xref: /sqlite-3.40.0/src/sqliteInt.h (revision c023e03e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 ** @(#) $Id: sqliteInt.h,v 1.197 2003/08/23 22:40:54 drh Exp $
15 */
16 #include "config.h"
17 #include "sqlite.h"
18 #include "hash.h"
19 #include "vdbe.h"
20 #include "parse.h"
21 #include "btree.h"
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <assert.h>
26 
27 /*
28 ** The maximum number of in-memory pages to use for the main database
29 ** table and for temporary tables.
30 */
31 #define MAX_PAGES   2000
32 #define TEMP_PAGES   500
33 
34 /*
35 ** If the following macro is set to 1, then NULL values are considered
36 ** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT
37 ** compound queries.  No other SQL database engine (among those tested)
38 ** works this way except for OCELOT.  But the SQL92 spec implies that
39 ** this is how things should work.
40 **
41 ** If the following macro is set to 0, then NULLs are indistinct for
42 ** SELECT DISTINCT and for UNION.
43 */
44 #define NULL_ALWAYS_DISTINCT 0
45 
46 /*
47 ** If the following macro is set to 1, then NULL values are considered
48 ** distinct when determining whether or not two entries are the same
49 ** in a UNIQUE index.  This is the way PostgreSQL, Oracle, DB2, MySQL,
50 ** OCELOT, and Firebird all work.  The SQL92 spec explicitly says this
51 ** is the way things are suppose to work.
52 **
53 ** If the following macro is set to 0, the NULLs are indistinct for
54 ** a UNIQUE index.  In this mode, you can only have a single NULL entry
55 ** for a column declared UNIQUE.  This is the way Informix and SQL Server
56 ** work.
57 */
58 #define NULL_DISTINCT_FOR_UNIQUE 1
59 
60 /*
61 ** The maximum number of attached databases.  This must be at least 2
62 ** in order to support the main database file (0) and the file used to
63 ** hold temporary tables (1).  And it must be less than 256 because
64 ** an unsigned character is used to stored the database index.
65 */
66 #define MAX_ATTACHED 10
67 
68 /*
69 ** The next macro is used to determine where TEMP tables and indices
70 ** are stored.  Possible values:
71 **
72 **   0    Always use a temporary files
73 **   1    Use a file unless overridden by "PRAGMA temp_store"
74 **   2    Use memory unless overridden by "PRAGMA temp_store"
75 **   3    Always use memory
76 */
77 #ifndef TEMP_STORE
78 # define TEMP_STORE 1
79 #endif
80 
81 /*
82 ** When building SQLite for embedded systems where memory is scarce,
83 ** you can define one or more of the following macros to omit extra
84 ** features of the library and thus keep the size of the library to
85 ** a minimum.
86 */
87 /* #define SQLITE_OMIT_AUTHORIZATION  1 */
88 /* #define SQLITE_OMIT_INMEMORYDB     1 */
89 /* #define SQLITE_OMIT_VACUUM         1 */
90 /* #define SQLITE_OMIT_TIMEDATE_FUNCS 1 */
91 
92 /*
93 ** Integers of known sizes.  These typedefs might change for architectures
94 ** where the sizes very.  Preprocessor macros are available so that the
95 ** types can be conveniently redefined at compile-type.  Like this:
96 **
97 **         cc '-DUINTPTR_TYPE=long long int' ...
98 */
99 #ifndef UINT32_TYPE
100 # define UINT32_TYPE unsigned int
101 #endif
102 #ifndef UINT16_TYPE
103 # define UINT16_TYPE unsigned short int
104 #endif
105 #ifndef UINT8_TYPE
106 # define UINT8_TYPE unsigned char
107 #endif
108 #ifndef INTPTR_TYPE
109 # if SQLITE_PTR_SZ==4
110 #   define INTPTR_TYPE int
111 # else
112 #   define INTPTR_TYPE long long
113 # endif
114 #endif
115 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
116 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
117 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
118 typedef INTPTR_TYPE ptr;           /* Big enough to hold a pointer */
119 typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */
120 
121 /*
122 ** This macro casts a pointer to an integer.  Useful for doing
123 ** pointer arithmetic.
124 */
125 #define Addr(X)  ((uptr)X)
126 
127 /*
128 ** The maximum number of bytes of data that can be put into a single
129 ** row of a single table.  The upper bound on this limit is 16777215
130 ** bytes (or 16MB-1).  We have arbitrarily set the limit to just 1MB
131 ** here because the overflow page chain is inefficient for really big
132 ** records and we want to discourage people from thinking that
133 ** multi-megabyte records are OK.  If your needs are different, you can
134 ** change this define and recompile to increase or decrease the record
135 ** size.
136 **
137 ** The 16777198 is computed as follows:  238 bytes of payload on the
138 ** original pages plus 16448 overflow pages each holding 1020 bytes of
139 ** data.
140 */
141 #define MAX_BYTES_PER_ROW  1048576
142 /* #define MAX_BYTES_PER_ROW 16777198 */
143 
144 /*
145 ** If memory allocation problems are found, recompile with
146 **
147 **      -DMEMORY_DEBUG=1
148 **
149 ** to enable some sanity checking on malloc() and free().  To
150 ** check for memory leaks, recompile with
151 **
152 **      -DMEMORY_DEBUG=2
153 **
154 ** and a line of text will be written to standard error for
155 ** each malloc() and free().  This output can be analyzed
156 ** by an AWK script to determine if there are any leaks.
157 */
158 #ifdef MEMORY_DEBUG
159 # define sqliteMalloc(X)    sqliteMalloc_(X,1,__FILE__,__LINE__)
160 # define sqliteMallocRaw(X) sqliteMalloc_(X,0,__FILE__,__LINE__)
161 # define sqliteFree(X)      sqliteFree_(X,__FILE__,__LINE__)
162 # define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__)
163 # define sqliteStrDup(X)    sqliteStrDup_(X,__FILE__,__LINE__)
164 # define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__)
165   void sqliteStrRealloc(char**);
166 #else
167 # define sqliteStrRealloc(X)
168 #endif
169 
170 /*
171 ** This variable gets set if malloc() ever fails.  After it gets set,
172 ** the SQLite library shuts down permanently.
173 */
174 extern int sqlite_malloc_failed;
175 
176 /*
177 ** The following global variables are used for testing and debugging
178 ** only.  They only work if MEMORY_DEBUG is defined.
179 */
180 #ifdef MEMORY_DEBUG
181 extern int sqlite_nMalloc;       /* Number of sqliteMalloc() calls */
182 extern int sqlite_nFree;         /* Number of sqliteFree() calls */
183 extern int sqlite_iMallocFail;   /* Fail sqliteMalloc() after this many calls */
184 #endif
185 
186 /*
187 ** Name of the master database table.  The master database table
188 ** is a special table that holds the names and attributes of all
189 ** user tables and indices.
190 */
191 #define MASTER_NAME       "sqlite_master"
192 #define TEMP_MASTER_NAME  "sqlite_temp_master"
193 
194 /*
195 ** The name of the schema table.
196 */
197 #define SCHEMA_TABLE(x)  (x?TEMP_MASTER_NAME:MASTER_NAME)
198 
199 /*
200 ** A convenience macro that returns the number of elements in
201 ** an array.
202 */
203 #define ArraySize(X)    (sizeof(X)/sizeof(X[0]))
204 
205 /*
206 ** Forward references to structures
207 */
208 typedef struct Column Column;
209 typedef struct Table Table;
210 typedef struct Index Index;
211 typedef struct Instruction Instruction;
212 typedef struct Expr Expr;
213 typedef struct ExprList ExprList;
214 typedef struct Parse Parse;
215 typedef struct Token Token;
216 typedef struct IdList IdList;
217 typedef struct SrcList SrcList;
218 typedef struct WhereInfo WhereInfo;
219 typedef struct WhereLevel WhereLevel;
220 typedef struct Select Select;
221 typedef struct AggExpr AggExpr;
222 typedef struct FuncDef FuncDef;
223 typedef struct Trigger Trigger;
224 typedef struct TriggerStep TriggerStep;
225 typedef struct TriggerStack TriggerStack;
226 typedef struct FKey FKey;
227 typedef struct Db Db;
228 typedef struct AuthContext AuthContext;
229 
230 /*
231 ** Each database file to be accessed by the system is an instance
232 ** of the following structure.  There are normally two of these structures
233 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
234 ** aDb[1] is the database file used to hold temporary tables.  Additional
235 ** databases may be attached.
236 */
237 struct Db {
238   char *zName;         /* Name of this database */
239   Btree *pBt;          /* The B*Tree structure for this database file */
240   int schema_cookie;   /* Database schema version number for this file */
241   Hash tblHash;        /* All tables indexed by name */
242   Hash idxHash;        /* All (named) indices indexed by name */
243   Hash trigHash;       /* All triggers indexed by name */
244   Hash aFKey;          /* Foreign keys indexed by to-table */
245   u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
246   u16 flags;           /* Flags associated with this database */
247 };
248 
249 /*
250 ** These macros can be used to test, set, or clear bits in the
251 ** Db.flags field.
252 */
253 #define DbHasProperty(D,I,P)     (((D)->aDb[I].flags&(P))==(P))
254 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].flags&(P))!=0)
255 #define DbSetProperty(D,I,P)     (D)->aDb[I].flags|=(P)
256 #define DbClearProperty(D,I,P)   (D)->aDb[I].flags&=~(P)
257 
258 /*
259 ** Allowed values for the DB.flags field.
260 **
261 ** The DB_Locked flag is set when the first OP_Transaction or OP_Checkpoint
262 ** opcode is emitted for a database.  This prevents multiple occurances
263 ** of those opcodes for the same database in the same program.  Similarly,
264 ** the DB_Cookie flag is set when the OP_VerifyCookie opcode is emitted,
265 ** and prevents duplicate OP_VerifyCookies from taking up space and slowing
266 ** down execution.
267 **
268 ** The DB_SchemaLoaded flag is set after the database schema has been
269 ** read into internal hash tables.
270 **
271 ** DB_UnresetViews means that one or more views have column names that
272 ** have been filled out.  If the schema changes, these column names might
273 ** changes and so the view will need to be reset.
274 */
275 #define DB_Locked          0x0001  /* OP_Transaction opcode has been emitted */
276 #define DB_Cookie          0x0002  /* OP_VerifyCookie opcode has been emiited */
277 #define DB_SchemaLoaded    0x0004  /* The schema has been loaded */
278 #define DB_UnresetViews    0x0008  /* Some views have defined column names */
279 
280 
281 /*
282 ** Each database is an instance of the following structure.
283 **
284 ** The sqlite.file_format is initialized by the database file
285 ** and helps determines how the data in the database file is
286 ** represented.  This field allows newer versions of the library
287 ** to read and write older databases.  The various file formats
288 ** are as follows:
289 **
290 **     file_format==1    Version 2.1.0.
291 **     file_format==2    Version 2.2.0. Add support for INTEGER PRIMARY KEY.
292 **     file_format==3    Version 2.6.0. Fix empty-string index bug.
293 **     file_format==4    Version 2.7.0. Add support for separate numeric and
294 **                       text datatypes.
295 **
296 ** The sqlite.temp_store determines where temporary database files
297 ** are stored.  If 1, then a file is created to hold those tables.  If
298 ** 2, then they are held in memory.  0 means use the default value in
299 ** the TEMP_STORE macro.
300 */
301 struct sqlite {
302   int nDb;                      /* Number of backends currently in use */
303   Db *aDb;                      /* All backends */
304   Db aDbStatic[2];              /* Static space for the 2 default backends */
305   int flags;                    /* Miscellanous flags. See below */
306   u8 file_format;               /* What file format version is this database? */
307   u8 safety_level;              /* How aggressive at synching data to disk */
308   u8 want_to_close;             /* Close after all VDBEs are deallocated */
309   int next_cookie;              /* Next value of aDb[0].schema_cookie */
310   int cache_size;               /* Number of pages to use in the cache */
311   int temp_store;               /* 1=file, 2=memory, 0=compile-time default */
312   int nTable;                   /* Number of tables in the database */
313   void *pBusyArg;               /* 1st Argument to the busy callback */
314   int (*xBusyCallback)(void *,const char*,int);  /* The busy callback */
315   Hash aFunc;                   /* All functions that can be in SQL exprs */
316   int lastRowid;                /* ROWID of most recent insert */
317   int priorNewRowid;            /* Last randomly generated ROWID */
318   int onError;                  /* Default conflict algorithm */
319   int magic;                    /* Magic number for detect library misuse */
320   int nChange;                  /* Number of rows changed */
321   struct Vdbe *pVdbe;           /* List of active virtual machines */
322   void (*xTrace)(void*,const char*);     /* Trace function */
323   void *pTraceArg;                       /* Argument to the trace function */
324 #ifndef SQLITE_OMIT_AUTHORIZATION
325   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
326                                 /* Access authorization function */
327   void *pAuthArg;               /* 1st argument to the access auth function */
328 #endif
329 };
330 
331 /*
332 ** Possible values for the sqlite.flags and or Db.flags fields.
333 **
334 ** On sqlite.flags, the SQLITE_InTrans value means that we have
335 ** executed a BEGIN.  On Db.flags, SQLITE_InTrans means a statement
336 ** transaction is active on that particular database file.
337 */
338 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
339 #define SQLITE_Initialized    0x00000002  /* True after initialization */
340 #define SQLITE_Interrupt      0x00000004  /* Cancel current operation */
341 #define SQLITE_InTrans        0x00000008  /* True if in a transaction */
342 #define SQLITE_InternChanges  0x00000010  /* Uncommitted Hash table changes */
343 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
344 #define SQLITE_CountRows      0x00000040  /* Count rows changed by INSERT, */
345                                           /*   DELETE, or UPDATE and return */
346                                           /*   the count using a callback. */
347 #define SQLITE_NullCallback   0x00000080  /* Invoke the callback once if the */
348                                           /*   result set is empty */
349 #define SQLITE_ReportTypes    0x00000200  /* Include information on datatypes */
350                                           /*   in 4th argument of callback */
351 
352 /*
353 ** Possible values for the sqlite.magic field.
354 ** The numbers are obtained at random and have no special meaning, other
355 ** than being distinct from one another.
356 */
357 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
358 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
359 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
360 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
361 
362 /*
363 ** Each SQL function is defined by an instance of the following
364 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
365 ** hash table.  When multiple functions have the same name, the hash table
366 ** points to a linked list of these structures.
367 */
368 struct FuncDef {
369   void (*xFunc)(sqlite_func*,int,const char**);  /* Regular function */
370   void (*xStep)(sqlite_func*,int,const char**);  /* Aggregate function step */
371   void (*xFinalize)(sqlite_func*);           /* Aggregate function finializer */
372   int nArg;                                  /* Number of arguments */
373   int dataType;                              /* Datatype of the result */
374   void *pUserData;                           /* User data parameter */
375   FuncDef *pNext;                            /* Next function with same name */
376 };
377 
378 /*
379 ** information about each column of an SQL table is held in an instance
380 ** of this structure.
381 */
382 struct Column {
383   char *zName;     /* Name of this column */
384   char *zDflt;     /* Default value of this column */
385   char *zType;     /* Data type for this column */
386   u8 notNull;      /* True if there is a NOT NULL constraint */
387   u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
388   u8 sortOrder;    /* Some combination of SQLITE_SO_... values */
389 };
390 
391 /*
392 ** The allowed sort orders.
393 **
394 ** The TEXT and NUM values use bits that do not overlap with DESC and ASC.
395 ** That way the two can be combined into a single number.
396 */
397 #define SQLITE_SO_UNK       0  /* Use the default collating type.  (SCT_NUM) */
398 #define SQLITE_SO_TEXT      2  /* Sort using memcmp() */
399 #define SQLITE_SO_NUM       4  /* Sort using sqliteCompare() */
400 #define SQLITE_SO_TYPEMASK  6  /* Mask to extract the collating sequence */
401 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
402 #define SQLITE_SO_DESC      1  /* Sort in descending order */
403 #define SQLITE_SO_DIRMASK   1  /* Mask to extract the sort direction */
404 
405 /*
406 ** Each SQL table is represented in memory by an instance of the
407 ** following structure.
408 **
409 ** Table.zName is the name of the table.  The case of the original
410 ** CREATE TABLE statement is stored, but case is not significant for
411 ** comparisons.
412 **
413 ** Table.nCol is the number of columns in this table.  Table.aCol is a
414 ** pointer to an array of Column structures, one for each column.
415 **
416 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
417 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
418 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
419 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
420 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
421 ** is generated for each row of the table.  Table.hasPrimKey is true if
422 ** the table has any PRIMARY KEY, INTEGER or otherwise.
423 **
424 ** Table.tnum is the page number for the root BTree page of the table in the
425 ** database file.  If Table.iDb is the index of the database table backend
426 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
427 ** holds temporary tables and indices.  If Table.isTransient
428 ** is true, then the table is stored in a file that is automatically deleted
429 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
430 ** refers VDBE cursor number that holds the table open, not to the root
431 ** page number.  Transient tables are used to hold the results of a
432 ** sub-query that appears instead of a real table name in the FROM clause
433 ** of a SELECT statement.
434 */
435 struct Table {
436   char *zName;     /* Name of the table */
437   int nCol;        /* Number of columns in this table */
438   Column *aCol;    /* Information about each column */
439   int iPKey;       /* If not less then 0, use aCol[iPKey] as the primary key */
440   Index *pIndex;   /* List of SQL indexes on this table. */
441   int tnum;        /* Root BTree node for this table (see note above) */
442   Select *pSelect; /* NULL for tables.  Points to definition if a view. */
443   u8 readOnly;     /* True if this table should not be written by the user */
444   u8 iDb;          /* Index into sqlite.aDb[] of the backend for this table */
445   u8 isTransient;  /* True if automatically deleted when VDBE finishes */
446   u8 hasPrimKey;   /* True if there exists a primary key */
447   u8 keyConf;      /* What to do in case of uniqueness conflict on iPKey */
448   Trigger *pTrigger; /* List of SQL triggers on this table */
449   FKey *pFKey;       /* Linked list of all foreign keys in this table */
450 };
451 
452 /*
453 ** Each foreign key constraint is an instance of the following structure.
454 **
455 ** A foreign key is associated with two tables.  The "from" table is
456 ** the table that contains the REFERENCES clause that creates the foreign
457 ** key.  The "to" table is the table that is named in the REFERENCES clause.
458 ** Consider this example:
459 **
460 **     CREATE TABLE ex1(
461 **       a INTEGER PRIMARY KEY,
462 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
463 **     );
464 **
465 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
466 **
467 ** Each REFERENCES clause generates an instance of the following structure
468 ** which is attached to the from-table.  The to-table need not exist when
469 ** the from-table is created.  The existance of the to-table is not checked
470 ** until an attempt is made to insert data into the from-table.
471 **
472 ** The sqlite.aFKey hash table stores pointers to this structure
473 ** given the name of a to-table.  For each to-table, all foreign keys
474 ** associated with that table are on a linked list using the FKey.pNextTo
475 ** field.
476 */
477 struct FKey {
478   Table *pFrom;     /* The table that constains the REFERENCES clause */
479   FKey *pNextFrom;  /* Next foreign key in pFrom */
480   char *zTo;        /* Name of table that the key points to */
481   FKey *pNextTo;    /* Next foreign key that points to zTo */
482   int nCol;         /* Number of columns in this key */
483   struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
484     int iFrom;         /* Index of column in pFrom */
485     char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
486   } *aCol;          /* One entry for each of nCol column s */
487   u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
488   u8 updateConf;    /* How to resolve conflicts that occur on UPDATE */
489   u8 deleteConf;    /* How to resolve conflicts that occur on DELETE */
490   u8 insertConf;    /* How to resolve conflicts that occur on INSERT */
491 };
492 
493 /*
494 ** SQLite supports many different ways to resolve a contraint
495 ** error.  ROLLBACK processing means that a constraint violation
496 ** causes the operation in process to fail and for the current transaction
497 ** to be rolled back.  ABORT processing means the operation in process
498 ** fails and any prior changes from that one operation are backed out,
499 ** but the transaction is not rolled back.  FAIL processing means that
500 ** the operation in progress stops and returns an error code.  But prior
501 ** changes due to the same operation are not backed out and no rollback
502 ** occurs.  IGNORE means that the particular row that caused the constraint
503 ** error is not inserted or updated.  Processing continues and no error
504 ** is returned.  REPLACE means that preexisting database rows that caused
505 ** a UNIQUE constraint violation are removed so that the new insert or
506 ** update can proceed.  Processing continues and no error is reported.
507 **
508 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
509 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
510 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
511 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
512 ** referenced table row is propagated into the row that holds the
513 ** foreign key.
514 **
515 ** The following symbolic values are used to record which type
516 ** of action to take.
517 */
518 #define OE_None     0   /* There is no constraint to check */
519 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
520 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
521 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
522 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
523 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
524 
525 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
526 #define OE_SetNull  7   /* Set the foreign key value to NULL */
527 #define OE_SetDflt  8   /* Set the foreign key value to its default */
528 #define OE_Cascade  9   /* Cascade the changes */
529 
530 #define OE_Default  99  /* Do whatever the default action is */
531 
532 /*
533 ** Each SQL index is represented in memory by an
534 ** instance of the following structure.
535 **
536 ** The columns of the table that are to be indexed are described
537 ** by the aiColumn[] field of this structure.  For example, suppose
538 ** we have the following table and index:
539 **
540 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
541 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
542 **
543 ** In the Table structure describing Ex1, nCol==3 because there are
544 ** three columns in the table.  In the Index structure describing
545 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
546 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
547 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
548 ** The second column to be indexed (c1) has an index of 0 in
549 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
550 **
551 ** The Index.onError field determines whether or not the indexed columns
552 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
553 ** it means this is not a unique index.  Otherwise it is a unique index
554 ** and the value of Index.onError indicate the which conflict resolution
555 ** algorithm to employ whenever an attempt is made to insert a non-unique
556 ** element.
557 */
558 struct Index {
559   char *zName;     /* Name of this index */
560   int nColumn;     /* Number of columns in the table used by this index */
561   int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
562   Table *pTable;   /* The SQL table being indexed */
563   int tnum;        /* Page containing root of this index in database file */
564   u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
565   u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
566   u8 iDb;          /* Index in sqlite.aDb[] of where this index is stored */
567   Index *pNext;    /* The next index associated with the same table */
568 };
569 
570 /*
571 ** Each token coming out of the lexer is an instance of
572 ** this structure.  Tokens are also used as part of an expression.
573 */
574 struct Token {
575   const char *z;      /* Text of the token.  Not NULL-terminated! */
576   unsigned dyn  : 1;  /* True for malloced memory, false for static */
577   unsigned n    : 31; /* Number of characters in this token */
578 };
579 
580 /*
581 ** Each node of an expression in the parse tree is an instance
582 ** of this structure.
583 **
584 ** Expr.op is the opcode.  The integer parser token codes are reused
585 ** as opcodes here.  For example, the parser defines TK_GE to be an integer
586 ** code representing the ">=" operator.  This same integer code is reused
587 ** to represent the greater-than-or-equal-to operator in the expression
588 ** tree.
589 **
590 ** Expr.pRight and Expr.pLeft are subexpressions.  Expr.pList is a list
591 ** of argument if the expression is a function.
592 **
593 ** Expr.token is the operator token for this node.  For some expressions
594 ** that have subexpressions, Expr.token can be the complete text that gave
595 ** rise to the Expr.  In the latter case, the token is marked as being
596 ** a compound token.
597 **
598 ** An expression of the form ID or ID.ID refers to a column in a table.
599 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
600 ** the integer cursor number of a VDBE cursor pointing to that table and
601 ** Expr.iColumn is the column number for the specific column.  If the
602 ** expression is used as a result in an aggregate SELECT, then the
603 ** value is also stored in the Expr.iAgg column in the aggregate so that
604 ** it can be accessed after all aggregates are computed.
605 **
606 ** If the expression is a function, the Expr.iTable is an integer code
607 ** representing which function.
608 **
609 ** The Expr.pSelect field points to a SELECT statement.  The SELECT might
610 ** be the right operand of an IN operator.  Or, if a scalar SELECT appears
611 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
612 ** operand.
613 */
614 struct Expr {
615   u8 op;                 /* Operation performed by this node */
616   u8 dataType;           /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */
617   u8 iDb;                /* Database referenced by this expression */
618   u8 flags;              /* Various flags.  See below */
619   Expr *pLeft, *pRight;  /* Left and right subnodes */
620   ExprList *pList;       /* A list of expressions used as function arguments
621                          ** or in "<expr> IN (<expr-list)" */
622   Token token;           /* An operand token */
623   Token span;            /* Complete text of the expression */
624   int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
625                          ** iColumn-th field of the iTable-th table. */
626   int iAgg;              /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull
627                          ** result from the iAgg-th element of the aggregator */
628   Select *pSelect;       /* When the expression is a sub-select.  Also the
629                          ** right side of "<expr> IN (<select>)" */
630 };
631 
632 /*
633 ** The following are the meanings of bits in the Expr.flags field.
634 */
635 #define EP_FromJoin     0x0001  /* Originated in ON or USING clause of a join */
636 #define EP_Oracle8Join  0x0002  /* Carries the Oracle8 "(+)" join operator */
637 
638 /*
639 ** These macros can be used to test, set, or clear bits in the
640 ** Expr.flags field.
641 */
642 #define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
643 #define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
644 #define ExprSetProperty(E,P)     (E)->flags|=(P)
645 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
646 
647 /*
648 ** A list of expressions.  Each expression may optionally have a
649 ** name.  An expr/name combination can be used in several ways, such
650 ** as the list of "expr AS ID" fields following a "SELECT" or in the
651 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
652 ** also be used as the argument to a function, in which case the a.zName
653 ** field is not used.
654 */
655 struct ExprList {
656   int nExpr;             /* Number of expressions on the list */
657   int nAlloc;            /* Number of entries allocated below */
658   struct ExprList_item {
659     Expr *pExpr;           /* The list of expressions */
660     char *zName;           /* Token associated with this expression */
661     u8 sortOrder;          /* 1 for DESC or 0 for ASC */
662     u8 isAgg;              /* True if this is an aggregate like count(*) */
663     u8 done;               /* A flag to indicate when processing is finished */
664   } *a;                  /* One entry for each expression */
665 };
666 
667 /*
668 ** An instance of this structure can hold a simple list of identifiers,
669 ** such as the list "a,b,c" in the following statements:
670 **
671 **      INSERT INTO t(a,b,c) VALUES ...;
672 **      CREATE INDEX idx ON t(a,b,c);
673 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
674 **
675 ** The IdList.a.idx field is used when the IdList represents the list of
676 ** column names after a table name in an INSERT statement.  In the statement
677 **
678 **     INSERT INTO t(a,b,c) ...
679 **
680 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
681 */
682 struct IdList {
683   int nId;         /* Number of identifiers on the list */
684   int nAlloc;      /* Number of entries allocated for a[] below */
685   struct IdList_item {
686     char *zName;      /* Name of the identifier */
687     int idx;          /* Index in some Table.aCol[] of a column named zName */
688   } *a;
689 };
690 
691 /*
692 ** The following structure describes the FROM clause of a SELECT statement.
693 ** Each table or subquery in the FROM clause is a separate element of
694 ** the SrcList.a[] array.
695 **
696 ** With the addition of multiple database support, the following structure
697 ** can also be used to describe a particular table such as the table that
698 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
699 ** such a table must be a simple name: ID.  But in SQLite, the table can
700 ** now be identified by a database name, a dot, then the table name: ID.ID.
701 */
702 struct SrcList {
703   u16 nSrc;        /* Number of tables or subqueries in the FROM clause */
704   u16 nAlloc;      /* Number of entries allocated in a[] below */
705   struct SrcList_item {
706     char *zDatabase;  /* Name of database holding this table */
707     char *zName;      /* Name of the table */
708     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
709     Table *pTab;      /* An SQL table corresponding to zName */
710     Select *pSelect;  /* A SELECT statement used in place of a table name */
711     int jointype;     /* Type of join between this table and the next */
712     int iCursor;      /* The VDBE cursor number used to access this table */
713     Expr *pOn;        /* The ON clause of a join */
714     IdList *pUsing;   /* The USING clause of a join */
715   } a[1];             /* One entry for each identifier on the list */
716 };
717 
718 /*
719 ** Permitted values of the SrcList.a.jointype field
720 */
721 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
722 #define JT_NATURAL   0x0002    /* True for a "natural" join */
723 #define JT_LEFT      0x0004    /* Left outer join */
724 #define JT_RIGHT     0x0008    /* Right outer join */
725 #define JT_OUTER     0x0010    /* The "OUTER" keyword is present */
726 #define JT_ERROR     0x0020    /* unknown or unsupported join type */
727 
728 /*
729 ** For each nested loop in a WHERE clause implementation, the WhereInfo
730 ** structure contains a single instance of this structure.  This structure
731 ** is intended to be private the the where.c module and should not be
732 ** access or modified by other modules.
733 */
734 struct WhereLevel {
735   int iMem;            /* Memory cell used by this level */
736   Index *pIdx;         /* Index used */
737   int iCur;            /* Cursor number used for this index */
738   int score;           /* How well this indexed scored */
739   int brk;             /* Jump here to break out of the loop */
740   int cont;            /* Jump here to continue with the next loop cycle */
741   int op, p1, p2;      /* Opcode used to terminate the loop */
742   int iLeftJoin;       /* Memory cell used to implement LEFT OUTER JOIN */
743   int top;             /* First instruction of interior of the loop */
744   int inOp, inP1, inP2;/* Opcode used to implement an IN operator */
745   int bRev;            /* Do the scan in the reverse direction */
746 };
747 
748 /*
749 ** The WHERE clause processing routine has two halves.  The
750 ** first part does the start of the WHERE loop and the second
751 ** half does the tail of the WHERE loop.  An instance of
752 ** this structure is returned by the first half and passed
753 ** into the second half to give some continuity.
754 */
755 struct WhereInfo {
756   Parse *pParse;
757   SrcList *pTabList;   /* List of tables in the join */
758   int iContinue;       /* Jump here to continue with next record */
759   int iBreak;          /* Jump here to break out of the loop */
760   int nLevel;          /* Number of nested loop */
761   int savedNTab;       /* Value of pParse->nTab before WhereBegin() */
762   int peakNTab;        /* Value of pParse->nTab after WhereBegin() */
763   WhereLevel a[1];     /* Information about each nest loop in the WHERE */
764 };
765 
766 /*
767 ** An instance of the following structure contains all information
768 ** needed to generate code for a single SELECT statement.
769 **
770 ** The zSelect field is used when the Select structure must be persistent.
771 ** Normally, the expression tree points to tokens in the original input
772 ** string that encodes the select.  But if the Select structure must live
773 ** longer than its input string (for example when it is used to describe
774 ** a VIEW) we have to make a copy of the input string so that the nodes
775 ** of the expression tree will have something to point to.  zSelect is used
776 ** to hold that copy.
777 **
778 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
779 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
780 ** limit and nOffset to the value of the offset (or 0 if there is not
781 ** offset).  But later on, nLimit and nOffset become the memory locations
782 ** in the VDBE that record the limit and offset counters.
783 */
784 struct Select {
785   ExprList *pEList;      /* The fields of the result */
786   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
787   u8 isDistinct;         /* True if the DISTINCT keyword is present */
788   SrcList *pSrc;         /* The FROM clause */
789   Expr *pWhere;          /* The WHERE clause */
790   ExprList *pGroupBy;    /* The GROUP BY clause */
791   Expr *pHaving;         /* The HAVING clause */
792   ExprList *pOrderBy;    /* The ORDER BY clause */
793   Select *pPrior;        /* Prior select in a compound select statement */
794   int nLimit, nOffset;   /* LIMIT and OFFSET values.  -1 means not used */
795   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
796   char *zSelect;         /* Complete text of the SELECT command */
797 };
798 
799 /*
800 ** The results of a select can be distributed in several ways.
801 */
802 #define SRT_Callback     1  /* Invoke a callback with each row of result */
803 #define SRT_Mem          2  /* Store result in a memory cell */
804 #define SRT_Set          3  /* Store result as unique keys in a table */
805 #define SRT_Union        5  /* Store result as keys in a table */
806 #define SRT_Except       6  /* Remove result from a UNION table */
807 #define SRT_Table        7  /* Store result as data with a unique key */
808 #define SRT_TempTable    8  /* Store result in a trasient table */
809 #define SRT_Discard      9  /* Do not save the results anywhere */
810 #define SRT_Sorter      10  /* Store results in the sorter */
811 #define SRT_Subroutine  11  /* Call a subroutine to handle results */
812 
813 /*
814 ** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)")
815 ** we have to do some additional analysis of expressions.  An instance
816 ** of the following structure holds information about a single subexpression
817 ** somewhere in the SELECT statement.  An array of these structures holds
818 ** all the information we need to generate code for aggregate
819 ** expressions.
820 **
821 ** Note that when analyzing a SELECT containing aggregates, both
822 ** non-aggregate field variables and aggregate functions are stored
823 ** in the AggExpr array of the Parser structure.
824 **
825 ** The pExpr field points to an expression that is part of either the
826 ** field list, the GROUP BY clause, the HAVING clause or the ORDER BY
827 ** clause.  The expression will be freed when those clauses are cleaned
828 ** up.  Do not try to delete the expression attached to AggExpr.pExpr.
829 **
830 ** If AggExpr.pExpr==0, that means the expression is "count(*)".
831 */
832 struct AggExpr {
833   int isAgg;        /* if TRUE contains an aggregate function */
834   Expr *pExpr;      /* The expression */
835   FuncDef *pFunc;   /* Information about the aggregate function */
836 };
837 
838 /*
839 ** An SQL parser context.  A copy of this structure is passed through
840 ** the parser and down into all the parser action routine in order to
841 ** carry around information that is global to the entire parse.
842 */
843 struct Parse {
844   sqlite *db;          /* The main database structure */
845   int rc;              /* Return code from execution */
846   sqlite_callback xCallback;  /* The callback function */
847   void *pArg;          /* First argument to the callback function */
848   char *zErrMsg;       /* An error message */
849   Token sErrToken;     /* The token at which the error occurred */
850   Token sFirstToken;   /* The first token parsed */
851   Token sLastToken;    /* The last token parsed */
852   const char *zTail;   /* All SQL text past the last semicolon parsed */
853   Table *pNewTable;    /* A table being constructed by CREATE TABLE */
854   Vdbe *pVdbe;         /* An engine for executing database bytecode */
855   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
856   u8 explain;          /* True if the EXPLAIN flag is found on the query */
857   u8 initFlag;         /* True if reparsing CREATE TABLEs */
858   u8 nameClash;        /* A permanent table name clashes with temp table name */
859   u8 useAgg;           /* If true, extract field values from the aggregator
860                        ** while generating expressions.  Normally false */
861   u8 iDb;              /* Index of database whose schema is being parsed */
862   u8 useCallback;      /* True if callbacks should be used to report results */
863   int newTnum;         /* Table number to use when reparsing CREATE TABLEs */
864   int nErr;            /* Number of errors seen */
865   int nTab;            /* Number of previously allocated VDBE cursors */
866   int nMem;            /* Number of memory cells used so far */
867   int nSet;            /* Number of sets used so far */
868   int nAgg;            /* Number of aggregate expressions */
869   AggExpr *aAgg;       /* An array of aggregate expressions */
870   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
871   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
872   TriggerStack *trigStack;  /* Trigger actions being coded */
873 };
874 
875 /*
876 ** An instance of the following structure can be declared on a stack and used
877 ** to save the Parse.zAuthContext value so that it can be restored later.
878 */
879 struct AuthContext {
880   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
881   Parse *pParse;              /* The Parse structure */
882 };
883 
884 /*
885  * Each trigger present in the database schema is stored as an instance of
886  * struct Trigger.
887  *
888  * Pointers to instances of struct Trigger are stored in two ways.
889  * 1. In the "trigHash" hash table (part of the sqlite* that represents the
890  *    database). This allows Trigger structures to be retrieved by name.
891  * 2. All triggers associated with a single table form a linked list, using the
892  *    pNext member of struct Trigger. A pointer to the first element of the
893  *    linked list is stored as the "pTrigger" member of the associated
894  *    struct Table.
895  *
896  * The "step_list" member points to the first element of a linked list
897  * containing the SQL statements specified as the trigger program.
898  */
899 struct Trigger {
900   char *name;             /* The name of the trigger                        */
901   char *table;            /* The table or view to which the trigger applies */
902   u8 iDb;                 /* Database containing this trigger               */
903   u8 iTabDb;              /* Database containing Trigger.table              */
904   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
905   u8 tr_tm;               /* One of TK_BEFORE, TK_AFTER */
906   Expr *pWhen;            /* The WHEN clause of the expresion (may be NULL) */
907   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
908                              the <column-list> is stored here */
909   int foreach;            /* One of TK_ROW or TK_STATEMENT */
910   Token nameToken;        /* Token containing zName. Use during parsing only */
911 
912   TriggerStep *step_list; /* Link list of trigger program steps             */
913   Trigger *pNext;         /* Next trigger associated with the table */
914 };
915 
916 /*
917  * An instance of struct TriggerStep is used to store a single SQL statement
918  * that is a part of a trigger-program.
919  *
920  * Instances of struct TriggerStep are stored in a singly linked list (linked
921  * using the "pNext" member) referenced by the "step_list" member of the
922  * associated struct Trigger instance. The first element of the linked list is
923  * the first step of the trigger-program.
924  *
925  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
926  * "SELECT" statement. The meanings of the other members is determined by the
927  * value of "op" as follows:
928  *
929  * (op == TK_INSERT)
930  * orconf    -> stores the ON CONFLICT algorithm
931  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
932  *              this stores a pointer to the SELECT statement. Otherwise NULL.
933  * target    -> A token holding the name of the table to insert into.
934  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
935  *              this stores values to be inserted. Otherwise NULL.
936  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
937  *              statement, then this stores the column-names to be
938  *              inserted into.
939  *
940  * (op == TK_DELETE)
941  * target    -> A token holding the name of the table to delete from.
942  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
943  *              Otherwise NULL.
944  *
945  * (op == TK_UPDATE)
946  * target    -> A token holding the name of the table to update rows of.
947  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
948  *              Otherwise NULL.
949  * pExprList -> A list of the columns to update and the expressions to update
950  *              them to. See sqliteUpdate() documentation of "pChanges"
951  *              argument.
952  *
953  */
954 struct TriggerStep {
955   int op;              /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
956   int orconf;          /* OE_Rollback etc. */
957   Trigger *pTrig;      /* The trigger that this step is a part of */
958 
959   Select *pSelect;     /* Valid for SELECT and sometimes
960 			  INSERT steps (when pExprList == 0) */
961   Token target;        /* Valid for DELETE, UPDATE, INSERT steps */
962   Expr *pWhere;        /* Valid for DELETE, UPDATE steps */
963   ExprList *pExprList; /* Valid for UPDATE statements and sometimes
964 			   INSERT steps (when pSelect == 0)         */
965   IdList *pIdList;     /* Valid for INSERT statements only */
966 
967   TriggerStep * pNext; /* Next in the link-list */
968 };
969 
970 /*
971  * An instance of struct TriggerStack stores information required during code
972  * generation of a single trigger program. While the trigger program is being
973  * coded, its associated TriggerStack instance is pointed to by the
974  * "pTriggerStack" member of the Parse structure.
975  *
976  * The pTab member points to the table that triggers are being coded on. The
977  * newIdx member contains the index of the vdbe cursor that points at the temp
978  * table that stores the new.* references. If new.* references are not valid
979  * for the trigger being coded (for example an ON DELETE trigger), then newIdx
980  * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
981  *
982  * The ON CONFLICT policy to be used for the trigger program steps is stored
983  * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
984  * specified for individual triggers steps is used.
985  *
986  * struct TriggerStack has a "pNext" member, to allow linked lists to be
987  * constructed. When coding nested triggers (triggers fired by other triggers)
988  * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
989  * pointer. Once the nested trigger has been coded, the pNext value is restored
990  * to the pTriggerStack member of the Parse stucture and coding of the parent
991  * trigger continues.
992  *
993  * Before a nested trigger is coded, the linked list pointed to by the
994  * pTriggerStack is scanned to ensure that the trigger is not about to be coded
995  * recursively. If this condition is detected, the nested trigger is not coded.
996  */
997 struct TriggerStack {
998   Table *pTab;         /* Table that triggers are currently being coded on */
999   int newIdx;          /* Index of vdbe cursor to "new" temp table */
1000   int oldIdx;          /* Index of vdbe cursor to "old" temp table */
1001   int orconf;          /* Current orconf policy */
1002   int ignoreJump;      /* where to jump to for a RAISE(IGNORE) */
1003   Trigger *pTrigger;   /* The trigger currently being coded */
1004   TriggerStack *pNext; /* Next trigger down on the trigger stack */
1005 };
1006 
1007 /*
1008 ** The following structure contains information used by the sqliteFix...
1009 ** routines as they walk the parse tree to make database references
1010 ** explicit.
1011 */
1012 typedef struct DbFixer DbFixer;
1013 struct DbFixer {
1014   Parse *pParse;      /* The parsing context.  Error messages written here */
1015   const char *zDb;    /* Make sure all objects are contained in this database */
1016   const char *zType;  /* Type of the container - used for error messages */
1017   const Token *pName; /* Name of the container - used for error messages */
1018 };
1019 
1020 /*
1021  * This global flag is set for performance testing of triggers. When it is set
1022  * SQLite will perform the overhead of building new and old trigger references
1023  * even when no triggers exist
1024  */
1025 extern int always_code_trigger_setup;
1026 
1027 /*
1028 ** Internal function prototypes
1029 */
1030 int sqliteStrICmp(const char *, const char *);
1031 int sqliteStrNICmp(const char *, const char *, int);
1032 int sqliteHashNoCase(const char *, int);
1033 int sqliteIsNumber(const char*);
1034 int sqliteCompare(const char *, const char *);
1035 int sqliteSortCompare(const char *, const char *);
1036 void sqliteRealToSortable(double r, char *);
1037 #ifdef MEMORY_DEBUG
1038   void *sqliteMalloc_(int,int,char*,int);
1039   void sqliteFree_(void*,char*,int);
1040   void *sqliteRealloc_(void*,int,char*,int);
1041   char *sqliteStrDup_(const char*,char*,int);
1042   char *sqliteStrNDup_(const char*, int,char*,int);
1043   void sqliteCheckMemory(void*,int);
1044 #else
1045   void *sqliteMalloc(int);
1046   void *sqliteMallocRaw(int);
1047   void sqliteFree(void*);
1048   void *sqliteRealloc(void*,int);
1049   char *sqliteStrDup(const char*);
1050   char *sqliteStrNDup(const char*, int);
1051 # define sqliteCheckMemory(a,b)
1052 #endif
1053 char *sqliteMPrintf(const char *,...);
1054 void sqliteSetString(char **, const char *, ...);
1055 void sqliteSetNString(char **, ...);
1056 void sqliteErrorMsg(Parse*, const char*, ...);
1057 void sqliteDequote(char*);
1058 int sqliteKeywordCode(const char*, int);
1059 int sqliteRunParser(Parse*, const char*, char **);
1060 void sqliteExec(Parse*);
1061 Expr *sqliteExpr(int, Expr*, Expr*, Token*);
1062 void sqliteExprSpan(Expr*,Token*,Token*);
1063 Expr *sqliteExprFunction(ExprList*, Token*);
1064 void sqliteExprDelete(Expr*);
1065 ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*);
1066 void sqliteExprListDelete(ExprList*);
1067 int sqliteInit(sqlite*, char**);
1068 void sqlitePragma(Parse*,Token*,Token*,int);
1069 void sqliteResetInternalSchema(sqlite*, int);
1070 void sqliteBeginParse(Parse*,int);
1071 void sqliteRollbackInternalChanges(sqlite*);
1072 void sqliteCommitInternalChanges(sqlite*);
1073 Table *sqliteResultSetOfSelect(Parse*,char*,Select*);
1074 void sqliteOpenMasterTable(Vdbe *v, int);
1075 void sqliteStartTable(Parse*,Token*,Token*,int,int);
1076 void sqliteAddColumn(Parse*,Token*);
1077 void sqliteAddNotNull(Parse*, int);
1078 void sqliteAddPrimaryKey(Parse*, IdList*, int);
1079 void sqliteAddColumnType(Parse*,Token*,Token*);
1080 void sqliteAddDefaultValue(Parse*,Token*,int);
1081 int sqliteCollateType(const char*, int);
1082 void sqliteAddCollateType(Parse*, int);
1083 void sqliteEndTable(Parse*,Token*,Select*);
1084 void sqliteCreateView(Parse*,Token*,Token*,Select*,int);
1085 int sqliteViewGetColumnNames(Parse*,Table*);
1086 void sqliteDropTable(Parse*, Token*, int);
1087 void sqliteDeleteTable(sqlite*, Table*);
1088 void sqliteInsert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
1089 IdList *sqliteIdListAppend(IdList*, Token*);
1090 int sqliteIdListIndex(IdList*,const char*);
1091 SrcList *sqliteSrcListAppend(SrcList*, Token*, Token*);
1092 void sqliteSrcListAddAlias(SrcList*, Token*);
1093 void sqliteSrcListAssignCursors(Parse*, SrcList*);
1094 void sqliteIdListDelete(IdList*);
1095 void sqliteSrcListDelete(SrcList*);
1096 void sqliteCreateIndex(Parse*,Token*,SrcList*,IdList*,int,int,Token*,Token*);
1097 void sqliteDropIndex(Parse*, SrcList*);
1098 void sqliteAddKeyType(Vdbe*, ExprList*);
1099 void sqliteAddIdxKeyType(Vdbe*, Index*);
1100 int sqliteSelect(Parse*, Select*, int, int, Select*, int, int*);
1101 Select *sqliteSelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*,
1102                         int,int,int);
1103 void sqliteSelectDelete(Select*);
1104 void sqliteSelectUnbind(Select*);
1105 Table *sqliteSrcListLookup(Parse*, SrcList*);
1106 int sqliteIsReadOnly(Parse*, Table*, int);
1107 void sqliteDeleteFrom(Parse*, SrcList*, Expr*);
1108 void sqliteUpdate(Parse*, SrcList*, ExprList*, Expr*, int);
1109 WhereInfo *sqliteWhereBegin(Parse*, SrcList*, Expr*, int, ExprList**);
1110 void sqliteWhereEnd(WhereInfo*);
1111 void sqliteExprCode(Parse*, Expr*);
1112 void sqliteExprIfTrue(Parse*, Expr*, int, int);
1113 void sqliteExprIfFalse(Parse*, Expr*, int, int);
1114 Table *sqliteFindTable(sqlite*,const char*, const char*);
1115 Table *sqliteLocateTable(Parse*,const char*, const char*);
1116 Index *sqliteFindIndex(sqlite*,const char*, const char*);
1117 void sqliteUnlinkAndDeleteIndex(sqlite*,Index*);
1118 void sqliteCopy(Parse*, SrcList*, Token*, Token*, int);
1119 void sqliteVacuum(Parse*, Token*);
1120 int sqliteGlobCompare(const unsigned char*,const unsigned char*);
1121 int sqliteLikeCompare(const unsigned char*,const unsigned char*);
1122 char *sqliteTableNameFromToken(Token*);
1123 int sqliteExprCheck(Parse*, Expr*, int, int*);
1124 int sqliteExprType(Expr*);
1125 int sqliteExprCompare(Expr*, Expr*);
1126 int sqliteFuncId(Token*);
1127 int sqliteExprResolveIds(Parse*, SrcList*, ExprList*, Expr*);
1128 int sqliteExprAnalyzeAggregates(Parse*, Expr*);
1129 Vdbe *sqliteGetVdbe(Parse*);
1130 int sqliteRandomByte(void);
1131 int sqliteRandomInteger(void);
1132 void sqliteRollbackAll(sqlite*);
1133 void sqliteCodeVerifySchema(Parse*, int);
1134 void sqliteBeginTransaction(Parse*, int);
1135 void sqliteCommitTransaction(Parse*);
1136 void sqliteRollbackTransaction(Parse*);
1137 int sqliteExprIsConstant(Expr*);
1138 int sqliteExprIsInteger(Expr*, int*);
1139 int sqliteIsRowid(const char*);
1140 void sqliteGenerateRowDelete(sqlite*, Vdbe*, Table*, int, int);
1141 void sqliteGenerateRowIndexDelete(sqlite*, Vdbe*, Table*, int, char*);
1142 void sqliteGenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int);
1143 void sqliteCompleteInsertion(Parse*, Table*, int, char*, int, int, int);
1144 void sqliteBeginWriteOperation(Parse*, int, int);
1145 void sqliteEndWriteOperation(Parse*);
1146 Expr *sqliteExprDup(Expr*);
1147 void sqliteTokenCopy(Token*, Token*);
1148 ExprList *sqliteExprListDup(ExprList*);
1149 SrcList *sqliteSrcListDup(SrcList*);
1150 IdList *sqliteIdListDup(IdList*);
1151 Select *sqliteSelectDup(Select*);
1152 FuncDef *sqliteFindFunction(sqlite*,const char*,int,int,int);
1153 void sqliteRegisterBuiltinFunctions(sqlite*);
1154 int sqliteSafetyOn(sqlite*);
1155 int sqliteSafetyOff(sqlite*);
1156 int sqliteSafetyCheck(sqlite*);
1157 void sqliteChangeCookie(sqlite*, Vdbe*);
1158 void sqliteBeginTrigger(Parse*, Token*,int,int,IdList*,SrcList*,int,Expr*,int);
1159 void sqliteFinishTrigger(Parse*, TriggerStep*, Token*);
1160 void sqliteDropTrigger(Parse*, SrcList*);
1161 void sqliteDropTriggerPtr(Parse*, Trigger*, int);
1162 int sqliteTriggersExist(Parse* , Trigger* , int , int , int, ExprList*);
1163 int sqliteCodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
1164                          int, int);
1165 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
1166 void sqliteDeleteTriggerStep(TriggerStep*);
1167 TriggerStep *sqliteTriggerSelectStep(Select*);
1168 TriggerStep *sqliteTriggerInsertStep(Token*, IdList*, ExprList*, Select*, int);
1169 TriggerStep *sqliteTriggerUpdateStep(Token*, ExprList*, Expr*, int);
1170 TriggerStep *sqliteTriggerDeleteStep(Token*, Expr*);
1171 void sqliteDeleteTrigger(Trigger*);
1172 int sqliteJoinType(Parse*, Token*, Token*, Token*);
1173 void sqliteCreateForeignKey(Parse*, IdList*, Token*, IdList*, int);
1174 void sqliteDeferForeignKey(Parse*, int);
1175 #ifndef SQLITE_OMIT_AUTHORIZATION
1176   void sqliteAuthRead(Parse*,Expr*,SrcList*);
1177   int sqliteAuthCheck(Parse*,int, const char*, const char*, const char*);
1178   void sqliteAuthContextPush(Parse*, AuthContext*, const char*);
1179   void sqliteAuthContextPop(AuthContext*);
1180 #else
1181 # define sqliteAuthRead(a,b,c)
1182 # define sqliteAuthCheck(a,b,c,d,e)    SQLITE_OK
1183 # define sqliteAuthContextPush(a,b,c)
1184 # define sqliteAuthContextPop(a)  ((void)(a))
1185 #endif
1186 void sqliteAttach(Parse*, Token*, Token*);
1187 void sqliteDetach(Parse*, Token*);
1188 int sqliteBtreeFactory(const sqlite *db, const char *zFilename,
1189                        int mode, int nPg, Btree **ppBtree);
1190 int sqliteFixInit(DbFixer*, Parse*, int, const char*, const Token*);
1191 int sqliteFixSrcList(DbFixer*, SrcList*);
1192 int sqliteFixSelect(DbFixer*, Select*);
1193 int sqliteFixExpr(DbFixer*, Expr*);
1194 int sqliteFixExprList(DbFixer*, ExprList*);
1195 int sqliteFixTriggerStep(DbFixer*, TriggerStep*);
1196