1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** The previous paragraph was written in 2005. (This paragraph is written 36 ** on 2008-11-28.) These days, all Linux kernels support large files, so 37 ** you should probably leave LFS enabled. But some embedded platforms might 38 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 39 ** 40 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 41 */ 42 #ifndef SQLITE_DISABLE_LFS 43 # define _LARGE_FILE 1 44 # ifndef _FILE_OFFSET_BITS 45 # define _FILE_OFFSET_BITS 64 46 # endif 47 # define _LARGEFILE_SOURCE 1 48 #endif 49 50 /* 51 ** For MinGW, check to see if we can include the header file containing its 52 ** version information, among other things. Normally, this internal MinGW 53 ** header file would [only] be included automatically by other MinGW header 54 ** files; however, the contained version information is now required by this 55 ** header file to work around binary compatibility issues (see below) and 56 ** this is the only known way to reliably obtain it. This entire #if block 57 ** would be completely unnecessary if there was any other way of detecting 58 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 59 ** some MinGW-specific macros). When compiling for MinGW, either the 60 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 61 ** defined; otherwise, detection of conditions specific to MinGW will be 62 ** disabled. 63 */ 64 #if defined(_HAVE_MINGW_H) 65 # include "mingw.h" 66 #elif defined(_HAVE__MINGW_H) 67 # include "_mingw.h" 68 #endif 69 70 /* 71 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 72 ** define is required to maintain binary compatibility with the MSVC runtime 73 ** library in use (e.g. for Windows XP). 74 */ 75 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 76 defined(_WIN32) && !defined(_WIN64) && \ 77 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 78 defined(__MSVCRT__) 79 # define _USE_32BIT_TIME_T 80 #endif 81 82 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 83 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 84 ** MinGW. 85 */ 86 #include "sqlite3.h" 87 88 /* 89 ** Include the configuration header output by 'configure' if we're using the 90 ** autoconf-based build 91 */ 92 #ifdef _HAVE_SQLITE_CONFIG_H 93 #include "config.h" 94 #endif 95 96 #include "sqliteLimit.h" 97 98 /* Disable nuisance warnings on Borland compilers */ 99 #if defined(__BORLANDC__) 100 #pragma warn -rch /* unreachable code */ 101 #pragma warn -ccc /* Condition is always true or false */ 102 #pragma warn -aus /* Assigned value is never used */ 103 #pragma warn -csu /* Comparing signed and unsigned */ 104 #pragma warn -spa /* Suspicious pointer arithmetic */ 105 #endif 106 107 /* Needed for various definitions... */ 108 #ifndef _GNU_SOURCE 109 # define _GNU_SOURCE 110 #endif 111 112 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 113 # define _BSD_SOURCE 114 #endif 115 116 /* 117 ** Include standard header files as necessary 118 */ 119 #ifdef HAVE_STDINT_H 120 #include <stdint.h> 121 #endif 122 #ifdef HAVE_INTTYPES_H 123 #include <inttypes.h> 124 #endif 125 126 /* 127 ** The following macros are used to cast pointers to integers and 128 ** integers to pointers. The way you do this varies from one compiler 129 ** to the next, so we have developed the following set of #if statements 130 ** to generate appropriate macros for a wide range of compilers. 131 ** 132 ** The correct "ANSI" way to do this is to use the intptr_t type. 133 ** Unfortunately, that typedef is not available on all compilers, or 134 ** if it is available, it requires an #include of specific headers 135 ** that vary from one machine to the next. 136 ** 137 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 138 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 139 ** So we have to define the macros in different ways depending on the 140 ** compiler. 141 */ 142 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 143 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 144 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 145 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 146 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 147 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 148 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 149 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 150 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 151 #else /* Generates a warning - but it always works */ 152 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 153 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 154 #endif 155 156 /* 157 ** A macro to hint to the compiler that a function should not be 158 ** inlined. 159 */ 160 #if defined(__GNUC__) 161 # define SQLITE_NOINLINE __attribute__((noinline)) 162 #elif defined(_MSC_VER) 163 # define SQLITE_NOINLINE __declspec(noinline) 164 #else 165 # define SQLITE_NOINLINE 166 #endif 167 168 /* 169 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 170 ** 0 means mutexes are permanently disable and the library is never 171 ** threadsafe. 1 means the library is serialized which is the highest 172 ** level of threadsafety. 2 means the library is multithreaded - multiple 173 ** threads can use SQLite as long as no two threads try to use the same 174 ** database connection at the same time. 175 ** 176 ** Older versions of SQLite used an optional THREADSAFE macro. 177 ** We support that for legacy. 178 */ 179 #if !defined(SQLITE_THREADSAFE) 180 # if defined(THREADSAFE) 181 # define SQLITE_THREADSAFE THREADSAFE 182 # else 183 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 184 # endif 185 #endif 186 187 /* 188 ** Powersafe overwrite is on by default. But can be turned off using 189 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 190 */ 191 #ifndef SQLITE_POWERSAFE_OVERWRITE 192 # define SQLITE_POWERSAFE_OVERWRITE 1 193 #endif 194 195 /* 196 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 197 ** It determines whether or not the features related to 198 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 199 ** be overridden at runtime using the sqlite3_config() API. 200 */ 201 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 202 # define SQLITE_DEFAULT_MEMSTATUS 1 203 #endif 204 205 /* 206 ** Exactly one of the following macros must be defined in order to 207 ** specify which memory allocation subsystem to use. 208 ** 209 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 210 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 211 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 212 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 213 ** 214 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 215 ** assert() macro is enabled, each call into the Win32 native heap subsystem 216 ** will cause HeapValidate to be called. If heap validation should fail, an 217 ** assertion will be triggered. 218 ** 219 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 220 ** the default. 221 */ 222 #if defined(SQLITE_SYSTEM_MALLOC) \ 223 + defined(SQLITE_WIN32_MALLOC) \ 224 + defined(SQLITE_ZERO_MALLOC) \ 225 + defined(SQLITE_MEMDEBUG)>1 226 # error "Two or more of the following compile-time configuration options\ 227 are defined but at most one is allowed:\ 228 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 229 SQLITE_ZERO_MALLOC" 230 #endif 231 #if defined(SQLITE_SYSTEM_MALLOC) \ 232 + defined(SQLITE_WIN32_MALLOC) \ 233 + defined(SQLITE_ZERO_MALLOC) \ 234 + defined(SQLITE_MEMDEBUG)==0 235 # define SQLITE_SYSTEM_MALLOC 1 236 #endif 237 238 /* 239 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 240 ** sizes of memory allocations below this value where possible. 241 */ 242 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 243 # define SQLITE_MALLOC_SOFT_LIMIT 1024 244 #endif 245 246 /* 247 ** We need to define _XOPEN_SOURCE as follows in order to enable 248 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 249 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 250 ** it. 251 */ 252 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 253 # define _XOPEN_SOURCE 600 254 #endif 255 256 /* 257 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 258 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 259 ** make it true by defining or undefining NDEBUG. 260 ** 261 ** Setting NDEBUG makes the code smaller and faster by disabling the 262 ** assert() statements in the code. So we want the default action 263 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 264 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 265 ** feature. 266 */ 267 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 268 # define NDEBUG 1 269 #endif 270 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 271 # undef NDEBUG 272 #endif 273 274 /* 275 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 276 */ 277 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 278 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 279 #endif 280 281 /* 282 ** The testcase() macro is used to aid in coverage testing. When 283 ** doing coverage testing, the condition inside the argument to 284 ** testcase() must be evaluated both true and false in order to 285 ** get full branch coverage. The testcase() macro is inserted 286 ** to help ensure adequate test coverage in places where simple 287 ** condition/decision coverage is inadequate. For example, testcase() 288 ** can be used to make sure boundary values are tested. For 289 ** bitmask tests, testcase() can be used to make sure each bit 290 ** is significant and used at least once. On switch statements 291 ** where multiple cases go to the same block of code, testcase() 292 ** can insure that all cases are evaluated. 293 ** 294 */ 295 #ifdef SQLITE_COVERAGE_TEST 296 void sqlite3Coverage(int); 297 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 298 #else 299 # define testcase(X) 300 #endif 301 302 /* 303 ** The TESTONLY macro is used to enclose variable declarations or 304 ** other bits of code that are needed to support the arguments 305 ** within testcase() and assert() macros. 306 */ 307 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 308 # define TESTONLY(X) X 309 #else 310 # define TESTONLY(X) 311 #endif 312 313 /* 314 ** Sometimes we need a small amount of code such as a variable initialization 315 ** to setup for a later assert() statement. We do not want this code to 316 ** appear when assert() is disabled. The following macro is therefore 317 ** used to contain that setup code. The "VVA" acronym stands for 318 ** "Verification, Validation, and Accreditation". In other words, the 319 ** code within VVA_ONLY() will only run during verification processes. 320 */ 321 #ifndef NDEBUG 322 # define VVA_ONLY(X) X 323 #else 324 # define VVA_ONLY(X) 325 #endif 326 327 /* 328 ** The ALWAYS and NEVER macros surround boolean expressions which 329 ** are intended to always be true or false, respectively. Such 330 ** expressions could be omitted from the code completely. But they 331 ** are included in a few cases in order to enhance the resilience 332 ** of SQLite to unexpected behavior - to make the code "self-healing" 333 ** or "ductile" rather than being "brittle" and crashing at the first 334 ** hint of unplanned behavior. 335 ** 336 ** In other words, ALWAYS and NEVER are added for defensive code. 337 ** 338 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 339 ** be true and false so that the unreachable code they specify will 340 ** not be counted as untested code. 341 */ 342 #if defined(SQLITE_COVERAGE_TEST) 343 # define ALWAYS(X) (1) 344 # define NEVER(X) (0) 345 #elif !defined(NDEBUG) 346 # define ALWAYS(X) ((X)?1:(assert(0),0)) 347 # define NEVER(X) ((X)?(assert(0),1):0) 348 #else 349 # define ALWAYS(X) (X) 350 # define NEVER(X) (X) 351 #endif 352 353 /* 354 ** Return true (non-zero) if the input is an integer that is too large 355 ** to fit in 32-bits. This macro is used inside of various testcase() 356 ** macros to verify that we have tested SQLite for large-file support. 357 */ 358 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 359 360 /* 361 ** The macro unlikely() is a hint that surrounds a boolean 362 ** expression that is usually false. Macro likely() surrounds 363 ** a boolean expression that is usually true. These hints could, 364 ** in theory, be used by the compiler to generate better code, but 365 ** currently they are just comments for human readers. 366 */ 367 #define likely(X) (X) 368 #define unlikely(X) (X) 369 370 #include "hash.h" 371 #include "parse.h" 372 #include <stdio.h> 373 #include <stdlib.h> 374 #include <string.h> 375 #include <assert.h> 376 #include <stddef.h> 377 378 /* 379 ** If compiling for a processor that lacks floating point support, 380 ** substitute integer for floating-point 381 */ 382 #ifdef SQLITE_OMIT_FLOATING_POINT 383 # define double sqlite_int64 384 # define float sqlite_int64 385 # define LONGDOUBLE_TYPE sqlite_int64 386 # ifndef SQLITE_BIG_DBL 387 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 388 # endif 389 # define SQLITE_OMIT_DATETIME_FUNCS 1 390 # define SQLITE_OMIT_TRACE 1 391 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 392 # undef SQLITE_HAVE_ISNAN 393 #endif 394 #ifndef SQLITE_BIG_DBL 395 # define SQLITE_BIG_DBL (1e99) 396 #endif 397 398 /* 399 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 400 ** afterward. Having this macro allows us to cause the C compiler 401 ** to omit code used by TEMP tables without messy #ifndef statements. 402 */ 403 #ifdef SQLITE_OMIT_TEMPDB 404 #define OMIT_TEMPDB 1 405 #else 406 #define OMIT_TEMPDB 0 407 #endif 408 409 /* 410 ** The "file format" number is an integer that is incremented whenever 411 ** the VDBE-level file format changes. The following macros define the 412 ** the default file format for new databases and the maximum file format 413 ** that the library can read. 414 */ 415 #define SQLITE_MAX_FILE_FORMAT 4 416 #ifndef SQLITE_DEFAULT_FILE_FORMAT 417 # define SQLITE_DEFAULT_FILE_FORMAT 4 418 #endif 419 420 /* 421 ** Determine whether triggers are recursive by default. This can be 422 ** changed at run-time using a pragma. 423 */ 424 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 425 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 426 #endif 427 428 /* 429 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 430 ** on the command-line 431 */ 432 #ifndef SQLITE_TEMP_STORE 433 # define SQLITE_TEMP_STORE 1 434 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 435 #endif 436 437 /* 438 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 439 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 440 ** to zero. 441 */ 442 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 443 # undef SQLITE_MAX_WORKER_THREADS 444 # define SQLITE_MAX_WORKER_THREADS 0 445 #endif 446 #ifndef SQLITE_MAX_WORKER_THREADS 447 # define SQLITE_MAX_WORKER_THREADS 8 448 #endif 449 #ifndef SQLITE_DEFAULT_WORKER_THREADS 450 # define SQLITE_DEFAULT_WORKER_THREADS 0 451 #endif 452 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 453 # undef SQLITE_MAX_WORKER_THREADS 454 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 455 #endif 456 457 458 /* 459 ** GCC does not define the offsetof() macro so we'll have to do it 460 ** ourselves. 461 */ 462 #ifndef offsetof 463 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 464 #endif 465 466 /* 467 ** Macros to compute minimum and maximum of two numbers. 468 */ 469 #define MIN(A,B) ((A)<(B)?(A):(B)) 470 #define MAX(A,B) ((A)>(B)?(A):(B)) 471 472 /* 473 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 474 ** not, there are still machines out there that use EBCDIC.) 475 */ 476 #if 'A' == '\301' 477 # define SQLITE_EBCDIC 1 478 #else 479 # define SQLITE_ASCII 1 480 #endif 481 482 /* 483 ** Integers of known sizes. These typedefs might change for architectures 484 ** where the sizes very. Preprocessor macros are available so that the 485 ** types can be conveniently redefined at compile-type. Like this: 486 ** 487 ** cc '-DUINTPTR_TYPE=long long int' ... 488 */ 489 #ifndef UINT32_TYPE 490 # ifdef HAVE_UINT32_T 491 # define UINT32_TYPE uint32_t 492 # else 493 # define UINT32_TYPE unsigned int 494 # endif 495 #endif 496 #ifndef UINT16_TYPE 497 # ifdef HAVE_UINT16_T 498 # define UINT16_TYPE uint16_t 499 # else 500 # define UINT16_TYPE unsigned short int 501 # endif 502 #endif 503 #ifndef INT16_TYPE 504 # ifdef HAVE_INT16_T 505 # define INT16_TYPE int16_t 506 # else 507 # define INT16_TYPE short int 508 # endif 509 #endif 510 #ifndef UINT8_TYPE 511 # ifdef HAVE_UINT8_T 512 # define UINT8_TYPE uint8_t 513 # else 514 # define UINT8_TYPE unsigned char 515 # endif 516 #endif 517 #ifndef INT8_TYPE 518 # ifdef HAVE_INT8_T 519 # define INT8_TYPE int8_t 520 # else 521 # define INT8_TYPE signed char 522 # endif 523 #endif 524 #ifndef LONGDOUBLE_TYPE 525 # define LONGDOUBLE_TYPE long double 526 #endif 527 typedef sqlite_int64 i64; /* 8-byte signed integer */ 528 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 529 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 530 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 531 typedef INT16_TYPE i16; /* 2-byte signed integer */ 532 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 533 typedef INT8_TYPE i8; /* 1-byte signed integer */ 534 535 /* 536 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 537 ** that can be stored in a u32 without loss of data. The value 538 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 539 ** have to specify the value in the less intuitive manner shown: 540 */ 541 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 542 543 /* 544 ** The datatype used to store estimates of the number of rows in a 545 ** table or index. This is an unsigned integer type. For 99.9% of 546 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 547 ** can be used at compile-time if desired. 548 */ 549 #ifdef SQLITE_64BIT_STATS 550 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 551 #else 552 typedef u32 tRowcnt; /* 32-bit is the default */ 553 #endif 554 555 /* 556 ** Estimated quantities used for query planning are stored as 16-bit 557 ** logarithms. For quantity X, the value stored is 10*log2(X). This 558 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 559 ** But the allowed values are "grainy". Not every value is representable. 560 ** For example, quantities 16 and 17 are both represented by a LogEst 561 ** of 40. However, since LogEst quantaties are suppose to be estimates, 562 ** not exact values, this imprecision is not a problem. 563 ** 564 ** "LogEst" is short for "Logarithmic Estimate". 565 ** 566 ** Examples: 567 ** 1 -> 0 20 -> 43 10000 -> 132 568 ** 2 -> 10 25 -> 46 25000 -> 146 569 ** 3 -> 16 100 -> 66 1000000 -> 199 570 ** 4 -> 20 1000 -> 99 1048576 -> 200 571 ** 10 -> 33 1024 -> 100 4294967296 -> 320 572 ** 573 ** The LogEst can be negative to indicate fractional values. 574 ** Examples: 575 ** 576 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 577 */ 578 typedef INT16_TYPE LogEst; 579 580 /* 581 ** Macros to determine whether the machine is big or little endian, 582 ** and whether or not that determination is run-time or compile-time. 583 ** 584 ** For best performance, an attempt is made to guess at the byte-order 585 ** using C-preprocessor macros. If that is unsuccessful, or if 586 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 587 ** at run-time. 588 */ 589 #ifdef SQLITE_AMALGAMATION 590 const int sqlite3one = 1; 591 #else 592 extern const int sqlite3one; 593 #endif 594 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 595 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 596 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 597 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 598 # define SQLITE_BYTEORDER 1234 599 # define SQLITE_BIGENDIAN 0 600 # define SQLITE_LITTLEENDIAN 1 601 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 602 #endif 603 #if (defined(sparc) || defined(__ppc__)) \ 604 && !defined(SQLITE_RUNTIME_BYTEORDER) 605 # define SQLITE_BYTEORDER 4321 606 # define SQLITE_BIGENDIAN 1 607 # define SQLITE_LITTLEENDIAN 0 608 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 609 #endif 610 #if !defined(SQLITE_BYTEORDER) 611 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 612 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 613 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 614 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 615 #endif 616 617 /* 618 ** Constants for the largest and smallest possible 64-bit signed integers. 619 ** These macros are designed to work correctly on both 32-bit and 64-bit 620 ** compilers. 621 */ 622 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 623 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 624 625 /* 626 ** Round up a number to the next larger multiple of 8. This is used 627 ** to force 8-byte alignment on 64-bit architectures. 628 */ 629 #define ROUND8(x) (((x)+7)&~7) 630 631 /* 632 ** Round down to the nearest multiple of 8 633 */ 634 #define ROUNDDOWN8(x) ((x)&~7) 635 636 /* 637 ** Assert that the pointer X is aligned to an 8-byte boundary. This 638 ** macro is used only within assert() to verify that the code gets 639 ** all alignment restrictions correct. 640 ** 641 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 642 ** underlying malloc() implementation might return us 4-byte aligned 643 ** pointers. In that case, only verify 4-byte alignment. 644 */ 645 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 646 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 647 #else 648 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 649 #endif 650 651 /* 652 ** Disable MMAP on platforms where it is known to not work 653 */ 654 #if defined(__OpenBSD__) || defined(__QNXNTO__) 655 # undef SQLITE_MAX_MMAP_SIZE 656 # define SQLITE_MAX_MMAP_SIZE 0 657 #endif 658 659 /* 660 ** Default maximum size of memory used by memory-mapped I/O in the VFS 661 */ 662 #ifdef __APPLE__ 663 # include <TargetConditionals.h> 664 # if TARGET_OS_IPHONE 665 # undef SQLITE_MAX_MMAP_SIZE 666 # define SQLITE_MAX_MMAP_SIZE 0 667 # endif 668 #endif 669 #ifndef SQLITE_MAX_MMAP_SIZE 670 # if defined(__linux__) \ 671 || defined(_WIN32) \ 672 || (defined(__APPLE__) && defined(__MACH__)) \ 673 || defined(__sun) 674 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 675 # else 676 # define SQLITE_MAX_MMAP_SIZE 0 677 # endif 678 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 679 #endif 680 681 /* 682 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 683 ** default MMAP_SIZE is specified at compile-time, make sure that it does 684 ** not exceed the maximum mmap size. 685 */ 686 #ifndef SQLITE_DEFAULT_MMAP_SIZE 687 # define SQLITE_DEFAULT_MMAP_SIZE 0 688 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 689 #endif 690 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 691 # undef SQLITE_DEFAULT_MMAP_SIZE 692 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 693 #endif 694 695 /* 696 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 697 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 698 ** define SQLITE_ENABLE_STAT3_OR_STAT4 699 */ 700 #ifdef SQLITE_ENABLE_STAT4 701 # undef SQLITE_ENABLE_STAT3 702 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 703 #elif SQLITE_ENABLE_STAT3 704 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 705 #elif SQLITE_ENABLE_STAT3_OR_STAT4 706 # undef SQLITE_ENABLE_STAT3_OR_STAT4 707 #endif 708 709 /* 710 ** An instance of the following structure is used to store the busy-handler 711 ** callback for a given sqlite handle. 712 ** 713 ** The sqlite.busyHandler member of the sqlite struct contains the busy 714 ** callback for the database handle. Each pager opened via the sqlite 715 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 716 ** callback is currently invoked only from within pager.c. 717 */ 718 typedef struct BusyHandler BusyHandler; 719 struct BusyHandler { 720 int (*xFunc)(void *,int); /* The busy callback */ 721 void *pArg; /* First arg to busy callback */ 722 int nBusy; /* Incremented with each busy call */ 723 }; 724 725 /* 726 ** Name of the master database table. The master database table 727 ** is a special table that holds the names and attributes of all 728 ** user tables and indices. 729 */ 730 #define MASTER_NAME "sqlite_master" 731 #define TEMP_MASTER_NAME "sqlite_temp_master" 732 733 /* 734 ** The root-page of the master database table. 735 */ 736 #define MASTER_ROOT 1 737 738 /* 739 ** The name of the schema table. 740 */ 741 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 742 743 /* 744 ** A convenience macro that returns the number of elements in 745 ** an array. 746 */ 747 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 748 749 /* 750 ** Determine if the argument is a power of two 751 */ 752 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 753 754 /* 755 ** The following value as a destructor means to use sqlite3DbFree(). 756 ** The sqlite3DbFree() routine requires two parameters instead of the 757 ** one parameter that destructors normally want. So we have to introduce 758 ** this magic value that the code knows to handle differently. Any 759 ** pointer will work here as long as it is distinct from SQLITE_STATIC 760 ** and SQLITE_TRANSIENT. 761 */ 762 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 763 764 /* 765 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 766 ** not support Writable Static Data (WSD) such as global and static variables. 767 ** All variables must either be on the stack or dynamically allocated from 768 ** the heap. When WSD is unsupported, the variable declarations scattered 769 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 770 ** macro is used for this purpose. And instead of referencing the variable 771 ** directly, we use its constant as a key to lookup the run-time allocated 772 ** buffer that holds real variable. The constant is also the initializer 773 ** for the run-time allocated buffer. 774 ** 775 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 776 ** macros become no-ops and have zero performance impact. 777 */ 778 #ifdef SQLITE_OMIT_WSD 779 #define SQLITE_WSD const 780 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 781 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 782 int sqlite3_wsd_init(int N, int J); 783 void *sqlite3_wsd_find(void *K, int L); 784 #else 785 #define SQLITE_WSD 786 #define GLOBAL(t,v) v 787 #define sqlite3GlobalConfig sqlite3Config 788 #endif 789 790 /* 791 ** The following macros are used to suppress compiler warnings and to 792 ** make it clear to human readers when a function parameter is deliberately 793 ** left unused within the body of a function. This usually happens when 794 ** a function is called via a function pointer. For example the 795 ** implementation of an SQL aggregate step callback may not use the 796 ** parameter indicating the number of arguments passed to the aggregate, 797 ** if it knows that this is enforced elsewhere. 798 ** 799 ** When a function parameter is not used at all within the body of a function, 800 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 801 ** However, these macros may also be used to suppress warnings related to 802 ** parameters that may or may not be used depending on compilation options. 803 ** For example those parameters only used in assert() statements. In these 804 ** cases the parameters are named as per the usual conventions. 805 */ 806 #define UNUSED_PARAMETER(x) (void)(x) 807 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 808 809 /* 810 ** Forward references to structures 811 */ 812 typedef struct AggInfo AggInfo; 813 typedef struct AuthContext AuthContext; 814 typedef struct AutoincInfo AutoincInfo; 815 typedef struct Bitvec Bitvec; 816 typedef struct CollSeq CollSeq; 817 typedef struct Column Column; 818 typedef struct Db Db; 819 typedef struct Schema Schema; 820 typedef struct Expr Expr; 821 typedef struct ExprList ExprList; 822 typedef struct ExprSpan ExprSpan; 823 typedef struct FKey FKey; 824 typedef struct FuncDestructor FuncDestructor; 825 typedef struct FuncDef FuncDef; 826 typedef struct FuncDefHash FuncDefHash; 827 typedef struct IdList IdList; 828 typedef struct Index Index; 829 typedef struct IndexSample IndexSample; 830 typedef struct KeyClass KeyClass; 831 typedef struct KeyInfo KeyInfo; 832 typedef struct Lookaside Lookaside; 833 typedef struct LookasideSlot LookasideSlot; 834 typedef struct Module Module; 835 typedef struct NameContext NameContext; 836 typedef struct Parse Parse; 837 typedef struct PrintfArguments PrintfArguments; 838 typedef struct RowSet RowSet; 839 typedef struct Savepoint Savepoint; 840 typedef struct Select Select; 841 typedef struct SQLiteThread SQLiteThread; 842 typedef struct SelectDest SelectDest; 843 typedef struct SrcList SrcList; 844 typedef struct StrAccum StrAccum; 845 typedef struct Table Table; 846 typedef struct TableLock TableLock; 847 typedef struct Token Token; 848 typedef struct Trigger Trigger; 849 typedef struct TriggerPrg TriggerPrg; 850 typedef struct TriggerStep TriggerStep; 851 typedef struct UnpackedRecord UnpackedRecord; 852 typedef struct VTable VTable; 853 typedef struct VtabCtx VtabCtx; 854 typedef struct Walker Walker; 855 typedef struct WhereInfo WhereInfo; 856 typedef struct With With; 857 858 /* 859 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 860 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 861 ** pointer types (i.e. FuncDef) defined above. 862 */ 863 #include "btree.h" 864 #include "vdbe.h" 865 #include "pager.h" 866 #include "pcache.h" 867 868 #include "os.h" 869 #include "mutex.h" 870 871 872 /* 873 ** Each database file to be accessed by the system is an instance 874 ** of the following structure. There are normally two of these structures 875 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 876 ** aDb[1] is the database file used to hold temporary tables. Additional 877 ** databases may be attached. 878 */ 879 struct Db { 880 char *zName; /* Name of this database */ 881 Btree *pBt; /* The B*Tree structure for this database file */ 882 u8 safety_level; /* How aggressive at syncing data to disk */ 883 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 884 }; 885 886 /* 887 ** An instance of the following structure stores a database schema. 888 ** 889 ** Most Schema objects are associated with a Btree. The exception is 890 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 891 ** In shared cache mode, a single Schema object can be shared by multiple 892 ** Btrees that refer to the same underlying BtShared object. 893 ** 894 ** Schema objects are automatically deallocated when the last Btree that 895 ** references them is destroyed. The TEMP Schema is manually freed by 896 ** sqlite3_close(). 897 * 898 ** A thread must be holding a mutex on the corresponding Btree in order 899 ** to access Schema content. This implies that the thread must also be 900 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 901 ** For a TEMP Schema, only the connection mutex is required. 902 */ 903 struct Schema { 904 int schema_cookie; /* Database schema version number for this file */ 905 int iGeneration; /* Generation counter. Incremented with each change */ 906 Hash tblHash; /* All tables indexed by name */ 907 Hash idxHash; /* All (named) indices indexed by name */ 908 Hash trigHash; /* All triggers indexed by name */ 909 Hash fkeyHash; /* All foreign keys by referenced table name */ 910 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 911 u8 file_format; /* Schema format version for this file */ 912 u8 enc; /* Text encoding used by this database */ 913 u16 schemaFlags; /* Flags associated with this schema */ 914 int cache_size; /* Number of pages to use in the cache */ 915 }; 916 917 /* 918 ** These macros can be used to test, set, or clear bits in the 919 ** Db.pSchema->flags field. 920 */ 921 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 922 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 923 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 924 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 925 926 /* 927 ** Allowed values for the DB.pSchema->flags field. 928 ** 929 ** The DB_SchemaLoaded flag is set after the database schema has been 930 ** read into internal hash tables. 931 ** 932 ** DB_UnresetViews means that one or more views have column names that 933 ** have been filled out. If the schema changes, these column names might 934 ** changes and so the view will need to be reset. 935 */ 936 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 937 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 938 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 939 940 /* 941 ** The number of different kinds of things that can be limited 942 ** using the sqlite3_limit() interface. 943 */ 944 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 945 946 /* 947 ** Lookaside malloc is a set of fixed-size buffers that can be used 948 ** to satisfy small transient memory allocation requests for objects 949 ** associated with a particular database connection. The use of 950 ** lookaside malloc provides a significant performance enhancement 951 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 952 ** SQL statements. 953 ** 954 ** The Lookaside structure holds configuration information about the 955 ** lookaside malloc subsystem. Each available memory allocation in 956 ** the lookaside subsystem is stored on a linked list of LookasideSlot 957 ** objects. 958 ** 959 ** Lookaside allocations are only allowed for objects that are associated 960 ** with a particular database connection. Hence, schema information cannot 961 ** be stored in lookaside because in shared cache mode the schema information 962 ** is shared by multiple database connections. Therefore, while parsing 963 ** schema information, the Lookaside.bEnabled flag is cleared so that 964 ** lookaside allocations are not used to construct the schema objects. 965 */ 966 struct Lookaside { 967 u16 sz; /* Size of each buffer in bytes */ 968 u8 bEnabled; /* False to disable new lookaside allocations */ 969 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 970 int nOut; /* Number of buffers currently checked out */ 971 int mxOut; /* Highwater mark for nOut */ 972 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 973 LookasideSlot *pFree; /* List of available buffers */ 974 void *pStart; /* First byte of available memory space */ 975 void *pEnd; /* First byte past end of available space */ 976 }; 977 struct LookasideSlot { 978 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 979 }; 980 981 /* 982 ** A hash table for function definitions. 983 ** 984 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 985 ** Collisions are on the FuncDef.pHash chain. 986 */ 987 struct FuncDefHash { 988 FuncDef *a[23]; /* Hash table for functions */ 989 }; 990 991 #ifdef SQLITE_USER_AUTHENTICATION 992 /* 993 ** Information held in the "sqlite3" database connection object and used 994 ** to manage user authentication. 995 */ 996 typedef struct sqlite3_userauth sqlite3_userauth; 997 struct sqlite3_userauth { 998 u8 authFlags; /* Status flags for user authentication */ 999 int nAuthPW; /* Size of the zAuthPW in bytes */ 1000 char *zAuthPW; /* Password used to authenticate */ 1001 char *zAuthUser; /* User name used to authenticate */ 1002 }; 1003 1004 /* Allowed values for sqlite3_userauth.authFlags */ 1005 #define UAUTH_Ovrd 0x01 /* Do not enforce access restrictions */ 1006 #define UAUTH_Auth 0x02 /* True if the user has authenticated */ 1007 #define UAUTH_Admin 0x04 /* True if the user is an administrator */ 1008 #define UAUTH_AuthReqd 0x08 /* True if main has an sqlite_user table */ 1009 1010 /* Macros for accessing sqlite3.auth.authFlags */ 1011 #define DbIsAuth(D) (((D)->auth.authFlags&UAUTH_Auth)!=0) 1012 #define DbIsAdmin(D) (((D)->auth.authFlags&UAUTH_Admin)!=0) 1013 1014 /* Functions used only by user authorization logic */ 1015 int sqlite3UserAuthTable(const char*); 1016 1017 #endif /* SQLITE_USER_AUTHENTICATION */ 1018 1019 1020 /* 1021 ** Each database connection is an instance of the following structure. 1022 */ 1023 struct sqlite3 { 1024 sqlite3_vfs *pVfs; /* OS Interface */ 1025 struct Vdbe *pVdbe; /* List of active virtual machines */ 1026 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1027 sqlite3_mutex *mutex; /* Connection mutex */ 1028 Db *aDb; /* All backends */ 1029 int nDb; /* Number of backends currently in use */ 1030 int flags; /* Miscellaneous flags. See below */ 1031 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1032 i64 szMmap; /* Default mmap_size setting */ 1033 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1034 int errCode; /* Most recent error code (SQLITE_*) */ 1035 int errMask; /* & result codes with this before returning */ 1036 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1037 u8 autoCommit; /* The auto-commit flag. */ 1038 u8 temp_store; /* 1: file 2: memory 0: default */ 1039 u8 mallocFailed; /* True if we have seen a malloc failure */ 1040 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1041 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1042 u8 suppressErr; /* Do not issue error messages if true */ 1043 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1044 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1045 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1046 u32 magic; /* Magic number for detect library misuse */ 1047 int nChange; /* Value returned by sqlite3_changes() */ 1048 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1049 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1050 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1051 struct sqlite3InitInfo { /* Information used during initialization */ 1052 int newTnum; /* Rootpage of table being initialized */ 1053 u8 iDb; /* Which db file is being initialized */ 1054 u8 busy; /* TRUE if currently initializing */ 1055 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1056 } init; 1057 int nVdbeActive; /* Number of VDBEs currently running */ 1058 int nVdbeRead; /* Number of active VDBEs that read or write */ 1059 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1060 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1061 int nExtension; /* Number of loaded extensions */ 1062 void **aExtension; /* Array of shared library handles */ 1063 void (*xTrace)(void*,const char*); /* Trace function */ 1064 void *pTraceArg; /* Argument to the trace function */ 1065 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1066 void *pProfileArg; /* Argument to profile function */ 1067 void *pCommitArg; /* Argument to xCommitCallback() */ 1068 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1069 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1070 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1071 void *pUpdateArg; 1072 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1073 #ifndef SQLITE_OMIT_WAL 1074 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1075 void *pWalArg; 1076 #endif 1077 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1078 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1079 void *pCollNeededArg; 1080 sqlite3_value *pErr; /* Most recent error message */ 1081 union { 1082 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1083 double notUsed1; /* Spacer */ 1084 } u1; 1085 Lookaside lookaside; /* Lookaside malloc configuration */ 1086 #ifndef SQLITE_OMIT_AUTHORIZATION 1087 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1088 /* Access authorization function */ 1089 void *pAuthArg; /* 1st argument to the access auth function */ 1090 #endif 1091 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1092 int (*xProgress)(void *); /* The progress callback */ 1093 void *pProgressArg; /* Argument to the progress callback */ 1094 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1095 #endif 1096 #ifndef SQLITE_OMIT_VIRTUALTABLE 1097 int nVTrans; /* Allocated size of aVTrans */ 1098 Hash aModule; /* populated by sqlite3_create_module() */ 1099 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1100 VTable **aVTrans; /* Virtual tables with open transactions */ 1101 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1102 #endif 1103 FuncDefHash aFunc; /* Hash table of connection functions */ 1104 Hash aCollSeq; /* All collating sequences */ 1105 BusyHandler busyHandler; /* Busy callback */ 1106 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1107 Savepoint *pSavepoint; /* List of active savepoints */ 1108 int busyTimeout; /* Busy handler timeout, in msec */ 1109 int nSavepoint; /* Number of non-transaction savepoints */ 1110 int nStatement; /* Number of nested statement-transactions */ 1111 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1112 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1113 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1114 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1115 /* The following variables are all protected by the STATIC_MASTER 1116 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1117 ** 1118 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1119 ** unlock so that it can proceed. 1120 ** 1121 ** When X.pBlockingConnection==Y, that means that something that X tried 1122 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1123 ** held by Y. 1124 */ 1125 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1126 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1127 void *pUnlockArg; /* Argument to xUnlockNotify */ 1128 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1129 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1130 #endif 1131 #ifdef SQLITE_USER_AUTHENTICATION 1132 sqlite3_userauth auth; /* User authentication information */ 1133 #endif 1134 }; 1135 1136 /* 1137 ** A macro to discover the encoding of a database. 1138 */ 1139 #define ENC(db) ((db)->aDb[0].pSchema->enc) 1140 1141 /* 1142 ** Possible values for the sqlite3.flags. 1143 */ 1144 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1145 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1146 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1147 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1148 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1149 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1150 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1151 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1152 /* DELETE, or UPDATE and return */ 1153 /* the count using a callback. */ 1154 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1155 /* result set is empty */ 1156 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1157 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1158 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1159 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1160 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1161 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1162 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1163 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1164 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1165 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1166 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1167 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1168 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1169 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1170 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1171 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1172 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1173 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1174 1175 1176 /* 1177 ** Bits of the sqlite3.dbOptFlags field that are used by the 1178 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1179 ** selectively disable various optimizations. 1180 */ 1181 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1182 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1183 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1184 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1185 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1186 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1187 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1188 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1189 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1190 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1191 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1192 #define SQLITE_Stat3 0x0800 /* Use the SQLITE_STAT3 table */ 1193 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1194 1195 /* 1196 ** Macros for testing whether or not optimizations are enabled or disabled. 1197 */ 1198 #ifndef SQLITE_OMIT_BUILTIN_TEST 1199 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1200 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1201 #else 1202 #define OptimizationDisabled(db, mask) 0 1203 #define OptimizationEnabled(db, mask) 1 1204 #endif 1205 1206 /* 1207 ** Return true if it OK to factor constant expressions into the initialization 1208 ** code. The argument is a Parse object for the code generator. 1209 */ 1210 #define ConstFactorOk(P) ((P)->okConstFactor) 1211 1212 /* 1213 ** Possible values for the sqlite.magic field. 1214 ** The numbers are obtained at random and have no special meaning, other 1215 ** than being distinct from one another. 1216 */ 1217 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1218 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1219 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1220 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1221 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1222 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1223 1224 /* 1225 ** Each SQL function is defined by an instance of the following 1226 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1227 ** hash table. When multiple functions have the same name, the hash table 1228 ** points to a linked list of these structures. 1229 */ 1230 struct FuncDef { 1231 i16 nArg; /* Number of arguments. -1 means unlimited */ 1232 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1233 void *pUserData; /* User data parameter */ 1234 FuncDef *pNext; /* Next function with same name */ 1235 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1236 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1237 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1238 char *zName; /* SQL name of the function. */ 1239 FuncDef *pHash; /* Next with a different name but the same hash */ 1240 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1241 }; 1242 1243 /* 1244 ** This structure encapsulates a user-function destructor callback (as 1245 ** configured using create_function_v2()) and a reference counter. When 1246 ** create_function_v2() is called to create a function with a destructor, 1247 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1248 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1249 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1250 ** member of each of the new FuncDef objects is set to point to the allocated 1251 ** FuncDestructor. 1252 ** 1253 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1254 ** count on this object is decremented. When it reaches 0, the destructor 1255 ** is invoked and the FuncDestructor structure freed. 1256 */ 1257 struct FuncDestructor { 1258 int nRef; 1259 void (*xDestroy)(void *); 1260 void *pUserData; 1261 }; 1262 1263 /* 1264 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1265 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1266 ** are assert() statements in the code to verify this. 1267 */ 1268 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1269 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1270 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1271 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1272 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1273 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1274 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1275 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1276 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1277 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1278 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1279 1280 /* 1281 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1282 ** used to create the initializers for the FuncDef structures. 1283 ** 1284 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1285 ** Used to create a scalar function definition of a function zName 1286 ** implemented by C function xFunc that accepts nArg arguments. The 1287 ** value passed as iArg is cast to a (void*) and made available 1288 ** as the user-data (sqlite3_user_data()) for the function. If 1289 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1290 ** 1291 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1292 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1293 ** 1294 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1295 ** Used to create an aggregate function definition implemented by 1296 ** the C functions xStep and xFinal. The first four parameters 1297 ** are interpreted in the same way as the first 4 parameters to 1298 ** FUNCTION(). 1299 ** 1300 ** LIKEFUNC(zName, nArg, pArg, flags) 1301 ** Used to create a scalar function definition of a function zName 1302 ** that accepts nArg arguments and is implemented by a call to C 1303 ** function likeFunc. Argument pArg is cast to a (void *) and made 1304 ** available as the function user-data (sqlite3_user_data()). The 1305 ** FuncDef.flags variable is set to the value passed as the flags 1306 ** parameter. 1307 */ 1308 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1309 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1310 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1311 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1312 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1313 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1314 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1315 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1316 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1317 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1318 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1319 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1320 #define LIKEFUNC(zName, nArg, arg, flags) \ 1321 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1322 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1323 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1324 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1325 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1326 1327 /* 1328 ** All current savepoints are stored in a linked list starting at 1329 ** sqlite3.pSavepoint. The first element in the list is the most recently 1330 ** opened savepoint. Savepoints are added to the list by the vdbe 1331 ** OP_Savepoint instruction. 1332 */ 1333 struct Savepoint { 1334 char *zName; /* Savepoint name (nul-terminated) */ 1335 i64 nDeferredCons; /* Number of deferred fk violations */ 1336 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1337 Savepoint *pNext; /* Parent savepoint (if any) */ 1338 }; 1339 1340 /* 1341 ** The following are used as the second parameter to sqlite3Savepoint(), 1342 ** and as the P1 argument to the OP_Savepoint instruction. 1343 */ 1344 #define SAVEPOINT_BEGIN 0 1345 #define SAVEPOINT_RELEASE 1 1346 #define SAVEPOINT_ROLLBACK 2 1347 1348 1349 /* 1350 ** Each SQLite module (virtual table definition) is defined by an 1351 ** instance of the following structure, stored in the sqlite3.aModule 1352 ** hash table. 1353 */ 1354 struct Module { 1355 const sqlite3_module *pModule; /* Callback pointers */ 1356 const char *zName; /* Name passed to create_module() */ 1357 void *pAux; /* pAux passed to create_module() */ 1358 void (*xDestroy)(void *); /* Module destructor function */ 1359 }; 1360 1361 /* 1362 ** information about each column of an SQL table is held in an instance 1363 ** of this structure. 1364 */ 1365 struct Column { 1366 char *zName; /* Name of this column */ 1367 Expr *pDflt; /* Default value of this column */ 1368 char *zDflt; /* Original text of the default value */ 1369 char *zType; /* Data type for this column */ 1370 char *zColl; /* Collating sequence. If NULL, use the default */ 1371 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1372 char affinity; /* One of the SQLITE_AFF_... values */ 1373 u8 szEst; /* Estimated size of this column. INT==1 */ 1374 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1375 }; 1376 1377 /* Allowed values for Column.colFlags: 1378 */ 1379 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1380 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1381 1382 /* 1383 ** A "Collating Sequence" is defined by an instance of the following 1384 ** structure. Conceptually, a collating sequence consists of a name and 1385 ** a comparison routine that defines the order of that sequence. 1386 ** 1387 ** If CollSeq.xCmp is NULL, it means that the 1388 ** collating sequence is undefined. Indices built on an undefined 1389 ** collating sequence may not be read or written. 1390 */ 1391 struct CollSeq { 1392 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1393 u8 enc; /* Text encoding handled by xCmp() */ 1394 void *pUser; /* First argument to xCmp() */ 1395 int (*xCmp)(void*,int, const void*, int, const void*); 1396 void (*xDel)(void*); /* Destructor for pUser */ 1397 }; 1398 1399 /* 1400 ** A sort order can be either ASC or DESC. 1401 */ 1402 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1403 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1404 1405 /* 1406 ** Column affinity types. 1407 ** 1408 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1409 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1410 ** the speed a little by numbering the values consecutively. 1411 ** 1412 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1413 ** when multiple affinity types are concatenated into a string and 1414 ** used as the P4 operand, they will be more readable. 1415 ** 1416 ** Note also that the numeric types are grouped together so that testing 1417 ** for a numeric type is a single comparison. 1418 */ 1419 #define SQLITE_AFF_TEXT 'a' 1420 #define SQLITE_AFF_NONE 'b' 1421 #define SQLITE_AFF_NUMERIC 'c' 1422 #define SQLITE_AFF_INTEGER 'd' 1423 #define SQLITE_AFF_REAL 'e' 1424 1425 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1426 1427 /* 1428 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1429 ** affinity value. 1430 */ 1431 #define SQLITE_AFF_MASK 0x67 1432 1433 /* 1434 ** Additional bit values that can be ORed with an affinity without 1435 ** changing the affinity. 1436 ** 1437 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1438 ** It causes an assert() to fire if either operand to a comparison 1439 ** operator is NULL. It is added to certain comparison operators to 1440 ** prove that the operands are always NOT NULL. 1441 */ 1442 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1443 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1444 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1445 #define SQLITE_NOTNULL 0x88 /* Assert that operands are never NULL */ 1446 1447 /* 1448 ** An object of this type is created for each virtual table present in 1449 ** the database schema. 1450 ** 1451 ** If the database schema is shared, then there is one instance of this 1452 ** structure for each database connection (sqlite3*) that uses the shared 1453 ** schema. This is because each database connection requires its own unique 1454 ** instance of the sqlite3_vtab* handle used to access the virtual table 1455 ** implementation. sqlite3_vtab* handles can not be shared between 1456 ** database connections, even when the rest of the in-memory database 1457 ** schema is shared, as the implementation often stores the database 1458 ** connection handle passed to it via the xConnect() or xCreate() method 1459 ** during initialization internally. This database connection handle may 1460 ** then be used by the virtual table implementation to access real tables 1461 ** within the database. So that they appear as part of the callers 1462 ** transaction, these accesses need to be made via the same database 1463 ** connection as that used to execute SQL operations on the virtual table. 1464 ** 1465 ** All VTable objects that correspond to a single table in a shared 1466 ** database schema are initially stored in a linked-list pointed to by 1467 ** the Table.pVTable member variable of the corresponding Table object. 1468 ** When an sqlite3_prepare() operation is required to access the virtual 1469 ** table, it searches the list for the VTable that corresponds to the 1470 ** database connection doing the preparing so as to use the correct 1471 ** sqlite3_vtab* handle in the compiled query. 1472 ** 1473 ** When an in-memory Table object is deleted (for example when the 1474 ** schema is being reloaded for some reason), the VTable objects are not 1475 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1476 ** immediately. Instead, they are moved from the Table.pVTable list to 1477 ** another linked list headed by the sqlite3.pDisconnect member of the 1478 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1479 ** next time a statement is prepared using said sqlite3*. This is done 1480 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1481 ** Refer to comments above function sqlite3VtabUnlockList() for an 1482 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1483 ** list without holding the corresponding sqlite3.mutex mutex. 1484 ** 1485 ** The memory for objects of this type is always allocated by 1486 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1487 ** the first argument. 1488 */ 1489 struct VTable { 1490 sqlite3 *db; /* Database connection associated with this table */ 1491 Module *pMod; /* Pointer to module implementation */ 1492 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1493 int nRef; /* Number of pointers to this structure */ 1494 u8 bConstraint; /* True if constraints are supported */ 1495 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1496 VTable *pNext; /* Next in linked list (see above) */ 1497 }; 1498 1499 /* 1500 ** Each SQL table is represented in memory by an instance of the 1501 ** following structure. 1502 ** 1503 ** Table.zName is the name of the table. The case of the original 1504 ** CREATE TABLE statement is stored, but case is not significant for 1505 ** comparisons. 1506 ** 1507 ** Table.nCol is the number of columns in this table. Table.aCol is a 1508 ** pointer to an array of Column structures, one for each column. 1509 ** 1510 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1511 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1512 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1513 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1514 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1515 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1516 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1517 ** 1518 ** Table.tnum is the page number for the root BTree page of the table in the 1519 ** database file. If Table.iDb is the index of the database table backend 1520 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1521 ** holds temporary tables and indices. If TF_Ephemeral is set 1522 ** then the table is stored in a file that is automatically deleted 1523 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1524 ** refers VDBE cursor number that holds the table open, not to the root 1525 ** page number. Transient tables are used to hold the results of a 1526 ** sub-query that appears instead of a real table name in the FROM clause 1527 ** of a SELECT statement. 1528 */ 1529 struct Table { 1530 char *zName; /* Name of the table or view */ 1531 Column *aCol; /* Information about each column */ 1532 Index *pIndex; /* List of SQL indexes on this table. */ 1533 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1534 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1535 char *zColAff; /* String defining the affinity of each column */ 1536 #ifndef SQLITE_OMIT_CHECK 1537 ExprList *pCheck; /* All CHECK constraints */ 1538 #endif 1539 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1540 int tnum; /* Root BTree node for this table (see note above) */ 1541 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1542 i16 nCol; /* Number of columns in this table */ 1543 u16 nRef; /* Number of pointers to this Table */ 1544 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1545 #ifdef SQLITE_ENABLE_COSTMULT 1546 LogEst costMult; /* Cost multiplier for using this table */ 1547 #endif 1548 u8 tabFlags; /* Mask of TF_* values */ 1549 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1550 #ifndef SQLITE_OMIT_ALTERTABLE 1551 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1552 #endif 1553 #ifndef SQLITE_OMIT_VIRTUALTABLE 1554 int nModuleArg; /* Number of arguments to the module */ 1555 char **azModuleArg; /* Text of all module args. [0] is module name */ 1556 VTable *pVTable; /* List of VTable objects. */ 1557 #endif 1558 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1559 Schema *pSchema; /* Schema that contains this table */ 1560 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1561 }; 1562 1563 /* 1564 ** Allowed values for Table.tabFlags. 1565 */ 1566 #define TF_Readonly 0x01 /* Read-only system table */ 1567 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1568 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1569 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1570 #define TF_Virtual 0x10 /* Is a virtual table */ 1571 #define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */ 1572 1573 1574 /* 1575 ** Test to see whether or not a table is a virtual table. This is 1576 ** done as a macro so that it will be optimized out when virtual 1577 ** table support is omitted from the build. 1578 */ 1579 #ifndef SQLITE_OMIT_VIRTUALTABLE 1580 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1581 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1582 #else 1583 # define IsVirtual(X) 0 1584 # define IsHiddenColumn(X) 0 1585 #endif 1586 1587 /* Does the table have a rowid */ 1588 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1589 1590 /* 1591 ** Each foreign key constraint is an instance of the following structure. 1592 ** 1593 ** A foreign key is associated with two tables. The "from" table is 1594 ** the table that contains the REFERENCES clause that creates the foreign 1595 ** key. The "to" table is the table that is named in the REFERENCES clause. 1596 ** Consider this example: 1597 ** 1598 ** CREATE TABLE ex1( 1599 ** a INTEGER PRIMARY KEY, 1600 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1601 ** ); 1602 ** 1603 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1604 ** Equivalent names: 1605 ** 1606 ** from-table == child-table 1607 ** to-table == parent-table 1608 ** 1609 ** Each REFERENCES clause generates an instance of the following structure 1610 ** which is attached to the from-table. The to-table need not exist when 1611 ** the from-table is created. The existence of the to-table is not checked. 1612 ** 1613 ** The list of all parents for child Table X is held at X.pFKey. 1614 ** 1615 ** A list of all children for a table named Z (which might not even exist) 1616 ** is held in Schema.fkeyHash with a hash key of Z. 1617 */ 1618 struct FKey { 1619 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1620 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1621 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1622 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1623 FKey *pPrevTo; /* Previous with the same zTo */ 1624 int nCol; /* Number of columns in this key */ 1625 /* EV: R-30323-21917 */ 1626 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1627 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1628 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1629 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1630 int iFrom; /* Index of column in pFrom */ 1631 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1632 } aCol[1]; /* One entry for each of nCol columns */ 1633 }; 1634 1635 /* 1636 ** SQLite supports many different ways to resolve a constraint 1637 ** error. ROLLBACK processing means that a constraint violation 1638 ** causes the operation in process to fail and for the current transaction 1639 ** to be rolled back. ABORT processing means the operation in process 1640 ** fails and any prior changes from that one operation are backed out, 1641 ** but the transaction is not rolled back. FAIL processing means that 1642 ** the operation in progress stops and returns an error code. But prior 1643 ** changes due to the same operation are not backed out and no rollback 1644 ** occurs. IGNORE means that the particular row that caused the constraint 1645 ** error is not inserted or updated. Processing continues and no error 1646 ** is returned. REPLACE means that preexisting database rows that caused 1647 ** a UNIQUE constraint violation are removed so that the new insert or 1648 ** update can proceed. Processing continues and no error is reported. 1649 ** 1650 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1651 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1652 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1653 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1654 ** referenced table row is propagated into the row that holds the 1655 ** foreign key. 1656 ** 1657 ** The following symbolic values are used to record which type 1658 ** of action to take. 1659 */ 1660 #define OE_None 0 /* There is no constraint to check */ 1661 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1662 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1663 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1664 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1665 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1666 1667 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1668 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1669 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1670 #define OE_Cascade 9 /* Cascade the changes */ 1671 1672 #define OE_Default 10 /* Do whatever the default action is */ 1673 1674 1675 /* 1676 ** An instance of the following structure is passed as the first 1677 ** argument to sqlite3VdbeKeyCompare and is used to control the 1678 ** comparison of the two index keys. 1679 ** 1680 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1681 ** are nField slots for the columns of an index then one extra slot 1682 ** for the rowid at the end. 1683 */ 1684 struct KeyInfo { 1685 u32 nRef; /* Number of references to this KeyInfo object */ 1686 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1687 u16 nField; /* Number of key columns in the index */ 1688 u16 nXField; /* Number of columns beyond the key columns */ 1689 sqlite3 *db; /* The database connection */ 1690 u8 *aSortOrder; /* Sort order for each column. */ 1691 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1692 }; 1693 1694 /* 1695 ** An instance of the following structure holds information about a 1696 ** single index record that has already been parsed out into individual 1697 ** values. 1698 ** 1699 ** A record is an object that contains one or more fields of data. 1700 ** Records are used to store the content of a table row and to store 1701 ** the key of an index. A blob encoding of a record is created by 1702 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1703 ** OP_Column opcode. 1704 ** 1705 ** This structure holds a record that has already been disassembled 1706 ** into its constituent fields. 1707 ** 1708 ** The r1 and r2 member variables are only used by the optimized comparison 1709 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). 1710 */ 1711 struct UnpackedRecord { 1712 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1713 u16 nField; /* Number of entries in apMem[] */ 1714 i8 default_rc; /* Comparison result if keys are equal */ 1715 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1716 Mem *aMem; /* Values */ 1717 int r1; /* Value to return if (lhs > rhs) */ 1718 int r2; /* Value to return if (rhs < lhs) */ 1719 }; 1720 1721 1722 /* 1723 ** Each SQL index is represented in memory by an 1724 ** instance of the following structure. 1725 ** 1726 ** The columns of the table that are to be indexed are described 1727 ** by the aiColumn[] field of this structure. For example, suppose 1728 ** we have the following table and index: 1729 ** 1730 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1731 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1732 ** 1733 ** In the Table structure describing Ex1, nCol==3 because there are 1734 ** three columns in the table. In the Index structure describing 1735 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1736 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1737 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1738 ** The second column to be indexed (c1) has an index of 0 in 1739 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1740 ** 1741 ** The Index.onError field determines whether or not the indexed columns 1742 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1743 ** it means this is not a unique index. Otherwise it is a unique index 1744 ** and the value of Index.onError indicate the which conflict resolution 1745 ** algorithm to employ whenever an attempt is made to insert a non-unique 1746 ** element. 1747 */ 1748 struct Index { 1749 char *zName; /* Name of this index */ 1750 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1751 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1752 Table *pTable; /* The SQL table being indexed */ 1753 char *zColAff; /* String defining the affinity of each column */ 1754 Index *pNext; /* The next index associated with the same table */ 1755 Schema *pSchema; /* Schema containing this index */ 1756 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1757 char **azColl; /* Array of collation sequence names for index */ 1758 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1759 KeyInfo *pKeyInfo; /* A KeyInfo object suitable for this index */ 1760 int tnum; /* DB Page containing root of this index */ 1761 LogEst szIdxRow; /* Estimated average row size in bytes */ 1762 u16 nKeyCol; /* Number of columns forming the key */ 1763 u16 nColumn; /* Number of columns stored in the index */ 1764 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1765 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1766 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1767 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1768 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1769 unsigned isCovering:1; /* True if this is a covering index */ 1770 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1771 int nSample; /* Number of elements in aSample[] */ 1772 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1773 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1774 IndexSample *aSample; /* Samples of the left-most key */ 1775 #endif 1776 }; 1777 1778 /* 1779 ** Allowed values for Index.idxType 1780 */ 1781 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1782 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1783 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1784 1785 /* Return true if index X is a PRIMARY KEY index */ 1786 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1787 1788 /* Return true if index X is a UNIQUE index */ 1789 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1790 1791 /* 1792 ** Each sample stored in the sqlite_stat3 table is represented in memory 1793 ** using a structure of this type. See documentation at the top of the 1794 ** analyze.c source file for additional information. 1795 */ 1796 struct IndexSample { 1797 void *p; /* Pointer to sampled record */ 1798 int n; /* Size of record in bytes */ 1799 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1800 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1801 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1802 }; 1803 1804 /* 1805 ** Each token coming out of the lexer is an instance of 1806 ** this structure. Tokens are also used as part of an expression. 1807 ** 1808 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1809 ** may contain random values. Do not make any assumptions about Token.dyn 1810 ** and Token.n when Token.z==0. 1811 */ 1812 struct Token { 1813 const char *z; /* Text of the token. Not NULL-terminated! */ 1814 unsigned int n; /* Number of characters in this token */ 1815 }; 1816 1817 /* 1818 ** An instance of this structure contains information needed to generate 1819 ** code for a SELECT that contains aggregate functions. 1820 ** 1821 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1822 ** pointer to this structure. The Expr.iColumn field is the index in 1823 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1824 ** code for that node. 1825 ** 1826 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1827 ** original Select structure that describes the SELECT statement. These 1828 ** fields do not need to be freed when deallocating the AggInfo structure. 1829 */ 1830 struct AggInfo { 1831 u8 directMode; /* Direct rendering mode means take data directly 1832 ** from source tables rather than from accumulators */ 1833 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1834 ** than the source table */ 1835 int sortingIdx; /* Cursor number of the sorting index */ 1836 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1837 int nSortingColumn; /* Number of columns in the sorting index */ 1838 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1839 ExprList *pGroupBy; /* The group by clause */ 1840 struct AggInfo_col { /* For each column used in source tables */ 1841 Table *pTab; /* Source table */ 1842 int iTable; /* Cursor number of the source table */ 1843 int iColumn; /* Column number within the source table */ 1844 int iSorterColumn; /* Column number in the sorting index */ 1845 int iMem; /* Memory location that acts as accumulator */ 1846 Expr *pExpr; /* The original expression */ 1847 } *aCol; 1848 int nColumn; /* Number of used entries in aCol[] */ 1849 int nAccumulator; /* Number of columns that show through to the output. 1850 ** Additional columns are used only as parameters to 1851 ** aggregate functions */ 1852 struct AggInfo_func { /* For each aggregate function */ 1853 Expr *pExpr; /* Expression encoding the function */ 1854 FuncDef *pFunc; /* The aggregate function implementation */ 1855 int iMem; /* Memory location that acts as accumulator */ 1856 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1857 } *aFunc; 1858 int nFunc; /* Number of entries in aFunc[] */ 1859 }; 1860 1861 /* 1862 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1863 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1864 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1865 ** it uses less memory in the Expr object, which is a big memory user 1866 ** in systems with lots of prepared statements. And few applications 1867 ** need more than about 10 or 20 variables. But some extreme users want 1868 ** to have prepared statements with over 32767 variables, and for them 1869 ** the option is available (at compile-time). 1870 */ 1871 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1872 typedef i16 ynVar; 1873 #else 1874 typedef int ynVar; 1875 #endif 1876 1877 /* 1878 ** Each node of an expression in the parse tree is an instance 1879 ** of this structure. 1880 ** 1881 ** Expr.op is the opcode. The integer parser token codes are reused 1882 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1883 ** code representing the ">=" operator. This same integer code is reused 1884 ** to represent the greater-than-or-equal-to operator in the expression 1885 ** tree. 1886 ** 1887 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1888 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1889 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1890 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1891 ** then Expr.token contains the name of the function. 1892 ** 1893 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1894 ** binary operator. Either or both may be NULL. 1895 ** 1896 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1897 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1898 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1899 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1900 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1901 ** valid. 1902 ** 1903 ** An expression of the form ID or ID.ID refers to a column in a table. 1904 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1905 ** the integer cursor number of a VDBE cursor pointing to that table and 1906 ** Expr.iColumn is the column number for the specific column. If the 1907 ** expression is used as a result in an aggregate SELECT, then the 1908 ** value is also stored in the Expr.iAgg column in the aggregate so that 1909 ** it can be accessed after all aggregates are computed. 1910 ** 1911 ** If the expression is an unbound variable marker (a question mark 1912 ** character '?' in the original SQL) then the Expr.iTable holds the index 1913 ** number for that variable. 1914 ** 1915 ** If the expression is a subquery then Expr.iColumn holds an integer 1916 ** register number containing the result of the subquery. If the 1917 ** subquery gives a constant result, then iTable is -1. If the subquery 1918 ** gives a different answer at different times during statement processing 1919 ** then iTable is the address of a subroutine that computes the subquery. 1920 ** 1921 ** If the Expr is of type OP_Column, and the table it is selecting from 1922 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1923 ** corresponding table definition. 1924 ** 1925 ** ALLOCATION NOTES: 1926 ** 1927 ** Expr objects can use a lot of memory space in database schema. To 1928 ** help reduce memory requirements, sometimes an Expr object will be 1929 ** truncated. And to reduce the number of memory allocations, sometimes 1930 ** two or more Expr objects will be stored in a single memory allocation, 1931 ** together with Expr.zToken strings. 1932 ** 1933 ** If the EP_Reduced and EP_TokenOnly flags are set when 1934 ** an Expr object is truncated. When EP_Reduced is set, then all 1935 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1936 ** are contained within the same memory allocation. Note, however, that 1937 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1938 ** allocated, regardless of whether or not EP_Reduced is set. 1939 */ 1940 struct Expr { 1941 u8 op; /* Operation performed by this node */ 1942 char affinity; /* The affinity of the column or 0 if not a column */ 1943 u32 flags; /* Various flags. EP_* See below */ 1944 union { 1945 char *zToken; /* Token value. Zero terminated and dequoted */ 1946 int iValue; /* Non-negative integer value if EP_IntValue */ 1947 } u; 1948 1949 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1950 ** space is allocated for the fields below this point. An attempt to 1951 ** access them will result in a segfault or malfunction. 1952 *********************************************************************/ 1953 1954 Expr *pLeft; /* Left subnode */ 1955 Expr *pRight; /* Right subnode */ 1956 union { 1957 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 1958 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 1959 } x; 1960 1961 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1962 ** space is allocated for the fields below this point. An attempt to 1963 ** access them will result in a segfault or malfunction. 1964 *********************************************************************/ 1965 1966 #if SQLITE_MAX_EXPR_DEPTH>0 1967 int nHeight; /* Height of the tree headed by this node */ 1968 #endif 1969 int iTable; /* TK_COLUMN: cursor number of table holding column 1970 ** TK_REGISTER: register number 1971 ** TK_TRIGGER: 1 -> new, 0 -> old 1972 ** EP_Unlikely: 1000 times likelihood */ 1973 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1974 ** TK_VARIABLE: variable number (always >= 1). */ 1975 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1976 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1977 u8 op2; /* TK_REGISTER: original value of Expr.op 1978 ** TK_COLUMN: the value of p5 for OP_Column 1979 ** TK_AGG_FUNCTION: nesting depth */ 1980 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1981 Table *pTab; /* Table for TK_COLUMN expressions. */ 1982 }; 1983 1984 /* 1985 ** The following are the meanings of bits in the Expr.flags field. 1986 */ 1987 #define EP_FromJoin 0x000001 /* Originated in ON or USING clause of a join */ 1988 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 1989 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 1990 #define EP_Error 0x000008 /* Expression contains one or more errors */ 1991 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 1992 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 1993 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 1994 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 1995 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 1996 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 1997 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 1998 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 1999 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2000 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2001 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2002 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2003 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2004 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2005 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2006 #define EP_Constant 0x080000 /* Node is a constant */ 2007 2008 /* 2009 ** These macros can be used to test, set, or clear bits in the 2010 ** Expr.flags field. 2011 */ 2012 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2013 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2014 #define ExprSetProperty(E,P) (E)->flags|=(P) 2015 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2016 2017 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2018 ** and Accreditation only. It works like ExprSetProperty() during VVA 2019 ** processes but is a no-op for delivery. 2020 */ 2021 #ifdef SQLITE_DEBUG 2022 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2023 #else 2024 # define ExprSetVVAProperty(E,P) 2025 #endif 2026 2027 /* 2028 ** Macros to determine the number of bytes required by a normal Expr 2029 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2030 ** and an Expr struct with the EP_TokenOnly flag set. 2031 */ 2032 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2033 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2034 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2035 2036 /* 2037 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2038 ** above sqlite3ExprDup() for details. 2039 */ 2040 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2041 2042 /* 2043 ** A list of expressions. Each expression may optionally have a 2044 ** name. An expr/name combination can be used in several ways, such 2045 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2046 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2047 ** also be used as the argument to a function, in which case the a.zName 2048 ** field is not used. 2049 ** 2050 ** By default the Expr.zSpan field holds a human-readable description of 2051 ** the expression that is used in the generation of error messages and 2052 ** column labels. In this case, Expr.zSpan is typically the text of a 2053 ** column expression as it exists in a SELECT statement. However, if 2054 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2055 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2056 ** form is used for name resolution with nested FROM clauses. 2057 */ 2058 struct ExprList { 2059 int nExpr; /* Number of expressions on the list */ 2060 struct ExprList_item { /* For each expression in the list */ 2061 Expr *pExpr; /* The list of expressions */ 2062 char *zName; /* Token associated with this expression */ 2063 char *zSpan; /* Original text of the expression */ 2064 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2065 unsigned done :1; /* A flag to indicate when processing is finished */ 2066 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2067 unsigned reusable :1; /* Constant expression is reusable */ 2068 union { 2069 struct { 2070 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2071 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2072 } x; 2073 int iConstExprReg; /* Register in which Expr value is cached */ 2074 } u; 2075 } *a; /* Alloc a power of two greater or equal to nExpr */ 2076 }; 2077 2078 /* 2079 ** An instance of this structure is used by the parser to record both 2080 ** the parse tree for an expression and the span of input text for an 2081 ** expression. 2082 */ 2083 struct ExprSpan { 2084 Expr *pExpr; /* The expression parse tree */ 2085 const char *zStart; /* First character of input text */ 2086 const char *zEnd; /* One character past the end of input text */ 2087 }; 2088 2089 /* 2090 ** An instance of this structure can hold a simple list of identifiers, 2091 ** such as the list "a,b,c" in the following statements: 2092 ** 2093 ** INSERT INTO t(a,b,c) VALUES ...; 2094 ** CREATE INDEX idx ON t(a,b,c); 2095 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2096 ** 2097 ** The IdList.a.idx field is used when the IdList represents the list of 2098 ** column names after a table name in an INSERT statement. In the statement 2099 ** 2100 ** INSERT INTO t(a,b,c) ... 2101 ** 2102 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2103 */ 2104 struct IdList { 2105 struct IdList_item { 2106 char *zName; /* Name of the identifier */ 2107 int idx; /* Index in some Table.aCol[] of a column named zName */ 2108 } *a; 2109 int nId; /* Number of identifiers on the list */ 2110 }; 2111 2112 /* 2113 ** The bitmask datatype defined below is used for various optimizations. 2114 ** 2115 ** Changing this from a 64-bit to a 32-bit type limits the number of 2116 ** tables in a join to 32 instead of 64. But it also reduces the size 2117 ** of the library by 738 bytes on ix86. 2118 */ 2119 typedef u64 Bitmask; 2120 2121 /* 2122 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2123 */ 2124 #define BMS ((int)(sizeof(Bitmask)*8)) 2125 2126 /* 2127 ** A bit in a Bitmask 2128 */ 2129 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2130 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2131 2132 /* 2133 ** The following structure describes the FROM clause of a SELECT statement. 2134 ** Each table or subquery in the FROM clause is a separate element of 2135 ** the SrcList.a[] array. 2136 ** 2137 ** With the addition of multiple database support, the following structure 2138 ** can also be used to describe a particular table such as the table that 2139 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2140 ** such a table must be a simple name: ID. But in SQLite, the table can 2141 ** now be identified by a database name, a dot, then the table name: ID.ID. 2142 ** 2143 ** The jointype starts out showing the join type between the current table 2144 ** and the next table on the list. The parser builds the list this way. 2145 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2146 ** jointype expresses the join between the table and the previous table. 2147 ** 2148 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2149 ** contains more than 63 columns and the 64-th or later column is used. 2150 */ 2151 struct SrcList { 2152 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2153 u32 nAlloc; /* Number of entries allocated in a[] below */ 2154 struct SrcList_item { 2155 Schema *pSchema; /* Schema to which this item is fixed */ 2156 char *zDatabase; /* Name of database holding this table */ 2157 char *zName; /* Name of the table */ 2158 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2159 Table *pTab; /* An SQL table corresponding to zName */ 2160 Select *pSelect; /* A SELECT statement used in place of a table name */ 2161 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2162 int regReturn; /* Register holding return address of addrFillSub */ 2163 int regResult; /* Registers holding results of a co-routine */ 2164 u8 jointype; /* Type of join between this able and the previous */ 2165 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2166 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2167 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2168 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2169 #ifndef SQLITE_OMIT_EXPLAIN 2170 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2171 #endif 2172 int iCursor; /* The VDBE cursor number used to access this table */ 2173 Expr *pOn; /* The ON clause of a join */ 2174 IdList *pUsing; /* The USING clause of a join */ 2175 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2176 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 2177 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2178 } a[1]; /* One entry for each identifier on the list */ 2179 }; 2180 2181 /* 2182 ** Permitted values of the SrcList.a.jointype field 2183 */ 2184 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2185 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2186 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2187 #define JT_LEFT 0x0008 /* Left outer join */ 2188 #define JT_RIGHT 0x0010 /* Right outer join */ 2189 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2190 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2191 2192 2193 /* 2194 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2195 ** and the WhereInfo.wctrlFlags member. 2196 */ 2197 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2198 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2199 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2200 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2201 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2202 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2203 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2204 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2205 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 2206 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2207 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2208 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2209 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2210 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2211 2212 /* Allowed return values from sqlite3WhereIsDistinct() 2213 */ 2214 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2215 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2216 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2217 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2218 2219 /* 2220 ** A NameContext defines a context in which to resolve table and column 2221 ** names. The context consists of a list of tables (the pSrcList) field and 2222 ** a list of named expression (pEList). The named expression list may 2223 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2224 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2225 ** pEList corresponds to the result set of a SELECT and is NULL for 2226 ** other statements. 2227 ** 2228 ** NameContexts can be nested. When resolving names, the inner-most 2229 ** context is searched first. If no match is found, the next outer 2230 ** context is checked. If there is still no match, the next context 2231 ** is checked. This process continues until either a match is found 2232 ** or all contexts are check. When a match is found, the nRef member of 2233 ** the context containing the match is incremented. 2234 ** 2235 ** Each subquery gets a new NameContext. The pNext field points to the 2236 ** NameContext in the parent query. Thus the process of scanning the 2237 ** NameContext list corresponds to searching through successively outer 2238 ** subqueries looking for a match. 2239 */ 2240 struct NameContext { 2241 Parse *pParse; /* The parser */ 2242 SrcList *pSrcList; /* One or more tables used to resolve names */ 2243 ExprList *pEList; /* Optional list of result-set columns */ 2244 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2245 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2246 int nRef; /* Number of names resolved by this context */ 2247 int nErr; /* Number of errors encountered while resolving names */ 2248 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2249 }; 2250 2251 /* 2252 ** Allowed values for the NameContext, ncFlags field. 2253 */ 2254 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2255 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2256 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2257 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2258 #define NC_PartIdx 0x10 /* True if resolving a partial index WHERE */ 2259 2260 /* 2261 ** An instance of the following structure contains all information 2262 ** needed to generate code for a single SELECT statement. 2263 ** 2264 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2265 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2266 ** limit and nOffset to the value of the offset (or 0 if there is not 2267 ** offset). But later on, nLimit and nOffset become the memory locations 2268 ** in the VDBE that record the limit and offset counters. 2269 ** 2270 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2271 ** These addresses must be stored so that we can go back and fill in 2272 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2273 ** the number of columns in P2 can be computed at the same time 2274 ** as the OP_OpenEphm instruction is coded because not 2275 ** enough information about the compound query is known at that point. 2276 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2277 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2278 ** sequences for the ORDER BY clause. 2279 */ 2280 struct Select { 2281 ExprList *pEList; /* The fields of the result */ 2282 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2283 u16 selFlags; /* Various SF_* values */ 2284 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2285 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2286 u64 nSelectRow; /* Estimated number of result rows */ 2287 SrcList *pSrc; /* The FROM clause */ 2288 Expr *pWhere; /* The WHERE clause */ 2289 ExprList *pGroupBy; /* The GROUP BY clause */ 2290 Expr *pHaving; /* The HAVING clause */ 2291 ExprList *pOrderBy; /* The ORDER BY clause */ 2292 Select *pPrior; /* Prior select in a compound select statement */ 2293 Select *pNext; /* Next select to the left in a compound */ 2294 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2295 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2296 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2297 }; 2298 2299 /* 2300 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2301 ** "Select Flag". 2302 */ 2303 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2304 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2305 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2306 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2307 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2308 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2309 /* 0x0040 NOT USED */ 2310 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2311 /* 0x0100 NOT USED */ 2312 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2313 #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ 2314 #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ 2315 #define SF_Compound 0x1000 /* Part of a compound query */ 2316 2317 2318 /* 2319 ** The results of a SELECT can be distributed in several ways, as defined 2320 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2321 ** Type". 2322 ** 2323 ** SRT_Union Store results as a key in a temporary index 2324 ** identified by pDest->iSDParm. 2325 ** 2326 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2327 ** 2328 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2329 ** set is not empty. 2330 ** 2331 ** SRT_Discard Throw the results away. This is used by SELECT 2332 ** statements within triggers whose only purpose is 2333 ** the side-effects of functions. 2334 ** 2335 ** All of the above are free to ignore their ORDER BY clause. Those that 2336 ** follow must honor the ORDER BY clause. 2337 ** 2338 ** SRT_Output Generate a row of output (using the OP_ResultRow 2339 ** opcode) for each row in the result set. 2340 ** 2341 ** SRT_Mem Only valid if the result is a single column. 2342 ** Store the first column of the first result row 2343 ** in register pDest->iSDParm then abandon the rest 2344 ** of the query. This destination implies "LIMIT 1". 2345 ** 2346 ** SRT_Set The result must be a single column. Store each 2347 ** row of result as the key in table pDest->iSDParm. 2348 ** Apply the affinity pDest->affSdst before storing 2349 ** results. Used to implement "IN (SELECT ...)". 2350 ** 2351 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2352 ** the result there. The cursor is left open after 2353 ** returning. This is like SRT_Table except that 2354 ** this destination uses OP_OpenEphemeral to create 2355 ** the table first. 2356 ** 2357 ** SRT_Coroutine Generate a co-routine that returns a new row of 2358 ** results each time it is invoked. The entry point 2359 ** of the co-routine is stored in register pDest->iSDParm 2360 ** and the result row is stored in pDest->nDest registers 2361 ** starting with pDest->iSdst. 2362 ** 2363 ** SRT_Table Store results in temporary table pDest->iSDParm. 2364 ** SRT_Fifo This is like SRT_EphemTab except that the table 2365 ** is assumed to already be open. SRT_Fifo has 2366 ** the additional property of being able to ignore 2367 ** the ORDER BY clause. 2368 ** 2369 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2370 ** But also use temporary table pDest->iSDParm+1 as 2371 ** a record of all prior results and ignore any duplicate 2372 ** rows. Name means: "Distinct Fifo". 2373 ** 2374 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2375 ** an index). Append a sequence number so that all entries 2376 ** are distinct. 2377 ** 2378 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2379 ** the same record has never been stored before. The 2380 ** index at pDest->iSDParm+1 hold all prior stores. 2381 */ 2382 #define SRT_Union 1 /* Store result as keys in an index */ 2383 #define SRT_Except 2 /* Remove result from a UNION index */ 2384 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2385 #define SRT_Discard 4 /* Do not save the results anywhere */ 2386 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2387 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2388 #define SRT_Queue 7 /* Store result in an queue */ 2389 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2390 2391 /* The ORDER BY clause is ignored for all of the above */ 2392 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2393 2394 #define SRT_Output 9 /* Output each row of result */ 2395 #define SRT_Mem 10 /* Store result in a memory cell */ 2396 #define SRT_Set 11 /* Store results as keys in an index */ 2397 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2398 #define SRT_Coroutine 13 /* Generate a single row of result */ 2399 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2400 2401 /* 2402 ** An instance of this object describes where to put of the results of 2403 ** a SELECT statement. 2404 */ 2405 struct SelectDest { 2406 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2407 char affSdst; /* Affinity used when eDest==SRT_Set */ 2408 int iSDParm; /* A parameter used by the eDest disposal method */ 2409 int iSdst; /* Base register where results are written */ 2410 int nSdst; /* Number of registers allocated */ 2411 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2412 }; 2413 2414 /* 2415 ** During code generation of statements that do inserts into AUTOINCREMENT 2416 ** tables, the following information is attached to the Table.u.autoInc.p 2417 ** pointer of each autoincrement table to record some side information that 2418 ** the code generator needs. We have to keep per-table autoincrement 2419 ** information in case inserts are down within triggers. Triggers do not 2420 ** normally coordinate their activities, but we do need to coordinate the 2421 ** loading and saving of autoincrement information. 2422 */ 2423 struct AutoincInfo { 2424 AutoincInfo *pNext; /* Next info block in a list of them all */ 2425 Table *pTab; /* Table this info block refers to */ 2426 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2427 int regCtr; /* Memory register holding the rowid counter */ 2428 }; 2429 2430 /* 2431 ** Size of the column cache 2432 */ 2433 #ifndef SQLITE_N_COLCACHE 2434 # define SQLITE_N_COLCACHE 10 2435 #endif 2436 2437 /* 2438 ** At least one instance of the following structure is created for each 2439 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2440 ** statement. All such objects are stored in the linked list headed at 2441 ** Parse.pTriggerPrg and deleted once statement compilation has been 2442 ** completed. 2443 ** 2444 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2445 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2446 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2447 ** The Parse.pTriggerPrg list never contains two entries with the same 2448 ** values for both pTrigger and orconf. 2449 ** 2450 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2451 ** accessed (or set to 0 for triggers fired as a result of INSERT 2452 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2453 ** a mask of new.* columns used by the program. 2454 */ 2455 struct TriggerPrg { 2456 Trigger *pTrigger; /* Trigger this program was coded from */ 2457 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2458 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2459 int orconf; /* Default ON CONFLICT policy */ 2460 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2461 }; 2462 2463 /* 2464 ** The yDbMask datatype for the bitmask of all attached databases. 2465 */ 2466 #if SQLITE_MAX_ATTACHED>30 2467 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2468 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2469 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2470 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2471 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2472 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2473 #else 2474 typedef unsigned int yDbMask; 2475 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2476 # define DbMaskZero(M) (M)=0 2477 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2478 # define DbMaskAllZero(M) (M)==0 2479 # define DbMaskNonZero(M) (M)!=0 2480 #endif 2481 2482 /* 2483 ** An SQL parser context. A copy of this structure is passed through 2484 ** the parser and down into all the parser action routine in order to 2485 ** carry around information that is global to the entire parse. 2486 ** 2487 ** The structure is divided into two parts. When the parser and code 2488 ** generate call themselves recursively, the first part of the structure 2489 ** is constant but the second part is reset at the beginning and end of 2490 ** each recursion. 2491 ** 2492 ** The nTableLock and aTableLock variables are only used if the shared-cache 2493 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2494 ** used to store the set of table-locks required by the statement being 2495 ** compiled. Function sqlite3TableLock() is used to add entries to the 2496 ** list. 2497 */ 2498 struct Parse { 2499 sqlite3 *db; /* The main database structure */ 2500 char *zErrMsg; /* An error message */ 2501 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2502 int rc; /* Return code from execution */ 2503 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2504 u8 checkSchema; /* Causes schema cookie check after an error */ 2505 u8 nested; /* Number of nested calls to the parser/code generator */ 2506 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2507 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2508 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2509 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2510 u8 okConstFactor; /* OK to factor out constants */ 2511 int aTempReg[8]; /* Holding area for temporary registers */ 2512 int nRangeReg; /* Size of the temporary register block */ 2513 int iRangeReg; /* First register in temporary register block */ 2514 int nErr; /* Number of errors seen */ 2515 int nTab; /* Number of previously allocated VDBE cursors */ 2516 int nMem; /* Number of memory cells used so far */ 2517 int nSet; /* Number of sets used so far */ 2518 int nOnce; /* Number of OP_Once instructions so far */ 2519 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2520 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2521 int ckBase; /* Base register of data during check constraints */ 2522 int iPartIdxTab; /* Table corresponding to a partial index */ 2523 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2524 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2525 int nLabel; /* Number of labels used */ 2526 int *aLabel; /* Space to hold the labels */ 2527 struct yColCache { 2528 int iTable; /* Table cursor number */ 2529 i16 iColumn; /* Table column number */ 2530 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2531 int iLevel; /* Nesting level */ 2532 int iReg; /* Reg with value of this column. 0 means none. */ 2533 int lru; /* Least recently used entry has the smallest value */ 2534 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2535 ExprList *pConstExpr;/* Constant expressions */ 2536 Token constraintName;/* Name of the constraint currently being parsed */ 2537 yDbMask writeMask; /* Start a write transaction on these databases */ 2538 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2539 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2540 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2541 int regRoot; /* Register holding root page number for new objects */ 2542 int nMaxArg; /* Max args passed to user function by sub-program */ 2543 #ifndef SQLITE_OMIT_SHARED_CACHE 2544 int nTableLock; /* Number of locks in aTableLock */ 2545 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2546 #endif 2547 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2548 2549 /* Information used while coding trigger programs. */ 2550 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2551 Table *pTriggerTab; /* Table triggers are being coded for */ 2552 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2553 int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */ 2554 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2555 u32 oldmask; /* Mask of old.* columns referenced */ 2556 u32 newmask; /* Mask of new.* columns referenced */ 2557 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2558 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2559 u8 disableTriggers; /* True to disable triggers */ 2560 2561 /************************************************************************ 2562 ** Above is constant between recursions. Below is reset before and after 2563 ** each recursion. The boundary between these two regions is determined 2564 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2565 ** in the recursive region. 2566 ************************************************************************/ 2567 2568 int nVar; /* Number of '?' variables seen in the SQL so far */ 2569 int nzVar; /* Number of available slots in azVar[] */ 2570 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2571 u8 bFreeWith; /* True if pWith should be freed with parser */ 2572 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2573 #ifndef SQLITE_OMIT_VIRTUALTABLE 2574 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2575 int nVtabLock; /* Number of virtual tables to lock */ 2576 #endif 2577 int nAlias; /* Number of aliased result set columns */ 2578 int nHeight; /* Expression tree height of current sub-select */ 2579 #ifndef SQLITE_OMIT_EXPLAIN 2580 int iSelectId; /* ID of current select for EXPLAIN output */ 2581 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2582 #endif 2583 char **azVar; /* Pointers to names of parameters */ 2584 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2585 const char *zTail; /* All SQL text past the last semicolon parsed */ 2586 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2587 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2588 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2589 Token sNameToken; /* Token with unqualified schema object name */ 2590 Token sLastToken; /* The last token parsed */ 2591 #ifndef SQLITE_OMIT_VIRTUALTABLE 2592 Token sArg; /* Complete text of a module argument */ 2593 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2594 #endif 2595 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2596 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2597 With *pWith; /* Current WITH clause, or NULL */ 2598 }; 2599 2600 /* 2601 ** Return true if currently inside an sqlite3_declare_vtab() call. 2602 */ 2603 #ifdef SQLITE_OMIT_VIRTUALTABLE 2604 #define IN_DECLARE_VTAB 0 2605 #else 2606 #define IN_DECLARE_VTAB (pParse->declareVtab) 2607 #endif 2608 2609 /* 2610 ** An instance of the following structure can be declared on a stack and used 2611 ** to save the Parse.zAuthContext value so that it can be restored later. 2612 */ 2613 struct AuthContext { 2614 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2615 Parse *pParse; /* The Parse structure */ 2616 }; 2617 2618 /* 2619 ** Bitfield flags for P5 value in various opcodes. 2620 */ 2621 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2622 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2623 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2624 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2625 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2626 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2627 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2628 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2629 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2630 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2631 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2632 2633 /* 2634 * Each trigger present in the database schema is stored as an instance of 2635 * struct Trigger. 2636 * 2637 * Pointers to instances of struct Trigger are stored in two ways. 2638 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2639 * database). This allows Trigger structures to be retrieved by name. 2640 * 2. All triggers associated with a single table form a linked list, using the 2641 * pNext member of struct Trigger. A pointer to the first element of the 2642 * linked list is stored as the "pTrigger" member of the associated 2643 * struct Table. 2644 * 2645 * The "step_list" member points to the first element of a linked list 2646 * containing the SQL statements specified as the trigger program. 2647 */ 2648 struct Trigger { 2649 char *zName; /* The name of the trigger */ 2650 char *table; /* The table or view to which the trigger applies */ 2651 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2652 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2653 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2654 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2655 the <column-list> is stored here */ 2656 Schema *pSchema; /* Schema containing the trigger */ 2657 Schema *pTabSchema; /* Schema containing the table */ 2658 TriggerStep *step_list; /* Link list of trigger program steps */ 2659 Trigger *pNext; /* Next trigger associated with the table */ 2660 }; 2661 2662 /* 2663 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2664 ** determine which. 2665 ** 2666 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2667 ** In that cases, the constants below can be ORed together. 2668 */ 2669 #define TRIGGER_BEFORE 1 2670 #define TRIGGER_AFTER 2 2671 2672 /* 2673 * An instance of struct TriggerStep is used to store a single SQL statement 2674 * that is a part of a trigger-program. 2675 * 2676 * Instances of struct TriggerStep are stored in a singly linked list (linked 2677 * using the "pNext" member) referenced by the "step_list" member of the 2678 * associated struct Trigger instance. The first element of the linked list is 2679 * the first step of the trigger-program. 2680 * 2681 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2682 * "SELECT" statement. The meanings of the other members is determined by the 2683 * value of "op" as follows: 2684 * 2685 * (op == TK_INSERT) 2686 * orconf -> stores the ON CONFLICT algorithm 2687 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2688 * this stores a pointer to the SELECT statement. Otherwise NULL. 2689 * target -> A token holding the quoted name of the table to insert into. 2690 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2691 * this stores values to be inserted. Otherwise NULL. 2692 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2693 * statement, then this stores the column-names to be 2694 * inserted into. 2695 * 2696 * (op == TK_DELETE) 2697 * target -> A token holding the quoted name of the table to delete from. 2698 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2699 * Otherwise NULL. 2700 * 2701 * (op == TK_UPDATE) 2702 * target -> A token holding the quoted name of the table to update rows of. 2703 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2704 * Otherwise NULL. 2705 * pExprList -> A list of the columns to update and the expressions to update 2706 * them to. See sqlite3Update() documentation of "pChanges" 2707 * argument. 2708 * 2709 */ 2710 struct TriggerStep { 2711 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2712 u8 orconf; /* OE_Rollback etc. */ 2713 Trigger *pTrig; /* The trigger that this step is a part of */ 2714 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2715 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2716 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2717 ExprList *pExprList; /* SET clause for UPDATE. */ 2718 IdList *pIdList; /* Column names for INSERT */ 2719 TriggerStep *pNext; /* Next in the link-list */ 2720 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2721 }; 2722 2723 /* 2724 ** The following structure contains information used by the sqliteFix... 2725 ** routines as they walk the parse tree to make database references 2726 ** explicit. 2727 */ 2728 typedef struct DbFixer DbFixer; 2729 struct DbFixer { 2730 Parse *pParse; /* The parsing context. Error messages written here */ 2731 Schema *pSchema; /* Fix items to this schema */ 2732 int bVarOnly; /* Check for variable references only */ 2733 const char *zDb; /* Make sure all objects are contained in this database */ 2734 const char *zType; /* Type of the container - used for error messages */ 2735 const Token *pName; /* Name of the container - used for error messages */ 2736 }; 2737 2738 /* 2739 ** An objected used to accumulate the text of a string where we 2740 ** do not necessarily know how big the string will be in the end. 2741 */ 2742 struct StrAccum { 2743 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2744 char *zBase; /* A base allocation. Not from malloc. */ 2745 char *zText; /* The string collected so far */ 2746 int nChar; /* Length of the string so far */ 2747 int nAlloc; /* Amount of space allocated in zText */ 2748 int mxAlloc; /* Maximum allowed string length */ 2749 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2750 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2751 }; 2752 #define STRACCUM_NOMEM 1 2753 #define STRACCUM_TOOBIG 2 2754 2755 /* 2756 ** A pointer to this structure is used to communicate information 2757 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2758 */ 2759 typedef struct { 2760 sqlite3 *db; /* The database being initialized */ 2761 char **pzErrMsg; /* Error message stored here */ 2762 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2763 int rc; /* Result code stored here */ 2764 } InitData; 2765 2766 /* 2767 ** Structure containing global configuration data for the SQLite library. 2768 ** 2769 ** This structure also contains some state information. 2770 */ 2771 struct Sqlite3Config { 2772 int bMemstat; /* True to enable memory status */ 2773 int bCoreMutex; /* True to enable core mutexing */ 2774 int bFullMutex; /* True to enable full mutexing */ 2775 int bOpenUri; /* True to interpret filenames as URIs */ 2776 int bUseCis; /* Use covering indices for full-scans */ 2777 int mxStrlen; /* Maximum string length */ 2778 int neverCorrupt; /* Database is always well-formed */ 2779 int szLookaside; /* Default lookaside buffer size */ 2780 int nLookaside; /* Default lookaside buffer count */ 2781 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2782 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2783 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2784 void *pHeap; /* Heap storage space */ 2785 int nHeap; /* Size of pHeap[] */ 2786 int mnReq, mxReq; /* Min and max heap requests sizes */ 2787 sqlite3_int64 szMmap; /* mmap() space per open file */ 2788 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2789 void *pScratch; /* Scratch memory */ 2790 int szScratch; /* Size of each scratch buffer */ 2791 int nScratch; /* Number of scratch buffers */ 2792 void *pPage; /* Page cache memory */ 2793 int szPage; /* Size of each page in pPage[] */ 2794 int nPage; /* Number of pages in pPage[] */ 2795 int mxParserStack; /* maximum depth of the parser stack */ 2796 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2797 /* The above might be initialized to non-zero. The following need to always 2798 ** initially be zero, however. */ 2799 int isInit; /* True after initialization has finished */ 2800 int inProgress; /* True while initialization in progress */ 2801 int isMutexInit; /* True after mutexes are initialized */ 2802 int isMallocInit; /* True after malloc is initialized */ 2803 int isPCacheInit; /* True after malloc is initialized */ 2804 int nRefInitMutex; /* Number of users of pInitMutex */ 2805 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2806 void (*xLog)(void*,int,const char*); /* Function for logging */ 2807 void *pLogArg; /* First argument to xLog() */ 2808 #ifdef SQLITE_ENABLE_SQLLOG 2809 void(*xSqllog)(void*,sqlite3*,const char*, int); 2810 void *pSqllogArg; 2811 #endif 2812 #ifdef SQLITE_VDBE_COVERAGE 2813 /* The following callback (if not NULL) is invoked on every VDBE branch 2814 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 2815 */ 2816 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 2817 void *pVdbeBranchArg; /* 1st argument */ 2818 #endif 2819 #ifndef SQLITE_OMIT_BUILTIN_TEST 2820 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 2821 #endif 2822 int bLocaltimeFault; /* True to fail localtime() calls */ 2823 }; 2824 2825 /* 2826 ** This macro is used inside of assert() statements to indicate that 2827 ** the assert is only valid on a well-formed database. Instead of: 2828 ** 2829 ** assert( X ); 2830 ** 2831 ** One writes: 2832 ** 2833 ** assert( X || CORRUPT_DB ); 2834 ** 2835 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2836 ** that the database is definitely corrupt, only that it might be corrupt. 2837 ** For most test cases, CORRUPT_DB is set to false using a special 2838 ** sqlite3_test_control(). This enables assert() statements to prove 2839 ** things that are always true for well-formed databases. 2840 */ 2841 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2842 2843 /* 2844 ** Context pointer passed down through the tree-walk. 2845 */ 2846 struct Walker { 2847 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2848 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2849 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2850 Parse *pParse; /* Parser context. */ 2851 int walkerDepth; /* Number of subqueries */ 2852 union { /* Extra data for callback */ 2853 NameContext *pNC; /* Naming context */ 2854 int i; /* Integer value */ 2855 SrcList *pSrcList; /* FROM clause */ 2856 struct SrcCount *pSrcCount; /* Counting column references */ 2857 } u; 2858 }; 2859 2860 /* Forward declarations */ 2861 int sqlite3WalkExpr(Walker*, Expr*); 2862 int sqlite3WalkExprList(Walker*, ExprList*); 2863 int sqlite3WalkSelect(Walker*, Select*); 2864 int sqlite3WalkSelectExpr(Walker*, Select*); 2865 int sqlite3WalkSelectFrom(Walker*, Select*); 2866 2867 /* 2868 ** Return code from the parse-tree walking primitives and their 2869 ** callbacks. 2870 */ 2871 #define WRC_Continue 0 /* Continue down into children */ 2872 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2873 #define WRC_Abort 2 /* Abandon the tree walk */ 2874 2875 /* 2876 ** An instance of this structure represents a set of one or more CTEs 2877 ** (common table expressions) created by a single WITH clause. 2878 */ 2879 struct With { 2880 int nCte; /* Number of CTEs in the WITH clause */ 2881 With *pOuter; /* Containing WITH clause, or NULL */ 2882 struct Cte { /* For each CTE in the WITH clause.... */ 2883 char *zName; /* Name of this CTE */ 2884 ExprList *pCols; /* List of explicit column names, or NULL */ 2885 Select *pSelect; /* The definition of this CTE */ 2886 const char *zErr; /* Error message for circular references */ 2887 } a[1]; 2888 }; 2889 2890 /* 2891 ** Assuming zIn points to the first byte of a UTF-8 character, 2892 ** advance zIn to point to the first byte of the next UTF-8 character. 2893 */ 2894 #define SQLITE_SKIP_UTF8(zIn) { \ 2895 if( (*(zIn++))>=0xc0 ){ \ 2896 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2897 } \ 2898 } 2899 2900 /* 2901 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2902 ** the same name but without the _BKPT suffix. These macros invoke 2903 ** routines that report the line-number on which the error originated 2904 ** using sqlite3_log(). The routines also provide a convenient place 2905 ** to set a debugger breakpoint. 2906 */ 2907 int sqlite3CorruptError(int); 2908 int sqlite3MisuseError(int); 2909 int sqlite3CantopenError(int); 2910 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2911 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2912 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2913 2914 2915 /* 2916 ** FTS4 is really an extension for FTS3. It is enabled using the 2917 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 2918 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 2919 */ 2920 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2921 # define SQLITE_ENABLE_FTS3 2922 #endif 2923 2924 /* 2925 ** The ctype.h header is needed for non-ASCII systems. It is also 2926 ** needed by FTS3 when FTS3 is included in the amalgamation. 2927 */ 2928 #if !defined(SQLITE_ASCII) || \ 2929 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2930 # include <ctype.h> 2931 #endif 2932 2933 /* 2934 ** The following macros mimic the standard library functions toupper(), 2935 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2936 ** sqlite versions only work for ASCII characters, regardless of locale. 2937 */ 2938 #ifdef SQLITE_ASCII 2939 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2940 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2941 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2942 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2943 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2944 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2945 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2946 #else 2947 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2948 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2949 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2950 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2951 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2952 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2953 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2954 #endif 2955 2956 /* 2957 ** Internal function prototypes 2958 */ 2959 #define sqlite3StrICmp sqlite3_stricmp 2960 int sqlite3Strlen30(const char*); 2961 #define sqlite3StrNICmp sqlite3_strnicmp 2962 2963 int sqlite3MallocInit(void); 2964 void sqlite3MallocEnd(void); 2965 void *sqlite3Malloc(int); 2966 void *sqlite3MallocZero(int); 2967 void *sqlite3DbMallocZero(sqlite3*, int); 2968 void *sqlite3DbMallocRaw(sqlite3*, int); 2969 char *sqlite3DbStrDup(sqlite3*,const char*); 2970 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2971 void *sqlite3Realloc(void*, int); 2972 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2973 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2974 void sqlite3DbFree(sqlite3*, void*); 2975 int sqlite3MallocSize(void*); 2976 int sqlite3DbMallocSize(sqlite3*, void*); 2977 void *sqlite3ScratchMalloc(int); 2978 void sqlite3ScratchFree(void*); 2979 void *sqlite3PageMalloc(int); 2980 void sqlite3PageFree(void*); 2981 void sqlite3MemSetDefault(void); 2982 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2983 int sqlite3HeapNearlyFull(void); 2984 2985 /* 2986 ** On systems with ample stack space and that support alloca(), make 2987 ** use of alloca() to obtain space for large automatic objects. By default, 2988 ** obtain space from malloc(). 2989 ** 2990 ** The alloca() routine never returns NULL. This will cause code paths 2991 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2992 */ 2993 #ifdef SQLITE_USE_ALLOCA 2994 # define sqlite3StackAllocRaw(D,N) alloca(N) 2995 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2996 # define sqlite3StackFree(D,P) 2997 #else 2998 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2999 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3000 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3001 #endif 3002 3003 #ifdef SQLITE_ENABLE_MEMSYS3 3004 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3005 #endif 3006 #ifdef SQLITE_ENABLE_MEMSYS5 3007 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3008 #endif 3009 3010 3011 #ifndef SQLITE_MUTEX_OMIT 3012 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3013 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3014 sqlite3_mutex *sqlite3MutexAlloc(int); 3015 int sqlite3MutexInit(void); 3016 int sqlite3MutexEnd(void); 3017 #endif 3018 3019 int sqlite3StatusValue(int); 3020 void sqlite3StatusAdd(int, int); 3021 void sqlite3StatusSet(int, int); 3022 3023 #ifndef SQLITE_OMIT_FLOATING_POINT 3024 int sqlite3IsNaN(double); 3025 #else 3026 # define sqlite3IsNaN(X) 0 3027 #endif 3028 3029 /* 3030 ** An instance of the following structure holds information about SQL 3031 ** functions arguments that are the parameters to the printf() function. 3032 */ 3033 struct PrintfArguments { 3034 int nArg; /* Total number of arguments */ 3035 int nUsed; /* Number of arguments used so far */ 3036 sqlite3_value **apArg; /* The argument values */ 3037 }; 3038 3039 #define SQLITE_PRINTF_INTERNAL 0x01 3040 #define SQLITE_PRINTF_SQLFUNC 0x02 3041 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3042 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3043 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3044 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3045 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 3046 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 3047 void sqlite3DebugPrintf(const char*, ...); 3048 #endif 3049 #if defined(SQLITE_TEST) 3050 void *sqlite3TestTextToPtr(const char*); 3051 #endif 3052 3053 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 3054 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3055 void sqlite3ExplainBegin(Vdbe*); 3056 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 3057 void sqlite3ExplainNL(Vdbe*); 3058 void sqlite3ExplainPush(Vdbe*); 3059 void sqlite3ExplainPop(Vdbe*); 3060 void sqlite3ExplainFinish(Vdbe*); 3061 void sqlite3ExplainSelect(Vdbe*, Select*); 3062 void sqlite3ExplainExpr(Vdbe*, Expr*); 3063 void sqlite3ExplainExprList(Vdbe*, ExprList*); 3064 const char *sqlite3VdbeExplanation(Vdbe*); 3065 #else 3066 # define sqlite3ExplainBegin(X) 3067 # define sqlite3ExplainSelect(A,B) 3068 # define sqlite3ExplainExpr(A,B) 3069 # define sqlite3ExplainExprList(A,B) 3070 # define sqlite3ExplainFinish(X) 3071 # define sqlite3VdbeExplanation(X) 0 3072 #endif 3073 3074 3075 void sqlite3SetString(char **, sqlite3*, const char*, ...); 3076 void sqlite3ErrorMsg(Parse*, const char*, ...); 3077 int sqlite3Dequote(char*); 3078 int sqlite3KeywordCode(const unsigned char*, int); 3079 int sqlite3RunParser(Parse*, const char*, char **); 3080 void sqlite3FinishCoding(Parse*); 3081 int sqlite3GetTempReg(Parse*); 3082 void sqlite3ReleaseTempReg(Parse*,int); 3083 int sqlite3GetTempRange(Parse*,int); 3084 void sqlite3ReleaseTempRange(Parse*,int,int); 3085 void sqlite3ClearTempRegCache(Parse*); 3086 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3087 Expr *sqlite3Expr(sqlite3*,int,const char*); 3088 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3089 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3090 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3091 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3092 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3093 void sqlite3ExprDelete(sqlite3*, Expr*); 3094 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3095 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3096 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3097 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3098 int sqlite3Init(sqlite3*, char**); 3099 int sqlite3InitCallback(void*, int, char**, char**); 3100 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3101 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3102 void sqlite3ResetOneSchema(sqlite3*,int); 3103 void sqlite3CollapseDatabaseArray(sqlite3*); 3104 void sqlite3BeginParse(Parse*,int); 3105 void sqlite3CommitInternalChanges(sqlite3*); 3106 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3107 void sqlite3OpenMasterTable(Parse *, int); 3108 Index *sqlite3PrimaryKeyIndex(Table*); 3109 i16 sqlite3ColumnOfIndex(Index*, i16); 3110 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3111 void sqlite3AddColumn(Parse*,Token*); 3112 void sqlite3AddNotNull(Parse*, int); 3113 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3114 void sqlite3AddCheckConstraint(Parse*, Expr*); 3115 void sqlite3AddColumnType(Parse*,Token*); 3116 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3117 void sqlite3AddCollateType(Parse*, Token*); 3118 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3119 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3120 sqlite3_vfs**,char**,char **); 3121 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3122 int sqlite3CodeOnce(Parse *); 3123 3124 #ifdef SQLITE_OMIT_BUILTIN_TEST 3125 # define sqlite3FaultSim(X) SQLITE_OK 3126 #else 3127 int sqlite3FaultSim(int); 3128 #endif 3129 3130 Bitvec *sqlite3BitvecCreate(u32); 3131 int sqlite3BitvecTest(Bitvec*, u32); 3132 int sqlite3BitvecSet(Bitvec*, u32); 3133 void sqlite3BitvecClear(Bitvec*, u32, void*); 3134 void sqlite3BitvecDestroy(Bitvec*); 3135 u32 sqlite3BitvecSize(Bitvec*); 3136 int sqlite3BitvecBuiltinTest(int,int*); 3137 3138 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3139 void sqlite3RowSetClear(RowSet*); 3140 void sqlite3RowSetInsert(RowSet*, i64); 3141 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3142 int sqlite3RowSetNext(RowSet*, i64*); 3143 3144 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 3145 3146 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3147 int sqlite3ViewGetColumnNames(Parse*,Table*); 3148 #else 3149 # define sqlite3ViewGetColumnNames(A,B) 0 3150 #endif 3151 3152 #if SQLITE_MAX_ATTACHED>30 3153 int sqlite3DbMaskAllZero(yDbMask); 3154 #endif 3155 void sqlite3DropTable(Parse*, SrcList*, int, int); 3156 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3157 void sqlite3DeleteTable(sqlite3*, Table*); 3158 #ifndef SQLITE_OMIT_AUTOINCREMENT 3159 void sqlite3AutoincrementBegin(Parse *pParse); 3160 void sqlite3AutoincrementEnd(Parse *pParse); 3161 #else 3162 # define sqlite3AutoincrementBegin(X) 3163 # define sqlite3AutoincrementEnd(X) 3164 #endif 3165 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3166 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3167 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3168 int sqlite3IdListIndex(IdList*,const char*); 3169 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3170 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3171 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3172 Token*, Select*, Expr*, IdList*); 3173 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3174 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3175 void sqlite3SrcListShiftJoinType(SrcList*); 3176 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3177 void sqlite3IdListDelete(sqlite3*, IdList*); 3178 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3179 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3180 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3181 Expr*, int, int); 3182 void sqlite3DropIndex(Parse*, SrcList*, int); 3183 int sqlite3Select(Parse*, Select*, SelectDest*); 3184 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3185 Expr*,ExprList*,u16,Expr*,Expr*); 3186 void sqlite3SelectDelete(sqlite3*, Select*); 3187 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3188 int sqlite3IsReadOnly(Parse*, Table*, int); 3189 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3190 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3191 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3192 #endif 3193 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3194 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3195 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3196 void sqlite3WhereEnd(WhereInfo*); 3197 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3198 int sqlite3WhereIsDistinct(WhereInfo*); 3199 int sqlite3WhereIsOrdered(WhereInfo*); 3200 int sqlite3WhereIsSorted(WhereInfo*); 3201 int sqlite3WhereContinueLabel(WhereInfo*); 3202 int sqlite3WhereBreakLabel(WhereInfo*); 3203 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3204 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3205 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3206 void sqlite3ExprCodeMove(Parse*, int, int, int); 3207 void sqlite3ExprCacheStore(Parse*, int, int, int); 3208 void sqlite3ExprCachePush(Parse*); 3209 void sqlite3ExprCachePop(Parse*); 3210 void sqlite3ExprCacheRemove(Parse*, int, int); 3211 void sqlite3ExprCacheClear(Parse*); 3212 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3213 void sqlite3ExprCode(Parse*, Expr*, int); 3214 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3215 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3216 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3217 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3218 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3219 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3220 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3221 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3222 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3223 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3224 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3225 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3226 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3227 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3228 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3229 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3230 void sqlite3Vacuum(Parse*); 3231 int sqlite3RunVacuum(char**, sqlite3*); 3232 char *sqlite3NameFromToken(sqlite3*, Token*); 3233 int sqlite3ExprCompare(Expr*, Expr*, int); 3234 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3235 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3236 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3237 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3238 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3239 Vdbe *sqlite3GetVdbe(Parse*); 3240 void sqlite3PrngSaveState(void); 3241 void sqlite3PrngRestoreState(void); 3242 void sqlite3RollbackAll(sqlite3*,int); 3243 void sqlite3CodeVerifySchema(Parse*, int); 3244 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3245 void sqlite3BeginTransaction(Parse*, int); 3246 void sqlite3CommitTransaction(Parse*); 3247 void sqlite3RollbackTransaction(Parse*); 3248 void sqlite3Savepoint(Parse*, int, Token*); 3249 void sqlite3CloseSavepoints(sqlite3 *); 3250 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3251 int sqlite3ExprIsConstant(Expr*); 3252 int sqlite3ExprIsConstantNotJoin(Expr*); 3253 int sqlite3ExprIsConstantOrFunction(Expr*); 3254 int sqlite3ExprIsInteger(Expr*, int*); 3255 int sqlite3ExprCanBeNull(const Expr*); 3256 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3257 int sqlite3IsRowid(const char*); 3258 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3259 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3260 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3261 void sqlite3ResolvePartIdxLabel(Parse*,int); 3262 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3263 u8,u8,int,int*); 3264 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3265 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3266 void sqlite3BeginWriteOperation(Parse*, int, int); 3267 void sqlite3MultiWrite(Parse*); 3268 void sqlite3MayAbort(Parse*); 3269 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3270 void sqlite3UniqueConstraint(Parse*, int, Index*); 3271 void sqlite3RowidConstraint(Parse*, int, Table*); 3272 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3273 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3274 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3275 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3276 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3277 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3278 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3279 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3280 void sqlite3RegisterDateTimeFunctions(void); 3281 void sqlite3RegisterGlobalFunctions(void); 3282 int sqlite3SafetyCheckOk(sqlite3*); 3283 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3284 void sqlite3ChangeCookie(Parse*, int); 3285 3286 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3287 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3288 #endif 3289 3290 #ifndef SQLITE_OMIT_TRIGGER 3291 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3292 Expr*,int, int); 3293 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3294 void sqlite3DropTrigger(Parse*, SrcList*, int); 3295 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3296 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3297 Trigger *sqlite3TriggerList(Parse *, Table *); 3298 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3299 int, int, int); 3300 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3301 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3302 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3303 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3304 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3305 Select*,u8); 3306 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3307 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3308 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3309 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3310 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3311 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3312 #else 3313 # define sqlite3TriggersExist(B,C,D,E,F) 0 3314 # define sqlite3DeleteTrigger(A,B) 3315 # define sqlite3DropTriggerPtr(A,B) 3316 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3317 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3318 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3319 # define sqlite3TriggerList(X, Y) 0 3320 # define sqlite3ParseToplevel(p) p 3321 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3322 #endif 3323 3324 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3325 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3326 void sqlite3DeferForeignKey(Parse*, int); 3327 #ifndef SQLITE_OMIT_AUTHORIZATION 3328 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3329 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3330 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3331 void sqlite3AuthContextPop(AuthContext*); 3332 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3333 #else 3334 # define sqlite3AuthRead(a,b,c,d) 3335 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3336 # define sqlite3AuthContextPush(a,b,c) 3337 # define sqlite3AuthContextPop(a) ((void)(a)) 3338 #endif 3339 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3340 void sqlite3Detach(Parse*, Expr*); 3341 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3342 int sqlite3FixSrcList(DbFixer*, SrcList*); 3343 int sqlite3FixSelect(DbFixer*, Select*); 3344 int sqlite3FixExpr(DbFixer*, Expr*); 3345 int sqlite3FixExprList(DbFixer*, ExprList*); 3346 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3347 int sqlite3AtoF(const char *z, double*, int, u8); 3348 int sqlite3GetInt32(const char *, int*); 3349 int sqlite3Atoi(const char*); 3350 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3351 int sqlite3Utf8CharLen(const char *pData, int nByte); 3352 u32 sqlite3Utf8Read(const u8**); 3353 LogEst sqlite3LogEst(u64); 3354 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3355 #ifndef SQLITE_OMIT_VIRTUALTABLE 3356 LogEst sqlite3LogEstFromDouble(double); 3357 #endif 3358 u64 sqlite3LogEstToInt(LogEst); 3359 3360 /* 3361 ** Routines to read and write variable-length integers. These used to 3362 ** be defined locally, but now we use the varint routines in the util.c 3363 ** file. 3364 */ 3365 int sqlite3PutVarint(unsigned char*, u64); 3366 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3367 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3368 int sqlite3VarintLen(u64 v); 3369 3370 /* 3371 ** The common case is for a varint to be a single byte. They following 3372 ** macros handle the common case without a procedure call, but then call 3373 ** the procedure for larger varints. 3374 */ 3375 #define getVarint32(A,B) \ 3376 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3377 #define putVarint32(A,B) \ 3378 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3379 sqlite3PutVarint((A),(B))) 3380 #define getVarint sqlite3GetVarint 3381 #define putVarint sqlite3PutVarint 3382 3383 3384 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3385 void sqlite3TableAffinity(Vdbe*, Table*, int); 3386 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3387 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3388 char sqlite3ExprAffinity(Expr *pExpr); 3389 int sqlite3Atoi64(const char*, i64*, int, u8); 3390 int sqlite3DecOrHexToI64(const char*, i64*); 3391 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3392 void sqlite3Error(sqlite3*,int); 3393 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3394 u8 sqlite3HexToInt(int h); 3395 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3396 3397 #if defined(SQLITE_TEST) 3398 const char *sqlite3ErrName(int); 3399 #endif 3400 3401 const char *sqlite3ErrStr(int); 3402 int sqlite3ReadSchema(Parse *pParse); 3403 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3404 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3405 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3406 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*); 3407 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3408 Expr *sqlite3ExprSkipCollate(Expr*); 3409 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3410 int sqlite3CheckObjectName(Parse *, const char *); 3411 void sqlite3VdbeSetChanges(sqlite3 *, int); 3412 int sqlite3AddInt64(i64*,i64); 3413 int sqlite3SubInt64(i64*,i64); 3414 int sqlite3MulInt64(i64*,i64); 3415 int sqlite3AbsInt32(int); 3416 #ifdef SQLITE_ENABLE_8_3_NAMES 3417 void sqlite3FileSuffix3(const char*, char*); 3418 #else 3419 # define sqlite3FileSuffix3(X,Y) 3420 #endif 3421 u8 sqlite3GetBoolean(const char *z,u8); 3422 3423 const void *sqlite3ValueText(sqlite3_value*, u8); 3424 int sqlite3ValueBytes(sqlite3_value*, u8); 3425 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3426 void(*)(void*)); 3427 void sqlite3ValueSetNull(sqlite3_value*); 3428 void sqlite3ValueFree(sqlite3_value*); 3429 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3430 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3431 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3432 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3433 #ifndef SQLITE_AMALGAMATION 3434 extern const unsigned char sqlite3OpcodeProperty[]; 3435 extern const unsigned char sqlite3UpperToLower[]; 3436 extern const unsigned char sqlite3CtypeMap[]; 3437 extern const Token sqlite3IntTokens[]; 3438 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3439 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3440 #ifndef SQLITE_OMIT_WSD 3441 extern int sqlite3PendingByte; 3442 #endif 3443 #endif 3444 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3445 void sqlite3Reindex(Parse*, Token*, Token*); 3446 void sqlite3AlterFunctions(void); 3447 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3448 int sqlite3GetToken(const unsigned char *, int *); 3449 void sqlite3NestedParse(Parse*, const char*, ...); 3450 void sqlite3ExpirePreparedStatements(sqlite3*); 3451 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3452 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3453 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3454 int sqlite3ResolveExprNames(NameContext*, Expr*); 3455 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3456 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3457 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3458 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3459 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3460 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3461 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3462 char sqlite3AffinityType(const char*, u8*); 3463 void sqlite3Analyze(Parse*, Token*, Token*); 3464 int sqlite3InvokeBusyHandler(BusyHandler*); 3465 int sqlite3FindDb(sqlite3*, Token*); 3466 int sqlite3FindDbName(sqlite3 *, const char *); 3467 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3468 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3469 void sqlite3DefaultRowEst(Index*); 3470 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3471 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3472 void sqlite3MinimumFileFormat(Parse*, int, int); 3473 void sqlite3SchemaClear(void *); 3474 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3475 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3476 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3477 void sqlite3KeyInfoUnref(KeyInfo*); 3478 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3479 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3480 #ifdef SQLITE_DEBUG 3481 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3482 #endif 3483 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3484 void (*)(sqlite3_context*,int,sqlite3_value **), 3485 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3486 FuncDestructor *pDestructor 3487 ); 3488 int sqlite3ApiExit(sqlite3 *db, int); 3489 int sqlite3OpenTempDatabase(Parse *); 3490 3491 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3492 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3493 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3494 void sqlite3AppendSpace(StrAccum*,int); 3495 char *sqlite3StrAccumFinish(StrAccum*); 3496 void sqlite3StrAccumReset(StrAccum*); 3497 void sqlite3SelectDestInit(SelectDest*,int,int); 3498 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3499 3500 void sqlite3BackupRestart(sqlite3_backup *); 3501 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3502 3503 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3504 void sqlite3AnalyzeFunctions(void); 3505 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3506 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3507 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3508 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3509 #endif 3510 3511 /* 3512 ** The interface to the LEMON-generated parser 3513 */ 3514 void *sqlite3ParserAlloc(void*(*)(size_t)); 3515 void sqlite3ParserFree(void*, void(*)(void*)); 3516 void sqlite3Parser(void*, int, Token, Parse*); 3517 #ifdef YYTRACKMAXSTACKDEPTH 3518 int sqlite3ParserStackPeak(void*); 3519 #endif 3520 3521 void sqlite3AutoLoadExtensions(sqlite3*); 3522 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3523 void sqlite3CloseExtensions(sqlite3*); 3524 #else 3525 # define sqlite3CloseExtensions(X) 3526 #endif 3527 3528 #ifndef SQLITE_OMIT_SHARED_CACHE 3529 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3530 #else 3531 #define sqlite3TableLock(v,w,x,y,z) 3532 #endif 3533 3534 #ifdef SQLITE_TEST 3535 int sqlite3Utf8To8(unsigned char*); 3536 #endif 3537 3538 #ifdef SQLITE_OMIT_VIRTUALTABLE 3539 # define sqlite3VtabClear(Y) 3540 # define sqlite3VtabSync(X,Y) SQLITE_OK 3541 # define sqlite3VtabRollback(X) 3542 # define sqlite3VtabCommit(X) 3543 # define sqlite3VtabInSync(db) 0 3544 # define sqlite3VtabLock(X) 3545 # define sqlite3VtabUnlock(X) 3546 # define sqlite3VtabUnlockList(X) 3547 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3548 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3549 #else 3550 void sqlite3VtabClear(sqlite3 *db, Table*); 3551 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3552 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3553 int sqlite3VtabRollback(sqlite3 *db); 3554 int sqlite3VtabCommit(sqlite3 *db); 3555 void sqlite3VtabLock(VTable *); 3556 void sqlite3VtabUnlock(VTable *); 3557 void sqlite3VtabUnlockList(sqlite3*); 3558 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3559 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3560 VTable *sqlite3GetVTable(sqlite3*, Table*); 3561 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3562 #endif 3563 void sqlite3VtabMakeWritable(Parse*,Table*); 3564 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3565 void sqlite3VtabFinishParse(Parse*, Token*); 3566 void sqlite3VtabArgInit(Parse*); 3567 void sqlite3VtabArgExtend(Parse*, Token*); 3568 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3569 int sqlite3VtabCallConnect(Parse*, Table*); 3570 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3571 int sqlite3VtabBegin(sqlite3 *, VTable *); 3572 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3573 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3574 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3575 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3576 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3577 void sqlite3ParserReset(Parse*); 3578 int sqlite3Reprepare(Vdbe*); 3579 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3580 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3581 int sqlite3TempInMemory(const sqlite3*); 3582 const char *sqlite3JournalModename(int); 3583 #ifndef SQLITE_OMIT_WAL 3584 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3585 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3586 #endif 3587 #ifndef SQLITE_OMIT_CTE 3588 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3589 void sqlite3WithDelete(sqlite3*,With*); 3590 void sqlite3WithPush(Parse*, With*, u8); 3591 #else 3592 #define sqlite3WithPush(x,y,z) 3593 #define sqlite3WithDelete(x,y) 3594 #endif 3595 3596 /* Declarations for functions in fkey.c. All of these are replaced by 3597 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3598 ** key functionality is available. If OMIT_TRIGGER is defined but 3599 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3600 ** this case foreign keys are parsed, but no other functionality is 3601 ** provided (enforcement of FK constraints requires the triggers sub-system). 3602 */ 3603 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3604 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3605 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3606 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3607 int sqlite3FkRequired(Parse*, Table*, int*, int); 3608 u32 sqlite3FkOldmask(Parse*, Table*); 3609 FKey *sqlite3FkReferences(Table *); 3610 #else 3611 #define sqlite3FkActions(a,b,c,d,e,f) 3612 #define sqlite3FkCheck(a,b,c,d,e,f) 3613 #define sqlite3FkDropTable(a,b,c) 3614 #define sqlite3FkOldmask(a,b) 0 3615 #define sqlite3FkRequired(a,b,c,d) 0 3616 #endif 3617 #ifndef SQLITE_OMIT_FOREIGN_KEY 3618 void sqlite3FkDelete(sqlite3 *, Table*); 3619 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3620 #else 3621 #define sqlite3FkDelete(a,b) 3622 #define sqlite3FkLocateIndex(a,b,c,d,e) 3623 #endif 3624 3625 3626 /* 3627 ** Available fault injectors. Should be numbered beginning with 0. 3628 */ 3629 #define SQLITE_FAULTINJECTOR_MALLOC 0 3630 #define SQLITE_FAULTINJECTOR_COUNT 1 3631 3632 /* 3633 ** The interface to the code in fault.c used for identifying "benign" 3634 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3635 ** is not defined. 3636 */ 3637 #ifndef SQLITE_OMIT_BUILTIN_TEST 3638 void sqlite3BeginBenignMalloc(void); 3639 void sqlite3EndBenignMalloc(void); 3640 #else 3641 #define sqlite3BeginBenignMalloc() 3642 #define sqlite3EndBenignMalloc() 3643 #endif 3644 3645 /* 3646 ** Allowed return values from sqlite3FindInIndex() 3647 */ 3648 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3649 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3650 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3651 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3652 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3653 /* 3654 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3655 */ 3656 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3657 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3658 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3659 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3660 3661 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3662 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3663 int sqlite3JournalSize(sqlite3_vfs *); 3664 int sqlite3JournalCreate(sqlite3_file *); 3665 int sqlite3JournalExists(sqlite3_file *p); 3666 #else 3667 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3668 #define sqlite3JournalExists(p) 1 3669 #endif 3670 3671 void sqlite3MemJournalOpen(sqlite3_file *); 3672 int sqlite3MemJournalSize(void); 3673 int sqlite3IsMemJournal(sqlite3_file *); 3674 3675 #if SQLITE_MAX_EXPR_DEPTH>0 3676 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3677 int sqlite3SelectExprHeight(Select *); 3678 int sqlite3ExprCheckHeight(Parse*, int); 3679 #else 3680 #define sqlite3ExprSetHeight(x,y) 3681 #define sqlite3SelectExprHeight(x) 0 3682 #define sqlite3ExprCheckHeight(x,y) 3683 #endif 3684 3685 u32 sqlite3Get4byte(const u8*); 3686 void sqlite3Put4byte(u8*, u32); 3687 3688 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3689 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3690 void sqlite3ConnectionUnlocked(sqlite3 *db); 3691 void sqlite3ConnectionClosed(sqlite3 *db); 3692 #else 3693 #define sqlite3ConnectionBlocked(x,y) 3694 #define sqlite3ConnectionUnlocked(x) 3695 #define sqlite3ConnectionClosed(x) 3696 #endif 3697 3698 #ifdef SQLITE_DEBUG 3699 void sqlite3ParserTrace(FILE*, char *); 3700 #endif 3701 3702 /* 3703 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3704 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3705 ** print I/O tracing messages. 3706 */ 3707 #ifdef SQLITE_ENABLE_IOTRACE 3708 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3709 void sqlite3VdbeIOTraceSql(Vdbe*); 3710 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3711 #else 3712 # define IOTRACE(A) 3713 # define sqlite3VdbeIOTraceSql(X) 3714 #endif 3715 3716 /* 3717 ** These routines are available for the mem2.c debugging memory allocator 3718 ** only. They are used to verify that different "types" of memory 3719 ** allocations are properly tracked by the system. 3720 ** 3721 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3722 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3723 ** a single bit set. 3724 ** 3725 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3726 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3727 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3728 ** 3729 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3730 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3731 ** 3732 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3733 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3734 ** it might have been allocated by lookaside, except the allocation was 3735 ** too large or lookaside was already full. It is important to verify 3736 ** that allocations that might have been satisfied by lookaside are not 3737 ** passed back to non-lookaside free() routines. Asserts such as the 3738 ** example above are placed on the non-lookaside free() routines to verify 3739 ** this constraint. 3740 ** 3741 ** All of this is no-op for a production build. It only comes into 3742 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3743 */ 3744 #ifdef SQLITE_MEMDEBUG 3745 void sqlite3MemdebugSetType(void*,u8); 3746 int sqlite3MemdebugHasType(void*,u8); 3747 int sqlite3MemdebugNoType(void*,u8); 3748 #else 3749 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3750 # define sqlite3MemdebugHasType(X,Y) 1 3751 # define sqlite3MemdebugNoType(X,Y) 1 3752 #endif 3753 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3754 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3755 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3756 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3757 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3758 3759 /* 3760 ** Threading interface 3761 */ 3762 #if SQLITE_MAX_WORKER_THREADS>0 3763 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 3764 int sqlite3ThreadJoin(SQLiteThread*, void**); 3765 #endif 3766 3767 #endif /* _SQLITEINT_H_ */ 3768