1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** The previous paragraph was written in 2005. (This paragraph is written 36 ** on 2008-11-28.) These days, all Linux kernels support large files, so 37 ** you should probably leave LFS enabled. But some embedded platforms might 38 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 39 ** 40 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 41 */ 42 #ifndef SQLITE_DISABLE_LFS 43 # define _LARGE_FILE 1 44 # ifndef _FILE_OFFSET_BITS 45 # define _FILE_OFFSET_BITS 64 46 # endif 47 # define _LARGEFILE_SOURCE 1 48 #endif 49 50 /* Needed for various definitions... */ 51 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 52 # define _GNU_SOURCE 53 #endif 54 55 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 56 # define _BSD_SOURCE 57 #endif 58 59 /* 60 ** For MinGW, check to see if we can include the header file containing its 61 ** version information, among other things. Normally, this internal MinGW 62 ** header file would [only] be included automatically by other MinGW header 63 ** files; however, the contained version information is now required by this 64 ** header file to work around binary compatibility issues (see below) and 65 ** this is the only known way to reliably obtain it. This entire #if block 66 ** would be completely unnecessary if there was any other way of detecting 67 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 68 ** some MinGW-specific macros). When compiling for MinGW, either the 69 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 70 ** defined; otherwise, detection of conditions specific to MinGW will be 71 ** disabled. 72 */ 73 #if defined(_HAVE_MINGW_H) 74 # include "mingw.h" 75 #elif defined(_HAVE__MINGW_H) 76 # include "_mingw.h" 77 #endif 78 79 /* 80 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 81 ** define is required to maintain binary compatibility with the MSVC runtime 82 ** library in use (e.g. for Windows XP). 83 */ 84 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 85 defined(_WIN32) && !defined(_WIN64) && \ 86 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 87 defined(__MSVCRT__) 88 # define _USE_32BIT_TIME_T 89 #endif 90 91 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 92 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 93 ** MinGW. 94 */ 95 #include "sqlite3.h" 96 97 /* 98 ** Include the configuration header output by 'configure' if we're using the 99 ** autoconf-based build 100 */ 101 #ifdef _HAVE_SQLITE_CONFIG_H 102 #include "config.h" 103 #endif 104 105 #include "sqliteLimit.h" 106 107 /* Disable nuisance warnings on Borland compilers */ 108 #if defined(__BORLANDC__) 109 #pragma warn -rch /* unreachable code */ 110 #pragma warn -ccc /* Condition is always true or false */ 111 #pragma warn -aus /* Assigned value is never used */ 112 #pragma warn -csu /* Comparing signed and unsigned */ 113 #pragma warn -spa /* Suspicious pointer arithmetic */ 114 #endif 115 116 /* 117 ** Include standard header files as necessary 118 */ 119 #ifdef HAVE_STDINT_H 120 #include <stdint.h> 121 #endif 122 #ifdef HAVE_INTTYPES_H 123 #include <inttypes.h> 124 #endif 125 126 /* 127 ** The following macros are used to cast pointers to integers and 128 ** integers to pointers. The way you do this varies from one compiler 129 ** to the next, so we have developed the following set of #if statements 130 ** to generate appropriate macros for a wide range of compilers. 131 ** 132 ** The correct "ANSI" way to do this is to use the intptr_t type. 133 ** Unfortunately, that typedef is not available on all compilers, or 134 ** if it is available, it requires an #include of specific headers 135 ** that vary from one machine to the next. 136 ** 137 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 138 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 139 ** So we have to define the macros in different ways depending on the 140 ** compiler. 141 */ 142 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 143 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 144 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 145 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 146 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 147 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 148 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 149 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 150 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 151 #else /* Generates a warning - but it always works */ 152 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 153 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 154 #endif 155 156 /* 157 ** A macro to hint to the compiler that a function should not be 158 ** inlined. 159 */ 160 #if defined(__GNUC__) 161 # define SQLITE_NOINLINE __attribute__((noinline)) 162 #elif defined(_MSC_VER) && _MSC_VER>=1310 163 # define SQLITE_NOINLINE __declspec(noinline) 164 #else 165 # define SQLITE_NOINLINE 166 #endif 167 168 /* 169 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 170 ** 0 means mutexes are permanently disable and the library is never 171 ** threadsafe. 1 means the library is serialized which is the highest 172 ** level of threadsafety. 2 means the library is multithreaded - multiple 173 ** threads can use SQLite as long as no two threads try to use the same 174 ** database connection at the same time. 175 ** 176 ** Older versions of SQLite used an optional THREADSAFE macro. 177 ** We support that for legacy. 178 */ 179 #if !defined(SQLITE_THREADSAFE) 180 # if defined(THREADSAFE) 181 # define SQLITE_THREADSAFE THREADSAFE 182 # else 183 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 184 # endif 185 #endif 186 187 /* 188 ** Powersafe overwrite is on by default. But can be turned off using 189 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 190 */ 191 #ifndef SQLITE_POWERSAFE_OVERWRITE 192 # define SQLITE_POWERSAFE_OVERWRITE 1 193 #endif 194 195 /* 196 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 197 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 198 ** which case memory allocation statistics are disabled by default. 199 */ 200 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 201 # define SQLITE_DEFAULT_MEMSTATUS 1 202 #endif 203 204 /* 205 ** Exactly one of the following macros must be defined in order to 206 ** specify which memory allocation subsystem to use. 207 ** 208 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 209 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 210 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 211 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 212 ** 213 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 214 ** assert() macro is enabled, each call into the Win32 native heap subsystem 215 ** will cause HeapValidate to be called. If heap validation should fail, an 216 ** assertion will be triggered. 217 ** 218 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 219 ** the default. 220 */ 221 #if defined(SQLITE_SYSTEM_MALLOC) \ 222 + defined(SQLITE_WIN32_MALLOC) \ 223 + defined(SQLITE_ZERO_MALLOC) \ 224 + defined(SQLITE_MEMDEBUG)>1 225 # error "Two or more of the following compile-time configuration options\ 226 are defined but at most one is allowed:\ 227 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 228 SQLITE_ZERO_MALLOC" 229 #endif 230 #if defined(SQLITE_SYSTEM_MALLOC) \ 231 + defined(SQLITE_WIN32_MALLOC) \ 232 + defined(SQLITE_ZERO_MALLOC) \ 233 + defined(SQLITE_MEMDEBUG)==0 234 # define SQLITE_SYSTEM_MALLOC 1 235 #endif 236 237 /* 238 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 239 ** sizes of memory allocations below this value where possible. 240 */ 241 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 242 # define SQLITE_MALLOC_SOFT_LIMIT 1024 243 #endif 244 245 /* 246 ** We need to define _XOPEN_SOURCE as follows in order to enable 247 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 248 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 249 ** it. 250 */ 251 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 252 # define _XOPEN_SOURCE 600 253 #endif 254 255 /* 256 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 257 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 258 ** make it true by defining or undefining NDEBUG. 259 ** 260 ** Setting NDEBUG makes the code smaller and faster by disabling the 261 ** assert() statements in the code. So we want the default action 262 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 263 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 264 ** feature. 265 */ 266 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 267 # define NDEBUG 1 268 #endif 269 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 270 # undef NDEBUG 271 #endif 272 273 /* 274 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 275 */ 276 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 277 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 278 #endif 279 280 /* 281 ** The testcase() macro is used to aid in coverage testing. When 282 ** doing coverage testing, the condition inside the argument to 283 ** testcase() must be evaluated both true and false in order to 284 ** get full branch coverage. The testcase() macro is inserted 285 ** to help ensure adequate test coverage in places where simple 286 ** condition/decision coverage is inadequate. For example, testcase() 287 ** can be used to make sure boundary values are tested. For 288 ** bitmask tests, testcase() can be used to make sure each bit 289 ** is significant and used at least once. On switch statements 290 ** where multiple cases go to the same block of code, testcase() 291 ** can insure that all cases are evaluated. 292 ** 293 */ 294 #ifdef SQLITE_COVERAGE_TEST 295 void sqlite3Coverage(int); 296 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 297 #else 298 # define testcase(X) 299 #endif 300 301 /* 302 ** The TESTONLY macro is used to enclose variable declarations or 303 ** other bits of code that are needed to support the arguments 304 ** within testcase() and assert() macros. 305 */ 306 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 307 # define TESTONLY(X) X 308 #else 309 # define TESTONLY(X) 310 #endif 311 312 /* 313 ** Sometimes we need a small amount of code such as a variable initialization 314 ** to setup for a later assert() statement. We do not want this code to 315 ** appear when assert() is disabled. The following macro is therefore 316 ** used to contain that setup code. The "VVA" acronym stands for 317 ** "Verification, Validation, and Accreditation". In other words, the 318 ** code within VVA_ONLY() will only run during verification processes. 319 */ 320 #ifndef NDEBUG 321 # define VVA_ONLY(X) X 322 #else 323 # define VVA_ONLY(X) 324 #endif 325 326 /* 327 ** The ALWAYS and NEVER macros surround boolean expressions which 328 ** are intended to always be true or false, respectively. Such 329 ** expressions could be omitted from the code completely. But they 330 ** are included in a few cases in order to enhance the resilience 331 ** of SQLite to unexpected behavior - to make the code "self-healing" 332 ** or "ductile" rather than being "brittle" and crashing at the first 333 ** hint of unplanned behavior. 334 ** 335 ** In other words, ALWAYS and NEVER are added for defensive code. 336 ** 337 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 338 ** be true and false so that the unreachable code they specify will 339 ** not be counted as untested code. 340 */ 341 #if defined(SQLITE_COVERAGE_TEST) 342 # define ALWAYS(X) (1) 343 # define NEVER(X) (0) 344 #elif !defined(NDEBUG) 345 # define ALWAYS(X) ((X)?1:(assert(0),0)) 346 # define NEVER(X) ((X)?(assert(0),1):0) 347 #else 348 # define ALWAYS(X) (X) 349 # define NEVER(X) (X) 350 #endif 351 352 /* 353 ** Return true (non-zero) if the input is an integer that is too large 354 ** to fit in 32-bits. This macro is used inside of various testcase() 355 ** macros to verify that we have tested SQLite for large-file support. 356 */ 357 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 358 359 /* 360 ** The macro unlikely() is a hint that surrounds a boolean 361 ** expression that is usually false. Macro likely() surrounds 362 ** a boolean expression that is usually true. These hints could, 363 ** in theory, be used by the compiler to generate better code, but 364 ** currently they are just comments for human readers. 365 */ 366 #define likely(X) (X) 367 #define unlikely(X) (X) 368 369 #include "hash.h" 370 #include "parse.h" 371 #include <stdio.h> 372 #include <stdlib.h> 373 #include <string.h> 374 #include <assert.h> 375 #include <stddef.h> 376 377 /* 378 ** If compiling for a processor that lacks floating point support, 379 ** substitute integer for floating-point 380 */ 381 #ifdef SQLITE_OMIT_FLOATING_POINT 382 # define double sqlite_int64 383 # define float sqlite_int64 384 # define LONGDOUBLE_TYPE sqlite_int64 385 # ifndef SQLITE_BIG_DBL 386 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 387 # endif 388 # define SQLITE_OMIT_DATETIME_FUNCS 1 389 # define SQLITE_OMIT_TRACE 1 390 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 391 # undef SQLITE_HAVE_ISNAN 392 #endif 393 #ifndef SQLITE_BIG_DBL 394 # define SQLITE_BIG_DBL (1e99) 395 #endif 396 397 /* 398 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 399 ** afterward. Having this macro allows us to cause the C compiler 400 ** to omit code used by TEMP tables without messy #ifndef statements. 401 */ 402 #ifdef SQLITE_OMIT_TEMPDB 403 #define OMIT_TEMPDB 1 404 #else 405 #define OMIT_TEMPDB 0 406 #endif 407 408 /* 409 ** The "file format" number is an integer that is incremented whenever 410 ** the VDBE-level file format changes. The following macros define the 411 ** the default file format for new databases and the maximum file format 412 ** that the library can read. 413 */ 414 #define SQLITE_MAX_FILE_FORMAT 4 415 #ifndef SQLITE_DEFAULT_FILE_FORMAT 416 # define SQLITE_DEFAULT_FILE_FORMAT 4 417 #endif 418 419 /* 420 ** Determine whether triggers are recursive by default. This can be 421 ** changed at run-time using a pragma. 422 */ 423 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 424 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 425 #endif 426 427 /* 428 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 429 ** on the command-line 430 */ 431 #ifndef SQLITE_TEMP_STORE 432 # define SQLITE_TEMP_STORE 1 433 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 434 #endif 435 436 /* 437 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 438 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 439 ** to zero. 440 */ 441 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 442 # undef SQLITE_MAX_WORKER_THREADS 443 # define SQLITE_MAX_WORKER_THREADS 0 444 #endif 445 #ifndef SQLITE_MAX_WORKER_THREADS 446 # define SQLITE_MAX_WORKER_THREADS 8 447 #endif 448 #ifndef SQLITE_DEFAULT_WORKER_THREADS 449 # define SQLITE_DEFAULT_WORKER_THREADS 0 450 #endif 451 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 452 # undef SQLITE_MAX_WORKER_THREADS 453 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 454 #endif 455 456 457 /* 458 ** GCC does not define the offsetof() macro so we'll have to do it 459 ** ourselves. 460 */ 461 #ifndef offsetof 462 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 463 #endif 464 465 /* 466 ** Macros to compute minimum and maximum of two numbers. 467 */ 468 #define MIN(A,B) ((A)<(B)?(A):(B)) 469 #define MAX(A,B) ((A)>(B)?(A):(B)) 470 471 /* 472 ** Swap two objects of type TYPE. 473 */ 474 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 475 476 /* 477 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 478 ** not, there are still machines out there that use EBCDIC.) 479 */ 480 #if 'A' == '\301' 481 # define SQLITE_EBCDIC 1 482 #else 483 # define SQLITE_ASCII 1 484 #endif 485 486 /* 487 ** Integers of known sizes. These typedefs might change for architectures 488 ** where the sizes very. Preprocessor macros are available so that the 489 ** types can be conveniently redefined at compile-type. Like this: 490 ** 491 ** cc '-DUINTPTR_TYPE=long long int' ... 492 */ 493 #ifndef UINT32_TYPE 494 # ifdef HAVE_UINT32_T 495 # define UINT32_TYPE uint32_t 496 # else 497 # define UINT32_TYPE unsigned int 498 # endif 499 #endif 500 #ifndef UINT16_TYPE 501 # ifdef HAVE_UINT16_T 502 # define UINT16_TYPE uint16_t 503 # else 504 # define UINT16_TYPE unsigned short int 505 # endif 506 #endif 507 #ifndef INT16_TYPE 508 # ifdef HAVE_INT16_T 509 # define INT16_TYPE int16_t 510 # else 511 # define INT16_TYPE short int 512 # endif 513 #endif 514 #ifndef UINT8_TYPE 515 # ifdef HAVE_UINT8_T 516 # define UINT8_TYPE uint8_t 517 # else 518 # define UINT8_TYPE unsigned char 519 # endif 520 #endif 521 #ifndef INT8_TYPE 522 # ifdef HAVE_INT8_T 523 # define INT8_TYPE int8_t 524 # else 525 # define INT8_TYPE signed char 526 # endif 527 #endif 528 #ifndef LONGDOUBLE_TYPE 529 # define LONGDOUBLE_TYPE long double 530 #endif 531 typedef sqlite_int64 i64; /* 8-byte signed integer */ 532 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 533 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 534 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 535 typedef INT16_TYPE i16; /* 2-byte signed integer */ 536 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 537 typedef INT8_TYPE i8; /* 1-byte signed integer */ 538 539 /* 540 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 541 ** that can be stored in a u32 without loss of data. The value 542 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 543 ** have to specify the value in the less intuitive manner shown: 544 */ 545 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 546 547 /* 548 ** The datatype used to store estimates of the number of rows in a 549 ** table or index. This is an unsigned integer type. For 99.9% of 550 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 551 ** can be used at compile-time if desired. 552 */ 553 #ifdef SQLITE_64BIT_STATS 554 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 555 #else 556 typedef u32 tRowcnt; /* 32-bit is the default */ 557 #endif 558 559 /* 560 ** Estimated quantities used for query planning are stored as 16-bit 561 ** logarithms. For quantity X, the value stored is 10*log2(X). This 562 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 563 ** But the allowed values are "grainy". Not every value is representable. 564 ** For example, quantities 16 and 17 are both represented by a LogEst 565 ** of 40. However, since LogEst quantities are suppose to be estimates, 566 ** not exact values, this imprecision is not a problem. 567 ** 568 ** "LogEst" is short for "Logarithmic Estimate". 569 ** 570 ** Examples: 571 ** 1 -> 0 20 -> 43 10000 -> 132 572 ** 2 -> 10 25 -> 46 25000 -> 146 573 ** 3 -> 16 100 -> 66 1000000 -> 199 574 ** 4 -> 20 1000 -> 99 1048576 -> 200 575 ** 10 -> 33 1024 -> 100 4294967296 -> 320 576 ** 577 ** The LogEst can be negative to indicate fractional values. 578 ** Examples: 579 ** 580 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 581 */ 582 typedef INT16_TYPE LogEst; 583 584 /* 585 ** Macros to determine whether the machine is big or little endian, 586 ** and whether or not that determination is run-time or compile-time. 587 ** 588 ** For best performance, an attempt is made to guess at the byte-order 589 ** using C-preprocessor macros. If that is unsuccessful, or if 590 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 591 ** at run-time. 592 */ 593 #ifdef SQLITE_AMALGAMATION 594 const int sqlite3one = 1; 595 #else 596 extern const int sqlite3one; 597 #endif 598 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 599 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 600 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 601 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 602 # define SQLITE_BYTEORDER 1234 603 # define SQLITE_BIGENDIAN 0 604 # define SQLITE_LITTLEENDIAN 1 605 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 606 #endif 607 #if (defined(sparc) || defined(__ppc__)) \ 608 && !defined(SQLITE_RUNTIME_BYTEORDER) 609 # define SQLITE_BYTEORDER 4321 610 # define SQLITE_BIGENDIAN 1 611 # define SQLITE_LITTLEENDIAN 0 612 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 613 #endif 614 #if !defined(SQLITE_BYTEORDER) 615 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 616 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 617 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 618 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 619 #endif 620 621 /* 622 ** Constants for the largest and smallest possible 64-bit signed integers. 623 ** These macros are designed to work correctly on both 32-bit and 64-bit 624 ** compilers. 625 */ 626 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 627 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 628 629 /* 630 ** Round up a number to the next larger multiple of 8. This is used 631 ** to force 8-byte alignment on 64-bit architectures. 632 */ 633 #define ROUND8(x) (((x)+7)&~7) 634 635 /* 636 ** Round down to the nearest multiple of 8 637 */ 638 #define ROUNDDOWN8(x) ((x)&~7) 639 640 /* 641 ** Assert that the pointer X is aligned to an 8-byte boundary. This 642 ** macro is used only within assert() to verify that the code gets 643 ** all alignment restrictions correct. 644 ** 645 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 646 ** underlying malloc() implementation might return us 4-byte aligned 647 ** pointers. In that case, only verify 4-byte alignment. 648 */ 649 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 650 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 651 #else 652 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 653 #endif 654 655 /* 656 ** Disable MMAP on platforms where it is known to not work 657 */ 658 #if defined(__OpenBSD__) || defined(__QNXNTO__) 659 # undef SQLITE_MAX_MMAP_SIZE 660 # define SQLITE_MAX_MMAP_SIZE 0 661 #endif 662 663 /* 664 ** Default maximum size of memory used by memory-mapped I/O in the VFS 665 */ 666 #ifdef __APPLE__ 667 # include <TargetConditionals.h> 668 # if TARGET_OS_IPHONE 669 # undef SQLITE_MAX_MMAP_SIZE 670 # define SQLITE_MAX_MMAP_SIZE 0 671 # endif 672 #endif 673 #ifndef SQLITE_MAX_MMAP_SIZE 674 # if defined(__linux__) \ 675 || defined(_WIN32) \ 676 || (defined(__APPLE__) && defined(__MACH__)) \ 677 || defined(__sun) 678 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 679 # else 680 # define SQLITE_MAX_MMAP_SIZE 0 681 # endif 682 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 683 #endif 684 685 /* 686 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 687 ** default MMAP_SIZE is specified at compile-time, make sure that it does 688 ** not exceed the maximum mmap size. 689 */ 690 #ifndef SQLITE_DEFAULT_MMAP_SIZE 691 # define SQLITE_DEFAULT_MMAP_SIZE 0 692 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 693 #endif 694 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 695 # undef SQLITE_DEFAULT_MMAP_SIZE 696 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 697 #endif 698 699 /* 700 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 701 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 702 ** define SQLITE_ENABLE_STAT3_OR_STAT4 703 */ 704 #ifdef SQLITE_ENABLE_STAT4 705 # undef SQLITE_ENABLE_STAT3 706 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 707 #elif SQLITE_ENABLE_STAT3 708 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 709 #elif SQLITE_ENABLE_STAT3_OR_STAT4 710 # undef SQLITE_ENABLE_STAT3_OR_STAT4 711 #endif 712 713 /* 714 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 715 ** the Select query generator tracing logic is turned on. 716 */ 717 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 718 # define SELECTTRACE_ENABLED 1 719 #else 720 # define SELECTTRACE_ENABLED 0 721 #endif 722 723 /* 724 ** An instance of the following structure is used to store the busy-handler 725 ** callback for a given sqlite handle. 726 ** 727 ** The sqlite.busyHandler member of the sqlite struct contains the busy 728 ** callback for the database handle. Each pager opened via the sqlite 729 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 730 ** callback is currently invoked only from within pager.c. 731 */ 732 typedef struct BusyHandler BusyHandler; 733 struct BusyHandler { 734 int (*xFunc)(void *,int); /* The busy callback */ 735 void *pArg; /* First arg to busy callback */ 736 int nBusy; /* Incremented with each busy call */ 737 }; 738 739 /* 740 ** Name of the master database table. The master database table 741 ** is a special table that holds the names and attributes of all 742 ** user tables and indices. 743 */ 744 #define MASTER_NAME "sqlite_master" 745 #define TEMP_MASTER_NAME "sqlite_temp_master" 746 747 /* 748 ** The root-page of the master database table. 749 */ 750 #define MASTER_ROOT 1 751 752 /* 753 ** The name of the schema table. 754 */ 755 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 756 757 /* 758 ** A convenience macro that returns the number of elements in 759 ** an array. 760 */ 761 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 762 763 /* 764 ** Determine if the argument is a power of two 765 */ 766 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 767 768 /* 769 ** The following value as a destructor means to use sqlite3DbFree(). 770 ** The sqlite3DbFree() routine requires two parameters instead of the 771 ** one parameter that destructors normally want. So we have to introduce 772 ** this magic value that the code knows to handle differently. Any 773 ** pointer will work here as long as it is distinct from SQLITE_STATIC 774 ** and SQLITE_TRANSIENT. 775 */ 776 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 777 778 /* 779 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 780 ** not support Writable Static Data (WSD) such as global and static variables. 781 ** All variables must either be on the stack or dynamically allocated from 782 ** the heap. When WSD is unsupported, the variable declarations scattered 783 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 784 ** macro is used for this purpose. And instead of referencing the variable 785 ** directly, we use its constant as a key to lookup the run-time allocated 786 ** buffer that holds real variable. The constant is also the initializer 787 ** for the run-time allocated buffer. 788 ** 789 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 790 ** macros become no-ops and have zero performance impact. 791 */ 792 #ifdef SQLITE_OMIT_WSD 793 #define SQLITE_WSD const 794 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 795 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 796 int sqlite3_wsd_init(int N, int J); 797 void *sqlite3_wsd_find(void *K, int L); 798 #else 799 #define SQLITE_WSD 800 #define GLOBAL(t,v) v 801 #define sqlite3GlobalConfig sqlite3Config 802 #endif 803 804 /* 805 ** The following macros are used to suppress compiler warnings and to 806 ** make it clear to human readers when a function parameter is deliberately 807 ** left unused within the body of a function. This usually happens when 808 ** a function is called via a function pointer. For example the 809 ** implementation of an SQL aggregate step callback may not use the 810 ** parameter indicating the number of arguments passed to the aggregate, 811 ** if it knows that this is enforced elsewhere. 812 ** 813 ** When a function parameter is not used at all within the body of a function, 814 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 815 ** However, these macros may also be used to suppress warnings related to 816 ** parameters that may or may not be used depending on compilation options. 817 ** For example those parameters only used in assert() statements. In these 818 ** cases the parameters are named as per the usual conventions. 819 */ 820 #define UNUSED_PARAMETER(x) (void)(x) 821 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 822 823 /* 824 ** Forward references to structures 825 */ 826 typedef struct AggInfo AggInfo; 827 typedef struct AuthContext AuthContext; 828 typedef struct AutoincInfo AutoincInfo; 829 typedef struct Bitvec Bitvec; 830 typedef struct CollSeq CollSeq; 831 typedef struct Column Column; 832 typedef struct Db Db; 833 typedef struct Schema Schema; 834 typedef struct Expr Expr; 835 typedef struct ExprList ExprList; 836 typedef struct ExprSpan ExprSpan; 837 typedef struct FKey FKey; 838 typedef struct FuncDestructor FuncDestructor; 839 typedef struct FuncDef FuncDef; 840 typedef struct FuncDefHash FuncDefHash; 841 typedef struct IdList IdList; 842 typedef struct Index Index; 843 typedef struct IndexSample IndexSample; 844 typedef struct KeyClass KeyClass; 845 typedef struct KeyInfo KeyInfo; 846 typedef struct Lookaside Lookaside; 847 typedef struct LookasideSlot LookasideSlot; 848 typedef struct Module Module; 849 typedef struct NameContext NameContext; 850 typedef struct Parse Parse; 851 typedef struct PrintfArguments PrintfArguments; 852 typedef struct RowSet RowSet; 853 typedef struct Savepoint Savepoint; 854 typedef struct Select Select; 855 typedef struct SQLiteThread SQLiteThread; 856 typedef struct SelectDest SelectDest; 857 typedef struct SrcList SrcList; 858 typedef struct StrAccum StrAccum; 859 typedef struct Table Table; 860 typedef struct TableLock TableLock; 861 typedef struct Token Token; 862 typedef struct TreeView TreeView; 863 typedef struct Trigger Trigger; 864 typedef struct TriggerPrg TriggerPrg; 865 typedef struct TriggerStep TriggerStep; 866 typedef struct UnpackedRecord UnpackedRecord; 867 typedef struct VTable VTable; 868 typedef struct VtabCtx VtabCtx; 869 typedef struct Walker Walker; 870 typedef struct WhereInfo WhereInfo; 871 typedef struct With With; 872 873 /* 874 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 875 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 876 ** pointer types (i.e. FuncDef) defined above. 877 */ 878 #include "btree.h" 879 #include "vdbe.h" 880 #include "pager.h" 881 #include "pcache.h" 882 883 #include "os.h" 884 #include "mutex.h" 885 886 887 /* 888 ** Each database file to be accessed by the system is an instance 889 ** of the following structure. There are normally two of these structures 890 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 891 ** aDb[1] is the database file used to hold temporary tables. Additional 892 ** databases may be attached. 893 */ 894 struct Db { 895 char *zName; /* Name of this database */ 896 Btree *pBt; /* The B*Tree structure for this database file */ 897 u8 safety_level; /* How aggressive at syncing data to disk */ 898 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 899 }; 900 901 /* 902 ** An instance of the following structure stores a database schema. 903 ** 904 ** Most Schema objects are associated with a Btree. The exception is 905 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 906 ** In shared cache mode, a single Schema object can be shared by multiple 907 ** Btrees that refer to the same underlying BtShared object. 908 ** 909 ** Schema objects are automatically deallocated when the last Btree that 910 ** references them is destroyed. The TEMP Schema is manually freed by 911 ** sqlite3_close(). 912 * 913 ** A thread must be holding a mutex on the corresponding Btree in order 914 ** to access Schema content. This implies that the thread must also be 915 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 916 ** For a TEMP Schema, only the connection mutex is required. 917 */ 918 struct Schema { 919 int schema_cookie; /* Database schema version number for this file */ 920 int iGeneration; /* Generation counter. Incremented with each change */ 921 Hash tblHash; /* All tables indexed by name */ 922 Hash idxHash; /* All (named) indices indexed by name */ 923 Hash trigHash; /* All triggers indexed by name */ 924 Hash fkeyHash; /* All foreign keys by referenced table name */ 925 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 926 u8 file_format; /* Schema format version for this file */ 927 u8 enc; /* Text encoding used by this database */ 928 u16 schemaFlags; /* Flags associated with this schema */ 929 int cache_size; /* Number of pages to use in the cache */ 930 }; 931 932 /* 933 ** These macros can be used to test, set, or clear bits in the 934 ** Db.pSchema->flags field. 935 */ 936 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 937 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 938 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 939 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 940 941 /* 942 ** Allowed values for the DB.pSchema->flags field. 943 ** 944 ** The DB_SchemaLoaded flag is set after the database schema has been 945 ** read into internal hash tables. 946 ** 947 ** DB_UnresetViews means that one or more views have column names that 948 ** have been filled out. If the schema changes, these column names might 949 ** changes and so the view will need to be reset. 950 */ 951 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 952 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 953 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 954 955 /* 956 ** The number of different kinds of things that can be limited 957 ** using the sqlite3_limit() interface. 958 */ 959 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 960 961 /* 962 ** Lookaside malloc is a set of fixed-size buffers that can be used 963 ** to satisfy small transient memory allocation requests for objects 964 ** associated with a particular database connection. The use of 965 ** lookaside malloc provides a significant performance enhancement 966 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 967 ** SQL statements. 968 ** 969 ** The Lookaside structure holds configuration information about the 970 ** lookaside malloc subsystem. Each available memory allocation in 971 ** the lookaside subsystem is stored on a linked list of LookasideSlot 972 ** objects. 973 ** 974 ** Lookaside allocations are only allowed for objects that are associated 975 ** with a particular database connection. Hence, schema information cannot 976 ** be stored in lookaside because in shared cache mode the schema information 977 ** is shared by multiple database connections. Therefore, while parsing 978 ** schema information, the Lookaside.bEnabled flag is cleared so that 979 ** lookaside allocations are not used to construct the schema objects. 980 */ 981 struct Lookaside { 982 u16 sz; /* Size of each buffer in bytes */ 983 u8 bEnabled; /* False to disable new lookaside allocations */ 984 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 985 int nOut; /* Number of buffers currently checked out */ 986 int mxOut; /* Highwater mark for nOut */ 987 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 988 LookasideSlot *pFree; /* List of available buffers */ 989 void *pStart; /* First byte of available memory space */ 990 void *pEnd; /* First byte past end of available space */ 991 }; 992 struct LookasideSlot { 993 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 994 }; 995 996 /* 997 ** A hash table for function definitions. 998 ** 999 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1000 ** Collisions are on the FuncDef.pHash chain. 1001 */ 1002 struct FuncDefHash { 1003 FuncDef *a[23]; /* Hash table for functions */ 1004 }; 1005 1006 #ifdef SQLITE_USER_AUTHENTICATION 1007 /* 1008 ** Information held in the "sqlite3" database connection object and used 1009 ** to manage user authentication. 1010 */ 1011 typedef struct sqlite3_userauth sqlite3_userauth; 1012 struct sqlite3_userauth { 1013 u8 authLevel; /* Current authentication level */ 1014 int nAuthPW; /* Size of the zAuthPW in bytes */ 1015 char *zAuthPW; /* Password used to authenticate */ 1016 char *zAuthUser; /* User name used to authenticate */ 1017 }; 1018 1019 /* Allowed values for sqlite3_userauth.authLevel */ 1020 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1021 #define UAUTH_Fail 1 /* User authentication failed */ 1022 #define UAUTH_User 2 /* Authenticated as a normal user */ 1023 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1024 1025 /* Functions used only by user authorization logic */ 1026 int sqlite3UserAuthTable(const char*); 1027 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1028 void sqlite3UserAuthInit(sqlite3*); 1029 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1030 1031 #endif /* SQLITE_USER_AUTHENTICATION */ 1032 1033 /* 1034 ** typedef for the authorization callback function. 1035 */ 1036 #ifdef SQLITE_USER_AUTHENTICATION 1037 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1038 const char*, const char*); 1039 #else 1040 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1041 const char*); 1042 #endif 1043 1044 1045 /* 1046 ** Each database connection is an instance of the following structure. 1047 */ 1048 struct sqlite3 { 1049 sqlite3_vfs *pVfs; /* OS Interface */ 1050 struct Vdbe *pVdbe; /* List of active virtual machines */ 1051 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1052 sqlite3_mutex *mutex; /* Connection mutex */ 1053 Db *aDb; /* All backends */ 1054 int nDb; /* Number of backends currently in use */ 1055 int flags; /* Miscellaneous flags. See below */ 1056 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1057 i64 szMmap; /* Default mmap_size setting */ 1058 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1059 int errCode; /* Most recent error code (SQLITE_*) */ 1060 int errMask; /* & result codes with this before returning */ 1061 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1062 u8 enc; /* Text encoding */ 1063 u8 autoCommit; /* The auto-commit flag. */ 1064 u8 temp_store; /* 1: file 2: memory 0: default */ 1065 u8 mallocFailed; /* True if we have seen a malloc failure */ 1066 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1067 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1068 u8 suppressErr; /* Do not issue error messages if true */ 1069 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1070 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1071 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1072 u32 magic; /* Magic number for detect library misuse */ 1073 int nChange; /* Value returned by sqlite3_changes() */ 1074 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1075 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1076 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1077 struct sqlite3InitInfo { /* Information used during initialization */ 1078 int newTnum; /* Rootpage of table being initialized */ 1079 u8 iDb; /* Which db file is being initialized */ 1080 u8 busy; /* TRUE if currently initializing */ 1081 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1082 } init; 1083 int nVdbeActive; /* Number of VDBEs currently running */ 1084 int nVdbeRead; /* Number of active VDBEs that read or write */ 1085 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1086 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1087 int nExtension; /* Number of loaded extensions */ 1088 void **aExtension; /* Array of shared library handles */ 1089 void (*xTrace)(void*,const char*); /* Trace function */ 1090 void *pTraceArg; /* Argument to the trace function */ 1091 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1092 void *pProfileArg; /* Argument to profile function */ 1093 void *pCommitArg; /* Argument to xCommitCallback() */ 1094 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1095 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1096 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1097 void *pUpdateArg; 1098 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1099 #ifndef SQLITE_OMIT_WAL 1100 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1101 void *pWalArg; 1102 #endif 1103 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1104 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1105 void *pCollNeededArg; 1106 sqlite3_value *pErr; /* Most recent error message */ 1107 union { 1108 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1109 double notUsed1; /* Spacer */ 1110 } u1; 1111 Lookaside lookaside; /* Lookaside malloc configuration */ 1112 #ifndef SQLITE_OMIT_AUTHORIZATION 1113 sqlite3_xauth xAuth; /* Access authorization function */ 1114 void *pAuthArg; /* 1st argument to the access auth function */ 1115 #endif 1116 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1117 int (*xProgress)(void *); /* The progress callback */ 1118 void *pProgressArg; /* Argument to the progress callback */ 1119 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1120 #endif 1121 #ifndef SQLITE_OMIT_VIRTUALTABLE 1122 int nVTrans; /* Allocated size of aVTrans */ 1123 Hash aModule; /* populated by sqlite3_create_module() */ 1124 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1125 VTable **aVTrans; /* Virtual tables with open transactions */ 1126 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1127 #endif 1128 FuncDefHash aFunc; /* Hash table of connection functions */ 1129 Hash aCollSeq; /* All collating sequences */ 1130 BusyHandler busyHandler; /* Busy callback */ 1131 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1132 Savepoint *pSavepoint; /* List of active savepoints */ 1133 int busyTimeout; /* Busy handler timeout, in msec */ 1134 int nSavepoint; /* Number of non-transaction savepoints */ 1135 int nStatement; /* Number of nested statement-transactions */ 1136 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1137 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1138 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1139 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1140 /* The following variables are all protected by the STATIC_MASTER 1141 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1142 ** 1143 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1144 ** unlock so that it can proceed. 1145 ** 1146 ** When X.pBlockingConnection==Y, that means that something that X tried 1147 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1148 ** held by Y. 1149 */ 1150 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1151 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1152 void *pUnlockArg; /* Argument to xUnlockNotify */ 1153 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1154 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1155 #endif 1156 #ifdef SQLITE_USER_AUTHENTICATION 1157 sqlite3_userauth auth; /* User authentication information */ 1158 #endif 1159 }; 1160 1161 /* 1162 ** A macro to discover the encoding of a database. 1163 */ 1164 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1165 #define ENC(db) ((db)->enc) 1166 1167 /* 1168 ** Possible values for the sqlite3.flags. 1169 */ 1170 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1171 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1172 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1173 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1174 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1175 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1176 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1177 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1178 /* DELETE, or UPDATE and return */ 1179 /* the count using a callback. */ 1180 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1181 /* result set is empty */ 1182 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1183 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1184 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1185 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1186 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1187 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1188 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1189 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1190 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1191 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1192 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1193 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1194 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1195 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1196 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1197 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1198 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1199 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1200 1201 1202 /* 1203 ** Bits of the sqlite3.dbOptFlags field that are used by the 1204 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1205 ** selectively disable various optimizations. 1206 */ 1207 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1208 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1209 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1210 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1211 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1212 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1213 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1214 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1215 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1216 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1217 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1218 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1219 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1220 1221 /* 1222 ** Macros for testing whether or not optimizations are enabled or disabled. 1223 */ 1224 #ifndef SQLITE_OMIT_BUILTIN_TEST 1225 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1226 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1227 #else 1228 #define OptimizationDisabled(db, mask) 0 1229 #define OptimizationEnabled(db, mask) 1 1230 #endif 1231 1232 /* 1233 ** Return true if it OK to factor constant expressions into the initialization 1234 ** code. The argument is a Parse object for the code generator. 1235 */ 1236 #define ConstFactorOk(P) ((P)->okConstFactor) 1237 1238 /* 1239 ** Possible values for the sqlite.magic field. 1240 ** The numbers are obtained at random and have no special meaning, other 1241 ** than being distinct from one another. 1242 */ 1243 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1244 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1245 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1246 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1247 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1248 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1249 1250 /* 1251 ** Each SQL function is defined by an instance of the following 1252 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1253 ** hash table. When multiple functions have the same name, the hash table 1254 ** points to a linked list of these structures. 1255 */ 1256 struct FuncDef { 1257 i16 nArg; /* Number of arguments. -1 means unlimited */ 1258 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1259 void *pUserData; /* User data parameter */ 1260 FuncDef *pNext; /* Next function with same name */ 1261 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1262 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1263 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1264 char *zName; /* SQL name of the function. */ 1265 FuncDef *pHash; /* Next with a different name but the same hash */ 1266 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1267 }; 1268 1269 /* 1270 ** This structure encapsulates a user-function destructor callback (as 1271 ** configured using create_function_v2()) and a reference counter. When 1272 ** create_function_v2() is called to create a function with a destructor, 1273 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1274 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1275 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1276 ** member of each of the new FuncDef objects is set to point to the allocated 1277 ** FuncDestructor. 1278 ** 1279 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1280 ** count on this object is decremented. When it reaches 0, the destructor 1281 ** is invoked and the FuncDestructor structure freed. 1282 */ 1283 struct FuncDestructor { 1284 int nRef; 1285 void (*xDestroy)(void *); 1286 void *pUserData; 1287 }; 1288 1289 /* 1290 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1291 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1292 ** are assert() statements in the code to verify this. 1293 */ 1294 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1295 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1296 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1297 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1298 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1299 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1300 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1301 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1302 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1303 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1304 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1305 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1306 1307 /* 1308 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1309 ** used to create the initializers for the FuncDef structures. 1310 ** 1311 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1312 ** Used to create a scalar function definition of a function zName 1313 ** implemented by C function xFunc that accepts nArg arguments. The 1314 ** value passed as iArg is cast to a (void*) and made available 1315 ** as the user-data (sqlite3_user_data()) for the function. If 1316 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1317 ** 1318 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1319 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1320 ** 1321 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1322 ** Used to create an aggregate function definition implemented by 1323 ** the C functions xStep and xFinal. The first four parameters 1324 ** are interpreted in the same way as the first 4 parameters to 1325 ** FUNCTION(). 1326 ** 1327 ** LIKEFUNC(zName, nArg, pArg, flags) 1328 ** Used to create a scalar function definition of a function zName 1329 ** that accepts nArg arguments and is implemented by a call to C 1330 ** function likeFunc. Argument pArg is cast to a (void *) and made 1331 ** available as the function user-data (sqlite3_user_data()). The 1332 ** FuncDef.flags variable is set to the value passed as the flags 1333 ** parameter. 1334 */ 1335 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1336 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1337 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1338 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1339 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1340 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1341 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1342 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1343 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1344 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1345 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1346 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1347 #define LIKEFUNC(zName, nArg, arg, flags) \ 1348 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1349 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1350 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1351 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1352 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1353 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1354 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1355 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1356 1357 /* 1358 ** All current savepoints are stored in a linked list starting at 1359 ** sqlite3.pSavepoint. The first element in the list is the most recently 1360 ** opened savepoint. Savepoints are added to the list by the vdbe 1361 ** OP_Savepoint instruction. 1362 */ 1363 struct Savepoint { 1364 char *zName; /* Savepoint name (nul-terminated) */ 1365 i64 nDeferredCons; /* Number of deferred fk violations */ 1366 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1367 Savepoint *pNext; /* Parent savepoint (if any) */ 1368 }; 1369 1370 /* 1371 ** The following are used as the second parameter to sqlite3Savepoint(), 1372 ** and as the P1 argument to the OP_Savepoint instruction. 1373 */ 1374 #define SAVEPOINT_BEGIN 0 1375 #define SAVEPOINT_RELEASE 1 1376 #define SAVEPOINT_ROLLBACK 2 1377 1378 1379 /* 1380 ** Each SQLite module (virtual table definition) is defined by an 1381 ** instance of the following structure, stored in the sqlite3.aModule 1382 ** hash table. 1383 */ 1384 struct Module { 1385 const sqlite3_module *pModule; /* Callback pointers */ 1386 const char *zName; /* Name passed to create_module() */ 1387 void *pAux; /* pAux passed to create_module() */ 1388 void (*xDestroy)(void *); /* Module destructor function */ 1389 }; 1390 1391 /* 1392 ** information about each column of an SQL table is held in an instance 1393 ** of this structure. 1394 */ 1395 struct Column { 1396 char *zName; /* Name of this column */ 1397 Expr *pDflt; /* Default value of this column */ 1398 char *zDflt; /* Original text of the default value */ 1399 char *zType; /* Data type for this column */ 1400 char *zColl; /* Collating sequence. If NULL, use the default */ 1401 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1402 char affinity; /* One of the SQLITE_AFF_... values */ 1403 u8 szEst; /* Estimated size of this column. INT==1 */ 1404 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1405 }; 1406 1407 /* Allowed values for Column.colFlags: 1408 */ 1409 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1410 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1411 1412 /* 1413 ** A "Collating Sequence" is defined by an instance of the following 1414 ** structure. Conceptually, a collating sequence consists of a name and 1415 ** a comparison routine that defines the order of that sequence. 1416 ** 1417 ** If CollSeq.xCmp is NULL, it means that the 1418 ** collating sequence is undefined. Indices built on an undefined 1419 ** collating sequence may not be read or written. 1420 */ 1421 struct CollSeq { 1422 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1423 u8 enc; /* Text encoding handled by xCmp() */ 1424 void *pUser; /* First argument to xCmp() */ 1425 int (*xCmp)(void*,int, const void*, int, const void*); 1426 void (*xDel)(void*); /* Destructor for pUser */ 1427 }; 1428 1429 /* 1430 ** A sort order can be either ASC or DESC. 1431 */ 1432 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1433 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1434 1435 /* 1436 ** Column affinity types. 1437 ** 1438 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1439 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1440 ** the speed a little by numbering the values consecutively. 1441 ** 1442 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1443 ** when multiple affinity types are concatenated into a string and 1444 ** used as the P4 operand, they will be more readable. 1445 ** 1446 ** Note also that the numeric types are grouped together so that testing 1447 ** for a numeric type is a single comparison. And the NONE type is first. 1448 */ 1449 #define SQLITE_AFF_NONE 'A' 1450 #define SQLITE_AFF_TEXT 'B' 1451 #define SQLITE_AFF_NUMERIC 'C' 1452 #define SQLITE_AFF_INTEGER 'D' 1453 #define SQLITE_AFF_REAL 'E' 1454 1455 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1456 1457 /* 1458 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1459 ** affinity value. 1460 */ 1461 #define SQLITE_AFF_MASK 0x47 1462 1463 /* 1464 ** Additional bit values that can be ORed with an affinity without 1465 ** changing the affinity. 1466 ** 1467 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1468 ** It causes an assert() to fire if either operand to a comparison 1469 ** operator is NULL. It is added to certain comparison operators to 1470 ** prove that the operands are always NOT NULL. 1471 */ 1472 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1473 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1474 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1475 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1476 1477 /* 1478 ** An object of this type is created for each virtual table present in 1479 ** the database schema. 1480 ** 1481 ** If the database schema is shared, then there is one instance of this 1482 ** structure for each database connection (sqlite3*) that uses the shared 1483 ** schema. This is because each database connection requires its own unique 1484 ** instance of the sqlite3_vtab* handle used to access the virtual table 1485 ** implementation. sqlite3_vtab* handles can not be shared between 1486 ** database connections, even when the rest of the in-memory database 1487 ** schema is shared, as the implementation often stores the database 1488 ** connection handle passed to it via the xConnect() or xCreate() method 1489 ** during initialization internally. This database connection handle may 1490 ** then be used by the virtual table implementation to access real tables 1491 ** within the database. So that they appear as part of the callers 1492 ** transaction, these accesses need to be made via the same database 1493 ** connection as that used to execute SQL operations on the virtual table. 1494 ** 1495 ** All VTable objects that correspond to a single table in a shared 1496 ** database schema are initially stored in a linked-list pointed to by 1497 ** the Table.pVTable member variable of the corresponding Table object. 1498 ** When an sqlite3_prepare() operation is required to access the virtual 1499 ** table, it searches the list for the VTable that corresponds to the 1500 ** database connection doing the preparing so as to use the correct 1501 ** sqlite3_vtab* handle in the compiled query. 1502 ** 1503 ** When an in-memory Table object is deleted (for example when the 1504 ** schema is being reloaded for some reason), the VTable objects are not 1505 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1506 ** immediately. Instead, they are moved from the Table.pVTable list to 1507 ** another linked list headed by the sqlite3.pDisconnect member of the 1508 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1509 ** next time a statement is prepared using said sqlite3*. This is done 1510 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1511 ** Refer to comments above function sqlite3VtabUnlockList() for an 1512 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1513 ** list without holding the corresponding sqlite3.mutex mutex. 1514 ** 1515 ** The memory for objects of this type is always allocated by 1516 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1517 ** the first argument. 1518 */ 1519 struct VTable { 1520 sqlite3 *db; /* Database connection associated with this table */ 1521 Module *pMod; /* Pointer to module implementation */ 1522 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1523 int nRef; /* Number of pointers to this structure */ 1524 u8 bConstraint; /* True if constraints are supported */ 1525 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1526 VTable *pNext; /* Next in linked list (see above) */ 1527 }; 1528 1529 /* 1530 ** Each SQL table is represented in memory by an instance of the 1531 ** following structure. 1532 ** 1533 ** Table.zName is the name of the table. The case of the original 1534 ** CREATE TABLE statement is stored, but case is not significant for 1535 ** comparisons. 1536 ** 1537 ** Table.nCol is the number of columns in this table. Table.aCol is a 1538 ** pointer to an array of Column structures, one for each column. 1539 ** 1540 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1541 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1542 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1543 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1544 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1545 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1546 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1547 ** 1548 ** Table.tnum is the page number for the root BTree page of the table in the 1549 ** database file. If Table.iDb is the index of the database table backend 1550 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1551 ** holds temporary tables and indices. If TF_Ephemeral is set 1552 ** then the table is stored in a file that is automatically deleted 1553 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1554 ** refers VDBE cursor number that holds the table open, not to the root 1555 ** page number. Transient tables are used to hold the results of a 1556 ** sub-query that appears instead of a real table name in the FROM clause 1557 ** of a SELECT statement. 1558 */ 1559 struct Table { 1560 char *zName; /* Name of the table or view */ 1561 Column *aCol; /* Information about each column */ 1562 Index *pIndex; /* List of SQL indexes on this table. */ 1563 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1564 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1565 char *zColAff; /* String defining the affinity of each column */ 1566 #ifndef SQLITE_OMIT_CHECK 1567 ExprList *pCheck; /* All CHECK constraints */ 1568 #endif 1569 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1570 int tnum; /* Root BTree node for this table (see note above) */ 1571 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1572 i16 nCol; /* Number of columns in this table */ 1573 u16 nRef; /* Number of pointers to this Table */ 1574 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1575 #ifdef SQLITE_ENABLE_COSTMULT 1576 LogEst costMult; /* Cost multiplier for using this table */ 1577 #endif 1578 u8 tabFlags; /* Mask of TF_* values */ 1579 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1580 #ifndef SQLITE_OMIT_ALTERTABLE 1581 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1582 #endif 1583 #ifndef SQLITE_OMIT_VIRTUALTABLE 1584 int nModuleArg; /* Number of arguments to the module */ 1585 char **azModuleArg; /* Text of all module args. [0] is module name */ 1586 VTable *pVTable; /* List of VTable objects. */ 1587 #endif 1588 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1589 Schema *pSchema; /* Schema that contains this table */ 1590 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1591 }; 1592 1593 /* 1594 ** Allowed values for Table.tabFlags. 1595 */ 1596 #define TF_Readonly 0x01 /* Read-only system table */ 1597 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1598 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1599 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1600 #define TF_Virtual 0x10 /* Is a virtual table */ 1601 #define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */ 1602 1603 1604 /* 1605 ** Test to see whether or not a table is a virtual table. This is 1606 ** done as a macro so that it will be optimized out when virtual 1607 ** table support is omitted from the build. 1608 */ 1609 #ifndef SQLITE_OMIT_VIRTUALTABLE 1610 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1611 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1612 #else 1613 # define IsVirtual(X) 0 1614 # define IsHiddenColumn(X) 0 1615 #endif 1616 1617 /* Does the table have a rowid */ 1618 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1619 1620 /* 1621 ** Each foreign key constraint is an instance of the following structure. 1622 ** 1623 ** A foreign key is associated with two tables. The "from" table is 1624 ** the table that contains the REFERENCES clause that creates the foreign 1625 ** key. The "to" table is the table that is named in the REFERENCES clause. 1626 ** Consider this example: 1627 ** 1628 ** CREATE TABLE ex1( 1629 ** a INTEGER PRIMARY KEY, 1630 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1631 ** ); 1632 ** 1633 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1634 ** Equivalent names: 1635 ** 1636 ** from-table == child-table 1637 ** to-table == parent-table 1638 ** 1639 ** Each REFERENCES clause generates an instance of the following structure 1640 ** which is attached to the from-table. The to-table need not exist when 1641 ** the from-table is created. The existence of the to-table is not checked. 1642 ** 1643 ** The list of all parents for child Table X is held at X.pFKey. 1644 ** 1645 ** A list of all children for a table named Z (which might not even exist) 1646 ** is held in Schema.fkeyHash with a hash key of Z. 1647 */ 1648 struct FKey { 1649 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1650 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1651 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1652 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1653 FKey *pPrevTo; /* Previous with the same zTo */ 1654 int nCol; /* Number of columns in this key */ 1655 /* EV: R-30323-21917 */ 1656 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1657 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1658 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1659 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1660 int iFrom; /* Index of column in pFrom */ 1661 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1662 } aCol[1]; /* One entry for each of nCol columns */ 1663 }; 1664 1665 /* 1666 ** SQLite supports many different ways to resolve a constraint 1667 ** error. ROLLBACK processing means that a constraint violation 1668 ** causes the operation in process to fail and for the current transaction 1669 ** to be rolled back. ABORT processing means the operation in process 1670 ** fails and any prior changes from that one operation are backed out, 1671 ** but the transaction is not rolled back. FAIL processing means that 1672 ** the operation in progress stops and returns an error code. But prior 1673 ** changes due to the same operation are not backed out and no rollback 1674 ** occurs. IGNORE means that the particular row that caused the constraint 1675 ** error is not inserted or updated. Processing continues and no error 1676 ** is returned. REPLACE means that preexisting database rows that caused 1677 ** a UNIQUE constraint violation are removed so that the new insert or 1678 ** update can proceed. Processing continues and no error is reported. 1679 ** 1680 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1681 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1682 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1683 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1684 ** referenced table row is propagated into the row that holds the 1685 ** foreign key. 1686 ** 1687 ** The following symbolic values are used to record which type 1688 ** of action to take. 1689 */ 1690 #define OE_None 0 /* There is no constraint to check */ 1691 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1692 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1693 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1694 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1695 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1696 1697 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1698 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1699 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1700 #define OE_Cascade 9 /* Cascade the changes */ 1701 1702 #define OE_Default 10 /* Do whatever the default action is */ 1703 1704 1705 /* 1706 ** An instance of the following structure is passed as the first 1707 ** argument to sqlite3VdbeKeyCompare and is used to control the 1708 ** comparison of the two index keys. 1709 ** 1710 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1711 ** are nField slots for the columns of an index then one extra slot 1712 ** for the rowid at the end. 1713 */ 1714 struct KeyInfo { 1715 u32 nRef; /* Number of references to this KeyInfo object */ 1716 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1717 u16 nField; /* Number of key columns in the index */ 1718 u16 nXField; /* Number of columns beyond the key columns */ 1719 sqlite3 *db; /* The database connection */ 1720 u8 *aSortOrder; /* Sort order for each column. */ 1721 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1722 }; 1723 1724 /* 1725 ** An instance of the following structure holds information about a 1726 ** single index record that has already been parsed out into individual 1727 ** values. 1728 ** 1729 ** A record is an object that contains one or more fields of data. 1730 ** Records are used to store the content of a table row and to store 1731 ** the key of an index. A blob encoding of a record is created by 1732 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1733 ** OP_Column opcode. 1734 ** 1735 ** This structure holds a record that has already been disassembled 1736 ** into its constituent fields. 1737 ** 1738 ** The r1 and r2 member variables are only used by the optimized comparison 1739 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). 1740 */ 1741 struct UnpackedRecord { 1742 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1743 u16 nField; /* Number of entries in apMem[] */ 1744 i8 default_rc; /* Comparison result if keys are equal */ 1745 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1746 Mem *aMem; /* Values */ 1747 int r1; /* Value to return if (lhs > rhs) */ 1748 int r2; /* Value to return if (rhs < lhs) */ 1749 }; 1750 1751 1752 /* 1753 ** Each SQL index is represented in memory by an 1754 ** instance of the following structure. 1755 ** 1756 ** The columns of the table that are to be indexed are described 1757 ** by the aiColumn[] field of this structure. For example, suppose 1758 ** we have the following table and index: 1759 ** 1760 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1761 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1762 ** 1763 ** In the Table structure describing Ex1, nCol==3 because there are 1764 ** three columns in the table. In the Index structure describing 1765 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1766 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1767 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1768 ** The second column to be indexed (c1) has an index of 0 in 1769 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1770 ** 1771 ** The Index.onError field determines whether or not the indexed columns 1772 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1773 ** it means this is not a unique index. Otherwise it is a unique index 1774 ** and the value of Index.onError indicate the which conflict resolution 1775 ** algorithm to employ whenever an attempt is made to insert a non-unique 1776 ** element. 1777 */ 1778 struct Index { 1779 char *zName; /* Name of this index */ 1780 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1781 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1782 Table *pTable; /* The SQL table being indexed */ 1783 char *zColAff; /* String defining the affinity of each column */ 1784 Index *pNext; /* The next index associated with the same table */ 1785 Schema *pSchema; /* Schema containing this index */ 1786 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1787 char **azColl; /* Array of collation sequence names for index */ 1788 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1789 int tnum; /* DB Page containing root of this index */ 1790 LogEst szIdxRow; /* Estimated average row size in bytes */ 1791 u16 nKeyCol; /* Number of columns forming the key */ 1792 u16 nColumn; /* Number of columns stored in the index */ 1793 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1794 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1795 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1796 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1797 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1798 unsigned isCovering:1; /* True if this is a covering index */ 1799 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1800 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1801 int nSample; /* Number of elements in aSample[] */ 1802 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1803 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1804 IndexSample *aSample; /* Samples of the left-most key */ 1805 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1806 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1807 #endif 1808 }; 1809 1810 /* 1811 ** Allowed values for Index.idxType 1812 */ 1813 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1814 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1815 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1816 1817 /* Return true if index X is a PRIMARY KEY index */ 1818 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1819 1820 /* Return true if index X is a UNIQUE index */ 1821 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1822 1823 /* 1824 ** Each sample stored in the sqlite_stat3 table is represented in memory 1825 ** using a structure of this type. See documentation at the top of the 1826 ** analyze.c source file for additional information. 1827 */ 1828 struct IndexSample { 1829 void *p; /* Pointer to sampled record */ 1830 int n; /* Size of record in bytes */ 1831 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1832 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1833 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1834 }; 1835 1836 /* 1837 ** Each token coming out of the lexer is an instance of 1838 ** this structure. Tokens are also used as part of an expression. 1839 ** 1840 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1841 ** may contain random values. Do not make any assumptions about Token.dyn 1842 ** and Token.n when Token.z==0. 1843 */ 1844 struct Token { 1845 const char *z; /* Text of the token. Not NULL-terminated! */ 1846 unsigned int n; /* Number of characters in this token */ 1847 }; 1848 1849 /* 1850 ** An instance of this structure contains information needed to generate 1851 ** code for a SELECT that contains aggregate functions. 1852 ** 1853 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1854 ** pointer to this structure. The Expr.iColumn field is the index in 1855 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1856 ** code for that node. 1857 ** 1858 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1859 ** original Select structure that describes the SELECT statement. These 1860 ** fields do not need to be freed when deallocating the AggInfo structure. 1861 */ 1862 struct AggInfo { 1863 u8 directMode; /* Direct rendering mode means take data directly 1864 ** from source tables rather than from accumulators */ 1865 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1866 ** than the source table */ 1867 int sortingIdx; /* Cursor number of the sorting index */ 1868 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1869 int nSortingColumn; /* Number of columns in the sorting index */ 1870 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1871 ExprList *pGroupBy; /* The group by clause */ 1872 struct AggInfo_col { /* For each column used in source tables */ 1873 Table *pTab; /* Source table */ 1874 int iTable; /* Cursor number of the source table */ 1875 int iColumn; /* Column number within the source table */ 1876 int iSorterColumn; /* Column number in the sorting index */ 1877 int iMem; /* Memory location that acts as accumulator */ 1878 Expr *pExpr; /* The original expression */ 1879 } *aCol; 1880 int nColumn; /* Number of used entries in aCol[] */ 1881 int nAccumulator; /* Number of columns that show through to the output. 1882 ** Additional columns are used only as parameters to 1883 ** aggregate functions */ 1884 struct AggInfo_func { /* For each aggregate function */ 1885 Expr *pExpr; /* Expression encoding the function */ 1886 FuncDef *pFunc; /* The aggregate function implementation */ 1887 int iMem; /* Memory location that acts as accumulator */ 1888 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1889 } *aFunc; 1890 int nFunc; /* Number of entries in aFunc[] */ 1891 }; 1892 1893 /* 1894 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1895 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1896 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1897 ** it uses less memory in the Expr object, which is a big memory user 1898 ** in systems with lots of prepared statements. And few applications 1899 ** need more than about 10 or 20 variables. But some extreme users want 1900 ** to have prepared statements with over 32767 variables, and for them 1901 ** the option is available (at compile-time). 1902 */ 1903 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1904 typedef i16 ynVar; 1905 #else 1906 typedef int ynVar; 1907 #endif 1908 1909 /* 1910 ** Each node of an expression in the parse tree is an instance 1911 ** of this structure. 1912 ** 1913 ** Expr.op is the opcode. The integer parser token codes are reused 1914 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1915 ** code representing the ">=" operator. This same integer code is reused 1916 ** to represent the greater-than-or-equal-to operator in the expression 1917 ** tree. 1918 ** 1919 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1920 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1921 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1922 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1923 ** then Expr.token contains the name of the function. 1924 ** 1925 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1926 ** binary operator. Either or both may be NULL. 1927 ** 1928 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1929 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1930 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1931 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1932 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1933 ** valid. 1934 ** 1935 ** An expression of the form ID or ID.ID refers to a column in a table. 1936 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1937 ** the integer cursor number of a VDBE cursor pointing to that table and 1938 ** Expr.iColumn is the column number for the specific column. If the 1939 ** expression is used as a result in an aggregate SELECT, then the 1940 ** value is also stored in the Expr.iAgg column in the aggregate so that 1941 ** it can be accessed after all aggregates are computed. 1942 ** 1943 ** If the expression is an unbound variable marker (a question mark 1944 ** character '?' in the original SQL) then the Expr.iTable holds the index 1945 ** number for that variable. 1946 ** 1947 ** If the expression is a subquery then Expr.iColumn holds an integer 1948 ** register number containing the result of the subquery. If the 1949 ** subquery gives a constant result, then iTable is -1. If the subquery 1950 ** gives a different answer at different times during statement processing 1951 ** then iTable is the address of a subroutine that computes the subquery. 1952 ** 1953 ** If the Expr is of type OP_Column, and the table it is selecting from 1954 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1955 ** corresponding table definition. 1956 ** 1957 ** ALLOCATION NOTES: 1958 ** 1959 ** Expr objects can use a lot of memory space in database schema. To 1960 ** help reduce memory requirements, sometimes an Expr object will be 1961 ** truncated. And to reduce the number of memory allocations, sometimes 1962 ** two or more Expr objects will be stored in a single memory allocation, 1963 ** together with Expr.zToken strings. 1964 ** 1965 ** If the EP_Reduced and EP_TokenOnly flags are set when 1966 ** an Expr object is truncated. When EP_Reduced is set, then all 1967 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1968 ** are contained within the same memory allocation. Note, however, that 1969 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1970 ** allocated, regardless of whether or not EP_Reduced is set. 1971 */ 1972 struct Expr { 1973 u8 op; /* Operation performed by this node */ 1974 char affinity; /* The affinity of the column or 0 if not a column */ 1975 u32 flags; /* Various flags. EP_* See below */ 1976 union { 1977 char *zToken; /* Token value. Zero terminated and dequoted */ 1978 int iValue; /* Non-negative integer value if EP_IntValue */ 1979 } u; 1980 1981 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1982 ** space is allocated for the fields below this point. An attempt to 1983 ** access them will result in a segfault or malfunction. 1984 *********************************************************************/ 1985 1986 Expr *pLeft; /* Left subnode */ 1987 Expr *pRight; /* Right subnode */ 1988 union { 1989 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 1990 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 1991 } x; 1992 1993 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1994 ** space is allocated for the fields below this point. An attempt to 1995 ** access them will result in a segfault or malfunction. 1996 *********************************************************************/ 1997 1998 #if SQLITE_MAX_EXPR_DEPTH>0 1999 int nHeight; /* Height of the tree headed by this node */ 2000 #endif 2001 int iTable; /* TK_COLUMN: cursor number of table holding column 2002 ** TK_REGISTER: register number 2003 ** TK_TRIGGER: 1 -> new, 0 -> old 2004 ** EP_Unlikely: 134217728 times likelihood */ 2005 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2006 ** TK_VARIABLE: variable number (always >= 1). */ 2007 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2008 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2009 u8 op2; /* TK_REGISTER: original value of Expr.op 2010 ** TK_COLUMN: the value of p5 for OP_Column 2011 ** TK_AGG_FUNCTION: nesting depth */ 2012 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2013 Table *pTab; /* Table for TK_COLUMN expressions. */ 2014 }; 2015 2016 /* 2017 ** The following are the meanings of bits in the Expr.flags field. 2018 */ 2019 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2020 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2021 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2022 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2023 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2024 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2025 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2026 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2027 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2028 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2029 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2030 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2031 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2032 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2033 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2034 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2035 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2036 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2037 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2038 #define EP_Constant 0x080000 /* Node is a constant */ 2039 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2040 2041 /* 2042 ** These macros can be used to test, set, or clear bits in the 2043 ** Expr.flags field. 2044 */ 2045 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2046 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2047 #define ExprSetProperty(E,P) (E)->flags|=(P) 2048 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2049 2050 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2051 ** and Accreditation only. It works like ExprSetProperty() during VVA 2052 ** processes but is a no-op for delivery. 2053 */ 2054 #ifdef SQLITE_DEBUG 2055 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2056 #else 2057 # define ExprSetVVAProperty(E,P) 2058 #endif 2059 2060 /* 2061 ** Macros to determine the number of bytes required by a normal Expr 2062 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2063 ** and an Expr struct with the EP_TokenOnly flag set. 2064 */ 2065 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2066 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2067 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2068 2069 /* 2070 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2071 ** above sqlite3ExprDup() for details. 2072 */ 2073 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2074 2075 /* 2076 ** A list of expressions. Each expression may optionally have a 2077 ** name. An expr/name combination can be used in several ways, such 2078 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2079 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2080 ** also be used as the argument to a function, in which case the a.zName 2081 ** field is not used. 2082 ** 2083 ** By default the Expr.zSpan field holds a human-readable description of 2084 ** the expression that is used in the generation of error messages and 2085 ** column labels. In this case, Expr.zSpan is typically the text of a 2086 ** column expression as it exists in a SELECT statement. However, if 2087 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2088 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2089 ** form is used for name resolution with nested FROM clauses. 2090 */ 2091 struct ExprList { 2092 int nExpr; /* Number of expressions on the list */ 2093 struct ExprList_item { /* For each expression in the list */ 2094 Expr *pExpr; /* The list of expressions */ 2095 char *zName; /* Token associated with this expression */ 2096 char *zSpan; /* Original text of the expression */ 2097 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2098 unsigned done :1; /* A flag to indicate when processing is finished */ 2099 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2100 unsigned reusable :1; /* Constant expression is reusable */ 2101 union { 2102 struct { 2103 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2104 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2105 } x; 2106 int iConstExprReg; /* Register in which Expr value is cached */ 2107 } u; 2108 } *a; /* Alloc a power of two greater or equal to nExpr */ 2109 }; 2110 2111 /* 2112 ** An instance of this structure is used by the parser to record both 2113 ** the parse tree for an expression and the span of input text for an 2114 ** expression. 2115 */ 2116 struct ExprSpan { 2117 Expr *pExpr; /* The expression parse tree */ 2118 const char *zStart; /* First character of input text */ 2119 const char *zEnd; /* One character past the end of input text */ 2120 }; 2121 2122 /* 2123 ** An instance of this structure can hold a simple list of identifiers, 2124 ** such as the list "a,b,c" in the following statements: 2125 ** 2126 ** INSERT INTO t(a,b,c) VALUES ...; 2127 ** CREATE INDEX idx ON t(a,b,c); 2128 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2129 ** 2130 ** The IdList.a.idx field is used when the IdList represents the list of 2131 ** column names after a table name in an INSERT statement. In the statement 2132 ** 2133 ** INSERT INTO t(a,b,c) ... 2134 ** 2135 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2136 */ 2137 struct IdList { 2138 struct IdList_item { 2139 char *zName; /* Name of the identifier */ 2140 int idx; /* Index in some Table.aCol[] of a column named zName */ 2141 } *a; 2142 int nId; /* Number of identifiers on the list */ 2143 }; 2144 2145 /* 2146 ** The bitmask datatype defined below is used for various optimizations. 2147 ** 2148 ** Changing this from a 64-bit to a 32-bit type limits the number of 2149 ** tables in a join to 32 instead of 64. But it also reduces the size 2150 ** of the library by 738 bytes on ix86. 2151 */ 2152 typedef u64 Bitmask; 2153 2154 /* 2155 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2156 */ 2157 #define BMS ((int)(sizeof(Bitmask)*8)) 2158 2159 /* 2160 ** A bit in a Bitmask 2161 */ 2162 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2163 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2164 2165 /* 2166 ** The following structure describes the FROM clause of a SELECT statement. 2167 ** Each table or subquery in the FROM clause is a separate element of 2168 ** the SrcList.a[] array. 2169 ** 2170 ** With the addition of multiple database support, the following structure 2171 ** can also be used to describe a particular table such as the table that 2172 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2173 ** such a table must be a simple name: ID. But in SQLite, the table can 2174 ** now be identified by a database name, a dot, then the table name: ID.ID. 2175 ** 2176 ** The jointype starts out showing the join type between the current table 2177 ** and the next table on the list. The parser builds the list this way. 2178 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2179 ** jointype expresses the join between the table and the previous table. 2180 ** 2181 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2182 ** contains more than 63 columns and the 64-th or later column is used. 2183 */ 2184 struct SrcList { 2185 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2186 u32 nAlloc; /* Number of entries allocated in a[] below */ 2187 struct SrcList_item { 2188 Schema *pSchema; /* Schema to which this item is fixed */ 2189 char *zDatabase; /* Name of database holding this table */ 2190 char *zName; /* Name of the table */ 2191 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2192 Table *pTab; /* An SQL table corresponding to zName */ 2193 Select *pSelect; /* A SELECT statement used in place of a table name */ 2194 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2195 int regReturn; /* Register holding return address of addrFillSub */ 2196 int regResult; /* Registers holding results of a co-routine */ 2197 u8 jointype; /* Type of join between this able and the previous */ 2198 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2199 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2200 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2201 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2202 #ifndef SQLITE_OMIT_EXPLAIN 2203 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2204 #endif 2205 int iCursor; /* The VDBE cursor number used to access this table */ 2206 Expr *pOn; /* The ON clause of a join */ 2207 IdList *pUsing; /* The USING clause of a join */ 2208 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2209 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 2210 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2211 } a[1]; /* One entry for each identifier on the list */ 2212 }; 2213 2214 /* 2215 ** Permitted values of the SrcList.a.jointype field 2216 */ 2217 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2218 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2219 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2220 #define JT_LEFT 0x0008 /* Left outer join */ 2221 #define JT_RIGHT 0x0010 /* Right outer join */ 2222 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2223 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2224 2225 2226 /* 2227 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2228 ** and the WhereInfo.wctrlFlags member. 2229 */ 2230 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2231 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2232 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2233 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2234 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2235 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2236 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2237 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2238 /* 0x0080 // not currently used */ 2239 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2240 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2241 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2242 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2243 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2244 2245 /* Allowed return values from sqlite3WhereIsDistinct() 2246 */ 2247 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2248 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2249 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2250 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2251 2252 /* 2253 ** A NameContext defines a context in which to resolve table and column 2254 ** names. The context consists of a list of tables (the pSrcList) field and 2255 ** a list of named expression (pEList). The named expression list may 2256 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2257 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2258 ** pEList corresponds to the result set of a SELECT and is NULL for 2259 ** other statements. 2260 ** 2261 ** NameContexts can be nested. When resolving names, the inner-most 2262 ** context is searched first. If no match is found, the next outer 2263 ** context is checked. If there is still no match, the next context 2264 ** is checked. This process continues until either a match is found 2265 ** or all contexts are check. When a match is found, the nRef member of 2266 ** the context containing the match is incremented. 2267 ** 2268 ** Each subquery gets a new NameContext. The pNext field points to the 2269 ** NameContext in the parent query. Thus the process of scanning the 2270 ** NameContext list corresponds to searching through successively outer 2271 ** subqueries looking for a match. 2272 */ 2273 struct NameContext { 2274 Parse *pParse; /* The parser */ 2275 SrcList *pSrcList; /* One or more tables used to resolve names */ 2276 ExprList *pEList; /* Optional list of result-set columns */ 2277 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2278 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2279 int nRef; /* Number of names resolved by this context */ 2280 int nErr; /* Number of errors encountered while resolving names */ 2281 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2282 }; 2283 2284 /* 2285 ** Allowed values for the NameContext, ncFlags field. 2286 ** 2287 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2288 ** SQLITE_FUNC_MINMAX. 2289 ** 2290 */ 2291 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2292 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2293 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2294 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2295 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2296 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2297 2298 /* 2299 ** An instance of the following structure contains all information 2300 ** needed to generate code for a single SELECT statement. 2301 ** 2302 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2303 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2304 ** limit and nOffset to the value of the offset (or 0 if there is not 2305 ** offset). But later on, nLimit and nOffset become the memory locations 2306 ** in the VDBE that record the limit and offset counters. 2307 ** 2308 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2309 ** These addresses must be stored so that we can go back and fill in 2310 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2311 ** the number of columns in P2 can be computed at the same time 2312 ** as the OP_OpenEphm instruction is coded because not 2313 ** enough information about the compound query is known at that point. 2314 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2315 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2316 ** sequences for the ORDER BY clause. 2317 */ 2318 struct Select { 2319 ExprList *pEList; /* The fields of the result */ 2320 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2321 u16 selFlags; /* Various SF_* values */ 2322 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2323 #if SELECTTRACE_ENABLED 2324 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2325 #endif 2326 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2327 u64 nSelectRow; /* Estimated number of result rows */ 2328 SrcList *pSrc; /* The FROM clause */ 2329 Expr *pWhere; /* The WHERE clause */ 2330 ExprList *pGroupBy; /* The GROUP BY clause */ 2331 Expr *pHaving; /* The HAVING clause */ 2332 ExprList *pOrderBy; /* The ORDER BY clause */ 2333 Select *pPrior; /* Prior select in a compound select statement */ 2334 Select *pNext; /* Next select to the left in a compound */ 2335 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2336 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2337 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2338 }; 2339 2340 /* 2341 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2342 ** "Select Flag". 2343 */ 2344 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2345 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2346 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2347 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2348 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2349 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2350 #define SF_Compound 0x0040 /* Part of a compound query */ 2351 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2352 /* 0x0100 NOT USED */ 2353 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2354 #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ 2355 #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ 2356 #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ 2357 2358 2359 /* 2360 ** The results of a SELECT can be distributed in several ways, as defined 2361 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2362 ** Type". 2363 ** 2364 ** SRT_Union Store results as a key in a temporary index 2365 ** identified by pDest->iSDParm. 2366 ** 2367 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2368 ** 2369 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2370 ** set is not empty. 2371 ** 2372 ** SRT_Discard Throw the results away. This is used by SELECT 2373 ** statements within triggers whose only purpose is 2374 ** the side-effects of functions. 2375 ** 2376 ** All of the above are free to ignore their ORDER BY clause. Those that 2377 ** follow must honor the ORDER BY clause. 2378 ** 2379 ** SRT_Output Generate a row of output (using the OP_ResultRow 2380 ** opcode) for each row in the result set. 2381 ** 2382 ** SRT_Mem Only valid if the result is a single column. 2383 ** Store the first column of the first result row 2384 ** in register pDest->iSDParm then abandon the rest 2385 ** of the query. This destination implies "LIMIT 1". 2386 ** 2387 ** SRT_Set The result must be a single column. Store each 2388 ** row of result as the key in table pDest->iSDParm. 2389 ** Apply the affinity pDest->affSdst before storing 2390 ** results. Used to implement "IN (SELECT ...)". 2391 ** 2392 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2393 ** the result there. The cursor is left open after 2394 ** returning. This is like SRT_Table except that 2395 ** this destination uses OP_OpenEphemeral to create 2396 ** the table first. 2397 ** 2398 ** SRT_Coroutine Generate a co-routine that returns a new row of 2399 ** results each time it is invoked. The entry point 2400 ** of the co-routine is stored in register pDest->iSDParm 2401 ** and the result row is stored in pDest->nDest registers 2402 ** starting with pDest->iSdst. 2403 ** 2404 ** SRT_Table Store results in temporary table pDest->iSDParm. 2405 ** SRT_Fifo This is like SRT_EphemTab except that the table 2406 ** is assumed to already be open. SRT_Fifo has 2407 ** the additional property of being able to ignore 2408 ** the ORDER BY clause. 2409 ** 2410 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2411 ** But also use temporary table pDest->iSDParm+1 as 2412 ** a record of all prior results and ignore any duplicate 2413 ** rows. Name means: "Distinct Fifo". 2414 ** 2415 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2416 ** an index). Append a sequence number so that all entries 2417 ** are distinct. 2418 ** 2419 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2420 ** the same record has never been stored before. The 2421 ** index at pDest->iSDParm+1 hold all prior stores. 2422 */ 2423 #define SRT_Union 1 /* Store result as keys in an index */ 2424 #define SRT_Except 2 /* Remove result from a UNION index */ 2425 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2426 #define SRT_Discard 4 /* Do not save the results anywhere */ 2427 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2428 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2429 #define SRT_Queue 7 /* Store result in an queue */ 2430 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2431 2432 /* The ORDER BY clause is ignored for all of the above */ 2433 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2434 2435 #define SRT_Output 9 /* Output each row of result */ 2436 #define SRT_Mem 10 /* Store result in a memory cell */ 2437 #define SRT_Set 11 /* Store results as keys in an index */ 2438 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2439 #define SRT_Coroutine 13 /* Generate a single row of result */ 2440 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2441 2442 /* 2443 ** An instance of this object describes where to put of the results of 2444 ** a SELECT statement. 2445 */ 2446 struct SelectDest { 2447 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2448 char affSdst; /* Affinity used when eDest==SRT_Set */ 2449 int iSDParm; /* A parameter used by the eDest disposal method */ 2450 int iSdst; /* Base register where results are written */ 2451 int nSdst; /* Number of registers allocated */ 2452 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2453 }; 2454 2455 /* 2456 ** During code generation of statements that do inserts into AUTOINCREMENT 2457 ** tables, the following information is attached to the Table.u.autoInc.p 2458 ** pointer of each autoincrement table to record some side information that 2459 ** the code generator needs. We have to keep per-table autoincrement 2460 ** information in case inserts are down within triggers. Triggers do not 2461 ** normally coordinate their activities, but we do need to coordinate the 2462 ** loading and saving of autoincrement information. 2463 */ 2464 struct AutoincInfo { 2465 AutoincInfo *pNext; /* Next info block in a list of them all */ 2466 Table *pTab; /* Table this info block refers to */ 2467 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2468 int regCtr; /* Memory register holding the rowid counter */ 2469 }; 2470 2471 /* 2472 ** Size of the column cache 2473 */ 2474 #ifndef SQLITE_N_COLCACHE 2475 # define SQLITE_N_COLCACHE 10 2476 #endif 2477 2478 /* 2479 ** At least one instance of the following structure is created for each 2480 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2481 ** statement. All such objects are stored in the linked list headed at 2482 ** Parse.pTriggerPrg and deleted once statement compilation has been 2483 ** completed. 2484 ** 2485 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2486 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2487 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2488 ** The Parse.pTriggerPrg list never contains two entries with the same 2489 ** values for both pTrigger and orconf. 2490 ** 2491 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2492 ** accessed (or set to 0 for triggers fired as a result of INSERT 2493 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2494 ** a mask of new.* columns used by the program. 2495 */ 2496 struct TriggerPrg { 2497 Trigger *pTrigger; /* Trigger this program was coded from */ 2498 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2499 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2500 int orconf; /* Default ON CONFLICT policy */ 2501 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2502 }; 2503 2504 /* 2505 ** The yDbMask datatype for the bitmask of all attached databases. 2506 */ 2507 #if SQLITE_MAX_ATTACHED>30 2508 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2509 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2510 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2511 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2512 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2513 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2514 #else 2515 typedef unsigned int yDbMask; 2516 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2517 # define DbMaskZero(M) (M)=0 2518 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2519 # define DbMaskAllZero(M) (M)==0 2520 # define DbMaskNonZero(M) (M)!=0 2521 #endif 2522 2523 /* 2524 ** An SQL parser context. A copy of this structure is passed through 2525 ** the parser and down into all the parser action routine in order to 2526 ** carry around information that is global to the entire parse. 2527 ** 2528 ** The structure is divided into two parts. When the parser and code 2529 ** generate call themselves recursively, the first part of the structure 2530 ** is constant but the second part is reset at the beginning and end of 2531 ** each recursion. 2532 ** 2533 ** The nTableLock and aTableLock variables are only used if the shared-cache 2534 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2535 ** used to store the set of table-locks required by the statement being 2536 ** compiled. Function sqlite3TableLock() is used to add entries to the 2537 ** list. 2538 */ 2539 struct Parse { 2540 sqlite3 *db; /* The main database structure */ 2541 char *zErrMsg; /* An error message */ 2542 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2543 int rc; /* Return code from execution */ 2544 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2545 u8 checkSchema; /* Causes schema cookie check after an error */ 2546 u8 nested; /* Number of nested calls to the parser/code generator */ 2547 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2548 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2549 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2550 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2551 u8 okConstFactor; /* OK to factor out constants */ 2552 int aTempReg[8]; /* Holding area for temporary registers */ 2553 int nRangeReg; /* Size of the temporary register block */ 2554 int iRangeReg; /* First register in temporary register block */ 2555 int nErr; /* Number of errors seen */ 2556 int nTab; /* Number of previously allocated VDBE cursors */ 2557 int nMem; /* Number of memory cells used so far */ 2558 int nSet; /* Number of sets used so far */ 2559 int nOnce; /* Number of OP_Once instructions so far */ 2560 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2561 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2562 int ckBase; /* Base register of data during check constraints */ 2563 int iPartIdxTab; /* Table corresponding to a partial index */ 2564 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2565 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2566 int nLabel; /* Number of labels used */ 2567 int *aLabel; /* Space to hold the labels */ 2568 struct yColCache { 2569 int iTable; /* Table cursor number */ 2570 i16 iColumn; /* Table column number */ 2571 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2572 int iLevel; /* Nesting level */ 2573 int iReg; /* Reg with value of this column. 0 means none. */ 2574 int lru; /* Least recently used entry has the smallest value */ 2575 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2576 ExprList *pConstExpr;/* Constant expressions */ 2577 Token constraintName;/* Name of the constraint currently being parsed */ 2578 yDbMask writeMask; /* Start a write transaction on these databases */ 2579 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2580 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2581 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2582 int regRoot; /* Register holding root page number for new objects */ 2583 int nMaxArg; /* Max args passed to user function by sub-program */ 2584 #if SELECTTRACE_ENABLED 2585 int nSelect; /* Number of SELECT statements seen */ 2586 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2587 #endif 2588 #ifndef SQLITE_OMIT_SHARED_CACHE 2589 int nTableLock; /* Number of locks in aTableLock */ 2590 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2591 #endif 2592 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2593 2594 /* Information used while coding trigger programs. */ 2595 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2596 Table *pTriggerTab; /* Table triggers are being coded for */ 2597 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2598 int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */ 2599 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2600 u32 oldmask; /* Mask of old.* columns referenced */ 2601 u32 newmask; /* Mask of new.* columns referenced */ 2602 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2603 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2604 u8 disableTriggers; /* True to disable triggers */ 2605 2606 /************************************************************************ 2607 ** Above is constant between recursions. Below is reset before and after 2608 ** each recursion. The boundary between these two regions is determined 2609 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2610 ** in the recursive region. 2611 ************************************************************************/ 2612 2613 int nVar; /* Number of '?' variables seen in the SQL so far */ 2614 int nzVar; /* Number of available slots in azVar[] */ 2615 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2616 u8 bFreeWith; /* True if pWith should be freed with parser */ 2617 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2618 #ifndef SQLITE_OMIT_VIRTUALTABLE 2619 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2620 int nVtabLock; /* Number of virtual tables to lock */ 2621 #endif 2622 int nAlias; /* Number of aliased result set columns */ 2623 int nHeight; /* Expression tree height of current sub-select */ 2624 #ifndef SQLITE_OMIT_EXPLAIN 2625 int iSelectId; /* ID of current select for EXPLAIN output */ 2626 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2627 #endif 2628 char **azVar; /* Pointers to names of parameters */ 2629 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2630 const char *zTail; /* All SQL text past the last semicolon parsed */ 2631 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2632 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2633 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2634 Token sNameToken; /* Token with unqualified schema object name */ 2635 Token sLastToken; /* The last token parsed */ 2636 #ifndef SQLITE_OMIT_VIRTUALTABLE 2637 Token sArg; /* Complete text of a module argument */ 2638 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2639 #endif 2640 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2641 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2642 With *pWith; /* Current WITH clause, or NULL */ 2643 }; 2644 2645 /* 2646 ** Return true if currently inside an sqlite3_declare_vtab() call. 2647 */ 2648 #ifdef SQLITE_OMIT_VIRTUALTABLE 2649 #define IN_DECLARE_VTAB 0 2650 #else 2651 #define IN_DECLARE_VTAB (pParse->declareVtab) 2652 #endif 2653 2654 /* 2655 ** An instance of the following structure can be declared on a stack and used 2656 ** to save the Parse.zAuthContext value so that it can be restored later. 2657 */ 2658 struct AuthContext { 2659 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2660 Parse *pParse; /* The Parse structure */ 2661 }; 2662 2663 /* 2664 ** Bitfield flags for P5 value in various opcodes. 2665 */ 2666 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2667 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2668 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2669 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2670 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2671 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2672 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2673 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2674 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2675 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2676 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2677 2678 /* 2679 * Each trigger present in the database schema is stored as an instance of 2680 * struct Trigger. 2681 * 2682 * Pointers to instances of struct Trigger are stored in two ways. 2683 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2684 * database). This allows Trigger structures to be retrieved by name. 2685 * 2. All triggers associated with a single table form a linked list, using the 2686 * pNext member of struct Trigger. A pointer to the first element of the 2687 * linked list is stored as the "pTrigger" member of the associated 2688 * struct Table. 2689 * 2690 * The "step_list" member points to the first element of a linked list 2691 * containing the SQL statements specified as the trigger program. 2692 */ 2693 struct Trigger { 2694 char *zName; /* The name of the trigger */ 2695 char *table; /* The table or view to which the trigger applies */ 2696 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2697 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2698 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2699 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2700 the <column-list> is stored here */ 2701 Schema *pSchema; /* Schema containing the trigger */ 2702 Schema *pTabSchema; /* Schema containing the table */ 2703 TriggerStep *step_list; /* Link list of trigger program steps */ 2704 Trigger *pNext; /* Next trigger associated with the table */ 2705 }; 2706 2707 /* 2708 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2709 ** determine which. 2710 ** 2711 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2712 ** In that cases, the constants below can be ORed together. 2713 */ 2714 #define TRIGGER_BEFORE 1 2715 #define TRIGGER_AFTER 2 2716 2717 /* 2718 * An instance of struct TriggerStep is used to store a single SQL statement 2719 * that is a part of a trigger-program. 2720 * 2721 * Instances of struct TriggerStep are stored in a singly linked list (linked 2722 * using the "pNext" member) referenced by the "step_list" member of the 2723 * associated struct Trigger instance. The first element of the linked list is 2724 * the first step of the trigger-program. 2725 * 2726 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2727 * "SELECT" statement. The meanings of the other members is determined by the 2728 * value of "op" as follows: 2729 * 2730 * (op == TK_INSERT) 2731 * orconf -> stores the ON CONFLICT algorithm 2732 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2733 * this stores a pointer to the SELECT statement. Otherwise NULL. 2734 * target -> A token holding the quoted name of the table to insert into. 2735 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2736 * this stores values to be inserted. Otherwise NULL. 2737 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2738 * statement, then this stores the column-names to be 2739 * inserted into. 2740 * 2741 * (op == TK_DELETE) 2742 * target -> A token holding the quoted name of the table to delete from. 2743 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2744 * Otherwise NULL. 2745 * 2746 * (op == TK_UPDATE) 2747 * target -> A token holding the quoted name of the table to update rows of. 2748 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2749 * Otherwise NULL. 2750 * pExprList -> A list of the columns to update and the expressions to update 2751 * them to. See sqlite3Update() documentation of "pChanges" 2752 * argument. 2753 * 2754 */ 2755 struct TriggerStep { 2756 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2757 u8 orconf; /* OE_Rollback etc. */ 2758 Trigger *pTrig; /* The trigger that this step is a part of */ 2759 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2760 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2761 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2762 ExprList *pExprList; /* SET clause for UPDATE. */ 2763 IdList *pIdList; /* Column names for INSERT */ 2764 TriggerStep *pNext; /* Next in the link-list */ 2765 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2766 }; 2767 2768 /* 2769 ** The following structure contains information used by the sqliteFix... 2770 ** routines as they walk the parse tree to make database references 2771 ** explicit. 2772 */ 2773 typedef struct DbFixer DbFixer; 2774 struct DbFixer { 2775 Parse *pParse; /* The parsing context. Error messages written here */ 2776 Schema *pSchema; /* Fix items to this schema */ 2777 int bVarOnly; /* Check for variable references only */ 2778 const char *zDb; /* Make sure all objects are contained in this database */ 2779 const char *zType; /* Type of the container - used for error messages */ 2780 const Token *pName; /* Name of the container - used for error messages */ 2781 }; 2782 2783 /* 2784 ** An objected used to accumulate the text of a string where we 2785 ** do not necessarily know how big the string will be in the end. 2786 */ 2787 struct StrAccum { 2788 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2789 char *zBase; /* A base allocation. Not from malloc. */ 2790 char *zText; /* The string collected so far */ 2791 int nChar; /* Length of the string so far */ 2792 int nAlloc; /* Amount of space allocated in zText */ 2793 int mxAlloc; /* Maximum allowed string length */ 2794 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2795 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2796 }; 2797 #define STRACCUM_NOMEM 1 2798 #define STRACCUM_TOOBIG 2 2799 2800 /* 2801 ** A pointer to this structure is used to communicate information 2802 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2803 */ 2804 typedef struct { 2805 sqlite3 *db; /* The database being initialized */ 2806 char **pzErrMsg; /* Error message stored here */ 2807 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2808 int rc; /* Result code stored here */ 2809 } InitData; 2810 2811 /* 2812 ** Structure containing global configuration data for the SQLite library. 2813 ** 2814 ** This structure also contains some state information. 2815 */ 2816 struct Sqlite3Config { 2817 int bMemstat; /* True to enable memory status */ 2818 int bCoreMutex; /* True to enable core mutexing */ 2819 int bFullMutex; /* True to enable full mutexing */ 2820 int bOpenUri; /* True to interpret filenames as URIs */ 2821 int bUseCis; /* Use covering indices for full-scans */ 2822 int mxStrlen; /* Maximum string length */ 2823 int neverCorrupt; /* Database is always well-formed */ 2824 int szLookaside; /* Default lookaside buffer size */ 2825 int nLookaside; /* Default lookaside buffer count */ 2826 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2827 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2828 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2829 void *pHeap; /* Heap storage space */ 2830 int nHeap; /* Size of pHeap[] */ 2831 int mnReq, mxReq; /* Min and max heap requests sizes */ 2832 sqlite3_int64 szMmap; /* mmap() space per open file */ 2833 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2834 void *pScratch; /* Scratch memory */ 2835 int szScratch; /* Size of each scratch buffer */ 2836 int nScratch; /* Number of scratch buffers */ 2837 void *pPage; /* Page cache memory */ 2838 int szPage; /* Size of each page in pPage[] */ 2839 int nPage; /* Number of pages in pPage[] */ 2840 int mxParserStack; /* maximum depth of the parser stack */ 2841 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2842 /* The above might be initialized to non-zero. The following need to always 2843 ** initially be zero, however. */ 2844 int isInit; /* True after initialization has finished */ 2845 int inProgress; /* True while initialization in progress */ 2846 int isMutexInit; /* True after mutexes are initialized */ 2847 int isMallocInit; /* True after malloc is initialized */ 2848 int isPCacheInit; /* True after malloc is initialized */ 2849 int nRefInitMutex; /* Number of users of pInitMutex */ 2850 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2851 void (*xLog)(void*,int,const char*); /* Function for logging */ 2852 void *pLogArg; /* First argument to xLog() */ 2853 #ifdef SQLITE_ENABLE_SQLLOG 2854 void(*xSqllog)(void*,sqlite3*,const char*, int); 2855 void *pSqllogArg; 2856 #endif 2857 #ifdef SQLITE_VDBE_COVERAGE 2858 /* The following callback (if not NULL) is invoked on every VDBE branch 2859 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 2860 */ 2861 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 2862 void *pVdbeBranchArg; /* 1st argument */ 2863 #endif 2864 #ifndef SQLITE_OMIT_BUILTIN_TEST 2865 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 2866 #endif 2867 int bLocaltimeFault; /* True to fail localtime() calls */ 2868 }; 2869 2870 /* 2871 ** This macro is used inside of assert() statements to indicate that 2872 ** the assert is only valid on a well-formed database. Instead of: 2873 ** 2874 ** assert( X ); 2875 ** 2876 ** One writes: 2877 ** 2878 ** assert( X || CORRUPT_DB ); 2879 ** 2880 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2881 ** that the database is definitely corrupt, only that it might be corrupt. 2882 ** For most test cases, CORRUPT_DB is set to false using a special 2883 ** sqlite3_test_control(). This enables assert() statements to prove 2884 ** things that are always true for well-formed databases. 2885 */ 2886 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2887 2888 /* 2889 ** Context pointer passed down through the tree-walk. 2890 */ 2891 struct Walker { 2892 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2893 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2894 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2895 Parse *pParse; /* Parser context. */ 2896 int walkerDepth; /* Number of subqueries */ 2897 u8 eCode; /* A small processing code */ 2898 union { /* Extra data for callback */ 2899 NameContext *pNC; /* Naming context */ 2900 int n; /* A counter */ 2901 int iCur; /* A cursor number */ 2902 SrcList *pSrcList; /* FROM clause */ 2903 struct SrcCount *pSrcCount; /* Counting column references */ 2904 } u; 2905 }; 2906 2907 /* Forward declarations */ 2908 int sqlite3WalkExpr(Walker*, Expr*); 2909 int sqlite3WalkExprList(Walker*, ExprList*); 2910 int sqlite3WalkSelect(Walker*, Select*); 2911 int sqlite3WalkSelectExpr(Walker*, Select*); 2912 int sqlite3WalkSelectFrom(Walker*, Select*); 2913 2914 /* 2915 ** Return code from the parse-tree walking primitives and their 2916 ** callbacks. 2917 */ 2918 #define WRC_Continue 0 /* Continue down into children */ 2919 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2920 #define WRC_Abort 2 /* Abandon the tree walk */ 2921 2922 /* 2923 ** An instance of this structure represents a set of one or more CTEs 2924 ** (common table expressions) created by a single WITH clause. 2925 */ 2926 struct With { 2927 int nCte; /* Number of CTEs in the WITH clause */ 2928 With *pOuter; /* Containing WITH clause, or NULL */ 2929 struct Cte { /* For each CTE in the WITH clause.... */ 2930 char *zName; /* Name of this CTE */ 2931 ExprList *pCols; /* List of explicit column names, or NULL */ 2932 Select *pSelect; /* The definition of this CTE */ 2933 const char *zErr; /* Error message for circular references */ 2934 } a[1]; 2935 }; 2936 2937 #ifdef SQLITE_DEBUG 2938 /* 2939 ** An instance of the TreeView object is used for printing the content of 2940 ** data structures on sqlite3DebugPrintf() using a tree-like view. 2941 */ 2942 struct TreeView { 2943 int iLevel; /* Which level of the tree we are on */ 2944 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 2945 }; 2946 #endif /* SQLITE_DEBUG */ 2947 2948 /* 2949 ** Assuming zIn points to the first byte of a UTF-8 character, 2950 ** advance zIn to point to the first byte of the next UTF-8 character. 2951 */ 2952 #define SQLITE_SKIP_UTF8(zIn) { \ 2953 if( (*(zIn++))>=0xc0 ){ \ 2954 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2955 } \ 2956 } 2957 2958 /* 2959 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2960 ** the same name but without the _BKPT suffix. These macros invoke 2961 ** routines that report the line-number on which the error originated 2962 ** using sqlite3_log(). The routines also provide a convenient place 2963 ** to set a debugger breakpoint. 2964 */ 2965 int sqlite3CorruptError(int); 2966 int sqlite3MisuseError(int); 2967 int sqlite3CantopenError(int); 2968 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2969 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2970 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2971 2972 2973 /* 2974 ** FTS4 is really an extension for FTS3. It is enabled using the 2975 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 2976 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 2977 */ 2978 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2979 # define SQLITE_ENABLE_FTS3 2980 #endif 2981 2982 /* 2983 ** The ctype.h header is needed for non-ASCII systems. It is also 2984 ** needed by FTS3 when FTS3 is included in the amalgamation. 2985 */ 2986 #if !defined(SQLITE_ASCII) || \ 2987 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2988 # include <ctype.h> 2989 #endif 2990 2991 /* 2992 ** The following macros mimic the standard library functions toupper(), 2993 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2994 ** sqlite versions only work for ASCII characters, regardless of locale. 2995 */ 2996 #ifdef SQLITE_ASCII 2997 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2998 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2999 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3000 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3001 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3002 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3003 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3004 #else 3005 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3006 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3007 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3008 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3009 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3010 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3011 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3012 #endif 3013 int sqlite3IsIdChar(u8); 3014 3015 /* 3016 ** Internal function prototypes 3017 */ 3018 #define sqlite3StrICmp sqlite3_stricmp 3019 int sqlite3Strlen30(const char*); 3020 #define sqlite3StrNICmp sqlite3_strnicmp 3021 3022 int sqlite3MallocInit(void); 3023 void sqlite3MallocEnd(void); 3024 void *sqlite3Malloc(u64); 3025 void *sqlite3MallocZero(u64); 3026 void *sqlite3DbMallocZero(sqlite3*, u64); 3027 void *sqlite3DbMallocRaw(sqlite3*, u64); 3028 char *sqlite3DbStrDup(sqlite3*,const char*); 3029 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3030 void *sqlite3Realloc(void*, u64); 3031 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3032 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3033 void sqlite3DbFree(sqlite3*, void*); 3034 int sqlite3MallocSize(void*); 3035 int sqlite3DbMallocSize(sqlite3*, void*); 3036 void *sqlite3ScratchMalloc(int); 3037 void sqlite3ScratchFree(void*); 3038 void *sqlite3PageMalloc(int); 3039 void sqlite3PageFree(void*); 3040 void sqlite3MemSetDefault(void); 3041 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3042 int sqlite3HeapNearlyFull(void); 3043 3044 /* 3045 ** On systems with ample stack space and that support alloca(), make 3046 ** use of alloca() to obtain space for large automatic objects. By default, 3047 ** obtain space from malloc(). 3048 ** 3049 ** The alloca() routine never returns NULL. This will cause code paths 3050 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3051 */ 3052 #ifdef SQLITE_USE_ALLOCA 3053 # define sqlite3StackAllocRaw(D,N) alloca(N) 3054 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3055 # define sqlite3StackFree(D,P) 3056 #else 3057 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3058 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3059 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3060 #endif 3061 3062 #ifdef SQLITE_ENABLE_MEMSYS3 3063 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3064 #endif 3065 #ifdef SQLITE_ENABLE_MEMSYS5 3066 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3067 #endif 3068 3069 3070 #ifndef SQLITE_MUTEX_OMIT 3071 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3072 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3073 sqlite3_mutex *sqlite3MutexAlloc(int); 3074 int sqlite3MutexInit(void); 3075 int sqlite3MutexEnd(void); 3076 #endif 3077 3078 int sqlite3StatusValue(int); 3079 void sqlite3StatusAdd(int, int); 3080 void sqlite3StatusSet(int, int); 3081 3082 #ifndef SQLITE_OMIT_FLOATING_POINT 3083 int sqlite3IsNaN(double); 3084 #else 3085 # define sqlite3IsNaN(X) 0 3086 #endif 3087 3088 /* 3089 ** An instance of the following structure holds information about SQL 3090 ** functions arguments that are the parameters to the printf() function. 3091 */ 3092 struct PrintfArguments { 3093 int nArg; /* Total number of arguments */ 3094 int nUsed; /* Number of arguments used so far */ 3095 sqlite3_value **apArg; /* The argument values */ 3096 }; 3097 3098 #define SQLITE_PRINTF_INTERNAL 0x01 3099 #define SQLITE_PRINTF_SQLFUNC 0x02 3100 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3101 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3102 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3103 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3104 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 3105 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 3106 void sqlite3DebugPrintf(const char*, ...); 3107 #endif 3108 #if defined(SQLITE_TEST) 3109 void *sqlite3TestTextToPtr(const char*); 3110 #endif 3111 3112 #if defined(SQLITE_DEBUG) 3113 TreeView *sqlite3TreeViewPush(TreeView*,u8); 3114 void sqlite3TreeViewPop(TreeView*); 3115 void sqlite3TreeViewLine(TreeView*, const char*, ...); 3116 void sqlite3TreeViewItem(TreeView*, const char*, u8); 3117 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3118 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3119 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3120 #endif 3121 3122 3123 void sqlite3SetString(char **, sqlite3*, const char*, ...); 3124 void sqlite3ErrorMsg(Parse*, const char*, ...); 3125 int sqlite3Dequote(char*); 3126 int sqlite3KeywordCode(const unsigned char*, int); 3127 int sqlite3RunParser(Parse*, const char*, char **); 3128 void sqlite3FinishCoding(Parse*); 3129 int sqlite3GetTempReg(Parse*); 3130 void sqlite3ReleaseTempReg(Parse*,int); 3131 int sqlite3GetTempRange(Parse*,int); 3132 void sqlite3ReleaseTempRange(Parse*,int,int); 3133 void sqlite3ClearTempRegCache(Parse*); 3134 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3135 Expr *sqlite3Expr(sqlite3*,int,const char*); 3136 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3137 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3138 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3139 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3140 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3141 void sqlite3ExprDelete(sqlite3*, Expr*); 3142 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3143 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3144 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3145 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3146 int sqlite3Init(sqlite3*, char**); 3147 int sqlite3InitCallback(void*, int, char**, char**); 3148 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3149 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3150 void sqlite3ResetOneSchema(sqlite3*,int); 3151 void sqlite3CollapseDatabaseArray(sqlite3*); 3152 void sqlite3BeginParse(Parse*,int); 3153 void sqlite3CommitInternalChanges(sqlite3*); 3154 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3155 void sqlite3OpenMasterTable(Parse *, int); 3156 Index *sqlite3PrimaryKeyIndex(Table*); 3157 i16 sqlite3ColumnOfIndex(Index*, i16); 3158 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3159 void sqlite3AddColumn(Parse*,Token*); 3160 void sqlite3AddNotNull(Parse*, int); 3161 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3162 void sqlite3AddCheckConstraint(Parse*, Expr*); 3163 void sqlite3AddColumnType(Parse*,Token*); 3164 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3165 void sqlite3AddCollateType(Parse*, Token*); 3166 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3167 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3168 sqlite3_vfs**,char**,char **); 3169 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3170 int sqlite3CodeOnce(Parse *); 3171 3172 #ifdef SQLITE_OMIT_BUILTIN_TEST 3173 # define sqlite3FaultSim(X) SQLITE_OK 3174 #else 3175 int sqlite3FaultSim(int); 3176 #endif 3177 3178 Bitvec *sqlite3BitvecCreate(u32); 3179 int sqlite3BitvecTest(Bitvec*, u32); 3180 int sqlite3BitvecSet(Bitvec*, u32); 3181 void sqlite3BitvecClear(Bitvec*, u32, void*); 3182 void sqlite3BitvecDestroy(Bitvec*); 3183 u32 sqlite3BitvecSize(Bitvec*); 3184 int sqlite3BitvecBuiltinTest(int,int*); 3185 3186 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3187 void sqlite3RowSetClear(RowSet*); 3188 void sqlite3RowSetInsert(RowSet*, i64); 3189 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3190 int sqlite3RowSetNext(RowSet*, i64*); 3191 3192 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 3193 3194 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3195 int sqlite3ViewGetColumnNames(Parse*,Table*); 3196 #else 3197 # define sqlite3ViewGetColumnNames(A,B) 0 3198 #endif 3199 3200 #if SQLITE_MAX_ATTACHED>30 3201 int sqlite3DbMaskAllZero(yDbMask); 3202 #endif 3203 void sqlite3DropTable(Parse*, SrcList*, int, int); 3204 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3205 void sqlite3DeleteTable(sqlite3*, Table*); 3206 #ifndef SQLITE_OMIT_AUTOINCREMENT 3207 void sqlite3AutoincrementBegin(Parse *pParse); 3208 void sqlite3AutoincrementEnd(Parse *pParse); 3209 #else 3210 # define sqlite3AutoincrementBegin(X) 3211 # define sqlite3AutoincrementEnd(X) 3212 #endif 3213 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3214 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3215 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3216 int sqlite3IdListIndex(IdList*,const char*); 3217 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3218 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3219 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3220 Token*, Select*, Expr*, IdList*); 3221 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3222 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3223 void sqlite3SrcListShiftJoinType(SrcList*); 3224 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3225 void sqlite3IdListDelete(sqlite3*, IdList*); 3226 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3227 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3228 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3229 Expr*, int, int); 3230 void sqlite3DropIndex(Parse*, SrcList*, int); 3231 int sqlite3Select(Parse*, Select*, SelectDest*); 3232 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3233 Expr*,ExprList*,u16,Expr*,Expr*); 3234 void sqlite3SelectDelete(sqlite3*, Select*); 3235 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3236 int sqlite3IsReadOnly(Parse*, Table*, int); 3237 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3238 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3239 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3240 #endif 3241 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3242 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3243 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3244 void sqlite3WhereEnd(WhereInfo*); 3245 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3246 int sqlite3WhereIsDistinct(WhereInfo*); 3247 int sqlite3WhereIsOrdered(WhereInfo*); 3248 int sqlite3WhereIsSorted(WhereInfo*); 3249 int sqlite3WhereContinueLabel(WhereInfo*); 3250 int sqlite3WhereBreakLabel(WhereInfo*); 3251 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3252 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3253 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3254 void sqlite3ExprCodeMove(Parse*, int, int, int); 3255 void sqlite3ExprCacheStore(Parse*, int, int, int); 3256 void sqlite3ExprCachePush(Parse*); 3257 void sqlite3ExprCachePop(Parse*); 3258 void sqlite3ExprCacheRemove(Parse*, int, int); 3259 void sqlite3ExprCacheClear(Parse*); 3260 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3261 void sqlite3ExprCode(Parse*, Expr*, int); 3262 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3263 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3264 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3265 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3266 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3267 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3268 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3269 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3270 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3271 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3272 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3273 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3274 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3275 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3276 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3277 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3278 void sqlite3Vacuum(Parse*); 3279 int sqlite3RunVacuum(char**, sqlite3*); 3280 char *sqlite3NameFromToken(sqlite3*, Token*); 3281 int sqlite3ExprCompare(Expr*, Expr*, int); 3282 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3283 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3284 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3285 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3286 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3287 Vdbe *sqlite3GetVdbe(Parse*); 3288 void sqlite3PrngSaveState(void); 3289 void sqlite3PrngRestoreState(void); 3290 void sqlite3RollbackAll(sqlite3*,int); 3291 void sqlite3CodeVerifySchema(Parse*, int); 3292 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3293 void sqlite3BeginTransaction(Parse*, int); 3294 void sqlite3CommitTransaction(Parse*); 3295 void sqlite3RollbackTransaction(Parse*); 3296 void sqlite3Savepoint(Parse*, int, Token*); 3297 void sqlite3CloseSavepoints(sqlite3 *); 3298 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3299 int sqlite3ExprIsConstant(Expr*); 3300 int sqlite3ExprIsConstantNotJoin(Expr*); 3301 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3302 int sqlite3ExprIsTableConstant(Expr*,int); 3303 int sqlite3ExprIsInteger(Expr*, int*); 3304 int sqlite3ExprCanBeNull(const Expr*); 3305 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3306 int sqlite3IsRowid(const char*); 3307 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3308 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3309 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3310 void sqlite3ResolvePartIdxLabel(Parse*,int); 3311 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3312 u8,u8,int,int*); 3313 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3314 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3315 void sqlite3BeginWriteOperation(Parse*, int, int); 3316 void sqlite3MultiWrite(Parse*); 3317 void sqlite3MayAbort(Parse*); 3318 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3319 void sqlite3UniqueConstraint(Parse*, int, Index*); 3320 void sqlite3RowidConstraint(Parse*, int, Table*); 3321 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3322 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3323 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3324 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3325 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3326 #if SELECTTRACE_ENABLED 3327 void sqlite3SelectSetName(Select*,const char*); 3328 #else 3329 # define sqlite3SelectSetName(A,B) 3330 #endif 3331 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3332 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3333 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3334 void sqlite3RegisterDateTimeFunctions(void); 3335 void sqlite3RegisterGlobalFunctions(void); 3336 int sqlite3SafetyCheckOk(sqlite3*); 3337 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3338 void sqlite3ChangeCookie(Parse*, int); 3339 3340 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3341 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3342 #endif 3343 3344 #ifndef SQLITE_OMIT_TRIGGER 3345 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3346 Expr*,int, int); 3347 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3348 void sqlite3DropTrigger(Parse*, SrcList*, int); 3349 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3350 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3351 Trigger *sqlite3TriggerList(Parse *, Table *); 3352 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3353 int, int, int); 3354 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3355 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3356 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3357 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3358 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3359 Select*,u8); 3360 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3361 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3362 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3363 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3364 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3365 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3366 #else 3367 # define sqlite3TriggersExist(B,C,D,E,F) 0 3368 # define sqlite3DeleteTrigger(A,B) 3369 # define sqlite3DropTriggerPtr(A,B) 3370 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3371 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3372 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3373 # define sqlite3TriggerList(X, Y) 0 3374 # define sqlite3ParseToplevel(p) p 3375 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3376 #endif 3377 3378 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3379 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3380 void sqlite3DeferForeignKey(Parse*, int); 3381 #ifndef SQLITE_OMIT_AUTHORIZATION 3382 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3383 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3384 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3385 void sqlite3AuthContextPop(AuthContext*); 3386 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3387 #else 3388 # define sqlite3AuthRead(a,b,c,d) 3389 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3390 # define sqlite3AuthContextPush(a,b,c) 3391 # define sqlite3AuthContextPop(a) ((void)(a)) 3392 #endif 3393 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3394 void sqlite3Detach(Parse*, Expr*); 3395 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3396 int sqlite3FixSrcList(DbFixer*, SrcList*); 3397 int sqlite3FixSelect(DbFixer*, Select*); 3398 int sqlite3FixExpr(DbFixer*, Expr*); 3399 int sqlite3FixExprList(DbFixer*, ExprList*); 3400 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3401 int sqlite3AtoF(const char *z, double*, int, u8); 3402 int sqlite3GetInt32(const char *, int*); 3403 int sqlite3Atoi(const char*); 3404 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3405 int sqlite3Utf8CharLen(const char *pData, int nByte); 3406 u32 sqlite3Utf8Read(const u8**); 3407 LogEst sqlite3LogEst(u64); 3408 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3409 #ifndef SQLITE_OMIT_VIRTUALTABLE 3410 LogEst sqlite3LogEstFromDouble(double); 3411 #endif 3412 u64 sqlite3LogEstToInt(LogEst); 3413 3414 /* 3415 ** Routines to read and write variable-length integers. These used to 3416 ** be defined locally, but now we use the varint routines in the util.c 3417 ** file. 3418 */ 3419 int sqlite3PutVarint(unsigned char*, u64); 3420 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3421 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3422 int sqlite3VarintLen(u64 v); 3423 3424 /* 3425 ** The common case is for a varint to be a single byte. They following 3426 ** macros handle the common case without a procedure call, but then call 3427 ** the procedure for larger varints. 3428 */ 3429 #define getVarint32(A,B) \ 3430 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3431 #define putVarint32(A,B) \ 3432 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3433 sqlite3PutVarint((A),(B))) 3434 #define getVarint sqlite3GetVarint 3435 #define putVarint sqlite3PutVarint 3436 3437 3438 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3439 void sqlite3TableAffinity(Vdbe*, Table*, int); 3440 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3441 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3442 char sqlite3ExprAffinity(Expr *pExpr); 3443 int sqlite3Atoi64(const char*, i64*, int, u8); 3444 int sqlite3DecOrHexToI64(const char*, i64*); 3445 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3446 void sqlite3Error(sqlite3*,int); 3447 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3448 u8 sqlite3HexToInt(int h); 3449 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3450 3451 #if defined(SQLITE_TEST) 3452 const char *sqlite3ErrName(int); 3453 #endif 3454 3455 const char *sqlite3ErrStr(int); 3456 int sqlite3ReadSchema(Parse *pParse); 3457 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3458 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3459 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3460 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*); 3461 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3462 Expr *sqlite3ExprSkipCollate(Expr*); 3463 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3464 int sqlite3CheckObjectName(Parse *, const char *); 3465 void sqlite3VdbeSetChanges(sqlite3 *, int); 3466 int sqlite3AddInt64(i64*,i64); 3467 int sqlite3SubInt64(i64*,i64); 3468 int sqlite3MulInt64(i64*,i64); 3469 int sqlite3AbsInt32(int); 3470 #ifdef SQLITE_ENABLE_8_3_NAMES 3471 void sqlite3FileSuffix3(const char*, char*); 3472 #else 3473 # define sqlite3FileSuffix3(X,Y) 3474 #endif 3475 u8 sqlite3GetBoolean(const char *z,u8); 3476 3477 const void *sqlite3ValueText(sqlite3_value*, u8); 3478 int sqlite3ValueBytes(sqlite3_value*, u8); 3479 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3480 void(*)(void*)); 3481 void sqlite3ValueSetNull(sqlite3_value*); 3482 void sqlite3ValueFree(sqlite3_value*); 3483 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3484 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3485 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3486 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3487 #ifndef SQLITE_AMALGAMATION 3488 extern const unsigned char sqlite3OpcodeProperty[]; 3489 extern const unsigned char sqlite3UpperToLower[]; 3490 extern const unsigned char sqlite3CtypeMap[]; 3491 extern const Token sqlite3IntTokens[]; 3492 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3493 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3494 #ifndef SQLITE_OMIT_WSD 3495 extern int sqlite3PendingByte; 3496 #endif 3497 #endif 3498 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3499 void sqlite3Reindex(Parse*, Token*, Token*); 3500 void sqlite3AlterFunctions(void); 3501 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3502 int sqlite3GetToken(const unsigned char *, int *); 3503 void sqlite3NestedParse(Parse*, const char*, ...); 3504 void sqlite3ExpirePreparedStatements(sqlite3*); 3505 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3506 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3507 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3508 int sqlite3ResolveExprNames(NameContext*, Expr*); 3509 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3510 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3511 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3512 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3513 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3514 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3515 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3516 char sqlite3AffinityType(const char*, u8*); 3517 void sqlite3Analyze(Parse*, Token*, Token*); 3518 int sqlite3InvokeBusyHandler(BusyHandler*); 3519 int sqlite3FindDb(sqlite3*, Token*); 3520 int sqlite3FindDbName(sqlite3 *, const char *); 3521 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3522 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3523 void sqlite3DefaultRowEst(Index*); 3524 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3525 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3526 void sqlite3MinimumFileFormat(Parse*, int, int); 3527 void sqlite3SchemaClear(void *); 3528 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3529 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3530 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3531 void sqlite3KeyInfoUnref(KeyInfo*); 3532 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3533 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3534 #ifdef SQLITE_DEBUG 3535 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3536 #endif 3537 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3538 void (*)(sqlite3_context*,int,sqlite3_value **), 3539 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3540 FuncDestructor *pDestructor 3541 ); 3542 int sqlite3ApiExit(sqlite3 *db, int); 3543 int sqlite3OpenTempDatabase(Parse *); 3544 3545 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3546 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3547 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3548 void sqlite3AppendChar(StrAccum*,int,char); 3549 char *sqlite3StrAccumFinish(StrAccum*); 3550 void sqlite3StrAccumReset(StrAccum*); 3551 void sqlite3SelectDestInit(SelectDest*,int,int); 3552 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3553 3554 void sqlite3BackupRestart(sqlite3_backup *); 3555 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3556 3557 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3558 void sqlite3AnalyzeFunctions(void); 3559 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3560 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3561 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3562 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3563 #endif 3564 3565 /* 3566 ** The interface to the LEMON-generated parser 3567 */ 3568 void *sqlite3ParserAlloc(void*(*)(u64)); 3569 void sqlite3ParserFree(void*, void(*)(void*)); 3570 void sqlite3Parser(void*, int, Token, Parse*); 3571 #ifdef YYTRACKMAXSTACKDEPTH 3572 int sqlite3ParserStackPeak(void*); 3573 #endif 3574 3575 void sqlite3AutoLoadExtensions(sqlite3*); 3576 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3577 void sqlite3CloseExtensions(sqlite3*); 3578 #else 3579 # define sqlite3CloseExtensions(X) 3580 #endif 3581 3582 #ifndef SQLITE_OMIT_SHARED_CACHE 3583 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3584 #else 3585 #define sqlite3TableLock(v,w,x,y,z) 3586 #endif 3587 3588 #ifdef SQLITE_TEST 3589 int sqlite3Utf8To8(unsigned char*); 3590 #endif 3591 3592 #ifdef SQLITE_OMIT_VIRTUALTABLE 3593 # define sqlite3VtabClear(Y) 3594 # define sqlite3VtabSync(X,Y) SQLITE_OK 3595 # define sqlite3VtabRollback(X) 3596 # define sqlite3VtabCommit(X) 3597 # define sqlite3VtabInSync(db) 0 3598 # define sqlite3VtabLock(X) 3599 # define sqlite3VtabUnlock(X) 3600 # define sqlite3VtabUnlockList(X) 3601 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3602 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3603 #else 3604 void sqlite3VtabClear(sqlite3 *db, Table*); 3605 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3606 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3607 int sqlite3VtabRollback(sqlite3 *db); 3608 int sqlite3VtabCommit(sqlite3 *db); 3609 void sqlite3VtabLock(VTable *); 3610 void sqlite3VtabUnlock(VTable *); 3611 void sqlite3VtabUnlockList(sqlite3*); 3612 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3613 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3614 VTable *sqlite3GetVTable(sqlite3*, Table*); 3615 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3616 #endif 3617 void sqlite3VtabMakeWritable(Parse*,Table*); 3618 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3619 void sqlite3VtabFinishParse(Parse*, Token*); 3620 void sqlite3VtabArgInit(Parse*); 3621 void sqlite3VtabArgExtend(Parse*, Token*); 3622 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3623 int sqlite3VtabCallConnect(Parse*, Table*); 3624 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3625 int sqlite3VtabBegin(sqlite3 *, VTable *); 3626 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3627 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3628 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3629 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3630 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3631 void sqlite3ParserReset(Parse*); 3632 int sqlite3Reprepare(Vdbe*); 3633 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3634 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3635 int sqlite3TempInMemory(const sqlite3*); 3636 const char *sqlite3JournalModename(int); 3637 #ifndef SQLITE_OMIT_WAL 3638 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3639 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3640 #endif 3641 #ifndef SQLITE_OMIT_CTE 3642 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3643 void sqlite3WithDelete(sqlite3*,With*); 3644 void sqlite3WithPush(Parse*, With*, u8); 3645 #else 3646 #define sqlite3WithPush(x,y,z) 3647 #define sqlite3WithDelete(x,y) 3648 #endif 3649 3650 /* Declarations for functions in fkey.c. All of these are replaced by 3651 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3652 ** key functionality is available. If OMIT_TRIGGER is defined but 3653 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3654 ** this case foreign keys are parsed, but no other functionality is 3655 ** provided (enforcement of FK constraints requires the triggers sub-system). 3656 */ 3657 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3658 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3659 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3660 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3661 int sqlite3FkRequired(Parse*, Table*, int*, int); 3662 u32 sqlite3FkOldmask(Parse*, Table*); 3663 FKey *sqlite3FkReferences(Table *); 3664 #else 3665 #define sqlite3FkActions(a,b,c,d,e,f) 3666 #define sqlite3FkCheck(a,b,c,d,e,f) 3667 #define sqlite3FkDropTable(a,b,c) 3668 #define sqlite3FkOldmask(a,b) 0 3669 #define sqlite3FkRequired(a,b,c,d) 0 3670 #endif 3671 #ifndef SQLITE_OMIT_FOREIGN_KEY 3672 void sqlite3FkDelete(sqlite3 *, Table*); 3673 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3674 #else 3675 #define sqlite3FkDelete(a,b) 3676 #define sqlite3FkLocateIndex(a,b,c,d,e) 3677 #endif 3678 3679 3680 /* 3681 ** Available fault injectors. Should be numbered beginning with 0. 3682 */ 3683 #define SQLITE_FAULTINJECTOR_MALLOC 0 3684 #define SQLITE_FAULTINJECTOR_COUNT 1 3685 3686 /* 3687 ** The interface to the code in fault.c used for identifying "benign" 3688 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3689 ** is not defined. 3690 */ 3691 #ifndef SQLITE_OMIT_BUILTIN_TEST 3692 void sqlite3BeginBenignMalloc(void); 3693 void sqlite3EndBenignMalloc(void); 3694 #else 3695 #define sqlite3BeginBenignMalloc() 3696 #define sqlite3EndBenignMalloc() 3697 #endif 3698 3699 /* 3700 ** Allowed return values from sqlite3FindInIndex() 3701 */ 3702 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3703 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3704 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3705 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3706 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3707 /* 3708 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3709 */ 3710 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3711 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3712 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3713 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3714 3715 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3716 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3717 int sqlite3JournalSize(sqlite3_vfs *); 3718 int sqlite3JournalCreate(sqlite3_file *); 3719 int sqlite3JournalExists(sqlite3_file *p); 3720 #else 3721 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3722 #define sqlite3JournalExists(p) 1 3723 #endif 3724 3725 void sqlite3MemJournalOpen(sqlite3_file *); 3726 int sqlite3MemJournalSize(void); 3727 int sqlite3IsMemJournal(sqlite3_file *); 3728 3729 #if SQLITE_MAX_EXPR_DEPTH>0 3730 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3731 int sqlite3SelectExprHeight(Select *); 3732 int sqlite3ExprCheckHeight(Parse*, int); 3733 #else 3734 #define sqlite3ExprSetHeight(x,y) 3735 #define sqlite3SelectExprHeight(x) 0 3736 #define sqlite3ExprCheckHeight(x,y) 3737 #endif 3738 3739 u32 sqlite3Get4byte(const u8*); 3740 void sqlite3Put4byte(u8*, u32); 3741 3742 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3743 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3744 void sqlite3ConnectionUnlocked(sqlite3 *db); 3745 void sqlite3ConnectionClosed(sqlite3 *db); 3746 #else 3747 #define sqlite3ConnectionBlocked(x,y) 3748 #define sqlite3ConnectionUnlocked(x) 3749 #define sqlite3ConnectionClosed(x) 3750 #endif 3751 3752 #ifdef SQLITE_DEBUG 3753 void sqlite3ParserTrace(FILE*, char *); 3754 #endif 3755 3756 /* 3757 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3758 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3759 ** print I/O tracing messages. 3760 */ 3761 #ifdef SQLITE_ENABLE_IOTRACE 3762 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3763 void sqlite3VdbeIOTraceSql(Vdbe*); 3764 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3765 #else 3766 # define IOTRACE(A) 3767 # define sqlite3VdbeIOTraceSql(X) 3768 #endif 3769 3770 /* 3771 ** These routines are available for the mem2.c debugging memory allocator 3772 ** only. They are used to verify that different "types" of memory 3773 ** allocations are properly tracked by the system. 3774 ** 3775 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3776 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3777 ** a single bit set. 3778 ** 3779 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3780 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3781 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3782 ** 3783 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3784 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3785 ** 3786 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3787 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3788 ** it might have been allocated by lookaside, except the allocation was 3789 ** too large or lookaside was already full. It is important to verify 3790 ** that allocations that might have been satisfied by lookaside are not 3791 ** passed back to non-lookaside free() routines. Asserts such as the 3792 ** example above are placed on the non-lookaside free() routines to verify 3793 ** this constraint. 3794 ** 3795 ** All of this is no-op for a production build. It only comes into 3796 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3797 */ 3798 #ifdef SQLITE_MEMDEBUG 3799 void sqlite3MemdebugSetType(void*,u8); 3800 int sqlite3MemdebugHasType(void*,u8); 3801 int sqlite3MemdebugNoType(void*,u8); 3802 #else 3803 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3804 # define sqlite3MemdebugHasType(X,Y) 1 3805 # define sqlite3MemdebugNoType(X,Y) 1 3806 #endif 3807 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3808 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 3809 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3810 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3811 3812 /* 3813 ** Threading interface 3814 */ 3815 #if SQLITE_MAX_WORKER_THREADS>0 3816 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 3817 int sqlite3ThreadJoin(SQLiteThread*, void**); 3818 #endif 3819 3820 #endif /* _SQLITEINT_H_ */ 3821