1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.197 2003/08/23 22:40:54 drh Exp $ 15 */ 16 #include "config.h" 17 #include "sqlite.h" 18 #include "hash.h" 19 #include "vdbe.h" 20 #include "parse.h" 21 #include "btree.h" 22 #include <stdio.h> 23 #include <stdlib.h> 24 #include <string.h> 25 #include <assert.h> 26 27 /* 28 ** The maximum number of in-memory pages to use for the main database 29 ** table and for temporary tables. 30 */ 31 #define MAX_PAGES 2000 32 #define TEMP_PAGES 500 33 34 /* 35 ** If the following macro is set to 1, then NULL values are considered 36 ** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT 37 ** compound queries. No other SQL database engine (among those tested) 38 ** works this way except for OCELOT. But the SQL92 spec implies that 39 ** this is how things should work. 40 ** 41 ** If the following macro is set to 0, then NULLs are indistinct for 42 ** SELECT DISTINCT and for UNION. 43 */ 44 #define NULL_ALWAYS_DISTINCT 0 45 46 /* 47 ** If the following macro is set to 1, then NULL values are considered 48 ** distinct when determining whether or not two entries are the same 49 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 50 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 51 ** is the way things are suppose to work. 52 ** 53 ** If the following macro is set to 0, the NULLs are indistinct for 54 ** a UNIQUE index. In this mode, you can only have a single NULL entry 55 ** for a column declared UNIQUE. This is the way Informix and SQL Server 56 ** work. 57 */ 58 #define NULL_DISTINCT_FOR_UNIQUE 1 59 60 /* 61 ** The maximum number of attached databases. This must be at least 2 62 ** in order to support the main database file (0) and the file used to 63 ** hold temporary tables (1). And it must be less than 256 because 64 ** an unsigned character is used to stored the database index. 65 */ 66 #define MAX_ATTACHED 10 67 68 /* 69 ** The next macro is used to determine where TEMP tables and indices 70 ** are stored. Possible values: 71 ** 72 ** 0 Always use a temporary files 73 ** 1 Use a file unless overridden by "PRAGMA temp_store" 74 ** 2 Use memory unless overridden by "PRAGMA temp_store" 75 ** 3 Always use memory 76 */ 77 #ifndef TEMP_STORE 78 # define TEMP_STORE 1 79 #endif 80 81 /* 82 ** When building SQLite for embedded systems where memory is scarce, 83 ** you can define one or more of the following macros to omit extra 84 ** features of the library and thus keep the size of the library to 85 ** a minimum. 86 */ 87 /* #define SQLITE_OMIT_AUTHORIZATION 1 */ 88 /* #define SQLITE_OMIT_INMEMORYDB 1 */ 89 /* #define SQLITE_OMIT_VACUUM 1 */ 90 /* #define SQLITE_OMIT_TIMEDATE_FUNCS 1 */ 91 92 /* 93 ** Integers of known sizes. These typedefs might change for architectures 94 ** where the sizes very. Preprocessor macros are available so that the 95 ** types can be conveniently redefined at compile-type. Like this: 96 ** 97 ** cc '-DUINTPTR_TYPE=long long int' ... 98 */ 99 #ifndef UINT32_TYPE 100 # define UINT32_TYPE unsigned int 101 #endif 102 #ifndef UINT16_TYPE 103 # define UINT16_TYPE unsigned short int 104 #endif 105 #ifndef UINT8_TYPE 106 # define UINT8_TYPE unsigned char 107 #endif 108 #ifndef INTPTR_TYPE 109 # if SQLITE_PTR_SZ==4 110 # define INTPTR_TYPE int 111 # else 112 # define INTPTR_TYPE long long 113 # endif 114 #endif 115 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 116 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 117 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 118 typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */ 119 typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */ 120 121 /* 122 ** This macro casts a pointer to an integer. Useful for doing 123 ** pointer arithmetic. 124 */ 125 #define Addr(X) ((uptr)X) 126 127 /* 128 ** The maximum number of bytes of data that can be put into a single 129 ** row of a single table. The upper bound on this limit is 16777215 130 ** bytes (or 16MB-1). We have arbitrarily set the limit to just 1MB 131 ** here because the overflow page chain is inefficient for really big 132 ** records and we want to discourage people from thinking that 133 ** multi-megabyte records are OK. If your needs are different, you can 134 ** change this define and recompile to increase or decrease the record 135 ** size. 136 ** 137 ** The 16777198 is computed as follows: 238 bytes of payload on the 138 ** original pages plus 16448 overflow pages each holding 1020 bytes of 139 ** data. 140 */ 141 #define MAX_BYTES_PER_ROW 1048576 142 /* #define MAX_BYTES_PER_ROW 16777198 */ 143 144 /* 145 ** If memory allocation problems are found, recompile with 146 ** 147 ** -DMEMORY_DEBUG=1 148 ** 149 ** to enable some sanity checking on malloc() and free(). To 150 ** check for memory leaks, recompile with 151 ** 152 ** -DMEMORY_DEBUG=2 153 ** 154 ** and a line of text will be written to standard error for 155 ** each malloc() and free(). This output can be analyzed 156 ** by an AWK script to determine if there are any leaks. 157 */ 158 #ifdef MEMORY_DEBUG 159 # define sqliteMalloc(X) sqliteMalloc_(X,1,__FILE__,__LINE__) 160 # define sqliteMallocRaw(X) sqliteMalloc_(X,0,__FILE__,__LINE__) 161 # define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__) 162 # define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__) 163 # define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__) 164 # define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__) 165 void sqliteStrRealloc(char**); 166 #else 167 # define sqliteStrRealloc(X) 168 #endif 169 170 /* 171 ** This variable gets set if malloc() ever fails. After it gets set, 172 ** the SQLite library shuts down permanently. 173 */ 174 extern int sqlite_malloc_failed; 175 176 /* 177 ** The following global variables are used for testing and debugging 178 ** only. They only work if MEMORY_DEBUG is defined. 179 */ 180 #ifdef MEMORY_DEBUG 181 extern int sqlite_nMalloc; /* Number of sqliteMalloc() calls */ 182 extern int sqlite_nFree; /* Number of sqliteFree() calls */ 183 extern int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */ 184 #endif 185 186 /* 187 ** Name of the master database table. The master database table 188 ** is a special table that holds the names and attributes of all 189 ** user tables and indices. 190 */ 191 #define MASTER_NAME "sqlite_master" 192 #define TEMP_MASTER_NAME "sqlite_temp_master" 193 194 /* 195 ** The name of the schema table. 196 */ 197 #define SCHEMA_TABLE(x) (x?TEMP_MASTER_NAME:MASTER_NAME) 198 199 /* 200 ** A convenience macro that returns the number of elements in 201 ** an array. 202 */ 203 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 204 205 /* 206 ** Forward references to structures 207 */ 208 typedef struct Column Column; 209 typedef struct Table Table; 210 typedef struct Index Index; 211 typedef struct Instruction Instruction; 212 typedef struct Expr Expr; 213 typedef struct ExprList ExprList; 214 typedef struct Parse Parse; 215 typedef struct Token Token; 216 typedef struct IdList IdList; 217 typedef struct SrcList SrcList; 218 typedef struct WhereInfo WhereInfo; 219 typedef struct WhereLevel WhereLevel; 220 typedef struct Select Select; 221 typedef struct AggExpr AggExpr; 222 typedef struct FuncDef FuncDef; 223 typedef struct Trigger Trigger; 224 typedef struct TriggerStep TriggerStep; 225 typedef struct TriggerStack TriggerStack; 226 typedef struct FKey FKey; 227 typedef struct Db Db; 228 typedef struct AuthContext AuthContext; 229 230 /* 231 ** Each database file to be accessed by the system is an instance 232 ** of the following structure. There are normally two of these structures 233 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 234 ** aDb[1] is the database file used to hold temporary tables. Additional 235 ** databases may be attached. 236 */ 237 struct Db { 238 char *zName; /* Name of this database */ 239 Btree *pBt; /* The B*Tree structure for this database file */ 240 int schema_cookie; /* Database schema version number for this file */ 241 Hash tblHash; /* All tables indexed by name */ 242 Hash idxHash; /* All (named) indices indexed by name */ 243 Hash trigHash; /* All triggers indexed by name */ 244 Hash aFKey; /* Foreign keys indexed by to-table */ 245 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 246 u16 flags; /* Flags associated with this database */ 247 }; 248 249 /* 250 ** These macros can be used to test, set, or clear bits in the 251 ** Db.flags field. 252 */ 253 #define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P)) 254 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0) 255 #define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P) 256 #define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P) 257 258 /* 259 ** Allowed values for the DB.flags field. 260 ** 261 ** The DB_Locked flag is set when the first OP_Transaction or OP_Checkpoint 262 ** opcode is emitted for a database. This prevents multiple occurances 263 ** of those opcodes for the same database in the same program. Similarly, 264 ** the DB_Cookie flag is set when the OP_VerifyCookie opcode is emitted, 265 ** and prevents duplicate OP_VerifyCookies from taking up space and slowing 266 ** down execution. 267 ** 268 ** The DB_SchemaLoaded flag is set after the database schema has been 269 ** read into internal hash tables. 270 ** 271 ** DB_UnresetViews means that one or more views have column names that 272 ** have been filled out. If the schema changes, these column names might 273 ** changes and so the view will need to be reset. 274 */ 275 #define DB_Locked 0x0001 /* OP_Transaction opcode has been emitted */ 276 #define DB_Cookie 0x0002 /* OP_VerifyCookie opcode has been emiited */ 277 #define DB_SchemaLoaded 0x0004 /* The schema has been loaded */ 278 #define DB_UnresetViews 0x0008 /* Some views have defined column names */ 279 280 281 /* 282 ** Each database is an instance of the following structure. 283 ** 284 ** The sqlite.file_format is initialized by the database file 285 ** and helps determines how the data in the database file is 286 ** represented. This field allows newer versions of the library 287 ** to read and write older databases. The various file formats 288 ** are as follows: 289 ** 290 ** file_format==1 Version 2.1.0. 291 ** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY. 292 ** file_format==3 Version 2.6.0. Fix empty-string index bug. 293 ** file_format==4 Version 2.7.0. Add support for separate numeric and 294 ** text datatypes. 295 ** 296 ** The sqlite.temp_store determines where temporary database files 297 ** are stored. If 1, then a file is created to hold those tables. If 298 ** 2, then they are held in memory. 0 means use the default value in 299 ** the TEMP_STORE macro. 300 */ 301 struct sqlite { 302 int nDb; /* Number of backends currently in use */ 303 Db *aDb; /* All backends */ 304 Db aDbStatic[2]; /* Static space for the 2 default backends */ 305 int flags; /* Miscellanous flags. See below */ 306 u8 file_format; /* What file format version is this database? */ 307 u8 safety_level; /* How aggressive at synching data to disk */ 308 u8 want_to_close; /* Close after all VDBEs are deallocated */ 309 int next_cookie; /* Next value of aDb[0].schema_cookie */ 310 int cache_size; /* Number of pages to use in the cache */ 311 int temp_store; /* 1=file, 2=memory, 0=compile-time default */ 312 int nTable; /* Number of tables in the database */ 313 void *pBusyArg; /* 1st Argument to the busy callback */ 314 int (*xBusyCallback)(void *,const char*,int); /* The busy callback */ 315 Hash aFunc; /* All functions that can be in SQL exprs */ 316 int lastRowid; /* ROWID of most recent insert */ 317 int priorNewRowid; /* Last randomly generated ROWID */ 318 int onError; /* Default conflict algorithm */ 319 int magic; /* Magic number for detect library misuse */ 320 int nChange; /* Number of rows changed */ 321 struct Vdbe *pVdbe; /* List of active virtual machines */ 322 void (*xTrace)(void*,const char*); /* Trace function */ 323 void *pTraceArg; /* Argument to the trace function */ 324 #ifndef SQLITE_OMIT_AUTHORIZATION 325 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 326 /* Access authorization function */ 327 void *pAuthArg; /* 1st argument to the access auth function */ 328 #endif 329 }; 330 331 /* 332 ** Possible values for the sqlite.flags and or Db.flags fields. 333 ** 334 ** On sqlite.flags, the SQLITE_InTrans value means that we have 335 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 336 ** transaction is active on that particular database file. 337 */ 338 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 339 #define SQLITE_Initialized 0x00000002 /* True after initialization */ 340 #define SQLITE_Interrupt 0x00000004 /* Cancel current operation */ 341 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 342 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 343 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 344 #define SQLITE_CountRows 0x00000040 /* Count rows changed by INSERT, */ 345 /* DELETE, or UPDATE and return */ 346 /* the count using a callback. */ 347 #define SQLITE_NullCallback 0x00000080 /* Invoke the callback once if the */ 348 /* result set is empty */ 349 #define SQLITE_ReportTypes 0x00000200 /* Include information on datatypes */ 350 /* in 4th argument of callback */ 351 352 /* 353 ** Possible values for the sqlite.magic field. 354 ** The numbers are obtained at random and have no special meaning, other 355 ** than being distinct from one another. 356 */ 357 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 358 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 359 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 360 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 361 362 /* 363 ** Each SQL function is defined by an instance of the following 364 ** structure. A pointer to this structure is stored in the sqlite.aFunc 365 ** hash table. When multiple functions have the same name, the hash table 366 ** points to a linked list of these structures. 367 */ 368 struct FuncDef { 369 void (*xFunc)(sqlite_func*,int,const char**); /* Regular function */ 370 void (*xStep)(sqlite_func*,int,const char**); /* Aggregate function step */ 371 void (*xFinalize)(sqlite_func*); /* Aggregate function finializer */ 372 int nArg; /* Number of arguments */ 373 int dataType; /* Datatype of the result */ 374 void *pUserData; /* User data parameter */ 375 FuncDef *pNext; /* Next function with same name */ 376 }; 377 378 /* 379 ** information about each column of an SQL table is held in an instance 380 ** of this structure. 381 */ 382 struct Column { 383 char *zName; /* Name of this column */ 384 char *zDflt; /* Default value of this column */ 385 char *zType; /* Data type for this column */ 386 u8 notNull; /* True if there is a NOT NULL constraint */ 387 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 388 u8 sortOrder; /* Some combination of SQLITE_SO_... values */ 389 }; 390 391 /* 392 ** The allowed sort orders. 393 ** 394 ** The TEXT and NUM values use bits that do not overlap with DESC and ASC. 395 ** That way the two can be combined into a single number. 396 */ 397 #define SQLITE_SO_UNK 0 /* Use the default collating type. (SCT_NUM) */ 398 #define SQLITE_SO_TEXT 2 /* Sort using memcmp() */ 399 #define SQLITE_SO_NUM 4 /* Sort using sqliteCompare() */ 400 #define SQLITE_SO_TYPEMASK 6 /* Mask to extract the collating sequence */ 401 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 402 #define SQLITE_SO_DESC 1 /* Sort in descending order */ 403 #define SQLITE_SO_DIRMASK 1 /* Mask to extract the sort direction */ 404 405 /* 406 ** Each SQL table is represented in memory by an instance of the 407 ** following structure. 408 ** 409 ** Table.zName is the name of the table. The case of the original 410 ** CREATE TABLE statement is stored, but case is not significant for 411 ** comparisons. 412 ** 413 ** Table.nCol is the number of columns in this table. Table.aCol is a 414 ** pointer to an array of Column structures, one for each column. 415 ** 416 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 417 ** the column that is that key. Otherwise Table.iPKey is negative. Note 418 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 419 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 420 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 421 ** is generated for each row of the table. Table.hasPrimKey is true if 422 ** the table has any PRIMARY KEY, INTEGER or otherwise. 423 ** 424 ** Table.tnum is the page number for the root BTree page of the table in the 425 ** database file. If Table.iDb is the index of the database table backend 426 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 427 ** holds temporary tables and indices. If Table.isTransient 428 ** is true, then the table is stored in a file that is automatically deleted 429 ** when the VDBE cursor to the table is closed. In this case Table.tnum 430 ** refers VDBE cursor number that holds the table open, not to the root 431 ** page number. Transient tables are used to hold the results of a 432 ** sub-query that appears instead of a real table name in the FROM clause 433 ** of a SELECT statement. 434 */ 435 struct Table { 436 char *zName; /* Name of the table */ 437 int nCol; /* Number of columns in this table */ 438 Column *aCol; /* Information about each column */ 439 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 440 Index *pIndex; /* List of SQL indexes on this table. */ 441 int tnum; /* Root BTree node for this table (see note above) */ 442 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 443 u8 readOnly; /* True if this table should not be written by the user */ 444 u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */ 445 u8 isTransient; /* True if automatically deleted when VDBE finishes */ 446 u8 hasPrimKey; /* True if there exists a primary key */ 447 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 448 Trigger *pTrigger; /* List of SQL triggers on this table */ 449 FKey *pFKey; /* Linked list of all foreign keys in this table */ 450 }; 451 452 /* 453 ** Each foreign key constraint is an instance of the following structure. 454 ** 455 ** A foreign key is associated with two tables. The "from" table is 456 ** the table that contains the REFERENCES clause that creates the foreign 457 ** key. The "to" table is the table that is named in the REFERENCES clause. 458 ** Consider this example: 459 ** 460 ** CREATE TABLE ex1( 461 ** a INTEGER PRIMARY KEY, 462 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 463 ** ); 464 ** 465 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 466 ** 467 ** Each REFERENCES clause generates an instance of the following structure 468 ** which is attached to the from-table. The to-table need not exist when 469 ** the from-table is created. The existance of the to-table is not checked 470 ** until an attempt is made to insert data into the from-table. 471 ** 472 ** The sqlite.aFKey hash table stores pointers to this structure 473 ** given the name of a to-table. For each to-table, all foreign keys 474 ** associated with that table are on a linked list using the FKey.pNextTo 475 ** field. 476 */ 477 struct FKey { 478 Table *pFrom; /* The table that constains the REFERENCES clause */ 479 FKey *pNextFrom; /* Next foreign key in pFrom */ 480 char *zTo; /* Name of table that the key points to */ 481 FKey *pNextTo; /* Next foreign key that points to zTo */ 482 int nCol; /* Number of columns in this key */ 483 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 484 int iFrom; /* Index of column in pFrom */ 485 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 486 } *aCol; /* One entry for each of nCol column s */ 487 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 488 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 489 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 490 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 491 }; 492 493 /* 494 ** SQLite supports many different ways to resolve a contraint 495 ** error. ROLLBACK processing means that a constraint violation 496 ** causes the operation in process to fail and for the current transaction 497 ** to be rolled back. ABORT processing means the operation in process 498 ** fails and any prior changes from that one operation are backed out, 499 ** but the transaction is not rolled back. FAIL processing means that 500 ** the operation in progress stops and returns an error code. But prior 501 ** changes due to the same operation are not backed out and no rollback 502 ** occurs. IGNORE means that the particular row that caused the constraint 503 ** error is not inserted or updated. Processing continues and no error 504 ** is returned. REPLACE means that preexisting database rows that caused 505 ** a UNIQUE constraint violation are removed so that the new insert or 506 ** update can proceed. Processing continues and no error is reported. 507 ** 508 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 509 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 510 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 511 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 512 ** referenced table row is propagated into the row that holds the 513 ** foreign key. 514 ** 515 ** The following symbolic values are used to record which type 516 ** of action to take. 517 */ 518 #define OE_None 0 /* There is no constraint to check */ 519 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 520 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 521 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 522 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 523 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 524 525 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 526 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 527 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 528 #define OE_Cascade 9 /* Cascade the changes */ 529 530 #define OE_Default 99 /* Do whatever the default action is */ 531 532 /* 533 ** Each SQL index is represented in memory by an 534 ** instance of the following structure. 535 ** 536 ** The columns of the table that are to be indexed are described 537 ** by the aiColumn[] field of this structure. For example, suppose 538 ** we have the following table and index: 539 ** 540 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 541 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 542 ** 543 ** In the Table structure describing Ex1, nCol==3 because there are 544 ** three columns in the table. In the Index structure describing 545 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 546 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 547 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 548 ** The second column to be indexed (c1) has an index of 0 in 549 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 550 ** 551 ** The Index.onError field determines whether or not the indexed columns 552 ** must be unique and what to do if they are not. When Index.onError=OE_None, 553 ** it means this is not a unique index. Otherwise it is a unique index 554 ** and the value of Index.onError indicate the which conflict resolution 555 ** algorithm to employ whenever an attempt is made to insert a non-unique 556 ** element. 557 */ 558 struct Index { 559 char *zName; /* Name of this index */ 560 int nColumn; /* Number of columns in the table used by this index */ 561 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 562 Table *pTable; /* The SQL table being indexed */ 563 int tnum; /* Page containing root of this index in database file */ 564 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 565 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 566 u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ 567 Index *pNext; /* The next index associated with the same table */ 568 }; 569 570 /* 571 ** Each token coming out of the lexer is an instance of 572 ** this structure. Tokens are also used as part of an expression. 573 */ 574 struct Token { 575 const char *z; /* Text of the token. Not NULL-terminated! */ 576 unsigned dyn : 1; /* True for malloced memory, false for static */ 577 unsigned n : 31; /* Number of characters in this token */ 578 }; 579 580 /* 581 ** Each node of an expression in the parse tree is an instance 582 ** of this structure. 583 ** 584 ** Expr.op is the opcode. The integer parser token codes are reused 585 ** as opcodes here. For example, the parser defines TK_GE to be an integer 586 ** code representing the ">=" operator. This same integer code is reused 587 ** to represent the greater-than-or-equal-to operator in the expression 588 ** tree. 589 ** 590 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 591 ** of argument if the expression is a function. 592 ** 593 ** Expr.token is the operator token for this node. For some expressions 594 ** that have subexpressions, Expr.token can be the complete text that gave 595 ** rise to the Expr. In the latter case, the token is marked as being 596 ** a compound token. 597 ** 598 ** An expression of the form ID or ID.ID refers to a column in a table. 599 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 600 ** the integer cursor number of a VDBE cursor pointing to that table and 601 ** Expr.iColumn is the column number for the specific column. If the 602 ** expression is used as a result in an aggregate SELECT, then the 603 ** value is also stored in the Expr.iAgg column in the aggregate so that 604 ** it can be accessed after all aggregates are computed. 605 ** 606 ** If the expression is a function, the Expr.iTable is an integer code 607 ** representing which function. 608 ** 609 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 610 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 611 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 612 ** operand. 613 */ 614 struct Expr { 615 u8 op; /* Operation performed by this node */ 616 u8 dataType; /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */ 617 u8 iDb; /* Database referenced by this expression */ 618 u8 flags; /* Various flags. See below */ 619 Expr *pLeft, *pRight; /* Left and right subnodes */ 620 ExprList *pList; /* A list of expressions used as function arguments 621 ** or in "<expr> IN (<expr-list)" */ 622 Token token; /* An operand token */ 623 Token span; /* Complete text of the expression */ 624 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 625 ** iColumn-th field of the iTable-th table. */ 626 int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull 627 ** result from the iAgg-th element of the aggregator */ 628 Select *pSelect; /* When the expression is a sub-select. Also the 629 ** right side of "<expr> IN (<select>)" */ 630 }; 631 632 /* 633 ** The following are the meanings of bits in the Expr.flags field. 634 */ 635 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 636 #define EP_Oracle8Join 0x0002 /* Carries the Oracle8 "(+)" join operator */ 637 638 /* 639 ** These macros can be used to test, set, or clear bits in the 640 ** Expr.flags field. 641 */ 642 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 643 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 644 #define ExprSetProperty(E,P) (E)->flags|=(P) 645 #define ExprClearProperty(E,P) (E)->flags&=~(P) 646 647 /* 648 ** A list of expressions. Each expression may optionally have a 649 ** name. An expr/name combination can be used in several ways, such 650 ** as the list of "expr AS ID" fields following a "SELECT" or in the 651 ** list of "ID = expr" items in an UPDATE. A list of expressions can 652 ** also be used as the argument to a function, in which case the a.zName 653 ** field is not used. 654 */ 655 struct ExprList { 656 int nExpr; /* Number of expressions on the list */ 657 int nAlloc; /* Number of entries allocated below */ 658 struct ExprList_item { 659 Expr *pExpr; /* The list of expressions */ 660 char *zName; /* Token associated with this expression */ 661 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 662 u8 isAgg; /* True if this is an aggregate like count(*) */ 663 u8 done; /* A flag to indicate when processing is finished */ 664 } *a; /* One entry for each expression */ 665 }; 666 667 /* 668 ** An instance of this structure can hold a simple list of identifiers, 669 ** such as the list "a,b,c" in the following statements: 670 ** 671 ** INSERT INTO t(a,b,c) VALUES ...; 672 ** CREATE INDEX idx ON t(a,b,c); 673 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 674 ** 675 ** The IdList.a.idx field is used when the IdList represents the list of 676 ** column names after a table name in an INSERT statement. In the statement 677 ** 678 ** INSERT INTO t(a,b,c) ... 679 ** 680 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 681 */ 682 struct IdList { 683 int nId; /* Number of identifiers on the list */ 684 int nAlloc; /* Number of entries allocated for a[] below */ 685 struct IdList_item { 686 char *zName; /* Name of the identifier */ 687 int idx; /* Index in some Table.aCol[] of a column named zName */ 688 } *a; 689 }; 690 691 /* 692 ** The following structure describes the FROM clause of a SELECT statement. 693 ** Each table or subquery in the FROM clause is a separate element of 694 ** the SrcList.a[] array. 695 ** 696 ** With the addition of multiple database support, the following structure 697 ** can also be used to describe a particular table such as the table that 698 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 699 ** such a table must be a simple name: ID. But in SQLite, the table can 700 ** now be identified by a database name, a dot, then the table name: ID.ID. 701 */ 702 struct SrcList { 703 u16 nSrc; /* Number of tables or subqueries in the FROM clause */ 704 u16 nAlloc; /* Number of entries allocated in a[] below */ 705 struct SrcList_item { 706 char *zDatabase; /* Name of database holding this table */ 707 char *zName; /* Name of the table */ 708 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 709 Table *pTab; /* An SQL table corresponding to zName */ 710 Select *pSelect; /* A SELECT statement used in place of a table name */ 711 int jointype; /* Type of join between this table and the next */ 712 int iCursor; /* The VDBE cursor number used to access this table */ 713 Expr *pOn; /* The ON clause of a join */ 714 IdList *pUsing; /* The USING clause of a join */ 715 } a[1]; /* One entry for each identifier on the list */ 716 }; 717 718 /* 719 ** Permitted values of the SrcList.a.jointype field 720 */ 721 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 722 #define JT_NATURAL 0x0002 /* True for a "natural" join */ 723 #define JT_LEFT 0x0004 /* Left outer join */ 724 #define JT_RIGHT 0x0008 /* Right outer join */ 725 #define JT_OUTER 0x0010 /* The "OUTER" keyword is present */ 726 #define JT_ERROR 0x0020 /* unknown or unsupported join type */ 727 728 /* 729 ** For each nested loop in a WHERE clause implementation, the WhereInfo 730 ** structure contains a single instance of this structure. This structure 731 ** is intended to be private the the where.c module and should not be 732 ** access or modified by other modules. 733 */ 734 struct WhereLevel { 735 int iMem; /* Memory cell used by this level */ 736 Index *pIdx; /* Index used */ 737 int iCur; /* Cursor number used for this index */ 738 int score; /* How well this indexed scored */ 739 int brk; /* Jump here to break out of the loop */ 740 int cont; /* Jump here to continue with the next loop cycle */ 741 int op, p1, p2; /* Opcode used to terminate the loop */ 742 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 743 int top; /* First instruction of interior of the loop */ 744 int inOp, inP1, inP2;/* Opcode used to implement an IN operator */ 745 int bRev; /* Do the scan in the reverse direction */ 746 }; 747 748 /* 749 ** The WHERE clause processing routine has two halves. The 750 ** first part does the start of the WHERE loop and the second 751 ** half does the tail of the WHERE loop. An instance of 752 ** this structure is returned by the first half and passed 753 ** into the second half to give some continuity. 754 */ 755 struct WhereInfo { 756 Parse *pParse; 757 SrcList *pTabList; /* List of tables in the join */ 758 int iContinue; /* Jump here to continue with next record */ 759 int iBreak; /* Jump here to break out of the loop */ 760 int nLevel; /* Number of nested loop */ 761 int savedNTab; /* Value of pParse->nTab before WhereBegin() */ 762 int peakNTab; /* Value of pParse->nTab after WhereBegin() */ 763 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 764 }; 765 766 /* 767 ** An instance of the following structure contains all information 768 ** needed to generate code for a single SELECT statement. 769 ** 770 ** The zSelect field is used when the Select structure must be persistent. 771 ** Normally, the expression tree points to tokens in the original input 772 ** string that encodes the select. But if the Select structure must live 773 ** longer than its input string (for example when it is used to describe 774 ** a VIEW) we have to make a copy of the input string so that the nodes 775 ** of the expression tree will have something to point to. zSelect is used 776 ** to hold that copy. 777 ** 778 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 779 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 780 ** limit and nOffset to the value of the offset (or 0 if there is not 781 ** offset). But later on, nLimit and nOffset become the memory locations 782 ** in the VDBE that record the limit and offset counters. 783 */ 784 struct Select { 785 ExprList *pEList; /* The fields of the result */ 786 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 787 u8 isDistinct; /* True if the DISTINCT keyword is present */ 788 SrcList *pSrc; /* The FROM clause */ 789 Expr *pWhere; /* The WHERE clause */ 790 ExprList *pGroupBy; /* The GROUP BY clause */ 791 Expr *pHaving; /* The HAVING clause */ 792 ExprList *pOrderBy; /* The ORDER BY clause */ 793 Select *pPrior; /* Prior select in a compound select statement */ 794 int nLimit, nOffset; /* LIMIT and OFFSET values. -1 means not used */ 795 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 796 char *zSelect; /* Complete text of the SELECT command */ 797 }; 798 799 /* 800 ** The results of a select can be distributed in several ways. 801 */ 802 #define SRT_Callback 1 /* Invoke a callback with each row of result */ 803 #define SRT_Mem 2 /* Store result in a memory cell */ 804 #define SRT_Set 3 /* Store result as unique keys in a table */ 805 #define SRT_Union 5 /* Store result as keys in a table */ 806 #define SRT_Except 6 /* Remove result from a UNION table */ 807 #define SRT_Table 7 /* Store result as data with a unique key */ 808 #define SRT_TempTable 8 /* Store result in a trasient table */ 809 #define SRT_Discard 9 /* Do not save the results anywhere */ 810 #define SRT_Sorter 10 /* Store results in the sorter */ 811 #define SRT_Subroutine 11 /* Call a subroutine to handle results */ 812 813 /* 814 ** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)") 815 ** we have to do some additional analysis of expressions. An instance 816 ** of the following structure holds information about a single subexpression 817 ** somewhere in the SELECT statement. An array of these structures holds 818 ** all the information we need to generate code for aggregate 819 ** expressions. 820 ** 821 ** Note that when analyzing a SELECT containing aggregates, both 822 ** non-aggregate field variables and aggregate functions are stored 823 ** in the AggExpr array of the Parser structure. 824 ** 825 ** The pExpr field points to an expression that is part of either the 826 ** field list, the GROUP BY clause, the HAVING clause or the ORDER BY 827 ** clause. The expression will be freed when those clauses are cleaned 828 ** up. Do not try to delete the expression attached to AggExpr.pExpr. 829 ** 830 ** If AggExpr.pExpr==0, that means the expression is "count(*)". 831 */ 832 struct AggExpr { 833 int isAgg; /* if TRUE contains an aggregate function */ 834 Expr *pExpr; /* The expression */ 835 FuncDef *pFunc; /* Information about the aggregate function */ 836 }; 837 838 /* 839 ** An SQL parser context. A copy of this structure is passed through 840 ** the parser and down into all the parser action routine in order to 841 ** carry around information that is global to the entire parse. 842 */ 843 struct Parse { 844 sqlite *db; /* The main database structure */ 845 int rc; /* Return code from execution */ 846 sqlite_callback xCallback; /* The callback function */ 847 void *pArg; /* First argument to the callback function */ 848 char *zErrMsg; /* An error message */ 849 Token sErrToken; /* The token at which the error occurred */ 850 Token sFirstToken; /* The first token parsed */ 851 Token sLastToken; /* The last token parsed */ 852 const char *zTail; /* All SQL text past the last semicolon parsed */ 853 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 854 Vdbe *pVdbe; /* An engine for executing database bytecode */ 855 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 856 u8 explain; /* True if the EXPLAIN flag is found on the query */ 857 u8 initFlag; /* True if reparsing CREATE TABLEs */ 858 u8 nameClash; /* A permanent table name clashes with temp table name */ 859 u8 useAgg; /* If true, extract field values from the aggregator 860 ** while generating expressions. Normally false */ 861 u8 iDb; /* Index of database whose schema is being parsed */ 862 u8 useCallback; /* True if callbacks should be used to report results */ 863 int newTnum; /* Table number to use when reparsing CREATE TABLEs */ 864 int nErr; /* Number of errors seen */ 865 int nTab; /* Number of previously allocated VDBE cursors */ 866 int nMem; /* Number of memory cells used so far */ 867 int nSet; /* Number of sets used so far */ 868 int nAgg; /* Number of aggregate expressions */ 869 AggExpr *aAgg; /* An array of aggregate expressions */ 870 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 871 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 872 TriggerStack *trigStack; /* Trigger actions being coded */ 873 }; 874 875 /* 876 ** An instance of the following structure can be declared on a stack and used 877 ** to save the Parse.zAuthContext value so that it can be restored later. 878 */ 879 struct AuthContext { 880 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 881 Parse *pParse; /* The Parse structure */ 882 }; 883 884 /* 885 * Each trigger present in the database schema is stored as an instance of 886 * struct Trigger. 887 * 888 * Pointers to instances of struct Trigger are stored in two ways. 889 * 1. In the "trigHash" hash table (part of the sqlite* that represents the 890 * database). This allows Trigger structures to be retrieved by name. 891 * 2. All triggers associated with a single table form a linked list, using the 892 * pNext member of struct Trigger. A pointer to the first element of the 893 * linked list is stored as the "pTrigger" member of the associated 894 * struct Table. 895 * 896 * The "step_list" member points to the first element of a linked list 897 * containing the SQL statements specified as the trigger program. 898 */ 899 struct Trigger { 900 char *name; /* The name of the trigger */ 901 char *table; /* The table or view to which the trigger applies */ 902 u8 iDb; /* Database containing this trigger */ 903 u8 iTabDb; /* Database containing Trigger.table */ 904 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 905 u8 tr_tm; /* One of TK_BEFORE, TK_AFTER */ 906 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 907 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 908 the <column-list> is stored here */ 909 int foreach; /* One of TK_ROW or TK_STATEMENT */ 910 Token nameToken; /* Token containing zName. Use during parsing only */ 911 912 TriggerStep *step_list; /* Link list of trigger program steps */ 913 Trigger *pNext; /* Next trigger associated with the table */ 914 }; 915 916 /* 917 * An instance of struct TriggerStep is used to store a single SQL statement 918 * that is a part of a trigger-program. 919 * 920 * Instances of struct TriggerStep are stored in a singly linked list (linked 921 * using the "pNext" member) referenced by the "step_list" member of the 922 * associated struct Trigger instance. The first element of the linked list is 923 * the first step of the trigger-program. 924 * 925 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 926 * "SELECT" statement. The meanings of the other members is determined by the 927 * value of "op" as follows: 928 * 929 * (op == TK_INSERT) 930 * orconf -> stores the ON CONFLICT algorithm 931 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 932 * this stores a pointer to the SELECT statement. Otherwise NULL. 933 * target -> A token holding the name of the table to insert into. 934 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 935 * this stores values to be inserted. Otherwise NULL. 936 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 937 * statement, then this stores the column-names to be 938 * inserted into. 939 * 940 * (op == TK_DELETE) 941 * target -> A token holding the name of the table to delete from. 942 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 943 * Otherwise NULL. 944 * 945 * (op == TK_UPDATE) 946 * target -> A token holding the name of the table to update rows of. 947 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 948 * Otherwise NULL. 949 * pExprList -> A list of the columns to update and the expressions to update 950 * them to. See sqliteUpdate() documentation of "pChanges" 951 * argument. 952 * 953 */ 954 struct TriggerStep { 955 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 956 int orconf; /* OE_Rollback etc. */ 957 Trigger *pTrig; /* The trigger that this step is a part of */ 958 959 Select *pSelect; /* Valid for SELECT and sometimes 960 INSERT steps (when pExprList == 0) */ 961 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 962 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 963 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 964 INSERT steps (when pSelect == 0) */ 965 IdList *pIdList; /* Valid for INSERT statements only */ 966 967 TriggerStep * pNext; /* Next in the link-list */ 968 }; 969 970 /* 971 * An instance of struct TriggerStack stores information required during code 972 * generation of a single trigger program. While the trigger program is being 973 * coded, its associated TriggerStack instance is pointed to by the 974 * "pTriggerStack" member of the Parse structure. 975 * 976 * The pTab member points to the table that triggers are being coded on. The 977 * newIdx member contains the index of the vdbe cursor that points at the temp 978 * table that stores the new.* references. If new.* references are not valid 979 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 980 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 981 * 982 * The ON CONFLICT policy to be used for the trigger program steps is stored 983 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 984 * specified for individual triggers steps is used. 985 * 986 * struct TriggerStack has a "pNext" member, to allow linked lists to be 987 * constructed. When coding nested triggers (triggers fired by other triggers) 988 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 989 * pointer. Once the nested trigger has been coded, the pNext value is restored 990 * to the pTriggerStack member of the Parse stucture and coding of the parent 991 * trigger continues. 992 * 993 * Before a nested trigger is coded, the linked list pointed to by the 994 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 995 * recursively. If this condition is detected, the nested trigger is not coded. 996 */ 997 struct TriggerStack { 998 Table *pTab; /* Table that triggers are currently being coded on */ 999 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1000 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1001 int orconf; /* Current orconf policy */ 1002 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1003 Trigger *pTrigger; /* The trigger currently being coded */ 1004 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1005 }; 1006 1007 /* 1008 ** The following structure contains information used by the sqliteFix... 1009 ** routines as they walk the parse tree to make database references 1010 ** explicit. 1011 */ 1012 typedef struct DbFixer DbFixer; 1013 struct DbFixer { 1014 Parse *pParse; /* The parsing context. Error messages written here */ 1015 const char *zDb; /* Make sure all objects are contained in this database */ 1016 const char *zType; /* Type of the container - used for error messages */ 1017 const Token *pName; /* Name of the container - used for error messages */ 1018 }; 1019 1020 /* 1021 * This global flag is set for performance testing of triggers. When it is set 1022 * SQLite will perform the overhead of building new and old trigger references 1023 * even when no triggers exist 1024 */ 1025 extern int always_code_trigger_setup; 1026 1027 /* 1028 ** Internal function prototypes 1029 */ 1030 int sqliteStrICmp(const char *, const char *); 1031 int sqliteStrNICmp(const char *, const char *, int); 1032 int sqliteHashNoCase(const char *, int); 1033 int sqliteIsNumber(const char*); 1034 int sqliteCompare(const char *, const char *); 1035 int sqliteSortCompare(const char *, const char *); 1036 void sqliteRealToSortable(double r, char *); 1037 #ifdef MEMORY_DEBUG 1038 void *sqliteMalloc_(int,int,char*,int); 1039 void sqliteFree_(void*,char*,int); 1040 void *sqliteRealloc_(void*,int,char*,int); 1041 char *sqliteStrDup_(const char*,char*,int); 1042 char *sqliteStrNDup_(const char*, int,char*,int); 1043 void sqliteCheckMemory(void*,int); 1044 #else 1045 void *sqliteMalloc(int); 1046 void *sqliteMallocRaw(int); 1047 void sqliteFree(void*); 1048 void *sqliteRealloc(void*,int); 1049 char *sqliteStrDup(const char*); 1050 char *sqliteStrNDup(const char*, int); 1051 # define sqliteCheckMemory(a,b) 1052 #endif 1053 char *sqliteMPrintf(const char *,...); 1054 void sqliteSetString(char **, const char *, ...); 1055 void sqliteSetNString(char **, ...); 1056 void sqliteErrorMsg(Parse*, const char*, ...); 1057 void sqliteDequote(char*); 1058 int sqliteKeywordCode(const char*, int); 1059 int sqliteRunParser(Parse*, const char*, char **); 1060 void sqliteExec(Parse*); 1061 Expr *sqliteExpr(int, Expr*, Expr*, Token*); 1062 void sqliteExprSpan(Expr*,Token*,Token*); 1063 Expr *sqliteExprFunction(ExprList*, Token*); 1064 void sqliteExprDelete(Expr*); 1065 ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*); 1066 void sqliteExprListDelete(ExprList*); 1067 int sqliteInit(sqlite*, char**); 1068 void sqlitePragma(Parse*,Token*,Token*,int); 1069 void sqliteResetInternalSchema(sqlite*, int); 1070 void sqliteBeginParse(Parse*,int); 1071 void sqliteRollbackInternalChanges(sqlite*); 1072 void sqliteCommitInternalChanges(sqlite*); 1073 Table *sqliteResultSetOfSelect(Parse*,char*,Select*); 1074 void sqliteOpenMasterTable(Vdbe *v, int); 1075 void sqliteStartTable(Parse*,Token*,Token*,int,int); 1076 void sqliteAddColumn(Parse*,Token*); 1077 void sqliteAddNotNull(Parse*, int); 1078 void sqliteAddPrimaryKey(Parse*, IdList*, int); 1079 void sqliteAddColumnType(Parse*,Token*,Token*); 1080 void sqliteAddDefaultValue(Parse*,Token*,int); 1081 int sqliteCollateType(const char*, int); 1082 void sqliteAddCollateType(Parse*, int); 1083 void sqliteEndTable(Parse*,Token*,Select*); 1084 void sqliteCreateView(Parse*,Token*,Token*,Select*,int); 1085 int sqliteViewGetColumnNames(Parse*,Table*); 1086 void sqliteDropTable(Parse*, Token*, int); 1087 void sqliteDeleteTable(sqlite*, Table*); 1088 void sqliteInsert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1089 IdList *sqliteIdListAppend(IdList*, Token*); 1090 int sqliteIdListIndex(IdList*,const char*); 1091 SrcList *sqliteSrcListAppend(SrcList*, Token*, Token*); 1092 void sqliteSrcListAddAlias(SrcList*, Token*); 1093 void sqliteSrcListAssignCursors(Parse*, SrcList*); 1094 void sqliteIdListDelete(IdList*); 1095 void sqliteSrcListDelete(SrcList*); 1096 void sqliteCreateIndex(Parse*,Token*,SrcList*,IdList*,int,int,Token*,Token*); 1097 void sqliteDropIndex(Parse*, SrcList*); 1098 void sqliteAddKeyType(Vdbe*, ExprList*); 1099 void sqliteAddIdxKeyType(Vdbe*, Index*); 1100 int sqliteSelect(Parse*, Select*, int, int, Select*, int, int*); 1101 Select *sqliteSelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, 1102 int,int,int); 1103 void sqliteSelectDelete(Select*); 1104 void sqliteSelectUnbind(Select*); 1105 Table *sqliteSrcListLookup(Parse*, SrcList*); 1106 int sqliteIsReadOnly(Parse*, Table*, int); 1107 void sqliteDeleteFrom(Parse*, SrcList*, Expr*); 1108 void sqliteUpdate(Parse*, SrcList*, ExprList*, Expr*, int); 1109 WhereInfo *sqliteWhereBegin(Parse*, SrcList*, Expr*, int, ExprList**); 1110 void sqliteWhereEnd(WhereInfo*); 1111 void sqliteExprCode(Parse*, Expr*); 1112 void sqliteExprIfTrue(Parse*, Expr*, int, int); 1113 void sqliteExprIfFalse(Parse*, Expr*, int, int); 1114 Table *sqliteFindTable(sqlite*,const char*, const char*); 1115 Table *sqliteLocateTable(Parse*,const char*, const char*); 1116 Index *sqliteFindIndex(sqlite*,const char*, const char*); 1117 void sqliteUnlinkAndDeleteIndex(sqlite*,Index*); 1118 void sqliteCopy(Parse*, SrcList*, Token*, Token*, int); 1119 void sqliteVacuum(Parse*, Token*); 1120 int sqliteGlobCompare(const unsigned char*,const unsigned char*); 1121 int sqliteLikeCompare(const unsigned char*,const unsigned char*); 1122 char *sqliteTableNameFromToken(Token*); 1123 int sqliteExprCheck(Parse*, Expr*, int, int*); 1124 int sqliteExprType(Expr*); 1125 int sqliteExprCompare(Expr*, Expr*); 1126 int sqliteFuncId(Token*); 1127 int sqliteExprResolveIds(Parse*, SrcList*, ExprList*, Expr*); 1128 int sqliteExprAnalyzeAggregates(Parse*, Expr*); 1129 Vdbe *sqliteGetVdbe(Parse*); 1130 int sqliteRandomByte(void); 1131 int sqliteRandomInteger(void); 1132 void sqliteRollbackAll(sqlite*); 1133 void sqliteCodeVerifySchema(Parse*, int); 1134 void sqliteBeginTransaction(Parse*, int); 1135 void sqliteCommitTransaction(Parse*); 1136 void sqliteRollbackTransaction(Parse*); 1137 int sqliteExprIsConstant(Expr*); 1138 int sqliteExprIsInteger(Expr*, int*); 1139 int sqliteIsRowid(const char*); 1140 void sqliteGenerateRowDelete(sqlite*, Vdbe*, Table*, int, int); 1141 void sqliteGenerateRowIndexDelete(sqlite*, Vdbe*, Table*, int, char*); 1142 void sqliteGenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1143 void sqliteCompleteInsertion(Parse*, Table*, int, char*, int, int, int); 1144 void sqliteBeginWriteOperation(Parse*, int, int); 1145 void sqliteEndWriteOperation(Parse*); 1146 Expr *sqliteExprDup(Expr*); 1147 void sqliteTokenCopy(Token*, Token*); 1148 ExprList *sqliteExprListDup(ExprList*); 1149 SrcList *sqliteSrcListDup(SrcList*); 1150 IdList *sqliteIdListDup(IdList*); 1151 Select *sqliteSelectDup(Select*); 1152 FuncDef *sqliteFindFunction(sqlite*,const char*,int,int,int); 1153 void sqliteRegisterBuiltinFunctions(sqlite*); 1154 int sqliteSafetyOn(sqlite*); 1155 int sqliteSafetyOff(sqlite*); 1156 int sqliteSafetyCheck(sqlite*); 1157 void sqliteChangeCookie(sqlite*, Vdbe*); 1158 void sqliteBeginTrigger(Parse*, Token*,int,int,IdList*,SrcList*,int,Expr*,int); 1159 void sqliteFinishTrigger(Parse*, TriggerStep*, Token*); 1160 void sqliteDropTrigger(Parse*, SrcList*); 1161 void sqliteDropTriggerPtr(Parse*, Trigger*, int); 1162 int sqliteTriggersExist(Parse* , Trigger* , int , int , int, ExprList*); 1163 int sqliteCodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1164 int, int); 1165 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1166 void sqliteDeleteTriggerStep(TriggerStep*); 1167 TriggerStep *sqliteTriggerSelectStep(Select*); 1168 TriggerStep *sqliteTriggerInsertStep(Token*, IdList*, ExprList*, Select*, int); 1169 TriggerStep *sqliteTriggerUpdateStep(Token*, ExprList*, Expr*, int); 1170 TriggerStep *sqliteTriggerDeleteStep(Token*, Expr*); 1171 void sqliteDeleteTrigger(Trigger*); 1172 int sqliteJoinType(Parse*, Token*, Token*, Token*); 1173 void sqliteCreateForeignKey(Parse*, IdList*, Token*, IdList*, int); 1174 void sqliteDeferForeignKey(Parse*, int); 1175 #ifndef SQLITE_OMIT_AUTHORIZATION 1176 void sqliteAuthRead(Parse*,Expr*,SrcList*); 1177 int sqliteAuthCheck(Parse*,int, const char*, const char*, const char*); 1178 void sqliteAuthContextPush(Parse*, AuthContext*, const char*); 1179 void sqliteAuthContextPop(AuthContext*); 1180 #else 1181 # define sqliteAuthRead(a,b,c) 1182 # define sqliteAuthCheck(a,b,c,d,e) SQLITE_OK 1183 # define sqliteAuthContextPush(a,b,c) 1184 # define sqliteAuthContextPop(a) ((void)(a)) 1185 #endif 1186 void sqliteAttach(Parse*, Token*, Token*); 1187 void sqliteDetach(Parse*, Token*); 1188 int sqliteBtreeFactory(const sqlite *db, const char *zFilename, 1189 int mode, int nPg, Btree **ppBtree); 1190 int sqliteFixInit(DbFixer*, Parse*, int, const char*, const Token*); 1191 int sqliteFixSrcList(DbFixer*, SrcList*); 1192 int sqliteFixSelect(DbFixer*, Select*); 1193 int sqliteFixExpr(DbFixer*, Expr*); 1194 int sqliteFixExprList(DbFixer*, ExprList*); 1195 int sqliteFixTriggerStep(DbFixer*, TriggerStep*); 1196