1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 /* 70 ** Include standard header files as necessary 71 */ 72 #ifdef HAVE_STDINT_H 73 #include <stdint.h> 74 #endif 75 #ifdef HAVE_INTTYPES_H 76 #include <inttypes.h> 77 #endif 78 79 /* 80 ** The following macros are used to cast pointers to integers and 81 ** integers to pointers. The way you do this varies from one compiler 82 ** to the next, so we have developed the following set of #if statements 83 ** to generate appropriate macros for a wide range of compilers. 84 ** 85 ** The correct "ANSI" way to do this is to use the intptr_t type. 86 ** Unfortunately, that typedef is not available on all compilers, or 87 ** if it is available, it requires an #include of specific headers 88 ** that vary from one machine to the next. 89 ** 90 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 91 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 92 ** So we have to define the macros in different ways depending on the 93 ** compiler. 94 */ 95 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 96 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 97 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 98 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 99 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 100 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 101 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 102 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 103 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 104 #else /* Generates a warning - but it always works */ 105 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 106 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 107 #endif 108 109 /* 110 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 111 ** 0 means mutexes are permanently disable and the library is never 112 ** threadsafe. 1 means the library is serialized which is the highest 113 ** level of threadsafety. 2 means the libary is multithreaded - multiple 114 ** threads can use SQLite as long as no two threads try to use the same 115 ** database connection at the same time. 116 ** 117 ** Older versions of SQLite used an optional THREADSAFE macro. 118 ** We support that for legacy. 119 */ 120 #if !defined(SQLITE_THREADSAFE) 121 #if defined(THREADSAFE) 122 # define SQLITE_THREADSAFE THREADSAFE 123 #else 124 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 125 #endif 126 #endif 127 128 /* 129 ** Powersafe overwrite is on by default. But can be turned off using 130 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 131 */ 132 #ifndef SQLITE_POWERSAFE_OVERWRITE 133 # define SQLITE_POWERSAFE_OVERWRITE 1 134 #endif 135 136 /* 137 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 138 ** It determines whether or not the features related to 139 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 140 ** be overridden at runtime using the sqlite3_config() API. 141 */ 142 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 143 # define SQLITE_DEFAULT_MEMSTATUS 1 144 #endif 145 146 /* 147 ** Exactly one of the following macros must be defined in order to 148 ** specify which memory allocation subsystem to use. 149 ** 150 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 151 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 152 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 153 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 154 ** 155 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 156 ** assert() macro is enabled, each call into the Win32 native heap subsystem 157 ** will cause HeapValidate to be called. If heap validation should fail, an 158 ** assertion will be triggered. 159 ** 160 ** (Historical note: There used to be several other options, but we've 161 ** pared it down to just these three.) 162 ** 163 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 164 ** the default. 165 */ 166 #if defined(SQLITE_SYSTEM_MALLOC) \ 167 + defined(SQLITE_WIN32_MALLOC) \ 168 + defined(SQLITE_ZERO_MALLOC) \ 169 + defined(SQLITE_MEMDEBUG)>1 170 # error "Two or more of the following compile-time configuration options\ 171 are defined but at most one is allowed:\ 172 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 173 SQLITE_ZERO_MALLOC" 174 #endif 175 #if defined(SQLITE_SYSTEM_MALLOC) \ 176 + defined(SQLITE_WIN32_MALLOC) \ 177 + defined(SQLITE_ZERO_MALLOC) \ 178 + defined(SQLITE_MEMDEBUG)==0 179 # define SQLITE_SYSTEM_MALLOC 1 180 #endif 181 182 /* 183 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 184 ** sizes of memory allocations below this value where possible. 185 */ 186 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 187 # define SQLITE_MALLOC_SOFT_LIMIT 1024 188 #endif 189 190 /* 191 ** We need to define _XOPEN_SOURCE as follows in order to enable 192 ** recursive mutexes on most Unix systems. But Mac OS X is different. 193 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 194 ** so it is omitted there. See ticket #2673. 195 ** 196 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 197 ** implemented on some systems. So we avoid defining it at all 198 ** if it is already defined or if it is unneeded because we are 199 ** not doing a threadsafe build. Ticket #2681. 200 ** 201 ** See also ticket #2741. 202 */ 203 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 204 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 205 #endif 206 207 /* 208 ** The TCL headers are only needed when compiling the TCL bindings. 209 */ 210 #if defined(SQLITE_TCL) || defined(TCLSH) 211 # include <tcl.h> 212 #endif 213 214 /* 215 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 216 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 217 ** make it true by defining or undefining NDEBUG. 218 ** 219 ** Setting NDEBUG makes the code smaller and run faster by disabling the 220 ** number assert() statements in the code. So we want the default action 221 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 222 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 223 ** feature. 224 */ 225 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 226 # define NDEBUG 1 227 #endif 228 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 229 # undef NDEBUG 230 #endif 231 232 /* 233 ** The testcase() macro is used to aid in coverage testing. When 234 ** doing coverage testing, the condition inside the argument to 235 ** testcase() must be evaluated both true and false in order to 236 ** get full branch coverage. The testcase() macro is inserted 237 ** to help ensure adequate test coverage in places where simple 238 ** condition/decision coverage is inadequate. For example, testcase() 239 ** can be used to make sure boundary values are tested. For 240 ** bitmask tests, testcase() can be used to make sure each bit 241 ** is significant and used at least once. On switch statements 242 ** where multiple cases go to the same block of code, testcase() 243 ** can insure that all cases are evaluated. 244 ** 245 */ 246 #ifdef SQLITE_COVERAGE_TEST 247 void sqlite3Coverage(int); 248 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 249 #else 250 # define testcase(X) 251 #endif 252 253 /* 254 ** The TESTONLY macro is used to enclose variable declarations or 255 ** other bits of code that are needed to support the arguments 256 ** within testcase() and assert() macros. 257 */ 258 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 259 # define TESTONLY(X) X 260 #else 261 # define TESTONLY(X) 262 #endif 263 264 /* 265 ** Sometimes we need a small amount of code such as a variable initialization 266 ** to setup for a later assert() statement. We do not want this code to 267 ** appear when assert() is disabled. The following macro is therefore 268 ** used to contain that setup code. The "VVA" acronym stands for 269 ** "Verification, Validation, and Accreditation". In other words, the 270 ** code within VVA_ONLY() will only run during verification processes. 271 */ 272 #ifndef NDEBUG 273 # define VVA_ONLY(X) X 274 #else 275 # define VVA_ONLY(X) 276 #endif 277 278 /* 279 ** The ALWAYS and NEVER macros surround boolean expressions which 280 ** are intended to always be true or false, respectively. Such 281 ** expressions could be omitted from the code completely. But they 282 ** are included in a few cases in order to enhance the resilience 283 ** of SQLite to unexpected behavior - to make the code "self-healing" 284 ** or "ductile" rather than being "brittle" and crashing at the first 285 ** hint of unplanned behavior. 286 ** 287 ** In other words, ALWAYS and NEVER are added for defensive code. 288 ** 289 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 290 ** be true and false so that the unreachable code then specify will 291 ** not be counted as untested code. 292 */ 293 #if defined(SQLITE_COVERAGE_TEST) 294 # define ALWAYS(X) (1) 295 # define NEVER(X) (0) 296 #elif !defined(NDEBUG) 297 # define ALWAYS(X) ((X)?1:(assert(0),0)) 298 # define NEVER(X) ((X)?(assert(0),1):0) 299 #else 300 # define ALWAYS(X) (X) 301 # define NEVER(X) (X) 302 #endif 303 304 /* 305 ** Return true (non-zero) if the input is a integer that is too large 306 ** to fit in 32-bits. This macro is used inside of various testcase() 307 ** macros to verify that we have tested SQLite for large-file support. 308 */ 309 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 310 311 /* 312 ** The macro unlikely() is a hint that surrounds a boolean 313 ** expression that is usually false. Macro likely() surrounds 314 ** a boolean expression that is usually true. GCC is able to 315 ** use these hints to generate better code, sometimes. 316 */ 317 #if defined(__GNUC__) && 0 318 # define likely(X) __builtin_expect((X),1) 319 # define unlikely(X) __builtin_expect((X),0) 320 #else 321 # define likely(X) !!(X) 322 # define unlikely(X) !!(X) 323 #endif 324 325 #include "sqlite3.h" 326 #include "hash.h" 327 #include "parse.h" 328 #include <stdio.h> 329 #include <stdlib.h> 330 #include <string.h> 331 #include <assert.h> 332 #include <stddef.h> 333 334 /* 335 ** If compiling for a processor that lacks floating point support, 336 ** substitute integer for floating-point 337 */ 338 #ifdef SQLITE_OMIT_FLOATING_POINT 339 # define double sqlite_int64 340 # define float sqlite_int64 341 # define LONGDOUBLE_TYPE sqlite_int64 342 # ifndef SQLITE_BIG_DBL 343 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 344 # endif 345 # define SQLITE_OMIT_DATETIME_FUNCS 1 346 # define SQLITE_OMIT_TRACE 1 347 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 348 # undef SQLITE_HAVE_ISNAN 349 #endif 350 #ifndef SQLITE_BIG_DBL 351 # define SQLITE_BIG_DBL (1e99) 352 #endif 353 354 /* 355 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 356 ** afterward. Having this macro allows us to cause the C compiler 357 ** to omit code used by TEMP tables without messy #ifndef statements. 358 */ 359 #ifdef SQLITE_OMIT_TEMPDB 360 #define OMIT_TEMPDB 1 361 #else 362 #define OMIT_TEMPDB 0 363 #endif 364 365 /* 366 ** The "file format" number is an integer that is incremented whenever 367 ** the VDBE-level file format changes. The following macros define the 368 ** the default file format for new databases and the maximum file format 369 ** that the library can read. 370 */ 371 #define SQLITE_MAX_FILE_FORMAT 4 372 #ifndef SQLITE_DEFAULT_FILE_FORMAT 373 # define SQLITE_DEFAULT_FILE_FORMAT 4 374 #endif 375 376 /* 377 ** Determine whether triggers are recursive by default. This can be 378 ** changed at run-time using a pragma. 379 */ 380 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 381 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 382 #endif 383 384 /* 385 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 386 ** on the command-line 387 */ 388 #ifndef SQLITE_TEMP_STORE 389 # define SQLITE_TEMP_STORE 1 390 #endif 391 392 /* 393 ** GCC does not define the offsetof() macro so we'll have to do it 394 ** ourselves. 395 */ 396 #ifndef offsetof 397 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 398 #endif 399 400 /* 401 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 402 ** not, there are still machines out there that use EBCDIC.) 403 */ 404 #if 'A' == '\301' 405 # define SQLITE_EBCDIC 1 406 #else 407 # define SQLITE_ASCII 1 408 #endif 409 410 /* 411 ** Integers of known sizes. These typedefs might change for architectures 412 ** where the sizes very. Preprocessor macros are available so that the 413 ** types can be conveniently redefined at compile-type. Like this: 414 ** 415 ** cc '-DUINTPTR_TYPE=long long int' ... 416 */ 417 #ifndef UINT32_TYPE 418 # ifdef HAVE_UINT32_T 419 # define UINT32_TYPE uint32_t 420 # else 421 # define UINT32_TYPE unsigned int 422 # endif 423 #endif 424 #ifndef UINT16_TYPE 425 # ifdef HAVE_UINT16_T 426 # define UINT16_TYPE uint16_t 427 # else 428 # define UINT16_TYPE unsigned short int 429 # endif 430 #endif 431 #ifndef INT16_TYPE 432 # ifdef HAVE_INT16_T 433 # define INT16_TYPE int16_t 434 # else 435 # define INT16_TYPE short int 436 # endif 437 #endif 438 #ifndef UINT8_TYPE 439 # ifdef HAVE_UINT8_T 440 # define UINT8_TYPE uint8_t 441 # else 442 # define UINT8_TYPE unsigned char 443 # endif 444 #endif 445 #ifndef INT8_TYPE 446 # ifdef HAVE_INT8_T 447 # define INT8_TYPE int8_t 448 # else 449 # define INT8_TYPE signed char 450 # endif 451 #endif 452 #ifndef LONGDOUBLE_TYPE 453 # define LONGDOUBLE_TYPE long double 454 #endif 455 typedef sqlite_int64 i64; /* 8-byte signed integer */ 456 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 457 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 458 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 459 typedef INT16_TYPE i16; /* 2-byte signed integer */ 460 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 461 typedef INT8_TYPE i8; /* 1-byte signed integer */ 462 463 /* 464 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 465 ** that can be stored in a u32 without loss of data. The value 466 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 467 ** have to specify the value in the less intuitive manner shown: 468 */ 469 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 470 471 /* 472 ** The datatype used to store estimates of the number of rows in a 473 ** table or index. This is an unsigned integer type. For 99.9% of 474 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 475 ** can be used at compile-time if desired. 476 */ 477 #ifdef SQLITE_64BIT_STATS 478 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 479 #else 480 typedef u32 tRowcnt; /* 32-bit is the default */ 481 #endif 482 483 /* 484 ** Macros to determine whether the machine is big or little endian, 485 ** evaluated at runtime. 486 */ 487 #ifdef SQLITE_AMALGAMATION 488 const int sqlite3one = 1; 489 #else 490 extern const int sqlite3one; 491 #endif 492 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 493 || defined(__x86_64) || defined(__x86_64__) 494 # define SQLITE_BIGENDIAN 0 495 # define SQLITE_LITTLEENDIAN 1 496 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 497 #else 498 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 499 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 500 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 501 #endif 502 503 /* 504 ** Constants for the largest and smallest possible 64-bit signed integers. 505 ** These macros are designed to work correctly on both 32-bit and 64-bit 506 ** compilers. 507 */ 508 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 509 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 510 511 /* 512 ** Round up a number to the next larger multiple of 8. This is used 513 ** to force 8-byte alignment on 64-bit architectures. 514 */ 515 #define ROUND8(x) (((x)+7)&~7) 516 517 /* 518 ** Round down to the nearest multiple of 8 519 */ 520 #define ROUNDDOWN8(x) ((x)&~7) 521 522 /* 523 ** Assert that the pointer X is aligned to an 8-byte boundary. This 524 ** macro is used only within assert() to verify that the code gets 525 ** all alignment restrictions correct. 526 ** 527 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 528 ** underlying malloc() implemention might return us 4-byte aligned 529 ** pointers. In that case, only verify 4-byte alignment. 530 */ 531 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 532 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 533 #else 534 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 535 #endif 536 537 538 /* 539 ** An instance of the following structure is used to store the busy-handler 540 ** callback for a given sqlite handle. 541 ** 542 ** The sqlite.busyHandler member of the sqlite struct contains the busy 543 ** callback for the database handle. Each pager opened via the sqlite 544 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 545 ** callback is currently invoked only from within pager.c. 546 */ 547 typedef struct BusyHandler BusyHandler; 548 struct BusyHandler { 549 int (*xFunc)(void *,int); /* The busy callback */ 550 void *pArg; /* First arg to busy callback */ 551 int nBusy; /* Incremented with each busy call */ 552 }; 553 554 /* 555 ** Name of the master database table. The master database table 556 ** is a special table that holds the names and attributes of all 557 ** user tables and indices. 558 */ 559 #define MASTER_NAME "sqlite_master" 560 #define TEMP_MASTER_NAME "sqlite_temp_master" 561 562 /* 563 ** The root-page of the master database table. 564 */ 565 #define MASTER_ROOT 1 566 567 /* 568 ** The name of the schema table. 569 */ 570 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 571 572 /* 573 ** A convenience macro that returns the number of elements in 574 ** an array. 575 */ 576 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 577 578 /* 579 ** The following value as a destructor means to use sqlite3DbFree(). 580 ** The sqlite3DbFree() routine requires two parameters instead of the 581 ** one parameter that destructors normally want. So we have to introduce 582 ** this magic value that the code knows to handle differently. Any 583 ** pointer will work here as long as it is distinct from SQLITE_STATIC 584 ** and SQLITE_TRANSIENT. 585 */ 586 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 587 588 /* 589 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 590 ** not support Writable Static Data (WSD) such as global and static variables. 591 ** All variables must either be on the stack or dynamically allocated from 592 ** the heap. When WSD is unsupported, the variable declarations scattered 593 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 594 ** macro is used for this purpose. And instead of referencing the variable 595 ** directly, we use its constant as a key to lookup the run-time allocated 596 ** buffer that holds real variable. The constant is also the initializer 597 ** for the run-time allocated buffer. 598 ** 599 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 600 ** macros become no-ops and have zero performance impact. 601 */ 602 #ifdef SQLITE_OMIT_WSD 603 #define SQLITE_WSD const 604 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 605 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 606 int sqlite3_wsd_init(int N, int J); 607 void *sqlite3_wsd_find(void *K, int L); 608 #else 609 #define SQLITE_WSD 610 #define GLOBAL(t,v) v 611 #define sqlite3GlobalConfig sqlite3Config 612 #endif 613 614 /* 615 ** The following macros are used to suppress compiler warnings and to 616 ** make it clear to human readers when a function parameter is deliberately 617 ** left unused within the body of a function. This usually happens when 618 ** a function is called via a function pointer. For example the 619 ** implementation of an SQL aggregate step callback may not use the 620 ** parameter indicating the number of arguments passed to the aggregate, 621 ** if it knows that this is enforced elsewhere. 622 ** 623 ** When a function parameter is not used at all within the body of a function, 624 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 625 ** However, these macros may also be used to suppress warnings related to 626 ** parameters that may or may not be used depending on compilation options. 627 ** For example those parameters only used in assert() statements. In these 628 ** cases the parameters are named as per the usual conventions. 629 */ 630 #define UNUSED_PARAMETER(x) (void)(x) 631 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 632 633 /* 634 ** Forward references to structures 635 */ 636 typedef struct AggInfo AggInfo; 637 typedef struct AuthContext AuthContext; 638 typedef struct AutoincInfo AutoincInfo; 639 typedef struct Bitvec Bitvec; 640 typedef struct CollSeq CollSeq; 641 typedef struct Column Column; 642 typedef struct Db Db; 643 typedef struct Schema Schema; 644 typedef struct Expr Expr; 645 typedef struct ExprList ExprList; 646 typedef struct ExprSpan ExprSpan; 647 typedef struct FKey FKey; 648 typedef struct FuncDestructor FuncDestructor; 649 typedef struct FuncDef FuncDef; 650 typedef struct FuncDefHash FuncDefHash; 651 typedef struct IdList IdList; 652 typedef struct Index Index; 653 typedef struct IndexSample IndexSample; 654 typedef struct KeyClass KeyClass; 655 typedef struct KeyInfo KeyInfo; 656 typedef struct Lookaside Lookaside; 657 typedef struct LookasideSlot LookasideSlot; 658 typedef struct Module Module; 659 typedef struct NameContext NameContext; 660 typedef struct Parse Parse; 661 typedef struct RowSet RowSet; 662 typedef struct Savepoint Savepoint; 663 typedef struct Select Select; 664 typedef struct SrcList SrcList; 665 typedef struct StrAccum StrAccum; 666 typedef struct Table Table; 667 typedef struct TableLock TableLock; 668 typedef struct Token Token; 669 typedef struct Trigger Trigger; 670 typedef struct TriggerPrg TriggerPrg; 671 typedef struct TriggerStep TriggerStep; 672 typedef struct UnpackedRecord UnpackedRecord; 673 typedef struct VTable VTable; 674 typedef struct VtabCtx VtabCtx; 675 typedef struct Walker Walker; 676 typedef struct WherePlan WherePlan; 677 typedef struct WhereInfo WhereInfo; 678 typedef struct WhereLevel WhereLevel; 679 680 /* 681 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 682 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 683 ** pointer types (i.e. FuncDef) defined above. 684 */ 685 #include "btree.h" 686 #include "vdbe.h" 687 #include "pager.h" 688 #include "pcache.h" 689 690 #include "os.h" 691 #include "mutex.h" 692 693 694 /* 695 ** Each database file to be accessed by the system is an instance 696 ** of the following structure. There are normally two of these structures 697 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 698 ** aDb[1] is the database file used to hold temporary tables. Additional 699 ** databases may be attached. 700 */ 701 struct Db { 702 char *zName; /* Name of this database */ 703 Btree *pBt; /* The B*Tree structure for this database file */ 704 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 705 u8 safety_level; /* How aggressive at syncing data to disk */ 706 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 707 }; 708 709 /* 710 ** An instance of the following structure stores a database schema. 711 ** 712 ** Most Schema objects are associated with a Btree. The exception is 713 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 714 ** In shared cache mode, a single Schema object can be shared by multiple 715 ** Btrees that refer to the same underlying BtShared object. 716 ** 717 ** Schema objects are automatically deallocated when the last Btree that 718 ** references them is destroyed. The TEMP Schema is manually freed by 719 ** sqlite3_close(). 720 * 721 ** A thread must be holding a mutex on the corresponding Btree in order 722 ** to access Schema content. This implies that the thread must also be 723 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 724 ** For a TEMP Schema, only the connection mutex is required. 725 */ 726 struct Schema { 727 int schema_cookie; /* Database schema version number for this file */ 728 int iGeneration; /* Generation counter. Incremented with each change */ 729 Hash tblHash; /* All tables indexed by name */ 730 Hash idxHash; /* All (named) indices indexed by name */ 731 Hash trigHash; /* All triggers indexed by name */ 732 Hash fkeyHash; /* All foreign keys by referenced table name */ 733 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 734 u8 file_format; /* Schema format version for this file */ 735 u8 enc; /* Text encoding used by this database */ 736 u16 flags; /* Flags associated with this schema */ 737 int cache_size; /* Number of pages to use in the cache */ 738 }; 739 740 /* 741 ** These macros can be used to test, set, or clear bits in the 742 ** Db.pSchema->flags field. 743 */ 744 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 745 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 746 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 747 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 748 749 /* 750 ** Allowed values for the DB.pSchema->flags field. 751 ** 752 ** The DB_SchemaLoaded flag is set after the database schema has been 753 ** read into internal hash tables. 754 ** 755 ** DB_UnresetViews means that one or more views have column names that 756 ** have been filled out. If the schema changes, these column names might 757 ** changes and so the view will need to be reset. 758 */ 759 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 760 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 761 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 762 763 /* 764 ** The number of different kinds of things that can be limited 765 ** using the sqlite3_limit() interface. 766 */ 767 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 768 769 /* 770 ** Lookaside malloc is a set of fixed-size buffers that can be used 771 ** to satisfy small transient memory allocation requests for objects 772 ** associated with a particular database connection. The use of 773 ** lookaside malloc provides a significant performance enhancement 774 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 775 ** SQL statements. 776 ** 777 ** The Lookaside structure holds configuration information about the 778 ** lookaside malloc subsystem. Each available memory allocation in 779 ** the lookaside subsystem is stored on a linked list of LookasideSlot 780 ** objects. 781 ** 782 ** Lookaside allocations are only allowed for objects that are associated 783 ** with a particular database connection. Hence, schema information cannot 784 ** be stored in lookaside because in shared cache mode the schema information 785 ** is shared by multiple database connections. Therefore, while parsing 786 ** schema information, the Lookaside.bEnabled flag is cleared so that 787 ** lookaside allocations are not used to construct the schema objects. 788 */ 789 struct Lookaside { 790 u16 sz; /* Size of each buffer in bytes */ 791 u8 bEnabled; /* False to disable new lookaside allocations */ 792 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 793 int nOut; /* Number of buffers currently checked out */ 794 int mxOut; /* Highwater mark for nOut */ 795 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 796 LookasideSlot *pFree; /* List of available buffers */ 797 void *pStart; /* First byte of available memory space */ 798 void *pEnd; /* First byte past end of available space */ 799 }; 800 struct LookasideSlot { 801 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 802 }; 803 804 /* 805 ** A hash table for function definitions. 806 ** 807 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 808 ** Collisions are on the FuncDef.pHash chain. 809 */ 810 struct FuncDefHash { 811 FuncDef *a[23]; /* Hash table for functions */ 812 }; 813 814 /* 815 ** Each database connection is an instance of the following structure. 816 */ 817 struct sqlite3 { 818 sqlite3_vfs *pVfs; /* OS Interface */ 819 struct Vdbe *pVdbe; /* List of active virtual machines */ 820 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 821 sqlite3_mutex *mutex; /* Connection mutex */ 822 Db *aDb; /* All backends */ 823 int nDb; /* Number of backends currently in use */ 824 int flags; /* Miscellaneous flags. See below */ 825 i64 lastRowid; /* ROWID of most recent insert (see above) */ 826 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 827 int errCode; /* Most recent error code (SQLITE_*) */ 828 int errMask; /* & result codes with this before returning */ 829 u8 autoCommit; /* The auto-commit flag. */ 830 u8 temp_store; /* 1: file 2: memory 0: default */ 831 u8 mallocFailed; /* True if we have seen a malloc failure */ 832 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 833 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 834 u8 suppressErr; /* Do not issue error messages if true */ 835 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 836 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 837 int nextPagesize; /* Pagesize after VACUUM if >0 */ 838 u32 magic; /* Magic number for detect library misuse */ 839 int nChange; /* Value returned by sqlite3_changes() */ 840 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 841 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 842 struct sqlite3InitInfo { /* Information used during initialization */ 843 int newTnum; /* Rootpage of table being initialized */ 844 u8 iDb; /* Which db file is being initialized */ 845 u8 busy; /* TRUE if currently initializing */ 846 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 847 } init; 848 int activeVdbeCnt; /* Number of VDBEs currently executing */ 849 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 850 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ 851 int nExtension; /* Number of loaded extensions */ 852 void **aExtension; /* Array of shared library handles */ 853 void (*xTrace)(void*,const char*); /* Trace function */ 854 void *pTraceArg; /* Argument to the trace function */ 855 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 856 void *pProfileArg; /* Argument to profile function */ 857 void *pCommitArg; /* Argument to xCommitCallback() */ 858 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 859 void *pRollbackArg; /* Argument to xRollbackCallback() */ 860 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 861 void *pUpdateArg; 862 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 863 #ifndef SQLITE_OMIT_WAL 864 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 865 void *pWalArg; 866 #endif 867 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 868 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 869 void *pCollNeededArg; 870 sqlite3_value *pErr; /* Most recent error message */ 871 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 872 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 873 union { 874 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 875 double notUsed1; /* Spacer */ 876 } u1; 877 Lookaside lookaside; /* Lookaside malloc configuration */ 878 #ifndef SQLITE_OMIT_AUTHORIZATION 879 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 880 /* Access authorization function */ 881 void *pAuthArg; /* 1st argument to the access auth function */ 882 #endif 883 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 884 int (*xProgress)(void *); /* The progress callback */ 885 void *pProgressArg; /* Argument to the progress callback */ 886 int nProgressOps; /* Number of opcodes for progress callback */ 887 #endif 888 #ifndef SQLITE_OMIT_VIRTUALTABLE 889 int nVTrans; /* Allocated size of aVTrans */ 890 Hash aModule; /* populated by sqlite3_create_module() */ 891 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 892 VTable **aVTrans; /* Virtual tables with open transactions */ 893 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 894 #endif 895 FuncDefHash aFunc; /* Hash table of connection functions */ 896 Hash aCollSeq; /* All collating sequences */ 897 BusyHandler busyHandler; /* Busy callback */ 898 Db aDbStatic[2]; /* Static space for the 2 default backends */ 899 Savepoint *pSavepoint; /* List of active savepoints */ 900 int busyTimeout; /* Busy handler timeout, in msec */ 901 int nSavepoint; /* Number of non-transaction savepoints */ 902 int nStatement; /* Number of nested statement-transactions */ 903 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 904 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 905 906 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 907 /* The following variables are all protected by the STATIC_MASTER 908 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 909 ** 910 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 911 ** unlock so that it can proceed. 912 ** 913 ** When X.pBlockingConnection==Y, that means that something that X tried 914 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 915 ** held by Y. 916 */ 917 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 918 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 919 void *pUnlockArg; /* Argument to xUnlockNotify */ 920 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 921 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 922 #endif 923 }; 924 925 /* 926 ** A macro to discover the encoding of a database. 927 */ 928 #define ENC(db) ((db)->aDb[0].pSchema->enc) 929 930 /* 931 ** Possible values for the sqlite3.flags. 932 */ 933 #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ 934 #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ 935 #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ 936 #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ 937 #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ 938 /* DELETE, or UPDATE and return */ 939 /* the count using a callback. */ 940 #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ 941 /* result set is empty */ 942 #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ 943 #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ 944 #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ 945 /* 0x00020000 Unused */ 946 #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ 947 #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ 948 #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ 949 #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ 950 #define SQLITE_CkptFullFSync 0x00400000 /* Use full fsync for checkpoint */ 951 #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ 952 #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ 953 #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ 954 #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ 955 #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ 956 #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ 957 #define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */ 958 #define SQLITE_EnableTrigger 0x40000000 /* True to enable triggers */ 959 960 /* 961 ** Bits of the sqlite3.flags field that are used by the 962 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. 963 ** These must be the low-order bits of the flags field. 964 */ 965 #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ 966 #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ 967 #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ 968 #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ 969 #define SQLITE_IndexCover 0x10 /* Disable index covering table */ 970 #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ 971 #define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */ 972 #define SQLITE_IdxRealAsInt 0x80 /* Store REAL as INT in indices */ 973 #define SQLITE_DistinctOpt 0x80 /* DISTINCT using indexes */ 974 #define SQLITE_OptMask 0xff /* Mask of all disablable opts */ 975 976 /* 977 ** Possible values for the sqlite.magic field. 978 ** The numbers are obtained at random and have no special meaning, other 979 ** than being distinct from one another. 980 */ 981 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 982 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 983 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 984 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 985 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 986 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 987 988 /* 989 ** Each SQL function is defined by an instance of the following 990 ** structure. A pointer to this structure is stored in the sqlite.aFunc 991 ** hash table. When multiple functions have the same name, the hash table 992 ** points to a linked list of these structures. 993 */ 994 struct FuncDef { 995 i16 nArg; /* Number of arguments. -1 means unlimited */ 996 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 997 u8 flags; /* Some combination of SQLITE_FUNC_* */ 998 void *pUserData; /* User data parameter */ 999 FuncDef *pNext; /* Next function with same name */ 1000 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1001 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1002 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1003 char *zName; /* SQL name of the function. */ 1004 FuncDef *pHash; /* Next with a different name but the same hash */ 1005 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1006 }; 1007 1008 /* 1009 ** This structure encapsulates a user-function destructor callback (as 1010 ** configured using create_function_v2()) and a reference counter. When 1011 ** create_function_v2() is called to create a function with a destructor, 1012 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1013 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1014 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1015 ** member of each of the new FuncDef objects is set to point to the allocated 1016 ** FuncDestructor. 1017 ** 1018 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1019 ** count on this object is decremented. When it reaches 0, the destructor 1020 ** is invoked and the FuncDestructor structure freed. 1021 */ 1022 struct FuncDestructor { 1023 int nRef; 1024 void (*xDestroy)(void *); 1025 void *pUserData; 1026 }; 1027 1028 /* 1029 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1030 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1031 ** are assert() statements in the code to verify this. 1032 */ 1033 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 1034 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 1035 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 1036 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 1037 #define SQLITE_FUNC_COUNT 0x10 /* Built-in count(*) aggregate */ 1038 #define SQLITE_FUNC_COALESCE 0x20 /* Built-in coalesce() or ifnull() function */ 1039 #define SQLITE_FUNC_LENGTH 0x40 /* Built-in length() function */ 1040 #define SQLITE_FUNC_TYPEOF 0x80 /* Built-in typeof() function */ 1041 1042 /* 1043 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1044 ** used to create the initializers for the FuncDef structures. 1045 ** 1046 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1047 ** Used to create a scalar function definition of a function zName 1048 ** implemented by C function xFunc that accepts nArg arguments. The 1049 ** value passed as iArg is cast to a (void*) and made available 1050 ** as the user-data (sqlite3_user_data()) for the function. If 1051 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1052 ** 1053 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1054 ** Used to create an aggregate function definition implemented by 1055 ** the C functions xStep and xFinal. The first four parameters 1056 ** are interpreted in the same way as the first 4 parameters to 1057 ** FUNCTION(). 1058 ** 1059 ** LIKEFUNC(zName, nArg, pArg, flags) 1060 ** Used to create a scalar function definition of a function zName 1061 ** that accepts nArg arguments and is implemented by a call to C 1062 ** function likeFunc. Argument pArg is cast to a (void *) and made 1063 ** available as the function user-data (sqlite3_user_data()). The 1064 ** FuncDef.flags variable is set to the value passed as the flags 1065 ** parameter. 1066 */ 1067 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1068 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL), \ 1069 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1070 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1071 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1072 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1073 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1074 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1075 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1076 #define LIKEFUNC(zName, nArg, arg, flags) \ 1077 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1078 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1079 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1080 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1081 1082 /* 1083 ** All current savepoints are stored in a linked list starting at 1084 ** sqlite3.pSavepoint. The first element in the list is the most recently 1085 ** opened savepoint. Savepoints are added to the list by the vdbe 1086 ** OP_Savepoint instruction. 1087 */ 1088 struct Savepoint { 1089 char *zName; /* Savepoint name (nul-terminated) */ 1090 i64 nDeferredCons; /* Number of deferred fk violations */ 1091 Savepoint *pNext; /* Parent savepoint (if any) */ 1092 }; 1093 1094 /* 1095 ** The following are used as the second parameter to sqlite3Savepoint(), 1096 ** and as the P1 argument to the OP_Savepoint instruction. 1097 */ 1098 #define SAVEPOINT_BEGIN 0 1099 #define SAVEPOINT_RELEASE 1 1100 #define SAVEPOINT_ROLLBACK 2 1101 1102 1103 /* 1104 ** Each SQLite module (virtual table definition) is defined by an 1105 ** instance of the following structure, stored in the sqlite3.aModule 1106 ** hash table. 1107 */ 1108 struct Module { 1109 const sqlite3_module *pModule; /* Callback pointers */ 1110 const char *zName; /* Name passed to create_module() */ 1111 void *pAux; /* pAux passed to create_module() */ 1112 void (*xDestroy)(void *); /* Module destructor function */ 1113 }; 1114 1115 /* 1116 ** information about each column of an SQL table is held in an instance 1117 ** of this structure. 1118 */ 1119 struct Column { 1120 char *zName; /* Name of this column */ 1121 Expr *pDflt; /* Default value of this column */ 1122 char *zDflt; /* Original text of the default value */ 1123 char *zType; /* Data type for this column */ 1124 char *zColl; /* Collating sequence. If NULL, use the default */ 1125 u8 notNull; /* True if there is a NOT NULL constraint */ 1126 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 1127 char affinity; /* One of the SQLITE_AFF_... values */ 1128 #ifndef SQLITE_OMIT_VIRTUALTABLE 1129 u8 isHidden; /* True if this column is 'hidden' */ 1130 #endif 1131 }; 1132 1133 /* 1134 ** A "Collating Sequence" is defined by an instance of the following 1135 ** structure. Conceptually, a collating sequence consists of a name and 1136 ** a comparison routine that defines the order of that sequence. 1137 ** 1138 ** There may two separate implementations of the collation function, one 1139 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 1140 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 1141 ** native byte order. When a collation sequence is invoked, SQLite selects 1142 ** the version that will require the least expensive encoding 1143 ** translations, if any. 1144 ** 1145 ** The CollSeq.pUser member variable is an extra parameter that passed in 1146 ** as the first argument to the UTF-8 comparison function, xCmp. 1147 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 1148 ** xCmp16. 1149 ** 1150 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 1151 ** collating sequence is undefined. Indices built on an undefined 1152 ** collating sequence may not be read or written. 1153 */ 1154 struct CollSeq { 1155 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1156 u8 enc; /* Text encoding handled by xCmp() */ 1157 void *pUser; /* First argument to xCmp() */ 1158 int (*xCmp)(void*,int, const void*, int, const void*); 1159 void (*xDel)(void*); /* Destructor for pUser */ 1160 }; 1161 1162 /* 1163 ** A sort order can be either ASC or DESC. 1164 */ 1165 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1166 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1167 1168 /* 1169 ** Column affinity types. 1170 ** 1171 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1172 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1173 ** the speed a little by numbering the values consecutively. 1174 ** 1175 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1176 ** when multiple affinity types are concatenated into a string and 1177 ** used as the P4 operand, they will be more readable. 1178 ** 1179 ** Note also that the numeric types are grouped together so that testing 1180 ** for a numeric type is a single comparison. 1181 */ 1182 #define SQLITE_AFF_TEXT 'a' 1183 #define SQLITE_AFF_NONE 'b' 1184 #define SQLITE_AFF_NUMERIC 'c' 1185 #define SQLITE_AFF_INTEGER 'd' 1186 #define SQLITE_AFF_REAL 'e' 1187 1188 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1189 1190 /* 1191 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1192 ** affinity value. 1193 */ 1194 #define SQLITE_AFF_MASK 0x67 1195 1196 /* 1197 ** Additional bit values that can be ORed with an affinity without 1198 ** changing the affinity. 1199 */ 1200 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1201 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1202 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1203 1204 /* 1205 ** An object of this type is created for each virtual table present in 1206 ** the database schema. 1207 ** 1208 ** If the database schema is shared, then there is one instance of this 1209 ** structure for each database connection (sqlite3*) that uses the shared 1210 ** schema. This is because each database connection requires its own unique 1211 ** instance of the sqlite3_vtab* handle used to access the virtual table 1212 ** implementation. sqlite3_vtab* handles can not be shared between 1213 ** database connections, even when the rest of the in-memory database 1214 ** schema is shared, as the implementation often stores the database 1215 ** connection handle passed to it via the xConnect() or xCreate() method 1216 ** during initialization internally. This database connection handle may 1217 ** then be used by the virtual table implementation to access real tables 1218 ** within the database. So that they appear as part of the callers 1219 ** transaction, these accesses need to be made via the same database 1220 ** connection as that used to execute SQL operations on the virtual table. 1221 ** 1222 ** All VTable objects that correspond to a single table in a shared 1223 ** database schema are initially stored in a linked-list pointed to by 1224 ** the Table.pVTable member variable of the corresponding Table object. 1225 ** When an sqlite3_prepare() operation is required to access the virtual 1226 ** table, it searches the list for the VTable that corresponds to the 1227 ** database connection doing the preparing so as to use the correct 1228 ** sqlite3_vtab* handle in the compiled query. 1229 ** 1230 ** When an in-memory Table object is deleted (for example when the 1231 ** schema is being reloaded for some reason), the VTable objects are not 1232 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1233 ** immediately. Instead, they are moved from the Table.pVTable list to 1234 ** another linked list headed by the sqlite3.pDisconnect member of the 1235 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1236 ** next time a statement is prepared using said sqlite3*. This is done 1237 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1238 ** Refer to comments above function sqlite3VtabUnlockList() for an 1239 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1240 ** list without holding the corresponding sqlite3.mutex mutex. 1241 ** 1242 ** The memory for objects of this type is always allocated by 1243 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1244 ** the first argument. 1245 */ 1246 struct VTable { 1247 sqlite3 *db; /* Database connection associated with this table */ 1248 Module *pMod; /* Pointer to module implementation */ 1249 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1250 int nRef; /* Number of pointers to this structure */ 1251 u8 bConstraint; /* True if constraints are supported */ 1252 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1253 VTable *pNext; /* Next in linked list (see above) */ 1254 }; 1255 1256 /* 1257 ** Each SQL table is represented in memory by an instance of the 1258 ** following structure. 1259 ** 1260 ** Table.zName is the name of the table. The case of the original 1261 ** CREATE TABLE statement is stored, but case is not significant for 1262 ** comparisons. 1263 ** 1264 ** Table.nCol is the number of columns in this table. Table.aCol is a 1265 ** pointer to an array of Column structures, one for each column. 1266 ** 1267 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1268 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1269 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1270 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1271 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1272 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1273 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1274 ** 1275 ** Table.tnum is the page number for the root BTree page of the table in the 1276 ** database file. If Table.iDb is the index of the database table backend 1277 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1278 ** holds temporary tables and indices. If TF_Ephemeral is set 1279 ** then the table is stored in a file that is automatically deleted 1280 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1281 ** refers VDBE cursor number that holds the table open, not to the root 1282 ** page number. Transient tables are used to hold the results of a 1283 ** sub-query that appears instead of a real table name in the FROM clause 1284 ** of a SELECT statement. 1285 */ 1286 struct Table { 1287 char *zName; /* Name of the table or view */ 1288 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1289 int nCol; /* Number of columns in this table */ 1290 Column *aCol; /* Information about each column */ 1291 Index *pIndex; /* List of SQL indexes on this table. */ 1292 int tnum; /* Root BTree node for this table (see note above) */ 1293 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1294 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1295 u16 nRef; /* Number of pointers to this Table */ 1296 u8 tabFlags; /* Mask of TF_* values */ 1297 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1298 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1299 char *zColAff; /* String defining the affinity of each column */ 1300 #ifndef SQLITE_OMIT_CHECK 1301 ExprList *pCheck; /* All CHECK constraints */ 1302 #endif 1303 #ifndef SQLITE_OMIT_ALTERTABLE 1304 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1305 #endif 1306 #ifndef SQLITE_OMIT_VIRTUALTABLE 1307 VTable *pVTable; /* List of VTable objects. */ 1308 int nModuleArg; /* Number of arguments to the module */ 1309 char **azModuleArg; /* Text of all module args. [0] is module name */ 1310 #endif 1311 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1312 Schema *pSchema; /* Schema that contains this table */ 1313 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1314 }; 1315 1316 /* 1317 ** Allowed values for Tabe.tabFlags. 1318 */ 1319 #define TF_Readonly 0x01 /* Read-only system table */ 1320 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1321 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1322 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1323 #define TF_Virtual 0x10 /* Is a virtual table */ 1324 1325 1326 /* 1327 ** Test to see whether or not a table is a virtual table. This is 1328 ** done as a macro so that it will be optimized out when virtual 1329 ** table support is omitted from the build. 1330 */ 1331 #ifndef SQLITE_OMIT_VIRTUALTABLE 1332 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1333 # define IsHiddenColumn(X) ((X)->isHidden) 1334 #else 1335 # define IsVirtual(X) 0 1336 # define IsHiddenColumn(X) 0 1337 #endif 1338 1339 /* 1340 ** Each foreign key constraint is an instance of the following structure. 1341 ** 1342 ** A foreign key is associated with two tables. The "from" table is 1343 ** the table that contains the REFERENCES clause that creates the foreign 1344 ** key. The "to" table is the table that is named in the REFERENCES clause. 1345 ** Consider this example: 1346 ** 1347 ** CREATE TABLE ex1( 1348 ** a INTEGER PRIMARY KEY, 1349 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1350 ** ); 1351 ** 1352 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1353 ** 1354 ** Each REFERENCES clause generates an instance of the following structure 1355 ** which is attached to the from-table. The to-table need not exist when 1356 ** the from-table is created. The existence of the to-table is not checked. 1357 */ 1358 struct FKey { 1359 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1360 FKey *pNextFrom; /* Next foreign key in pFrom */ 1361 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1362 FKey *pNextTo; /* Next foreign key on table named zTo */ 1363 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1364 int nCol; /* Number of columns in this key */ 1365 /* EV: R-30323-21917 */ 1366 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1367 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1368 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1369 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1370 int iFrom; /* Index of column in pFrom */ 1371 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1372 } aCol[1]; /* One entry for each of nCol column s */ 1373 }; 1374 1375 /* 1376 ** SQLite supports many different ways to resolve a constraint 1377 ** error. ROLLBACK processing means that a constraint violation 1378 ** causes the operation in process to fail and for the current transaction 1379 ** to be rolled back. ABORT processing means the operation in process 1380 ** fails and any prior changes from that one operation are backed out, 1381 ** but the transaction is not rolled back. FAIL processing means that 1382 ** the operation in progress stops and returns an error code. But prior 1383 ** changes due to the same operation are not backed out and no rollback 1384 ** occurs. IGNORE means that the particular row that caused the constraint 1385 ** error is not inserted or updated. Processing continues and no error 1386 ** is returned. REPLACE means that preexisting database rows that caused 1387 ** a UNIQUE constraint violation are removed so that the new insert or 1388 ** update can proceed. Processing continues and no error is reported. 1389 ** 1390 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1391 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1392 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1393 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1394 ** referenced table row is propagated into the row that holds the 1395 ** foreign key. 1396 ** 1397 ** The following symbolic values are used to record which type 1398 ** of action to take. 1399 */ 1400 #define OE_None 0 /* There is no constraint to check */ 1401 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1402 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1403 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1404 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1405 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1406 1407 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1408 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1409 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1410 #define OE_Cascade 9 /* Cascade the changes */ 1411 1412 #define OE_Default 99 /* Do whatever the default action is */ 1413 1414 1415 /* 1416 ** An instance of the following structure is passed as the first 1417 ** argument to sqlite3VdbeKeyCompare and is used to control the 1418 ** comparison of the two index keys. 1419 */ 1420 struct KeyInfo { 1421 sqlite3 *db; /* The database connection */ 1422 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1423 u16 nField; /* Number of entries in aColl[] */ 1424 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1425 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1426 }; 1427 1428 /* 1429 ** An instance of the following structure holds information about a 1430 ** single index record that has already been parsed out into individual 1431 ** values. 1432 ** 1433 ** A record is an object that contains one or more fields of data. 1434 ** Records are used to store the content of a table row and to store 1435 ** the key of an index. A blob encoding of a record is created by 1436 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1437 ** OP_Column opcode. 1438 ** 1439 ** This structure holds a record that has already been disassembled 1440 ** into its constituent fields. 1441 */ 1442 struct UnpackedRecord { 1443 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1444 u16 nField; /* Number of entries in apMem[] */ 1445 u8 flags; /* Boolean settings. UNPACKED_... below */ 1446 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1447 Mem *aMem; /* Values */ 1448 }; 1449 1450 /* 1451 ** Allowed values of UnpackedRecord.flags 1452 */ 1453 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1454 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1455 #define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */ 1456 1457 /* 1458 ** Each SQL index is represented in memory by an 1459 ** instance of the following structure. 1460 ** 1461 ** The columns of the table that are to be indexed are described 1462 ** by the aiColumn[] field of this structure. For example, suppose 1463 ** we have the following table and index: 1464 ** 1465 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1466 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1467 ** 1468 ** In the Table structure describing Ex1, nCol==3 because there are 1469 ** three columns in the table. In the Index structure describing 1470 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1471 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1472 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1473 ** The second column to be indexed (c1) has an index of 0 in 1474 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1475 ** 1476 ** The Index.onError field determines whether or not the indexed columns 1477 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1478 ** it means this is not a unique index. Otherwise it is a unique index 1479 ** and the value of Index.onError indicate the which conflict resolution 1480 ** algorithm to employ whenever an attempt is made to insert a non-unique 1481 ** element. 1482 */ 1483 struct Index { 1484 char *zName; /* Name of this index */ 1485 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1486 tRowcnt *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1487 Table *pTable; /* The SQL table being indexed */ 1488 char *zColAff; /* String defining the affinity of each column */ 1489 Index *pNext; /* The next index associated with the same table */ 1490 Schema *pSchema; /* Schema containing this index */ 1491 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1492 char **azColl; /* Array of collation sequence names for index */ 1493 int nColumn; /* Number of columns in the table used by this index */ 1494 int tnum; /* Page containing root of this index in database file */ 1495 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1496 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1497 u8 bUnordered; /* Use this index for == or IN queries only */ 1498 #ifdef SQLITE_ENABLE_STAT3 1499 int nSample; /* Number of elements in aSample[] */ 1500 tRowcnt avgEq; /* Average nEq value for key values not in aSample */ 1501 IndexSample *aSample; /* Samples of the left-most key */ 1502 #endif 1503 }; 1504 1505 /* 1506 ** Each sample stored in the sqlite_stat3 table is represented in memory 1507 ** using a structure of this type. See documentation at the top of the 1508 ** analyze.c source file for additional information. 1509 */ 1510 struct IndexSample { 1511 union { 1512 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1513 double r; /* Value if eType is SQLITE_FLOAT */ 1514 i64 i; /* Value if eType is SQLITE_INTEGER */ 1515 } u; 1516 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1517 int nByte; /* Size in byte of text or blob. */ 1518 tRowcnt nEq; /* Est. number of rows where the key equals this sample */ 1519 tRowcnt nLt; /* Est. number of rows where key is less than this sample */ 1520 tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ 1521 }; 1522 1523 /* 1524 ** Each token coming out of the lexer is an instance of 1525 ** this structure. Tokens are also used as part of an expression. 1526 ** 1527 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1528 ** may contain random values. Do not make any assumptions about Token.dyn 1529 ** and Token.n when Token.z==0. 1530 */ 1531 struct Token { 1532 const char *z; /* Text of the token. Not NULL-terminated! */ 1533 unsigned int n; /* Number of characters in this token */ 1534 }; 1535 1536 /* 1537 ** An instance of this structure contains information needed to generate 1538 ** code for a SELECT that contains aggregate functions. 1539 ** 1540 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1541 ** pointer to this structure. The Expr.iColumn field is the index in 1542 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1543 ** code for that node. 1544 ** 1545 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1546 ** original Select structure that describes the SELECT statement. These 1547 ** fields do not need to be freed when deallocating the AggInfo structure. 1548 */ 1549 struct AggInfo { 1550 u8 directMode; /* Direct rendering mode means take data directly 1551 ** from source tables rather than from accumulators */ 1552 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1553 ** than the source table */ 1554 int sortingIdx; /* Cursor number of the sorting index */ 1555 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1556 int nSortingColumn; /* Number of columns in the sorting index */ 1557 ExprList *pGroupBy; /* The group by clause */ 1558 struct AggInfo_col { /* For each column used in source tables */ 1559 Table *pTab; /* Source table */ 1560 int iTable; /* Cursor number of the source table */ 1561 int iColumn; /* Column number within the source table */ 1562 int iSorterColumn; /* Column number in the sorting index */ 1563 int iMem; /* Memory location that acts as accumulator */ 1564 Expr *pExpr; /* The original expression */ 1565 } *aCol; 1566 int nColumn; /* Number of used entries in aCol[] */ 1567 int nAccumulator; /* Number of columns that show through to the output. 1568 ** Additional columns are used only as parameters to 1569 ** aggregate functions */ 1570 struct AggInfo_func { /* For each aggregate function */ 1571 Expr *pExpr; /* Expression encoding the function */ 1572 FuncDef *pFunc; /* The aggregate function implementation */ 1573 int iMem; /* Memory location that acts as accumulator */ 1574 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1575 } *aFunc; 1576 int nFunc; /* Number of entries in aFunc[] */ 1577 }; 1578 1579 /* 1580 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1581 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1582 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1583 ** it uses less memory in the Expr object, which is a big memory user 1584 ** in systems with lots of prepared statements. And few applications 1585 ** need more than about 10 or 20 variables. But some extreme users want 1586 ** to have prepared statements with over 32767 variables, and for them 1587 ** the option is available (at compile-time). 1588 */ 1589 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1590 typedef i16 ynVar; 1591 #else 1592 typedef int ynVar; 1593 #endif 1594 1595 /* 1596 ** Each node of an expression in the parse tree is an instance 1597 ** of this structure. 1598 ** 1599 ** Expr.op is the opcode. The integer parser token codes are reused 1600 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1601 ** code representing the ">=" operator. This same integer code is reused 1602 ** to represent the greater-than-or-equal-to operator in the expression 1603 ** tree. 1604 ** 1605 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1606 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1607 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1608 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1609 ** then Expr.token contains the name of the function. 1610 ** 1611 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1612 ** binary operator. Either or both may be NULL. 1613 ** 1614 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1615 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1616 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1617 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1618 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1619 ** valid. 1620 ** 1621 ** An expression of the form ID or ID.ID refers to a column in a table. 1622 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1623 ** the integer cursor number of a VDBE cursor pointing to that table and 1624 ** Expr.iColumn is the column number for the specific column. If the 1625 ** expression is used as a result in an aggregate SELECT, then the 1626 ** value is also stored in the Expr.iAgg column in the aggregate so that 1627 ** it can be accessed after all aggregates are computed. 1628 ** 1629 ** If the expression is an unbound variable marker (a question mark 1630 ** character '?' in the original SQL) then the Expr.iTable holds the index 1631 ** number for that variable. 1632 ** 1633 ** If the expression is a subquery then Expr.iColumn holds an integer 1634 ** register number containing the result of the subquery. If the 1635 ** subquery gives a constant result, then iTable is -1. If the subquery 1636 ** gives a different answer at different times during statement processing 1637 ** then iTable is the address of a subroutine that computes the subquery. 1638 ** 1639 ** If the Expr is of type OP_Column, and the table it is selecting from 1640 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1641 ** corresponding table definition. 1642 ** 1643 ** ALLOCATION NOTES: 1644 ** 1645 ** Expr objects can use a lot of memory space in database schema. To 1646 ** help reduce memory requirements, sometimes an Expr object will be 1647 ** truncated. And to reduce the number of memory allocations, sometimes 1648 ** two or more Expr objects will be stored in a single memory allocation, 1649 ** together with Expr.zToken strings. 1650 ** 1651 ** If the EP_Reduced and EP_TokenOnly flags are set when 1652 ** an Expr object is truncated. When EP_Reduced is set, then all 1653 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1654 ** are contained within the same memory allocation. Note, however, that 1655 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1656 ** allocated, regardless of whether or not EP_Reduced is set. 1657 */ 1658 struct Expr { 1659 u8 op; /* Operation performed by this node */ 1660 char affinity; /* The affinity of the column or 0 if not a column */ 1661 u16 flags; /* Various flags. EP_* See below */ 1662 union { 1663 char *zToken; /* Token value. Zero terminated and dequoted */ 1664 int iValue; /* Non-negative integer value if EP_IntValue */ 1665 } u; 1666 1667 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1668 ** space is allocated for the fields below this point. An attempt to 1669 ** access them will result in a segfault or malfunction. 1670 *********************************************************************/ 1671 1672 Expr *pLeft; /* Left subnode */ 1673 Expr *pRight; /* Right subnode */ 1674 union { 1675 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1676 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1677 } x; 1678 CollSeq *pColl; /* The collation type of the column or 0 */ 1679 1680 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1681 ** space is allocated for the fields below this point. An attempt to 1682 ** access them will result in a segfault or malfunction. 1683 *********************************************************************/ 1684 1685 int iTable; /* TK_COLUMN: cursor number of table holding column 1686 ** TK_REGISTER: register number 1687 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1688 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1689 ** TK_VARIABLE: variable number (always >= 1). */ 1690 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1691 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1692 u8 flags2; /* Second set of flags. EP2_... */ 1693 u8 op2; /* TK_REGISTER: original value of Expr.op 1694 ** TK_COLUMN: the value of p5 for OP_Column 1695 ** TK_AGG_FUNCTION: nesting depth */ 1696 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1697 Table *pTab; /* Table for TK_COLUMN expressions. */ 1698 #if SQLITE_MAX_EXPR_DEPTH>0 1699 int nHeight; /* Height of the tree headed by this node */ 1700 #endif 1701 }; 1702 1703 /* 1704 ** The following are the meanings of bits in the Expr.flags field. 1705 */ 1706 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1707 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1708 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1709 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1710 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1711 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1712 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1713 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1714 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1715 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1716 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1717 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1718 #define EP_Hint 0x1000 /* Not used */ 1719 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1720 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1721 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1722 1723 /* 1724 ** The following are the meanings of bits in the Expr.flags2 field. 1725 */ 1726 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1727 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1728 1729 /* 1730 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1731 ** flag on an expression structure. This flag is used for VV&A only. The 1732 ** routine is implemented as a macro that only works when in debugging mode, 1733 ** so as not to burden production code. 1734 */ 1735 #ifdef SQLITE_DEBUG 1736 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1737 #else 1738 # define ExprSetIrreducible(X) 1739 #endif 1740 1741 /* 1742 ** These macros can be used to test, set, or clear bits in the 1743 ** Expr.flags field. 1744 */ 1745 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1746 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1747 #define ExprSetProperty(E,P) (E)->flags|=(P) 1748 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1749 1750 /* 1751 ** Macros to determine the number of bytes required by a normal Expr 1752 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1753 ** and an Expr struct with the EP_TokenOnly flag set. 1754 */ 1755 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1756 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1757 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1758 1759 /* 1760 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1761 ** above sqlite3ExprDup() for details. 1762 */ 1763 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1764 1765 /* 1766 ** A list of expressions. Each expression may optionally have a 1767 ** name. An expr/name combination can be used in several ways, such 1768 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1769 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1770 ** also be used as the argument to a function, in which case the a.zName 1771 ** field is not used. 1772 */ 1773 struct ExprList { 1774 int nExpr; /* Number of expressions on the list */ 1775 int iECursor; /* VDBE Cursor associated with this ExprList */ 1776 struct ExprList_item { /* For each expression in the list */ 1777 Expr *pExpr; /* The list of expressions */ 1778 char *zName; /* Token associated with this expression */ 1779 char *zSpan; /* Original text of the expression */ 1780 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1781 u8 done; /* A flag to indicate when processing is finished */ 1782 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1783 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1784 } *a; /* Alloc a power of two greater or equal to nExpr */ 1785 }; 1786 1787 /* 1788 ** An instance of this structure is used by the parser to record both 1789 ** the parse tree for an expression and the span of input text for an 1790 ** expression. 1791 */ 1792 struct ExprSpan { 1793 Expr *pExpr; /* The expression parse tree */ 1794 const char *zStart; /* First character of input text */ 1795 const char *zEnd; /* One character past the end of input text */ 1796 }; 1797 1798 /* 1799 ** An instance of this structure can hold a simple list of identifiers, 1800 ** such as the list "a,b,c" in the following statements: 1801 ** 1802 ** INSERT INTO t(a,b,c) VALUES ...; 1803 ** CREATE INDEX idx ON t(a,b,c); 1804 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1805 ** 1806 ** The IdList.a.idx field is used when the IdList represents the list of 1807 ** column names after a table name in an INSERT statement. In the statement 1808 ** 1809 ** INSERT INTO t(a,b,c) ... 1810 ** 1811 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1812 */ 1813 struct IdList { 1814 struct IdList_item { 1815 char *zName; /* Name of the identifier */ 1816 int idx; /* Index in some Table.aCol[] of a column named zName */ 1817 } *a; 1818 int nId; /* Number of identifiers on the list */ 1819 }; 1820 1821 /* 1822 ** The bitmask datatype defined below is used for various optimizations. 1823 ** 1824 ** Changing this from a 64-bit to a 32-bit type limits the number of 1825 ** tables in a join to 32 instead of 64. But it also reduces the size 1826 ** of the library by 738 bytes on ix86. 1827 */ 1828 typedef u64 Bitmask; 1829 1830 /* 1831 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1832 */ 1833 #define BMS ((int)(sizeof(Bitmask)*8)) 1834 1835 /* 1836 ** The following structure describes the FROM clause of a SELECT statement. 1837 ** Each table or subquery in the FROM clause is a separate element of 1838 ** the SrcList.a[] array. 1839 ** 1840 ** With the addition of multiple database support, the following structure 1841 ** can also be used to describe a particular table such as the table that 1842 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1843 ** such a table must be a simple name: ID. But in SQLite, the table can 1844 ** now be identified by a database name, a dot, then the table name: ID.ID. 1845 ** 1846 ** The jointype starts out showing the join type between the current table 1847 ** and the next table on the list. The parser builds the list this way. 1848 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1849 ** jointype expresses the join between the table and the previous table. 1850 ** 1851 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1852 ** contains more than 63 columns and the 64-th or later column is used. 1853 */ 1854 struct SrcList { 1855 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1856 i16 nAlloc; /* Number of entries allocated in a[] below */ 1857 struct SrcList_item { 1858 char *zDatabase; /* Name of database holding this table */ 1859 char *zName; /* Name of the table */ 1860 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1861 Table *pTab; /* An SQL table corresponding to zName */ 1862 Select *pSelect; /* A SELECT statement used in place of a table name */ 1863 int addrFillSub; /* Address of subroutine to manifest a subquery */ 1864 int regReturn; /* Register holding return address of addrFillSub */ 1865 u8 jointype; /* Type of join between this able and the previous */ 1866 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1867 u8 isCorrelated; /* True if sub-query is correlated */ 1868 #ifndef SQLITE_OMIT_EXPLAIN 1869 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 1870 #endif 1871 int iCursor; /* The VDBE cursor number used to access this table */ 1872 Expr *pOn; /* The ON clause of a join */ 1873 IdList *pUsing; /* The USING clause of a join */ 1874 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1875 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1876 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1877 } a[1]; /* One entry for each identifier on the list */ 1878 }; 1879 1880 /* 1881 ** Permitted values of the SrcList.a.jointype field 1882 */ 1883 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1884 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1885 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1886 #define JT_LEFT 0x0008 /* Left outer join */ 1887 #define JT_RIGHT 0x0010 /* Right outer join */ 1888 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1889 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1890 1891 1892 /* 1893 ** A WherePlan object holds information that describes a lookup 1894 ** strategy. 1895 ** 1896 ** This object is intended to be opaque outside of the where.c module. 1897 ** It is included here only so that that compiler will know how big it 1898 ** is. None of the fields in this object should be used outside of 1899 ** the where.c module. 1900 ** 1901 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1902 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1903 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1904 ** case that more than one of these conditions is true. 1905 */ 1906 struct WherePlan { 1907 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1908 u32 nEq; /* Number of == constraints */ 1909 double nRow; /* Estimated number of rows (for EQP) */ 1910 union { 1911 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1912 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1913 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1914 } u; 1915 }; 1916 1917 /* 1918 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1919 ** structure contains a single instance of this structure. This structure 1920 ** is intended to be private to the where.c module and should not be 1921 ** access or modified by other modules. 1922 ** 1923 ** The pIdxInfo field is used to help pick the best index on a 1924 ** virtual table. The pIdxInfo pointer contains indexing 1925 ** information for the i-th table in the FROM clause before reordering. 1926 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1927 ** All other information in the i-th WhereLevel object for the i-th table 1928 ** after FROM clause ordering. 1929 */ 1930 struct WhereLevel { 1931 WherePlan plan; /* query plan for this element of the FROM clause */ 1932 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1933 int iTabCur; /* The VDBE cursor used to access the table */ 1934 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1935 int addrBrk; /* Jump here to break out of the loop */ 1936 int addrNxt; /* Jump here to start the next IN combination */ 1937 int addrCont; /* Jump here to continue with the next loop cycle */ 1938 int addrFirst; /* First instruction of interior of the loop */ 1939 u8 iFrom; /* Which entry in the FROM clause */ 1940 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1941 int p1, p2; /* Operands of the opcode used to ends the loop */ 1942 union { /* Information that depends on plan.wsFlags */ 1943 struct { 1944 int nIn; /* Number of entries in aInLoop[] */ 1945 struct InLoop { 1946 int iCur; /* The VDBE cursor used by this IN operator */ 1947 int addrInTop; /* Top of the IN loop */ 1948 } *aInLoop; /* Information about each nested IN operator */ 1949 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1950 Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ 1951 } u; 1952 1953 /* The following field is really not part of the current level. But 1954 ** we need a place to cache virtual table index information for each 1955 ** virtual table in the FROM clause and the WhereLevel structure is 1956 ** a convenient place since there is one WhereLevel for each FROM clause 1957 ** element. 1958 */ 1959 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1960 }; 1961 1962 /* 1963 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1964 ** and the WhereInfo.wctrlFlags member. 1965 */ 1966 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1967 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1968 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1969 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1970 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1971 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 1972 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 1973 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 1974 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 1975 1976 /* 1977 ** The WHERE clause processing routine has two halves. The 1978 ** first part does the start of the WHERE loop and the second 1979 ** half does the tail of the WHERE loop. An instance of 1980 ** this structure is returned by the first half and passed 1981 ** into the second half to give some continuity. 1982 */ 1983 struct WhereInfo { 1984 Parse *pParse; /* Parsing and code generating context */ 1985 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1986 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1987 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 1988 u8 eDistinct; 1989 SrcList *pTabList; /* List of tables in the join */ 1990 int iTop; /* The very beginning of the WHERE loop */ 1991 int iContinue; /* Jump here to continue with next record */ 1992 int iBreak; /* Jump here to break out of the loop */ 1993 int nLevel; /* Number of nested loop */ 1994 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1995 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 1996 double nRowOut; /* Estimated number of output rows */ 1997 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 1998 }; 1999 2000 #define WHERE_DISTINCT_UNIQUE 1 2001 #define WHERE_DISTINCT_ORDERED 2 2002 2003 /* 2004 ** A NameContext defines a context in which to resolve table and column 2005 ** names. The context consists of a list of tables (the pSrcList) field and 2006 ** a list of named expression (pEList). The named expression list may 2007 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2008 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2009 ** pEList corresponds to the result set of a SELECT and is NULL for 2010 ** other statements. 2011 ** 2012 ** NameContexts can be nested. When resolving names, the inner-most 2013 ** context is searched first. If no match is found, the next outer 2014 ** context is checked. If there is still no match, the next context 2015 ** is checked. This process continues until either a match is found 2016 ** or all contexts are check. When a match is found, the nRef member of 2017 ** the context containing the match is incremented. 2018 ** 2019 ** Each subquery gets a new NameContext. The pNext field points to the 2020 ** NameContext in the parent query. Thus the process of scanning the 2021 ** NameContext list corresponds to searching through successively outer 2022 ** subqueries looking for a match. 2023 */ 2024 struct NameContext { 2025 Parse *pParse; /* The parser */ 2026 SrcList *pSrcList; /* One or more tables used to resolve names */ 2027 ExprList *pEList; /* Optional list of named expressions */ 2028 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2029 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2030 int nRef; /* Number of names resolved by this context */ 2031 int nErr; /* Number of errors encountered while resolving names */ 2032 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2033 }; 2034 2035 /* 2036 ** Allowed values for the NameContext, ncFlags field. 2037 */ 2038 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2039 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2040 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2041 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2042 2043 /* 2044 ** An instance of the following structure contains all information 2045 ** needed to generate code for a single SELECT statement. 2046 ** 2047 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2048 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2049 ** limit and nOffset to the value of the offset (or 0 if there is not 2050 ** offset). But later on, nLimit and nOffset become the memory locations 2051 ** in the VDBE that record the limit and offset counters. 2052 ** 2053 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2054 ** These addresses must be stored so that we can go back and fill in 2055 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2056 ** the number of columns in P2 can be computed at the same time 2057 ** as the OP_OpenEphm instruction is coded because not 2058 ** enough information about the compound query is known at that point. 2059 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2060 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 2061 ** sequences for the ORDER BY clause. 2062 */ 2063 struct Select { 2064 ExprList *pEList; /* The fields of the result */ 2065 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2066 char affinity; /* MakeRecord with this affinity for SRT_Set */ 2067 u16 selFlags; /* Various SF_* values */ 2068 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2069 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2070 double nSelectRow; /* Estimated number of result rows */ 2071 SrcList *pSrc; /* The FROM clause */ 2072 Expr *pWhere; /* The WHERE clause */ 2073 ExprList *pGroupBy; /* The GROUP BY clause */ 2074 Expr *pHaving; /* The HAVING clause */ 2075 ExprList *pOrderBy; /* The ORDER BY clause */ 2076 Select *pPrior; /* Prior select in a compound select statement */ 2077 Select *pNext; /* Next select to the left in a compound */ 2078 Select *pRightmost; /* Right-most select in a compound select statement */ 2079 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2080 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2081 }; 2082 2083 /* 2084 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2085 ** "Select Flag". 2086 */ 2087 #define SF_Distinct 0x01 /* Output should be DISTINCT */ 2088 #define SF_Resolved 0x02 /* Identifiers have been resolved */ 2089 #define SF_Aggregate 0x04 /* Contains aggregate functions */ 2090 #define SF_UsesEphemeral 0x08 /* Uses the OpenEphemeral opcode */ 2091 #define SF_Expanded 0x10 /* sqlite3SelectExpand() called on this */ 2092 #define SF_HasTypeInfo 0x20 /* FROM subqueries have Table metadata */ 2093 #define SF_UseSorter 0x40 /* Sort using a sorter */ 2094 #define SF_Values 0x80 /* Synthesized from VALUES clause */ 2095 2096 2097 /* 2098 ** The results of a select can be distributed in several ways. The 2099 ** "SRT" prefix means "SELECT Result Type". 2100 */ 2101 #define SRT_Union 1 /* Store result as keys in an index */ 2102 #define SRT_Except 2 /* Remove result from a UNION index */ 2103 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2104 #define SRT_Discard 4 /* Do not save the results anywhere */ 2105 2106 /* The ORDER BY clause is ignored for all of the above */ 2107 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2108 2109 #define SRT_Output 5 /* Output each row of result */ 2110 #define SRT_Mem 6 /* Store result in a memory cell */ 2111 #define SRT_Set 7 /* Store results as keys in an index */ 2112 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2113 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2114 #define SRT_Coroutine 10 /* Generate a single row of result */ 2115 2116 /* 2117 ** A structure used to customize the behavior of sqlite3Select(). See 2118 ** comments above sqlite3Select() for details. 2119 */ 2120 typedef struct SelectDest SelectDest; 2121 struct SelectDest { 2122 u8 eDest; /* How to dispose of the results */ 2123 u8 affSdst; /* Affinity used when eDest==SRT_Set */ 2124 int iSDParm; /* A parameter used by the eDest disposal method */ 2125 int iSdst; /* Base register where results are written */ 2126 int nSdst; /* Number of registers allocated */ 2127 }; 2128 2129 /* 2130 ** During code generation of statements that do inserts into AUTOINCREMENT 2131 ** tables, the following information is attached to the Table.u.autoInc.p 2132 ** pointer of each autoincrement table to record some side information that 2133 ** the code generator needs. We have to keep per-table autoincrement 2134 ** information in case inserts are down within triggers. Triggers do not 2135 ** normally coordinate their activities, but we do need to coordinate the 2136 ** loading and saving of autoincrement information. 2137 */ 2138 struct AutoincInfo { 2139 AutoincInfo *pNext; /* Next info block in a list of them all */ 2140 Table *pTab; /* Table this info block refers to */ 2141 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2142 int regCtr; /* Memory register holding the rowid counter */ 2143 }; 2144 2145 /* 2146 ** Size of the column cache 2147 */ 2148 #ifndef SQLITE_N_COLCACHE 2149 # define SQLITE_N_COLCACHE 10 2150 #endif 2151 2152 /* 2153 ** At least one instance of the following structure is created for each 2154 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2155 ** statement. All such objects are stored in the linked list headed at 2156 ** Parse.pTriggerPrg and deleted once statement compilation has been 2157 ** completed. 2158 ** 2159 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2160 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2161 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2162 ** The Parse.pTriggerPrg list never contains two entries with the same 2163 ** values for both pTrigger and orconf. 2164 ** 2165 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2166 ** accessed (or set to 0 for triggers fired as a result of INSERT 2167 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2168 ** a mask of new.* columns used by the program. 2169 */ 2170 struct TriggerPrg { 2171 Trigger *pTrigger; /* Trigger this program was coded from */ 2172 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2173 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2174 int orconf; /* Default ON CONFLICT policy */ 2175 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2176 }; 2177 2178 /* 2179 ** The yDbMask datatype for the bitmask of all attached databases. 2180 */ 2181 #if SQLITE_MAX_ATTACHED>30 2182 typedef sqlite3_uint64 yDbMask; 2183 #else 2184 typedef unsigned int yDbMask; 2185 #endif 2186 2187 /* 2188 ** An SQL parser context. A copy of this structure is passed through 2189 ** the parser and down into all the parser action routine in order to 2190 ** carry around information that is global to the entire parse. 2191 ** 2192 ** The structure is divided into two parts. When the parser and code 2193 ** generate call themselves recursively, the first part of the structure 2194 ** is constant but the second part is reset at the beginning and end of 2195 ** each recursion. 2196 ** 2197 ** The nTableLock and aTableLock variables are only used if the shared-cache 2198 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2199 ** used to store the set of table-locks required by the statement being 2200 ** compiled. Function sqlite3TableLock() is used to add entries to the 2201 ** list. 2202 */ 2203 struct Parse { 2204 sqlite3 *db; /* The main database structure */ 2205 char *zErrMsg; /* An error message */ 2206 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2207 int rc; /* Return code from execution */ 2208 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2209 u8 checkSchema; /* Causes schema cookie check after an error */ 2210 u8 nested; /* Number of nested calls to the parser/code generator */ 2211 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2212 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2213 u8 nColCache; /* Number of entries in aColCache[] */ 2214 u8 iColCache; /* Next entry in aColCache[] to replace */ 2215 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2216 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2217 int aTempReg[8]; /* Holding area for temporary registers */ 2218 int nRangeReg; /* Size of the temporary register block */ 2219 int iRangeReg; /* First register in temporary register block */ 2220 int nErr; /* Number of errors seen */ 2221 int nTab; /* Number of previously allocated VDBE cursors */ 2222 int nMem; /* Number of memory cells used so far */ 2223 int nSet; /* Number of sets used so far */ 2224 int nOnce; /* Number of OP_Once instructions so far */ 2225 int ckBase; /* Base register of data during check constraints */ 2226 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2227 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2228 struct yColCache { 2229 int iTable; /* Table cursor number */ 2230 int iColumn; /* Table column number */ 2231 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2232 int iLevel; /* Nesting level */ 2233 int iReg; /* Reg with value of this column. 0 means none. */ 2234 int lru; /* Least recently used entry has the smallest value */ 2235 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2236 yDbMask writeMask; /* Start a write transaction on these databases */ 2237 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2238 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2239 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2240 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2241 int regRoot; /* Register holding root page number for new objects */ 2242 int nMaxArg; /* Max args passed to user function by sub-program */ 2243 Token constraintName;/* Name of the constraint currently being parsed */ 2244 #ifndef SQLITE_OMIT_SHARED_CACHE 2245 int nTableLock; /* Number of locks in aTableLock */ 2246 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2247 #endif 2248 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2249 2250 /* Information used while coding trigger programs. */ 2251 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2252 Table *pTriggerTab; /* Table triggers are being coded for */ 2253 double nQueryLoop; /* Estimated number of iterations of a query */ 2254 u32 oldmask; /* Mask of old.* columns referenced */ 2255 u32 newmask; /* Mask of new.* columns referenced */ 2256 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2257 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2258 u8 disableTriggers; /* True to disable triggers */ 2259 2260 /* Above is constant between recursions. Below is reset before and after 2261 ** each recursion */ 2262 2263 int nVar; /* Number of '?' variables seen in the SQL so far */ 2264 int nzVar; /* Number of available slots in azVar[] */ 2265 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2266 #ifndef SQLITE_OMIT_VIRTUALTABLE 2267 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2268 int nVtabLock; /* Number of virtual tables to lock */ 2269 #endif 2270 int nAlias; /* Number of aliased result set columns */ 2271 int nHeight; /* Expression tree height of current sub-select */ 2272 #ifndef SQLITE_OMIT_EXPLAIN 2273 int iSelectId; /* ID of current select for EXPLAIN output */ 2274 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2275 #endif 2276 char **azVar; /* Pointers to names of parameters */ 2277 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2278 int *aAlias; /* Register used to hold aliased result */ 2279 const char *zTail; /* All SQL text past the last semicolon parsed */ 2280 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2281 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2282 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2283 Token sNameToken; /* Token with unqualified schema object name */ 2284 Token sLastToken; /* The last token parsed */ 2285 #ifndef SQLITE_OMIT_VIRTUALTABLE 2286 Token sArg; /* Complete text of a module argument */ 2287 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2288 #endif 2289 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2290 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2291 }; 2292 2293 /* 2294 ** Return true if currently inside an sqlite3_declare_vtab() call. 2295 */ 2296 #ifdef SQLITE_OMIT_VIRTUALTABLE 2297 #define IN_DECLARE_VTAB 0 2298 #else 2299 #define IN_DECLARE_VTAB (pParse->declareVtab) 2300 #endif 2301 2302 /* 2303 ** An instance of the following structure can be declared on a stack and used 2304 ** to save the Parse.zAuthContext value so that it can be restored later. 2305 */ 2306 struct AuthContext { 2307 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2308 Parse *pParse; /* The Parse structure */ 2309 }; 2310 2311 /* 2312 ** Bitfield flags for P5 value in various opcodes. 2313 */ 2314 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2315 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2316 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2317 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2318 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2319 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2320 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2321 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2322 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2323 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2324 2325 /* 2326 * Each trigger present in the database schema is stored as an instance of 2327 * struct Trigger. 2328 * 2329 * Pointers to instances of struct Trigger are stored in two ways. 2330 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2331 * database). This allows Trigger structures to be retrieved by name. 2332 * 2. All triggers associated with a single table form a linked list, using the 2333 * pNext member of struct Trigger. A pointer to the first element of the 2334 * linked list is stored as the "pTrigger" member of the associated 2335 * struct Table. 2336 * 2337 * The "step_list" member points to the first element of a linked list 2338 * containing the SQL statements specified as the trigger program. 2339 */ 2340 struct Trigger { 2341 char *zName; /* The name of the trigger */ 2342 char *table; /* The table or view to which the trigger applies */ 2343 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2344 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2345 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2346 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2347 the <column-list> is stored here */ 2348 Schema *pSchema; /* Schema containing the trigger */ 2349 Schema *pTabSchema; /* Schema containing the table */ 2350 TriggerStep *step_list; /* Link list of trigger program steps */ 2351 Trigger *pNext; /* Next trigger associated with the table */ 2352 }; 2353 2354 /* 2355 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2356 ** determine which. 2357 ** 2358 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2359 ** In that cases, the constants below can be ORed together. 2360 */ 2361 #define TRIGGER_BEFORE 1 2362 #define TRIGGER_AFTER 2 2363 2364 /* 2365 * An instance of struct TriggerStep is used to store a single SQL statement 2366 * that is a part of a trigger-program. 2367 * 2368 * Instances of struct TriggerStep are stored in a singly linked list (linked 2369 * using the "pNext" member) referenced by the "step_list" member of the 2370 * associated struct Trigger instance. The first element of the linked list is 2371 * the first step of the trigger-program. 2372 * 2373 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2374 * "SELECT" statement. The meanings of the other members is determined by the 2375 * value of "op" as follows: 2376 * 2377 * (op == TK_INSERT) 2378 * orconf -> stores the ON CONFLICT algorithm 2379 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2380 * this stores a pointer to the SELECT statement. Otherwise NULL. 2381 * target -> A token holding the quoted name of the table to insert into. 2382 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2383 * this stores values to be inserted. Otherwise NULL. 2384 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2385 * statement, then this stores the column-names to be 2386 * inserted into. 2387 * 2388 * (op == TK_DELETE) 2389 * target -> A token holding the quoted name of the table to delete from. 2390 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2391 * Otherwise NULL. 2392 * 2393 * (op == TK_UPDATE) 2394 * target -> A token holding the quoted name of the table to update rows of. 2395 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2396 * Otherwise NULL. 2397 * pExprList -> A list of the columns to update and the expressions to update 2398 * them to. See sqlite3Update() documentation of "pChanges" 2399 * argument. 2400 * 2401 */ 2402 struct TriggerStep { 2403 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2404 u8 orconf; /* OE_Rollback etc. */ 2405 Trigger *pTrig; /* The trigger that this step is a part of */ 2406 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2407 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2408 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2409 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2410 IdList *pIdList; /* Column names for INSERT */ 2411 TriggerStep *pNext; /* Next in the link-list */ 2412 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2413 }; 2414 2415 /* 2416 ** The following structure contains information used by the sqliteFix... 2417 ** routines as they walk the parse tree to make database references 2418 ** explicit. 2419 */ 2420 typedef struct DbFixer DbFixer; 2421 struct DbFixer { 2422 Parse *pParse; /* The parsing context. Error messages written here */ 2423 const char *zDb; /* Make sure all objects are contained in this database */ 2424 const char *zType; /* Type of the container - used for error messages */ 2425 const Token *pName; /* Name of the container - used for error messages */ 2426 }; 2427 2428 /* 2429 ** An objected used to accumulate the text of a string where we 2430 ** do not necessarily know how big the string will be in the end. 2431 */ 2432 struct StrAccum { 2433 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2434 char *zBase; /* A base allocation. Not from malloc. */ 2435 char *zText; /* The string collected so far */ 2436 int nChar; /* Length of the string so far */ 2437 int nAlloc; /* Amount of space allocated in zText */ 2438 int mxAlloc; /* Maximum allowed string length */ 2439 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2440 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2441 u8 tooBig; /* Becomes true if string size exceeds limits */ 2442 }; 2443 2444 /* 2445 ** A pointer to this structure is used to communicate information 2446 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2447 */ 2448 typedef struct { 2449 sqlite3 *db; /* The database being initialized */ 2450 char **pzErrMsg; /* Error message stored here */ 2451 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2452 int rc; /* Result code stored here */ 2453 } InitData; 2454 2455 /* 2456 ** Structure containing global configuration data for the SQLite library. 2457 ** 2458 ** This structure also contains some state information. 2459 */ 2460 struct Sqlite3Config { 2461 int bMemstat; /* True to enable memory status */ 2462 int bCoreMutex; /* True to enable core mutexing */ 2463 int bFullMutex; /* True to enable full mutexing */ 2464 int bOpenUri; /* True to interpret filenames as URIs */ 2465 int mxStrlen; /* Maximum string length */ 2466 int szLookaside; /* Default lookaside buffer size */ 2467 int nLookaside; /* Default lookaside buffer count */ 2468 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2469 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2470 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2471 void *pHeap; /* Heap storage space */ 2472 int nHeap; /* Size of pHeap[] */ 2473 int mnReq, mxReq; /* Min and max heap requests sizes */ 2474 void *pScratch; /* Scratch memory */ 2475 int szScratch; /* Size of each scratch buffer */ 2476 int nScratch; /* Number of scratch buffers */ 2477 void *pPage; /* Page cache memory */ 2478 int szPage; /* Size of each page in pPage[] */ 2479 int nPage; /* Number of pages in pPage[] */ 2480 int mxParserStack; /* maximum depth of the parser stack */ 2481 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2482 /* The above might be initialized to non-zero. The following need to always 2483 ** initially be zero, however. */ 2484 int isInit; /* True after initialization has finished */ 2485 int inProgress; /* True while initialization in progress */ 2486 int isMutexInit; /* True after mutexes are initialized */ 2487 int isMallocInit; /* True after malloc is initialized */ 2488 int isPCacheInit; /* True after malloc is initialized */ 2489 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2490 int nRefInitMutex; /* Number of users of pInitMutex */ 2491 void (*xLog)(void*,int,const char*); /* Function for logging */ 2492 void *pLogArg; /* First argument to xLog() */ 2493 int bLocaltimeFault; /* True to fail localtime() calls */ 2494 }; 2495 2496 /* 2497 ** Context pointer passed down through the tree-walk. 2498 */ 2499 struct Walker { 2500 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2501 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2502 Parse *pParse; /* Parser context. */ 2503 int walkerDepth; /* Number of subqueries */ 2504 union { /* Extra data for callback */ 2505 NameContext *pNC; /* Naming context */ 2506 int i; /* Integer value */ 2507 SrcList *pSrcList; /* FROM clause */ 2508 struct SrcCount *pSrcCount; /* Counting column references */ 2509 } u; 2510 }; 2511 2512 /* Forward declarations */ 2513 int sqlite3WalkExpr(Walker*, Expr*); 2514 int sqlite3WalkExprList(Walker*, ExprList*); 2515 int sqlite3WalkSelect(Walker*, Select*); 2516 int sqlite3WalkSelectExpr(Walker*, Select*); 2517 int sqlite3WalkSelectFrom(Walker*, Select*); 2518 2519 /* 2520 ** Return code from the parse-tree walking primitives and their 2521 ** callbacks. 2522 */ 2523 #define WRC_Continue 0 /* Continue down into children */ 2524 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2525 #define WRC_Abort 2 /* Abandon the tree walk */ 2526 2527 /* 2528 ** Assuming zIn points to the first byte of a UTF-8 character, 2529 ** advance zIn to point to the first byte of the next UTF-8 character. 2530 */ 2531 #define SQLITE_SKIP_UTF8(zIn) { \ 2532 if( (*(zIn++))>=0xc0 ){ \ 2533 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2534 } \ 2535 } 2536 2537 /* 2538 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2539 ** the same name but without the _BKPT suffix. These macros invoke 2540 ** routines that report the line-number on which the error originated 2541 ** using sqlite3_log(). The routines also provide a convenient place 2542 ** to set a debugger breakpoint. 2543 */ 2544 int sqlite3CorruptError(int); 2545 int sqlite3MisuseError(int); 2546 int sqlite3CantopenError(int); 2547 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2548 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2549 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2550 2551 2552 /* 2553 ** FTS4 is really an extension for FTS3. It is enabled using the 2554 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2555 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2556 */ 2557 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2558 # define SQLITE_ENABLE_FTS3 2559 #endif 2560 2561 /* 2562 ** The ctype.h header is needed for non-ASCII systems. It is also 2563 ** needed by FTS3 when FTS3 is included in the amalgamation. 2564 */ 2565 #if !defined(SQLITE_ASCII) || \ 2566 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2567 # include <ctype.h> 2568 #endif 2569 2570 /* 2571 ** The following macros mimic the standard library functions toupper(), 2572 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2573 ** sqlite versions only work for ASCII characters, regardless of locale. 2574 */ 2575 #ifdef SQLITE_ASCII 2576 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2577 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2578 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2579 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2580 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2581 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2582 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2583 #else 2584 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2585 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2586 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2587 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2588 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2589 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2590 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2591 #endif 2592 2593 /* 2594 ** Internal function prototypes 2595 */ 2596 #define sqlite3StrICmp sqlite3_stricmp 2597 int sqlite3Strlen30(const char*); 2598 #define sqlite3StrNICmp sqlite3_strnicmp 2599 2600 int sqlite3MallocInit(void); 2601 void sqlite3MallocEnd(void); 2602 void *sqlite3Malloc(int); 2603 void *sqlite3MallocZero(int); 2604 void *sqlite3DbMallocZero(sqlite3*, int); 2605 void *sqlite3DbMallocRaw(sqlite3*, int); 2606 char *sqlite3DbStrDup(sqlite3*,const char*); 2607 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2608 void *sqlite3Realloc(void*, int); 2609 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2610 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2611 void sqlite3DbFree(sqlite3*, void*); 2612 int sqlite3MallocSize(void*); 2613 int sqlite3DbMallocSize(sqlite3*, void*); 2614 void *sqlite3ScratchMalloc(int); 2615 void sqlite3ScratchFree(void*); 2616 void *sqlite3PageMalloc(int); 2617 void sqlite3PageFree(void*); 2618 void sqlite3MemSetDefault(void); 2619 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2620 int sqlite3HeapNearlyFull(void); 2621 2622 /* 2623 ** On systems with ample stack space and that support alloca(), make 2624 ** use of alloca() to obtain space for large automatic objects. By default, 2625 ** obtain space from malloc(). 2626 ** 2627 ** The alloca() routine never returns NULL. This will cause code paths 2628 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2629 */ 2630 #ifdef SQLITE_USE_ALLOCA 2631 # define sqlite3StackAllocRaw(D,N) alloca(N) 2632 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2633 # define sqlite3StackFree(D,P) 2634 #else 2635 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2636 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2637 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2638 #endif 2639 2640 #ifdef SQLITE_ENABLE_MEMSYS3 2641 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2642 #endif 2643 #ifdef SQLITE_ENABLE_MEMSYS5 2644 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2645 #endif 2646 2647 2648 #ifndef SQLITE_MUTEX_OMIT 2649 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2650 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2651 sqlite3_mutex *sqlite3MutexAlloc(int); 2652 int sqlite3MutexInit(void); 2653 int sqlite3MutexEnd(void); 2654 #endif 2655 2656 int sqlite3StatusValue(int); 2657 void sqlite3StatusAdd(int, int); 2658 void sqlite3StatusSet(int, int); 2659 2660 #ifndef SQLITE_OMIT_FLOATING_POINT 2661 int sqlite3IsNaN(double); 2662 #else 2663 # define sqlite3IsNaN(X) 0 2664 #endif 2665 2666 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2667 #ifndef SQLITE_OMIT_TRACE 2668 void sqlite3XPrintf(StrAccum*, const char*, ...); 2669 #endif 2670 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2671 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2672 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2673 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2674 void sqlite3DebugPrintf(const char*, ...); 2675 #endif 2676 #if defined(SQLITE_TEST) 2677 void *sqlite3TestTextToPtr(const char*); 2678 #endif 2679 2680 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2681 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2682 void sqlite3ExplainBegin(Vdbe*); 2683 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2684 void sqlite3ExplainNL(Vdbe*); 2685 void sqlite3ExplainPush(Vdbe*); 2686 void sqlite3ExplainPop(Vdbe*); 2687 void sqlite3ExplainFinish(Vdbe*); 2688 void sqlite3ExplainSelect(Vdbe*, Select*); 2689 void sqlite3ExplainExpr(Vdbe*, Expr*); 2690 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2691 const char *sqlite3VdbeExplanation(Vdbe*); 2692 #else 2693 # define sqlite3ExplainBegin(X) 2694 # define sqlite3ExplainSelect(A,B) 2695 # define sqlite3ExplainExpr(A,B) 2696 # define sqlite3ExplainExprList(A,B) 2697 # define sqlite3ExplainFinish(X) 2698 # define sqlite3VdbeExplanation(X) 0 2699 #endif 2700 2701 2702 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2703 void sqlite3ErrorMsg(Parse*, const char*, ...); 2704 int sqlite3Dequote(char*); 2705 int sqlite3KeywordCode(const unsigned char*, int); 2706 int sqlite3RunParser(Parse*, const char*, char **); 2707 void sqlite3FinishCoding(Parse*); 2708 int sqlite3GetTempReg(Parse*); 2709 void sqlite3ReleaseTempReg(Parse*,int); 2710 int sqlite3GetTempRange(Parse*,int); 2711 void sqlite3ReleaseTempRange(Parse*,int,int); 2712 void sqlite3ClearTempRegCache(Parse*); 2713 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2714 Expr *sqlite3Expr(sqlite3*,int,const char*); 2715 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2716 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2717 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2718 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2719 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2720 void sqlite3ExprDelete(sqlite3*, Expr*); 2721 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2722 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2723 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2724 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2725 int sqlite3Init(sqlite3*, char**); 2726 int sqlite3InitCallback(void*, int, char**, char**); 2727 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2728 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 2729 void sqlite3ResetOneSchema(sqlite3*,int); 2730 void sqlite3CollapseDatabaseArray(sqlite3*); 2731 void sqlite3BeginParse(Parse*,int); 2732 void sqlite3CommitInternalChanges(sqlite3*); 2733 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2734 void sqlite3OpenMasterTable(Parse *, int); 2735 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2736 void sqlite3AddColumn(Parse*,Token*); 2737 void sqlite3AddNotNull(Parse*, int); 2738 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2739 void sqlite3AddCheckConstraint(Parse*, Expr*); 2740 void sqlite3AddColumnType(Parse*,Token*); 2741 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2742 void sqlite3AddCollateType(Parse*, Token*); 2743 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2744 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2745 sqlite3_vfs**,char**,char **); 2746 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 2747 int sqlite3CodeOnce(Parse *); 2748 2749 Bitvec *sqlite3BitvecCreate(u32); 2750 int sqlite3BitvecTest(Bitvec*, u32); 2751 int sqlite3BitvecSet(Bitvec*, u32); 2752 void sqlite3BitvecClear(Bitvec*, u32, void*); 2753 void sqlite3BitvecDestroy(Bitvec*); 2754 u32 sqlite3BitvecSize(Bitvec*); 2755 int sqlite3BitvecBuiltinTest(int,int*); 2756 2757 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2758 void sqlite3RowSetClear(RowSet*); 2759 void sqlite3RowSetInsert(RowSet*, i64); 2760 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2761 int sqlite3RowSetNext(RowSet*, i64*); 2762 2763 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2764 2765 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2766 int sqlite3ViewGetColumnNames(Parse*,Table*); 2767 #else 2768 # define sqlite3ViewGetColumnNames(A,B) 0 2769 #endif 2770 2771 void sqlite3DropTable(Parse*, SrcList*, int, int); 2772 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2773 void sqlite3DeleteTable(sqlite3*, Table*); 2774 #ifndef SQLITE_OMIT_AUTOINCREMENT 2775 void sqlite3AutoincrementBegin(Parse *pParse); 2776 void sqlite3AutoincrementEnd(Parse *pParse); 2777 #else 2778 # define sqlite3AutoincrementBegin(X) 2779 # define sqlite3AutoincrementEnd(X) 2780 #endif 2781 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2782 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 2783 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2784 int sqlite3IdListIndex(IdList*,const char*); 2785 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2786 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2787 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2788 Token*, Select*, Expr*, IdList*); 2789 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2790 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2791 void sqlite3SrcListShiftJoinType(SrcList*); 2792 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2793 void sqlite3IdListDelete(sqlite3*, IdList*); 2794 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2795 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2796 Token*, int, int); 2797 void sqlite3DropIndex(Parse*, SrcList*, int); 2798 int sqlite3Select(Parse*, Select*, SelectDest*); 2799 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2800 Expr*,ExprList*,int,Expr*,Expr*); 2801 void sqlite3SelectDelete(sqlite3*, Select*); 2802 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2803 int sqlite3IsReadOnly(Parse*, Table*, int); 2804 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2805 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2806 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2807 #endif 2808 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2809 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2810 WhereInfo *sqlite3WhereBegin( 2811 Parse*,SrcList*,Expr*,ExprList**,ExprList*,u16,int); 2812 void sqlite3WhereEnd(WhereInfo*); 2813 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 2814 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2815 void sqlite3ExprCodeMove(Parse*, int, int, int); 2816 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2817 void sqlite3ExprCacheStore(Parse*, int, int, int); 2818 void sqlite3ExprCachePush(Parse*); 2819 void sqlite3ExprCachePop(Parse*, int); 2820 void sqlite3ExprCacheRemove(Parse*, int, int); 2821 void sqlite3ExprCacheClear(Parse*); 2822 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2823 int sqlite3ExprCode(Parse*, Expr*, int); 2824 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2825 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2826 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2827 void sqlite3ExprCodeConstants(Parse*, Expr*); 2828 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2829 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2830 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2831 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2832 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2833 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2834 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2835 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2836 void sqlite3Vacuum(Parse*); 2837 int sqlite3RunVacuum(char**, sqlite3*); 2838 char *sqlite3NameFromToken(sqlite3*, Token*); 2839 int sqlite3ExprCompare(Expr*, Expr*); 2840 int sqlite3ExprListCompare(ExprList*, ExprList*); 2841 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2842 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2843 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 2844 Vdbe *sqlite3GetVdbe(Parse*); 2845 void sqlite3PrngSaveState(void); 2846 void sqlite3PrngRestoreState(void); 2847 void sqlite3PrngResetState(void); 2848 void sqlite3RollbackAll(sqlite3*,int); 2849 void sqlite3CodeVerifySchema(Parse*, int); 2850 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 2851 void sqlite3BeginTransaction(Parse*, int); 2852 void sqlite3CommitTransaction(Parse*); 2853 void sqlite3RollbackTransaction(Parse*); 2854 void sqlite3Savepoint(Parse*, int, Token*); 2855 void sqlite3CloseSavepoints(sqlite3 *); 2856 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 2857 int sqlite3ExprIsConstant(Expr*); 2858 int sqlite3ExprIsConstantNotJoin(Expr*); 2859 int sqlite3ExprIsConstantOrFunction(Expr*); 2860 int sqlite3ExprIsInteger(Expr*, int*); 2861 int sqlite3ExprCanBeNull(const Expr*); 2862 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2863 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2864 int sqlite3IsRowid(const char*); 2865 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2866 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2867 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2868 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2869 int*,int,int,int,int,int*); 2870 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2871 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2872 void sqlite3BeginWriteOperation(Parse*, int, int); 2873 void sqlite3MultiWrite(Parse*); 2874 void sqlite3MayAbort(Parse*); 2875 void sqlite3HaltConstraint(Parse*, int, char*, int); 2876 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2877 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2878 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2879 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2880 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2881 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2882 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 2883 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2884 void sqlite3RegisterDateTimeFunctions(void); 2885 void sqlite3RegisterGlobalFunctions(void); 2886 int sqlite3SafetyCheckOk(sqlite3*); 2887 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2888 void sqlite3ChangeCookie(Parse*, int); 2889 2890 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2891 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2892 #endif 2893 2894 #ifndef SQLITE_OMIT_TRIGGER 2895 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2896 Expr*,int, int); 2897 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2898 void sqlite3DropTrigger(Parse*, SrcList*, int); 2899 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2900 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2901 Trigger *sqlite3TriggerList(Parse *, Table *); 2902 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2903 int, int, int); 2904 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2905 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2906 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2907 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2908 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2909 ExprList*,Select*,u8); 2910 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2911 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2912 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2913 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2914 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2915 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2916 #else 2917 # define sqlite3TriggersExist(B,C,D,E,F) 0 2918 # define sqlite3DeleteTrigger(A,B) 2919 # define sqlite3DropTriggerPtr(A,B) 2920 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2921 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2922 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2923 # define sqlite3TriggerList(X, Y) 0 2924 # define sqlite3ParseToplevel(p) p 2925 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2926 #endif 2927 2928 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2929 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2930 void sqlite3DeferForeignKey(Parse*, int); 2931 #ifndef SQLITE_OMIT_AUTHORIZATION 2932 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2933 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2934 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2935 void sqlite3AuthContextPop(AuthContext*); 2936 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2937 #else 2938 # define sqlite3AuthRead(a,b,c,d) 2939 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2940 # define sqlite3AuthContextPush(a,b,c) 2941 # define sqlite3AuthContextPop(a) ((void)(a)) 2942 #endif 2943 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2944 void sqlite3Detach(Parse*, Expr*); 2945 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2946 int sqlite3FixSrcList(DbFixer*, SrcList*); 2947 int sqlite3FixSelect(DbFixer*, Select*); 2948 int sqlite3FixExpr(DbFixer*, Expr*); 2949 int sqlite3FixExprList(DbFixer*, ExprList*); 2950 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2951 int sqlite3AtoF(const char *z, double*, int, u8); 2952 int sqlite3GetInt32(const char *, int*); 2953 int sqlite3Atoi(const char*); 2954 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2955 int sqlite3Utf8CharLen(const char *pData, int nByte); 2956 u32 sqlite3Utf8Read(const u8*, const u8**); 2957 2958 /* 2959 ** Routines to read and write variable-length integers. These used to 2960 ** be defined locally, but now we use the varint routines in the util.c 2961 ** file. Code should use the MACRO forms below, as the Varint32 versions 2962 ** are coded to assume the single byte case is already handled (which 2963 ** the MACRO form does). 2964 */ 2965 int sqlite3PutVarint(unsigned char*, u64); 2966 int sqlite3PutVarint32(unsigned char*, u32); 2967 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2968 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2969 int sqlite3VarintLen(u64 v); 2970 2971 /* 2972 ** The header of a record consists of a sequence variable-length integers. 2973 ** These integers are almost always small and are encoded as a single byte. 2974 ** The following macros take advantage this fact to provide a fast encode 2975 ** and decode of the integers in a record header. It is faster for the common 2976 ** case where the integer is a single byte. It is a little slower when the 2977 ** integer is two or more bytes. But overall it is faster. 2978 ** 2979 ** The following expressions are equivalent: 2980 ** 2981 ** x = sqlite3GetVarint32( A, &B ); 2982 ** x = sqlite3PutVarint32( A, B ); 2983 ** 2984 ** x = getVarint32( A, B ); 2985 ** x = putVarint32( A, B ); 2986 ** 2987 */ 2988 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2989 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2990 #define getVarint sqlite3GetVarint 2991 #define putVarint sqlite3PutVarint 2992 2993 2994 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 2995 void sqlite3TableAffinityStr(Vdbe *, Table *); 2996 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2997 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2998 char sqlite3ExprAffinity(Expr *pExpr); 2999 int sqlite3Atoi64(const char*, i64*, int, u8); 3000 void sqlite3Error(sqlite3*, int, const char*,...); 3001 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3002 u8 sqlite3HexToInt(int h); 3003 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3004 const char *sqlite3ErrStr(int); 3005 int sqlite3ReadSchema(Parse *pParse); 3006 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3007 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3008 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3009 Expr *sqlite3ExprSetColl(Expr*, CollSeq*); 3010 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*); 3011 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3012 int sqlite3CheckObjectName(Parse *, const char *); 3013 void sqlite3VdbeSetChanges(sqlite3 *, int); 3014 int sqlite3AddInt64(i64*,i64); 3015 int sqlite3SubInt64(i64*,i64); 3016 int sqlite3MulInt64(i64*,i64); 3017 int sqlite3AbsInt32(int); 3018 #ifdef SQLITE_ENABLE_8_3_NAMES 3019 void sqlite3FileSuffix3(const char*, char*); 3020 #else 3021 # define sqlite3FileSuffix3(X,Y) 3022 #endif 3023 u8 sqlite3GetBoolean(const char *z,int); 3024 3025 const void *sqlite3ValueText(sqlite3_value*, u8); 3026 int sqlite3ValueBytes(sqlite3_value*, u8); 3027 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3028 void(*)(void*)); 3029 void sqlite3ValueFree(sqlite3_value*); 3030 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3031 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3032 #ifdef SQLITE_ENABLE_STAT3 3033 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 3034 #endif 3035 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3036 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3037 #ifndef SQLITE_AMALGAMATION 3038 extern const unsigned char sqlite3OpcodeProperty[]; 3039 extern const unsigned char sqlite3UpperToLower[]; 3040 extern const unsigned char sqlite3CtypeMap[]; 3041 extern const Token sqlite3IntTokens[]; 3042 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3043 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3044 #ifndef SQLITE_OMIT_WSD 3045 extern int sqlite3PendingByte; 3046 #endif 3047 #endif 3048 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3049 void sqlite3Reindex(Parse*, Token*, Token*); 3050 void sqlite3AlterFunctions(void); 3051 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3052 int sqlite3GetToken(const unsigned char *, int *); 3053 void sqlite3NestedParse(Parse*, const char*, ...); 3054 void sqlite3ExpirePreparedStatements(sqlite3*); 3055 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3056 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3057 int sqlite3ResolveExprNames(NameContext*, Expr*); 3058 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3059 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3060 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3061 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3062 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3063 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); 3064 char sqlite3AffinityType(const char*); 3065 void sqlite3Analyze(Parse*, Token*, Token*); 3066 int sqlite3InvokeBusyHandler(BusyHandler*); 3067 int sqlite3FindDb(sqlite3*, Token*); 3068 int sqlite3FindDbName(sqlite3 *, const char *); 3069 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3070 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3071 void sqlite3DefaultRowEst(Index*); 3072 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3073 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3074 void sqlite3MinimumFileFormat(Parse*, int, int); 3075 void sqlite3SchemaClear(void *); 3076 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3077 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3078 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 3079 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3080 void (*)(sqlite3_context*,int,sqlite3_value **), 3081 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3082 FuncDestructor *pDestructor 3083 ); 3084 int sqlite3ApiExit(sqlite3 *db, int); 3085 int sqlite3OpenTempDatabase(Parse *); 3086 3087 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3088 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3089 void sqlite3AppendSpace(StrAccum*,int); 3090 char *sqlite3StrAccumFinish(StrAccum*); 3091 void sqlite3StrAccumReset(StrAccum*); 3092 void sqlite3SelectDestInit(SelectDest*,int,int); 3093 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3094 3095 void sqlite3BackupRestart(sqlite3_backup *); 3096 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3097 3098 /* 3099 ** The interface to the LEMON-generated parser 3100 */ 3101 void *sqlite3ParserAlloc(void*(*)(size_t)); 3102 void sqlite3ParserFree(void*, void(*)(void*)); 3103 void sqlite3Parser(void*, int, Token, Parse*); 3104 #ifdef YYTRACKMAXSTACKDEPTH 3105 int sqlite3ParserStackPeak(void*); 3106 #endif 3107 3108 void sqlite3AutoLoadExtensions(sqlite3*); 3109 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3110 void sqlite3CloseExtensions(sqlite3*); 3111 #else 3112 # define sqlite3CloseExtensions(X) 3113 #endif 3114 3115 #ifndef SQLITE_OMIT_SHARED_CACHE 3116 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3117 #else 3118 #define sqlite3TableLock(v,w,x,y,z) 3119 #endif 3120 3121 #ifdef SQLITE_TEST 3122 int sqlite3Utf8To8(unsigned char*); 3123 #endif 3124 3125 #ifdef SQLITE_OMIT_VIRTUALTABLE 3126 # define sqlite3VtabClear(Y) 3127 # define sqlite3VtabSync(X,Y) SQLITE_OK 3128 # define sqlite3VtabRollback(X) 3129 # define sqlite3VtabCommit(X) 3130 # define sqlite3VtabInSync(db) 0 3131 # define sqlite3VtabLock(X) 3132 # define sqlite3VtabUnlock(X) 3133 # define sqlite3VtabUnlockList(X) 3134 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3135 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3136 #else 3137 void sqlite3VtabClear(sqlite3 *db, Table*); 3138 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3139 int sqlite3VtabSync(sqlite3 *db, char **); 3140 int sqlite3VtabRollback(sqlite3 *db); 3141 int sqlite3VtabCommit(sqlite3 *db); 3142 void sqlite3VtabLock(VTable *); 3143 void sqlite3VtabUnlock(VTable *); 3144 void sqlite3VtabUnlockList(sqlite3*); 3145 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3146 VTable *sqlite3GetVTable(sqlite3*, Table*); 3147 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3148 #endif 3149 void sqlite3VtabMakeWritable(Parse*,Table*); 3150 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3151 void sqlite3VtabFinishParse(Parse*, Token*); 3152 void sqlite3VtabArgInit(Parse*); 3153 void sqlite3VtabArgExtend(Parse*, Token*); 3154 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3155 int sqlite3VtabCallConnect(Parse*, Table*); 3156 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3157 int sqlite3VtabBegin(sqlite3 *, VTable *); 3158 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3159 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3160 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3161 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3162 int sqlite3Reprepare(Vdbe*); 3163 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3164 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3165 int sqlite3TempInMemory(const sqlite3*); 3166 const char *sqlite3JournalModename(int); 3167 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3168 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3169 3170 /* Declarations for functions in fkey.c. All of these are replaced by 3171 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3172 ** key functionality is available. If OMIT_TRIGGER is defined but 3173 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3174 ** this case foreign keys are parsed, but no other functionality is 3175 ** provided (enforcement of FK constraints requires the triggers sub-system). 3176 */ 3177 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3178 void sqlite3FkCheck(Parse*, Table*, int, int); 3179 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3180 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3181 int sqlite3FkRequired(Parse*, Table*, int*, int); 3182 u32 sqlite3FkOldmask(Parse*, Table*); 3183 FKey *sqlite3FkReferences(Table *); 3184 #else 3185 #define sqlite3FkActions(a,b,c,d) 3186 #define sqlite3FkCheck(a,b,c,d) 3187 #define sqlite3FkDropTable(a,b,c) 3188 #define sqlite3FkOldmask(a,b) 0 3189 #define sqlite3FkRequired(a,b,c,d) 0 3190 #endif 3191 #ifndef SQLITE_OMIT_FOREIGN_KEY 3192 void sqlite3FkDelete(sqlite3 *, Table*); 3193 #else 3194 #define sqlite3FkDelete(a,b) 3195 #endif 3196 3197 3198 /* 3199 ** Available fault injectors. Should be numbered beginning with 0. 3200 */ 3201 #define SQLITE_FAULTINJECTOR_MALLOC 0 3202 #define SQLITE_FAULTINJECTOR_COUNT 1 3203 3204 /* 3205 ** The interface to the code in fault.c used for identifying "benign" 3206 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3207 ** is not defined. 3208 */ 3209 #ifndef SQLITE_OMIT_BUILTIN_TEST 3210 void sqlite3BeginBenignMalloc(void); 3211 void sqlite3EndBenignMalloc(void); 3212 #else 3213 #define sqlite3BeginBenignMalloc() 3214 #define sqlite3EndBenignMalloc() 3215 #endif 3216 3217 #define IN_INDEX_ROWID 1 3218 #define IN_INDEX_EPH 2 3219 #define IN_INDEX_INDEX 3 3220 int sqlite3FindInIndex(Parse *, Expr *, int*); 3221 3222 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3223 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3224 int sqlite3JournalSize(sqlite3_vfs *); 3225 int sqlite3JournalCreate(sqlite3_file *); 3226 #else 3227 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3228 #endif 3229 3230 void sqlite3MemJournalOpen(sqlite3_file *); 3231 int sqlite3MemJournalSize(void); 3232 int sqlite3IsMemJournal(sqlite3_file *); 3233 3234 #if SQLITE_MAX_EXPR_DEPTH>0 3235 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3236 int sqlite3SelectExprHeight(Select *); 3237 int sqlite3ExprCheckHeight(Parse*, int); 3238 #else 3239 #define sqlite3ExprSetHeight(x,y) 3240 #define sqlite3SelectExprHeight(x) 0 3241 #define sqlite3ExprCheckHeight(x,y) 3242 #endif 3243 3244 u32 sqlite3Get4byte(const u8*); 3245 void sqlite3Put4byte(u8*, u32); 3246 3247 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3248 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3249 void sqlite3ConnectionUnlocked(sqlite3 *db); 3250 void sqlite3ConnectionClosed(sqlite3 *db); 3251 #else 3252 #define sqlite3ConnectionBlocked(x,y) 3253 #define sqlite3ConnectionUnlocked(x) 3254 #define sqlite3ConnectionClosed(x) 3255 #endif 3256 3257 #ifdef SQLITE_DEBUG 3258 void sqlite3ParserTrace(FILE*, char *); 3259 #endif 3260 3261 /* 3262 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3263 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3264 ** print I/O tracing messages. 3265 */ 3266 #ifdef SQLITE_ENABLE_IOTRACE 3267 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3268 void sqlite3VdbeIOTraceSql(Vdbe*); 3269 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3270 #else 3271 # define IOTRACE(A) 3272 # define sqlite3VdbeIOTraceSql(X) 3273 #endif 3274 3275 /* 3276 ** These routines are available for the mem2.c debugging memory allocator 3277 ** only. They are used to verify that different "types" of memory 3278 ** allocations are properly tracked by the system. 3279 ** 3280 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3281 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3282 ** a single bit set. 3283 ** 3284 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3285 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3286 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3287 ** 3288 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3289 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3290 ** 3291 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3292 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3293 ** it might have been allocated by lookaside, except the allocation was 3294 ** too large or lookaside was already full. It is important to verify 3295 ** that allocations that might have been satisfied by lookaside are not 3296 ** passed back to non-lookaside free() routines. Asserts such as the 3297 ** example above are placed on the non-lookaside free() routines to verify 3298 ** this constraint. 3299 ** 3300 ** All of this is no-op for a production build. It only comes into 3301 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3302 */ 3303 #ifdef SQLITE_MEMDEBUG 3304 void sqlite3MemdebugSetType(void*,u8); 3305 int sqlite3MemdebugHasType(void*,u8); 3306 int sqlite3MemdebugNoType(void*,u8); 3307 #else 3308 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3309 # define sqlite3MemdebugHasType(X,Y) 1 3310 # define sqlite3MemdebugNoType(X,Y) 1 3311 #endif 3312 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3313 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3314 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3315 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3316 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3317 3318 #endif /* _SQLITEINT_H_ */ 3319