xref: /sqlite-3.40.0/src/sqliteInt.h (revision b638a3d3)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17 
18 /*
19 ** These #defines should enable >2GB file support on POSIX if the
20 ** underlying operating system supports it.  If the OS lacks
21 ** large file support, or if the OS is windows, these should be no-ops.
22 **
23 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
24 ** system #includes.  Hence, this block of code must be the very first
25 ** code in all source files.
26 **
27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
28 ** on the compiler command line.  This is necessary if you are compiling
29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
30 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
31 ** without this option, LFS is enable.  But LFS does not exist in the kernel
32 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
33 ** portability you should omit LFS.
34 **
35 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
36 */
37 #ifndef SQLITE_DISABLE_LFS
38 # define _LARGE_FILE       1
39 # ifndef _FILE_OFFSET_BITS
40 #   define _FILE_OFFSET_BITS 64
41 # endif
42 # define _LARGEFILE_SOURCE 1
43 #endif
44 
45 /*
46 ** Include the configuration header output by 'configure' if we're using the
47 ** autoconf-based build
48 */
49 #ifdef _HAVE_SQLITE_CONFIG_H
50 #include "config.h"
51 #endif
52 
53 #include "sqliteLimit.h"
54 
55 /* Disable nuisance warnings on Borland compilers */
56 #if defined(__BORLANDC__)
57 #pragma warn -rch /* unreachable code */
58 #pragma warn -ccc /* Condition is always true or false */
59 #pragma warn -aus /* Assigned value is never used */
60 #pragma warn -csu /* Comparing signed and unsigned */
61 #pragma warn -spa /* Suspicious pointer arithmetic */
62 #endif
63 
64 /* Needed for various definitions... */
65 #ifndef _GNU_SOURCE
66 # define _GNU_SOURCE
67 #endif
68 
69 /*
70 ** Include standard header files as necessary
71 */
72 #ifdef HAVE_STDINT_H
73 #include <stdint.h>
74 #endif
75 #ifdef HAVE_INTTYPES_H
76 #include <inttypes.h>
77 #endif
78 
79 /*
80 ** The number of samples of an index that SQLite takes in order to
81 ** construct a histogram of the table content when running ANALYZE
82 ** and with SQLITE_ENABLE_STAT2
83 */
84 #define SQLITE_INDEX_SAMPLES 10
85 
86 /*
87 ** The following macros are used to cast pointers to integers and
88 ** integers to pointers.  The way you do this varies from one compiler
89 ** to the next, so we have developed the following set of #if statements
90 ** to generate appropriate macros for a wide range of compilers.
91 **
92 ** The correct "ANSI" way to do this is to use the intptr_t type.
93 ** Unfortunately, that typedef is not available on all compilers, or
94 ** if it is available, it requires an #include of specific headers
95 ** that vary from one machine to the next.
96 **
97 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
98 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
99 ** So we have to define the macros in different ways depending on the
100 ** compiler.
101 */
102 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
103 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
104 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
105 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
106 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
107 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
108 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
109 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
110 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
111 #else                          /* Generates a warning - but it always works */
112 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
113 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
114 #endif
115 
116 /*
117 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
118 ** Older versions of SQLite used an optional THREADSAFE macro.
119 ** We support that for legacy
120 */
121 #if !defined(SQLITE_THREADSAFE)
122 #if defined(THREADSAFE)
123 # define SQLITE_THREADSAFE THREADSAFE
124 #else
125 # define SQLITE_THREADSAFE 1
126 #endif
127 #endif
128 
129 /*
130 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
131 ** It determines whether or not the features related to
132 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
133 ** be overridden at runtime using the sqlite3_config() API.
134 */
135 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
136 # define SQLITE_DEFAULT_MEMSTATUS 1
137 #endif
138 
139 /*
140 ** Exactly one of the following macros must be defined in order to
141 ** specify which memory allocation subsystem to use.
142 **
143 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
144 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
145 **
146 ** (Historical note:  There used to be several other options, but we've
147 ** pared it down to just these two.)
148 **
149 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
150 ** the default.
151 */
152 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)>1
153 # error "At most one of the following compile-time configuration options\
154  is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG"
155 #endif
156 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)==0
157 # define SQLITE_SYSTEM_MALLOC 1
158 #endif
159 
160 /*
161 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
162 ** sizes of memory allocations below this value where possible.
163 */
164 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
165 # define SQLITE_MALLOC_SOFT_LIMIT 1024
166 #endif
167 
168 /*
169 ** We need to define _XOPEN_SOURCE as follows in order to enable
170 ** recursive mutexes on most Unix systems.  But Mac OS X is different.
171 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
172 ** so it is omitted there.  See ticket #2673.
173 **
174 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
175 ** implemented on some systems.  So we avoid defining it at all
176 ** if it is already defined or if it is unneeded because we are
177 ** not doing a threadsafe build.  Ticket #2681.
178 **
179 ** See also ticket #2741.
180 */
181 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
182 #  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
183 #endif
184 
185 /*
186 ** The TCL headers are only needed when compiling the TCL bindings.
187 */
188 #if defined(SQLITE_TCL) || defined(TCLSH)
189 # include <tcl.h>
190 #endif
191 
192 /*
193 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
194 ** Setting NDEBUG makes the code smaller and run faster.  So the following
195 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
196 ** option is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
197 ** feature.
198 */
199 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
200 # define NDEBUG 1
201 #endif
202 
203 /*
204 ** The testcase() macro is used to aid in coverage testing.  When
205 ** doing coverage testing, the condition inside the argument to
206 ** testcase() must be evaluated both true and false in order to
207 ** get full branch coverage.  The testcase() macro is inserted
208 ** to help ensure adequate test coverage in places where simple
209 ** condition/decision coverage is inadequate.  For example, testcase()
210 ** can be used to make sure boundary values are tested.  For
211 ** bitmask tests, testcase() can be used to make sure each bit
212 ** is significant and used at least once.  On switch statements
213 ** where multiple cases go to the same block of code, testcase()
214 ** can insure that all cases are evaluated.
215 **
216 */
217 #ifdef SQLITE_COVERAGE_TEST
218   void sqlite3Coverage(int);
219 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
220 #else
221 # define testcase(X)
222 #endif
223 
224 /*
225 ** The TESTONLY macro is used to enclose variable declarations or
226 ** other bits of code that are needed to support the arguments
227 ** within testcase() and assert() macros.
228 */
229 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
230 # define TESTONLY(X)  X
231 #else
232 # define TESTONLY(X)
233 #endif
234 
235 /*
236 ** Sometimes we need a small amount of code such as a variable initialization
237 ** to setup for a later assert() statement.  We do not want this code to
238 ** appear when assert() is disabled.  The following macro is therefore
239 ** used to contain that setup code.  The "VVA" acronym stands for
240 ** "Verification, Validation, and Accreditation".  In other words, the
241 ** code within VVA_ONLY() will only run during verification processes.
242 */
243 #ifndef NDEBUG
244 # define VVA_ONLY(X)  X
245 #else
246 # define VVA_ONLY(X)
247 #endif
248 
249 /*
250 ** The ALWAYS and NEVER macros surround boolean expressions which
251 ** are intended to always be true or false, respectively.  Such
252 ** expressions could be omitted from the code completely.  But they
253 ** are included in a few cases in order to enhance the resilience
254 ** of SQLite to unexpected behavior - to make the code "self-healing"
255 ** or "ductile" rather than being "brittle" and crashing at the first
256 ** hint of unplanned behavior.
257 **
258 ** In other words, ALWAYS and NEVER are added for defensive code.
259 **
260 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
261 ** be true and false so that the unreachable code then specify will
262 ** not be counted as untested code.
263 */
264 #if defined(SQLITE_COVERAGE_TEST)
265 # define ALWAYS(X)      (1)
266 # define NEVER(X)       (0)
267 #elif !defined(NDEBUG)
268 # define ALWAYS(X)      ((X)?1:(assert(0),0))
269 # define NEVER(X)       ((X)?(assert(0),1):0)
270 #else
271 # define ALWAYS(X)      (X)
272 # define NEVER(X)       (X)
273 #endif
274 
275 /*
276 ** Return true (non-zero) if the input is a integer that is too large
277 ** to fit in 32-bits.  This macro is used inside of various testcase()
278 ** macros to verify that we have tested SQLite for large-file support.
279 */
280 #define IS_BIG_INT(X)  (((X)&(i64)0xffffffff)!=0)
281 
282 /*
283 ** The macro unlikely() is a hint that surrounds a boolean
284 ** expression that is usually false.  Macro likely() surrounds
285 ** a boolean expression that is usually true.  GCC is able to
286 ** use these hints to generate better code, sometimes.
287 */
288 #if defined(__GNUC__) && 0
289 # define likely(X)    __builtin_expect((X),1)
290 # define unlikely(X)  __builtin_expect((X),0)
291 #else
292 # define likely(X)    !!(X)
293 # define unlikely(X)  !!(X)
294 #endif
295 
296 #include "sqlite3.h"
297 #include "hash.h"
298 #include "parse.h"
299 #include <stdio.h>
300 #include <stdlib.h>
301 #include <string.h>
302 #include <assert.h>
303 #include <stddef.h>
304 
305 /*
306 ** If compiling for a processor that lacks floating point support,
307 ** substitute integer for floating-point
308 */
309 #ifdef SQLITE_OMIT_FLOATING_POINT
310 # define double sqlite_int64
311 # define float sqlite_int64
312 # define LONGDOUBLE_TYPE sqlite_int64
313 # ifndef SQLITE_BIG_DBL
314 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
315 # endif
316 # define SQLITE_OMIT_DATETIME_FUNCS 1
317 # define SQLITE_OMIT_TRACE 1
318 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
319 # undef SQLITE_HAVE_ISNAN
320 #endif
321 #ifndef SQLITE_BIG_DBL
322 # define SQLITE_BIG_DBL (1e99)
323 #endif
324 
325 /*
326 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
327 ** afterward. Having this macro allows us to cause the C compiler
328 ** to omit code used by TEMP tables without messy #ifndef statements.
329 */
330 #ifdef SQLITE_OMIT_TEMPDB
331 #define OMIT_TEMPDB 1
332 #else
333 #define OMIT_TEMPDB 0
334 #endif
335 
336 /*
337 ** The "file format" number is an integer that is incremented whenever
338 ** the VDBE-level file format changes.  The following macros define the
339 ** the default file format for new databases and the maximum file format
340 ** that the library can read.
341 */
342 #define SQLITE_MAX_FILE_FORMAT 4
343 #ifndef SQLITE_DEFAULT_FILE_FORMAT
344 # define SQLITE_DEFAULT_FILE_FORMAT 1
345 #endif
346 
347 /*
348 ** Determine whether triggers are recursive by default.  This can be
349 ** changed at run-time using a pragma.
350 */
351 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
352 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
353 #endif
354 
355 /*
356 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
357 ** on the command-line
358 */
359 #ifndef SQLITE_TEMP_STORE
360 # define SQLITE_TEMP_STORE 1
361 #endif
362 
363 /*
364 ** GCC does not define the offsetof() macro so we'll have to do it
365 ** ourselves.
366 */
367 #ifndef offsetof
368 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
369 #endif
370 
371 /*
372 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
373 ** not, there are still machines out there that use EBCDIC.)
374 */
375 #if 'A' == '\301'
376 # define SQLITE_EBCDIC 1
377 #else
378 # define SQLITE_ASCII 1
379 #endif
380 
381 /*
382 ** Integers of known sizes.  These typedefs might change for architectures
383 ** where the sizes very.  Preprocessor macros are available so that the
384 ** types can be conveniently redefined at compile-type.  Like this:
385 **
386 **         cc '-DUINTPTR_TYPE=long long int' ...
387 */
388 #ifndef UINT32_TYPE
389 # ifdef HAVE_UINT32_T
390 #  define UINT32_TYPE uint32_t
391 # else
392 #  define UINT32_TYPE unsigned int
393 # endif
394 #endif
395 #ifndef UINT16_TYPE
396 # ifdef HAVE_UINT16_T
397 #  define UINT16_TYPE uint16_t
398 # else
399 #  define UINT16_TYPE unsigned short int
400 # endif
401 #endif
402 #ifndef INT16_TYPE
403 # ifdef HAVE_INT16_T
404 #  define INT16_TYPE int16_t
405 # else
406 #  define INT16_TYPE short int
407 # endif
408 #endif
409 #ifndef UINT8_TYPE
410 # ifdef HAVE_UINT8_T
411 #  define UINT8_TYPE uint8_t
412 # else
413 #  define UINT8_TYPE unsigned char
414 # endif
415 #endif
416 #ifndef INT8_TYPE
417 # ifdef HAVE_INT8_T
418 #  define INT8_TYPE int8_t
419 # else
420 #  define INT8_TYPE signed char
421 # endif
422 #endif
423 #ifndef LONGDOUBLE_TYPE
424 # define LONGDOUBLE_TYPE long double
425 #endif
426 typedef sqlite_int64 i64;          /* 8-byte signed integer */
427 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
428 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
429 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
430 typedef INT16_TYPE i16;            /* 2-byte signed integer */
431 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
432 typedef INT8_TYPE i8;              /* 1-byte signed integer */
433 
434 /*
435 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
436 ** that can be stored in a u32 without loss of data.  The value
437 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
438 ** have to specify the value in the less intuitive manner shown:
439 */
440 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
441 
442 /*
443 ** Macros to determine whether the machine is big or little endian,
444 ** evaluated at runtime.
445 */
446 #ifdef SQLITE_AMALGAMATION
447 const int sqlite3one = 1;
448 #else
449 extern const int sqlite3one;
450 #endif
451 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\
452                              || defined(__x86_64) || defined(__x86_64__)
453 # define SQLITE_BIGENDIAN    0
454 # define SQLITE_LITTLEENDIAN 1
455 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
456 #else
457 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
458 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
459 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
460 #endif
461 
462 /*
463 ** Constants for the largest and smallest possible 64-bit signed integers.
464 ** These macros are designed to work correctly on both 32-bit and 64-bit
465 ** compilers.
466 */
467 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
468 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
469 
470 /*
471 ** Round up a number to the next larger multiple of 8.  This is used
472 ** to force 8-byte alignment on 64-bit architectures.
473 */
474 #define ROUND8(x)     (((x)+7)&~7)
475 
476 /*
477 ** Round down to the nearest multiple of 8
478 */
479 #define ROUNDDOWN8(x) ((x)&~7)
480 
481 /*
482 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
483 ** macro is used only within assert() to verify that the code gets
484 ** all alignment restrictions correct.
485 **
486 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
487 ** underlying malloc() implemention might return us 4-byte aligned
488 ** pointers.  In that case, only verify 4-byte alignment.
489 */
490 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
491 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
492 #else
493 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
494 #endif
495 
496 
497 /*
498 ** An instance of the following structure is used to store the busy-handler
499 ** callback for a given sqlite handle.
500 **
501 ** The sqlite.busyHandler member of the sqlite struct contains the busy
502 ** callback for the database handle. Each pager opened via the sqlite
503 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
504 ** callback is currently invoked only from within pager.c.
505 */
506 typedef struct BusyHandler BusyHandler;
507 struct BusyHandler {
508   int (*xFunc)(void *,int);  /* The busy callback */
509   void *pArg;                /* First arg to busy callback */
510   int nBusy;                 /* Incremented with each busy call */
511 };
512 
513 /*
514 ** Name of the master database table.  The master database table
515 ** is a special table that holds the names and attributes of all
516 ** user tables and indices.
517 */
518 #define MASTER_NAME       "sqlite_master"
519 #define TEMP_MASTER_NAME  "sqlite_temp_master"
520 
521 /*
522 ** The root-page of the master database table.
523 */
524 #define MASTER_ROOT       1
525 
526 /*
527 ** The name of the schema table.
528 */
529 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
530 
531 /*
532 ** A convenience macro that returns the number of elements in
533 ** an array.
534 */
535 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
536 
537 /*
538 ** The following value as a destructor means to use sqlite3DbFree().
539 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
540 */
541 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3DbFree)
542 
543 /*
544 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
545 ** not support Writable Static Data (WSD) such as global and static variables.
546 ** All variables must either be on the stack or dynamically allocated from
547 ** the heap.  When WSD is unsupported, the variable declarations scattered
548 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
549 ** macro is used for this purpose.  And instead of referencing the variable
550 ** directly, we use its constant as a key to lookup the run-time allocated
551 ** buffer that holds real variable.  The constant is also the initializer
552 ** for the run-time allocated buffer.
553 **
554 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
555 ** macros become no-ops and have zero performance impact.
556 */
557 #ifdef SQLITE_OMIT_WSD
558   #define SQLITE_WSD const
559   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
560   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
561   int sqlite3_wsd_init(int N, int J);
562   void *sqlite3_wsd_find(void *K, int L);
563 #else
564   #define SQLITE_WSD
565   #define GLOBAL(t,v) v
566   #define sqlite3GlobalConfig sqlite3Config
567 #endif
568 
569 /*
570 ** The following macros are used to suppress compiler warnings and to
571 ** make it clear to human readers when a function parameter is deliberately
572 ** left unused within the body of a function. This usually happens when
573 ** a function is called via a function pointer. For example the
574 ** implementation of an SQL aggregate step callback may not use the
575 ** parameter indicating the number of arguments passed to the aggregate,
576 ** if it knows that this is enforced elsewhere.
577 **
578 ** When a function parameter is not used at all within the body of a function,
579 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
580 ** However, these macros may also be used to suppress warnings related to
581 ** parameters that may or may not be used depending on compilation options.
582 ** For example those parameters only used in assert() statements. In these
583 ** cases the parameters are named as per the usual conventions.
584 */
585 #define UNUSED_PARAMETER(x) (void)(x)
586 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
587 
588 /*
589 ** Forward references to structures
590 */
591 typedef struct AggInfo AggInfo;
592 typedef struct AuthContext AuthContext;
593 typedef struct AutoincInfo AutoincInfo;
594 typedef struct Bitvec Bitvec;
595 typedef struct CollSeq CollSeq;
596 typedef struct Column Column;
597 typedef struct Db Db;
598 typedef struct Schema Schema;
599 typedef struct Expr Expr;
600 typedef struct ExprList ExprList;
601 typedef struct ExprSpan ExprSpan;
602 typedef struct FKey FKey;
603 typedef struct FuncDef FuncDef;
604 typedef struct FuncDefHash FuncDefHash;
605 typedef struct IdList IdList;
606 typedef struct Index Index;
607 typedef struct IndexSample IndexSample;
608 typedef struct KeyClass KeyClass;
609 typedef struct KeyInfo KeyInfo;
610 typedef struct Lookaside Lookaside;
611 typedef struct LookasideSlot LookasideSlot;
612 typedef struct Module Module;
613 typedef struct NameContext NameContext;
614 typedef struct Parse Parse;
615 typedef struct RowSet RowSet;
616 typedef struct Savepoint Savepoint;
617 typedef struct Select Select;
618 typedef struct SrcList SrcList;
619 typedef struct StrAccum StrAccum;
620 typedef struct Table Table;
621 typedef struct TableLock TableLock;
622 typedef struct Token Token;
623 typedef struct Trigger Trigger;
624 typedef struct TriggerPrg TriggerPrg;
625 typedef struct TriggerStep TriggerStep;
626 typedef struct UnpackedRecord UnpackedRecord;
627 typedef struct VTable VTable;
628 typedef struct Walker Walker;
629 typedef struct WherePlan WherePlan;
630 typedef struct WhereInfo WhereInfo;
631 typedef struct WhereLevel WhereLevel;
632 
633 /*
634 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
635 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
636 ** pointer types (i.e. FuncDef) defined above.
637 */
638 #include "btree.h"
639 #include "vdbe.h"
640 #include "pager.h"
641 #include "pcache.h"
642 
643 #include "os.h"
644 #include "mutex.h"
645 
646 
647 /*
648 ** Each database file to be accessed by the system is an instance
649 ** of the following structure.  There are normally two of these structures
650 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
651 ** aDb[1] is the database file used to hold temporary tables.  Additional
652 ** databases may be attached.
653 */
654 struct Db {
655   char *zName;         /* Name of this database */
656   Btree *pBt;          /* The B*Tree structure for this database file */
657   u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
658   u8 safety_level;     /* How aggressive at syncing data to disk */
659   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
660 };
661 
662 /*
663 ** An instance of the following structure stores a database schema.
664 **
665 ** If there are no virtual tables configured in this schema, the
666 ** Schema.db variable is set to NULL. After the first virtual table
667 ** has been added, it is set to point to the database connection
668 ** used to create the connection. Once a virtual table has been
669 ** added to the Schema structure and the Schema.db variable populated,
670 ** only that database connection may use the Schema to prepare
671 ** statements.
672 */
673 struct Schema {
674   int schema_cookie;   /* Database schema version number for this file */
675   Hash tblHash;        /* All tables indexed by name */
676   Hash idxHash;        /* All (named) indices indexed by name */
677   Hash trigHash;       /* All triggers indexed by name */
678   Hash fkeyHash;       /* All foreign keys by referenced table name */
679   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
680   u8 file_format;      /* Schema format version for this file */
681   u8 enc;              /* Text encoding used by this database */
682   u16 flags;           /* Flags associated with this schema */
683   int cache_size;      /* Number of pages to use in the cache */
684 #ifndef SQLITE_OMIT_VIRTUALTABLE
685   sqlite3 *db;         /* "Owner" connection. See comment above */
686 #endif
687 };
688 
689 /*
690 ** These macros can be used to test, set, or clear bits in the
691 ** Db.pSchema->flags field.
692 */
693 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
694 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
695 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
696 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)
697 
698 /*
699 ** Allowed values for the DB.pSchema->flags field.
700 **
701 ** The DB_SchemaLoaded flag is set after the database schema has been
702 ** read into internal hash tables.
703 **
704 ** DB_UnresetViews means that one or more views have column names that
705 ** have been filled out.  If the schema changes, these column names might
706 ** changes and so the view will need to be reset.
707 */
708 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
709 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
710 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
711 
712 /*
713 ** The number of different kinds of things that can be limited
714 ** using the sqlite3_limit() interface.
715 */
716 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1)
717 
718 /*
719 ** Lookaside malloc is a set of fixed-size buffers that can be used
720 ** to satisfy small transient memory allocation requests for objects
721 ** associated with a particular database connection.  The use of
722 ** lookaside malloc provides a significant performance enhancement
723 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
724 ** SQL statements.
725 **
726 ** The Lookaside structure holds configuration information about the
727 ** lookaside malloc subsystem.  Each available memory allocation in
728 ** the lookaside subsystem is stored on a linked list of LookasideSlot
729 ** objects.
730 **
731 ** Lookaside allocations are only allowed for objects that are associated
732 ** with a particular database connection.  Hence, schema information cannot
733 ** be stored in lookaside because in shared cache mode the schema information
734 ** is shared by multiple database connections.  Therefore, while parsing
735 ** schema information, the Lookaside.bEnabled flag is cleared so that
736 ** lookaside allocations are not used to construct the schema objects.
737 */
738 struct Lookaside {
739   u16 sz;                 /* Size of each buffer in bytes */
740   u8 bEnabled;            /* False to disable new lookaside allocations */
741   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
742   int nOut;               /* Number of buffers currently checked out */
743   int mxOut;              /* Highwater mark for nOut */
744   LookasideSlot *pFree;   /* List of available buffers */
745   void *pStart;           /* First byte of available memory space */
746   void *pEnd;             /* First byte past end of available space */
747 };
748 struct LookasideSlot {
749   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
750 };
751 
752 /*
753 ** A hash table for function definitions.
754 **
755 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
756 ** Collisions are on the FuncDef.pHash chain.
757 */
758 struct FuncDefHash {
759   FuncDef *a[23];       /* Hash table for functions */
760 };
761 
762 /*
763 ** Each database connection is an instance of the following structure.
764 **
765 ** The sqlite.lastRowid records the last insert rowid generated by an
766 ** insert statement.  Inserts on views do not affect its value.  Each
767 ** trigger has its own context, so that lastRowid can be updated inside
768 ** triggers as usual.  The previous value will be restored once the trigger
769 ** exits.  Upon entering a before or instead of trigger, lastRowid is no
770 ** longer (since after version 2.8.12) reset to -1.
771 **
772 ** The sqlite.nChange does not count changes within triggers and keeps no
773 ** context.  It is reset at start of sqlite3_exec.
774 ** The sqlite.lsChange represents the number of changes made by the last
775 ** insert, update, or delete statement.  It remains constant throughout the
776 ** length of a statement and is then updated by OP_SetCounts.  It keeps a
777 ** context stack just like lastRowid so that the count of changes
778 ** within a trigger is not seen outside the trigger.  Changes to views do not
779 ** affect the value of lsChange.
780 ** The sqlite.csChange keeps track of the number of current changes (since
781 ** the last statement) and is used to update sqlite_lsChange.
782 **
783 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
784 ** store the most recent error code and, if applicable, string. The
785 ** internal function sqlite3Error() is used to set these variables
786 ** consistently.
787 */
788 struct sqlite3 {
789   sqlite3_vfs *pVfs;            /* OS Interface */
790   int nDb;                      /* Number of backends currently in use */
791   Db *aDb;                      /* All backends */
792   int flags;                    /* Miscellaneous flags. See below */
793   int openFlags;                /* Flags passed to sqlite3_vfs.xOpen() */
794   int errCode;                  /* Most recent error code (SQLITE_*) */
795   int errMask;                  /* & result codes with this before returning */
796   u8 autoCommit;                /* The auto-commit flag. */
797   u8 temp_store;                /* 1: file 2: memory 0: default */
798   u8 mallocFailed;              /* True if we have seen a malloc failure */
799   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
800   u8 dfltJournalMode;           /* Default journal mode for attached dbs */
801   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
802   u8 suppressErr;               /* Do not issue error messages if true */
803   int nextPagesize;             /* Pagesize after VACUUM if >0 */
804   int nTable;                   /* Number of tables in the database */
805   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
806   i64 lastRowid;                /* ROWID of most recent insert (see above) */
807   u32 magic;                    /* Magic number for detect library misuse */
808   int nChange;                  /* Value returned by sqlite3_changes() */
809   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
810   sqlite3_mutex *mutex;         /* Connection mutex */
811   int aLimit[SQLITE_N_LIMIT];   /* Limits */
812   struct sqlite3InitInfo {      /* Information used during initialization */
813     int iDb;                    /* When back is being initialized */
814     int newTnum;                /* Rootpage of table being initialized */
815     u8 busy;                    /* TRUE if currently initializing */
816     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
817   } init;
818   int nExtension;               /* Number of loaded extensions */
819   void **aExtension;            /* Array of shared library handles */
820   struct Vdbe *pVdbe;           /* List of active virtual machines */
821   int activeVdbeCnt;            /* Number of VDBEs currently executing */
822   int writeVdbeCnt;             /* Number of active VDBEs that are writing */
823   void (*xTrace)(void*,const char*);        /* Trace function */
824   void *pTraceArg;                          /* Argument to the trace function */
825   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
826   void *pProfileArg;                        /* Argument to profile function */
827   void *pCommitArg;                 /* Argument to xCommitCallback() */
828   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
829   void *pRollbackArg;               /* Argument to xRollbackCallback() */
830   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
831   void *pUpdateArg;
832   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
833 #ifndef SQLITE_OMIT_WAL
834   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
835   void *pWalArg;
836 #endif
837   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
838   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
839   void *pCollNeededArg;
840   sqlite3_value *pErr;          /* Most recent error message */
841   char *zErrMsg;                /* Most recent error message (UTF-8 encoded) */
842   char *zErrMsg16;              /* Most recent error message (UTF-16 encoded) */
843   union {
844     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
845     double notUsed1;            /* Spacer */
846   } u1;
847   Lookaside lookaside;          /* Lookaside malloc configuration */
848 #ifndef SQLITE_OMIT_AUTHORIZATION
849   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
850                                 /* Access authorization function */
851   void *pAuthArg;               /* 1st argument to the access auth function */
852 #endif
853 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
854   int (*xProgress)(void *);     /* The progress callback */
855   void *pProgressArg;           /* Argument to the progress callback */
856   int nProgressOps;             /* Number of opcodes for progress callback */
857 #endif
858 #ifndef SQLITE_OMIT_VIRTUALTABLE
859   Hash aModule;                 /* populated by sqlite3_create_module() */
860   Table *pVTab;                 /* vtab with active Connect/Create method */
861   VTable **aVTrans;             /* Virtual tables with open transactions */
862   int nVTrans;                  /* Allocated size of aVTrans */
863   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
864 #endif
865   FuncDefHash aFunc;            /* Hash table of connection functions */
866   Hash aCollSeq;                /* All collating sequences */
867   BusyHandler busyHandler;      /* Busy callback */
868   int busyTimeout;              /* Busy handler timeout, in msec */
869   Db aDbStatic[2];              /* Static space for the 2 default backends */
870   Savepoint *pSavepoint;        /* List of active savepoints */
871   int nSavepoint;               /* Number of non-transaction savepoints */
872   int nStatement;               /* Number of nested statement-transactions  */
873   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
874   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
875 
876 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
877   /* The following variables are all protected by the STATIC_MASTER
878   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
879   **
880   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
881   ** unlock so that it can proceed.
882   **
883   ** When X.pBlockingConnection==Y, that means that something that X tried
884   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
885   ** held by Y.
886   */
887   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
888   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
889   void *pUnlockArg;                     /* Argument to xUnlockNotify */
890   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
891   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
892 #endif
893 };
894 
895 /*
896 ** A macro to discover the encoding of a database.
897 */
898 #define ENC(db) ((db)->aDb[0].pSchema->enc)
899 
900 /*
901 ** Possible values for the sqlite3.flags.
902 */
903 #define SQLITE_VdbeTrace      0x00000100  /* True to trace VDBE execution */
904 #define SQLITE_InternChanges  0x00000200  /* Uncommitted Hash table changes */
905 #define SQLITE_FullColNames   0x00000400  /* Show full column names on SELECT */
906 #define SQLITE_ShortColNames  0x00000800  /* Show short columns names */
907 #define SQLITE_CountRows      0x00001000  /* Count rows changed by INSERT, */
908                                           /*   DELETE, or UPDATE and return */
909                                           /*   the count using a callback. */
910 #define SQLITE_NullCallback   0x00002000  /* Invoke the callback once if the */
911                                           /*   result set is empty */
912 #define SQLITE_SqlTrace       0x00004000  /* Debug print SQL as it executes */
913 #define SQLITE_VdbeListing    0x00008000  /* Debug listings of VDBE programs */
914 #define SQLITE_WriteSchema    0x00010000  /* OK to update SQLITE_MASTER */
915 #define SQLITE_NoReadlock     0x00020000  /* Readlocks are omitted when
916                                           ** accessing read-only databases */
917 #define SQLITE_IgnoreChecks   0x00040000  /* Do not enforce check constraints */
918 #define SQLITE_ReadUncommitted 0x0080000  /* For shared-cache mode */
919 #define SQLITE_LegacyFileFmt  0x00100000  /* Create new databases in format 1 */
920 #define SQLITE_FullFSync      0x00200000  /* Use full fsync on the backend */
921 #define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
922 #define SQLITE_RecoveryMode   0x00800000  /* Ignore schema errors */
923 #define SQLITE_ReverseOrder   0x01000000  /* Reverse unordered SELECTs */
924 #define SQLITE_RecTriggers    0x02000000  /* Enable recursive triggers */
925 #define SQLITE_ForeignKeys    0x04000000  /* Enforce foreign key constraints  */
926 #define SQLITE_AutoIndex      0x08000000  /* Enable automatic indexes */
927 #define SQLITE_PreferBuiltin  0x10000000  /* Preference to built-in funcs */
928 
929 /*
930 ** Bits of the sqlite3.flags field that are used by the
931 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface.
932 ** These must be the low-order bits of the flags field.
933 */
934 #define SQLITE_QueryFlattener 0x01        /* Disable query flattening */
935 #define SQLITE_ColumnCache    0x02        /* Disable the column cache */
936 #define SQLITE_IndexSort      0x04        /* Disable indexes for sorting */
937 #define SQLITE_IndexSearch    0x08        /* Disable indexes for searching */
938 #define SQLITE_IndexCover     0x10        /* Disable index covering table */
939 #define SQLITE_GroupByOrder   0x20        /* Disable GROUPBY cover of ORDERBY */
940 #define SQLITE_OptMask        0xff        /* Mask of all disablable opts */
941 
942 /*
943 ** Possible values for the sqlite.magic field.
944 ** The numbers are obtained at random and have no special meaning, other
945 ** than being distinct from one another.
946 */
947 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
948 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
949 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
950 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
951 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
952 
953 /*
954 ** Each SQL function is defined by an instance of the following
955 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
956 ** hash table.  When multiple functions have the same name, the hash table
957 ** points to a linked list of these structures.
958 */
959 struct FuncDef {
960   i16 nArg;            /* Number of arguments.  -1 means unlimited */
961   u8 iPrefEnc;         /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
962   u8 flags;            /* Some combination of SQLITE_FUNC_* */
963   void *pUserData;     /* User data parameter */
964   FuncDef *pNext;      /* Next function with same name */
965   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
966   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
967   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
968   char *zName;         /* SQL name of the function. */
969   FuncDef *pHash;      /* Next with a different name but the same hash */
970 };
971 
972 /*
973 ** Possible values for FuncDef.flags
974 */
975 #define SQLITE_FUNC_LIKE     0x01 /* Candidate for the LIKE optimization */
976 #define SQLITE_FUNC_CASE     0x02 /* Case-sensitive LIKE-type function */
977 #define SQLITE_FUNC_EPHEM    0x04 /* Ephemeral.  Delete with VDBE */
978 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
979 #define SQLITE_FUNC_PRIVATE  0x10 /* Allowed for internal use only */
980 #define SQLITE_FUNC_COUNT    0x20 /* Built-in count(*) aggregate */
981 #define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */
982 
983 /*
984 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
985 ** used to create the initializers for the FuncDef structures.
986 **
987 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
988 **     Used to create a scalar function definition of a function zName
989 **     implemented by C function xFunc that accepts nArg arguments. The
990 **     value passed as iArg is cast to a (void*) and made available
991 **     as the user-data (sqlite3_user_data()) for the function. If
992 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
993 **
994 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
995 **     Used to create an aggregate function definition implemented by
996 **     the C functions xStep and xFinal. The first four parameters
997 **     are interpreted in the same way as the first 4 parameters to
998 **     FUNCTION().
999 **
1000 **   LIKEFUNC(zName, nArg, pArg, flags)
1001 **     Used to create a scalar function definition of a function zName
1002 **     that accepts nArg arguments and is implemented by a call to C
1003 **     function likeFunc. Argument pArg is cast to a (void *) and made
1004 **     available as the function user-data (sqlite3_user_data()). The
1005 **     FuncDef.flags variable is set to the value passed as the flags
1006 **     parameter.
1007 */
1008 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1009   {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
1010    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0}
1011 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1012   {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
1013    pArg, 0, xFunc, 0, 0, #zName, 0}
1014 #define LIKEFUNC(zName, nArg, arg, flags) \
1015   {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0}
1016 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1017   {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
1018    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0}
1019 
1020 /*
1021 ** All current savepoints are stored in a linked list starting at
1022 ** sqlite3.pSavepoint. The first element in the list is the most recently
1023 ** opened savepoint. Savepoints are added to the list by the vdbe
1024 ** OP_Savepoint instruction.
1025 */
1026 struct Savepoint {
1027   char *zName;                        /* Savepoint name (nul-terminated) */
1028   i64 nDeferredCons;                  /* Number of deferred fk violations */
1029   Savepoint *pNext;                   /* Parent savepoint (if any) */
1030 };
1031 
1032 /*
1033 ** The following are used as the second parameter to sqlite3Savepoint(),
1034 ** and as the P1 argument to the OP_Savepoint instruction.
1035 */
1036 #define SAVEPOINT_BEGIN      0
1037 #define SAVEPOINT_RELEASE    1
1038 #define SAVEPOINT_ROLLBACK   2
1039 
1040 
1041 /*
1042 ** Each SQLite module (virtual table definition) is defined by an
1043 ** instance of the following structure, stored in the sqlite3.aModule
1044 ** hash table.
1045 */
1046 struct Module {
1047   const sqlite3_module *pModule;       /* Callback pointers */
1048   const char *zName;                   /* Name passed to create_module() */
1049   void *pAux;                          /* pAux passed to create_module() */
1050   void (*xDestroy)(void *);            /* Module destructor function */
1051 };
1052 
1053 /*
1054 ** information about each column of an SQL table is held in an instance
1055 ** of this structure.
1056 */
1057 struct Column {
1058   char *zName;     /* Name of this column */
1059   Expr *pDflt;     /* Default value of this column */
1060   char *zDflt;     /* Original text of the default value */
1061   char *zType;     /* Data type for this column */
1062   char *zColl;     /* Collating sequence.  If NULL, use the default */
1063   u8 notNull;      /* True if there is a NOT NULL constraint */
1064   u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
1065   char affinity;   /* One of the SQLITE_AFF_... values */
1066 #ifndef SQLITE_OMIT_VIRTUALTABLE
1067   u8 isHidden;     /* True if this column is 'hidden' */
1068 #endif
1069 };
1070 
1071 /*
1072 ** A "Collating Sequence" is defined by an instance of the following
1073 ** structure. Conceptually, a collating sequence consists of a name and
1074 ** a comparison routine that defines the order of that sequence.
1075 **
1076 ** There may two separate implementations of the collation function, one
1077 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
1078 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
1079 ** native byte order. When a collation sequence is invoked, SQLite selects
1080 ** the version that will require the least expensive encoding
1081 ** translations, if any.
1082 **
1083 ** The CollSeq.pUser member variable is an extra parameter that passed in
1084 ** as the first argument to the UTF-8 comparison function, xCmp.
1085 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
1086 ** xCmp16.
1087 **
1088 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
1089 ** collating sequence is undefined.  Indices built on an undefined
1090 ** collating sequence may not be read or written.
1091 */
1092 struct CollSeq {
1093   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1094   u8 enc;               /* Text encoding handled by xCmp() */
1095   u8 type;              /* One of the SQLITE_COLL_... values below */
1096   void *pUser;          /* First argument to xCmp() */
1097   int (*xCmp)(void*,int, const void*, int, const void*);
1098   void (*xDel)(void*);  /* Destructor for pUser */
1099 };
1100 
1101 /*
1102 ** Allowed values of CollSeq.type:
1103 */
1104 #define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
1105 #define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
1106 #define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
1107 #define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */
1108 
1109 /*
1110 ** A sort order can be either ASC or DESC.
1111 */
1112 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1113 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1114 
1115 /*
1116 ** Column affinity types.
1117 **
1118 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1119 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1120 ** the speed a little by numbering the values consecutively.
1121 **
1122 ** But rather than start with 0 or 1, we begin with 'a'.  That way,
1123 ** when multiple affinity types are concatenated into a string and
1124 ** used as the P4 operand, they will be more readable.
1125 **
1126 ** Note also that the numeric types are grouped together so that testing
1127 ** for a numeric type is a single comparison.
1128 */
1129 #define SQLITE_AFF_TEXT     'a'
1130 #define SQLITE_AFF_NONE     'b'
1131 #define SQLITE_AFF_NUMERIC  'c'
1132 #define SQLITE_AFF_INTEGER  'd'
1133 #define SQLITE_AFF_REAL     'e'
1134 
1135 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1136 
1137 /*
1138 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1139 ** affinity value.
1140 */
1141 #define SQLITE_AFF_MASK     0x67
1142 
1143 /*
1144 ** Additional bit values that can be ORed with an affinity without
1145 ** changing the affinity.
1146 */
1147 #define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
1148 #define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
1149 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1150 
1151 /*
1152 ** An object of this type is created for each virtual table present in
1153 ** the database schema.
1154 **
1155 ** If the database schema is shared, then there is one instance of this
1156 ** structure for each database connection (sqlite3*) that uses the shared
1157 ** schema. This is because each database connection requires its own unique
1158 ** instance of the sqlite3_vtab* handle used to access the virtual table
1159 ** implementation. sqlite3_vtab* handles can not be shared between
1160 ** database connections, even when the rest of the in-memory database
1161 ** schema is shared, as the implementation often stores the database
1162 ** connection handle passed to it via the xConnect() or xCreate() method
1163 ** during initialization internally. This database connection handle may
1164 ** then used by the virtual table implementation to access real tables
1165 ** within the database. So that they appear as part of the callers
1166 ** transaction, these accesses need to be made via the same database
1167 ** connection as that used to execute SQL operations on the virtual table.
1168 **
1169 ** All VTable objects that correspond to a single table in a shared
1170 ** database schema are initially stored in a linked-list pointed to by
1171 ** the Table.pVTable member variable of the corresponding Table object.
1172 ** When an sqlite3_prepare() operation is required to access the virtual
1173 ** table, it searches the list for the VTable that corresponds to the
1174 ** database connection doing the preparing so as to use the correct
1175 ** sqlite3_vtab* handle in the compiled query.
1176 **
1177 ** When an in-memory Table object is deleted (for example when the
1178 ** schema is being reloaded for some reason), the VTable objects are not
1179 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1180 ** immediately. Instead, they are moved from the Table.pVTable list to
1181 ** another linked list headed by the sqlite3.pDisconnect member of the
1182 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1183 ** next time a statement is prepared using said sqlite3*. This is done
1184 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1185 ** Refer to comments above function sqlite3VtabUnlockList() for an
1186 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1187 ** list without holding the corresponding sqlite3.mutex mutex.
1188 **
1189 ** The memory for objects of this type is always allocated by
1190 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1191 ** the first argument.
1192 */
1193 struct VTable {
1194   sqlite3 *db;              /* Database connection associated with this table */
1195   Module *pMod;             /* Pointer to module implementation */
1196   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1197   int nRef;                 /* Number of pointers to this structure */
1198   VTable *pNext;            /* Next in linked list (see above) */
1199 };
1200 
1201 /*
1202 ** Each SQL table is represented in memory by an instance of the
1203 ** following structure.
1204 **
1205 ** Table.zName is the name of the table.  The case of the original
1206 ** CREATE TABLE statement is stored, but case is not significant for
1207 ** comparisons.
1208 **
1209 ** Table.nCol is the number of columns in this table.  Table.aCol is a
1210 ** pointer to an array of Column structures, one for each column.
1211 **
1212 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
1213 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
1214 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
1215 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
1216 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
1217 ** is generated for each row of the table.  TF_HasPrimaryKey is set if
1218 ** the table has any PRIMARY KEY, INTEGER or otherwise.
1219 **
1220 ** Table.tnum is the page number for the root BTree page of the table in the
1221 ** database file.  If Table.iDb is the index of the database table backend
1222 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
1223 ** holds temporary tables and indices.  If TF_Ephemeral is set
1224 ** then the table is stored in a file that is automatically deleted
1225 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
1226 ** refers VDBE cursor number that holds the table open, not to the root
1227 ** page number.  Transient tables are used to hold the results of a
1228 ** sub-query that appears instead of a real table name in the FROM clause
1229 ** of a SELECT statement.
1230 */
1231 struct Table {
1232   sqlite3 *dbMem;      /* DB connection used for lookaside allocations. */
1233   char *zName;         /* Name of the table or view */
1234   int iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
1235   int nCol;            /* Number of columns in this table */
1236   Column *aCol;        /* Information about each column */
1237   Index *pIndex;       /* List of SQL indexes on this table. */
1238   int tnum;            /* Root BTree node for this table (see note above) */
1239   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1240   u16 nRef;            /* Number of pointers to this Table */
1241   u8 tabFlags;         /* Mask of TF_* values */
1242   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1243   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1244   char *zColAff;       /* String defining the affinity of each column */
1245 #ifndef SQLITE_OMIT_CHECK
1246   Expr *pCheck;        /* The AND of all CHECK constraints */
1247 #endif
1248 #ifndef SQLITE_OMIT_ALTERTABLE
1249   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1250 #endif
1251 #ifndef SQLITE_OMIT_VIRTUALTABLE
1252   VTable *pVTable;     /* List of VTable objects. */
1253   int nModuleArg;      /* Number of arguments to the module */
1254   char **azModuleArg;  /* Text of all module args. [0] is module name */
1255 #endif
1256   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1257   Schema *pSchema;     /* Schema that contains this table */
1258   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1259 };
1260 
1261 /*
1262 ** Allowed values for Tabe.tabFlags.
1263 */
1264 #define TF_Readonly        0x01    /* Read-only system table */
1265 #define TF_Ephemeral       0x02    /* An ephemeral table */
1266 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1267 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1268 #define TF_Virtual         0x10    /* Is a virtual table */
1269 #define TF_NeedMetadata    0x20    /* aCol[].zType and aCol[].pColl missing */
1270 
1271 
1272 
1273 /*
1274 ** Test to see whether or not a table is a virtual table.  This is
1275 ** done as a macro so that it will be optimized out when virtual
1276 ** table support is omitted from the build.
1277 */
1278 #ifndef SQLITE_OMIT_VIRTUALTABLE
1279 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1280 #  define IsHiddenColumn(X) ((X)->isHidden)
1281 #else
1282 #  define IsVirtual(X)      0
1283 #  define IsHiddenColumn(X) 0
1284 #endif
1285 
1286 /*
1287 ** Each foreign key constraint is an instance of the following structure.
1288 **
1289 ** A foreign key is associated with two tables.  The "from" table is
1290 ** the table that contains the REFERENCES clause that creates the foreign
1291 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1292 ** Consider this example:
1293 **
1294 **     CREATE TABLE ex1(
1295 **       a INTEGER PRIMARY KEY,
1296 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1297 **     );
1298 **
1299 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1300 **
1301 ** Each REFERENCES clause generates an instance of the following structure
1302 ** which is attached to the from-table.  The to-table need not exist when
1303 ** the from-table is created.  The existence of the to-table is not checked.
1304 */
1305 struct FKey {
1306   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1307   FKey *pNextFrom;  /* Next foreign key in pFrom */
1308   char *zTo;        /* Name of table that the key points to (aka: Parent) */
1309   FKey *pNextTo;    /* Next foreign key on table named zTo */
1310   FKey *pPrevTo;    /* Previous foreign key on table named zTo */
1311   int nCol;         /* Number of columns in this key */
1312   /* EV: R-30323-21917 */
1313   u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
1314   u8 aAction[2];          /* ON DELETE and ON UPDATE actions, respectively */
1315   Trigger *apTrigger[2];  /* Triggers for aAction[] actions */
1316   struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
1317     int iFrom;         /* Index of column in pFrom */
1318     char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
1319   } aCol[1];        /* One entry for each of nCol column s */
1320 };
1321 
1322 /*
1323 ** SQLite supports many different ways to resolve a constraint
1324 ** error.  ROLLBACK processing means that a constraint violation
1325 ** causes the operation in process to fail and for the current transaction
1326 ** to be rolled back.  ABORT processing means the operation in process
1327 ** fails and any prior changes from that one operation are backed out,
1328 ** but the transaction is not rolled back.  FAIL processing means that
1329 ** the operation in progress stops and returns an error code.  But prior
1330 ** changes due to the same operation are not backed out and no rollback
1331 ** occurs.  IGNORE means that the particular row that caused the constraint
1332 ** error is not inserted or updated.  Processing continues and no error
1333 ** is returned.  REPLACE means that preexisting database rows that caused
1334 ** a UNIQUE constraint violation are removed so that the new insert or
1335 ** update can proceed.  Processing continues and no error is reported.
1336 **
1337 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1338 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1339 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1340 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1341 ** referenced table row is propagated into the row that holds the
1342 ** foreign key.
1343 **
1344 ** The following symbolic values are used to record which type
1345 ** of action to take.
1346 */
1347 #define OE_None     0   /* There is no constraint to check */
1348 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1349 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1350 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1351 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1352 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1353 
1354 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1355 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1356 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1357 #define OE_Cascade  9   /* Cascade the changes */
1358 
1359 #define OE_Default  99  /* Do whatever the default action is */
1360 
1361 
1362 /*
1363 ** An instance of the following structure is passed as the first
1364 ** argument to sqlite3VdbeKeyCompare and is used to control the
1365 ** comparison of the two index keys.
1366 */
1367 struct KeyInfo {
1368   sqlite3 *db;        /* The database connection */
1369   u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
1370   u16 nField;         /* Number of entries in aColl[] */
1371   u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
1372   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1373 };
1374 
1375 /*
1376 ** An instance of the following structure holds information about a
1377 ** single index record that has already been parsed out into individual
1378 ** values.
1379 **
1380 ** A record is an object that contains one or more fields of data.
1381 ** Records are used to store the content of a table row and to store
1382 ** the key of an index.  A blob encoding of a record is created by
1383 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1384 ** OP_Column opcode.
1385 **
1386 ** This structure holds a record that has already been disassembled
1387 ** into its constituent fields.
1388 */
1389 struct UnpackedRecord {
1390   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1391   u16 nField;         /* Number of entries in apMem[] */
1392   u16 flags;          /* Boolean settings.  UNPACKED_... below */
1393   i64 rowid;          /* Used by UNPACKED_PREFIX_SEARCH */
1394   Mem *aMem;          /* Values */
1395 };
1396 
1397 /*
1398 ** Allowed values of UnpackedRecord.flags
1399 */
1400 #define UNPACKED_NEED_FREE     0x0001  /* Memory is from sqlite3Malloc() */
1401 #define UNPACKED_NEED_DESTROY  0x0002  /* apMem[]s should all be destroyed */
1402 #define UNPACKED_IGNORE_ROWID  0x0004  /* Ignore trailing rowid on key1 */
1403 #define UNPACKED_INCRKEY       0x0008  /* Make this key an epsilon larger */
1404 #define UNPACKED_PREFIX_MATCH  0x0010  /* A prefix match is considered OK */
1405 #define UNPACKED_PREFIX_SEARCH 0x0020  /* A prefix match is considered OK */
1406 
1407 /*
1408 ** Each SQL index is represented in memory by an
1409 ** instance of the following structure.
1410 **
1411 ** The columns of the table that are to be indexed are described
1412 ** by the aiColumn[] field of this structure.  For example, suppose
1413 ** we have the following table and index:
1414 **
1415 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1416 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1417 **
1418 ** In the Table structure describing Ex1, nCol==3 because there are
1419 ** three columns in the table.  In the Index structure describing
1420 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1421 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1422 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1423 ** The second column to be indexed (c1) has an index of 0 in
1424 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1425 **
1426 ** The Index.onError field determines whether or not the indexed columns
1427 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1428 ** it means this is not a unique index.  Otherwise it is a unique index
1429 ** and the value of Index.onError indicate the which conflict resolution
1430 ** algorithm to employ whenever an attempt is made to insert a non-unique
1431 ** element.
1432 */
1433 struct Index {
1434   char *zName;     /* Name of this index */
1435   int nColumn;     /* Number of columns in the table used by this index */
1436   int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
1437   unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
1438   Table *pTable;   /* The SQL table being indexed */
1439   int tnum;        /* Page containing root of this index in database file */
1440   u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1441   u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
1442   char *zColAff;   /* String defining the affinity of each column */
1443   Index *pNext;    /* The next index associated with the same table */
1444   Schema *pSchema; /* Schema containing this index */
1445   u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
1446   char **azColl;   /* Array of collation sequence names for index */
1447   IndexSample *aSample;    /* Array of SQLITE_INDEX_SAMPLES samples */
1448 };
1449 
1450 /*
1451 ** Each sample stored in the sqlite_stat2 table is represented in memory
1452 ** using a structure of this type.
1453 */
1454 struct IndexSample {
1455   union {
1456     char *z;        /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
1457     double r;       /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */
1458   } u;
1459   u8 eType;         /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
1460   u8 nByte;         /* Size in byte of text or blob. */
1461 };
1462 
1463 /*
1464 ** Each token coming out of the lexer is an instance of
1465 ** this structure.  Tokens are also used as part of an expression.
1466 **
1467 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1468 ** may contain random values.  Do not make any assumptions about Token.dyn
1469 ** and Token.n when Token.z==0.
1470 */
1471 struct Token {
1472   const char *z;     /* Text of the token.  Not NULL-terminated! */
1473   unsigned int n;    /* Number of characters in this token */
1474 };
1475 
1476 /*
1477 ** An instance of this structure contains information needed to generate
1478 ** code for a SELECT that contains aggregate functions.
1479 **
1480 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1481 ** pointer to this structure.  The Expr.iColumn field is the index in
1482 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1483 ** code for that node.
1484 **
1485 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1486 ** original Select structure that describes the SELECT statement.  These
1487 ** fields do not need to be freed when deallocating the AggInfo structure.
1488 */
1489 struct AggInfo {
1490   u8 directMode;          /* Direct rendering mode means take data directly
1491                           ** from source tables rather than from accumulators */
1492   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1493                           ** than the source table */
1494   int sortingIdx;         /* Cursor number of the sorting index */
1495   ExprList *pGroupBy;     /* The group by clause */
1496   int nSortingColumn;     /* Number of columns in the sorting index */
1497   struct AggInfo_col {    /* For each column used in source tables */
1498     Table *pTab;             /* Source table */
1499     int iTable;              /* Cursor number of the source table */
1500     int iColumn;             /* Column number within the source table */
1501     int iSorterColumn;       /* Column number in the sorting index */
1502     int iMem;                /* Memory location that acts as accumulator */
1503     Expr *pExpr;             /* The original expression */
1504   } *aCol;
1505   int nColumn;            /* Number of used entries in aCol[] */
1506   int nColumnAlloc;       /* Number of slots allocated for aCol[] */
1507   int nAccumulator;       /* Number of columns that show through to the output.
1508                           ** Additional columns are used only as parameters to
1509                           ** aggregate functions */
1510   struct AggInfo_func {   /* For each aggregate function */
1511     Expr *pExpr;             /* Expression encoding the function */
1512     FuncDef *pFunc;          /* The aggregate function implementation */
1513     int iMem;                /* Memory location that acts as accumulator */
1514     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1515   } *aFunc;
1516   int nFunc;              /* Number of entries in aFunc[] */
1517   int nFuncAlloc;         /* Number of slots allocated for aFunc[] */
1518 };
1519 
1520 /*
1521 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
1522 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
1523 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
1524 ** it uses less memory in the Expr object, which is a big memory user
1525 ** in systems with lots of prepared statements.  And few applications
1526 ** need more than about 10 or 20 variables.  But some extreme users want
1527 ** to have prepared statements with over 32767 variables, and for them
1528 ** the option is available (at compile-time).
1529 */
1530 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
1531 typedef i16 ynVar;
1532 #else
1533 typedef int ynVar;
1534 #endif
1535 
1536 /*
1537 ** Each node of an expression in the parse tree is an instance
1538 ** of this structure.
1539 **
1540 ** Expr.op is the opcode. The integer parser token codes are reused
1541 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1542 ** code representing the ">=" operator. This same integer code is reused
1543 ** to represent the greater-than-or-equal-to operator in the expression
1544 ** tree.
1545 **
1546 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1547 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1548 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1549 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1550 ** then Expr.token contains the name of the function.
1551 **
1552 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1553 ** binary operator. Either or both may be NULL.
1554 **
1555 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
1556 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1557 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1558 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1559 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1560 ** valid.
1561 **
1562 ** An expression of the form ID or ID.ID refers to a column in a table.
1563 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1564 ** the integer cursor number of a VDBE cursor pointing to that table and
1565 ** Expr.iColumn is the column number for the specific column.  If the
1566 ** expression is used as a result in an aggregate SELECT, then the
1567 ** value is also stored in the Expr.iAgg column in the aggregate so that
1568 ** it can be accessed after all aggregates are computed.
1569 **
1570 ** If the expression is an unbound variable marker (a question mark
1571 ** character '?' in the original SQL) then the Expr.iTable holds the index
1572 ** number for that variable.
1573 **
1574 ** If the expression is a subquery then Expr.iColumn holds an integer
1575 ** register number containing the result of the subquery.  If the
1576 ** subquery gives a constant result, then iTable is -1.  If the subquery
1577 ** gives a different answer at different times during statement processing
1578 ** then iTable is the address of a subroutine that computes the subquery.
1579 **
1580 ** If the Expr is of type OP_Column, and the table it is selecting from
1581 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
1582 ** corresponding table definition.
1583 **
1584 ** ALLOCATION NOTES:
1585 **
1586 ** Expr objects can use a lot of memory space in database schema.  To
1587 ** help reduce memory requirements, sometimes an Expr object will be
1588 ** truncated.  And to reduce the number of memory allocations, sometimes
1589 ** two or more Expr objects will be stored in a single memory allocation,
1590 ** together with Expr.zToken strings.
1591 **
1592 ** If the EP_Reduced and EP_TokenOnly flags are set when
1593 ** an Expr object is truncated.  When EP_Reduced is set, then all
1594 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
1595 ** are contained within the same memory allocation.  Note, however, that
1596 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
1597 ** allocated, regardless of whether or not EP_Reduced is set.
1598 */
1599 struct Expr {
1600   u8 op;                 /* Operation performed by this node */
1601   char affinity;         /* The affinity of the column or 0 if not a column */
1602   u16 flags;             /* Various flags.  EP_* See below */
1603   union {
1604     char *zToken;          /* Token value. Zero terminated and dequoted */
1605     int iValue;            /* Integer value if EP_IntValue */
1606   } u;
1607 
1608   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
1609   ** space is allocated for the fields below this point. An attempt to
1610   ** access them will result in a segfault or malfunction.
1611   *********************************************************************/
1612 
1613   Expr *pLeft;           /* Left subnode */
1614   Expr *pRight;          /* Right subnode */
1615   union {
1616     ExprList *pList;     /* Function arguments or in "<expr> IN (<expr-list)" */
1617     Select *pSelect;     /* Used for sub-selects and "<expr> IN (<select>)" */
1618   } x;
1619   CollSeq *pColl;        /* The collation type of the column or 0 */
1620 
1621   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
1622   ** space is allocated for the fields below this point. An attempt to
1623   ** access them will result in a segfault or malfunction.
1624   *********************************************************************/
1625 
1626   int iTable;            /* TK_COLUMN: cursor number of table holding column
1627                          ** TK_REGISTER: register number
1628                          ** TK_TRIGGER: 1 -> new, 0 -> old */
1629   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
1630                          ** TK_VARIABLE: variable number (always >= 1). */
1631   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
1632   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
1633   u8 flags2;             /* Second set of flags.  EP2_... */
1634   u8 op2;                /* If a TK_REGISTER, the original value of Expr.op */
1635   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
1636   Table *pTab;           /* Table for TK_COLUMN expressions. */
1637 #if SQLITE_MAX_EXPR_DEPTH>0
1638   int nHeight;           /* Height of the tree headed by this node */
1639 #endif
1640 };
1641 
1642 /*
1643 ** The following are the meanings of bits in the Expr.flags field.
1644 */
1645 #define EP_FromJoin   0x0001  /* Originated in ON or USING clause of a join */
1646 #define EP_Agg        0x0002  /* Contains one or more aggregate functions */
1647 #define EP_Resolved   0x0004  /* IDs have been resolved to COLUMNs */
1648 #define EP_Error      0x0008  /* Expression contains one or more errors */
1649 #define EP_Distinct   0x0010  /* Aggregate function with DISTINCT keyword */
1650 #define EP_VarSelect  0x0020  /* pSelect is correlated, not constant */
1651 #define EP_DblQuoted  0x0040  /* token.z was originally in "..." */
1652 #define EP_InfixFunc  0x0080  /* True for an infix function: LIKE, GLOB, etc */
1653 #define EP_ExpCollate 0x0100  /* Collating sequence specified explicitly */
1654 #define EP_FixedDest  0x0200  /* Result needed in a specific register */
1655 #define EP_IntValue   0x0400  /* Integer value contained in u.iValue */
1656 #define EP_xIsSelect  0x0800  /* x.pSelect is valid (otherwise x.pList is) */
1657 
1658 #define EP_Reduced    0x1000  /* Expr struct is EXPR_REDUCEDSIZE bytes only */
1659 #define EP_TokenOnly  0x2000  /* Expr struct is EXPR_TOKENONLYSIZE bytes only */
1660 #define EP_Static     0x4000  /* Held in memory not obtained from malloc() */
1661 
1662 /*
1663 ** The following are the meanings of bits in the Expr.flags2 field.
1664 */
1665 #define EP2_MallocedToken  0x0001  /* Need to sqlite3DbFree() Expr.zToken */
1666 #define EP2_Irreducible    0x0002  /* Cannot EXPRDUP_REDUCE this Expr */
1667 
1668 /*
1669 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible
1670 ** flag on an expression structure.  This flag is used for VV&A only.  The
1671 ** routine is implemented as a macro that only works when in debugging mode,
1672 ** so as not to burden production code.
1673 */
1674 #ifdef SQLITE_DEBUG
1675 # define ExprSetIrreducible(X)  (X)->flags2 |= EP2_Irreducible
1676 #else
1677 # define ExprSetIrreducible(X)
1678 #endif
1679 
1680 /*
1681 ** These macros can be used to test, set, or clear bits in the
1682 ** Expr.flags field.
1683 */
1684 #define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
1685 #define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
1686 #define ExprSetProperty(E,P)     (E)->flags|=(P)
1687 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
1688 
1689 /*
1690 ** Macros to determine the number of bytes required by a normal Expr
1691 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
1692 ** and an Expr struct with the EP_TokenOnly flag set.
1693 */
1694 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
1695 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
1696 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
1697 
1698 /*
1699 ** Flags passed to the sqlite3ExprDup() function. See the header comment
1700 ** above sqlite3ExprDup() for details.
1701 */
1702 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
1703 
1704 /*
1705 ** A list of expressions.  Each expression may optionally have a
1706 ** name.  An expr/name combination can be used in several ways, such
1707 ** as the list of "expr AS ID" fields following a "SELECT" or in the
1708 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
1709 ** also be used as the argument to a function, in which case the a.zName
1710 ** field is not used.
1711 */
1712 struct ExprList {
1713   int nExpr;             /* Number of expressions on the list */
1714   int nAlloc;            /* Number of entries allocated below */
1715   int iECursor;          /* VDBE Cursor associated with this ExprList */
1716   struct ExprList_item {
1717     Expr *pExpr;           /* The list of expressions */
1718     char *zName;           /* Token associated with this expression */
1719     char *zSpan;           /* Original text of the expression */
1720     u8 sortOrder;          /* 1 for DESC or 0 for ASC */
1721     u8 done;               /* A flag to indicate when processing is finished */
1722     u16 iCol;              /* For ORDER BY, column number in result set */
1723     u16 iAlias;            /* Index into Parse.aAlias[] for zName */
1724   } *a;                  /* One entry for each expression */
1725 };
1726 
1727 /*
1728 ** An instance of this structure is used by the parser to record both
1729 ** the parse tree for an expression and the span of input text for an
1730 ** expression.
1731 */
1732 struct ExprSpan {
1733   Expr *pExpr;          /* The expression parse tree */
1734   const char *zStart;   /* First character of input text */
1735   const char *zEnd;     /* One character past the end of input text */
1736 };
1737 
1738 /*
1739 ** An instance of this structure can hold a simple list of identifiers,
1740 ** such as the list "a,b,c" in the following statements:
1741 **
1742 **      INSERT INTO t(a,b,c) VALUES ...;
1743 **      CREATE INDEX idx ON t(a,b,c);
1744 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
1745 **
1746 ** The IdList.a.idx field is used when the IdList represents the list of
1747 ** column names after a table name in an INSERT statement.  In the statement
1748 **
1749 **     INSERT INTO t(a,b,c) ...
1750 **
1751 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
1752 */
1753 struct IdList {
1754   struct IdList_item {
1755     char *zName;      /* Name of the identifier */
1756     int idx;          /* Index in some Table.aCol[] of a column named zName */
1757   } *a;
1758   int nId;         /* Number of identifiers on the list */
1759   int nAlloc;      /* Number of entries allocated for a[] below */
1760 };
1761 
1762 /*
1763 ** The bitmask datatype defined below is used for various optimizations.
1764 **
1765 ** Changing this from a 64-bit to a 32-bit type limits the number of
1766 ** tables in a join to 32 instead of 64.  But it also reduces the size
1767 ** of the library by 738 bytes on ix86.
1768 */
1769 typedef u64 Bitmask;
1770 
1771 /*
1772 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
1773 */
1774 #define BMS  ((int)(sizeof(Bitmask)*8))
1775 
1776 /*
1777 ** The following structure describes the FROM clause of a SELECT statement.
1778 ** Each table or subquery in the FROM clause is a separate element of
1779 ** the SrcList.a[] array.
1780 **
1781 ** With the addition of multiple database support, the following structure
1782 ** can also be used to describe a particular table such as the table that
1783 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
1784 ** such a table must be a simple name: ID.  But in SQLite, the table can
1785 ** now be identified by a database name, a dot, then the table name: ID.ID.
1786 **
1787 ** The jointype starts out showing the join type between the current table
1788 ** and the next table on the list.  The parser builds the list this way.
1789 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
1790 ** jointype expresses the join between the table and the previous table.
1791 **
1792 ** In the colUsed field, the high-order bit (bit 63) is set if the table
1793 ** contains more than 63 columns and the 64-th or later column is used.
1794 */
1795 struct SrcList {
1796   i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
1797   i16 nAlloc;      /* Number of entries allocated in a[] below */
1798   struct SrcList_item {
1799     char *zDatabase;  /* Name of database holding this table */
1800     char *zName;      /* Name of the table */
1801     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
1802     Table *pTab;      /* An SQL table corresponding to zName */
1803     Select *pSelect;  /* A SELECT statement used in place of a table name */
1804     u8 isPopulated;   /* Temporary table associated with SELECT is populated */
1805     u8 jointype;      /* Type of join between this able and the previous */
1806     u8 notIndexed;    /* True if there is a NOT INDEXED clause */
1807     int iCursor;      /* The VDBE cursor number used to access this table */
1808     Expr *pOn;        /* The ON clause of a join */
1809     IdList *pUsing;   /* The USING clause of a join */
1810     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
1811     char *zIndex;     /* Identifier from "INDEXED BY <zIndex>" clause */
1812     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
1813   } a[1];             /* One entry for each identifier on the list */
1814 };
1815 
1816 /*
1817 ** Permitted values of the SrcList.a.jointype field
1818 */
1819 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
1820 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
1821 #define JT_NATURAL   0x0004    /* True for a "natural" join */
1822 #define JT_LEFT      0x0008    /* Left outer join */
1823 #define JT_RIGHT     0x0010    /* Right outer join */
1824 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
1825 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
1826 
1827 
1828 /*
1829 ** A WherePlan object holds information that describes a lookup
1830 ** strategy.
1831 **
1832 ** This object is intended to be opaque outside of the where.c module.
1833 ** It is included here only so that that compiler will know how big it
1834 ** is.  None of the fields in this object should be used outside of
1835 ** the where.c module.
1836 **
1837 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
1838 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true.  And pVtabIdx
1839 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true.  It is never the
1840 ** case that more than one of these conditions is true.
1841 */
1842 struct WherePlan {
1843   u32 wsFlags;                   /* WHERE_* flags that describe the strategy */
1844   u32 nEq;                       /* Number of == constraints */
1845   union {
1846     Index *pIdx;                   /* Index when WHERE_INDEXED is true */
1847     struct WhereTerm *pTerm;       /* WHERE clause term for OR-search */
1848     sqlite3_index_info *pVtabIdx;  /* Virtual table index to use */
1849   } u;
1850 };
1851 
1852 /*
1853 ** For each nested loop in a WHERE clause implementation, the WhereInfo
1854 ** structure contains a single instance of this structure.  This structure
1855 ** is intended to be private the the where.c module and should not be
1856 ** access or modified by other modules.
1857 **
1858 ** The pIdxInfo field is used to help pick the best index on a
1859 ** virtual table.  The pIdxInfo pointer contains indexing
1860 ** information for the i-th table in the FROM clause before reordering.
1861 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
1862 ** All other information in the i-th WhereLevel object for the i-th table
1863 ** after FROM clause ordering.
1864 */
1865 struct WhereLevel {
1866   WherePlan plan;       /* query plan for this element of the FROM clause */
1867   int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
1868   int iTabCur;          /* The VDBE cursor used to access the table */
1869   int iIdxCur;          /* The VDBE cursor used to access pIdx */
1870   int addrBrk;          /* Jump here to break out of the loop */
1871   int addrNxt;          /* Jump here to start the next IN combination */
1872   int addrCont;         /* Jump here to continue with the next loop cycle */
1873   int addrFirst;        /* First instruction of interior of the loop */
1874   u8 iFrom;             /* Which entry in the FROM clause */
1875   u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
1876   int p1, p2;           /* Operands of the opcode used to ends the loop */
1877   union {               /* Information that depends on plan.wsFlags */
1878     struct {
1879       int nIn;              /* Number of entries in aInLoop[] */
1880       struct InLoop {
1881         int iCur;              /* The VDBE cursor used by this IN operator */
1882         int addrInTop;         /* Top of the IN loop */
1883       } *aInLoop;           /* Information about each nested IN operator */
1884     } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
1885   } u;
1886 
1887   /* The following field is really not part of the current level.  But
1888   ** we need a place to cache virtual table index information for each
1889   ** virtual table in the FROM clause and the WhereLevel structure is
1890   ** a convenient place since there is one WhereLevel for each FROM clause
1891   ** element.
1892   */
1893   sqlite3_index_info *pIdxInfo;  /* Index info for n-th source table */
1894 };
1895 
1896 /*
1897 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
1898 ** and the WhereInfo.wctrlFlags member.
1899 */
1900 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
1901 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
1902 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
1903 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
1904 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
1905 #define WHERE_OMIT_OPEN        0x0010 /* Table cursors are already open */
1906 #define WHERE_OMIT_CLOSE       0x0020 /* Omit close of table & index cursors */
1907 #define WHERE_FORCE_TABLE      0x0040 /* Do not use an index-only search */
1908 #define WHERE_ONETABLE_ONLY    0x0080 /* Only code the 1st table in pTabList */
1909 
1910 /*
1911 ** The WHERE clause processing routine has two halves.  The
1912 ** first part does the start of the WHERE loop and the second
1913 ** half does the tail of the WHERE loop.  An instance of
1914 ** this structure is returned by the first half and passed
1915 ** into the second half to give some continuity.
1916 */
1917 struct WhereInfo {
1918   Parse *pParse;       /* Parsing and code generating context */
1919   u16 wctrlFlags;      /* Flags originally passed to sqlite3WhereBegin() */
1920   u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */
1921   u8 untestedTerms;    /* Not all WHERE terms resolved by outer loop */
1922   SrcList *pTabList;             /* List of tables in the join */
1923   int iTop;                      /* The very beginning of the WHERE loop */
1924   int iContinue;                 /* Jump here to continue with next record */
1925   int iBreak;                    /* Jump here to break out of the loop */
1926   int nLevel;                    /* Number of nested loop */
1927   struct WhereClause *pWC;       /* Decomposition of the WHERE clause */
1928   double savedNQueryLoop;        /* pParse->nQueryLoop outside the WHERE loop */
1929   WhereLevel a[1];               /* Information about each nest loop in WHERE */
1930 };
1931 
1932 /*
1933 ** A NameContext defines a context in which to resolve table and column
1934 ** names.  The context consists of a list of tables (the pSrcList) field and
1935 ** a list of named expression (pEList).  The named expression list may
1936 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
1937 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
1938 ** pEList corresponds to the result set of a SELECT and is NULL for
1939 ** other statements.
1940 **
1941 ** NameContexts can be nested.  When resolving names, the inner-most
1942 ** context is searched first.  If no match is found, the next outer
1943 ** context is checked.  If there is still no match, the next context
1944 ** is checked.  This process continues until either a match is found
1945 ** or all contexts are check.  When a match is found, the nRef member of
1946 ** the context containing the match is incremented.
1947 **
1948 ** Each subquery gets a new NameContext.  The pNext field points to the
1949 ** NameContext in the parent query.  Thus the process of scanning the
1950 ** NameContext list corresponds to searching through successively outer
1951 ** subqueries looking for a match.
1952 */
1953 struct NameContext {
1954   Parse *pParse;       /* The parser */
1955   SrcList *pSrcList;   /* One or more tables used to resolve names */
1956   ExprList *pEList;    /* Optional list of named expressions */
1957   int nRef;            /* Number of names resolved by this context */
1958   int nErr;            /* Number of errors encountered while resolving names */
1959   u8 allowAgg;         /* Aggregate functions allowed here */
1960   u8 hasAgg;           /* True if aggregates are seen */
1961   u8 isCheck;          /* True if resolving names in a CHECK constraint */
1962   int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
1963   AggInfo *pAggInfo;   /* Information about aggregates at this level */
1964   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
1965 };
1966 
1967 /*
1968 ** An instance of the following structure contains all information
1969 ** needed to generate code for a single SELECT statement.
1970 **
1971 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
1972 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
1973 ** limit and nOffset to the value of the offset (or 0 if there is not
1974 ** offset).  But later on, nLimit and nOffset become the memory locations
1975 ** in the VDBE that record the limit and offset counters.
1976 **
1977 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
1978 ** These addresses must be stored so that we can go back and fill in
1979 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
1980 ** the number of columns in P2 can be computed at the same time
1981 ** as the OP_OpenEphm instruction is coded because not
1982 ** enough information about the compound query is known at that point.
1983 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
1984 ** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
1985 ** sequences for the ORDER BY clause.
1986 */
1987 struct Select {
1988   ExprList *pEList;      /* The fields of the result */
1989   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
1990   char affinity;         /* MakeRecord with this affinity for SRT_Set */
1991   u16 selFlags;          /* Various SF_* values */
1992   SrcList *pSrc;         /* The FROM clause */
1993   Expr *pWhere;          /* The WHERE clause */
1994   ExprList *pGroupBy;    /* The GROUP BY clause */
1995   Expr *pHaving;         /* The HAVING clause */
1996   ExprList *pOrderBy;    /* The ORDER BY clause */
1997   Select *pPrior;        /* Prior select in a compound select statement */
1998   Select *pNext;         /* Next select to the left in a compound */
1999   Select *pRightmost;    /* Right-most select in a compound select statement */
2000   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2001   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2002   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2003   int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
2004 };
2005 
2006 /*
2007 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
2008 ** "Select Flag".
2009 */
2010 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
2011 #define SF_Resolved        0x0002  /* Identifiers have been resolved */
2012 #define SF_Aggregate       0x0004  /* Contains aggregate functions */
2013 #define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
2014 #define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
2015 #define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
2016 
2017 
2018 /*
2019 ** The results of a select can be distributed in several ways.  The
2020 ** "SRT" prefix means "SELECT Result Type".
2021 */
2022 #define SRT_Union        1  /* Store result as keys in an index */
2023 #define SRT_Except       2  /* Remove result from a UNION index */
2024 #define SRT_Exists       3  /* Store 1 if the result is not empty */
2025 #define SRT_Discard      4  /* Do not save the results anywhere */
2026 
2027 /* The ORDER BY clause is ignored for all of the above */
2028 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
2029 
2030 #define SRT_Output       5  /* Output each row of result */
2031 #define SRT_Mem          6  /* Store result in a memory cell */
2032 #define SRT_Set          7  /* Store results as keys in an index */
2033 #define SRT_Table        8  /* Store result as data with an automatic rowid */
2034 #define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
2035 #define SRT_Coroutine   10  /* Generate a single row of result */
2036 
2037 /*
2038 ** A structure used to customize the behavior of sqlite3Select(). See
2039 ** comments above sqlite3Select() for details.
2040 */
2041 typedef struct SelectDest SelectDest;
2042 struct SelectDest {
2043   u8 eDest;         /* How to dispose of the results */
2044   u8 affinity;      /* Affinity used when eDest==SRT_Set */
2045   int iParm;        /* A parameter used by the eDest disposal method */
2046   int iMem;         /* Base register where results are written */
2047   int nMem;         /* Number of registers allocated */
2048 };
2049 
2050 /*
2051 ** During code generation of statements that do inserts into AUTOINCREMENT
2052 ** tables, the following information is attached to the Table.u.autoInc.p
2053 ** pointer of each autoincrement table to record some side information that
2054 ** the code generator needs.  We have to keep per-table autoincrement
2055 ** information in case inserts are down within triggers.  Triggers do not
2056 ** normally coordinate their activities, but we do need to coordinate the
2057 ** loading and saving of autoincrement information.
2058 */
2059 struct AutoincInfo {
2060   AutoincInfo *pNext;   /* Next info block in a list of them all */
2061   Table *pTab;          /* Table this info block refers to */
2062   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2063   int regCtr;           /* Memory register holding the rowid counter */
2064 };
2065 
2066 /*
2067 ** Size of the column cache
2068 */
2069 #ifndef SQLITE_N_COLCACHE
2070 # define SQLITE_N_COLCACHE 10
2071 #endif
2072 
2073 /*
2074 ** At least one instance of the following structure is created for each
2075 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2076 ** statement. All such objects are stored in the linked list headed at
2077 ** Parse.pTriggerPrg and deleted once statement compilation has been
2078 ** completed.
2079 **
2080 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2081 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2082 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2083 ** The Parse.pTriggerPrg list never contains two entries with the same
2084 ** values for both pTrigger and orconf.
2085 **
2086 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2087 ** accessed (or set to 0 for triggers fired as a result of INSERT
2088 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2089 ** a mask of new.* columns used by the program.
2090 */
2091 struct TriggerPrg {
2092   Trigger *pTrigger;      /* Trigger this program was coded from */
2093   int orconf;             /* Default ON CONFLICT policy */
2094   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2095   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2096   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2097 };
2098 
2099 /*
2100 ** An SQL parser context.  A copy of this structure is passed through
2101 ** the parser and down into all the parser action routine in order to
2102 ** carry around information that is global to the entire parse.
2103 **
2104 ** The structure is divided into two parts.  When the parser and code
2105 ** generate call themselves recursively, the first part of the structure
2106 ** is constant but the second part is reset at the beginning and end of
2107 ** each recursion.
2108 **
2109 ** The nTableLock and aTableLock variables are only used if the shared-cache
2110 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2111 ** used to store the set of table-locks required by the statement being
2112 ** compiled. Function sqlite3TableLock() is used to add entries to the
2113 ** list.
2114 */
2115 struct Parse {
2116   sqlite3 *db;         /* The main database structure */
2117   int rc;              /* Return code from execution */
2118   char *zErrMsg;       /* An error message */
2119   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2120   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2121   u8 nameClash;        /* A permanent table name clashes with temp table name */
2122   u8 checkSchema;      /* Causes schema cookie check after an error */
2123   u8 nested;           /* Number of nested calls to the parser/code generator */
2124   u8 parseError;       /* True after a parsing error.  Ticket #1794 */
2125   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2126   u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
2127   int aTempReg[8];     /* Holding area for temporary registers */
2128   int nRangeReg;       /* Size of the temporary register block */
2129   int iRangeReg;       /* First register in temporary register block */
2130   int nErr;            /* Number of errors seen */
2131   int nTab;            /* Number of previously allocated VDBE cursors */
2132   int nMem;            /* Number of memory cells used so far */
2133   int nSet;            /* Number of sets used so far */
2134   int ckBase;          /* Base register of data during check constraints */
2135   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2136   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2137   u8 nColCache;        /* Number of entries in the column cache */
2138   u8 iColCache;        /* Next entry of the cache to replace */
2139   struct yColCache {
2140     int iTable;           /* Table cursor number */
2141     int iColumn;          /* Table column number */
2142     u8 tempReg;           /* iReg is a temp register that needs to be freed */
2143     int iLevel;           /* Nesting level */
2144     int iReg;             /* Reg with value of this column. 0 means none. */
2145     int lru;              /* Least recently used entry has the smallest value */
2146   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2147   u32 writeMask;       /* Start a write transaction on these databases */
2148   u32 cookieMask;      /* Bitmask of schema verified databases */
2149   u8 isMultiWrite;     /* True if statement may affect/insert multiple rows */
2150   u8 mayAbort;         /* True if statement may throw an ABORT exception */
2151   int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
2152   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2153 #ifndef SQLITE_OMIT_SHARED_CACHE
2154   int nTableLock;        /* Number of locks in aTableLock */
2155   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2156 #endif
2157   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2158   int regRoot;         /* Register holding root page number for new objects */
2159   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2160   int nMaxArg;         /* Max args passed to user function by sub-program */
2161 
2162   /* Information used while coding trigger programs. */
2163   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
2164   Table *pTriggerTab;  /* Table triggers are being coded for */
2165   u32 oldmask;         /* Mask of old.* columns referenced */
2166   u32 newmask;         /* Mask of new.* columns referenced */
2167   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
2168   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
2169   u8 disableTriggers;  /* True to disable triggers */
2170   double nQueryLoop;   /* Estimated number of iterations of a query */
2171 
2172   /* Above is constant between recursions.  Below is reset before and after
2173   ** each recursion */
2174 
2175   int nVar;            /* Number of '?' variables seen in the SQL so far */
2176   int nVarExpr;        /* Number of used slots in apVarExpr[] */
2177   int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
2178   Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
2179   Vdbe *pReprepare;    /* VM being reprepared (sqlite3Reprepare()) */
2180   int nAlias;          /* Number of aliased result set columns */
2181   int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
2182   int *aAlias;         /* Register used to hold aliased result */
2183   u8 explain;          /* True if the EXPLAIN flag is found on the query */
2184   Token sNameToken;    /* Token with unqualified schema object name */
2185   Token sLastToken;    /* The last token parsed */
2186   const char *zTail;   /* All SQL text past the last semicolon parsed */
2187   Table *pNewTable;    /* A table being constructed by CREATE TABLE */
2188   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2189   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2190 #ifndef SQLITE_OMIT_VIRTUALTABLE
2191   Token sArg;                /* Complete text of a module argument */
2192   u8 declareVtab;            /* True if inside sqlite3_declare_vtab() */
2193   int nVtabLock;             /* Number of virtual tables to lock */
2194   Table **apVtabLock;        /* Pointer to virtual tables needing locking */
2195 #endif
2196   int nHeight;            /* Expression tree height of current sub-select */
2197   Table *pZombieTab;      /* List of Table objects to delete after code gen */
2198   TriggerPrg *pTriggerPrg;    /* Linked list of coded triggers */
2199 };
2200 
2201 #ifdef SQLITE_OMIT_VIRTUALTABLE
2202   #define IN_DECLARE_VTAB 0
2203 #else
2204   #define IN_DECLARE_VTAB (pParse->declareVtab)
2205 #endif
2206 
2207 /*
2208 ** An instance of the following structure can be declared on a stack and used
2209 ** to save the Parse.zAuthContext value so that it can be restored later.
2210 */
2211 struct AuthContext {
2212   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2213   Parse *pParse;              /* The Parse structure */
2214 };
2215 
2216 /*
2217 ** Bitfield flags for P5 value in OP_Insert and OP_Delete
2218 */
2219 #define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
2220 #define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
2221 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
2222 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
2223 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
2224 #define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */
2225 
2226 /*
2227  * Each trigger present in the database schema is stored as an instance of
2228  * struct Trigger.
2229  *
2230  * Pointers to instances of struct Trigger are stored in two ways.
2231  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2232  *    database). This allows Trigger structures to be retrieved by name.
2233  * 2. All triggers associated with a single table form a linked list, using the
2234  *    pNext member of struct Trigger. A pointer to the first element of the
2235  *    linked list is stored as the "pTrigger" member of the associated
2236  *    struct Table.
2237  *
2238  * The "step_list" member points to the first element of a linked list
2239  * containing the SQL statements specified as the trigger program.
2240  */
2241 struct Trigger {
2242   char *zName;            /* The name of the trigger                        */
2243   char *table;            /* The table or view to which the trigger applies */
2244   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2245   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2246   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2247   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2248                              the <column-list> is stored here */
2249   Schema *pSchema;        /* Schema containing the trigger */
2250   Schema *pTabSchema;     /* Schema containing the table */
2251   TriggerStep *step_list; /* Link list of trigger program steps             */
2252   Trigger *pNext;         /* Next trigger associated with the table */
2253 };
2254 
2255 /*
2256 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2257 ** determine which.
2258 **
2259 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2260 ** In that cases, the constants below can be ORed together.
2261 */
2262 #define TRIGGER_BEFORE  1
2263 #define TRIGGER_AFTER   2
2264 
2265 /*
2266  * An instance of struct TriggerStep is used to store a single SQL statement
2267  * that is a part of a trigger-program.
2268  *
2269  * Instances of struct TriggerStep are stored in a singly linked list (linked
2270  * using the "pNext" member) referenced by the "step_list" member of the
2271  * associated struct Trigger instance. The first element of the linked list is
2272  * the first step of the trigger-program.
2273  *
2274  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2275  * "SELECT" statement. The meanings of the other members is determined by the
2276  * value of "op" as follows:
2277  *
2278  * (op == TK_INSERT)
2279  * orconf    -> stores the ON CONFLICT algorithm
2280  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2281  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2282  * target    -> A token holding the quoted name of the table to insert into.
2283  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2284  *              this stores values to be inserted. Otherwise NULL.
2285  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2286  *              statement, then this stores the column-names to be
2287  *              inserted into.
2288  *
2289  * (op == TK_DELETE)
2290  * target    -> A token holding the quoted name of the table to delete from.
2291  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2292  *              Otherwise NULL.
2293  *
2294  * (op == TK_UPDATE)
2295  * target    -> A token holding the quoted name of the table to update rows of.
2296  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2297  *              Otherwise NULL.
2298  * pExprList -> A list of the columns to update and the expressions to update
2299  *              them to. See sqlite3Update() documentation of "pChanges"
2300  *              argument.
2301  *
2302  */
2303 struct TriggerStep {
2304   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2305   u8 orconf;           /* OE_Rollback etc. */
2306   Trigger *pTrig;      /* The trigger that this step is a part of */
2307   Select *pSelect;     /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
2308   Token target;        /* Target table for DELETE, UPDATE, INSERT */
2309   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2310   ExprList *pExprList; /* SET clause for UPDATE.  VALUES clause for INSERT */
2311   IdList *pIdList;     /* Column names for INSERT */
2312   TriggerStep *pNext;  /* Next in the link-list */
2313   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2314 };
2315 
2316 /*
2317 ** The following structure contains information used by the sqliteFix...
2318 ** routines as they walk the parse tree to make database references
2319 ** explicit.
2320 */
2321 typedef struct DbFixer DbFixer;
2322 struct DbFixer {
2323   Parse *pParse;      /* The parsing context.  Error messages written here */
2324   const char *zDb;    /* Make sure all objects are contained in this database */
2325   const char *zType;  /* Type of the container - used for error messages */
2326   const Token *pName; /* Name of the container - used for error messages */
2327 };
2328 
2329 /*
2330 ** An objected used to accumulate the text of a string where we
2331 ** do not necessarily know how big the string will be in the end.
2332 */
2333 struct StrAccum {
2334   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2335   char *zBase;         /* A base allocation.  Not from malloc. */
2336   char *zText;         /* The string collected so far */
2337   int  nChar;          /* Length of the string so far */
2338   int  nAlloc;         /* Amount of space allocated in zText */
2339   int  mxAlloc;        /* Maximum allowed string length */
2340   u8   mallocFailed;   /* Becomes true if any memory allocation fails */
2341   u8   useMalloc;      /* True if zText is enlargeable using realloc */
2342   u8   tooBig;         /* Becomes true if string size exceeds limits */
2343 };
2344 
2345 /*
2346 ** A pointer to this structure is used to communicate information
2347 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2348 */
2349 typedef struct {
2350   sqlite3 *db;        /* The database being initialized */
2351   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2352   char **pzErrMsg;    /* Error message stored here */
2353   int rc;             /* Result code stored here */
2354 } InitData;
2355 
2356 /*
2357 ** Structure containing global configuration data for the SQLite library.
2358 **
2359 ** This structure also contains some state information.
2360 */
2361 struct Sqlite3Config {
2362   int bMemstat;                     /* True to enable memory status */
2363   int bCoreMutex;                   /* True to enable core mutexing */
2364   int bFullMutex;                   /* True to enable full mutexing */
2365   int mxStrlen;                     /* Maximum string length */
2366   int szLookaside;                  /* Default lookaside buffer size */
2367   int nLookaside;                   /* Default lookaside buffer count */
2368   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2369   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2370   sqlite3_pcache_methods pcache;    /* Low-level page-cache interface */
2371   void *pHeap;                      /* Heap storage space */
2372   int nHeap;                        /* Size of pHeap[] */
2373   int mnReq, mxReq;                 /* Min and max heap requests sizes */
2374   void *pScratch;                   /* Scratch memory */
2375   int szScratch;                    /* Size of each scratch buffer */
2376   int nScratch;                     /* Number of scratch buffers */
2377   void *pPage;                      /* Page cache memory */
2378   int szPage;                       /* Size of each page in pPage[] */
2379   int nPage;                        /* Number of pages in pPage[] */
2380   int mxParserStack;                /* maximum depth of the parser stack */
2381   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2382   /* The above might be initialized to non-zero.  The following need to always
2383   ** initially be zero, however. */
2384   int isInit;                       /* True after initialization has finished */
2385   int inProgress;                   /* True while initialization in progress */
2386   int isMutexInit;                  /* True after mutexes are initialized */
2387   int isMallocInit;                 /* True after malloc is initialized */
2388   int isPCacheInit;                 /* True after malloc is initialized */
2389   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2390   int nRefInitMutex;                /* Number of users of pInitMutex */
2391   void (*xLog)(void*,int,const char*); /* Function for logging */
2392   void *pLogArg;                       /* First argument to xLog() */
2393 };
2394 
2395 /*
2396 ** Context pointer passed down through the tree-walk.
2397 */
2398 struct Walker {
2399   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2400   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2401   Parse *pParse;                            /* Parser context.  */
2402   union {                                   /* Extra data for callback */
2403     NameContext *pNC;                          /* Naming context */
2404     int i;                                     /* Integer value */
2405   } u;
2406 };
2407 
2408 /* Forward declarations */
2409 int sqlite3WalkExpr(Walker*, Expr*);
2410 int sqlite3WalkExprList(Walker*, ExprList*);
2411 int sqlite3WalkSelect(Walker*, Select*);
2412 int sqlite3WalkSelectExpr(Walker*, Select*);
2413 int sqlite3WalkSelectFrom(Walker*, Select*);
2414 
2415 /*
2416 ** Return code from the parse-tree walking primitives and their
2417 ** callbacks.
2418 */
2419 #define WRC_Continue    0   /* Continue down into children */
2420 #define WRC_Prune       1   /* Omit children but continue walking siblings */
2421 #define WRC_Abort       2   /* Abandon the tree walk */
2422 
2423 /*
2424 ** Assuming zIn points to the first byte of a UTF-8 character,
2425 ** advance zIn to point to the first byte of the next UTF-8 character.
2426 */
2427 #define SQLITE_SKIP_UTF8(zIn) {                        \
2428   if( (*(zIn++))>=0xc0 ){                              \
2429     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
2430   }                                                    \
2431 }
2432 
2433 /*
2434 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
2435 ** the same name but without the _BKPT suffix.  These macros invoke
2436 ** routines that report the line-number on which the error originated
2437 ** using sqlite3_log().  The routines also provide a convenient place
2438 ** to set a debugger breakpoint.
2439 */
2440 int sqlite3CorruptError(int);
2441 int sqlite3MisuseError(int);
2442 int sqlite3CantopenError(int);
2443 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
2444 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
2445 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
2446 
2447 
2448 /*
2449 ** FTS4 is really an extension for FTS3.  It is enabled using the
2450 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
2451 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
2452 */
2453 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
2454 # define SQLITE_ENABLE_FTS3
2455 #endif
2456 
2457 /*
2458 ** The ctype.h header is needed for non-ASCII systems.  It is also
2459 ** needed by FTS3 when FTS3 is included in the amalgamation.
2460 */
2461 #if !defined(SQLITE_ASCII) || \
2462     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
2463 # include <ctype.h>
2464 #endif
2465 
2466 /*
2467 ** The following macros mimic the standard library functions toupper(),
2468 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
2469 ** sqlite versions only work for ASCII characters, regardless of locale.
2470 */
2471 #ifdef SQLITE_ASCII
2472 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
2473 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
2474 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
2475 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
2476 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
2477 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
2478 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
2479 #else
2480 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
2481 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
2482 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
2483 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
2484 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
2485 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
2486 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
2487 #endif
2488 
2489 /*
2490 ** Internal function prototypes
2491 */
2492 int sqlite3StrICmp(const char *, const char *);
2493 int sqlite3IsNumber(const char*, int*, u8);
2494 int sqlite3Strlen30(const char*);
2495 #define sqlite3StrNICmp sqlite3_strnicmp
2496 
2497 int sqlite3MallocInit(void);
2498 void sqlite3MallocEnd(void);
2499 void *sqlite3Malloc(int);
2500 void *sqlite3MallocZero(int);
2501 void *sqlite3DbMallocZero(sqlite3*, int);
2502 void *sqlite3DbMallocRaw(sqlite3*, int);
2503 char *sqlite3DbStrDup(sqlite3*,const char*);
2504 char *sqlite3DbStrNDup(sqlite3*,const char*, int);
2505 void *sqlite3Realloc(void*, int);
2506 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
2507 void *sqlite3DbRealloc(sqlite3 *, void *, int);
2508 void sqlite3DbFree(sqlite3*, void*);
2509 int sqlite3MallocSize(void*);
2510 int sqlite3DbMallocSize(sqlite3*, void*);
2511 void *sqlite3ScratchMalloc(int);
2512 void sqlite3ScratchFree(void*);
2513 void *sqlite3PageMalloc(int);
2514 void sqlite3PageFree(void*);
2515 void sqlite3MemSetDefault(void);
2516 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
2517 int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64);
2518 
2519 /*
2520 ** On systems with ample stack space and that support alloca(), make
2521 ** use of alloca() to obtain space for large automatic objects.  By default,
2522 ** obtain space from malloc().
2523 **
2524 ** The alloca() routine never returns NULL.  This will cause code paths
2525 ** that deal with sqlite3StackAlloc() failures to be unreachable.
2526 */
2527 #ifdef SQLITE_USE_ALLOCA
2528 # define sqlite3StackAllocRaw(D,N)   alloca(N)
2529 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
2530 # define sqlite3StackFree(D,P)
2531 #else
2532 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
2533 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
2534 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
2535 #endif
2536 
2537 #ifdef SQLITE_ENABLE_MEMSYS3
2538 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
2539 #endif
2540 #ifdef SQLITE_ENABLE_MEMSYS5
2541 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
2542 #endif
2543 
2544 
2545 #ifndef SQLITE_MUTEX_OMIT
2546   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
2547   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
2548   sqlite3_mutex *sqlite3MutexAlloc(int);
2549   int sqlite3MutexInit(void);
2550   int sqlite3MutexEnd(void);
2551 #endif
2552 
2553 int sqlite3StatusValue(int);
2554 void sqlite3StatusAdd(int, int);
2555 void sqlite3StatusSet(int, int);
2556 
2557 #ifndef SQLITE_OMIT_FLOATING_POINT
2558   int sqlite3IsNaN(double);
2559 #else
2560 # define sqlite3IsNaN(X)  0
2561 #endif
2562 
2563 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
2564 #ifndef SQLITE_OMIT_TRACE
2565 void sqlite3XPrintf(StrAccum*, const char*, ...);
2566 #endif
2567 char *sqlite3MPrintf(sqlite3*,const char*, ...);
2568 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
2569 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
2570 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
2571   void sqlite3DebugPrintf(const char*, ...);
2572 #endif
2573 #if defined(SQLITE_TEST)
2574   void *sqlite3TestTextToPtr(const char*);
2575 #endif
2576 void sqlite3SetString(char **, sqlite3*, const char*, ...);
2577 void sqlite3ErrorMsg(Parse*, const char*, ...);
2578 int sqlite3Dequote(char*);
2579 int sqlite3KeywordCode(const unsigned char*, int);
2580 int sqlite3RunParser(Parse*, const char*, char **);
2581 void sqlite3FinishCoding(Parse*);
2582 int sqlite3GetTempReg(Parse*);
2583 void sqlite3ReleaseTempReg(Parse*,int);
2584 int sqlite3GetTempRange(Parse*,int);
2585 void sqlite3ReleaseTempRange(Parse*,int,int);
2586 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
2587 Expr *sqlite3Expr(sqlite3*,int,const char*);
2588 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
2589 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
2590 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
2591 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
2592 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
2593 void sqlite3ExprDelete(sqlite3*, Expr*);
2594 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
2595 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
2596 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
2597 void sqlite3ExprListDelete(sqlite3*, ExprList*);
2598 int sqlite3Init(sqlite3*, char**);
2599 int sqlite3InitCallback(void*, int, char**, char**);
2600 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
2601 void sqlite3ResetInternalSchema(sqlite3*, int);
2602 void sqlite3BeginParse(Parse*,int);
2603 void sqlite3CommitInternalChanges(sqlite3*);
2604 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
2605 void sqlite3OpenMasterTable(Parse *, int);
2606 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
2607 void sqlite3AddColumn(Parse*,Token*);
2608 void sqlite3AddNotNull(Parse*, int);
2609 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
2610 void sqlite3AddCheckConstraint(Parse*, Expr*);
2611 void sqlite3AddColumnType(Parse*,Token*);
2612 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
2613 void sqlite3AddCollateType(Parse*, Token*);
2614 void sqlite3EndTable(Parse*,Token*,Token*,Select*);
2615 
2616 Bitvec *sqlite3BitvecCreate(u32);
2617 int sqlite3BitvecTest(Bitvec*, u32);
2618 int sqlite3BitvecSet(Bitvec*, u32);
2619 void sqlite3BitvecClear(Bitvec*, u32, void*);
2620 void sqlite3BitvecDestroy(Bitvec*);
2621 u32 sqlite3BitvecSize(Bitvec*);
2622 int sqlite3BitvecBuiltinTest(int,int*);
2623 
2624 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
2625 void sqlite3RowSetClear(RowSet*);
2626 void sqlite3RowSetInsert(RowSet*, i64);
2627 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64);
2628 int sqlite3RowSetNext(RowSet*, i64*);
2629 
2630 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
2631 
2632 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2633   int sqlite3ViewGetColumnNames(Parse*,Table*);
2634 #else
2635 # define sqlite3ViewGetColumnNames(A,B) 0
2636 #endif
2637 
2638 void sqlite3DropTable(Parse*, SrcList*, int, int);
2639 void sqlite3DeleteTable(Table*);
2640 #ifndef SQLITE_OMIT_AUTOINCREMENT
2641   void sqlite3AutoincrementBegin(Parse *pParse);
2642   void sqlite3AutoincrementEnd(Parse *pParse);
2643 #else
2644 # define sqlite3AutoincrementBegin(X)
2645 # define sqlite3AutoincrementEnd(X)
2646 #endif
2647 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
2648 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
2649 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
2650 int sqlite3IdListIndex(IdList*,const char*);
2651 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
2652 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
2653 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
2654                                       Token*, Select*, Expr*, IdList*);
2655 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
2656 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
2657 void sqlite3SrcListShiftJoinType(SrcList*);
2658 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
2659 void sqlite3IdListDelete(sqlite3*, IdList*);
2660 void sqlite3SrcListDelete(sqlite3*, SrcList*);
2661 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
2662                         Token*, int, int);
2663 void sqlite3DropIndex(Parse*, SrcList*, int);
2664 int sqlite3Select(Parse*, Select*, SelectDest*);
2665 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
2666                          Expr*,ExprList*,int,Expr*,Expr*);
2667 void sqlite3SelectDelete(sqlite3*, Select*);
2668 Table *sqlite3SrcListLookup(Parse*, SrcList*);
2669 int sqlite3IsReadOnly(Parse*, Table*, int);
2670 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
2671 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
2672 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
2673 #endif
2674 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
2675 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
2676 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16);
2677 void sqlite3WhereEnd(WhereInfo*);
2678 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int);
2679 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
2680 void sqlite3ExprCodeMove(Parse*, int, int, int);
2681 void sqlite3ExprCodeCopy(Parse*, int, int, int);
2682 void sqlite3ExprCacheStore(Parse*, int, int, int);
2683 void sqlite3ExprCachePush(Parse*);
2684 void sqlite3ExprCachePop(Parse*, int);
2685 void sqlite3ExprCacheRemove(Parse*, int, int);
2686 void sqlite3ExprCacheClear(Parse*);
2687 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
2688 void sqlite3ExprHardCopy(Parse*,int,int);
2689 int sqlite3ExprCode(Parse*, Expr*, int);
2690 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
2691 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
2692 int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
2693 void sqlite3ExprCodeConstants(Parse*, Expr*);
2694 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
2695 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
2696 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
2697 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
2698 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
2699 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
2700 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
2701 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
2702 void sqlite3Vacuum(Parse*);
2703 int sqlite3RunVacuum(char**, sqlite3*);
2704 char *sqlite3NameFromToken(sqlite3*, Token*);
2705 int sqlite3ExprCompare(Expr*, Expr*);
2706 int sqlite3ExprListCompare(ExprList*, ExprList*);
2707 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
2708 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
2709 Vdbe *sqlite3GetVdbe(Parse*);
2710 void sqlite3PrngSaveState(void);
2711 void sqlite3PrngRestoreState(void);
2712 void sqlite3PrngResetState(void);
2713 void sqlite3RollbackAll(sqlite3*);
2714 void sqlite3CodeVerifySchema(Parse*, int);
2715 void sqlite3BeginTransaction(Parse*, int);
2716 void sqlite3CommitTransaction(Parse*);
2717 void sqlite3RollbackTransaction(Parse*);
2718 void sqlite3Savepoint(Parse*, int, Token*);
2719 void sqlite3CloseSavepoints(sqlite3 *);
2720 int sqlite3ExprIsConstant(Expr*);
2721 int sqlite3ExprIsConstantNotJoin(Expr*);
2722 int sqlite3ExprIsConstantOrFunction(Expr*);
2723 int sqlite3ExprIsInteger(Expr*, int*);
2724 int sqlite3ExprCanBeNull(const Expr*);
2725 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
2726 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
2727 int sqlite3IsRowid(const char*);
2728 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
2729 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
2730 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
2731 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
2732                                      int*,int,int,int,int,int*);
2733 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
2734 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
2735 void sqlite3BeginWriteOperation(Parse*, int, int);
2736 void sqlite3MultiWrite(Parse*);
2737 void sqlite3MayAbort(Parse*);
2738 void sqlite3HaltConstraint(Parse*, int, char*, int);
2739 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
2740 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
2741 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
2742 IdList *sqlite3IdListDup(sqlite3*,IdList*);
2743 Select *sqlite3SelectDup(sqlite3*,Select*,int);
2744 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
2745 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
2746 void sqlite3RegisterBuiltinFunctions(sqlite3*);
2747 void sqlite3RegisterDateTimeFunctions(void);
2748 void sqlite3RegisterGlobalFunctions(void);
2749 int sqlite3SafetyCheckOk(sqlite3*);
2750 int sqlite3SafetyCheckSickOrOk(sqlite3*);
2751 void sqlite3ChangeCookie(Parse*, int);
2752 
2753 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
2754 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
2755 #endif
2756 
2757 #ifndef SQLITE_OMIT_TRIGGER
2758   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
2759                            Expr*,int, int);
2760   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
2761   void sqlite3DropTrigger(Parse*, SrcList*, int);
2762   void sqlite3DropTriggerPtr(Parse*, Trigger*);
2763   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
2764   Trigger *sqlite3TriggerList(Parse *, Table *);
2765   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
2766                             int, int, int);
2767   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
2768   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
2769   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
2770   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
2771   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
2772                                         ExprList*,Select*,u8);
2773   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
2774   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
2775   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
2776   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
2777   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
2778 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
2779 #else
2780 # define sqlite3TriggersExist(B,C,D,E,F) 0
2781 # define sqlite3DeleteTrigger(A,B)
2782 # define sqlite3DropTriggerPtr(A,B)
2783 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
2784 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
2785 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
2786 # define sqlite3TriggerList(X, Y) 0
2787 # define sqlite3ParseToplevel(p) p
2788 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
2789 #endif
2790 
2791 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
2792 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
2793 void sqlite3DeferForeignKey(Parse*, int);
2794 #ifndef SQLITE_OMIT_AUTHORIZATION
2795   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
2796   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
2797   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
2798   void sqlite3AuthContextPop(AuthContext*);
2799   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
2800 #else
2801 # define sqlite3AuthRead(a,b,c,d)
2802 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
2803 # define sqlite3AuthContextPush(a,b,c)
2804 # define sqlite3AuthContextPop(a)  ((void)(a))
2805 #endif
2806 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
2807 void sqlite3Detach(Parse*, Expr*);
2808 int sqlite3BtreeFactory(sqlite3 *db, const char *zFilename,
2809                        int omitJournal, int nCache, int flags, Btree **ppBtree);
2810 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
2811 int sqlite3FixSrcList(DbFixer*, SrcList*);
2812 int sqlite3FixSelect(DbFixer*, Select*);
2813 int sqlite3FixExpr(DbFixer*, Expr*);
2814 int sqlite3FixExprList(DbFixer*, ExprList*);
2815 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
2816 int sqlite3AtoF(const char *z, double*);
2817 int sqlite3GetInt32(const char *, int*);
2818 int sqlite3FitsIn64Bits(const char *, int);
2819 int sqlite3Utf16ByteLen(const void *pData, int nChar);
2820 int sqlite3Utf8CharLen(const char *pData, int nByte);
2821 int sqlite3Utf8Read(const u8*, const u8**);
2822 
2823 /*
2824 ** Routines to read and write variable-length integers.  These used to
2825 ** be defined locally, but now we use the varint routines in the util.c
2826 ** file.  Code should use the MACRO forms below, as the Varint32 versions
2827 ** are coded to assume the single byte case is already handled (which
2828 ** the MACRO form does).
2829 */
2830 int sqlite3PutVarint(unsigned char*, u64);
2831 int sqlite3PutVarint32(unsigned char*, u32);
2832 u8 sqlite3GetVarint(const unsigned char *, u64 *);
2833 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
2834 int sqlite3VarintLen(u64 v);
2835 
2836 /*
2837 ** The header of a record consists of a sequence variable-length integers.
2838 ** These integers are almost always small and are encoded as a single byte.
2839 ** The following macros take advantage this fact to provide a fast encode
2840 ** and decode of the integers in a record header.  It is faster for the common
2841 ** case where the integer is a single byte.  It is a little slower when the
2842 ** integer is two or more bytes.  But overall it is faster.
2843 **
2844 ** The following expressions are equivalent:
2845 **
2846 **     x = sqlite3GetVarint32( A, &B );
2847 **     x = sqlite3PutVarint32( A, B );
2848 **
2849 **     x = getVarint32( A, B );
2850 **     x = putVarint32( A, B );
2851 **
2852 */
2853 #define getVarint32(A,B)  (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
2854 #define putVarint32(A,B)  (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
2855 #define getVarint    sqlite3GetVarint
2856 #define putVarint    sqlite3PutVarint
2857 
2858 
2859 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
2860 void sqlite3TableAffinityStr(Vdbe *, Table *);
2861 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
2862 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
2863 char sqlite3ExprAffinity(Expr *pExpr);
2864 int sqlite3Atoi64(const char*, i64*);
2865 void sqlite3Error(sqlite3*, int, const char*,...);
2866 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
2867 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
2868 const char *sqlite3ErrStr(int);
2869 int sqlite3ReadSchema(Parse *pParse);
2870 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
2871 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
2872 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
2873 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
2874 int sqlite3CheckCollSeq(Parse *, CollSeq *);
2875 int sqlite3CheckObjectName(Parse *, const char *);
2876 void sqlite3VdbeSetChanges(sqlite3 *, int);
2877 
2878 const void *sqlite3ValueText(sqlite3_value*, u8);
2879 int sqlite3ValueBytes(sqlite3_value*, u8);
2880 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
2881                         void(*)(void*));
2882 void sqlite3ValueFree(sqlite3_value*);
2883 sqlite3_value *sqlite3ValueNew(sqlite3 *);
2884 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
2885 #ifdef SQLITE_ENABLE_STAT2
2886 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
2887 #endif
2888 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
2889 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
2890 #ifndef SQLITE_AMALGAMATION
2891 extern const unsigned char sqlite3OpcodeProperty[];
2892 extern const unsigned char sqlite3UpperToLower[];
2893 extern const unsigned char sqlite3CtypeMap[];
2894 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
2895 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
2896 #ifndef SQLITE_OMIT_WSD
2897 extern int sqlite3PendingByte;
2898 #endif
2899 #endif
2900 void sqlite3RootPageMoved(Db*, int, int);
2901 void sqlite3Reindex(Parse*, Token*, Token*);
2902 void sqlite3AlterFunctions(void);
2903 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
2904 int sqlite3GetToken(const unsigned char *, int *);
2905 void sqlite3NestedParse(Parse*, const char*, ...);
2906 void sqlite3ExpirePreparedStatements(sqlite3*);
2907 int sqlite3CodeSubselect(Parse *, Expr *, int, int);
2908 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
2909 int sqlite3ResolveExprNames(NameContext*, Expr*);
2910 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
2911 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
2912 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
2913 void sqlite3AlterFinishAddColumn(Parse *, Token *);
2914 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
2915 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*);
2916 char sqlite3AffinityType(const char*);
2917 void sqlite3Analyze(Parse*, Token*, Token*);
2918 int sqlite3InvokeBusyHandler(BusyHandler*);
2919 int sqlite3FindDb(sqlite3*, Token*);
2920 int sqlite3FindDbName(sqlite3 *, const char *);
2921 int sqlite3AnalysisLoad(sqlite3*,int iDB);
2922 void sqlite3DeleteIndexSamples(Index*);
2923 void sqlite3DefaultRowEst(Index*);
2924 void sqlite3RegisterLikeFunctions(sqlite3*, int);
2925 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
2926 void sqlite3MinimumFileFormat(Parse*, int, int);
2927 void sqlite3SchemaFree(void *);
2928 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
2929 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
2930 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
2931 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
2932   void (*)(sqlite3_context*,int,sqlite3_value **),
2933   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
2934 int sqlite3ApiExit(sqlite3 *db, int);
2935 int sqlite3OpenTempDatabase(Parse *);
2936 
2937 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
2938 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
2939 char *sqlite3StrAccumFinish(StrAccum*);
2940 void sqlite3StrAccumReset(StrAccum*);
2941 void sqlite3SelectDestInit(SelectDest*,int,int);
2942 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
2943 
2944 void sqlite3BackupRestart(sqlite3_backup *);
2945 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
2946 
2947 /*
2948 ** The interface to the LEMON-generated parser
2949 */
2950 void *sqlite3ParserAlloc(void*(*)(size_t));
2951 void sqlite3ParserFree(void*, void(*)(void*));
2952 void sqlite3Parser(void*, int, Token, Parse*);
2953 #ifdef YYTRACKMAXSTACKDEPTH
2954   int sqlite3ParserStackPeak(void*);
2955 #endif
2956 
2957 void sqlite3AutoLoadExtensions(sqlite3*);
2958 #ifndef SQLITE_OMIT_LOAD_EXTENSION
2959   void sqlite3CloseExtensions(sqlite3*);
2960 #else
2961 # define sqlite3CloseExtensions(X)
2962 #endif
2963 
2964 #ifndef SQLITE_OMIT_SHARED_CACHE
2965   void sqlite3TableLock(Parse *, int, int, u8, const char *);
2966 #else
2967   #define sqlite3TableLock(v,w,x,y,z)
2968 #endif
2969 
2970 #ifdef SQLITE_TEST
2971   int sqlite3Utf8To8(unsigned char*);
2972 #endif
2973 
2974 #ifdef SQLITE_OMIT_VIRTUALTABLE
2975 #  define sqlite3VtabClear(Y)
2976 #  define sqlite3VtabSync(X,Y) SQLITE_OK
2977 #  define sqlite3VtabRollback(X)
2978 #  define sqlite3VtabCommit(X)
2979 #  define sqlite3VtabInSync(db) 0
2980 #  define sqlite3VtabLock(X)
2981 #  define sqlite3VtabUnlock(X)
2982 #  define sqlite3VtabUnlockList(X)
2983 #else
2984    void sqlite3VtabClear(Table*);
2985    int sqlite3VtabSync(sqlite3 *db, char **);
2986    int sqlite3VtabRollback(sqlite3 *db);
2987    int sqlite3VtabCommit(sqlite3 *db);
2988    void sqlite3VtabLock(VTable *);
2989    void sqlite3VtabUnlock(VTable *);
2990    void sqlite3VtabUnlockList(sqlite3*);
2991 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
2992 #endif
2993 void sqlite3VtabMakeWritable(Parse*,Table*);
2994 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
2995 void sqlite3VtabFinishParse(Parse*, Token*);
2996 void sqlite3VtabArgInit(Parse*);
2997 void sqlite3VtabArgExtend(Parse*, Token*);
2998 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
2999 int sqlite3VtabCallConnect(Parse*, Table*);
3000 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3001 int sqlite3VtabBegin(sqlite3 *, VTable *);
3002 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3003 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3004 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3005 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3006 int sqlite3Reprepare(Vdbe*);
3007 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3008 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3009 int sqlite3TempInMemory(const sqlite3*);
3010 VTable *sqlite3GetVTable(sqlite3*, Table*);
3011 const char *sqlite3JournalModename(int);
3012 int sqlite3Checkpoint(sqlite3*, int);
3013 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3014 
3015 /* Declarations for functions in fkey.c. All of these are replaced by
3016 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3017 ** key functionality is available. If OMIT_TRIGGER is defined but
3018 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3019 ** this case foreign keys are parsed, but no other functionality is
3020 ** provided (enforcement of FK constraints requires the triggers sub-system).
3021 */
3022 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3023   void sqlite3FkCheck(Parse*, Table*, int, int);
3024   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3025   void sqlite3FkActions(Parse*, Table*, ExprList*, int);
3026   int sqlite3FkRequired(Parse*, Table*, int*, int);
3027   u32 sqlite3FkOldmask(Parse*, Table*);
3028   FKey *sqlite3FkReferences(Table *);
3029 #else
3030   #define sqlite3FkActions(a,b,c,d)
3031   #define sqlite3FkCheck(a,b,c,d)
3032   #define sqlite3FkDropTable(a,b,c)
3033   #define sqlite3FkOldmask(a,b)      0
3034   #define sqlite3FkRequired(a,b,c,d) 0
3035 #endif
3036 #ifndef SQLITE_OMIT_FOREIGN_KEY
3037   void sqlite3FkDelete(Table*);
3038 #else
3039   #define sqlite3FkDelete(a)
3040 #endif
3041 
3042 
3043 /*
3044 ** Available fault injectors.  Should be numbered beginning with 0.
3045 */
3046 #define SQLITE_FAULTINJECTOR_MALLOC     0
3047 #define SQLITE_FAULTINJECTOR_COUNT      1
3048 
3049 /*
3050 ** The interface to the code in fault.c used for identifying "benign"
3051 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3052 ** is not defined.
3053 */
3054 #ifndef SQLITE_OMIT_BUILTIN_TEST
3055   void sqlite3BeginBenignMalloc(void);
3056   void sqlite3EndBenignMalloc(void);
3057 #else
3058   #define sqlite3BeginBenignMalloc()
3059   #define sqlite3EndBenignMalloc()
3060 #endif
3061 
3062 #define IN_INDEX_ROWID           1
3063 #define IN_INDEX_EPH             2
3064 #define IN_INDEX_INDEX           3
3065 int sqlite3FindInIndex(Parse *, Expr *, int*);
3066 
3067 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3068   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3069   int sqlite3JournalSize(sqlite3_vfs *);
3070   int sqlite3JournalCreate(sqlite3_file *);
3071 #else
3072   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
3073 #endif
3074 
3075 void sqlite3MemJournalOpen(sqlite3_file *);
3076 int sqlite3MemJournalSize(void);
3077 int sqlite3IsMemJournal(sqlite3_file *);
3078 
3079 #if SQLITE_MAX_EXPR_DEPTH>0
3080   void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
3081   int sqlite3SelectExprHeight(Select *);
3082   int sqlite3ExprCheckHeight(Parse*, int);
3083 #else
3084   #define sqlite3ExprSetHeight(x,y)
3085   #define sqlite3SelectExprHeight(x) 0
3086   #define sqlite3ExprCheckHeight(x,y)
3087 #endif
3088 
3089 u32 sqlite3Get4byte(const u8*);
3090 void sqlite3Put4byte(u8*, u32);
3091 
3092 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
3093   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
3094   void sqlite3ConnectionUnlocked(sqlite3 *db);
3095   void sqlite3ConnectionClosed(sqlite3 *db);
3096 #else
3097   #define sqlite3ConnectionBlocked(x,y)
3098   #define sqlite3ConnectionUnlocked(x)
3099   #define sqlite3ConnectionClosed(x)
3100 #endif
3101 
3102 #ifdef SQLITE_DEBUG
3103   void sqlite3ParserTrace(FILE*, char *);
3104 #endif
3105 
3106 /*
3107 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
3108 ** sqlite3IoTrace is a pointer to a printf-like routine used to
3109 ** print I/O tracing messages.
3110 */
3111 #ifdef SQLITE_ENABLE_IOTRACE
3112 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3113   void sqlite3VdbeIOTraceSql(Vdbe*);
3114 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
3115 #else
3116 # define IOTRACE(A)
3117 # define sqlite3VdbeIOTraceSql(X)
3118 #endif
3119 
3120 /*
3121 ** These routines are available for the mem2.c debugging memory allocator
3122 ** only.  They are used to verify that different "types" of memory
3123 ** allocations are properly tracked by the system.
3124 **
3125 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
3126 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
3127 ** a single bit set.
3128 **
3129 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
3130 ** argument match the type set by the previous sqlite3MemdebugSetType().
3131 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
3132 ** For example:
3133 **
3134 **     assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
3135 **
3136 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
3137 ** and MEMTYPE_DB.  If an allocation is MEMTYPE_DB, that means it might have
3138 ** been allocated by lookaside, except the allocation was too large or
3139 ** lookaside was already full.  It is important to verify that allocations
3140 ** that might have been satisfied by lookaside are not passed back to
3141 ** non-lookaside free() routines.  Asserts such as the example above are
3142 ** placed on the non-lookaside free() routines to verify this constraint.
3143 **
3144 ** All of this is no-op for a production build.  It only comes into
3145 ** play when the SQLITE_MEMDEBUG compile-time option is used.
3146 */
3147 #ifdef SQLITE_MEMDEBUG
3148   void sqlite3MemdebugSetType(void*,u8);
3149   int sqlite3MemdebugHasType(void*,u8);
3150 #else
3151 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
3152 # define sqlite3MemdebugHasType(X,Y)  1
3153 #endif
3154 #define MEMTYPE_HEAP     0x01    /* General heap allocations */
3155 #define MEMTYPE_DB       0x02    /* Associated with a database connection */
3156 #define MEMTYPE_SCRATCH  0x04    /* Scratch allocations */
3157 #define MEMTYPE_PCACHE   0x08    /* Page cache allocations */
3158 
3159 #endif /* _SQLITEINT_H_ */
3160