGW, either the 89 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 90 ** defined; otherwise, detection of conditions specific to MinGW will be 91 ** disabled. 92 */ 93 #if defined(_HAVE_MINGW_H) 94 # include "mingw.h" 95 #elif defined(_HAVE__MINGW_H) 96 # include "_mingw.h" 97 #endif 98 99 /* 100 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 101 ** define is required to maintain binary compatibility with the MSVC runtime 102 ** library in use (e.g. for Windows XP). 103 */ 104 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 105 defined(_WIN32) && !defined(_WIN64) && \ 106 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 107 defined(__MSVCRT__) 108 # define _USE_32BIT_TIME_T 109 #endif 110 111 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 112 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 113 ** MinGW. 114 */ 115 #include "sqlite3.h" 116 117 /* 118 ** Include the configuration header output by 'configure' if we're using the 119 ** autoconf-based build 120 */ 121 #ifdef _HAVE_SQLITE_CONFIG_H 122 #include "config.h" 123 #endif 124 125 #include "sqliteLimit.h" 126 127 /* Disable nuisance warnings on Borland compilers */ 128 #if defined(__BORLANDC__) 129 #pragma warn -rch /* unreachable code */ 130 #pragma warn -ccc /* Condition is always true or false */ 131 #pragma warn -aus /* Assigned value is never used */ 132 #pragma warn -csu /* Comparing signed and unsigned */ 133 #pragma warn -spa /* Suspicious pointer arithmetic */ 134 #endif 135 136 /* 137 ** Include standard header files as necessary 138 */ 139 #ifdef HAVE_STDINT_H 140 #include <stdint.h> 141 #endif 142 #ifdef HAVE_INTTYPES_H 143 #include <inttypes.h> 144 #endif 145 146 /* 147 ** The following macros are used to cast pointers to integers and 148 ** integers to pointers. The way you do this varies from one compiler 149 ** to the next, so we have developed the following set of #if statements 150 ** to generate appropriate macros for a wide range of compilers. 151 ** 152 ** The correct "ANSI" way to do this is to use the intptr_t type. 153 ** Unfortunately, that typedef is not available on all compilers, or 154 ** if it is available, it requires an #include of specific headers 155 ** that vary from one machine to the next. 156 ** 157 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 158 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 159 ** So we have to define the macros in different ways depending on the 160 ** compiler. 161 */ 162 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 163 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 164 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 165 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 166 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 167 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 168 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 169 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 170 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 171 #else /* Generates a warning - but it always works */ 172 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 173 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 174 #endif 175 176 /* 177 ** A macro to hint to the compiler that a function should not be 178 ** inlined. 179 */ 180 #if defined(__GNUC__) 181 # define SQLITE_NOINLINE __attribute__((noinline)) 182 #elif defined(_MSC_VER) && _MSC_VER>=1310 183 # define SQLITE_NOINLINE __declspec(noinline) 184 #else 185 # define SQLITE_NOINLINE 186 #endif 187 188 /* 189 ** Make sure that the compiler intrinsics we desire are enabled when 190 ** compiling with an appropriate version of MSVC unless prevented by 191 ** the SQLITE_DISABLE_INTRINSIC define. 192 */ 193 #if !defined(SQLITE_DISABLE_INTRINSIC) 194 # if defined(_MSC_VER) && _MSC_VER>=1300 195 # if !defined(_WIN32_WCE) 196 # include <intrin.h> 197 # pragma intrinsic(_byteswap_ushort) 198 # pragma intrinsic(_byteswap_ulong) 199 # else 200 # include <cmnintrin.h> 201 # endif 202 # endif 203 #endif 204 205 /* 206 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 207 ** 0 means mutexes are permanently disable and the library is never 208 ** threadsafe. 1 means the library is serialized which is the highest 209 ** level of threadsafety. 2 means the library is multithreaded - multiple 210 ** threads can use SQLite as long as no two threads try to use the same 211 ** database connection at the same time. 212 ** 213 ** Older versions of SQLite used an optional THREADSAFE macro. 214 ** We support that for legacy. 215 */ 216 #if !defined(SQLITE_THREADSAFE) 217 # if defined(THREADSAFE) 218 # define SQLITE_THREADSAFE THREADSAFE 219 # else 220 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 221 # endif 222 #endif 223 224 /* 225 ** Powersafe overwrite is on by default. But can be turned off using 226 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 227 */ 228 #ifndef SQLITE_POWERSAFE_OVERWRITE 229 # define SQLITE_POWERSAFE_OVERWRITE 1 230 #endif 231 232 /* 233 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 234 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 235 ** which case memory allocation statistics are disabled by default. 236 */ 237 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 238 # define SQLITE_DEFAULT_MEMSTATUS 1 239 #endif 240 241 /* 242 ** Exactly one of the following macros must be defined in order to 243 ** specify which memory allocation subsystem to use. 244 ** 245 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 246 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 247 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 248 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 249 ** 250 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 251 ** assert() macro is enabled, each call into the Win32 native heap subsystem 252 ** will cause HeapValidate to be called. If heap validation should fail, an 253 ** assertion will be triggered. 254 ** 255 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 256 ** the default. 257 */ 258 #if defined(SQLITE_SYSTEM_MALLOC) \ 259 + defined(SQLITE_WIN32_MALLOC) \ 260 + defined(SQLITE_ZERO_MALLOC) \ 261 + defined(SQLITE_MEMDEBUG)>1 262 # error "Two or more of the following compile-time configuration options\ 263 are defined but at most one is allowed:\ 264 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 265 SQLITE_ZERO_MALLOC" 266 #endif 267 #if defined(SQLITE_SYSTEM_MALLOC) \ 268 + defined(SQLITE_WIN32_MALLOC) \ 269 + defined(SQLITE_ZERO_MALLOC) \ 270 + defined(SQLITE_MEMDEBUG)==0 271 # define SQLITE_SYSTEM_MALLOC 1 272 #endif 273 274 /* 275 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 276 ** sizes of memory allocations below this value where possible. 277 */ 278 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 279 # define SQLITE_MALLOC_SOFT_LIMIT 1024 280 #endif 281 282 /* 283 ** We need to define _XOPEN_SOURCE as follows in order to enable 284 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 285 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 286 ** it. 287 */ 288 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 289 # define _XOPEN_SOURCE 600 290 #endif 291 292 /* 293 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 294 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 295 ** make it true by defining or undefining NDEBUG. 296 ** 297 ** Setting NDEBUG makes the code smaller and faster by disabling the 298 ** assert() statements in the code. So we want the default action 299 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 300 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 301 ** feature. 302 */ 303 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 304 # define NDEBUG 1 305 #endif 306 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 307 # undef NDEBUG 308 #endif 309 310 /* 311 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 312 */ 313 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 314 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 315 #endif 316 317 /* 318 ** The testcase() macro is used to aid in coverage testing. When 319 ** doing coverage testing, the condition inside the argument to 320 ** testcase() must be evaluated both true and false in order to 321 ** get full branch coverage. The testcase() macro is inserted 322 ** to help ensure adequate test coverage in places where simple 323 ** condition/decision coverage is inadequate. For example, testcase() 324 ** can be used to make sure boundary values are tested. For 325 ** bitmask tests, testcase() can be used to make sure each bit 326 ** is significant and used at least once. On switch statements 327 ** where multiple cases go to the same block of code, testcase() 328 ** can insure that all cases are evaluated. 329 ** 330 */ 331 #ifdef SQLITE_COVERAGE_TEST 332 void sqlite3Coverage(int); 333 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 334 #else 335 # define testcase(X) 336 #endif 337 338 /* 339 ** The TESTONLY macro is used to enclose variable declarations or 340 ** other bits of code that are needed to support the arguments 341 ** within testcase() and assert() macros. 342 */ 343 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 344 # define TESTONLY(X) X 345 #else 346 # define TESTONLY(X) 347 #endif 348 349 /* 350 ** Sometimes we need a small amount of code such as a variable initialization 351 ** to setup for a later assert() statement. We do not want this code to 352 ** appear when assert() is disabled. The following macro is therefore 353 ** used to contain that setup code. The "VVA" acronym stands for 354 ** "Verification, Validation, and Accreditation". In other words, the 355 ** code within VVA_ONLY() will only run during verification processes. 356 */ 357 #ifndef NDEBUG 358 # define VVA_ONLY(X) X 359 #else 360 # define VVA_ONLY(X) 361 #endif 362 363 /* 364 ** The ALWAYS and NEVER macros surround boolean expressions which 365 ** are intended to always be true or false, respectively. Such 366 ** expressions could be omitted from the code completely. But they 367 ** are included in a few cases in order to enhance the resilience 368 ** of SQLite to unexpected behavior - to make the code "self-healing" 369 ** or "ductile" rather than being "brittle" and crashing at the first 370 ** hint of unplanned behavior. 371 ** 372 ** In other words, ALWAYS and NEVER are added for defensive code. 373 ** 374 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 375 ** be true and false so that the unreachable code they specify will 376 ** not be counted as untested code. 377 */ 378 #if defined(SQLITE_COVERAGE_TEST) 379 # define ALWAYS(X) (1) 380 # define NEVER(X) (0) 381 #elif !defined(NDEBUG) 382 # define ALWAYS(X) ((X)?1:(assert(0),0)) 383 # define NEVER(X) ((X)?(assert(0),1):0) 384 #else 385 # define ALWAYS(X) (X) 386 # define NEVER(X) (X) 387 #endif 388 389 /* 390 ** Declarations used for tracing the operating system interfaces. 391 */ 392 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 393 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 394 extern int sqlite3OSTrace; 395 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 396 # define SQLITE_HAVE_OS_TRACE 397 #else 398 # define OSTRACE(X) 399 # undef SQLITE_HAVE_OS_TRACE 400 #endif 401 402 /* 403 ** Is the sqlite3ErrName() function needed in the build? Currently, 404 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 405 ** OSTRACE is enabled), and by several "test*.c" files (which are 406 ** compiled using SQLITE_TEST). 407 */ 408 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 409 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 410 # define SQLITE_NEED_ERR_NAME 411 #else 412 # undef SQLITE_NEED_ERR_NAME 413 #endif 414 415 /* 416 ** Return true (non-zero) if the input is an integer that is too large 417 ** to fit in 32-bits. This macro is used inside of various testcase() 418 ** macros to verify that we have tested SQLite for large-file support. 419 */ 420 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 421 422 /* 423 ** The macro unlikely() is a hint that surrounds a boolean 424 ** expression that is usually false. Macro likely() surrounds 425 ** a boolean expression that is usually true. These hints could, 426 ** in theory, be used by the compiler to generate better code, but 427 ** currently they are just comments for human readers. 428 */ 429 #define likely(X) (X) 430 #define unlikely(X) (X) 431 432 #include "hash.h" 433 #include "parse.h" 434 #include <stdio.h> 435 #include <stdlib.h> 436 #include <string.h> 437 #include <assert.h> 438 #include <stddef.h> 439 440 /* 441 ** If compiling for a processor that lacks floating point support, 442 ** substitute integer for floating-point 443 */ 444 #ifdef SQLITE_OMIT_FLOATING_POINT 445 # define double sqlite_int64 446 # define float sqlite_int64 447 # define LONGDOUBLE_TYPE sqlite_int64 448 # ifndef SQLITE_BIG_DBL 449 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 450 # endif 451 # define SQLITE_OMIT_DATETIME_FUNCS 1 452 # define SQLITE_OMIT_TRACE 1 453 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 454 # undef SQLITE_HAVE_ISNAN 455 #endif 456 #ifndef SQLITE_BIG_DBL 457 # define SQLITE_BIG_DBL (1e99) 458 #endif 459 460 /* 461 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 462 ** afterward. Having this macro allows us to cause the C compiler 463 ** to omit code used by TEMP tables without messy #ifndef statements. 464 */ 465 #ifdef SQLITE_OMIT_TEMPDB 466 #define OMIT_TEMPDB 1 467 #else 468 #define OMIT_TEMPDB 0 469 #endif 470 471 /* 472 ** The "file format" number is an integer that is incremented whenever 473 ** the VDBE-level file format changes. The following macros define the 474 ** the default file format for new databases and the maximum file format 475 ** that the library can read. 476 */ 477 #define SQLITE_MAX_FILE_FORMAT 4 478 #ifndef SQLITE_DEFAULT_FILE_FORMAT 479 # define SQLITE_DEFAULT_FILE_FORMAT 4 480 #endif 481 482 /* 483 ** Determine whether triggers are recursive by default. This can be 484 ** changed at run-time using a pragma. 485 */ 486 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 487 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 488 #endif 489 490 /* 491 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 492 ** on the command-line 493 */ 494 #ifndef SQLITE_TEMP_STORE 495 # define SQLITE_TEMP_STORE 1 496 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 497 #endif 498 499 /* 500 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 501 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 502 ** to zero. 503 */ 504 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 505 # undef SQLITE_MAX_WORKER_THREADS 506 # define SQLITE_MAX_WORKER_THREADS 0 507 #endif 508 #ifndef SQLITE_MAX_WORKER_THREADS 509 # define SQLITE_MAX_WORKER_THREADS 8 510 #endif 511 #ifndef SQLITE_DEFAULT_WORKER_THREADS 512 # define SQLITE_DEFAULT_WORKER_THREADS 0 513 #endif 514 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 515 # undef SQLITE_MAX_WORKER_THREADS 516 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 517 #endif 518 519 /* 520 ** The default initial allocation for the pagecache when using separate 521 ** pagecaches for each database connection. A positive number is the 522 ** number of pages. A negative number N translations means that a buffer 523 ** of -1024*N bytes is allocated and used for as many pages as it will hold. 524 */ 525 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ 526 # define SQLITE_DEFAULT_PCACHE_INITSZ 100 527 #endif 528 529 530 /* 531 ** GCC does not define the offsetof() macro so we'll have to do it 532 ** ourselves. 533 */ 534 #ifndef offsetof 535 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 536 #endif 537 538 /* 539 ** Macros to compute minimum and maximum of two numbers. 540 */ 541 #define MIN(A,B) ((A)<(B)?(A):(B)) 542 #define MAX(A,B) ((A)>(B)?(A):(B)) 543 544 /* 545 ** Swap two objects of type TYPE. 546 */ 547 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 548 549 /* 550 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 551 ** not, there are still machines out there that use EBCDIC.) 552 */ 553 #if 'A' == '\301' 554 # define SQLITE_EBCDIC 1 555 #else 556 # define SQLITE_ASCII 1 557 #endif 558 559 /* 560 ** Integers of known sizes. These typedefs might change for architectures 561 ** where the sizes very. Preprocessor macros are available so that the 562 ** types can be conveniently redefined at compile-type. Like this: 563 ** 564 ** cc '-DUINTPTR_TYPE=long long int' ... 565 */ 566 #ifndef UINT32_TYPE 567 # ifdef HAVE_UINT32_T 568 # define UINT32_TYPE uint32_t 569 # else 570 # define UINT32_TYPE unsigned int 571 # endif 572 #endif 573 #ifndef UINT16_TYPE 574 # ifdef HAVE_UINT16_T 575 # define UINT16_TYPE uint16_t 576 # else 577 # define UINT16_TYPE unsigned short int 578 # endif 579 #endif 580 #ifndef INT16_TYPE 581 # ifdef HAVE_INT16_T 582 # define INT16_TYPE int16_t 583 # else 584 # define INT16_TYPE short int 585 # endif 586 #endif 587 #ifndef UINT8_TYPE 588 # ifdef HAVE_UINT8_T 589 # define UINT8_TYPE uint8_t 590 # else 591 # define UINT8_TYPE unsigned char 592 # endif 593 #endif 594 #ifndef INT8_TYPE 595 # ifdef HAVE_INT8_T 596 # define INT8_TYPE int8_t 597 # else 598 # define INT8_TYPE signed char 599 # endif 600 #endif 601 #ifndef LONGDOUBLE_TYPE 602 # define LONGDOUBLE_TYPE long double 603 #endif 604 typedef sqlite_int64 i64; /* 8-byte signed integer */ 605 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 606 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 607 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 608 typedef INT16_TYPE i16; /* 2-byte signed integer */ 609 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 610 typedef INT8_TYPE i8; /* 1-byte signed integer */ 611 612 /* 613 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 614 ** that can be stored in a u32 without loss of data. The value 615 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 616 ** have to specify the value in the less intuitive manner shown: 617 */ 618 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 619 620 /* 621 ** The datatype used to store estimates of the number of rows in a 622 ** table or index. This is an unsigned integer type. For 99.9% of 623 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 624 ** can be used at compile-time if desired. 625 */ 626 #ifdef SQLITE_64BIT_STATS 627 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 628 #else 629 typedef u32 tRowcnt; /* 32-bit is the default */ 630 #endif 631 632 /* 633 ** Estimated quantities used for query planning are stored as 16-bit 634 ** logarithms. For quantity X, the value stored is 10*log2(X). This 635 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 636 ** But the allowed values are "grainy". Not every value is representable. 637 ** For example, quantities 16 and 17 are both represented by a LogEst 638 ** of 40. However, since LogEst quantities are suppose to be estimates, 639 ** not exact values, this imprecision is not a problem. 640 ** 641 ** "LogEst" is short for "Logarithmic Estimate". 642 ** 643 ** Examples: 644 ** 1 -> 0 20 -> 43 10000 -> 132 645 ** 2 -> 10 25 -> 46 25000 -> 146 646 ** 3 -> 16 100 -> 66 1000000 -> 199 647 ** 4 -> 20 1000 -> 99 1048576 -> 200 648 ** 10 -> 33 1024 -> 100 4294967296 -> 320 649 ** 650 ** The LogEst can be negative to indicate fractional values. 651 ** Examples: 652 ** 653 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 654 */ 655 typedef INT16_TYPE LogEst; 656 657 /* 658 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 659 */ 660 #ifndef SQLITE_PTRSIZE 661 # if defined(__SIZEOF_POINTER__) 662 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 663 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 664 defined(_M_ARM) || defined(__arm__) || defined(__x86) 665 # define SQLITE_PTRSIZE 4 666 # else 667 # define SQLITE_PTRSIZE 8 668 # endif 669 #endif 670 671 /* 672 ** Macros to determine whether the machine is big or little endian, 673 ** and whether or not that determination is run-time or compile-time. 674 ** 675 ** For best performance, an attempt is made to guess at the byte-order 676 ** using C-preprocessor macros. If that is unsuccessful, or if 677 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 678 ** at run-time. 679 */ 680 #ifdef SQLITE_AMALGAMATION 681 const int sqlite3one = 1; 682 #else 683 extern const int sqlite3one; 684 #endif 685 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 686 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 687 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 688 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 689 # define SQLITE_BYTEORDER 1234 690 # define SQLITE_BIGENDIAN 0 691 # define SQLITE_LITTLEENDIAN 1 692 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 693 #endif 694 #if (defined(sparc) || defined(__ppc__)) \ 695 && !defined(SQLITE_RUNTIME_BYTEORDER) 696 # define SQLITE_BYTEORDER 4321 697 # define SQLITE_BIGENDIAN 1 698 # define SQLITE_LITTLEENDIAN 0 699 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 700 #endif 701 #if !defined(SQLITE_BYTEORDER) 702 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 703 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 704 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 705 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 706 #endif 707 708 /* 709 ** Constants for the largest and smallest possible 64-bit signed integers. 710 ** These macros are designed to work correctly on both 32-bit and 64-bit 711 ** compilers. 712 */ 713 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 714 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 715 716 /* 717 ** Round up a number to the next larger multiple of 8. This is used 718 ** to force 8-byte alignment on 64-bit architectures. 719 */ 720 #define ROUND8(x) (((x)+7)&~7) 721 722 /* 723 ** Round down to the nearest multiple of 8 724 */ 725 #define ROUNDDOWN8(x) ((x)&~7) 726 727 /* 728 ** Assert that the pointer X is aligned to an 8-byte boundary. This 729 ** macro is used only within assert() to verify that the code gets 730 ** all alignment restrictions correct. 731 ** 732 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 733 ** underlying malloc() implementation might return us 4-byte aligned 734 ** pointers. In that case, only verify 4-byte alignment. 735 */ 736 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 737 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 738 #else 739 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 740 #endif 741 742 /* 743 ** Disable MMAP on platforms where it is known to not work 744 */ 745 #if defined(__OpenBSD__) || defined(__QNXNTO__) 746 # undef SQLITE_MAX_MMAP_SIZE 747 # define SQLITE_MAX_MMAP_SIZE 0 748 #endif 749 750 /* 751 ** Default maximum size of memory used by memory-mapped I/O in the VFS 752 */ 753 #ifdef __APPLE__ 754 # include <TargetConditionals.h> 755 # if TARGET_OS_IPHONE 756 # undef SQLITE_MAX_MMAP_SIZE 757 # define SQLITE_MAX_MMAP_SIZE 0 758 # endif 759 #endif 760 #ifndef SQLITE_MAX_MMAP_SIZE 761 # if defined(__linux__) \ 762 || defined(_WIN32) \ 763 || (defined(__APPLE__) && defined(__MACH__)) \ 764 || defined(__sun) \ 765 || defined(__FreeBSD__) \ 766 || defined(__DragonFly__) 767 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 768 # else 769 # define SQLITE_MAX_MMAP_SIZE 0 770 # endif 771 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 772 #endif 773 774 /* 775 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 776 ** default MMAP_SIZE is specified at compile-time, make sure that it does 777 ** not exceed the maximum mmap size. 778 */ 779 #ifndef SQLITE_DEFAULT_MMAP_SIZE 780 # define SQLITE_DEFAULT_MMAP_SIZE 0 781 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 782 #endif 783 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 784 # undef SQLITE_DEFAULT_MMAP_SIZE 785 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 786 #endif 787 788 /* 789 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 790 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 791 ** define SQLITE_ENABLE_STAT3_OR_STAT4 792 */ 793 #ifdef SQLITE_ENABLE_STAT4 794 # undef SQLITE_ENABLE_STAT3 795 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 796 #elif SQLITE_ENABLE_STAT3 797 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 798 #elif SQLITE_ENABLE_STAT3_OR_STAT4 799 # undef SQLITE_ENABLE_STAT3_OR_STAT4 800 #endif 801 802 /* 803 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 804 ** the Select query generator tracing logic is turned on. 805 */ 806 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 807 # define SELECTTRACE_ENABLED 1 808 #else 809 # define SELECTTRACE_ENABLED 0 810 #endif 811 812 /* 813 ** An instance of the following structure is used to store the busy-handler 814 ** callback for a given sqlite handle. 815 ** 816 ** The sqlite.busyHandler member of the sqlite struct contains the busy 817 ** callback for the database handle. Each pager opened via the sqlite 818 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 819 ** callback is currently invoked only from within pager.c. 820 */ 821 typedef struct BusyHandler BusyHandler; 822 struct BusyHandler { 823 int (*xFunc)(void *,int); /* The busy callback */ 824 void *pArg; /* First arg to busy callback */ 825 int nBusy; /* Incremented with each busy call */ 826 }; 827 828 /* 829 ** Name of the master database table. The master database table 830 ** is a special table that holds the names and attributes of all 831 ** user tables and indices. 832 */ 833 #define MASTER_NAME "sqlite_master" 834 #define TEMP_MASTER_NAME "sqlite_temp_master" 835 836 /* 837 ** The root-page of the master database table. 838 */ 839 #define MASTER_ROOT 1 840 841 /* 842 ** The name of the schema table. 843 */ 844 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 845 846 /* 847 ** A convenience macro that returns the number of elements in 848 ** an array. 849 */ 850 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 851 852 /* 853 ** Determine if the argument is a power of two 854 */ 855 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 856 857 /* 858 ** The following value as a destructor means to use sqlite3DbFree(). 859 ** The sqlite3DbFree() routine requires two parameters instead of the 860 ** one parameter that destructors normally want. So we have to introduce 861 ** this magic value that the code knows to handle differently. Any 862 ** pointer will work here as long as it is distinct from SQLITE_STATIC 863 ** and SQLITE_TRANSIENT. 864 */ 865 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 866 867 /* 868 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 869 ** not support Writable Static Data (WSD) such as global and static variables. 870 ** All variables must either be on the stack or dynamically allocated from 871 ** the heap. When WSD is unsupported, the variable declarations scattered 872 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 873 ** macro is used for this purpose. And instead of referencing the variable 874 ** directly, we use its constant as a key to lookup the run-time allocated 875 ** buffer that holds real variable. The constant is also the initializer 876 ** for the run-time allocated buffer. 877 ** 878 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 879 ** macros become no-ops and have zero performance impact. 880 */ 881 #ifdef SQLITE_OMIT_WSD 882 #define SQLITE_WSD const 883 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 884 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 885 int sqlite3_wsd_init(int N, int J); 886 void *sqlite3_wsd_find(void *K, int L); 887 #else 888 #define SQLITE_WSD 889 #define GLOBAL(t,v) v 890 #define sqlite3GlobalConfig sqlite3Config 891 #endif 892 893 /* 894 ** The following macros are used to suppress compiler warnings and to 895 ** make it clear to human readers when a function parameter is deliberately 896 ** left unused within the body of a function. This usually happens when 897 ** a function is called via a function pointer. For example the 898 ** implementation of an SQL aggregate step callback may not use the 899 ** parameter indicating the number of arguments passed to the aggregate, 900 ** if it knows that this is enforced elsewhere. 901 ** 902 ** When a function parameter is not used at all within the body of a function, 903 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 904 ** However, these macros may also be used to suppress warnings related to 905 ** parameters that may or may not be used depending on compilation options. 906 ** For example those parameters only used in assert() statements. In these 907 ** cases the parameters are named as per the usual conventions. 908 */ 909 #define UNUSED_PARAMETER(x) (void)(x) 910 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 911 912 /* 913 ** Forward references to structures 914 */ 915 typedef struct AggInfo AggInfo; 916 typedef struct AuthContext AuthContext; 917 typedef struct AutoincInfo AutoincInfo; 918 typedef struct Bitvec Bitvec; 919 typedef struct CollSeq CollSeq; 920 typedef struct Column Column; 921 typedef struct Db Db; 922 typedef struct Schema Schema; 923 typedef struct Expr Expr; 924 typedef struct ExprList ExprList; 925 typedef struct ExprSpan ExprSpan; 926 typedef struct FKey FKey; 927 typedef struct FuncDestructor FuncDestructor; 928 typedef struct FuncDef FuncDef; 929 typedef struct FuncDefHash FuncDefHash; 930 typedef struct IdList IdList; 931 typedef struct Index Index; 932 typedef struct IndexSample IndexSample; 933 typedef struct KeyClass KeyClass; 934 typedef struct KeyInfo KeyInfo; 935 typedef struct Lookaside Lookaside; 936 typedef struct LookasideSlot LookasideSlot; 937 typedef struct Module Module; 938 typedef struct NameContext NameContext; 939 typedef struct Parse Parse; 940 typedef struct PrintfArguments PrintfArguments; 941 typedef struct RowSet RowSet; 942 typedef struct Savepoint Savepoint; 943 typedef struct Select Select; 944 typedef struct SQLiteThread SQLiteThread; 945 typedef struct SelectDest SelectDest; 946 typedef struct SrcList SrcList; 947 typedef struct StrAccum StrAccum; 948 typedef struct Table Table; 949 typedef struct TableLock TableLock; 950 typedef struct Token Token; 951 typedef struct TreeView TreeView; 952 typedef struct Trigger Trigger; 953 typedef struct TriggerPrg TriggerPrg; 954 typedef struct TriggerStep TriggerStep; 955 typedef struct UnpackedRecord UnpackedRecord; 956 typedef struct VTable VTable; 957 typedef struct VtabCtx VtabCtx; 958 typedef struct Walker Walker; 959 typedef struct WhereInfo WhereInfo; 960 typedef struct With With; 961 962 /* 963 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 964 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 965 ** pointer types (i.e. FuncDef) defined above. 966 */ 967 #include "btree.h" 968 #include "vdbe.h" 969 #include "pager.h" 970 #include "pcache.h" 971 972 #include "os.h" 973 #include "mutex.h" 974 975 976 /* 977 ** Each database file to be accessed by the system is an instance 978 ** of the following structure. There are normally two of these structures 979 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 980 ** aDb[1] is the database file used to hold temporary tables. Additional 981 ** databases may be attached. 982 */ 983 struct Db { 984 char *zName; /* Name of this database */ 985 Btree *pBt; /* The B*Tree structure for this database file */ 986 u8 safety_level; /* How aggressive at syncing data to disk */ 987 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 988 }; 989 990 /* 991 ** An instance of the following structure stores a database schema. 992 ** 993 ** Most Schema objects are associated with a Btree. The exception is 994 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 995 ** In shared cache mode, a single Schema object can be shared by multiple 996 ** Btrees that refer to the same underlying BtShared object. 997 ** 998 ** Schema objects are automatically deallocated when the last Btree that 999 ** references them is destroyed. The TEMP Schema is manually freed by 1000 ** sqlite3_close(). 1001 * 1002 ** A thread must be holding a mutex on the corresponding Btree in order 1003 ** to access Schema content. This implies that the thread must also be 1004 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 1005 ** For a TEMP Schema, only the connection mutex is required. 1006 */ 1007 struct Schema { 1008 int schema_cookie; /* Database schema version number for this file */ 1009 int iGeneration; /* Generation counter. Incremented with each change */ 1010 Hash tblHash; /* All tables indexed by name */ 1011 Hash idxHash; /* All (named) indices indexed by name */ 1012 Hash trigHash; /* All triggers indexed by name */ 1013 Hash fkeyHash; /* All foreign keys by referenced table name */ 1014 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 1015 u8 file_format; /* Schema format version for this file */ 1016 u8 enc; /* Text encoding used by this database */ 1017 u16 schemaFlags; /* Flags associated with this schema */ 1018 int cache_size; /* Number of pages to use in the cache */ 1019 }; 1020 1021 /* 1022 ** These macros can be used to test, set, or clear bits in the 1023 ** Db.pSchema->flags field. 1024 */ 1025 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 1026 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 1027 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 1028 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 1029 1030 /* 1031 ** Allowed values for the DB.pSchema->flags field. 1032 ** 1033 ** The DB_SchemaLoaded flag is set after the database schema has been 1034 ** read into internal hash tables. 1035 ** 1036 ** DB_UnresetViews means that one or more views have column names that 1037 ** have been filled out. If the schema changes, these column names might 1038 ** changes and so the view will need to be reset. 1039 */ 1040 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1041 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1042 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1043 1044 /* 1045 ** The number of different kinds of things that can be limited 1046 ** using the sqlite3_limit() interface. 1047 */ 1048 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1049 1050 /* 1051 ** Lookaside malloc is a set of fixed-size buffers that can be used 1052 ** to satisfy small transient memory allocation requests for objects 1053 ** associated with a particular database connection. The use of 1054 ** lookaside malloc provides a significant performance enhancement 1055 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1056 ** SQL statements. 1057 ** 1058 ** The Lookaside structure holds configuration information about the 1059 ** lookaside malloc subsystem. Each available memory allocation in 1060 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1061 ** objects. 1062 ** 1063 ** Lookaside allocations are only allowed for objects that are associated 1064 ** with a particular database connection. Hence, schema information cannot 1065 ** be stored in lookaside because in shared cache mode the schema information 1066 ** is shared by multiple database connections. Therefore, while parsing 1067 ** schema information, the Lookaside.bEnabled flag is cleared so that 1068 ** lookaside allocations are not used to construct the schema objects. 1069 */ 1070 struct Lookaside { 1071 u16 sz; /* Size of each buffer in bytes */ 1072 u8 bEnabled; /* False to disable new lookaside allocations */ 1073 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1074 int nOut; /* Number of buffers currently checked out */ 1075 int mxOut; /* Highwater mark for nOut */ 1076 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1077 LookasideSlot *pFree; /* List of available buffers */ 1078 void *pStart; /* First byte of available memory space */ 1079 void *pEnd; /* First byte past end of available space */ 1080 }; 1081 struct LookasideSlot { 1082 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1083 }; 1084 1085 /* 1086 ** A hash table for function definitions. 1087 ** 1088 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1089 ** Collisions are on the FuncDef.pHash chain. 1090 */ 1091 struct FuncDefHash { 1092 FuncDef *a[23]; /* Hash table for functions */ 1093 }; 1094 1095 #ifdef SQLITE_USER_AUTHENTICATION 1096 /* 1097 ** Information held in the "sqlite3" database connection object and used 1098 ** to manage user authentication. 1099 */ 1100 typedef struct sqlite3_userauth sqlite3_userauth; 1101 struct sqlite3_userauth { 1102 u8 authLevel; /* Current authentication level */ 1103 int nAuthPW; /* Size of the zAuthPW in bytes */ 1104 char *zAuthPW; /* Password used to authenticate */ 1105 char *zAuthUser; /* User name used to authenticate */ 1106 }; 1107 1108 /* Allowed values for sqlite3_userauth.authLevel */ 1109 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1110 #define UAUTH_Fail 1 /* User authentication failed */ 1111 #define UAUTH_User 2 /* Authenticated as a normal user */ 1112 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1113 1114 /* Functions used only by user authorization logic */ 1115 int sqlite3UserAuthTable(const char*); 1116 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1117 void sqlite3UserAuthInit(sqlite3*); 1118 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1119 1120 #endif /* SQLITE_USER_AUTHENTICATION */ 1121 1122 /* 1123 ** typedef for the authorization callback function. 1124 */ 1125 #ifdef SQLITE_USER_AUTHENTICATION 1126 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1127 const char*, const char*); 1128 #else 1129 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1130 const char*); 1131 #endif 1132 1133 1134 /* 1135 ** Each database connection is an instance of the following structure. 1136 */ 1137 struct sqlite3 { 1138 sqlite3_vfs *pVfs; /* OS Interface */ 1139 struct Vdbe *pVdbe; /* List of active virtual machines */ 1140 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1141 sqlite3_mutex *mutex; /* Connection mutex */ 1142 Db *aDb; /* All backends */ 1143 int nDb; /* Number of backends currently in use */ 1144 int flags; /* Miscellaneous flags. See below */ 1145 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1146 i64 szMmap; /* Default mmap_size setting */ 1147 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1148 int errCode; /* Most recent error code (SQLITE_*) */ 1149 int errMask; /* & result codes with this before returning */ 1150 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1151 u8 enc; /* Text encoding */ 1152 u8 autoCommit; /* The auto-commit flag. */ 1153 u8 temp_store; /* 1: file 2: memory 0: default */ 1154 u8 mallocFailed; /* True if we have seen a malloc failure */ 1155 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1156 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1157 u8 suppressErr; /* Do not issue error messages if true */ 1158 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1159 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1160 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1161 u32 magic; /* Magic number for detect library misuse */ 1162 int nChange; /* Value returned by sqlite3_changes() */ 1163 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1164 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1165 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1166 struct sqlite3InitInfo { /* Information used during initialization */ 1167 int newTnum; /* Rootpage of table being initialized */ 1168 u8 iDb; /* Which db file is being initialized */ 1169 u8 busy; /* TRUE if currently initializing */ 1170 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1171 u8 imposterTable; /* Building an imposter table */ 1172 } init; 1173 int nVdbeActive; /* Number of VDBEs currently running */ 1174 int nVdbeRead; /* Number of active VDBEs that read or write */ 1175 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1176 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1177 int nVDestroy; /* Number of active OP_VDestroy operations */ 1178 int nExtension; /* Number of loaded extensions */ 1179 void **aExtension; /* Array of shared library handles */ 1180 void (*xTrace)(void*,const char*); /* Trace function */ 1181 void *pTraceArg; /* Argument to the trace function */ 1182 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1183 void *pProfileArg; /* Argument to profile function */ 1184 void *pCommitArg; /* Argument to xCommitCallback() */ 1185 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1186 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1187 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1188 void *pUpdateArg; 1189 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1190 #ifndef SQLITE_OMIT_WAL 1191 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1192 void *pWalArg; 1193 #endif 1194 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1195 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1196 void *pCollNeededArg; 1197 sqlite3_value *pErr; /* Most recent error message */ 1198 union { 1199 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1200 double notUsed1; /* Spacer */ 1201 } u1; 1202 Lookaside lookaside; /* Lookaside malloc configuration */ 1203 #ifndef SQLITE_OMIT_AUTHORIZATION 1204 sqlite3_xauth xAuth; /* Access authorization function */ 1205 void *pAuthArg; /* 1st argument to the access auth function */ 1206 #endif 1207 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1208 int (*xProgress)(void *); /* The progress callback */ 1209 void *pProgressArg; /* Argument to the progress callback */ 1210 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1211 #endif 1212 #ifndef SQLITE_OMIT_VIRTUALTABLE 1213 int nVTrans; /* Allocated size of aVTrans */ 1214 Hash aModule; /* populated by sqlite3_create_module() */ 1215 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1216 VTable **aVTrans; /* Virtual tables with open transactions */ 1217 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1218 #endif 1219 FuncDefHash aFunc; /* Hash table of connection functions */ 1220 Hash aCollSeq; /* All collating sequences */ 1221 BusyHandler busyHandler; /* Busy callback */ 1222 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1223 Savepoint *pSavepoint; /* List of active savepoints */ 1224 int busyTimeout; /* Busy handler timeout, in msec */ 1225 int nSavepoint; /* Number of non-transaction savepoints */ 1226 int nStatement; /* Number of nested statement-transactions */ 1227 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1228 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1229 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1230 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1231 /* The following variables are all protected by the STATIC_MASTER 1232 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1233 ** 1234 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1235 ** unlock so that it can proceed. 1236 ** 1237 ** When X.pBlockingConnection==Y, that means that something that X tried 1238 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1239 ** held by Y. 1240 */ 1241 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1242 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1243 void *pUnlockArg; /* Argument to xUnlockNotify */ 1244 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1245 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1246 #endif 1247 #ifdef SQLITE_USER_AUTHENTICATION 1248 sqlite3_userauth auth; /* User authentication information */ 1249 #endif 1250 }; 1251 1252 /* 1253 ** A macro to discover the encoding of a database. 1254 */ 1255 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1256 #define ENC(db) ((db)->enc) 1257 1258 /* 1259 ** Possible values for the sqlite3.flags. 1260 */ 1261 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1262 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1263 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1264 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1265 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1266 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1267 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1268 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1269 /* DELETE, or UPDATE and return */ 1270 /* the count using a callback. */ 1271 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1272 /* result set is empty */ 1273 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1274 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1275 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1276 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1277 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1278 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1279 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1280 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1281 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1282 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1283 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1284 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1285 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1286 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1287 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1288 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1289 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1290 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1291 #define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */ 1292 #define SQLITE_CellSizeCk 0x10000000 /* Check btree cell sizes on load */ 1293 1294 1295 /* 1296 ** Bits of the sqlite3.dbOptFlags field that are used by the 1297 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1298 ** selectively disable various optimizations. 1299 */ 1300 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1301 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1302 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1303 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1304 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1305 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1306 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1307 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1308 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1309 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1310 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1311 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1312 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1313 1314 /* 1315 ** Macros for testing whether or not optimizations are enabled or disabled. 1316 */ 1317 #ifndef SQLITE_OMIT_BUILTIN_TEST 1318 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1319 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1320 #else 1321 #define OptimizationDisabled(db, mask) 0 1322 #define OptimizationEnabled(db, mask) 1 1323 #endif 1324 1325 /* 1326 ** Return true if it OK to factor constant expressions into the initialization 1327 ** code. The argument is a Parse object for the code generator. 1328 */ 1329 #define ConstFactorOk(P) ((P)->okConstFactor) 1330 1331 /* 1332 ** Possible values for the sqlite.magic field. 1333 ** The numbers are obtained at random and have no special meaning, other 1334 ** than being distinct from one another. 1335 */ 1336 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1337 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1338 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1339 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1340 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1341 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1342 1343 /* 1344 ** Each SQL function is defined by an instance of the following 1345 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1346 ** hash table. When multiple functions have the same name, the hash table 1347 ** points to a linked list of these structures. 1348 */ 1349 struct FuncDef { 1350 i16 nArg; /* Number of arguments. -1 means unlimited */ 1351 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1352 void *pUserData; /* User data parameter */ 1353 FuncDef *pNext; /* Next function with same name */ 1354 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1355 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1356 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1357 char *zName; /* SQL name of the function. */ 1358 FuncDef *pHash; /* Next with a different name but the same hash */ 1359 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1360 }; 1361 1362 /* 1363 ** This structure encapsulates a user-function destructor callback (as 1364 ** configured using create_function_v2()) and a reference counter. When 1365 ** create_function_v2() is called to create a function with a destructor, 1366 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1367 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1368 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1369 ** member of each of the new FuncDef objects is set to point to the allocated 1370 ** FuncDestructor. 1371 ** 1372 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1373 ** count on this object is decremented. When it reaches 0, the destructor 1374 ** is invoked and the FuncDestructor structure freed. 1375 */ 1376 struct FuncDestructor { 1377 int nRef; 1378 void (*xDestroy)(void *); 1379 void *pUserData; 1380 }; 1381 1382 /* 1383 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1384 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1385 ** are assert() statements in the code to verify this. 1386 */ 1387 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1388 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1389 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1390 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1391 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1392 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1393 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1394 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1395 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1396 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1397 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1398 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1399 1400 /* 1401 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1402 ** used to create the initializers for the FuncDef structures. 1403 ** 1404 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1405 ** Used to create a scalar function definition of a function zName 1406 ** implemented by C function xFunc that accepts nArg arguments. The 1407 ** value passed as iArg is cast to a (void*) and made available 1408 ** as the user-data (sqlite3_user_data()) for the function. If 1409 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1410 ** 1411 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1412 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1413 ** 1414 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1415 ** Used to create an aggregate function definition implemented by 1416 ** the C functions xStep and xFinal. The first four parameters 1417 ** are interpreted in the same way as the first 4 parameters to 1418 ** FUNCTION(). 1419 ** 1420 ** LIKEFUNC(zName, nArg, pArg, flags) 1421 ** Used to create a scalar function definition of a function zName 1422 ** that accepts nArg arguments and is implemented by a call to C 1423 ** function likeFunc. Argument pArg is cast to a (void *) and made 1424 ** available as the function user-data (sqlite3_user_data()). The 1425 ** FuncDef.flags variable is set to the value passed as the flags 1426 ** parameter. 1427 */ 1428 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1429 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1430 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1431 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1432 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1433 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1434 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1435 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1436 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1437 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1438 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1439 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1440 #define LIKEFUNC(zName, nArg, arg, flags) \ 1441 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1442 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1443 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1444 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1445 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1446 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1447 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1448 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1449 1450 /* 1451 ** All current savepoints are stored in a linked list starting at 1452 ** sqlite3.pSavepoint. The first element in the list is the most recently 1453 ** opened savepoint. Savepoints are added to the list by the vdbe 1454 ** OP_Savepoint instruction. 1455 */ 1456 struct Savepoint { 1457 char *zName; /* Savepoint name (nul-terminated) */ 1458 i64 nDeferredCons; /* Number of deferred fk violations */ 1459 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1460 Savepoint *pNext; /* Parent savepoint (if any) */ 1461 }; 1462 1463 /* 1464 ** The following are used as the second parameter to sqlite3Savepoint(), 1465 ** and as the P1 argument to the OP_Savepoint instruction. 1466 */ 1467 #define SAVEPOINT_BEGIN 0 1468 #define SAVEPOINT_RELEASE 1 1469 #define SAVEPOINT_ROLLBACK 2 1470 1471 1472 /* 1473 ** Each SQLite module (virtual table definition) is defined by an 1474 ** instance of the following structure, stored in the sqlite3.aModule 1475 ** hash table. 1476 */ 1477 struct Module { 1478 const sqlite3_module *pModule; /* Callback pointers */ 1479 const char *zName; /* Name passed to create_module() */ 1480 void *pAux; /* pAux passed to create_module() */ 1481 void (*xDestroy)(void *); /* Module destructor function */ 1482 }; 1483 1484 /* 1485 ** information about each column of an SQL table is held in an instance 1486 ** of this structure. 1487 */ 1488 struct Column { 1489 char *zName; /* Name of this column */ 1490 Expr *pDflt; /* Default value of this column */ 1491 char *zDflt; /* Original text of the default value */ 1492 char *zType; /* Data type for this column */ 1493 char *zColl; /* Collating sequence. If NULL, use the default */ 1494 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1495 char affinity; /* One of the SQLITE_AFF_... values */ 1496 u8 szEst; /* Estimated size of this column. INT==1 */ 1497 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1498 }; 1499 1500 /* Allowed values for Column.colFlags: 1501 */ 1502 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1503 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1504 1505 /* 1506 ** A "Collating Sequence" is defined by an instance of the following 1507 ** structure. Conceptually, a collating sequence consists of a name and 1508 ** a comparison routine that defines the order of that sequence. 1509 ** 1510 ** If CollSeq.xCmp is NULL, it means that the 1511 ** collating sequence is undefined. Indices built on an undefined 1512 ** collating sequence may not be read or written. 1513 */ 1514 struct CollSeq { 1515 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1516 u8 enc; /* Text encoding handled by xCmp() */ 1517 void *pUser; /* First argument to xCmp() */ 1518 int (*xCmp)(void*,int, const void*, int, const void*); 1519 void (*xDel)(void*); /* Destructor for pUser */ 1520 }; 1521 1522 /* 1523 ** A sort order can be either ASC or DESC. 1524 */ 1525 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1526 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1527 1528 /* 1529 ** Column affinity types. 1530 ** 1531 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1532 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1533 ** the speed a little by numbering the values consecutively. 1534 ** 1535 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1536 ** when multiple affinity types are concatenated into a string and 1537 ** used as the P4 operand, they will be more readable. 1538 ** 1539 ** Note also that the numeric types are grouped together so that testing 1540 ** for a numeric type is a single comparison. And the BLOB type is first. 1541 */ 1542 #define SQLITE_AFF_BLOB 'A' 1543 #define SQLITE_AFF_TEXT 'B' 1544 #define SQLITE_AFF_NUMERIC 'C' 1545 #define SQLITE_AFF_INTEGER 'D' 1546 #define SQLITE_AFF_REAL 'E' 1547 1548 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1549 1550 /* 1551 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1552 ** affinity value. 1553 */ 1554 #define SQLITE_AFF_MASK 0x47 1555 1556 /* 1557 ** Additional bit values that can be ORed with an affinity without 1558 ** changing the affinity. 1559 ** 1560 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1561 ** It causes an assert() to fire if either operand to a comparison 1562 ** operator is NULL. It is added to certain comparison operators to 1563 ** prove that the operands are always NOT NULL. 1564 */ 1565 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1566 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1567 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1568 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1569 1570 /* 1571 ** An object of this type is created for each virtual table present in 1572 ** the database schema. 1573 ** 1574 ** If the database schema is shared, then there is one instance of this 1575 ** structure for each database connection (sqlite3*) that uses the shared 1576 ** schema. This is because each database connection requires its own unique 1577 ** instance of the sqlite3_vtab* handle used to access the virtual table 1578 ** implementation. sqlite3_vtab* handles can not be shared between 1579 ** database connections, even when the rest of the in-memory database 1580 ** schema is shared, as the implementation often stores the database 1581 ** connection handle passed to it via the xConnect() or xCreate() method 1582 ** during initialization internally. This database connection handle may 1583 ** then be used by the virtual table implementation to access real tables 1584 ** within the database. So that they appear as part of the callers 1585 ** transaction, these accesses need to be made via the same database 1586 ** connection as that used to execute SQL operations on the virtual table. 1587 ** 1588 ** All VTable objects that correspond to a single table in a shared 1589 ** database schema are initially stored in a linked-list pointed to by 1590 ** the Table.pVTable member variable of the corresponding Table object. 1591 ** When an sqlite3_prepare() operation is required to access the virtual 1592 ** table, it searches the list for the VTable that corresponds to the 1593 ** database connection doing the preparing so as to use the correct 1594 ** sqlite3_vtab* handle in the compiled query. 1595 ** 1596 ** When an in-memory Table object is deleted (for example when the 1597 ** schema is being reloaded for some reason), the VTable objects are not 1598 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1599 ** immediately. Instead, they are moved from the Table.pVTable list to 1600 ** another linked list headed by the sqlite3.pDisconnect member of the 1601 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1602 ** next time a statement is prepared using said sqlite3*. This is done 1603 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1604 ** Refer to comments above function sqlite3VtabUnlockList() for an 1605 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1606 ** list without holding the corresponding sqlite3.mutex mutex. 1607 ** 1608 ** The memory for objects of this type is always allocated by 1609 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1610 ** the first argument. 1611 */ 1612 struct VTable { 1613 sqlite3 *db; /* Database connection associated with this table */ 1614 Module *pMod; /* Pointer to module implementation */ 1615 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1616 int nRef; /* Number of pointers to this structure */ 1617 u8 bConstraint; /* True if constraints are supported */ 1618 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1619 VTable *pNext; /* Next in linked list (see above) */ 1620 }; 1621 1622 /* 1623 ** The schema for each SQL table and view is represented in memory 1624 ** by an instance of the following structure. 1625 */ 1626 struct Table { 1627 char *zName; /* Name of the table or view */ 1628 Column *aCol; /* Information about each column */ 1629 Index *pIndex; /* List of SQL indexes on this table. */ 1630 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1631 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1632 char *zColAff; /* String defining the affinity of each column */ 1633 #ifndef SQLITE_OMIT_CHECK 1634 ExprList *pCheck; /* All CHECK constraints */ 1635 #endif 1636 int tnum; /* Root BTree page for this table */ 1637 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1638 i16 nCol; /* Number of columns in this table */ 1639 u16 nRef; /* Number of pointers to this Table */ 1640 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1641 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1642 #ifdef SQLITE_ENABLE_COSTMULT 1643 LogEst costMult; /* Cost multiplier for using this table */ 1644 #endif 1645 u8 tabFlags; /* Mask of TF_* values */ 1646 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1647 #ifndef SQLITE_OMIT_ALTERTABLE 1648 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1649 #endif 1650 #ifndef SQLITE_OMIT_VIRTUALTABLE 1651 int nModuleArg; /* Number of arguments to the module */ 1652 char **azModuleArg; /* Text of all module args. [0] is module name */ 1653 VTable *pVTable; /* List of VTable objects. */ 1654 #endif 1655 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1656 Schema *pSchema; /* Schema that contains this table */ 1657 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1658 }; 1659 1660 /* 1661 ** Allowed values for Table.tabFlags. 1662 ** 1663 ** TF_OOOHidden applies to virtual tables that have hidden columns that are 1664 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1665 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1666 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1667 ** special handling during INSERT processing. 1668 */ 1669 #define TF_Readonly 0x01 /* Read-only system table */ 1670 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1671 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1672 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1673 #define TF_Virtual 0x10 /* Is a virtual table */ 1674 #define TF_WithoutRowid 0x20 /* No rowid. PRIMARY KEY is the key */ 1675 #define TF_NoVisibleRowid 0x40 /* No user-visible "rowid" column */ 1676 #define TF_OOOHidden 0x80 /* Out-of-Order hidden columns */ 1677 1678 1679 /* 1680 ** Test to see whether or not a table is a virtual table. This is 1681 ** done as a macro so that it will be optimized out when virtual 1682 ** table support is omitted from the build. 1683 */ 1684 #ifndef SQLITE_OMIT_VIRTUALTABLE 1685 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1686 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1687 #else 1688 # define IsVirtual(X) 0 1689 # define IsHiddenColumn(X) 0 1690 #endif 1691 1692 /* Does the table have a rowid */ 1693 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1694 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 1695 1696 /* 1697 ** Each foreign key constraint is an instance of the following structure. 1698 ** 1699 ** A foreign key is associated with two tables. The "from" table is 1700 ** the table that contains the REFERENCES clause that creates the foreign 1701 ** key. The "to" table is the table that is named in the REFERENCES clause. 1702 ** Consider this example: 1703 ** 1704 ** CREATE TABLE ex1( 1705 ** a INTEGER PRIMARY KEY, 1706 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1707 ** ); 1708 ** 1709 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1710 ** Equivalent names: 1711 ** 1712 ** from-table == child-table 1713 ** to-table == parent-table 1714 ** 1715 ** Each REFERENCES clause generates an instance of the following structure 1716 ** which is attached to the from-table. The to-table need not exist when 1717 ** the from-table is created. The existence of the to-table is not checked. 1718 ** 1719 ** The list of all parents for child Table X is held at X.pFKey. 1720 ** 1721 ** A list of all children for a table named Z (which might not even exist) 1722 ** is held in Schema.fkeyHash with a hash key of Z. 1723 */ 1724 struct FKey { 1725 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1726 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1727 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1728 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1729 FKey *pPrevTo; /* Previous with the same zTo */ 1730 int nCol; /* Number of columns in this key */ 1731 /* EV: R-30323-21917 */ 1732 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1733 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1734 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1735 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1736 int iFrom; /* Index of column in pFrom */ 1737 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1738 } aCol[1]; /* One entry for each of nCol columns */ 1739 }; 1740 1741 /* 1742 ** SQLite supports many different ways to resolve a constraint 1743 ** error. ROLLBACK processing means that a constraint violation 1744 ** causes the operation in process to fail and for the current transaction 1745 ** to be rolled back. ABORT processing means the operation in process 1746 ** fails and any prior changes from that one operation are backed out, 1747 ** but the transaction is not rolled back. FAIL processing means that 1748 ** the operation in progress stops and returns an error code. But prior 1749 ** changes due to the same operation are not backed out and no rollback 1750 ** occurs. IGNORE means that the particular row that caused the constraint 1751 ** error is not inserted or updated. Processing continues and no error 1752 ** is returned. REPLACE means that preexisting database rows that caused 1753 ** a UNIQUE constraint violation are removed so that the new insert or 1754 ** update can proceed. Processing continues and no error is reported. 1755 ** 1756 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1757 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1758 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1759 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1760 ** referenced table row is propagated into the row that holds the 1761 ** foreign key. 1762 ** 1763 ** The following symbolic values are used to record which type 1764 ** of action to take. 1765 */ 1766 #define OE_None 0 /* There is no constraint to check */ 1767 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1768 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1769 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1770 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1771 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1772 1773 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1774 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1775 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1776 #define OE_Cascade 9 /* Cascade the changes */ 1777 1778 #define OE_Default 10 /* Do whatever the default action is */ 1779 1780 1781 /* 1782 ** An instance of the following structure is passed as the first 1783 ** argument to sqlite3VdbeKeyCompare and is used to control the 1784 ** comparison of the two index keys. 1785 ** 1786 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1787 ** are nField slots for the columns of an index then one extra slot 1788 ** for the rowid at the end. 1789 */ 1790 struct KeyInfo { 1791 u32 nRef; /* Number of references to this KeyInfo object */ 1792 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1793 u16 nField; /* Number of key columns in the index */ 1794 u16 nXField; /* Number of columns beyond the key columns */ 1795 sqlite3 *db; /* The database connection */ 1796 u8 *aSortOrder; /* Sort order for each column. */ 1797 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1798 }; 1799 1800 /* 1801 ** An instance of the following structure holds information about a 1802 ** single index record that has already been parsed out into individual 1803 ** values. 1804 ** 1805 ** A record is an object that contains one or more fields of data. 1806 ** Records are used to store the content of a table row and to store 1807 ** the key of an index. A blob encoding of a record is created by 1808 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1809 ** OP_Column opcode. 1810 ** 1811 ** This structure holds a record that has already been disassembled 1812 ** into its constituent fields. 1813 ** 1814 ** The r1 and r2 member variables are only used by the optimized comparison 1815 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). 1816 */ 1817 struct UnpackedRecord { 1818 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1819 u16 nField; /* Number of entries in apMem[] */ 1820 i8 default_rc; /* Comparison result if keys are equal */ 1821 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1822 Mem *aMem; /* Values */ 1823 int r1; /* Value to return if (lhs > rhs) */ 1824 int r2; /* Value to return if (rhs < lhs) */ 1825 }; 1826 1827 1828 /* 1829 ** Each SQL index is represented in memory by an 1830 ** instance of the following structure. 1831 ** 1832 ** The columns of the table that are to be indexed are described 1833 ** by the aiColumn[] field of this structure. For example, suppose 1834 ** we have the following table and index: 1835 ** 1836 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1837 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1838 ** 1839 ** In the Table structure describing Ex1, nCol==3 because there are 1840 ** three columns in the table. In the Index structure describing 1841 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1842 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1843 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1844 ** The second column to be indexed (c1) has an index of 0 in 1845 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1846 ** 1847 ** The Index.onError field determines whether or not the indexed columns 1848 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1849 ** it means this is not a unique index. Otherwise it is a unique index 1850 ** and the value of Index.onError indicate the which conflict resolution 1851 ** algorithm to employ whenever an attempt is made to insert a non-unique 1852 ** element. 1853 ** 1854 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 1855 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 1856 ** table as part of parsing an existing database schema), transient instances 1857 ** of this structure may be created. In this case the Index.tnum variable is 1858 ** used to store the address of a VDBE instruction, not a database page 1859 ** number (it cannot - the database page is not allocated until the VDBE 1860 ** program is executed). See convertToWithoutRowidTable() for details. 1861 */ 1862 struct Index { 1863 char *zName; /* Name of this index */ 1864 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1865 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1866 Table *pTable; /* The SQL table being indexed */ 1867 char *zColAff; /* String defining the affinity of each column */ 1868 Index *pNext; /* The next index associated with the same table */ 1869 Schema *pSchema; /* Schema containing this index */ 1870 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1871 char **azColl; /* Array of collation sequence names for index */ 1872 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1873 int tnum; /* DB Page containing root of this index */ 1874 LogEst szIdxRow; /* Estimated average row size in bytes */ 1875 u16 nKeyCol; /* Number of columns forming the key */ 1876 u16 nColumn; /* Number of columns stored in the index */ 1877 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1878 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1879 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1880 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1881 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1882 unsigned isCovering:1; /* True if this is a covering index */ 1883 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1884 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1885 int nSample; /* Number of elements in aSample[] */ 1886 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1887 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1888 IndexSample *aSample; /* Samples of the left-most key */ 1889 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1890 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1891 #endif 1892 }; 1893 1894 /* 1895 ** Allowed values for Index.idxType 1896 */ 1897 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1898 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1899 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1900 1901 /* Return true if index X is a PRIMARY KEY index */ 1902 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1903 1904 /* Return true if index X is a UNIQUE index */ 1905 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1906 1907 /* 1908 ** Each sample stored in the sqlite_stat3 table is represented in memory 1909 ** using a structure of this type. See documentation at the top of the 1910 ** analyze.c source file for additional information. 1911 */ 1912 struct IndexSample { 1913 void *p; /* Pointer to sampled record */ 1914 int n; /* Size of record in bytes */ 1915 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1916 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1917 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1918 }; 1919 1920 /* 1921 ** Each token coming out of the lexer is an instance of 1922 ** this structure. Tokens are also used as part of an expression. 1923 ** 1924 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1925 ** may contain random values. Do not make any assumptions about Token.dyn 1926 ** and Token.n when Token.z==0. 1927 */ 1928 struct Token { 1929 const char *z; /* Text of the token. Not NULL-terminated! */ 1930 unsigned int n; /* Number of characters in this token */ 1931 }; 1932 1933 /* 1934 ** An instance of this structure contains information needed to generate 1935 ** code for a SELECT that contains aggregate functions. 1936 ** 1937 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1938 ** pointer to this structure. The Expr.iColumn field is the index in 1939 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1940 ** code for that node. 1941 ** 1942 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1943 ** original Select structure that describes the SELECT statement. These 1944 ** fields do not need to be freed when deallocating the AggInfo structure. 1945 */ 1946 struct AggInfo { 1947 u8 directMode; /* Direct rendering mode means take data directly 1948 ** from source tables rather than from accumulators */ 1949 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1950 ** than the source table */ 1951 int sortingIdx; /* Cursor number of the sorting index */ 1952 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1953 int nSortingColumn; /* Number of columns in the sorting index */ 1954 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1955 ExprList *pGroupBy; /* The group by clause */ 1956 struct AggInfo_col { /* For each column used in source tables */ 1957 Table *pTab; /* Source table */ 1958 int iTable; /* Cursor number of the source table */ 1959 int iColumn; /* Column number within the source table */ 1960 int iSorterColumn; /* Column number in the sorting index */ 1961 int iMem; /* Memory location that acts as accumulator */ 1962 Expr *pExpr; /* The original expression */ 1963 } *aCol; 1964 int nColumn; /* Number of used entries in aCol[] */ 1965 int nAccumulator; /* Number of columns that show through to the output. 1966 ** Additional columns are used only as parameters to 1967 ** aggregate functions */ 1968 struct AggInfo_func { /* For each aggregate function */ 1969 Expr *pExpr; /* Expression encoding the function */ 1970 FuncDef *pFunc; /* The aggregate function implementation */ 1971 int iMem; /* Memory location that acts as accumulator */ 1972 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1973 } *aFunc; 1974 int nFunc; /* Number of entries in aFunc[] */ 1975 }; 1976 1977 /* 1978 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1979 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1980 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1981 ** it uses less memory in the Expr object, which is a big memory user 1982 ** in systems with lots of prepared statements. And few applications 1983 ** need more than about 10 or 20 variables. But some extreme users want 1984 ** to have prepared statements with over 32767 variables, and for them 1985 ** the option is available (at compile-time). 1986 */ 1987 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1988 typedef i16 ynVar; 1989 #else 1990 typedef int ynVar; 1991 #endif 1992 1993 /* 1994 ** Each node of an expression in the parse tree is an instance 1995 ** of this structure. 1996 ** 1997 ** Expr.op is the opcode. The integer parser token codes are reused 1998 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1999 ** code representing the ">=" operator. This same integer code is reused 2000 ** to represent the greater-than-or-equal-to operator in the expression 2001 ** tree. 2002 ** 2003 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 2004 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 2005 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 2006 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 2007 ** then Expr.token contains the name of the function. 2008 ** 2009 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 2010 ** binary operator. Either or both may be NULL. 2011 ** 2012 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 2013 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 2014 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 2015 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 2016 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 2017 ** valid. 2018 ** 2019 ** An expression of the form ID or ID.ID refers to a column in a table. 2020 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 2021 ** the integer cursor number of a VDBE cursor pointing to that table and 2022 ** Expr.iColumn is the column number for the specific column. If the 2023 ** expression is used as a result in an aggregate SELECT, then the 2024 ** value is also stored in the Expr.iAgg column in the aggregate so that 2025 ** it can be accessed after all aggregates are computed. 2026 ** 2027 ** If the expression is an unbound variable marker (a question mark 2028 ** character '?' in the original SQL) then the Expr.iTable holds the index 2029 ** number for that variable. 2030 ** 2031 ** If the expression is a subquery then Expr.iColumn holds an integer 2032 ** register number containing the result of the subquery. If the 2033 ** subquery gives a constant result, then iTable is -1. If the subquery 2034 ** gives a different answer at different times during statement processing 2035 ** then iTable is the address of a subroutine that computes the subquery. 2036 ** 2037 ** If the Expr is of type OP_Column, and the table it is selecting from 2038 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 2039 ** corresponding table definition. 2040 ** 2041 ** ALLOCATION NOTES: 2042 ** 2043 ** Expr objects can use a lot of memory space in database schema. To 2044 ** help reduce memory requirements, sometimes an Expr object will be 2045 ** truncated. And to reduce the number of memory allocations, sometimes 2046 ** two or more Expr objects will be stored in a single memory allocation, 2047 ** together with Expr.zToken strings. 2048 ** 2049 ** If the EP_Reduced and EP_TokenOnly flags are set when 2050 ** an Expr object is truncated. When EP_Reduced is set, then all 2051 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2052 ** are contained within the same memory allocation. Note, however, that 2053 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2054 ** allocated, regardless of whether or not EP_Reduced is set. 2055 */ 2056 struct Expr { 2057 u8 op; /* Operation performed by this node */ 2058 char affinity; /* The affinity of the column or 0 if not a column */ 2059 u32 flags; /* Various flags. EP_* See below */ 2060 union { 2061 char *zToken; /* Token value. Zero terminated and dequoted */ 2062 int iValue; /* Non-negative integer value if EP_IntValue */ 2063 } u; 2064 2065 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2066 ** space is allocated for the fields below this point. An attempt to 2067 ** access them will result in a segfault or malfunction. 2068 *********************************************************************/ 2069 2070 Expr *pLeft; /* Left subnode */ 2071 Expr *pRight; /* Right subnode */ 2072 union { 2073 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2074 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2075 } x; 2076 2077 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2078 ** space is allocated for the fields below this point. An attempt to 2079 ** access them will result in a segfault or malfunction. 2080 *********************************************************************/ 2081 2082 #if SQLITE_MAX_EXPR_DEPTH>0 2083 int nHeight; /* Height of the tree headed by this node */ 2084 #endif 2085 int iTable; /* TK_COLUMN: cursor number of table holding column 2086 ** TK_REGISTER: register number 2087 ** TK_TRIGGER: 1 -> new, 0 -> old 2088 ** EP_Unlikely: 134217728 times likelihood */ 2089 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2090 ** TK_VARIABLE: variable number (always >= 1). */ 2091 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2092 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2093 u8 op2; /* TK_REGISTER: original value of Expr.op 2094 ** TK_COLUMN: the value of p5 for OP_Column 2095 ** TK_AGG_FUNCTION: nesting depth */ 2096 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2097 Table *pTab; /* Table for TK_COLUMN expressions. */ 2098 }; 2099 2100 /* 2101 ** The following are the meanings of bits in the Expr.flags field. 2102 */ 2103 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2104 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2105 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2106 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2107 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2108 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2109 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2110 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2111 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2112 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2113 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2114 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2115 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2116 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2117 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2118 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2119 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2120 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2121 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2122 #define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */ 2123 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2124 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2125 2126 /* 2127 ** Combinations of two or more EP_* flags 2128 */ 2129 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2130 2131 /* 2132 ** These macros can be used to test, set, or clear bits in the 2133 ** Expr.flags field. 2134 */ 2135 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2136 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2137 #define ExprSetProperty(E,P) (E)->flags|=(P) 2138 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2139 2140 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2141 ** and Accreditation only. It works like ExprSetProperty() during VVA 2142 ** processes but is a no-op for delivery. 2143 */ 2144 #ifdef SQLITE_DEBUG 2145 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2146 #else 2147 # define ExprSetVVAProperty(E,P) 2148 #endif 2149 2150 /* 2151 ** Macros to determine the number of bytes required by a normal Expr 2152 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2153 ** and an Expr struct with the EP_TokenOnly flag set. 2154 */ 2155 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2156 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2157 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2158 2159 /* 2160 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2161 ** above sqlite3ExprDup() for details. 2162 */ 2163 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2164 2165 /* 2166 ** A list of expressions. Each expression may optionally have a 2167 ** name. An expr/name combination can be used in several ways, such 2168 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2169 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2170 ** also be used as the argument to a function, in which case the a.zName 2171 ** field is not used. 2172 ** 2173 ** By default the Expr.zSpan field holds a human-readable description of 2174 ** the expression that is used in the generation of error messages and 2175 ** column labels. In this case, Expr.zSpan is typically the text of a 2176 ** column expression as it exists in a SELECT statement. However, if 2177 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2178 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2179 ** form is used for name resolution with nested FROM clauses. 2180 */ 2181 struct ExprList { 2182 int nExpr; /* Number of expressions on the list */ 2183 struct ExprList_item { /* For each expression in the list */ 2184 Expr *pExpr; /* The list of expressions */ 2185 char *zName; /* Token associated with this expression */ 2186 char *zSpan; /* Original text of the expression */ 2187 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2188 unsigned done :1; /* A flag to indicate when processing is finished */ 2189 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2190 unsigned reusable :1; /* Constant expression is reusable */ 2191 union { 2192 struct { 2193 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2194 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2195 } x; 2196 int iConstExprReg; /* Register in which Expr value is cached */ 2197 } u; 2198 } *a; /* Alloc a power of two greater or equal to nExpr */ 2199 }; 2200 2201 /* 2202 ** An instance of this structure is used by the parser to record both 2203 ** the parse tree for an expression and the span of input text for an 2204 ** expression. 2205 */ 2206 struct ExprSpan { 2207 Expr *pExpr; /* The expression parse tree */ 2208 const char *zStart; /* First character of input text */ 2209 const char *zEnd; /* One character past the end of input text */ 2210 }; 2211 2212 /* 2213 ** An instance of this structure can hold a simple list of identifiers, 2214 ** such as the list "a,b,c" in the following statements: 2215 ** 2216 ** INSERT INTO t(a,b,c) VALUES ...; 2217 ** CREATE INDEX idx ON t(a,b,c); 2218 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2219 ** 2220 ** The IdList.a.idx field is used when the IdList represents the list of 2221 ** column names after a table name in an INSERT statement. In the statement 2222 ** 2223 ** INSERT INTO t(a,b,c) ... 2224 ** 2225 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2226 */ 2227 struct IdList { 2228 struct IdList_item { 2229 char *zName; /* Name of the identifier */ 2230 int idx; /* Index in some Table.aCol[] of a column named zName */ 2231 } *a; 2232 int nId; /* Number of identifiers on the list */ 2233 }; 2234 2235 /* 2236 ** The bitmask datatype defined below is used for various optimizations. 2237 ** 2238 ** Changing this from a 64-bit to a 32-bit type limits the number of 2239 ** tables in a join to 32 instead of 64. But it also reduces the size 2240 ** of the library by 738 bytes on ix86. 2241 */ 2242 typedef u64 Bitmask; 2243 2244 /* 2245 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2246 */ 2247 #define BMS ((int)(sizeof(Bitmask)*8)) 2248 2249 /* 2250 ** A bit in a Bitmask 2251 */ 2252 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2253 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2254 2255 /* 2256 ** The following structure describes the FROM clause of a SELECT statement. 2257 ** Each table or subquery in the FROM clause is a separate element of 2258 ** the SrcList.a[] array. 2259 ** 2260 ** With the addition of multiple database support, the following structure 2261 ** can also be used to describe a particular table such as the table that 2262 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2263 ** such a table must be a simple name: ID. But in SQLite, the table can 2264 ** now be identified by a database name, a dot, then the table name: ID.ID. 2265 ** 2266 ** The jointype starts out showing the join type between the current table 2267 ** and the next table on the list. The parser builds the list this way. 2268 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2269 ** jointype expresses the join between the table and the previous table. 2270 ** 2271 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2272 ** contains more than 63 columns and the 64-th or later column is used. 2273 */ 2274 struct SrcList { 2275 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2276 u32 nAlloc; /* Number of entries allocated in a[] below */ 2277 struct SrcList_item { 2278 Schema *pSchema; /* Schema to which this item is fixed */ 2279 char *zDatabase; /* Name of database holding this table */ 2280 char *zName; /* Name of the table */ 2281 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2282 Table *pTab; /* An SQL table corresponding to zName */ 2283 Select *pSelect; /* A SELECT statement used in place of a table name */ 2284 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2285 int regReturn; /* Register holding return address of addrFillSub */ 2286 int regResult; /* Registers holding results of a co-routine */ 2287 u8 jointype; /* Type of join between this able and the previous */ 2288 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2289 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2290 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2291 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2292 #ifndef SQLITE_OMIT_EXPLAIN 2293 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2294 #endif 2295 int iCursor; /* The VDBE cursor number used to access this table */ 2296 Expr *pOn; /* The ON clause of a join */ 2297 IdList *pUsing; /* The USING clause of a join */ 2298 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2299 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 2300 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2301 } a[1]; /* One entry for each identifier on the list */ 2302 }; 2303 2304 /* 2305 ** Permitted values of the SrcList.a.jointype field 2306 */ 2307 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2308 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2309 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2310 #define JT_LEFT 0x0008 /* Left outer join */ 2311 #define JT_RIGHT 0x0010 /* Right outer join */ 2312 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2313 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2314 2315 2316 /* 2317 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2318 ** and the WhereInfo.wctrlFlags member. 2319 */ 2320 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2321 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2322 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2323 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2324 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2325 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2326 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2327 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2328 #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ 2329 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2330 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2331 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2332 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2333 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2334 2335 /* Allowed return values from sqlite3WhereIsDistinct() 2336 */ 2337 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2338 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2339 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2340 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2341 2342 /* 2343 ** A NameContext defines a context in which to resolve table and column 2344 ** names. The context consists of a list of tables (the pSrcList) field and 2345 ** a list of named expression (pEList). The named expression list may 2346 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2347 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2348 ** pEList corresponds to the result set of a SELECT and is NULL for 2349 ** other statements. 2350 ** 2351 ** NameContexts can be nested. When resolving names, the inner-most 2352 ** context is searched first. If no match is found, the next outer 2353 ** context is checked. If there is still no match, the next context 2354 ** is checked. This process continues until either a match is found 2355 ** or all contexts are check. When a match is found, the nRef member of 2356 ** the context containing the match is incremented. 2357 ** 2358 ** Each subquery gets a new NameContext. The pNext field points to the 2359 ** NameContext in the parent query. Thus the process of scanning the 2360 ** NameContext list corresponds to searching through successively outer 2361 ** subqueries looking for a match. 2362 */ 2363 struct NameContext { 2364 Parse *pParse; /* The parser */ 2365 SrcList *pSrcList; /* One or more tables used to resolve names */ 2366 ExprList *pEList; /* Optional list of result-set columns */ 2367 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2368 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2369 int nRef; /* Number of names resolved by this context */ 2370 int nErr; /* Number of errors encountered while resolving names */ 2371 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2372 }; 2373 2374 /* 2375 ** Allowed values for the NameContext, ncFlags field. 2376 ** 2377 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2378 ** SQLITE_FUNC_MINMAX. 2379 ** 2380 */ 2381 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2382 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2383 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2384 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2385 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2386 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2387 2388 /* 2389 ** An instance of the following structure contains all information 2390 ** needed to generate code for a single SELECT statement. 2391 ** 2392 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2393 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2394 ** limit and nOffset to the value of the offset (or 0 if there is not 2395 ** offset). But later on, nLimit and nOffset become the memory locations 2396 ** in the VDBE that record the limit and offset counters. 2397 ** 2398 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2399 ** These addresses must be stored so that we can go back and fill in 2400 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2401 ** the number of columns in P2 can be computed at the same time 2402 ** as the OP_OpenEphm instruction is coded because not 2403 ** enough information about the compound query is known at that point. 2404 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2405 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2406 ** sequences for the ORDER BY clause. 2407 */ 2408 struct Select { 2409 ExprList *pEList; /* The fields of the result */ 2410 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2411 u16 selFlags; /* Various SF_* values */ 2412 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2413 #if SELECTTRACE_ENABLED 2414 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2415 #endif 2416 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2417 u64 nSelectRow; /* Estimated number of result rows */ 2418 SrcList *pSrc; /* The FROM clause */ 2419 Expr *pWhere; /* The WHERE clause */ 2420 ExprList *pGroupBy; /* The GROUP BY clause */ 2421 Expr *pHaving; /* The HAVING clause */ 2422 ExprList *pOrderBy; /* The ORDER BY clause */ 2423 Select *pPrior; /* Prior select in a compound select statement */ 2424 Select *pNext; /* Next select to the left in a compound */ 2425 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2426 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2427 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2428 }; 2429 2430 /* 2431 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2432 ** "Select Flag". 2433 */ 2434 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2435 #define SF_All 0x0002 /* Includes the ALL keyword */ 2436 #define SF_Resolved 0x0004 /* Identifiers have been resolved */ 2437 #define SF_Aggregate 0x0008 /* Contains aggregate functions */ 2438 #define SF_UsesEphemeral 0x0010 /* Uses the OpenEphemeral opcode */ 2439 #define SF_Expanded 0x0020 /* sqlite3SelectExpand() called on this */ 2440 #define SF_HasTypeInfo 0x0040 /* FROM subqueries have Table metadata */ 2441 #define SF_Compound 0x0080 /* Part of a compound query */ 2442 #define SF_Values 0x0100 /* Synthesized from VALUES clause */ 2443 #define SF_MultiValue 0x0200 /* Single VALUES term with multiple rows */ 2444 #define SF_NestedFrom 0x0400 /* Part of a parenthesized FROM clause */ 2445 #define SF_MaybeConvert 0x0800 /* Need convertCompoundSelectToSubquery() */ 2446 #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ 2447 #define SF_Recursive 0x2000 /* The recursive part of a recursive CTE */ 2448 #define SF_Converted 0x4000 /* By convertCompoundSelectToSubquery() */ 2449 2450 2451 /* 2452 ** The results of a SELECT can be distributed in several ways, as defined 2453 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2454 ** Type". 2455 ** 2456 ** SRT_Union Store results as a key in a temporary index 2457 ** identified by pDest->iSDParm. 2458 ** 2459 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2460 ** 2461 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2462 ** set is not empty. 2463 ** 2464 ** SRT_Discard Throw the results away. This is used by SELECT 2465 ** statements within triggers whose only purpose is 2466 ** the side-effects of functions. 2467 ** 2468 ** All of the above are free to ignore their ORDER BY clause. Those that 2469 ** follow must honor the ORDER BY clause. 2470 ** 2471 ** SRT_Output Generate a row of output (using the OP_ResultRow 2472 ** opcode) for each row in the result set. 2473 ** 2474 ** SRT_Mem Only valid if the result is a single column. 2475 ** Store the first column of the first result row 2476 ** in register pDest->iSDParm then abandon the rest 2477 ** of the query. This destination implies "LIMIT 1". 2478 ** 2479 ** SRT_Set The result must be a single column. Store each 2480 ** row of result as the key in table pDest->iSDParm. 2481 ** Apply the affinity pDest->affSdst before storing 2482 ** results. Used to implement "IN (SELECT ...)". 2483 ** 2484 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2485 ** the result there. The cursor is left open after 2486 ** returning. This is like SRT_Table except that 2487 ** this destination uses OP_OpenEphemeral to create 2488 ** the table first. 2489 ** 2490 ** SRT_Coroutine Generate a co-routine that returns a new row of 2491 ** results each time it is invoked. The entry point 2492 ** of the co-routine is stored in register pDest->iSDParm 2493 ** and the result row is stored in pDest->nDest registers 2494 ** starting with pDest->iSdst. 2495 ** 2496 ** SRT_Table Store results in temporary table pDest->iSDParm. 2497 ** SRT_Fifo This is like SRT_EphemTab except that the table 2498 ** is assumed to already be open. SRT_Fifo has 2499 ** the additional property of being able to ignore 2500 ** the ORDER BY clause. 2501 ** 2502 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2503 ** But also use temporary table pDest->iSDParm+1 as 2504 ** a record of all prior results and ignore any duplicate 2505 ** rows. Name means: "Distinct Fifo". 2506 ** 2507 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2508 ** an index). Append a sequence number so that all entries 2509 ** are distinct. 2510 ** 2511 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2512 ** the same record has never been stored before. The 2513 ** index at pDest->iSDParm+1 hold all prior stores. 2514 */ 2515 #define SRT_Union 1 /* Store result as keys in an index */ 2516 #define SRT_Except 2 /* Remove result from a UNION index */ 2517 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2518 #define SRT_Discard 4 /* Do not save the results anywhere */ 2519 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2520 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2521 #define SRT_Queue 7 /* Store result in an queue */ 2522 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2523 2524 /* The ORDER BY clause is ignored for all of the above */ 2525 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2526 2527 #define SRT_Output 9 /* Output each row of result */ 2528 #define SRT_Mem 10 /* Store result in a memory cell */ 2529 #define SRT_Set 11 /* Store results as keys in an index */ 2530 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2531 #define SRT_Coroutine 13 /* Generate a single row of result */ 2532 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2533 2534 /* 2535 ** An instance of this object describes where to put of the results of 2536 ** a SELECT statement. 2537 */ 2538 struct SelectDest { 2539 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2540 char affSdst; /* Affinity used when eDest==SRT_Set */ 2541 int iSDParm; /* A parameter used by the eDest disposal method */ 2542 int iSdst; /* Base register where results are written */ 2543 int nSdst; /* Number of registers allocated */ 2544 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2545 }; 2546 2547 /* 2548 ** During code generation of statements that do inserts into AUTOINCREMENT 2549 ** tables, the following information is attached to the Table.u.autoInc.p 2550 ** pointer of each autoincrement table to record some side information that 2551 ** the code generator needs. We have to keep per-table autoincrement 2552 ** information in case inserts are down within triggers. Triggers do not 2553 ** normally coordinate their activities, but we do need to coordinate the 2554 ** loading and saving of autoincrement information. 2555 */ 2556 struct AutoincInfo { 2557 AutoincInfo *pNext; /* Next info block in a list of them all */ 2558 Table *pTab; /* Table this info block refers to */ 2559 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2560 int regCtr; /* Memory register holding the rowid counter */ 2561 }; 2562 2563 /* 2564 ** Size of the column cache 2565 */ 2566 #ifndef SQLITE_N_COLCACHE 2567 # define SQLITE_N_COLCACHE 10 2568 #endif 2569 2570 /* 2571 ** At least one instance of the following structure is created for each 2572 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2573 ** statement. All such objects are stored in the linked list headed at 2574 ** Parse.pTriggerPrg and deleted once statement compilation has been 2575 ** completed. 2576 ** 2577 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2578 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2579 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2580 ** The Parse.pTriggerPrg list never contains two entries with the same 2581 ** values for both pTrigger and orconf. 2582 ** 2583 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2584 ** accessed (or set to 0 for triggers fired as a result of INSERT 2585 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2586 ** a mask of new.* columns used by the program. 2587 */ 2588 struct TriggerPrg { 2589 Trigger *pTrigger; /* Trigger this program was coded from */ 2590 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2591 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2592 int orconf; /* Default ON CONFLICT policy */ 2593 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2594 }; 2595 2596 /* 2597 ** The yDbMask datatype for the bitmask of all attached databases. 2598 */ 2599 #if SQLITE_MAX_ATTACHED>30 2600 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2601 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2602 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2603 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2604 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2605 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2606 #else 2607 typedef unsigned int yDbMask; 2608 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2609 # define DbMaskZero(M) (M)=0 2610 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2611 # define DbMaskAllZero(M) (M)==0 2612 # define DbMaskNonZero(M) (M)!=0 2613 #endif 2614 2615 /* 2616 ** An SQL parser context. A copy of this structure is passed through 2617 ** the parser and down into all the parser action routine in order to 2618 ** carry around information that is global to the entire parse. 2619 ** 2620 ** The structure is divided into two parts. When the parser and code 2621 ** generate call themselves recursively, the first part of the structure 2622 ** is constant but the second part is reset at the beginning and end of 2623 ** each recursion. 2624 ** 2625 ** The nTableLock and aTableLock variables are only used if the shared-cache 2626 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2627 ** used to store the set of table-locks required by the statement being 2628 ** compiled. Function sqlite3TableLock() is used to add entries to the 2629 ** list. 2630 */ 2631 struct Parse { 2632 sqlite3 *db; /* The main database structure */ 2633 char *zErrMsg; /* An error message */ 2634 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2635 int rc; /* Return code from execution */ 2636 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2637 u8 checkSchema; /* Causes schema cookie check after an error */ 2638 u8 nested; /* Number of nested calls to the parser/code generator */ 2639 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2640 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2641 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2642 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2643 u8 okConstFactor; /* OK to factor out constants */ 2644 int aTempReg[8]; /* Holding area for temporary registers */ 2645 int nRangeReg; /* Size of the temporary register block */ 2646 int iRangeReg; /* First register in temporary register block */ 2647 int nErr; /* Number of errors seen */ 2648 int nTab; /* Number of previously allocated VDBE cursors */ 2649 int nMem; /* Number of memory cells used so far */ 2650 int nSet; /* Number of sets used so far */ 2651 int nOnce; /* Number of OP_Once instructions so far */ 2652 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2653 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2654 int ckBase; /* Base register of data during check constraints */ 2655 int iPartIdxTab; /* Table corresponding to a partial index */ 2656 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2657 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2658 int nLabel; /* Number of labels used */ 2659 int *aLabel; /* Space to hold the labels */ 2660 struct yColCache { 2661 int iTable; /* Table cursor number */ 2662 i16 iColumn; /* Table column number */ 2663 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2664 int iLevel; /* Nesting level */ 2665 int iReg; /* Reg with value of this column. 0 means none. */ 2666 int lru; /* Least recently used entry has the smallest value */ 2667 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2668 ExprList *pConstExpr;/* Constant expressions */ 2669 Token constraintName;/* Name of the constraint currently being parsed */ 2670 yDbMask writeMask; /* Start a write transaction on these databases */ 2671 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2672 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2673 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2674 int regRoot; /* Register holding root page number for new objects */ 2675 int nMaxArg; /* Max args passed to user function by sub-program */ 2676 #if SELECTTRACE_ENABLED 2677 int nSelect; /* Number of SELECT statements seen */ 2678 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2679 #endif 2680 #ifndef SQLITE_OMIT_SHARED_CACHE 2681 int nTableLock; /* Number of locks in aTableLock */ 2682 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2683 #endif 2684 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2685 2686 /* Information used while coding trigger programs. */ 2687 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2688 Table *pTriggerTab; /* Table triggers are being coded for */ 2689 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2690 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2691 u32 oldmask; /* Mask of old.* columns referenced */ 2692 u32 newmask; /* Mask of new.* columns referenced */ 2693 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2694 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2695 u8 disableTriggers; /* True to disable triggers */ 2696 2697 /************************************************************************ 2698 ** Above is constant between recursions. Below is reset before and after 2699 ** each recursion. The boundary between these two regions is determined 2700 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2701 ** in the recursive region. 2702 ************************************************************************/ 2703 2704 int nVar; /* Number of '?' variables seen in the SQL so far */ 2705 int nzVar; /* Number of available slots in azVar[] */ 2706 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2707 u8 bFreeWith; /* True if pWith should be freed with parser */ 2708 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2709 #ifndef SQLITE_OMIT_VIRTUALTABLE 2710 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2711 int nVtabLock; /* Number of virtual tables to lock */ 2712 #endif 2713 int nAlias; /* Number of aliased result set columns */ 2714 int nHeight; /* Expression tree height of current sub-select */ 2715 #ifndef SQLITE_OMIT_EXPLAIN 2716 int iSelectId; /* ID of current select for EXPLAIN output */ 2717 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2718 #endif 2719 char **azVar; /* Pointers to names of parameters */ 2720 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2721 const char *zTail; /* All SQL text past the last semicolon parsed */ 2722 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2723 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2724 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2725 Token sNameToken; /* Token with unqualified schema object name */ 2726 Token sLastToken; /* The last token parsed */ 2727 #ifndef SQLITE_OMIT_VIRTUALTABLE 2728 Token sArg; /* Complete text of a module argument */ 2729 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2730 #endif 2731 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2732 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2733 With *pWith; /* Current WITH clause, or NULL */ 2734 }; 2735 2736 /* 2737 ** Return true if currently inside an sqlite3_declare_vtab() call. 2738 */ 2739 #ifdef SQLITE_OMIT_VIRTUALTABLE 2740 #define IN_DECLARE_VTAB 0 2741 #else 2742 #define IN_DECLARE_VTAB (pParse->declareVtab) 2743 #endif 2744 2745 /* 2746 ** An instance of the following structure can be declared on a stack and used 2747 ** to save the Parse.zAuthContext value so that it can be restored later. 2748 */ 2749 struct AuthContext { 2750 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2751 Parse *pParse; /* The Parse structure */ 2752 }; 2753 2754 /* 2755 ** Bitfield flags for P5 value in various opcodes. 2756 */ 2757 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2758 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2759 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2760 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2761 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2762 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2763 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2764 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2765 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2766 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 2767 #define OPFLAG_P2ISREG 0x04 /* P2 to OP_Open** is a register number */ 2768 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2769 2770 /* 2771 * Each trigger present in the database schema is stored as an instance of 2772 * struct Trigger. 2773 * 2774 * Pointers to instances of struct Trigger are stored in two ways. 2775 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2776 * database). This allows Trigger structures to be retrieved by name. 2777 * 2. All triggers associated with a single table form a linked list, using the 2778 * pNext member of struct Trigger. A pointer to the first element of the 2779 * linked list is stored as the "pTrigger" member of the associated 2780 * struct Table. 2781 * 2782 * The "step_list" member points to the first element of a linked list 2783 * containing the SQL statements specified as the trigger program. 2784 */ 2785 struct Trigger { 2786 char *zName; /* The name of the trigger */ 2787 char *table; /* The table or view to which the trigger applies */ 2788 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2789 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2790 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2791 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2792 the <column-list> is stored here */ 2793 Schema *pSchema; /* Schema containing the trigger */ 2794 Schema *pTabSchema; /* Schema containing the table */ 2795 TriggerStep *step_list; /* Link list of trigger program steps */ 2796 Trigger *pNext; /* Next trigger associated with the table */ 2797 }; 2798 2799 /* 2800 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2801 ** determine which. 2802 ** 2803 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2804 ** In that cases, the constants below can be ORed together. 2805 */ 2806 #define TRIGGER_BEFORE 1 2807 #define TRIGGER_AFTER 2 2808 2809 /* 2810 * An instance of struct TriggerStep is used to store a single SQL statement 2811 * that is a part of a trigger-program. 2812 * 2813 * Instances of struct TriggerStep are stored in a singly linked list (linked 2814 * using the "pNext" member) referenced by the "step_list" member of the 2815 * associated struct Trigger instance. The first element of the linked list is 2816 * the first step of the trigger-program. 2817 * 2818 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2819 * "SELECT" statement. The meanings of the other members is determined by the 2820 * value of "op" as follows: 2821 * 2822 * (op == TK_INSERT) 2823 * orconf -> stores the ON CONFLICT algorithm 2824 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2825 * this stores a pointer to the SELECT statement. Otherwise NULL. 2826 * zTarget -> Dequoted name of the table to insert into. 2827 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2828 * this stores values to be inserted. Otherwise NULL. 2829 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2830 * statement, then this stores the column-names to be 2831 * inserted into. 2832 * 2833 * (op == TK_DELETE) 2834 * zTarget -> Dequoted name of the table to delete from. 2835 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2836 * Otherwise NULL. 2837 * 2838 * (op == TK_UPDATE) 2839 * zTarget -> Dequoted name of the table to update. 2840 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2841 * Otherwise NULL. 2842 * pExprList -> A list of the columns to update and the expressions to update 2843 * them to. See sqlite3Update() documentation of "pChanges" 2844 * argument. 2845 * 2846 */ 2847 struct TriggerStep { 2848 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2849 u8 orconf; /* OE_Rollback etc. */ 2850 Trigger *pTrig; /* The trigger that this step is a part of */ 2851 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 2852 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 2853 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2854 ExprList *pExprList; /* SET clause for UPDATE. */ 2855 IdList *pIdList; /* Column names for INSERT */ 2856 TriggerStep *pNext; /* Next in the link-list */ 2857 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2858 }; 2859 2860 /* 2861 ** The following structure contains information used by the sqliteFix... 2862 ** routines as they walk the parse tree to make database references 2863 ** explicit. 2864 */ 2865 typedef struct DbFixer DbFixer; 2866 struct DbFixer { 2867 Parse *pParse; /* The parsing context. Error messages written here */ 2868 Schema *pSchema; /* Fix items to this schema */ 2869 int bVarOnly; /* Check for variable references only */ 2870 const char *zDb; /* Make sure all objects are contained in this database */ 2871 const char *zType; /* Type of the container - used for error messages */ 2872 const Token *pName; /* Name of the container - used for error messages */ 2873 }; 2874 2875 /* 2876 ** An objected used to accumulate the text of a string where we 2877 ** do not necessarily know how big the string will be in the end. 2878 */ 2879 struct StrAccum { 2880 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2881 char *zBase; /* A base allocation. Not from malloc. */ 2882 char *zText; /* The string collected so far */ 2883 int nChar; /* Length of the string so far */ 2884 int nAlloc; /* Amount of space allocated in zText */ 2885 int mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 2886 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2887 }; 2888 #define STRACCUM_NOMEM 1 2889 #define STRACCUM_TOOBIG 2 2890 2891 /* 2892 ** A pointer to this structure is used to communicate information 2893 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2894 */ 2895 typedef struct { 2896 sqlite3 *db; /* The database being initialized */ 2897 char **pzErrMsg; /* Error message stored here */ 2898 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2899 int rc; /* Result code stored here */ 2900 } InitData; 2901 2902 /* 2903 ** Structure containing global configuration data for the SQLite library. 2904 ** 2905 ** This structure also contains some state information. 2906 */ 2907 struct Sqlite3Config { 2908 int bMemstat; /* True to enable memory status */ 2909 int bCoreMutex; /* True to enable core mutexing */ 2910 int bFullMutex; /* True to enable full mutexing */ 2911 int bOpenUri; /* True to interpret filenames as URIs */ 2912 int bUseCis; /* Use covering indices for full-scans */ 2913 int mxStrlen; /* Maximum string length */ 2914 int neverCorrupt; /* Database is always well-formed */ 2915 int szLookaside; /* Default lookaside buffer size */ 2916 int nLookaside; /* Default lookaside buffer count */ 2917 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2918 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2919 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2920 void *pHeap; /* Heap storage space */ 2921 int nHeap; /* Size of pHeap[] */ 2922 int mnReq, mxReq; /* Min and max heap requests sizes */ 2923 sqlite3_int64 szMmap; /* mmap() space per open file */ 2924 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2925 void *pScratch; /* Scratch memory */ 2926 int szScratch; /* Size of each scratch buffer */ 2927 int nScratch; /* Number of scratch buffers */ 2928 void *pPage; /* Page cache memory */ 2929 int szPage; /* Size of each page in pPage[] */ 2930 int nPage; /* Number of pages in pPage[] */ 2931 int mxParserStack; /* maximum depth of the parser stack */ 2932 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2933 u32 szPma; /* Maximum Sorter PMA size */ 2934 /* The above might be initialized to non-zero. The following need to always 2935 ** initially be zero, however. */ 2936 int isInit; /* True after initialization has finished */ 2937 int inProgress; /* True while initialization in progress */ 2938 int isMutexInit; /* True after mutexes are initialized */ 2939 int isMallocInit; /* True after malloc is initialized */ 2940 int isPCacheInit; /* True after malloc is initialized */ 2941 int nRefInitMutex; /* Number of users of pInitMutex */ 2942 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2943 void (*xLog)(void*,int,const char*); /* Function for logging */ 2944 void *pLogArg; /* First argument to xLog() */ 2945 #ifdef SQLITE_ENABLE_SQLLOG 2946 void(*xSqllog)(void*,sqlite3*,const char*, int); 2947 void *pSqllogArg; 2948 #endif 2949 #ifdef SQLITE_VDBE_COVERAGE 2950 /* The following callback (if not NULL) is invoked on every VDBE branch 2951 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 2952 */ 2953 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 2954 void *pVdbeBranchArg; /* 1st argument */ 2955 #endif 2956 #ifndef SQLITE_OMIT_BUILTIN_TEST 2957 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 2958 #endif 2959 int bLocaltimeFault; /* True to fail localtime() calls */ 2960 }; 2961 2962 /* 2963 ** This macro is used inside of assert() statements to indicate that 2964 ** the assert is only valid on a well-formed database. Instead of: 2965 ** 2966 ** assert( X ); 2967 ** 2968 ** One writes: 2969 ** 2970 ** assert( X || CORRUPT_DB ); 2971 ** 2972 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2973 ** that the database is definitely corrupt, only that it might be corrupt. 2974 ** For most test cases, CORRUPT_DB is set to false using a special 2975 ** sqlite3_test_control(). This enables assert() statements to prove 2976 ** things that are always true for well-formed databases. 2977 */ 2978 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2979 2980 /* 2981 ** Context pointer passed down through the tree-walk. 2982 */ 2983 struct Walker { 2984 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2985 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2986 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2987 Parse *pParse; /* Parser context. */ 2988 int walkerDepth; /* Number of subqueries */ 2989 u8 eCode; /* A small processing code */ 2990 union { /* Extra data for callback */ 2991 NameContext *pNC; /* Naming context */ 2992 int n; /* A counter */ 2993 int iCur; /* A cursor number */ 2994 SrcList *pSrcList; /* FROM clause */ 2995 struct SrcCount *pSrcCount; /* Counting column references */ 2996 } u; 2997 }; 2998 2999 /* Forward declarations */ 3000 int sqlite3WalkExpr(Walker*, Expr*); 3001 int sqlite3WalkExprList(Walker*, ExprList*); 3002 int sqlite3WalkSelect(Walker*, Select*); 3003 int sqlite3WalkSelectExpr(Walker*, Select*); 3004 int sqlite3WalkSelectFrom(Walker*, Select*); 3005 3006 /* 3007 ** Return code from the parse-tree walking primitives and their 3008 ** callbacks. 3009 */ 3010 #define WRC_Continue 0 /* Continue down into children */ 3011 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 3012 #define WRC_Abort 2 /* Abandon the tree walk */ 3013 3014 /* 3015 ** An instance of this structure represents a set of one or more CTEs 3016 ** (common table expressions) created by a single WITH clause. 3017 */ 3018 struct With { 3019 int nCte; /* Number of CTEs in the WITH clause */ 3020 With *pOuter; /* Containing WITH clause, or NULL */ 3021 struct Cte { /* For each CTE in the WITH clause.... */ 3022 char *zName; /* Name of this CTE */ 3023 ExprList *pCols; /* List of explicit column names, or NULL */ 3024 Select *pSelect; /* The definition of this CTE */ 3025 const char *zErr; /* Error message for circular references */ 3026 } a[1]; 3027 }; 3028 3029 #ifdef SQLITE_DEBUG 3030 /* 3031 ** An instance of the TreeView object is used for printing the content of 3032 ** data structures on sqlite3DebugPrintf() using a tree-like view. 3033 */ 3034 struct TreeView { 3035 int iLevel; /* Which level of the tree we are on */ 3036 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 3037 }; 3038 #endif /* SQLITE_DEBUG */ 3039 3040 /* 3041 ** Assuming zIn points to the first byte of a UTF-8 character, 3042 ** advance zIn to point to the first byte of the next UTF-8 character. 3043 */ 3044 #define SQLITE_SKIP_UTF8(zIn) { \ 3045 if( (*(zIn++))>=0xc0 ){ \ 3046 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3047 } \ 3048 } 3049 3050 /* 3051 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3052 ** the same name but without the _BKPT suffix. These macros invoke 3053 ** routines that report the line-number on which the error originated 3054 ** using sqlite3_log(). The routines also provide a convenient place 3055 ** to set a debugger breakpoint. 3056 */ 3057 int sqlite3CorruptError(int); 3058 int sqlite3MisuseError(int); 3059 int sqlite3CantopenError(int); 3060 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3061 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3062 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3063 3064 3065 /* 3066 ** FTS4 is really an extension for FTS3. It is enabled using the 3067 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3068 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3069 */ 3070 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3071 # define SQLITE_ENABLE_FTS3 1 3072 #endif 3073 3074 /* 3075 ** The ctype.h header is needed for non-ASCII systems. It is also 3076 ** needed by FTS3 when FTS3 is included in the amalgamation. 3077 */ 3078 #if !defined(SQLITE_ASCII) || \ 3079 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3080 # include <ctype.h> 3081 #endif 3082 3083 /* 3084 ** The following macros mimic the standard library functions toupper(), 3085 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3086 ** sqlite versions only work for ASCII characters, regardless of locale. 3087 */ 3088 #ifdef SQLITE_ASCII 3089 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3090 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3091 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3092 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3093 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3094 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3095 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3096 #else 3097 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3098 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3099 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3100 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3101 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3102 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3103 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3104 #endif 3105 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 3106 int sqlite3IsIdChar(u8); 3107 #endif 3108 3109 /* 3110 ** Internal function prototypes 3111 */ 3112 #define sqlite3StrICmp sqlite3_stricmp 3113 int sqlite3Strlen30(const char*); 3114 #define sqlite3StrNICmp sqlite3_strnicmp 3115 3116 int sqlite3MallocInit(void); 3117 void sqlite3MallocEnd(void); 3118 void *sqlite3Malloc(u64); 3119 void *sqlite3MallocZero(u64); 3120 void *sqlite3DbMallocZero(sqlite3*, u64); 3121 void *sqlite3DbMallocRaw(sqlite3*, u64); 3122 char *sqlite3DbStrDup(sqlite3*,const char*); 3123 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3124 void *sqlite3Realloc(void*, u64); 3125 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3126 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3127 void sqlite3DbFree(sqlite3*, void*); 3128 int sqlite3MallocSize(void*); 3129 int sqlite3DbMallocSize(sqlite3*, void*); 3130 void *sqlite3ScratchMalloc(int); 3131 void sqlite3ScratchFree(void*); 3132 void *sqlite3PageMalloc(int); 3133 void sqlite3PageFree(void*); 3134 void sqlite3MemSetDefault(void); 3135 #ifndef SQLITE_OMIT_BUILTIN_TEST 3136 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3137 #endif 3138 int sqlite3HeapNearlyFull(void); 3139 3140 /* 3141 ** On systems with ample stack space and that support alloca(), make 3142 ** use of alloca() to obtain space for large automatic objects. By default, 3143 ** obtain space from malloc(). 3144 ** 3145 ** The alloca() routine never returns NULL. This will cause code paths 3146 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3147 */ 3148 #ifdef SQLITE_USE_ALLOCA 3149 # define sqlite3StackAllocRaw(D,N) alloca(N) 3150 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3151 # define sqlite3StackFree(D,P) 3152 #else 3153 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3154 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3155 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3156 #endif 3157 3158 #ifdef SQLITE_ENABLE_MEMSYS3 3159 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3160 #endif 3161 #ifdef SQLITE_ENABLE_MEMSYS5 3162 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3163 #endif 3164 3165 3166 #ifndef SQLITE_MUTEX_OMIT 3167 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3168 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3169 sqlite3_mutex *sqlite3MutexAlloc(int); 3170 int sqlite3MutexInit(void); 3171 int sqlite3MutexEnd(void); 3172 #endif 3173 3174 sqlite3_int64 sqlite3StatusValue(int); 3175 void sqlite3StatusUp(int, int); 3176 void sqlite3StatusDown(int, int); 3177 void sqlite3StatusSet(int, int); 3178 3179 /* Access to mutexes used by sqlite3_status() */ 3180 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3181 sqlite3_mutex *sqlite3MallocMutex(void); 3182 3183 #ifndef SQLITE_OMIT_FLOATING_POINT 3184 int sqlite3IsNaN(double); 3185 #else 3186 # define sqlite3IsNaN(X) 0 3187 #endif 3188 3189 /* 3190 ** An instance of the following structure holds information about SQL 3191 ** functions arguments that are the parameters to the printf() function. 3192 */ 3193 struct PrintfArguments { 3194 int nArg; /* Total number of arguments */ 3195 int nUsed; /* Number of arguments used so far */ 3196 sqlite3_value **apArg; /* The argument values */ 3197 }; 3198 3199 #define SQLITE_PRINTF_INTERNAL 0x01 3200 #define SQLITE_PRINTF_SQLFUNC 0x02 3201 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3202 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3203 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3204 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3205 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3206 void sqlite3DebugPrintf(const char*, ...); 3207 #endif 3208 #if defined(SQLITE_TEST) 3209 void *sqlite3TestTextToPtr(const char*); 3210 #endif 3211 3212 #if defined(SQLITE_DEBUG) 3213 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3214 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3215 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3216 #endif 3217 3218 3219 void sqlite3SetString(char **, sqlite3*, const char*); 3220 void sqlite3ErrorMsg(Parse*, const char*, ...); 3221 int sqlite3Dequote(char*); 3222 int sqlite3KeywordCode(const unsigned char*, int); 3223 int sqlite3RunParser(Parse*, const char*, char **); 3224 void sqlite3FinishCoding(Parse*); 3225 int sqlite3GetTempReg(Parse*); 3226 void sqlite3ReleaseTempReg(Parse*,int); 3227 int sqlite3GetTempRange(Parse*,int); 3228 void sqlite3ReleaseTempRange(Parse*,int,int); 3229 void sqlite3ClearTempRegCache(Parse*); 3230 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3231 Expr *sqlite3Expr(sqlite3*,int,const char*); 3232 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3233 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3234 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3235 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3236 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3237 void sqlite3ExprDelete(sqlite3*, Expr*); 3238 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3239 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3240 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3241 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3242 u32 sqlite3ExprListFlags(const ExprList*); 3243 int sqlite3Init(sqlite3*, char**); 3244 int sqlite3InitCallback(void*, int, char**, char**); 3245 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3246 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3247 void sqlite3ResetOneSchema(sqlite3*,int); 3248 void sqlite3CollapseDatabaseArray(sqlite3*); 3249 void sqlite3BeginParse(Parse*,int); 3250 void sqlite3CommitInternalChanges(sqlite3*); 3251 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3252 void sqlite3OpenMasterTable(Parse *, int); 3253 Index *sqlite3PrimaryKeyIndex(Table*); 3254 i16 sqlite3ColumnOfIndex(Index*, i16); 3255 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3256 void sqlite3AddColumn(Parse*,Token*); 3257 void sqlite3AddNotNull(Parse*, int); 3258 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3259 void sqlite3AddCheckConstraint(Parse*, Expr*); 3260 void sqlite3AddColumnType(Parse*,Token*); 3261 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3262 void sqlite3AddCollateType(Parse*, Token*); 3263 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3264 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3265 sqlite3_vfs**,char**,char **); 3266 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3267 int sqlite3CodeOnce(Parse *); 3268 3269 #ifdef SQLITE_OMIT_BUILTIN_TEST 3270 # define sqlite3FaultSim(X) SQLITE_OK 3271 #else 3272 int sqlite3FaultSim(int); 3273 #endif 3274 3275 Bitvec *sqlite3BitvecCreate(u32); 3276 int sqlite3BitvecTest(Bitvec*, u32); 3277 int sqlite3BitvecTestNotNull(Bitvec*, u32); 3278 int sqlite3BitvecSet(Bitvec*, u32); 3279 void sqlite3BitvecClear(Bitvec*, u32, void*); 3280 void sqlite3BitvecDestroy(Bitvec*); 3281 u32 sqlite3BitvecSize(Bitvec*); 3282 #ifndef SQLITE_OMIT_BUILTIN_TEST 3283 int sqlite3BitvecBuiltinTest(int,int*); 3284 #endif 3285 3286 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3287 void sqlite3RowSetClear(RowSet*); 3288 void sqlite3RowSetInsert(RowSet*, i64); 3289 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3290 int sqlite3RowSetNext(RowSet*, i64*); 3291 3292 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 3293 3294 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3295 int sqlite3ViewGetColumnNames(Parse*,Table*); 3296 #else 3297 # define sqlite3ViewGetColumnNames(A,B) 0 3298 #endif 3299 3300 #if SQLITE_MAX_ATTACHED>30 3301 int sqlite3DbMaskAllZero(yDbMask); 3302 #endif 3303 void sqlite3DropTable(Parse*, SrcList*, int, int); 3304 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3305 void sqlite3DeleteTable(sqlite3*, Table*); 3306 #ifndef SQLITE_OMIT_AUTOINCREMENT 3307 void sqlite3AutoincrementBegin(Parse *pParse); 3308 void sqlite3AutoincrementEnd(Parse *pParse); 3309 #else 3310 # define sqlite3AutoincrementBegin(X) 3311 # define sqlite3AutoincrementEnd(X) 3312 #endif 3313 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3314 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3315 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3316 int sqlite3IdListIndex(IdList*,const char*); 3317 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3318 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3319 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3320 Token*, Select*, Expr*, IdList*); 3321 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3322 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3323 void sqlite3SrcListShiftJoinType(SrcList*); 3324 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3325 void sqlite3IdListDelete(sqlite3*, IdList*); 3326 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3327 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3328 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3329 Expr*, int, int); 3330 void sqlite3DropIndex(Parse*, SrcList*, int); 3331 int sqlite3Select(Parse*, Select*, SelectDest*); 3332 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3333 Expr*,ExprList*,u16,Expr*,Expr*); 3334 void sqlite3SelectDelete(sqlite3*, Select*); 3335 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3336 int sqlite3IsReadOnly(Parse*, Table*, int); 3337 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3338 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3339 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3340 #endif 3341 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3342 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3343 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3344 void sqlite3WhereEnd(WhereInfo*); 3345 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3346 int sqlite3WhereIsDistinct(WhereInfo*); 3347 int sqlite3WhereIsOrdered(WhereInfo*); 3348 int sqlite3WhereIsSorted(WhereInfo*); 3349 int sqlite3WhereContinueLabel(WhereInfo*); 3350 int sqlite3WhereBreakLabel(WhereInfo*); 3351 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3352 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3353 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3354 void sqlite3ExprCodeMove(Parse*, int, int, int); 3355 void sqlite3ExprCacheStore(Parse*, int, int, int); 3356 void sqlite3ExprCachePush(Parse*); 3357 void sqlite3ExprCachePop(Parse*); 3358 void sqlite3ExprCacheRemove(Parse*, int, int); 3359 void sqlite3ExprCacheClear(Parse*); 3360 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3361 void sqlite3ExprCode(Parse*, Expr*, int); 3362 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3363 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3364 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3365 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3366 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3367 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3368 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3369 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3370 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3371 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3372 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 3373 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3374 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3375 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3376 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3377 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3378 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3379 void sqlite3Vacuum(Parse*); 3380 int sqlite3RunVacuum(char**, sqlite3*); 3381 char *sqlite3NameFromToken(sqlite3*, Token*); 3382 int sqlite3ExprCompare(Expr*, Expr*, int); 3383 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3384 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3385 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3386 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3387 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3388 Vdbe *sqlite3GetVdbe(Parse*); 3389 #ifndef SQLITE_OMIT_BUILTIN_TEST 3390 void sqlite3PrngSaveState(void); 3391 void sqlite3PrngRestoreState(void); 3392 #endif 3393 void sqlite3RollbackAll(sqlite3*,int); 3394 void sqlite3CodeVerifySchema(Parse*, int); 3395 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3396 void sqlite3BeginTransaction(Parse*, int); 3397 void sqlite3CommitTransaction(Parse*); 3398 void sqlite3RollbackTransaction(Parse*); 3399 void sqlite3Savepoint(Parse*, int, Token*); 3400 void sqlite3CloseSavepoints(sqlite3 *); 3401 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3402 int sqlite3ExprIsConstant(Expr*); 3403 int sqlite3ExprIsConstantNotJoin(Expr*); 3404 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3405 int sqlite3ExprIsTableConstant(Expr*,int); 3406 int sqlite3ExprIsInteger(Expr*, int*); 3407 int sqlite3ExprCanBeNull(const Expr*); 3408 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3409 int sqlite3IsRowid(const char*); 3410 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3411 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3412 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3413 void sqlite3ResolvePartIdxLabel(Parse*,int); 3414 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3415 u8,u8,int,int*); 3416 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3417 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3418 void sqlite3BeginWriteOperation(Parse*, int, int); 3419 void sqlite3MultiWrite(Parse*); 3420 void sqlite3MayAbort(Parse*); 3421 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3422 void sqlite3UniqueConstraint(Parse*, int, Index*); 3423 void sqlite3RowidConstraint(Parse*, int, Table*); 3424 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3425 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3426 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3427 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3428 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3429 #if SELECTTRACE_ENABLED 3430 void sqlite3SelectSetName(Select*,const char*); 3431 #else 3432 # define sqlite3SelectSetName(A,B) 3433 #endif 3434 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3435 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3436 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3437 void sqlite3RegisterDateTimeFunctions(void); 3438 void sqlite3RegisterGlobalFunctions(void); 3439 int sqlite3SafetyCheckOk(sqlite3*); 3440 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3441 void sqlite3ChangeCookie(Parse*, int); 3442 3443 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3444 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3445 #endif 3446 3447 #ifndef SQLITE_OMIT_TRIGGER 3448 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3449 Expr*,int, int); 3450 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3451 void sqlite3DropTrigger(Parse*, SrcList*, int); 3452 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3453 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3454 Trigger *sqlite3TriggerList(Parse *, Table *); 3455 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3456 int, int, int); 3457 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3458 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3459 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3460 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3461 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3462 Select*,u8); 3463 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3464 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3465 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3466 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3467 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3468 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3469 #else 3470 # define sqlite3TriggersExist(B,C,D,E,F) 0 3471 # define sqlite3DeleteTrigger(A,B) 3472 # define sqlite3DropTriggerPtr(A,B) 3473 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3474 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3475 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3476 # define sqlite3TriggerList(X, Y) 0 3477 # define sqlite3ParseToplevel(p) p 3478 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3479 #endif 3480 3481 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3482 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3483 void sqlite3DeferForeignKey(Parse*, int); 3484 #ifndef SQLITE_OMIT_AUTHORIZATION 3485 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3486 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3487 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3488 void sqlite3AuthContextPop(AuthContext*); 3489 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3490 #else 3491 # define sqlite3AuthRead(a,b,c,d) 3492 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3493 # define sqlite3AuthContextPush(a,b,c) 3494 # define sqlite3AuthContextPop(a) ((void)(a)) 3495 #endif 3496 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3497 void sqlite3Detach(Parse*, Expr*); 3498 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3499 int sqlite3FixSrcList(DbFixer*, SrcList*); 3500 int sqlite3FixSelect(DbFixer*, Select*); 3501 int sqlite3FixExpr(DbFixer*, Expr*); 3502 int sqlite3FixExprList(DbFixer*, ExprList*); 3503 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3504 int sqlite3AtoF(const char *z, double*, int, u8); 3505 int sqlite3GetInt32(const char *, int*); 3506 int sqlite3Atoi(const char*); 3507 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3508 int sqlite3Utf8CharLen(const char *pData, int nByte); 3509 u32 sqlite3Utf8Read(const u8**); 3510 LogEst sqlite3LogEst(u64); 3511 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3512 #ifndef SQLITE_OMIT_VIRTUALTABLE 3513 LogEst sqlite3LogEstFromDouble(double); 3514 #endif 3515 u64 sqlite3LogEstToInt(LogEst); 3516 3517 /* 3518 ** Routines to read and write variable-length integers. These used to 3519 ** be defined locally, but now we use the varint routines in the util.c 3520 ** file. 3521 */ 3522 int sqlite3PutVarint(unsigned char*, u64); 3523 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3524 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3525 int sqlite3VarintLen(u64 v); 3526 3527 /* 3528 ** The common case is for a varint to be a single byte. They following 3529 ** macros handle the common case without a procedure call, but then call 3530 ** the procedure for larger varints. 3531 */ 3532 #define getVarint32(A,B) \ 3533 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3534 #define putVarint32(A,B) \ 3535 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3536 sqlite3PutVarint((A),(B))) 3537 #define getVarint sqlite3GetVarint 3538 #define putVarint sqlite3PutVarint 3539 3540 3541 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3542 void sqlite3TableAffinity(Vdbe*, Table*, int); 3543 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3544 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3545 char sqlite3ExprAffinity(Expr *pExpr); 3546 int sqlite3Atoi64(const char*, i64*, int, u8); 3547 int sqlite3DecOrHexToI64(const char*, i64*); 3548 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3549 void sqlite3Error(sqlite3*,int); 3550 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3551 u8 sqlite3HexToInt(int h); 3552 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3553 3554 #if defined(SQLITE_NEED_ERR_NAME) 3555 const char *sqlite3ErrName(int); 3556 #endif 3557 3558 const char *sqlite3ErrStr(int); 3559 int sqlite3ReadSchema(Parse *pParse); 3560 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3561 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3562 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3563 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3564 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3565 Expr *sqlite3ExprSkipCollate(Expr*); 3566 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3567 int sqlite3CheckObjectName(Parse *, const char *); 3568 void sqlite3VdbeSetChanges(sqlite3 *, int); 3569 int sqlite3AddInt64(i64*,i64); 3570 int sqlite3SubInt64(i64*,i64); 3571 int sqlite3MulInt64(i64*,i64); 3572 int sqlite3AbsInt32(int); 3573 #ifdef SQLITE_ENABLE_8_3_NAMES 3574 void sqlite3FileSuffix3(const char*, char*); 3575 #else 3576 # define sqlite3FileSuffix3(X,Y) 3577 #endif 3578 u8 sqlite3GetBoolean(const char *z,u8); 3579 3580 const void *sqlite3ValueText(sqlite3_value*, u8); 3581 int sqlite3ValueBytes(sqlite3_value*, u8); 3582 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3583 void(*)(void*)); 3584 void sqlite3ValueSetNull(sqlite3_value*); 3585 void sqlite3ValueFree(sqlite3_value*); 3586 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3587 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3588 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3589 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3590 #ifndef SQLITE_AMALGAMATION 3591 extern const unsigned char sqlite3OpcodeProperty[]; 3592 extern const unsigned char sqlite3UpperToLower[]; 3593 extern const unsigned char sqlite3CtypeMap[]; 3594 extern const Token sqlite3IntTokens[]; 3595 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3596 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3597 #ifndef SQLITE_OMIT_WSD 3598 extern int sqlite3PendingByte; 3599 #endif 3600 #endif 3601 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3602 void sqlite3Reindex(Parse*, Token*, Token*); 3603 void sqlite3AlterFunctions(void); 3604 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3605 int sqlite3GetToken(const unsigned char *, int *); 3606 void sqlite3NestedParse(Parse*, const char*, ...); 3607 void sqlite3ExpirePreparedStatements(sqlite3*); 3608 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3609 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3610 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 3611 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3612 int sqlite3ResolveExprNames(NameContext*, Expr*); 3613 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3614 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3615 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3616 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3617 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3618 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3619 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3620 char sqlite3AffinityType(const char*, u8*); 3621 void sqlite3Analyze(Parse*, Token*, Token*); 3622 int sqlite3InvokeBusyHandler(BusyHandler*); 3623 int sqlite3FindDb(sqlite3*, Token*); 3624 int sqlite3FindDbName(sqlite3 *, const char *); 3625 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3626 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3627 void sqlite3DefaultRowEst(Index*); 3628 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3629 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3630 void sqlite3MinimumFileFormat(Parse*, int, int); 3631 void sqlite3SchemaClear(void *); 3632 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3633 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3634 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3635 void sqlite3KeyInfoUnref(KeyInfo*); 3636 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3637 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3638 #ifdef SQLITE_DEBUG 3639 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3640 #endif 3641 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3642 void (*)(sqlite3_context*,int,sqlite3_value **), 3643 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3644 FuncDestructor *pDestructor 3645 ); 3646 int sqlite3ApiExit(sqlite3 *db, int); 3647 int sqlite3OpenTempDatabase(Parse *); 3648 3649 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 3650 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3651 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3652 void sqlite3AppendChar(StrAccum*,int,char); 3653 char *sqlite3StrAccumFinish(StrAccum*); 3654 void sqlite3StrAccumReset(StrAccum*); 3655 void sqlite3SelectDestInit(SelectDest*,int,int); 3656 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3657 3658 void sqlite3BackupRestart(sqlite3_backup *); 3659 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3660 3661 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3662 void sqlite3AnalyzeFunctions(void); 3663 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3664 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3665 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3666 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3667 #endif 3668 3669 /* 3670 ** The interface to the LEMON-generated parser 3671 */ 3672 void *sqlite3ParserAlloc(void*(*)(u64)); 3673 void sqlite3ParserFree(void*, void(*)(void*)); 3674 void sqlite3Parser(void*, int, Token, Parse*); 3675 #ifdef YYTRACKMAXSTACKDEPTH 3676 int sqlite3ParserStackPeak(void*); 3677 #endif 3678 3679 void sqlite3AutoLoadExtensions(sqlite3*); 3680 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3681 void sqlite3CloseExtensions(sqlite3*); 3682 #else 3683 # define sqlite3CloseExtensions(X) 3684 #endif 3685 3686 #ifndef SQLITE_OMIT_SHARED_CACHE 3687 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3688 #else 3689 #define sqlite3TableLock(v,w,x,y,z) 3690 #endif 3691 3692 #ifdef SQLITE_TEST 3693 int sqlite3Utf8To8(unsigned char*); 3694 #endif 3695 3696 #ifdef SQLITE_OMIT_VIRTUALTABLE 3697 # define sqlite3VtabClear(Y) 3698 # define sqlite3VtabSync(X,Y) SQLITE_OK 3699 # define sqlite3VtabRollback(X) 3700 # define sqlite3VtabCommit(X) 3701 # define sqlite3VtabInSync(db) 0 3702 # define sqlite3VtabLock(X) 3703 # define sqlite3VtabUnlock(X) 3704 # define sqlite3VtabUnlockList(X) 3705 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3706 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3707 #else 3708 void sqlite3VtabClear(sqlite3 *db, Table*); 3709 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3710 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3711 int sqlite3VtabRollback(sqlite3 *db); 3712 int sqlite3VtabCommit(sqlite3 *db); 3713 void sqlite3VtabLock(VTable *); 3714 void sqlite3VtabUnlock(VTable *); 3715 void sqlite3VtabUnlockList(sqlite3*); 3716 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3717 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3718 VTable *sqlite3GetVTable(sqlite3*, Table*); 3719 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3720 #endif 3721 void sqlite3VtabMakeWritable(Parse*,Table*); 3722 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3723 void sqlite3VtabFinishParse(Parse*, Token*); 3724 void sqlite3VtabArgInit(Parse*); 3725 void sqlite3VtabArgExtend(Parse*, Token*); 3726 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3727 int sqlite3VtabCallConnect(Parse*, Table*); 3728 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3729 int sqlite3VtabBegin(sqlite3 *, VTable *); 3730 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3731 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3732 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3733 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3734 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3735 void sqlite3ParserReset(Parse*); 3736 int sqlite3Reprepare(Vdbe*); 3737 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3738 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3739 int sqlite3TempInMemory(const sqlite3*); 3740 const char *sqlite3JournalModename(int); 3741 #ifndef SQLITE_OMIT_WAL 3742 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3743 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3744 #endif 3745 #ifndef SQLITE_OMIT_CTE 3746 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3747 void sqlite3WithDelete(sqlite3*,With*); 3748 void sqlite3WithPush(Parse*, With*, u8); 3749 #else 3750 #define sqlite3WithPush(x,y,z) 3751 #define sqlite3WithDelete(x,y) 3752 #endif 3753 3754 /* Declarations for functions in fkey.c. All of these are replaced by 3755 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3756 ** key functionality is available. If OMIT_TRIGGER is defined but 3757 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3758 ** this case foreign keys are parsed, but no other functionality is 3759 ** provided (enforcement of FK constraints requires the triggers sub-system). 3760 */ 3761 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3762 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3763 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3764 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3765 int sqlite3FkRequired(Parse*, Table*, int*, int); 3766 u32 sqlite3FkOldmask(Parse*, Table*); 3767 FKey *sqlite3FkReferences(Table *); 3768 #else 3769 #define sqlite3FkActions(a,b,c,d,e,f) 3770 #define sqlite3FkCheck(a,b,c,d,e,f) 3771 #define sqlite3FkDropTable(a,b,c) 3772 #define sqlite3FkOldmask(a,b) 0 3773 #define sqlite3FkRequired(a,b,c,d) 0 3774 #endif 3775 #ifndef SQLITE_OMIT_FOREIGN_KEY 3776 void sqlite3FkDelete(sqlite3 *, Table*); 3777 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3778 #else 3779 #define sqlite3FkDelete(a,b) 3780 #define sqlite3FkLocateIndex(a,b,c,d,e) 3781 #endif 3782 3783 3784 /* 3785 ** Available fault injectors. Should be numbered beginning with 0. 3786 */ 3787 #define SQLITE_FAULTINJECTOR_MALLOC 0 3788 #define SQLITE_FAULTINJECTOR_COUNT 1 3789 3790 /* 3791 ** The interface to the code in fault.c used for identifying "benign" 3792 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3793 ** is not defined. 3794 */ 3795 #ifndef SQLITE_OMIT_BUILTIN_TEST 3796 void sqlite3BeginBenignMalloc(void); 3797 void sqlite3EndBenignMalloc(void); 3798 #else 3799 #define sqlite3BeginBenignMalloc() 3800 #define sqlite3EndBenignMalloc() 3801 #endif 3802 3803 /* 3804 ** Allowed return values from sqlite3FindInIndex() 3805 */ 3806 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3807 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3808 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3809 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3810 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3811 /* 3812 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3813 */ 3814 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3815 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3816 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3817 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3818 3819 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3820 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3821 int sqlite3JournalSize(sqlite3_vfs *); 3822 int sqlite3JournalCreate(sqlite3_file *); 3823 int sqlite3JournalExists(sqlite3_file *p); 3824 #else 3825 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3826 #define sqlite3JournalExists(p) 1 3827 #endif 3828 3829 void sqlite3MemJournalOpen(sqlite3_file *); 3830 int sqlite3MemJournalSize(void); 3831 int sqlite3IsMemJournal(sqlite3_file *); 3832 3833 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 3834 #if SQLITE_MAX_EXPR_DEPTH>0 3835 int sqlite3SelectExprHeight(Select *); 3836 int sqlite3ExprCheckHeight(Parse*, int); 3837 #else 3838 #define sqlite3SelectExprHeight(x) 0 3839 #define sqlite3ExprCheckHeight(x,y) 3840 #endif 3841 3842 u32 sqlite3Get4byte(const u8*); 3843 void sqlite3Put4byte(u8*, u32); 3844 3845 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3846 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3847 void sqlite3ConnectionUnlocked(sqlite3 *db); 3848 void sqlite3ConnectionClosed(sqlite3 *db); 3849 #else 3850 #define sqlite3ConnectionBlocked(x,y) 3851 #define sqlite3ConnectionUnlocked(x) 3852 #define sqlite3ConnectionClosed(x) 3853 #endif 3854 3855 #ifdef SQLITE_DEBUG 3856 void sqlite3ParserTrace(FILE*, char *); 3857 #endif 3858 3859 /* 3860 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3861 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3862 ** print I/O tracing messages. 3863 */ 3864 #ifdef SQLITE_ENABLE_IOTRACE 3865 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3866 void sqlite3VdbeIOTraceSql(Vdbe*); 3867 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 3868 #else 3869 # define IOTRACE(A) 3870 # define sqlite3VdbeIOTraceSql(X) 3871 #endif 3872 3873 /* 3874 ** These routines are available for the mem2.c debugging memory allocator 3875 ** only. They are used to verify that different "types" of memory 3876 ** allocations are properly tracked by the system. 3877 ** 3878 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3879 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3880 ** a single bit set. 3881 ** 3882 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3883 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3884 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3885 ** 3886 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3887 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3888 ** 3889 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3890 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3891 ** it might have been allocated by lookaside, except the allocation was 3892 ** too large or lookaside was already full. It is important to verify 3893 ** that allocations that might have been satisfied by lookaside are not 3894 ** passed back to non-lookaside free() routines. Asserts such as the 3895 ** example above are placed on the non-lookaside free() routines to verify 3896 ** this constraint. 3897 ** 3898 ** All of this is no-op for a production build. It only comes into 3899 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3900 */ 3901 #ifdef SQLITE_MEMDEBUG 3902 void sqlite3MemdebugSetType(void*,u8); 3903 int sqlite3MemdebugHasType(void*,u8); 3904 int sqlite3MemdebugNoType(void*,u8); 3905 #else 3906 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3907 # define sqlite3MemdebugHasType(X,Y) 1 3908 # define sqlite3MemdebugNoType(X,Y) 1 3909 #endif 3910 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3911 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 3912 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3913 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3914 3915 /* 3916 ** Threading interface 3917 */ 3918 #if SQLITE_MAX_WORKER_THREADS>0 3919 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 3920 int sqlite3ThreadJoin(SQLiteThread*, void**); 3921 #endif 3922 3923 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 3924 int sqlite3DbstatRegister(sqlite3*); 3925 #endif 3926 3927 #endif /* _SQLITEINT_H_ */ 3928