xref: /sqlite-3.40.0/src/sqliteInt.h (revision b43be55e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17 
18 /*
19 ** Include the header file used to customize the compiler options for MSVC.
20 ** This should be done first so that it can successfully prevent spurious
21 ** compiler warnings due to subsequent content in this file and other files
22 ** that are included by this file.
23 */
24 #include "msvc.h"
25 
26 /*
27 ** These #defines should enable >2GB file support on POSIX if the
28 ** underlying operating system supports it.  If the OS lacks
29 ** large file support, or if the OS is windows, these should be no-ops.
30 **
31 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
32 ** system #includes.  Hence, this block of code must be the very first
33 ** code in all source files.
34 **
35 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
36 ** on the compiler command line.  This is necessary if you are compiling
37 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
38 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
39 ** without this option, LFS is enable.  But LFS does not exist in the kernel
40 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
41 ** portability you should omit LFS.
42 **
43 ** The previous paragraph was written in 2005.  (This paragraph is written
44 ** on 2008-11-28.) These days, all Linux kernels support large files, so
45 ** you should probably leave LFS enabled.  But some embedded platforms might
46 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
47 **
48 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
49 */
50 #ifndef SQLITE_DISABLE_LFS
51 # define _LARGE_FILE       1
52 # ifndef _FILE_OFFSET_BITS
53 #   define _FILE_OFFSET_BITS 64
54 # endif
55 # define _LARGEFILE_SOURCE 1
56 #endif
57 
58 /* Needed for various definitions... */
59 #if defined(__GNUC__) && !defined(_GNU_SOURCE)
60 # define _GNU_SOURCE
61 #endif
62 
63 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
64 # define _BSD_SOURCE
65 #endif
66 
67 /*
68 ** For MinGW, check to see if we can include the header file containing its
69 ** version information, among other things.  Normally, this internal MinGW
70 ** header file would [only] be included automatically by other MinGW header
71 ** files; however, the contained version information is now required by this
72 ** header file to work around binary compatibility issues (see below) and
73 ** this is the only known way to reliably obtain it.  This entire #if block
74 ** would be completely unnecessary if there was any other way of detecting
75 ** MinGW via their preprocessor (e.g. if they customized their GCC to define
76 ** some MinGW-specific macros).  When compiling for MinGW, either the
77 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
78 ** defined; otherwise, detection of conditions specific to MinGW will be
79 ** disabled.
80 */
81 #if defined(_HAVE_MINGW_H)
82 # include "mingw.h"
83 #elif defined(_HAVE__MINGW_H)
84 # include "_mingw.h"
85 #endif
86 
87 /*
88 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
89 ** define is required to maintain binary compatibility with the MSVC runtime
90 ** library in use (e.g. for Windows XP).
91 */
92 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
93     defined(_WIN32) && !defined(_WIN64) && \
94     defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
95     defined(__MSVCRT__)
96 # define _USE_32BIT_TIME_T
97 #endif
98 
99 /* The public SQLite interface.  The _FILE_OFFSET_BITS macro must appear
100 ** first in QNX.  Also, the _USE_32BIT_TIME_T macro must appear first for
101 ** MinGW.
102 */
103 #include "sqlite3.h"
104 
105 /*
106 ** Include the configuration header output by 'configure' if we're using the
107 ** autoconf-based build
108 */
109 #ifdef _HAVE_SQLITE_CONFIG_H
110 #include "config.h"
111 #endif
112 
113 #include "sqliteLimit.h"
114 
115 /* Disable nuisance warnings on Borland compilers */
116 #if defined(__BORLANDC__)
117 #pragma warn -rch /* unreachable code */
118 #pragma warn -ccc /* Condition is always true or false */
119 #pragma warn -aus /* Assigned value is never used */
120 #pragma warn -csu /* Comparing signed and unsigned */
121 #pragma warn -spa /* Suspicious pointer arithmetic */
122 #endif
123 
124 /*
125 ** Include standard header files as necessary
126 */
127 #ifdef HAVE_STDINT_H
128 #include <stdint.h>
129 #endif
130 #ifdef HAVE_INTTYPES_H
131 #include <inttypes.h>
132 #endif
133 
134 /*
135 ** The following macros are used to cast pointers to integers and
136 ** integers to pointers.  The way you do this varies from one compiler
137 ** to the next, so we have developed the following set of #if statements
138 ** to generate appropriate macros for a wide range of compilers.
139 **
140 ** The correct "ANSI" way to do this is to use the intptr_t type.
141 ** Unfortunately, that typedef is not available on all compilers, or
142 ** if it is available, it requires an #include of specific headers
143 ** that vary from one machine to the next.
144 **
145 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
146 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
147 ** So we have to define the macros in different ways depending on the
148 ** compiler.
149 */
150 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
151 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
152 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
153 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
154 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
155 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
156 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
157 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
158 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
159 #else                          /* Generates a warning - but it always works */
160 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
161 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
162 #endif
163 
164 /*
165 ** A macro to hint to the compiler that a function should not be
166 ** inlined.
167 */
168 #if defined(__GNUC__)
169 #  define SQLITE_NOINLINE  __attribute__((noinline))
170 #elif defined(_MSC_VER) && _MSC_VER>=1310
171 #  define SQLITE_NOINLINE  __declspec(noinline)
172 #else
173 #  define SQLITE_NOINLINE
174 #endif
175 
176 /*
177 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
178 ** 0 means mutexes are permanently disable and the library is never
179 ** threadsafe.  1 means the library is serialized which is the highest
180 ** level of threadsafety.  2 means the library is multithreaded - multiple
181 ** threads can use SQLite as long as no two threads try to use the same
182 ** database connection at the same time.
183 **
184 ** Older versions of SQLite used an optional THREADSAFE macro.
185 ** We support that for legacy.
186 */
187 #if !defined(SQLITE_THREADSAFE)
188 # if defined(THREADSAFE)
189 #   define SQLITE_THREADSAFE THREADSAFE
190 # else
191 #   define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
192 # endif
193 #endif
194 
195 /*
196 ** Powersafe overwrite is on by default.  But can be turned off using
197 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
198 */
199 #ifndef SQLITE_POWERSAFE_OVERWRITE
200 # define SQLITE_POWERSAFE_OVERWRITE 1
201 #endif
202 
203 /*
204 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
205 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
206 ** which case memory allocation statistics are disabled by default.
207 */
208 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
209 # define SQLITE_DEFAULT_MEMSTATUS 1
210 #endif
211 
212 /*
213 ** Exactly one of the following macros must be defined in order to
214 ** specify which memory allocation subsystem to use.
215 **
216 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
217 **     SQLITE_WIN32_MALLOC           // Use Win32 native heap API
218 **     SQLITE_ZERO_MALLOC            // Use a stub allocator that always fails
219 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
220 **
221 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
222 ** assert() macro is enabled, each call into the Win32 native heap subsystem
223 ** will cause HeapValidate to be called.  If heap validation should fail, an
224 ** assertion will be triggered.
225 **
226 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
227 ** the default.
228 */
229 #if defined(SQLITE_SYSTEM_MALLOC) \
230   + defined(SQLITE_WIN32_MALLOC) \
231   + defined(SQLITE_ZERO_MALLOC) \
232   + defined(SQLITE_MEMDEBUG)>1
233 # error "Two or more of the following compile-time configuration options\
234  are defined but at most one is allowed:\
235  SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
236  SQLITE_ZERO_MALLOC"
237 #endif
238 #if defined(SQLITE_SYSTEM_MALLOC) \
239   + defined(SQLITE_WIN32_MALLOC) \
240   + defined(SQLITE_ZERO_MALLOC) \
241   + defined(SQLITE_MEMDEBUG)==0
242 # define SQLITE_SYSTEM_MALLOC 1
243 #endif
244 
245 /*
246 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
247 ** sizes of memory allocations below this value where possible.
248 */
249 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
250 # define SQLITE_MALLOC_SOFT_LIMIT 1024
251 #endif
252 
253 /*
254 ** We need to define _XOPEN_SOURCE as follows in order to enable
255 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
256 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
257 ** it.
258 */
259 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
260 #  define _XOPEN_SOURCE 600
261 #endif
262 
263 /*
264 ** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
265 ** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
266 ** make it true by defining or undefining NDEBUG.
267 **
268 ** Setting NDEBUG makes the code smaller and faster by disabling the
269 ** assert() statements in the code.  So we want the default action
270 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
271 ** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
272 ** feature.
273 */
274 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
275 # define NDEBUG 1
276 #endif
277 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
278 # undef NDEBUG
279 #endif
280 
281 /*
282 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
283 */
284 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
285 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
286 #endif
287 
288 /*
289 ** The testcase() macro is used to aid in coverage testing.  When
290 ** doing coverage testing, the condition inside the argument to
291 ** testcase() must be evaluated both true and false in order to
292 ** get full branch coverage.  The testcase() macro is inserted
293 ** to help ensure adequate test coverage in places where simple
294 ** condition/decision coverage is inadequate.  For example, testcase()
295 ** can be used to make sure boundary values are tested.  For
296 ** bitmask tests, testcase() can be used to make sure each bit
297 ** is significant and used at least once.  On switch statements
298 ** where multiple cases go to the same block of code, testcase()
299 ** can insure that all cases are evaluated.
300 **
301 */
302 #ifdef SQLITE_COVERAGE_TEST
303   void sqlite3Coverage(int);
304 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
305 #else
306 # define testcase(X)
307 #endif
308 
309 /*
310 ** The TESTONLY macro is used to enclose variable declarations or
311 ** other bits of code that are needed to support the arguments
312 ** within testcase() and assert() macros.
313 */
314 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
315 # define TESTONLY(X)  X
316 #else
317 # define TESTONLY(X)
318 #endif
319 
320 /*
321 ** Sometimes we need a small amount of code such as a variable initialization
322 ** to setup for a later assert() statement.  We do not want this code to
323 ** appear when assert() is disabled.  The following macro is therefore
324 ** used to contain that setup code.  The "VVA" acronym stands for
325 ** "Verification, Validation, and Accreditation".  In other words, the
326 ** code within VVA_ONLY() will only run during verification processes.
327 */
328 #ifndef NDEBUG
329 # define VVA_ONLY(X)  X
330 #else
331 # define VVA_ONLY(X)
332 #endif
333 
334 /*
335 ** The ALWAYS and NEVER macros surround boolean expressions which
336 ** are intended to always be true or false, respectively.  Such
337 ** expressions could be omitted from the code completely.  But they
338 ** are included in a few cases in order to enhance the resilience
339 ** of SQLite to unexpected behavior - to make the code "self-healing"
340 ** or "ductile" rather than being "brittle" and crashing at the first
341 ** hint of unplanned behavior.
342 **
343 ** In other words, ALWAYS and NEVER are added for defensive code.
344 **
345 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
346 ** be true and false so that the unreachable code they specify will
347 ** not be counted as untested code.
348 */
349 #if defined(SQLITE_COVERAGE_TEST)
350 # define ALWAYS(X)      (1)
351 # define NEVER(X)       (0)
352 #elif !defined(NDEBUG)
353 # define ALWAYS(X)      ((X)?1:(assert(0),0))
354 # define NEVER(X)       ((X)?(assert(0),1):0)
355 #else
356 # define ALWAYS(X)      (X)
357 # define NEVER(X)       (X)
358 #endif
359 
360 /*
361 ** Return true (non-zero) if the input is an integer that is too large
362 ** to fit in 32-bits.  This macro is used inside of various testcase()
363 ** macros to verify that we have tested SQLite for large-file support.
364 */
365 #define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
366 
367 /*
368 ** The macro unlikely() is a hint that surrounds a boolean
369 ** expression that is usually false.  Macro likely() surrounds
370 ** a boolean expression that is usually true.  These hints could,
371 ** in theory, be used by the compiler to generate better code, but
372 ** currently they are just comments for human readers.
373 */
374 #define likely(X)    (X)
375 #define unlikely(X)  (X)
376 
377 #include "hash.h"
378 #include "parse.h"
379 #include <stdio.h>
380 #include <stdlib.h>
381 #include <string.h>
382 #include <assert.h>
383 #include <stddef.h>
384 
385 /*
386 ** If compiling for a processor that lacks floating point support,
387 ** substitute integer for floating-point
388 */
389 #ifdef SQLITE_OMIT_FLOATING_POINT
390 # define double sqlite_int64
391 # define float sqlite_int64
392 # define LONGDOUBLE_TYPE sqlite_int64
393 # ifndef SQLITE_BIG_DBL
394 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
395 # endif
396 # define SQLITE_OMIT_DATETIME_FUNCS 1
397 # define SQLITE_OMIT_TRACE 1
398 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
399 # undef SQLITE_HAVE_ISNAN
400 #endif
401 #ifndef SQLITE_BIG_DBL
402 # define SQLITE_BIG_DBL (1e99)
403 #endif
404 
405 /*
406 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
407 ** afterward. Having this macro allows us to cause the C compiler
408 ** to omit code used by TEMP tables without messy #ifndef statements.
409 */
410 #ifdef SQLITE_OMIT_TEMPDB
411 #define OMIT_TEMPDB 1
412 #else
413 #define OMIT_TEMPDB 0
414 #endif
415 
416 /*
417 ** The "file format" number is an integer that is incremented whenever
418 ** the VDBE-level file format changes.  The following macros define the
419 ** the default file format for new databases and the maximum file format
420 ** that the library can read.
421 */
422 #define SQLITE_MAX_FILE_FORMAT 4
423 #ifndef SQLITE_DEFAULT_FILE_FORMAT
424 # define SQLITE_DEFAULT_FILE_FORMAT 4
425 #endif
426 
427 /*
428 ** Determine whether triggers are recursive by default.  This can be
429 ** changed at run-time using a pragma.
430 */
431 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
432 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
433 #endif
434 
435 /*
436 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
437 ** on the command-line
438 */
439 #ifndef SQLITE_TEMP_STORE
440 # define SQLITE_TEMP_STORE 1
441 # define SQLITE_TEMP_STORE_xc 1  /* Exclude from ctime.c */
442 #endif
443 
444 /*
445 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
446 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
447 ** to zero.
448 */
449 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
450 # undef SQLITE_MAX_WORKER_THREADS
451 # define SQLITE_MAX_WORKER_THREADS 0
452 #endif
453 #ifndef SQLITE_MAX_WORKER_THREADS
454 # define SQLITE_MAX_WORKER_THREADS 8
455 #endif
456 #ifndef SQLITE_DEFAULT_WORKER_THREADS
457 # define SQLITE_DEFAULT_WORKER_THREADS 0
458 #endif
459 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
460 # undef SQLITE_MAX_WORKER_THREADS
461 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
462 #endif
463 
464 
465 /*
466 ** GCC does not define the offsetof() macro so we'll have to do it
467 ** ourselves.
468 */
469 #ifndef offsetof
470 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
471 #endif
472 
473 /*
474 ** Macros to compute minimum and maximum of two numbers.
475 */
476 #define MIN(A,B) ((A)<(B)?(A):(B))
477 #define MAX(A,B) ((A)>(B)?(A):(B))
478 
479 /*
480 ** Swap two objects of type TYPE.
481 */
482 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
483 
484 /*
485 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
486 ** not, there are still machines out there that use EBCDIC.)
487 */
488 #if 'A' == '\301'
489 # define SQLITE_EBCDIC 1
490 #else
491 # define SQLITE_ASCII 1
492 #endif
493 
494 /*
495 ** Integers of known sizes.  These typedefs might change for architectures
496 ** where the sizes very.  Preprocessor macros are available so that the
497 ** types can be conveniently redefined at compile-type.  Like this:
498 **
499 **         cc '-DUINTPTR_TYPE=long long int' ...
500 */
501 #ifndef UINT32_TYPE
502 # ifdef HAVE_UINT32_T
503 #  define UINT32_TYPE uint32_t
504 # else
505 #  define UINT32_TYPE unsigned int
506 # endif
507 #endif
508 #ifndef UINT16_TYPE
509 # ifdef HAVE_UINT16_T
510 #  define UINT16_TYPE uint16_t
511 # else
512 #  define UINT16_TYPE unsigned short int
513 # endif
514 #endif
515 #ifndef INT16_TYPE
516 # ifdef HAVE_INT16_T
517 #  define INT16_TYPE int16_t
518 # else
519 #  define INT16_TYPE short int
520 # endif
521 #endif
522 #ifndef UINT8_TYPE
523 # ifdef HAVE_UINT8_T
524 #  define UINT8_TYPE uint8_t
525 # else
526 #  define UINT8_TYPE unsigned char
527 # endif
528 #endif
529 #ifndef INT8_TYPE
530 # ifdef HAVE_INT8_T
531 #  define INT8_TYPE int8_t
532 # else
533 #  define INT8_TYPE signed char
534 # endif
535 #endif
536 #ifndef LONGDOUBLE_TYPE
537 # define LONGDOUBLE_TYPE long double
538 #endif
539 typedef sqlite_int64 i64;          /* 8-byte signed integer */
540 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
541 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
542 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
543 typedef INT16_TYPE i16;            /* 2-byte signed integer */
544 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
545 typedef INT8_TYPE i8;              /* 1-byte signed integer */
546 
547 /*
548 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
549 ** that can be stored in a u32 without loss of data.  The value
550 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
551 ** have to specify the value in the less intuitive manner shown:
552 */
553 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
554 
555 /*
556 ** The datatype used to store estimates of the number of rows in a
557 ** table or index.  This is an unsigned integer type.  For 99.9% of
558 ** the world, a 32-bit integer is sufficient.  But a 64-bit integer
559 ** can be used at compile-time if desired.
560 */
561 #ifdef SQLITE_64BIT_STATS
562  typedef u64 tRowcnt;    /* 64-bit only if requested at compile-time */
563 #else
564  typedef u32 tRowcnt;    /* 32-bit is the default */
565 #endif
566 
567 /*
568 ** Estimated quantities used for query planning are stored as 16-bit
569 ** logarithms.  For quantity X, the value stored is 10*log2(X).  This
570 ** gives a possible range of values of approximately 1.0e986 to 1e-986.
571 ** But the allowed values are "grainy".  Not every value is representable.
572 ** For example, quantities 16 and 17 are both represented by a LogEst
573 ** of 40.  However, since LogEst quantities are suppose to be estimates,
574 ** not exact values, this imprecision is not a problem.
575 **
576 ** "LogEst" is short for "Logarithmic Estimate".
577 **
578 ** Examples:
579 **      1 -> 0              20 -> 43          10000 -> 132
580 **      2 -> 10             25 -> 46          25000 -> 146
581 **      3 -> 16            100 -> 66        1000000 -> 199
582 **      4 -> 20           1000 -> 99        1048576 -> 200
583 **     10 -> 33           1024 -> 100    4294967296 -> 320
584 **
585 ** The LogEst can be negative to indicate fractional values.
586 ** Examples:
587 **
588 **    0.5 -> -10           0.1 -> -33        0.0625 -> -40
589 */
590 typedef INT16_TYPE LogEst;
591 
592 /*
593 ** Macros to determine whether the machine is big or little endian,
594 ** and whether or not that determination is run-time or compile-time.
595 **
596 ** For best performance, an attempt is made to guess at the byte-order
597 ** using C-preprocessor macros.  If that is unsuccessful, or if
598 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
599 ** at run-time.
600 */
601 #ifdef SQLITE_AMALGAMATION
602 const int sqlite3one = 1;
603 #else
604 extern const int sqlite3one;
605 #endif
606 #if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
607      defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
608      defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
609      defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
610 # define SQLITE_BYTEORDER    1234
611 # define SQLITE_BIGENDIAN    0
612 # define SQLITE_LITTLEENDIAN 1
613 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
614 #endif
615 #if (defined(sparc)    || defined(__ppc__))  \
616     && !defined(SQLITE_RUNTIME_BYTEORDER)
617 # define SQLITE_BYTEORDER    4321
618 # define SQLITE_BIGENDIAN    1
619 # define SQLITE_LITTLEENDIAN 0
620 # define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
621 #endif
622 #if !defined(SQLITE_BYTEORDER)
623 # define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
624 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
625 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
626 # define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
627 #endif
628 
629 /*
630 ** Constants for the largest and smallest possible 64-bit signed integers.
631 ** These macros are designed to work correctly on both 32-bit and 64-bit
632 ** compilers.
633 */
634 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
635 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
636 
637 /*
638 ** Round up a number to the next larger multiple of 8.  This is used
639 ** to force 8-byte alignment on 64-bit architectures.
640 */
641 #define ROUND8(x)     (((x)+7)&~7)
642 
643 /*
644 ** Round down to the nearest multiple of 8
645 */
646 #define ROUNDDOWN8(x) ((x)&~7)
647 
648 /*
649 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
650 ** macro is used only within assert() to verify that the code gets
651 ** all alignment restrictions correct.
652 **
653 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
654 ** underlying malloc() implementation might return us 4-byte aligned
655 ** pointers.  In that case, only verify 4-byte alignment.
656 */
657 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
658 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
659 #else
660 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
661 #endif
662 
663 /*
664 ** Disable MMAP on platforms where it is known to not work
665 */
666 #if defined(__OpenBSD__) || defined(__QNXNTO__)
667 # undef SQLITE_MAX_MMAP_SIZE
668 # define SQLITE_MAX_MMAP_SIZE 0
669 #endif
670 
671 /*
672 ** Default maximum size of memory used by memory-mapped I/O in the VFS
673 */
674 #ifdef __APPLE__
675 # include <TargetConditionals.h>
676 # if TARGET_OS_IPHONE
677 #   undef SQLITE_MAX_MMAP_SIZE
678 #   define SQLITE_MAX_MMAP_SIZE 0
679 # endif
680 #endif
681 #ifndef SQLITE_MAX_MMAP_SIZE
682 # if defined(__linux__) \
683   || defined(_WIN32) \
684   || (defined(__APPLE__) && defined(__MACH__)) \
685   || defined(__sun)
686 #   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
687 # else
688 #   define SQLITE_MAX_MMAP_SIZE 0
689 # endif
690 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
691 #endif
692 
693 /*
694 ** The default MMAP_SIZE is zero on all platforms.  Or, even if a larger
695 ** default MMAP_SIZE is specified at compile-time, make sure that it does
696 ** not exceed the maximum mmap size.
697 */
698 #ifndef SQLITE_DEFAULT_MMAP_SIZE
699 # define SQLITE_DEFAULT_MMAP_SIZE 0
700 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1  /* Exclude from ctime.c */
701 #endif
702 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
703 # undef SQLITE_DEFAULT_MMAP_SIZE
704 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
705 #endif
706 
707 /*
708 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
709 ** Priority is given to SQLITE_ENABLE_STAT4.  If either are defined, also
710 ** define SQLITE_ENABLE_STAT3_OR_STAT4
711 */
712 #ifdef SQLITE_ENABLE_STAT4
713 # undef SQLITE_ENABLE_STAT3
714 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
715 #elif SQLITE_ENABLE_STAT3
716 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
717 #elif SQLITE_ENABLE_STAT3_OR_STAT4
718 # undef SQLITE_ENABLE_STAT3_OR_STAT4
719 #endif
720 
721 /*
722 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not
723 ** the Select query generator tracing logic is turned on.
724 */
725 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE)
726 # define SELECTTRACE_ENABLED 1
727 #else
728 # define SELECTTRACE_ENABLED 0
729 #endif
730 
731 /*
732 ** An instance of the following structure is used to store the busy-handler
733 ** callback for a given sqlite handle.
734 **
735 ** The sqlite.busyHandler member of the sqlite struct contains the busy
736 ** callback for the database handle. Each pager opened via the sqlite
737 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
738 ** callback is currently invoked only from within pager.c.
739 */
740 typedef struct BusyHandler BusyHandler;
741 struct BusyHandler {
742   int (*xFunc)(void *,int);  /* The busy callback */
743   void *pArg;                /* First arg to busy callback */
744   int nBusy;                 /* Incremented with each busy call */
745 };
746 
747 /*
748 ** Name of the master database table.  The master database table
749 ** is a special table that holds the names and attributes of all
750 ** user tables and indices.
751 */
752 #define MASTER_NAME       "sqlite_master"
753 #define TEMP_MASTER_NAME  "sqlite_temp_master"
754 
755 /*
756 ** The root-page of the master database table.
757 */
758 #define MASTER_ROOT       1
759 
760 /*
761 ** The name of the schema table.
762 */
763 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
764 
765 /*
766 ** A convenience macro that returns the number of elements in
767 ** an array.
768 */
769 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
770 
771 /*
772 ** Determine if the argument is a power of two
773 */
774 #define IsPowerOfTwo(X) (((X)&((X)-1))==0)
775 
776 /*
777 ** The following value as a destructor means to use sqlite3DbFree().
778 ** The sqlite3DbFree() routine requires two parameters instead of the
779 ** one parameter that destructors normally want.  So we have to introduce
780 ** this magic value that the code knows to handle differently.  Any
781 ** pointer will work here as long as it is distinct from SQLITE_STATIC
782 ** and SQLITE_TRANSIENT.
783 */
784 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3MallocSize)
785 
786 /*
787 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
788 ** not support Writable Static Data (WSD) such as global and static variables.
789 ** All variables must either be on the stack or dynamically allocated from
790 ** the heap.  When WSD is unsupported, the variable declarations scattered
791 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
792 ** macro is used for this purpose.  And instead of referencing the variable
793 ** directly, we use its constant as a key to lookup the run-time allocated
794 ** buffer that holds real variable.  The constant is also the initializer
795 ** for the run-time allocated buffer.
796 **
797 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
798 ** macros become no-ops and have zero performance impact.
799 */
800 #ifdef SQLITE_OMIT_WSD
801   #define SQLITE_WSD const
802   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
803   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
804   int sqlite3_wsd_init(int N, int J);
805   void *sqlite3_wsd_find(void *K, int L);
806 #else
807   #define SQLITE_WSD
808   #define GLOBAL(t,v) v
809   #define sqlite3GlobalConfig sqlite3Config
810 #endif
811 
812 /*
813 ** The following macros are used to suppress compiler warnings and to
814 ** make it clear to human readers when a function parameter is deliberately
815 ** left unused within the body of a function. This usually happens when
816 ** a function is called via a function pointer. For example the
817 ** implementation of an SQL aggregate step callback may not use the
818 ** parameter indicating the number of arguments passed to the aggregate,
819 ** if it knows that this is enforced elsewhere.
820 **
821 ** When a function parameter is not used at all within the body of a function,
822 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
823 ** However, these macros may also be used to suppress warnings related to
824 ** parameters that may or may not be used depending on compilation options.
825 ** For example those parameters only used in assert() statements. In these
826 ** cases the parameters are named as per the usual conventions.
827 */
828 #define UNUSED_PARAMETER(x) (void)(x)
829 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
830 
831 /*
832 ** Forward references to structures
833 */
834 typedef struct AggInfo AggInfo;
835 typedef struct AuthContext AuthContext;
836 typedef struct AutoincInfo AutoincInfo;
837 typedef struct Bitvec Bitvec;
838 typedef struct CollSeq CollSeq;
839 typedef struct Column Column;
840 typedef struct Db Db;
841 typedef struct Schema Schema;
842 typedef struct Expr Expr;
843 typedef struct ExprList ExprList;
844 typedef struct ExprSpan ExprSpan;
845 typedef struct FKey FKey;
846 typedef struct FuncDestructor FuncDestructor;
847 typedef struct FuncDef FuncDef;
848 typedef struct FuncDefHash FuncDefHash;
849 typedef struct IdList IdList;
850 typedef struct Index Index;
851 typedef struct IndexSample IndexSample;
852 typedef struct KeyClass KeyClass;
853 typedef struct KeyInfo KeyInfo;
854 typedef struct Lookaside Lookaside;
855 typedef struct LookasideSlot LookasideSlot;
856 typedef struct Module Module;
857 typedef struct NameContext NameContext;
858 typedef struct Parse Parse;
859 typedef struct PrintfArguments PrintfArguments;
860 typedef struct RowSet RowSet;
861 typedef struct Savepoint Savepoint;
862 typedef struct Select Select;
863 typedef struct SQLiteThread SQLiteThread;
864 typedef struct SelectDest SelectDest;
865 typedef struct SrcList SrcList;
866 typedef struct StrAccum StrAccum;
867 typedef struct Table Table;
868 typedef struct TableLock TableLock;
869 typedef struct Token Token;
870 typedef struct TreeView TreeView;
871 typedef struct Trigger Trigger;
872 typedef struct TriggerPrg TriggerPrg;
873 typedef struct TriggerStep TriggerStep;
874 typedef struct UnpackedRecord UnpackedRecord;
875 typedef struct VTable VTable;
876 typedef struct VtabCtx VtabCtx;
877 typedef struct Walker Walker;
878 typedef struct WhereInfo WhereInfo;
879 typedef struct With With;
880 
881 /*
882 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
883 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
884 ** pointer types (i.e. FuncDef) defined above.
885 */
886 #include "btree.h"
887 #include "vdbe.h"
888 #include "pager.h"
889 #include "pcache.h"
890 
891 #include "os.h"
892 #include "mutex.h"
893 
894 
895 /*
896 ** Each database file to be accessed by the system is an instance
897 ** of the following structure.  There are normally two of these structures
898 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
899 ** aDb[1] is the database file used to hold temporary tables.  Additional
900 ** databases may be attached.
901 */
902 struct Db {
903   char *zName;         /* Name of this database */
904   Btree *pBt;          /* The B*Tree structure for this database file */
905   u8 safety_level;     /* How aggressive at syncing data to disk */
906   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
907 };
908 
909 /*
910 ** An instance of the following structure stores a database schema.
911 **
912 ** Most Schema objects are associated with a Btree.  The exception is
913 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
914 ** In shared cache mode, a single Schema object can be shared by multiple
915 ** Btrees that refer to the same underlying BtShared object.
916 **
917 ** Schema objects are automatically deallocated when the last Btree that
918 ** references them is destroyed.   The TEMP Schema is manually freed by
919 ** sqlite3_close().
920 *
921 ** A thread must be holding a mutex on the corresponding Btree in order
922 ** to access Schema content.  This implies that the thread must also be
923 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
924 ** For a TEMP Schema, only the connection mutex is required.
925 */
926 struct Schema {
927   int schema_cookie;   /* Database schema version number for this file */
928   int iGeneration;     /* Generation counter.  Incremented with each change */
929   Hash tblHash;        /* All tables indexed by name */
930   Hash idxHash;        /* All (named) indices indexed by name */
931   Hash trigHash;       /* All triggers indexed by name */
932   Hash fkeyHash;       /* All foreign keys by referenced table name */
933   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
934   u8 file_format;      /* Schema format version for this file */
935   u8 enc;              /* Text encoding used by this database */
936   u16 schemaFlags;     /* Flags associated with this schema */
937   int cache_size;      /* Number of pages to use in the cache */
938 };
939 
940 /*
941 ** These macros can be used to test, set, or clear bits in the
942 ** Db.pSchema->flags field.
943 */
944 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
945 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
946 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->schemaFlags|=(P)
947 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->schemaFlags&=~(P)
948 
949 /*
950 ** Allowed values for the DB.pSchema->flags field.
951 **
952 ** The DB_SchemaLoaded flag is set after the database schema has been
953 ** read into internal hash tables.
954 **
955 ** DB_UnresetViews means that one or more views have column names that
956 ** have been filled out.  If the schema changes, these column names might
957 ** changes and so the view will need to be reset.
958 */
959 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
960 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
961 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
962 
963 /*
964 ** The number of different kinds of things that can be limited
965 ** using the sqlite3_limit() interface.
966 */
967 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
968 
969 /*
970 ** Lookaside malloc is a set of fixed-size buffers that can be used
971 ** to satisfy small transient memory allocation requests for objects
972 ** associated with a particular database connection.  The use of
973 ** lookaside malloc provides a significant performance enhancement
974 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
975 ** SQL statements.
976 **
977 ** The Lookaside structure holds configuration information about the
978 ** lookaside malloc subsystem.  Each available memory allocation in
979 ** the lookaside subsystem is stored on a linked list of LookasideSlot
980 ** objects.
981 **
982 ** Lookaside allocations are only allowed for objects that are associated
983 ** with a particular database connection.  Hence, schema information cannot
984 ** be stored in lookaside because in shared cache mode the schema information
985 ** is shared by multiple database connections.  Therefore, while parsing
986 ** schema information, the Lookaside.bEnabled flag is cleared so that
987 ** lookaside allocations are not used to construct the schema objects.
988 */
989 struct Lookaside {
990   u16 sz;                 /* Size of each buffer in bytes */
991   u8 bEnabled;            /* False to disable new lookaside allocations */
992   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
993   int nOut;               /* Number of buffers currently checked out */
994   int mxOut;              /* Highwater mark for nOut */
995   int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
996   LookasideSlot *pFree;   /* List of available buffers */
997   void *pStart;           /* First byte of available memory space */
998   void *pEnd;             /* First byte past end of available space */
999 };
1000 struct LookasideSlot {
1001   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
1002 };
1003 
1004 /*
1005 ** A hash table for function definitions.
1006 **
1007 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
1008 ** Collisions are on the FuncDef.pHash chain.
1009 */
1010 struct FuncDefHash {
1011   FuncDef *a[23];       /* Hash table for functions */
1012 };
1013 
1014 #ifdef SQLITE_USER_AUTHENTICATION
1015 /*
1016 ** Information held in the "sqlite3" database connection object and used
1017 ** to manage user authentication.
1018 */
1019 typedef struct sqlite3_userauth sqlite3_userauth;
1020 struct sqlite3_userauth {
1021   u8 authLevel;                 /* Current authentication level */
1022   int nAuthPW;                  /* Size of the zAuthPW in bytes */
1023   char *zAuthPW;                /* Password used to authenticate */
1024   char *zAuthUser;              /* User name used to authenticate */
1025 };
1026 
1027 /* Allowed values for sqlite3_userauth.authLevel */
1028 #define UAUTH_Unknown     0     /* Authentication not yet checked */
1029 #define UAUTH_Fail        1     /* User authentication failed */
1030 #define UAUTH_User        2     /* Authenticated as a normal user */
1031 #define UAUTH_Admin       3     /* Authenticated as an administrator */
1032 
1033 /* Functions used only by user authorization logic */
1034 int sqlite3UserAuthTable(const char*);
1035 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
1036 void sqlite3UserAuthInit(sqlite3*);
1037 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);
1038 
1039 #endif /* SQLITE_USER_AUTHENTICATION */
1040 
1041 /*
1042 ** typedef for the authorization callback function.
1043 */
1044 #ifdef SQLITE_USER_AUTHENTICATION
1045   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1046                                const char*, const char*);
1047 #else
1048   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1049                                const char*);
1050 #endif
1051 
1052 
1053 /*
1054 ** Each database connection is an instance of the following structure.
1055 */
1056 struct sqlite3 {
1057   sqlite3_vfs *pVfs;            /* OS Interface */
1058   struct Vdbe *pVdbe;           /* List of active virtual machines */
1059   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
1060   sqlite3_mutex *mutex;         /* Connection mutex */
1061   Db *aDb;                      /* All backends */
1062   int nDb;                      /* Number of backends currently in use */
1063   int flags;                    /* Miscellaneous flags. See below */
1064   i64 lastRowid;                /* ROWID of most recent insert (see above) */
1065   i64 szMmap;                   /* Default mmap_size setting */
1066   unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
1067   int errCode;                  /* Most recent error code (SQLITE_*) */
1068   int errMask;                  /* & result codes with this before returning */
1069   u16 dbOptFlags;               /* Flags to enable/disable optimizations */
1070   u8 enc;                       /* Text encoding */
1071   u8 autoCommit;                /* The auto-commit flag. */
1072   u8 temp_store;                /* 1: file 2: memory 0: default */
1073   u8 mallocFailed;              /* True if we have seen a malloc failure */
1074   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
1075   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
1076   u8 suppressErr;               /* Do not issue error messages if true */
1077   u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
1078   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
1079   int nextPagesize;             /* Pagesize after VACUUM if >0 */
1080   u32 magic;                    /* Magic number for detect library misuse */
1081   int nChange;                  /* Value returned by sqlite3_changes() */
1082   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
1083   int aLimit[SQLITE_N_LIMIT];   /* Limits */
1084   int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
1085   struct sqlite3InitInfo {      /* Information used during initialization */
1086     int newTnum;                /* Rootpage of table being initialized */
1087     u8 iDb;                     /* Which db file is being initialized */
1088     u8 busy;                    /* TRUE if currently initializing */
1089     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
1090   } init;
1091   int nVdbeActive;              /* Number of VDBEs currently running */
1092   int nVdbeRead;                /* Number of active VDBEs that read or write */
1093   int nVdbeWrite;               /* Number of active VDBEs that read and write */
1094   int nVdbeExec;                /* Number of nested calls to VdbeExec() */
1095   int nExtension;               /* Number of loaded extensions */
1096   void **aExtension;            /* Array of shared library handles */
1097   void (*xTrace)(void*,const char*);        /* Trace function */
1098   void *pTraceArg;                          /* Argument to the trace function */
1099   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
1100   void *pProfileArg;                        /* Argument to profile function */
1101   void *pCommitArg;                 /* Argument to xCommitCallback() */
1102   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
1103   void *pRollbackArg;               /* Argument to xRollbackCallback() */
1104   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
1105   void *pUpdateArg;
1106   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
1107 #ifndef SQLITE_OMIT_WAL
1108   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
1109   void *pWalArg;
1110 #endif
1111   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
1112   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
1113   void *pCollNeededArg;
1114   sqlite3_value *pErr;          /* Most recent error message */
1115   union {
1116     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
1117     double notUsed1;            /* Spacer */
1118   } u1;
1119   Lookaside lookaside;          /* Lookaside malloc configuration */
1120 #ifndef SQLITE_OMIT_AUTHORIZATION
1121   sqlite3_xauth xAuth;          /* Access authorization function */
1122   void *pAuthArg;               /* 1st argument to the access auth function */
1123 #endif
1124 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1125   int (*xProgress)(void *);     /* The progress callback */
1126   void *pProgressArg;           /* Argument to the progress callback */
1127   unsigned nProgressOps;        /* Number of opcodes for progress callback */
1128 #endif
1129 #ifndef SQLITE_OMIT_VIRTUALTABLE
1130   int nVTrans;                  /* Allocated size of aVTrans */
1131   Hash aModule;                 /* populated by sqlite3_create_module() */
1132   VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
1133   VTable **aVTrans;             /* Virtual tables with open transactions */
1134   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
1135 #endif
1136   FuncDefHash aFunc;            /* Hash table of connection functions */
1137   Hash aCollSeq;                /* All collating sequences */
1138   BusyHandler busyHandler;      /* Busy callback */
1139   Db aDbStatic[2];              /* Static space for the 2 default backends */
1140   Savepoint *pSavepoint;        /* List of active savepoints */
1141   int busyTimeout;              /* Busy handler timeout, in msec */
1142   int nSavepoint;               /* Number of non-transaction savepoints */
1143   int nStatement;               /* Number of nested statement-transactions  */
1144   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
1145   i64 nDeferredImmCons;         /* Net deferred immediate constraints */
1146   int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
1147 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
1148   /* The following variables are all protected by the STATIC_MASTER
1149   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
1150   **
1151   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
1152   ** unlock so that it can proceed.
1153   **
1154   ** When X.pBlockingConnection==Y, that means that something that X tried
1155   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
1156   ** held by Y.
1157   */
1158   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
1159   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
1160   void *pUnlockArg;                     /* Argument to xUnlockNotify */
1161   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
1162   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
1163 #endif
1164 #ifdef SQLITE_USER_AUTHENTICATION
1165   sqlite3_userauth auth;        /* User authentication information */
1166 #endif
1167 };
1168 
1169 /*
1170 ** A macro to discover the encoding of a database.
1171 */
1172 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
1173 #define ENC(db)        ((db)->enc)
1174 
1175 /*
1176 ** Possible values for the sqlite3.flags.
1177 */
1178 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
1179 #define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
1180 #define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
1181 #define SQLITE_CkptFullFSync  0x00000008  /* Use full fsync for checkpoint */
1182 #define SQLITE_CacheSpill     0x00000010  /* OK to spill pager cache */
1183 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
1184 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
1185 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
1186                                           /*   DELETE, or UPDATE and return */
1187                                           /*   the count using a callback. */
1188 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
1189                                           /*   result set is empty */
1190 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
1191 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
1192 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
1193 #define SQLITE_VdbeAddopTrace 0x00001000  /* Trace sqlite3VdbeAddOp() calls */
1194 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
1195 #define SQLITE_ReadUncommitted 0x0004000  /* For shared-cache mode */
1196 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
1197 #define SQLITE_RecoveryMode   0x00010000  /* Ignore schema errors */
1198 #define SQLITE_ReverseOrder   0x00020000  /* Reverse unordered SELECTs */
1199 #define SQLITE_RecTriggers    0x00040000  /* Enable recursive triggers */
1200 #define SQLITE_ForeignKeys    0x00080000  /* Enforce foreign key constraints  */
1201 #define SQLITE_AutoIndex      0x00100000  /* Enable automatic indexes */
1202 #define SQLITE_PreferBuiltin  0x00200000  /* Preference to built-in funcs */
1203 #define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
1204 #define SQLITE_EnableTrigger  0x00800000  /* True to enable triggers */
1205 #define SQLITE_DeferFKs       0x01000000  /* Defer all FK constraints */
1206 #define SQLITE_QueryOnly      0x02000000  /* Disable database changes */
1207 #define SQLITE_VdbeEQP        0x04000000  /* Debug EXPLAIN QUERY PLAN */
1208 
1209 
1210 /*
1211 ** Bits of the sqlite3.dbOptFlags field that are used by the
1212 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
1213 ** selectively disable various optimizations.
1214 */
1215 #define SQLITE_QueryFlattener 0x0001   /* Query flattening */
1216 #define SQLITE_ColumnCache    0x0002   /* Column cache */
1217 #define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
1218 #define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
1219 /*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
1220 #define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
1221 #define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
1222 #define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
1223 #define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
1224 #define SQLITE_Transitive     0x0200   /* Transitive constraints */
1225 #define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
1226 #define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */
1227 #define SQLITE_AllOpts        0xffff   /* All optimizations */
1228 
1229 /*
1230 ** Macros for testing whether or not optimizations are enabled or disabled.
1231 */
1232 #ifndef SQLITE_OMIT_BUILTIN_TEST
1233 #define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1234 #define OptimizationEnabled(db, mask)   (((db)->dbOptFlags&(mask))==0)
1235 #else
1236 #define OptimizationDisabled(db, mask)  0
1237 #define OptimizationEnabled(db, mask)   1
1238 #endif
1239 
1240 /*
1241 ** Return true if it OK to factor constant expressions into the initialization
1242 ** code. The argument is a Parse object for the code generator.
1243 */
1244 #define ConstFactorOk(P) ((P)->okConstFactor)
1245 
1246 /*
1247 ** Possible values for the sqlite.magic field.
1248 ** The numbers are obtained at random and have no special meaning, other
1249 ** than being distinct from one another.
1250 */
1251 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
1252 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
1253 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
1254 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
1255 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
1256 #define SQLITE_MAGIC_ZOMBIE   0x64cffc7f  /* Close with last statement close */
1257 
1258 /*
1259 ** Each SQL function is defined by an instance of the following
1260 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
1261 ** hash table.  When multiple functions have the same name, the hash table
1262 ** points to a linked list of these structures.
1263 */
1264 struct FuncDef {
1265   i16 nArg;            /* Number of arguments.  -1 means unlimited */
1266   u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
1267   void *pUserData;     /* User data parameter */
1268   FuncDef *pNext;      /* Next function with same name */
1269   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
1270   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
1271   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
1272   char *zName;         /* SQL name of the function. */
1273   FuncDef *pHash;      /* Next with a different name but the same hash */
1274   FuncDestructor *pDestructor;   /* Reference counted destructor function */
1275 };
1276 
1277 /*
1278 ** This structure encapsulates a user-function destructor callback (as
1279 ** configured using create_function_v2()) and a reference counter. When
1280 ** create_function_v2() is called to create a function with a destructor,
1281 ** a single object of this type is allocated. FuncDestructor.nRef is set to
1282 ** the number of FuncDef objects created (either 1 or 3, depending on whether
1283 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
1284 ** member of each of the new FuncDef objects is set to point to the allocated
1285 ** FuncDestructor.
1286 **
1287 ** Thereafter, when one of the FuncDef objects is deleted, the reference
1288 ** count on this object is decremented. When it reaches 0, the destructor
1289 ** is invoked and the FuncDestructor structure freed.
1290 */
1291 struct FuncDestructor {
1292   int nRef;
1293   void (*xDestroy)(void *);
1294   void *pUserData;
1295 };
1296 
1297 /*
1298 ** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
1299 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  There
1300 ** are assert() statements in the code to verify this.
1301 */
1302 #define SQLITE_FUNC_ENCMASK  0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
1303 #define SQLITE_FUNC_LIKE     0x004 /* Candidate for the LIKE optimization */
1304 #define SQLITE_FUNC_CASE     0x008 /* Case-sensitive LIKE-type function */
1305 #define SQLITE_FUNC_EPHEM    0x010 /* Ephemeral.  Delete with VDBE */
1306 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
1307 #define SQLITE_FUNC_LENGTH   0x040 /* Built-in length() function */
1308 #define SQLITE_FUNC_TYPEOF   0x080 /* Built-in typeof() function */
1309 #define SQLITE_FUNC_COUNT    0x100 /* Built-in count(*) aggregate */
1310 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
1311 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */
1312 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */
1313 #define SQLITE_FUNC_MINMAX  0x1000 /* True for min() and max() aggregates */
1314 
1315 /*
1316 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1317 ** used to create the initializers for the FuncDef structures.
1318 **
1319 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
1320 **     Used to create a scalar function definition of a function zName
1321 **     implemented by C function xFunc that accepts nArg arguments. The
1322 **     value passed as iArg is cast to a (void*) and made available
1323 **     as the user-data (sqlite3_user_data()) for the function. If
1324 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1325 **
1326 **   VFUNCTION(zName, nArg, iArg, bNC, xFunc)
1327 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
1328 **
1329 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1330 **     Used to create an aggregate function definition implemented by
1331 **     the C functions xStep and xFinal. The first four parameters
1332 **     are interpreted in the same way as the first 4 parameters to
1333 **     FUNCTION().
1334 **
1335 **   LIKEFUNC(zName, nArg, pArg, flags)
1336 **     Used to create a scalar function definition of a function zName
1337 **     that accepts nArg arguments and is implemented by a call to C
1338 **     function likeFunc. Argument pArg is cast to a (void *) and made
1339 **     available as the function user-data (sqlite3_user_data()). The
1340 **     FuncDef.flags variable is set to the value passed as the flags
1341 **     parameter.
1342 */
1343 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1344   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1345    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1346 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
1347   {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1348    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1349 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
1350   {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
1351    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1352 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1353   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1354    pArg, 0, xFunc, 0, 0, #zName, 0, 0}
1355 #define LIKEFUNC(zName, nArg, arg, flags) \
1356   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
1357    (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
1358 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1359   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
1360    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1361 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
1362   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
1363    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1364 
1365 /*
1366 ** All current savepoints are stored in a linked list starting at
1367 ** sqlite3.pSavepoint. The first element in the list is the most recently
1368 ** opened savepoint. Savepoints are added to the list by the vdbe
1369 ** OP_Savepoint instruction.
1370 */
1371 struct Savepoint {
1372   char *zName;                        /* Savepoint name (nul-terminated) */
1373   i64 nDeferredCons;                  /* Number of deferred fk violations */
1374   i64 nDeferredImmCons;               /* Number of deferred imm fk. */
1375   Savepoint *pNext;                   /* Parent savepoint (if any) */
1376 };
1377 
1378 /*
1379 ** The following are used as the second parameter to sqlite3Savepoint(),
1380 ** and as the P1 argument to the OP_Savepoint instruction.
1381 */
1382 #define SAVEPOINT_BEGIN      0
1383 #define SAVEPOINT_RELEASE    1
1384 #define SAVEPOINT_ROLLBACK   2
1385 
1386 
1387 /*
1388 ** Each SQLite module (virtual table definition) is defined by an
1389 ** instance of the following structure, stored in the sqlite3.aModule
1390 ** hash table.
1391 */
1392 struct Module {
1393   const sqlite3_module *pModule;       /* Callback pointers */
1394   const char *zName;                   /* Name passed to create_module() */
1395   void *pAux;                          /* pAux passed to create_module() */
1396   void (*xDestroy)(void *);            /* Module destructor function */
1397 };
1398 
1399 /*
1400 ** information about each column of an SQL table is held in an instance
1401 ** of this structure.
1402 */
1403 struct Column {
1404   char *zName;     /* Name of this column */
1405   Expr *pDflt;     /* Default value of this column */
1406   char *zDflt;     /* Original text of the default value */
1407   char *zType;     /* Data type for this column */
1408   char *zColl;     /* Collating sequence.  If NULL, use the default */
1409   u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
1410   char affinity;   /* One of the SQLITE_AFF_... values */
1411   u8 szEst;        /* Estimated size of this column.  INT==1 */
1412   u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
1413 };
1414 
1415 /* Allowed values for Column.colFlags:
1416 */
1417 #define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
1418 #define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
1419 
1420 /*
1421 ** A "Collating Sequence" is defined by an instance of the following
1422 ** structure. Conceptually, a collating sequence consists of a name and
1423 ** a comparison routine that defines the order of that sequence.
1424 **
1425 ** If CollSeq.xCmp is NULL, it means that the
1426 ** collating sequence is undefined.  Indices built on an undefined
1427 ** collating sequence may not be read or written.
1428 */
1429 struct CollSeq {
1430   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1431   u8 enc;               /* Text encoding handled by xCmp() */
1432   void *pUser;          /* First argument to xCmp() */
1433   int (*xCmp)(void*,int, const void*, int, const void*);
1434   void (*xDel)(void*);  /* Destructor for pUser */
1435 };
1436 
1437 /*
1438 ** A sort order can be either ASC or DESC.
1439 */
1440 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1441 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1442 
1443 /*
1444 ** Column affinity types.
1445 **
1446 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1447 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1448 ** the speed a little by numbering the values consecutively.
1449 **
1450 ** But rather than start with 0 or 1, we begin with 'A'.  That way,
1451 ** when multiple affinity types are concatenated into a string and
1452 ** used as the P4 operand, they will be more readable.
1453 **
1454 ** Note also that the numeric types are grouped together so that testing
1455 ** for a numeric type is a single comparison.  And the NONE type is first.
1456 */
1457 #define SQLITE_AFF_NONE     'A'
1458 #define SQLITE_AFF_TEXT     'B'
1459 #define SQLITE_AFF_NUMERIC  'C'
1460 #define SQLITE_AFF_INTEGER  'D'
1461 #define SQLITE_AFF_REAL     'E'
1462 
1463 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1464 
1465 /*
1466 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1467 ** affinity value.
1468 */
1469 #define SQLITE_AFF_MASK     0x47
1470 
1471 /*
1472 ** Additional bit values that can be ORed with an affinity without
1473 ** changing the affinity.
1474 **
1475 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
1476 ** It causes an assert() to fire if either operand to a comparison
1477 ** operator is NULL.  It is added to certain comparison operators to
1478 ** prove that the operands are always NOT NULL.
1479 */
1480 #define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
1481 #define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
1482 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1483 #define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */
1484 
1485 /*
1486 ** An object of this type is created for each virtual table present in
1487 ** the database schema.
1488 **
1489 ** If the database schema is shared, then there is one instance of this
1490 ** structure for each database connection (sqlite3*) that uses the shared
1491 ** schema. This is because each database connection requires its own unique
1492 ** instance of the sqlite3_vtab* handle used to access the virtual table
1493 ** implementation. sqlite3_vtab* handles can not be shared between
1494 ** database connections, even when the rest of the in-memory database
1495 ** schema is shared, as the implementation often stores the database
1496 ** connection handle passed to it via the xConnect() or xCreate() method
1497 ** during initialization internally. This database connection handle may
1498 ** then be used by the virtual table implementation to access real tables
1499 ** within the database. So that they appear as part of the callers
1500 ** transaction, these accesses need to be made via the same database
1501 ** connection as that used to execute SQL operations on the virtual table.
1502 **
1503 ** All VTable objects that correspond to a single table in a shared
1504 ** database schema are initially stored in a linked-list pointed to by
1505 ** the Table.pVTable member variable of the corresponding Table object.
1506 ** When an sqlite3_prepare() operation is required to access the virtual
1507 ** table, it searches the list for the VTable that corresponds to the
1508 ** database connection doing the preparing so as to use the correct
1509 ** sqlite3_vtab* handle in the compiled query.
1510 **
1511 ** When an in-memory Table object is deleted (for example when the
1512 ** schema is being reloaded for some reason), the VTable objects are not
1513 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1514 ** immediately. Instead, they are moved from the Table.pVTable list to
1515 ** another linked list headed by the sqlite3.pDisconnect member of the
1516 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1517 ** next time a statement is prepared using said sqlite3*. This is done
1518 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1519 ** Refer to comments above function sqlite3VtabUnlockList() for an
1520 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1521 ** list without holding the corresponding sqlite3.mutex mutex.
1522 **
1523 ** The memory for objects of this type is always allocated by
1524 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1525 ** the first argument.
1526 */
1527 struct VTable {
1528   sqlite3 *db;              /* Database connection associated with this table */
1529   Module *pMod;             /* Pointer to module implementation */
1530   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1531   int nRef;                 /* Number of pointers to this structure */
1532   u8 bConstraint;           /* True if constraints are supported */
1533   int iSavepoint;           /* Depth of the SAVEPOINT stack */
1534   VTable *pNext;            /* Next in linked list (see above) */
1535 };
1536 
1537 /*
1538 ** Each SQL table is represented in memory by an instance of the
1539 ** following structure.
1540 **
1541 ** Table.zName is the name of the table.  The case of the original
1542 ** CREATE TABLE statement is stored, but case is not significant for
1543 ** comparisons.
1544 **
1545 ** Table.nCol is the number of columns in this table.  Table.aCol is a
1546 ** pointer to an array of Column structures, one for each column.
1547 **
1548 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
1549 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
1550 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
1551 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
1552 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
1553 ** is generated for each row of the table.  TF_HasPrimaryKey is set if
1554 ** the table has any PRIMARY KEY, INTEGER or otherwise.
1555 **
1556 ** Table.tnum is the page number for the root BTree page of the table in the
1557 ** database file.  If Table.iDb is the index of the database table backend
1558 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
1559 ** holds temporary tables and indices.  If TF_Ephemeral is set
1560 ** then the table is stored in a file that is automatically deleted
1561 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
1562 ** refers VDBE cursor number that holds the table open, not to the root
1563 ** page number.  Transient tables are used to hold the results of a
1564 ** sub-query that appears instead of a real table name in the FROM clause
1565 ** of a SELECT statement.
1566 */
1567 struct Table {
1568   char *zName;         /* Name of the table or view */
1569   Column *aCol;        /* Information about each column */
1570   Index *pIndex;       /* List of SQL indexes on this table. */
1571   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1572   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1573   char *zColAff;       /* String defining the affinity of each column */
1574 #ifndef SQLITE_OMIT_CHECK
1575   ExprList *pCheck;    /* All CHECK constraints */
1576 #endif
1577   LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
1578   int tnum;            /* Root BTree node for this table (see note above) */
1579   i16 iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
1580   i16 nCol;            /* Number of columns in this table */
1581   u16 nRef;            /* Number of pointers to this Table */
1582   LogEst szTabRow;     /* Estimated size of each table row in bytes */
1583 #ifdef SQLITE_ENABLE_COSTMULT
1584   LogEst costMult;     /* Cost multiplier for using this table */
1585 #endif
1586   u8 tabFlags;         /* Mask of TF_* values */
1587   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1588 #ifndef SQLITE_OMIT_ALTERTABLE
1589   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1590 #endif
1591 #ifndef SQLITE_OMIT_VIRTUALTABLE
1592   int nModuleArg;      /* Number of arguments to the module */
1593   char **azModuleArg;  /* Text of all module args. [0] is module name */
1594   VTable *pVTable;     /* List of VTable objects. */
1595 #endif
1596   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1597   Schema *pSchema;     /* Schema that contains this table */
1598   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1599 };
1600 
1601 /*
1602 ** Allowed values for Table.tabFlags.
1603 */
1604 #define TF_Readonly        0x01    /* Read-only system table */
1605 #define TF_Ephemeral       0x02    /* An ephemeral table */
1606 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1607 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1608 #define TF_Virtual         0x10    /* Is a virtual table */
1609 #define TF_WithoutRowid    0x20    /* No rowid used. PRIMARY KEY is the key */
1610 
1611 
1612 /*
1613 ** Test to see whether or not a table is a virtual table.  This is
1614 ** done as a macro so that it will be optimized out when virtual
1615 ** table support is omitted from the build.
1616 */
1617 #ifndef SQLITE_OMIT_VIRTUALTABLE
1618 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1619 #  define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1620 #else
1621 #  define IsVirtual(X)      0
1622 #  define IsHiddenColumn(X) 0
1623 #endif
1624 
1625 /* Does the table have a rowid */
1626 #define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
1627 
1628 /*
1629 ** Each foreign key constraint is an instance of the following structure.
1630 **
1631 ** A foreign key is associated with two tables.  The "from" table is
1632 ** the table that contains the REFERENCES clause that creates the foreign
1633 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1634 ** Consider this example:
1635 **
1636 **     CREATE TABLE ex1(
1637 **       a INTEGER PRIMARY KEY,
1638 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1639 **     );
1640 **
1641 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1642 ** Equivalent names:
1643 **
1644 **     from-table == child-table
1645 **       to-table == parent-table
1646 **
1647 ** Each REFERENCES clause generates an instance of the following structure
1648 ** which is attached to the from-table.  The to-table need not exist when
1649 ** the from-table is created.  The existence of the to-table is not checked.
1650 **
1651 ** The list of all parents for child Table X is held at X.pFKey.
1652 **
1653 ** A list of all children for a table named Z (which might not even exist)
1654 ** is held in Schema.fkeyHash with a hash key of Z.
1655 */
1656 struct FKey {
1657   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1658   FKey *pNextFrom;  /* Next FKey with the same in pFrom. Next parent of pFrom */
1659   char *zTo;        /* Name of table that the key points to (aka: Parent) */
1660   FKey *pNextTo;    /* Next with the same zTo. Next child of zTo. */
1661   FKey *pPrevTo;    /* Previous with the same zTo */
1662   int nCol;         /* Number of columns in this key */
1663   /* EV: R-30323-21917 */
1664   u8 isDeferred;       /* True if constraint checking is deferred till COMMIT */
1665   u8 aAction[2];        /* ON DELETE and ON UPDATE actions, respectively */
1666   Trigger *apTrigger[2];/* Triggers for aAction[] actions */
1667   struct sColMap {      /* Mapping of columns in pFrom to columns in zTo */
1668     int iFrom;            /* Index of column in pFrom */
1669     char *zCol;           /* Name of column in zTo.  If NULL use PRIMARY KEY */
1670   } aCol[1];            /* One entry for each of nCol columns */
1671 };
1672 
1673 /*
1674 ** SQLite supports many different ways to resolve a constraint
1675 ** error.  ROLLBACK processing means that a constraint violation
1676 ** causes the operation in process to fail and for the current transaction
1677 ** to be rolled back.  ABORT processing means the operation in process
1678 ** fails and any prior changes from that one operation are backed out,
1679 ** but the transaction is not rolled back.  FAIL processing means that
1680 ** the operation in progress stops and returns an error code.  But prior
1681 ** changes due to the same operation are not backed out and no rollback
1682 ** occurs.  IGNORE means that the particular row that caused the constraint
1683 ** error is not inserted or updated.  Processing continues and no error
1684 ** is returned.  REPLACE means that preexisting database rows that caused
1685 ** a UNIQUE constraint violation are removed so that the new insert or
1686 ** update can proceed.  Processing continues and no error is reported.
1687 **
1688 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1689 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1690 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1691 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1692 ** referenced table row is propagated into the row that holds the
1693 ** foreign key.
1694 **
1695 ** The following symbolic values are used to record which type
1696 ** of action to take.
1697 */
1698 #define OE_None     0   /* There is no constraint to check */
1699 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1700 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1701 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1702 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1703 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1704 
1705 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1706 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1707 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1708 #define OE_Cascade  9   /* Cascade the changes */
1709 
1710 #define OE_Default  10  /* Do whatever the default action is */
1711 
1712 
1713 /*
1714 ** An instance of the following structure is passed as the first
1715 ** argument to sqlite3VdbeKeyCompare and is used to control the
1716 ** comparison of the two index keys.
1717 **
1718 ** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
1719 ** are nField slots for the columns of an index then one extra slot
1720 ** for the rowid at the end.
1721 */
1722 struct KeyInfo {
1723   u32 nRef;           /* Number of references to this KeyInfo object */
1724   u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
1725   u16 nField;         /* Number of key columns in the index */
1726   u16 nXField;        /* Number of columns beyond the key columns */
1727   sqlite3 *db;        /* The database connection */
1728   u8 *aSortOrder;     /* Sort order for each column. */
1729   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1730 };
1731 
1732 /*
1733 ** An instance of the following structure holds information about a
1734 ** single index record that has already been parsed out into individual
1735 ** values.
1736 **
1737 ** A record is an object that contains one or more fields of data.
1738 ** Records are used to store the content of a table row and to store
1739 ** the key of an index.  A blob encoding of a record is created by
1740 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1741 ** OP_Column opcode.
1742 **
1743 ** This structure holds a record that has already been disassembled
1744 ** into its constituent fields.
1745 **
1746 ** The r1 and r2 member variables are only used by the optimized comparison
1747 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
1748 */
1749 struct UnpackedRecord {
1750   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1751   u16 nField;         /* Number of entries in apMem[] */
1752   i8 default_rc;      /* Comparison result if keys are equal */
1753   u8 errCode;         /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
1754   Mem *aMem;          /* Values */
1755   int r1;             /* Value to return if (lhs > rhs) */
1756   int r2;             /* Value to return if (rhs < lhs) */
1757 };
1758 
1759 
1760 /*
1761 ** Each SQL index is represented in memory by an
1762 ** instance of the following structure.
1763 **
1764 ** The columns of the table that are to be indexed are described
1765 ** by the aiColumn[] field of this structure.  For example, suppose
1766 ** we have the following table and index:
1767 **
1768 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1769 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1770 **
1771 ** In the Table structure describing Ex1, nCol==3 because there are
1772 ** three columns in the table.  In the Index structure describing
1773 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1774 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1775 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1776 ** The second column to be indexed (c1) has an index of 0 in
1777 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1778 **
1779 ** The Index.onError field determines whether or not the indexed columns
1780 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1781 ** it means this is not a unique index.  Otherwise it is a unique index
1782 ** and the value of Index.onError indicate the which conflict resolution
1783 ** algorithm to employ whenever an attempt is made to insert a non-unique
1784 ** element.
1785 */
1786 struct Index {
1787   char *zName;             /* Name of this index */
1788   i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
1789   LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
1790   Table *pTable;           /* The SQL table being indexed */
1791   char *zColAff;           /* String defining the affinity of each column */
1792   Index *pNext;            /* The next index associated with the same table */
1793   Schema *pSchema;         /* Schema containing this index */
1794   u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
1795   char **azColl;           /* Array of collation sequence names for index */
1796   Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
1797   int tnum;                /* DB Page containing root of this index */
1798   LogEst szIdxRow;         /* Estimated average row size in bytes */
1799   u16 nKeyCol;             /* Number of columns forming the key */
1800   u16 nColumn;             /* Number of columns stored in the index */
1801   u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1802   unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
1803   unsigned bUnordered:1;   /* Use this index for == or IN queries only */
1804   unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
1805   unsigned isResized:1;    /* True if resizeIndexObject() has been called */
1806   unsigned isCovering:1;   /* True if this is a covering index */
1807   unsigned noSkipScan:1;   /* Do not try to use skip-scan if true */
1808 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1809   int nSample;             /* Number of elements in aSample[] */
1810   int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
1811   tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
1812   IndexSample *aSample;    /* Samples of the left-most key */
1813   tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this index */
1814   tRowcnt nRowEst0;        /* Non-logarithmic number of rows in the index */
1815 #endif
1816 };
1817 
1818 /*
1819 ** Allowed values for Index.idxType
1820 */
1821 #define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
1822 #define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
1823 #define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */
1824 
1825 /* Return true if index X is a PRIMARY KEY index */
1826 #define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
1827 
1828 /* Return true if index X is a UNIQUE index */
1829 #define IsUniqueIndex(X)      ((X)->onError!=OE_None)
1830 
1831 /*
1832 ** Each sample stored in the sqlite_stat3 table is represented in memory
1833 ** using a structure of this type.  See documentation at the top of the
1834 ** analyze.c source file for additional information.
1835 */
1836 struct IndexSample {
1837   void *p;          /* Pointer to sampled record */
1838   int n;            /* Size of record in bytes */
1839   tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
1840   tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
1841   tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
1842 };
1843 
1844 /*
1845 ** Each token coming out of the lexer is an instance of
1846 ** this structure.  Tokens are also used as part of an expression.
1847 **
1848 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1849 ** may contain random values.  Do not make any assumptions about Token.dyn
1850 ** and Token.n when Token.z==0.
1851 */
1852 struct Token {
1853   const char *z;     /* Text of the token.  Not NULL-terminated! */
1854   unsigned int n;    /* Number of characters in this token */
1855 };
1856 
1857 /*
1858 ** An instance of this structure contains information needed to generate
1859 ** code for a SELECT that contains aggregate functions.
1860 **
1861 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1862 ** pointer to this structure.  The Expr.iColumn field is the index in
1863 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1864 ** code for that node.
1865 **
1866 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1867 ** original Select structure that describes the SELECT statement.  These
1868 ** fields do not need to be freed when deallocating the AggInfo structure.
1869 */
1870 struct AggInfo {
1871   u8 directMode;          /* Direct rendering mode means take data directly
1872                           ** from source tables rather than from accumulators */
1873   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1874                           ** than the source table */
1875   int sortingIdx;         /* Cursor number of the sorting index */
1876   int sortingIdxPTab;     /* Cursor number of pseudo-table */
1877   int nSortingColumn;     /* Number of columns in the sorting index */
1878   int mnReg, mxReg;       /* Range of registers allocated for aCol and aFunc */
1879   ExprList *pGroupBy;     /* The group by clause */
1880   struct AggInfo_col {    /* For each column used in source tables */
1881     Table *pTab;             /* Source table */
1882     int iTable;              /* Cursor number of the source table */
1883     int iColumn;             /* Column number within the source table */
1884     int iSorterColumn;       /* Column number in the sorting index */
1885     int iMem;                /* Memory location that acts as accumulator */
1886     Expr *pExpr;             /* The original expression */
1887   } *aCol;
1888   int nColumn;            /* Number of used entries in aCol[] */
1889   int nAccumulator;       /* Number of columns that show through to the output.
1890                           ** Additional columns are used only as parameters to
1891                           ** aggregate functions */
1892   struct AggInfo_func {   /* For each aggregate function */
1893     Expr *pExpr;             /* Expression encoding the function */
1894     FuncDef *pFunc;          /* The aggregate function implementation */
1895     int iMem;                /* Memory location that acts as accumulator */
1896     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1897   } *aFunc;
1898   int nFunc;              /* Number of entries in aFunc[] */
1899 };
1900 
1901 /*
1902 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
1903 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
1904 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
1905 ** it uses less memory in the Expr object, which is a big memory user
1906 ** in systems with lots of prepared statements.  And few applications
1907 ** need more than about 10 or 20 variables.  But some extreme users want
1908 ** to have prepared statements with over 32767 variables, and for them
1909 ** the option is available (at compile-time).
1910 */
1911 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
1912 typedef i16 ynVar;
1913 #else
1914 typedef int ynVar;
1915 #endif
1916 
1917 /*
1918 ** Each node of an expression in the parse tree is an instance
1919 ** of this structure.
1920 **
1921 ** Expr.op is the opcode. The integer parser token codes are reused
1922 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1923 ** code representing the ">=" operator. This same integer code is reused
1924 ** to represent the greater-than-or-equal-to operator in the expression
1925 ** tree.
1926 **
1927 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1928 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1929 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1930 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1931 ** then Expr.token contains the name of the function.
1932 **
1933 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1934 ** binary operator. Either or both may be NULL.
1935 **
1936 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
1937 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1938 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1939 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1940 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1941 ** valid.
1942 **
1943 ** An expression of the form ID or ID.ID refers to a column in a table.
1944 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1945 ** the integer cursor number of a VDBE cursor pointing to that table and
1946 ** Expr.iColumn is the column number for the specific column.  If the
1947 ** expression is used as a result in an aggregate SELECT, then the
1948 ** value is also stored in the Expr.iAgg column in the aggregate so that
1949 ** it can be accessed after all aggregates are computed.
1950 **
1951 ** If the expression is an unbound variable marker (a question mark
1952 ** character '?' in the original SQL) then the Expr.iTable holds the index
1953 ** number for that variable.
1954 **
1955 ** If the expression is a subquery then Expr.iColumn holds an integer
1956 ** register number containing the result of the subquery.  If the
1957 ** subquery gives a constant result, then iTable is -1.  If the subquery
1958 ** gives a different answer at different times during statement processing
1959 ** then iTable is the address of a subroutine that computes the subquery.
1960 **
1961 ** If the Expr is of type OP_Column, and the table it is selecting from
1962 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
1963 ** corresponding table definition.
1964 **
1965 ** ALLOCATION NOTES:
1966 **
1967 ** Expr objects can use a lot of memory space in database schema.  To
1968 ** help reduce memory requirements, sometimes an Expr object will be
1969 ** truncated.  And to reduce the number of memory allocations, sometimes
1970 ** two or more Expr objects will be stored in a single memory allocation,
1971 ** together with Expr.zToken strings.
1972 **
1973 ** If the EP_Reduced and EP_TokenOnly flags are set when
1974 ** an Expr object is truncated.  When EP_Reduced is set, then all
1975 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
1976 ** are contained within the same memory allocation.  Note, however, that
1977 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
1978 ** allocated, regardless of whether or not EP_Reduced is set.
1979 */
1980 struct Expr {
1981   u8 op;                 /* Operation performed by this node */
1982   char affinity;         /* The affinity of the column or 0 if not a column */
1983   u32 flags;             /* Various flags.  EP_* See below */
1984   union {
1985     char *zToken;          /* Token value. Zero terminated and dequoted */
1986     int iValue;            /* Non-negative integer value if EP_IntValue */
1987   } u;
1988 
1989   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
1990   ** space is allocated for the fields below this point. An attempt to
1991   ** access them will result in a segfault or malfunction.
1992   *********************************************************************/
1993 
1994   Expr *pLeft;           /* Left subnode */
1995   Expr *pRight;          /* Right subnode */
1996   union {
1997     ExprList *pList;     /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
1998     Select *pSelect;     /* EP_xIsSelect and op = IN, EXISTS, SELECT */
1999   } x;
2000 
2001   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
2002   ** space is allocated for the fields below this point. An attempt to
2003   ** access them will result in a segfault or malfunction.
2004   *********************************************************************/
2005 
2006 #if SQLITE_MAX_EXPR_DEPTH>0
2007   int nHeight;           /* Height of the tree headed by this node */
2008 #endif
2009   int iTable;            /* TK_COLUMN: cursor number of table holding column
2010                          ** TK_REGISTER: register number
2011                          ** TK_TRIGGER: 1 -> new, 0 -> old
2012                          ** EP_Unlikely:  134217728 times likelihood */
2013   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
2014                          ** TK_VARIABLE: variable number (always >= 1). */
2015   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
2016   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
2017   u8 op2;                /* TK_REGISTER: original value of Expr.op
2018                          ** TK_COLUMN: the value of p5 for OP_Column
2019                          ** TK_AGG_FUNCTION: nesting depth */
2020   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
2021   Table *pTab;           /* Table for TK_COLUMN expressions. */
2022 };
2023 
2024 /*
2025 ** The following are the meanings of bits in the Expr.flags field.
2026 */
2027 #define EP_FromJoin  0x000001 /* Originates in ON/USING clause of outer join */
2028 #define EP_Agg       0x000002 /* Contains one or more aggregate functions */
2029 #define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
2030 #define EP_Error     0x000008 /* Expression contains one or more errors */
2031 #define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
2032 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
2033 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
2034 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
2035 #define EP_Collate   0x000100 /* Tree contains a TK_COLLATE operator */
2036 #define EP_Generic   0x000200 /* Ignore COLLATE or affinity on this tree */
2037 #define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
2038 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
2039 #define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
2040 #define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
2041 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
2042 #define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
2043 #define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
2044 #define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
2045 #define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
2046 #define EP_Constant  0x080000 /* Node is a constant */
2047 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
2048 
2049 /*
2050 ** These macros can be used to test, set, or clear bits in the
2051 ** Expr.flags field.
2052 */
2053 #define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
2054 #define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
2055 #define ExprSetProperty(E,P)     (E)->flags|=(P)
2056 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
2057 
2058 /* The ExprSetVVAProperty() macro is used for Verification, Validation,
2059 ** and Accreditation only.  It works like ExprSetProperty() during VVA
2060 ** processes but is a no-op for delivery.
2061 */
2062 #ifdef SQLITE_DEBUG
2063 # define ExprSetVVAProperty(E,P)  (E)->flags|=(P)
2064 #else
2065 # define ExprSetVVAProperty(E,P)
2066 #endif
2067 
2068 /*
2069 ** Macros to determine the number of bytes required by a normal Expr
2070 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
2071 ** and an Expr struct with the EP_TokenOnly flag set.
2072 */
2073 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
2074 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
2075 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
2076 
2077 /*
2078 ** Flags passed to the sqlite3ExprDup() function. See the header comment
2079 ** above sqlite3ExprDup() for details.
2080 */
2081 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
2082 
2083 /*
2084 ** A list of expressions.  Each expression may optionally have a
2085 ** name.  An expr/name combination can be used in several ways, such
2086 ** as the list of "expr AS ID" fields following a "SELECT" or in the
2087 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
2088 ** also be used as the argument to a function, in which case the a.zName
2089 ** field is not used.
2090 **
2091 ** By default the Expr.zSpan field holds a human-readable description of
2092 ** the expression that is used in the generation of error messages and
2093 ** column labels.  In this case, Expr.zSpan is typically the text of a
2094 ** column expression as it exists in a SELECT statement.  However, if
2095 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
2096 ** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
2097 ** form is used for name resolution with nested FROM clauses.
2098 */
2099 struct ExprList {
2100   int nExpr;             /* Number of expressions on the list */
2101   struct ExprList_item { /* For each expression in the list */
2102     Expr *pExpr;            /* The list of expressions */
2103     char *zName;            /* Token associated with this expression */
2104     char *zSpan;            /* Original text of the expression */
2105     u8 sortOrder;           /* 1 for DESC or 0 for ASC */
2106     unsigned done :1;       /* A flag to indicate when processing is finished */
2107     unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
2108     unsigned reusable :1;   /* Constant expression is reusable */
2109     union {
2110       struct {
2111         u16 iOrderByCol;      /* For ORDER BY, column number in result set */
2112         u16 iAlias;           /* Index into Parse.aAlias[] for zName */
2113       } x;
2114       int iConstExprReg;      /* Register in which Expr value is cached */
2115     } u;
2116   } *a;                  /* Alloc a power of two greater or equal to nExpr */
2117 };
2118 
2119 /*
2120 ** An instance of this structure is used by the parser to record both
2121 ** the parse tree for an expression and the span of input text for an
2122 ** expression.
2123 */
2124 struct ExprSpan {
2125   Expr *pExpr;          /* The expression parse tree */
2126   const char *zStart;   /* First character of input text */
2127   const char *zEnd;     /* One character past the end of input text */
2128 };
2129 
2130 /*
2131 ** An instance of this structure can hold a simple list of identifiers,
2132 ** such as the list "a,b,c" in the following statements:
2133 **
2134 **      INSERT INTO t(a,b,c) VALUES ...;
2135 **      CREATE INDEX idx ON t(a,b,c);
2136 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
2137 **
2138 ** The IdList.a.idx field is used when the IdList represents the list of
2139 ** column names after a table name in an INSERT statement.  In the statement
2140 **
2141 **     INSERT INTO t(a,b,c) ...
2142 **
2143 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
2144 */
2145 struct IdList {
2146   struct IdList_item {
2147     char *zName;      /* Name of the identifier */
2148     int idx;          /* Index in some Table.aCol[] of a column named zName */
2149   } *a;
2150   int nId;         /* Number of identifiers on the list */
2151 };
2152 
2153 /*
2154 ** The bitmask datatype defined below is used for various optimizations.
2155 **
2156 ** Changing this from a 64-bit to a 32-bit type limits the number of
2157 ** tables in a join to 32 instead of 64.  But it also reduces the size
2158 ** of the library by 738 bytes on ix86.
2159 */
2160 typedef u64 Bitmask;
2161 
2162 /*
2163 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
2164 */
2165 #define BMS  ((int)(sizeof(Bitmask)*8))
2166 
2167 /*
2168 ** A bit in a Bitmask
2169 */
2170 #define MASKBIT(n)   (((Bitmask)1)<<(n))
2171 #define MASKBIT32(n) (((unsigned int)1)<<(n))
2172 
2173 /*
2174 ** The following structure describes the FROM clause of a SELECT statement.
2175 ** Each table or subquery in the FROM clause is a separate element of
2176 ** the SrcList.a[] array.
2177 **
2178 ** With the addition of multiple database support, the following structure
2179 ** can also be used to describe a particular table such as the table that
2180 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
2181 ** such a table must be a simple name: ID.  But in SQLite, the table can
2182 ** now be identified by a database name, a dot, then the table name: ID.ID.
2183 **
2184 ** The jointype starts out showing the join type between the current table
2185 ** and the next table on the list.  The parser builds the list this way.
2186 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
2187 ** jointype expresses the join between the table and the previous table.
2188 **
2189 ** In the colUsed field, the high-order bit (bit 63) is set if the table
2190 ** contains more than 63 columns and the 64-th or later column is used.
2191 */
2192 struct SrcList {
2193   int nSrc;        /* Number of tables or subqueries in the FROM clause */
2194   u32 nAlloc;      /* Number of entries allocated in a[] below */
2195   struct SrcList_item {
2196     Schema *pSchema;  /* Schema to which this item is fixed */
2197     char *zDatabase;  /* Name of database holding this table */
2198     char *zName;      /* Name of the table */
2199     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
2200     Table *pTab;      /* An SQL table corresponding to zName */
2201     Select *pSelect;  /* A SELECT statement used in place of a table name */
2202     int addrFillSub;  /* Address of subroutine to manifest a subquery */
2203     int regReturn;    /* Register holding return address of addrFillSub */
2204     int regResult;    /* Registers holding results of a co-routine */
2205     u8 jointype;      /* Type of join between this able and the previous */
2206     unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
2207     unsigned isCorrelated :1;  /* True if sub-query is correlated */
2208     unsigned viaCoroutine :1;  /* Implemented as a co-routine */
2209     unsigned isRecursive :1;   /* True for recursive reference in WITH */
2210 #ifndef SQLITE_OMIT_EXPLAIN
2211     u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
2212 #endif
2213     int iCursor;      /* The VDBE cursor number used to access this table */
2214     Expr *pOn;        /* The ON clause of a join */
2215     IdList *pUsing;   /* The USING clause of a join */
2216     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
2217     char *zIndex;     /* Identifier from "INDEXED BY <zIndex>" clause */
2218     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
2219   } a[1];             /* One entry for each identifier on the list */
2220 };
2221 
2222 /*
2223 ** Permitted values of the SrcList.a.jointype field
2224 */
2225 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
2226 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
2227 #define JT_NATURAL   0x0004    /* True for a "natural" join */
2228 #define JT_LEFT      0x0008    /* Left outer join */
2229 #define JT_RIGHT     0x0010    /* Right outer join */
2230 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
2231 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
2232 
2233 
2234 /*
2235 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
2236 ** and the WhereInfo.wctrlFlags member.
2237 */
2238 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
2239 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
2240 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
2241 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
2242 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
2243 #define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
2244 #define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
2245 #define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
2246                           /*   0x0080 // not currently used */
2247 #define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
2248 #define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
2249 #define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
2250 #define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
2251 #define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */
2252 
2253 /* Allowed return values from sqlite3WhereIsDistinct()
2254 */
2255 #define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
2256 #define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
2257 #define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
2258 #define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
2259 
2260 /*
2261 ** A NameContext defines a context in which to resolve table and column
2262 ** names.  The context consists of a list of tables (the pSrcList) field and
2263 ** a list of named expression (pEList).  The named expression list may
2264 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
2265 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
2266 ** pEList corresponds to the result set of a SELECT and is NULL for
2267 ** other statements.
2268 **
2269 ** NameContexts can be nested.  When resolving names, the inner-most
2270 ** context is searched first.  If no match is found, the next outer
2271 ** context is checked.  If there is still no match, the next context
2272 ** is checked.  This process continues until either a match is found
2273 ** or all contexts are check.  When a match is found, the nRef member of
2274 ** the context containing the match is incremented.
2275 **
2276 ** Each subquery gets a new NameContext.  The pNext field points to the
2277 ** NameContext in the parent query.  Thus the process of scanning the
2278 ** NameContext list corresponds to searching through successively outer
2279 ** subqueries looking for a match.
2280 */
2281 struct NameContext {
2282   Parse *pParse;       /* The parser */
2283   SrcList *pSrcList;   /* One or more tables used to resolve names */
2284   ExprList *pEList;    /* Optional list of result-set columns */
2285   AggInfo *pAggInfo;   /* Information about aggregates at this level */
2286   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
2287   int nRef;            /* Number of names resolved by this context */
2288   int nErr;            /* Number of errors encountered while resolving names */
2289   u16 ncFlags;         /* Zero or more NC_* flags defined below */
2290 };
2291 
2292 /*
2293 ** Allowed values for the NameContext, ncFlags field.
2294 **
2295 ** Note:  NC_MinMaxAgg must have the same value as SF_MinMaxAgg and
2296 ** SQLITE_FUNC_MINMAX.
2297 **
2298 */
2299 #define NC_AllowAgg  0x0001  /* Aggregate functions are allowed here */
2300 #define NC_HasAgg    0x0002  /* One or more aggregate functions seen */
2301 #define NC_IsCheck   0x0004  /* True if resolving names in a CHECK constraint */
2302 #define NC_InAggFunc 0x0008  /* True if analyzing arguments to an agg func */
2303 #define NC_PartIdx   0x0010  /* True if resolving a partial index WHERE */
2304 #define NC_MinMaxAgg 0x1000  /* min/max aggregates seen.  See note above */
2305 
2306 /*
2307 ** An instance of the following structure contains all information
2308 ** needed to generate code for a single SELECT statement.
2309 **
2310 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
2311 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
2312 ** limit and nOffset to the value of the offset (or 0 if there is not
2313 ** offset).  But later on, nLimit and nOffset become the memory locations
2314 ** in the VDBE that record the limit and offset counters.
2315 **
2316 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
2317 ** These addresses must be stored so that we can go back and fill in
2318 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
2319 ** the number of columns in P2 can be computed at the same time
2320 ** as the OP_OpenEphm instruction is coded because not
2321 ** enough information about the compound query is known at that point.
2322 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2323 ** for the result set.  The KeyInfo for addrOpenEphm[2] contains collating
2324 ** sequences for the ORDER BY clause.
2325 */
2326 struct Select {
2327   ExprList *pEList;      /* The fields of the result */
2328   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2329   u16 selFlags;          /* Various SF_* values */
2330   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2331 #if SELECTTRACE_ENABLED
2332   char zSelName[12];     /* Symbolic name of this SELECT use for debugging */
2333 #endif
2334   int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
2335   u64 nSelectRow;        /* Estimated number of result rows */
2336   SrcList *pSrc;         /* The FROM clause */
2337   Expr *pWhere;          /* The WHERE clause */
2338   ExprList *pGroupBy;    /* The GROUP BY clause */
2339   Expr *pHaving;         /* The HAVING clause */
2340   ExprList *pOrderBy;    /* The ORDER BY clause */
2341   Select *pPrior;        /* Prior select in a compound select statement */
2342   Select *pNext;         /* Next select to the left in a compound */
2343   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2344   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2345   With *pWith;           /* WITH clause attached to this select. Or NULL. */
2346 };
2347 
2348 /*
2349 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
2350 ** "Select Flag".
2351 */
2352 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
2353 #define SF_Resolved        0x0002  /* Identifiers have been resolved */
2354 #define SF_Aggregate       0x0004  /* Contains aggregate functions */
2355 #define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
2356 #define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
2357 #define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
2358 #define SF_Compound        0x0040  /* Part of a compound query */
2359 #define SF_Values          0x0080  /* Synthesized from VALUES clause */
2360 #define SF_AllValues       0x0100  /* All terms of compound are VALUES */
2361 #define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
2362 #define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
2363 #define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
2364 #define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */
2365 
2366 
2367 /*
2368 ** The results of a SELECT can be distributed in several ways, as defined
2369 ** by one of the following macros.  The "SRT" prefix means "SELECT Result
2370 ** Type".
2371 **
2372 **     SRT_Union       Store results as a key in a temporary index
2373 **                     identified by pDest->iSDParm.
2374 **
2375 **     SRT_Except      Remove results from the temporary index pDest->iSDParm.
2376 **
2377 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
2378 **                     set is not empty.
2379 **
2380 **     SRT_Discard     Throw the results away.  This is used by SELECT
2381 **                     statements within triggers whose only purpose is
2382 **                     the side-effects of functions.
2383 **
2384 ** All of the above are free to ignore their ORDER BY clause. Those that
2385 ** follow must honor the ORDER BY clause.
2386 **
2387 **     SRT_Output      Generate a row of output (using the OP_ResultRow
2388 **                     opcode) for each row in the result set.
2389 **
2390 **     SRT_Mem         Only valid if the result is a single column.
2391 **                     Store the first column of the first result row
2392 **                     in register pDest->iSDParm then abandon the rest
2393 **                     of the query.  This destination implies "LIMIT 1".
2394 **
2395 **     SRT_Set         The result must be a single column.  Store each
2396 **                     row of result as the key in table pDest->iSDParm.
2397 **                     Apply the affinity pDest->affSdst before storing
2398 **                     results.  Used to implement "IN (SELECT ...)".
2399 **
2400 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
2401 **                     the result there. The cursor is left open after
2402 **                     returning.  This is like SRT_Table except that
2403 **                     this destination uses OP_OpenEphemeral to create
2404 **                     the table first.
2405 **
2406 **     SRT_Coroutine   Generate a co-routine that returns a new row of
2407 **                     results each time it is invoked.  The entry point
2408 **                     of the co-routine is stored in register pDest->iSDParm
2409 **                     and the result row is stored in pDest->nDest registers
2410 **                     starting with pDest->iSdst.
2411 **
2412 **     SRT_Table       Store results in temporary table pDest->iSDParm.
2413 **     SRT_Fifo        This is like SRT_EphemTab except that the table
2414 **                     is assumed to already be open.  SRT_Fifo has
2415 **                     the additional property of being able to ignore
2416 **                     the ORDER BY clause.
2417 **
2418 **     SRT_DistFifo    Store results in a temporary table pDest->iSDParm.
2419 **                     But also use temporary table pDest->iSDParm+1 as
2420 **                     a record of all prior results and ignore any duplicate
2421 **                     rows.  Name means:  "Distinct Fifo".
2422 **
2423 **     SRT_Queue       Store results in priority queue pDest->iSDParm (really
2424 **                     an index).  Append a sequence number so that all entries
2425 **                     are distinct.
2426 **
2427 **     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
2428 **                     the same record has never been stored before.  The
2429 **                     index at pDest->iSDParm+1 hold all prior stores.
2430 */
2431 #define SRT_Union        1  /* Store result as keys in an index */
2432 #define SRT_Except       2  /* Remove result from a UNION index */
2433 #define SRT_Exists       3  /* Store 1 if the result is not empty */
2434 #define SRT_Discard      4  /* Do not save the results anywhere */
2435 #define SRT_Fifo         5  /* Store result as data with an automatic rowid */
2436 #define SRT_DistFifo     6  /* Like SRT_Fifo, but unique results only */
2437 #define SRT_Queue        7  /* Store result in an queue */
2438 #define SRT_DistQueue    8  /* Like SRT_Queue, but unique results only */
2439 
2440 /* The ORDER BY clause is ignored for all of the above */
2441 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)
2442 
2443 #define SRT_Output       9  /* Output each row of result */
2444 #define SRT_Mem         10  /* Store result in a memory cell */
2445 #define SRT_Set         11  /* Store results as keys in an index */
2446 #define SRT_EphemTab    12  /* Create transient tab and store like SRT_Table */
2447 #define SRT_Coroutine   13  /* Generate a single row of result */
2448 #define SRT_Table       14  /* Store result as data with an automatic rowid */
2449 
2450 /*
2451 ** An instance of this object describes where to put of the results of
2452 ** a SELECT statement.
2453 */
2454 struct SelectDest {
2455   u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
2456   char affSdst;        /* Affinity used when eDest==SRT_Set */
2457   int iSDParm;         /* A parameter used by the eDest disposal method */
2458   int iSdst;           /* Base register where results are written */
2459   int nSdst;           /* Number of registers allocated */
2460   ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
2461 };
2462 
2463 /*
2464 ** During code generation of statements that do inserts into AUTOINCREMENT
2465 ** tables, the following information is attached to the Table.u.autoInc.p
2466 ** pointer of each autoincrement table to record some side information that
2467 ** the code generator needs.  We have to keep per-table autoincrement
2468 ** information in case inserts are down within triggers.  Triggers do not
2469 ** normally coordinate their activities, but we do need to coordinate the
2470 ** loading and saving of autoincrement information.
2471 */
2472 struct AutoincInfo {
2473   AutoincInfo *pNext;   /* Next info block in a list of them all */
2474   Table *pTab;          /* Table this info block refers to */
2475   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2476   int regCtr;           /* Memory register holding the rowid counter */
2477 };
2478 
2479 /*
2480 ** Size of the column cache
2481 */
2482 #ifndef SQLITE_N_COLCACHE
2483 # define SQLITE_N_COLCACHE 10
2484 #endif
2485 
2486 /*
2487 ** At least one instance of the following structure is created for each
2488 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2489 ** statement. All such objects are stored in the linked list headed at
2490 ** Parse.pTriggerPrg and deleted once statement compilation has been
2491 ** completed.
2492 **
2493 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2494 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2495 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2496 ** The Parse.pTriggerPrg list never contains two entries with the same
2497 ** values for both pTrigger and orconf.
2498 **
2499 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2500 ** accessed (or set to 0 for triggers fired as a result of INSERT
2501 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2502 ** a mask of new.* columns used by the program.
2503 */
2504 struct TriggerPrg {
2505   Trigger *pTrigger;      /* Trigger this program was coded from */
2506   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2507   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2508   int orconf;             /* Default ON CONFLICT policy */
2509   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2510 };
2511 
2512 /*
2513 ** The yDbMask datatype for the bitmask of all attached databases.
2514 */
2515 #if SQLITE_MAX_ATTACHED>30
2516   typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
2517 # define DbMaskTest(M,I)    (((M)[(I)/8]&(1<<((I)&7)))!=0)
2518 # define DbMaskZero(M)      memset((M),0,sizeof(M))
2519 # define DbMaskSet(M,I)     (M)[(I)/8]|=(1<<((I)&7))
2520 # define DbMaskAllZero(M)   sqlite3DbMaskAllZero(M)
2521 # define DbMaskNonZero(M)   (sqlite3DbMaskAllZero(M)==0)
2522 #else
2523   typedef unsigned int yDbMask;
2524 # define DbMaskTest(M,I)    (((M)&(((yDbMask)1)<<(I)))!=0)
2525 # define DbMaskZero(M)      (M)=0
2526 # define DbMaskSet(M,I)     (M)|=(((yDbMask)1)<<(I))
2527 # define DbMaskAllZero(M)   (M)==0
2528 # define DbMaskNonZero(M)   (M)!=0
2529 #endif
2530 
2531 /*
2532 ** An SQL parser context.  A copy of this structure is passed through
2533 ** the parser and down into all the parser action routine in order to
2534 ** carry around information that is global to the entire parse.
2535 **
2536 ** The structure is divided into two parts.  When the parser and code
2537 ** generate call themselves recursively, the first part of the structure
2538 ** is constant but the second part is reset at the beginning and end of
2539 ** each recursion.
2540 **
2541 ** The nTableLock and aTableLock variables are only used if the shared-cache
2542 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2543 ** used to store the set of table-locks required by the statement being
2544 ** compiled. Function sqlite3TableLock() is used to add entries to the
2545 ** list.
2546 */
2547 struct Parse {
2548   sqlite3 *db;         /* The main database structure */
2549   char *zErrMsg;       /* An error message */
2550   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2551   int rc;              /* Return code from execution */
2552   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2553   u8 checkSchema;      /* Causes schema cookie check after an error */
2554   u8 nested;           /* Number of nested calls to the parser/code generator */
2555   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2556   u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
2557   u8 mayAbort;         /* True if statement may throw an ABORT exception */
2558   u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
2559   u8 okConstFactor;    /* OK to factor out constants */
2560   int aTempReg[8];     /* Holding area for temporary registers */
2561   int nRangeReg;       /* Size of the temporary register block */
2562   int iRangeReg;       /* First register in temporary register block */
2563   int nErr;            /* Number of errors seen */
2564   int nTab;            /* Number of previously allocated VDBE cursors */
2565   int nMem;            /* Number of memory cells used so far */
2566   int nSet;            /* Number of sets used so far */
2567   int nOnce;           /* Number of OP_Once instructions so far */
2568   int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */
2569   int iFixedOp;        /* Never back out opcodes iFixedOp-1 or earlier */
2570   int ckBase;          /* Base register of data during check constraints */
2571   int iPartIdxTab;     /* Table corresponding to a partial index */
2572   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2573   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2574   int nLabel;          /* Number of labels used */
2575   int *aLabel;         /* Space to hold the labels */
2576   struct yColCache {
2577     int iTable;           /* Table cursor number */
2578     i16 iColumn;          /* Table column number */
2579     u8 tempReg;           /* iReg is a temp register that needs to be freed */
2580     int iLevel;           /* Nesting level */
2581     int iReg;             /* Reg with value of this column. 0 means none. */
2582     int lru;              /* Least recently used entry has the smallest value */
2583   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2584   ExprList *pConstExpr;/* Constant expressions */
2585   Token constraintName;/* Name of the constraint currently being parsed */
2586   yDbMask writeMask;   /* Start a write transaction on these databases */
2587   yDbMask cookieMask;  /* Bitmask of schema verified databases */
2588   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2589   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2590   int regRoot;         /* Register holding root page number for new objects */
2591   int nMaxArg;         /* Max args passed to user function by sub-program */
2592 #if SELECTTRACE_ENABLED
2593   int nSelect;         /* Number of SELECT statements seen */
2594   int nSelectIndent;   /* How far to indent SELECTTRACE() output */
2595 #endif
2596 #ifndef SQLITE_OMIT_SHARED_CACHE
2597   int nTableLock;        /* Number of locks in aTableLock */
2598   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2599 #endif
2600   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2601 
2602   /* Information used while coding trigger programs. */
2603   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
2604   Table *pTriggerTab;  /* Table triggers are being coded for */
2605   int addrCrTab;       /* Address of OP_CreateTable opcode on CREATE TABLE */
2606   int addrSkipPK;      /* Address of instruction to skip PRIMARY KEY index */
2607   u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
2608   u32 oldmask;         /* Mask of old.* columns referenced */
2609   u32 newmask;         /* Mask of new.* columns referenced */
2610   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
2611   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
2612   u8 disableTriggers;  /* True to disable triggers */
2613 
2614   /************************************************************************
2615   ** Above is constant between recursions.  Below is reset before and after
2616   ** each recursion.  The boundary between these two regions is determined
2617   ** using offsetof(Parse,nVar) so the nVar field must be the first field
2618   ** in the recursive region.
2619   ************************************************************************/
2620 
2621   int nVar;                 /* Number of '?' variables seen in the SQL so far */
2622   int nzVar;                /* Number of available slots in azVar[] */
2623   u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
2624   u8 bFreeWith;             /* True if pWith should be freed with parser */
2625   u8 explain;               /* True if the EXPLAIN flag is found on the query */
2626 #ifndef SQLITE_OMIT_VIRTUALTABLE
2627   u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
2628   int nVtabLock;            /* Number of virtual tables to lock */
2629 #endif
2630   int nAlias;               /* Number of aliased result set columns */
2631   int nHeight;              /* Expression tree height of current sub-select */
2632 #ifndef SQLITE_OMIT_EXPLAIN
2633   int iSelectId;            /* ID of current select for EXPLAIN output */
2634   int iNextSelectId;        /* Next available select ID for EXPLAIN output */
2635 #endif
2636   char **azVar;             /* Pointers to names of parameters */
2637   Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
2638   const char *zTail;        /* All SQL text past the last semicolon parsed */
2639   Table *pNewTable;         /* A table being constructed by CREATE TABLE */
2640   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2641   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2642   Token sNameToken;         /* Token with unqualified schema object name */
2643   Token sLastToken;         /* The last token parsed */
2644 #ifndef SQLITE_OMIT_VIRTUALTABLE
2645   Token sArg;               /* Complete text of a module argument */
2646   Table **apVtabLock;       /* Pointer to virtual tables needing locking */
2647 #endif
2648   Table *pZombieTab;        /* List of Table objects to delete after code gen */
2649   TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
2650   With *pWith;              /* Current WITH clause, or NULL */
2651 };
2652 
2653 /*
2654 ** Return true if currently inside an sqlite3_declare_vtab() call.
2655 */
2656 #ifdef SQLITE_OMIT_VIRTUALTABLE
2657   #define IN_DECLARE_VTAB 0
2658 #else
2659   #define IN_DECLARE_VTAB (pParse->declareVtab)
2660 #endif
2661 
2662 /*
2663 ** An instance of the following structure can be declared on a stack and used
2664 ** to save the Parse.zAuthContext value so that it can be restored later.
2665 */
2666 struct AuthContext {
2667   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2668   Parse *pParse;              /* The Parse structure */
2669 };
2670 
2671 /*
2672 ** Bitfield flags for P5 value in various opcodes.
2673 */
2674 #define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
2675 #define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
2676 #define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
2677 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
2678 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
2679 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
2680 #define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
2681 #define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
2682 #define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
2683 #define OPFLAG_P2ISREG       0x02    /* P2 to OP_Open** is a register number */
2684 #define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
2685 
2686 /*
2687  * Each trigger present in the database schema is stored as an instance of
2688  * struct Trigger.
2689  *
2690  * Pointers to instances of struct Trigger are stored in two ways.
2691  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2692  *    database). This allows Trigger structures to be retrieved by name.
2693  * 2. All triggers associated with a single table form a linked list, using the
2694  *    pNext member of struct Trigger. A pointer to the first element of the
2695  *    linked list is stored as the "pTrigger" member of the associated
2696  *    struct Table.
2697  *
2698  * The "step_list" member points to the first element of a linked list
2699  * containing the SQL statements specified as the trigger program.
2700  */
2701 struct Trigger {
2702   char *zName;            /* The name of the trigger                        */
2703   char *table;            /* The table or view to which the trigger applies */
2704   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2705   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2706   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2707   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2708                              the <column-list> is stored here */
2709   Schema *pSchema;        /* Schema containing the trigger */
2710   Schema *pTabSchema;     /* Schema containing the table */
2711   TriggerStep *step_list; /* Link list of trigger program steps             */
2712   Trigger *pNext;         /* Next trigger associated with the table */
2713 };
2714 
2715 /*
2716 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2717 ** determine which.
2718 **
2719 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2720 ** In that cases, the constants below can be ORed together.
2721 */
2722 #define TRIGGER_BEFORE  1
2723 #define TRIGGER_AFTER   2
2724 
2725 /*
2726  * An instance of struct TriggerStep is used to store a single SQL statement
2727  * that is a part of a trigger-program.
2728  *
2729  * Instances of struct TriggerStep are stored in a singly linked list (linked
2730  * using the "pNext" member) referenced by the "step_list" member of the
2731  * associated struct Trigger instance. The first element of the linked list is
2732  * the first step of the trigger-program.
2733  *
2734  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2735  * "SELECT" statement. The meanings of the other members is determined by the
2736  * value of "op" as follows:
2737  *
2738  * (op == TK_INSERT)
2739  * orconf    -> stores the ON CONFLICT algorithm
2740  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2741  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2742  * target    -> A token holding the quoted name of the table to insert into.
2743  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2744  *              this stores values to be inserted. Otherwise NULL.
2745  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2746  *              statement, then this stores the column-names to be
2747  *              inserted into.
2748  *
2749  * (op == TK_DELETE)
2750  * target    -> A token holding the quoted name of the table to delete from.
2751  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2752  *              Otherwise NULL.
2753  *
2754  * (op == TK_UPDATE)
2755  * target    -> A token holding the quoted name of the table to update rows of.
2756  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2757  *              Otherwise NULL.
2758  * pExprList -> A list of the columns to update and the expressions to update
2759  *              them to. See sqlite3Update() documentation of "pChanges"
2760  *              argument.
2761  *
2762  */
2763 struct TriggerStep {
2764   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2765   u8 orconf;           /* OE_Rollback etc. */
2766   Trigger *pTrig;      /* The trigger that this step is a part of */
2767   Select *pSelect;     /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
2768   Token target;        /* Target table for DELETE, UPDATE, INSERT */
2769   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2770   ExprList *pExprList; /* SET clause for UPDATE. */
2771   IdList *pIdList;     /* Column names for INSERT */
2772   TriggerStep *pNext;  /* Next in the link-list */
2773   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2774 };
2775 
2776 /*
2777 ** The following structure contains information used by the sqliteFix...
2778 ** routines as they walk the parse tree to make database references
2779 ** explicit.
2780 */
2781 typedef struct DbFixer DbFixer;
2782 struct DbFixer {
2783   Parse *pParse;      /* The parsing context.  Error messages written here */
2784   Schema *pSchema;    /* Fix items to this schema */
2785   int bVarOnly;       /* Check for variable references only */
2786   const char *zDb;    /* Make sure all objects are contained in this database */
2787   const char *zType;  /* Type of the container - used for error messages */
2788   const Token *pName; /* Name of the container - used for error messages */
2789 };
2790 
2791 /*
2792 ** An objected used to accumulate the text of a string where we
2793 ** do not necessarily know how big the string will be in the end.
2794 */
2795 struct StrAccum {
2796   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2797   char *zBase;         /* A base allocation.  Not from malloc. */
2798   char *zText;         /* The string collected so far */
2799   int  nChar;          /* Length of the string so far */
2800   int  nAlloc;         /* Amount of space allocated in zText */
2801   int  mxAlloc;        /* Maximum allowed string length */
2802   u8   useMalloc;      /* 0: none,  1: sqlite3DbMalloc,  2: sqlite3_malloc */
2803   u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
2804 };
2805 #define STRACCUM_NOMEM   1
2806 #define STRACCUM_TOOBIG  2
2807 
2808 /*
2809 ** A pointer to this structure is used to communicate information
2810 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2811 */
2812 typedef struct {
2813   sqlite3 *db;        /* The database being initialized */
2814   char **pzErrMsg;    /* Error message stored here */
2815   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2816   int rc;             /* Result code stored here */
2817 } InitData;
2818 
2819 /*
2820 ** Structure containing global configuration data for the SQLite library.
2821 **
2822 ** This structure also contains some state information.
2823 */
2824 struct Sqlite3Config {
2825   int bMemstat;                     /* True to enable memory status */
2826   int bCoreMutex;                   /* True to enable core mutexing */
2827   int bFullMutex;                   /* True to enable full mutexing */
2828   int bOpenUri;                     /* True to interpret filenames as URIs */
2829   int bUseCis;                      /* Use covering indices for full-scans */
2830   int mxStrlen;                     /* Maximum string length */
2831   int neverCorrupt;                 /* Database is always well-formed */
2832   int szLookaside;                  /* Default lookaside buffer size */
2833   int nLookaside;                   /* Default lookaside buffer count */
2834   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2835   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2836   sqlite3_pcache_methods2 pcache2;  /* Low-level page-cache interface */
2837   void *pHeap;                      /* Heap storage space */
2838   int nHeap;                        /* Size of pHeap[] */
2839   int mnReq, mxReq;                 /* Min and max heap requests sizes */
2840   sqlite3_int64 szMmap;             /* mmap() space per open file */
2841   sqlite3_int64 mxMmap;             /* Maximum value for szMmap */
2842   void *pScratch;                   /* Scratch memory */
2843   int szScratch;                    /* Size of each scratch buffer */
2844   int nScratch;                     /* Number of scratch buffers */
2845   void *pPage;                      /* Page cache memory */
2846   int szPage;                       /* Size of each page in pPage[] */
2847   int nPage;                        /* Number of pages in pPage[] */
2848   int mxParserStack;                /* maximum depth of the parser stack */
2849   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2850   u32 szPma;                        /* Maximum Sorter PMA size */
2851   /* The above might be initialized to non-zero.  The following need to always
2852   ** initially be zero, however. */
2853   int isInit;                       /* True after initialization has finished */
2854   int inProgress;                   /* True while initialization in progress */
2855   int isMutexInit;                  /* True after mutexes are initialized */
2856   int isMallocInit;                 /* True after malloc is initialized */
2857   int isPCacheInit;                 /* True after malloc is initialized */
2858   int nRefInitMutex;                /* Number of users of pInitMutex */
2859   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2860   void (*xLog)(void*,int,const char*); /* Function for logging */
2861   void *pLogArg;                       /* First argument to xLog() */
2862 #ifdef SQLITE_ENABLE_SQLLOG
2863   void(*xSqllog)(void*,sqlite3*,const char*, int);
2864   void *pSqllogArg;
2865 #endif
2866 #ifdef SQLITE_VDBE_COVERAGE
2867   /* The following callback (if not NULL) is invoked on every VDBE branch
2868   ** operation.  Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
2869   */
2870   void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx);  /* Callback */
2871   void *pVdbeBranchArg;                                     /* 1st argument */
2872 #endif
2873 #ifndef SQLITE_OMIT_BUILTIN_TEST
2874   int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
2875 #endif
2876   int bLocaltimeFault;              /* True to fail localtime() calls */
2877 };
2878 
2879 /*
2880 ** This macro is used inside of assert() statements to indicate that
2881 ** the assert is only valid on a well-formed database.  Instead of:
2882 **
2883 **     assert( X );
2884 **
2885 ** One writes:
2886 **
2887 **     assert( X || CORRUPT_DB );
2888 **
2889 ** CORRUPT_DB is true during normal operation.  CORRUPT_DB does not indicate
2890 ** that the database is definitely corrupt, only that it might be corrupt.
2891 ** For most test cases, CORRUPT_DB is set to false using a special
2892 ** sqlite3_test_control().  This enables assert() statements to prove
2893 ** things that are always true for well-formed databases.
2894 */
2895 #define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)
2896 
2897 /*
2898 ** Context pointer passed down through the tree-walk.
2899 */
2900 struct Walker {
2901   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2902   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2903   void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
2904   Parse *pParse;                            /* Parser context.  */
2905   int walkerDepth;                          /* Number of subqueries */
2906   u8 eCode;                                 /* A small processing code */
2907   union {                                   /* Extra data for callback */
2908     NameContext *pNC;                          /* Naming context */
2909     int n;                                     /* A counter */
2910     int iCur;                                  /* A cursor number */
2911     SrcList *pSrcList;                         /* FROM clause */
2912     struct SrcCount *pSrcCount;                /* Counting column references */
2913   } u;
2914 };
2915 
2916 /* Forward declarations */
2917 int sqlite3WalkExpr(Walker*, Expr*);
2918 int sqlite3WalkExprList(Walker*, ExprList*);
2919 int sqlite3WalkSelect(Walker*, Select*);
2920 int sqlite3WalkSelectExpr(Walker*, Select*);
2921 int sqlite3WalkSelectFrom(Walker*, Select*);
2922 
2923 /*
2924 ** Return code from the parse-tree walking primitives and their
2925 ** callbacks.
2926 */
2927 #define WRC_Continue    0   /* Continue down into children */
2928 #define WRC_Prune       1   /* Omit children but continue walking siblings */
2929 #define WRC_Abort       2   /* Abandon the tree walk */
2930 
2931 /*
2932 ** An instance of this structure represents a set of one or more CTEs
2933 ** (common table expressions) created by a single WITH clause.
2934 */
2935 struct With {
2936   int nCte;                       /* Number of CTEs in the WITH clause */
2937   With *pOuter;                   /* Containing WITH clause, or NULL */
2938   struct Cte {                    /* For each CTE in the WITH clause.... */
2939     char *zName;                    /* Name of this CTE */
2940     ExprList *pCols;                /* List of explicit column names, or NULL */
2941     Select *pSelect;                /* The definition of this CTE */
2942     const char *zErr;               /* Error message for circular references */
2943   } a[1];
2944 };
2945 
2946 #ifdef SQLITE_DEBUG
2947 /*
2948 ** An instance of the TreeView object is used for printing the content of
2949 ** data structures on sqlite3DebugPrintf() using a tree-like view.
2950 */
2951 struct TreeView {
2952   int iLevel;             /* Which level of the tree we are on */
2953   u8  bLine[100];         /* Draw vertical in column i if bLine[i] is true */
2954 };
2955 #endif /* SQLITE_DEBUG */
2956 
2957 /*
2958 ** Assuming zIn points to the first byte of a UTF-8 character,
2959 ** advance zIn to point to the first byte of the next UTF-8 character.
2960 */
2961 #define SQLITE_SKIP_UTF8(zIn) {                        \
2962   if( (*(zIn++))>=0xc0 ){                              \
2963     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
2964   }                                                    \
2965 }
2966 
2967 /*
2968 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
2969 ** the same name but without the _BKPT suffix.  These macros invoke
2970 ** routines that report the line-number on which the error originated
2971 ** using sqlite3_log().  The routines also provide a convenient place
2972 ** to set a debugger breakpoint.
2973 */
2974 int sqlite3CorruptError(int);
2975 int sqlite3MisuseError(int);
2976 int sqlite3CantopenError(int);
2977 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
2978 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
2979 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
2980 
2981 
2982 /*
2983 ** FTS4 is really an extension for FTS3.  It is enabled using the
2984 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
2985 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
2986 */
2987 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
2988 # define SQLITE_ENABLE_FTS3 1
2989 #endif
2990 
2991 /*
2992 ** The ctype.h header is needed for non-ASCII systems.  It is also
2993 ** needed by FTS3 when FTS3 is included in the amalgamation.
2994 */
2995 #if !defined(SQLITE_ASCII) || \
2996     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
2997 # include <ctype.h>
2998 #endif
2999 
3000 /*
3001 ** The following macros mimic the standard library functions toupper(),
3002 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
3003 ** sqlite versions only work for ASCII characters, regardless of locale.
3004 */
3005 #ifdef SQLITE_ASCII
3006 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
3007 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
3008 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
3009 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
3010 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
3011 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
3012 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
3013 #else
3014 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
3015 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
3016 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
3017 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
3018 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
3019 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
3020 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
3021 #endif
3022 int sqlite3IsIdChar(u8);
3023 
3024 /*
3025 ** Internal function prototypes
3026 */
3027 #define sqlite3StrICmp sqlite3_stricmp
3028 int sqlite3Strlen30(const char*);
3029 #define sqlite3StrNICmp sqlite3_strnicmp
3030 
3031 int sqlite3MallocInit(void);
3032 void sqlite3MallocEnd(void);
3033 void *sqlite3Malloc(u64);
3034 void *sqlite3MallocZero(u64);
3035 void *sqlite3DbMallocZero(sqlite3*, u64);
3036 void *sqlite3DbMallocRaw(sqlite3*, u64);
3037 char *sqlite3DbStrDup(sqlite3*,const char*);
3038 char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
3039 void *sqlite3Realloc(void*, u64);
3040 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
3041 void *sqlite3DbRealloc(sqlite3 *, void *, u64);
3042 void sqlite3DbFree(sqlite3*, void*);
3043 int sqlite3MallocSize(void*);
3044 int sqlite3DbMallocSize(sqlite3*, void*);
3045 void *sqlite3ScratchMalloc(int);
3046 void sqlite3ScratchFree(void*);
3047 void *sqlite3PageMalloc(int);
3048 void sqlite3PageFree(void*);
3049 void sqlite3MemSetDefault(void);
3050 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
3051 int sqlite3HeapNearlyFull(void);
3052 
3053 /*
3054 ** On systems with ample stack space and that support alloca(), make
3055 ** use of alloca() to obtain space for large automatic objects.  By default,
3056 ** obtain space from malloc().
3057 **
3058 ** The alloca() routine never returns NULL.  This will cause code paths
3059 ** that deal with sqlite3StackAlloc() failures to be unreachable.
3060 */
3061 #ifdef SQLITE_USE_ALLOCA
3062 # define sqlite3StackAllocRaw(D,N)   alloca(N)
3063 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
3064 # define sqlite3StackFree(D,P)
3065 #else
3066 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
3067 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
3068 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
3069 #endif
3070 
3071 #ifdef SQLITE_ENABLE_MEMSYS3
3072 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
3073 #endif
3074 #ifdef SQLITE_ENABLE_MEMSYS5
3075 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
3076 #endif
3077 
3078 
3079 #ifndef SQLITE_MUTEX_OMIT
3080   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
3081   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
3082   sqlite3_mutex *sqlite3MutexAlloc(int);
3083   int sqlite3MutexInit(void);
3084   int sqlite3MutexEnd(void);
3085 #endif
3086 
3087 int sqlite3StatusValue(int);
3088 void sqlite3StatusAdd(int, int);
3089 void sqlite3StatusSet(int, int);
3090 
3091 #ifndef SQLITE_OMIT_FLOATING_POINT
3092   int sqlite3IsNaN(double);
3093 #else
3094 # define sqlite3IsNaN(X)  0
3095 #endif
3096 
3097 /*
3098 ** An instance of the following structure holds information about SQL
3099 ** functions arguments that are the parameters to the printf() function.
3100 */
3101 struct PrintfArguments {
3102   int nArg;                /* Total number of arguments */
3103   int nUsed;               /* Number of arguments used so far */
3104   sqlite3_value **apArg;   /* The argument values */
3105 };
3106 
3107 #define SQLITE_PRINTF_INTERNAL 0x01
3108 #define SQLITE_PRINTF_SQLFUNC  0x02
3109 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list);
3110 void sqlite3XPrintf(StrAccum*, u32, const char*, ...);
3111 char *sqlite3MPrintf(sqlite3*,const char*, ...);
3112 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
3113 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
3114 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
3115   void sqlite3DebugPrintf(const char*, ...);
3116 #endif
3117 #if defined(SQLITE_TEST)
3118   void *sqlite3TestTextToPtr(const char*);
3119 #endif
3120 
3121 #if defined(SQLITE_DEBUG)
3122   TreeView *sqlite3TreeViewPush(TreeView*,u8);
3123   void sqlite3TreeViewPop(TreeView*);
3124   void sqlite3TreeViewLine(TreeView*, const char*, ...);
3125   void sqlite3TreeViewItem(TreeView*, const char*, u8);
3126   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
3127   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
3128   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
3129 #endif
3130 
3131 
3132 void sqlite3SetString(char **, sqlite3*, const char*, ...);
3133 void sqlite3ErrorMsg(Parse*, const char*, ...);
3134 int sqlite3Dequote(char*);
3135 int sqlite3KeywordCode(const unsigned char*, int);
3136 int sqlite3RunParser(Parse*, const char*, char **);
3137 void sqlite3FinishCoding(Parse*);
3138 int sqlite3GetTempReg(Parse*);
3139 void sqlite3ReleaseTempReg(Parse*,int);
3140 int sqlite3GetTempRange(Parse*,int);
3141 void sqlite3ReleaseTempRange(Parse*,int,int);
3142 void sqlite3ClearTempRegCache(Parse*);
3143 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
3144 Expr *sqlite3Expr(sqlite3*,int,const char*);
3145 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
3146 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
3147 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
3148 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
3149 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
3150 void sqlite3ExprDelete(sqlite3*, Expr*);
3151 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
3152 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
3153 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
3154 void sqlite3ExprListDelete(sqlite3*, ExprList*);
3155 int sqlite3Init(sqlite3*, char**);
3156 int sqlite3InitCallback(void*, int, char**, char**);
3157 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
3158 void sqlite3ResetAllSchemasOfConnection(sqlite3*);
3159 void sqlite3ResetOneSchema(sqlite3*,int);
3160 void sqlite3CollapseDatabaseArray(sqlite3*);
3161 void sqlite3BeginParse(Parse*,int);
3162 void sqlite3CommitInternalChanges(sqlite3*);
3163 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
3164 void sqlite3OpenMasterTable(Parse *, int);
3165 Index *sqlite3PrimaryKeyIndex(Table*);
3166 i16 sqlite3ColumnOfIndex(Index*, i16);
3167 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
3168 void sqlite3AddColumn(Parse*,Token*);
3169 void sqlite3AddNotNull(Parse*, int);
3170 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
3171 void sqlite3AddCheckConstraint(Parse*, Expr*);
3172 void sqlite3AddColumnType(Parse*,Token*);
3173 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
3174 void sqlite3AddCollateType(Parse*, Token*);
3175 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
3176 int sqlite3ParseUri(const char*,const char*,unsigned int*,
3177                     sqlite3_vfs**,char**,char **);
3178 Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
3179 int sqlite3CodeOnce(Parse *);
3180 
3181 #ifdef SQLITE_OMIT_BUILTIN_TEST
3182 # define sqlite3FaultSim(X) SQLITE_OK
3183 #else
3184   int sqlite3FaultSim(int);
3185 #endif
3186 
3187 Bitvec *sqlite3BitvecCreate(u32);
3188 int sqlite3BitvecTest(Bitvec*, u32);
3189 int sqlite3BitvecSet(Bitvec*, u32);
3190 void sqlite3BitvecClear(Bitvec*, u32, void*);
3191 void sqlite3BitvecDestroy(Bitvec*);
3192 u32 sqlite3BitvecSize(Bitvec*);
3193 int sqlite3BitvecBuiltinTest(int,int*);
3194 
3195 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
3196 void sqlite3RowSetClear(RowSet*);
3197 void sqlite3RowSetInsert(RowSet*, i64);
3198 int sqlite3RowSetTest(RowSet*, int iBatch, i64);
3199 int sqlite3RowSetNext(RowSet*, i64*);
3200 
3201 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
3202 
3203 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3204   int sqlite3ViewGetColumnNames(Parse*,Table*);
3205 #else
3206 # define sqlite3ViewGetColumnNames(A,B) 0
3207 #endif
3208 
3209 #if SQLITE_MAX_ATTACHED>30
3210   int sqlite3DbMaskAllZero(yDbMask);
3211 #endif
3212 void sqlite3DropTable(Parse*, SrcList*, int, int);
3213 void sqlite3CodeDropTable(Parse*, Table*, int, int);
3214 void sqlite3DeleteTable(sqlite3*, Table*);
3215 #ifndef SQLITE_OMIT_AUTOINCREMENT
3216   void sqlite3AutoincrementBegin(Parse *pParse);
3217   void sqlite3AutoincrementEnd(Parse *pParse);
3218 #else
3219 # define sqlite3AutoincrementBegin(X)
3220 # define sqlite3AutoincrementEnd(X)
3221 #endif
3222 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
3223 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
3224 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
3225 int sqlite3IdListIndex(IdList*,const char*);
3226 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
3227 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
3228 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
3229                                       Token*, Select*, Expr*, IdList*);
3230 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
3231 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
3232 void sqlite3SrcListShiftJoinType(SrcList*);
3233 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
3234 void sqlite3IdListDelete(sqlite3*, IdList*);
3235 void sqlite3SrcListDelete(sqlite3*, SrcList*);
3236 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
3237 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
3238                           Expr*, int, int);
3239 void sqlite3DropIndex(Parse*, SrcList*, int);
3240 int sqlite3Select(Parse*, Select*, SelectDest*);
3241 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
3242                          Expr*,ExprList*,u16,Expr*,Expr*);
3243 void sqlite3SelectDelete(sqlite3*, Select*);
3244 Table *sqlite3SrcListLookup(Parse*, SrcList*);
3245 int sqlite3IsReadOnly(Parse*, Table*, int);
3246 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
3247 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
3248 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
3249 #endif
3250 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
3251 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
3252 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
3253 void sqlite3WhereEnd(WhereInfo*);
3254 u64 sqlite3WhereOutputRowCount(WhereInfo*);
3255 int sqlite3WhereIsDistinct(WhereInfo*);
3256 int sqlite3WhereIsOrdered(WhereInfo*);
3257 int sqlite3WhereIsSorted(WhereInfo*);
3258 int sqlite3WhereContinueLabel(WhereInfo*);
3259 int sqlite3WhereBreakLabel(WhereInfo*);
3260 int sqlite3WhereOkOnePass(WhereInfo*, int*);
3261 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
3262 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
3263 void sqlite3ExprCodeMove(Parse*, int, int, int);
3264 void sqlite3ExprCacheStore(Parse*, int, int, int);
3265 void sqlite3ExprCachePush(Parse*);
3266 void sqlite3ExprCachePop(Parse*);
3267 void sqlite3ExprCacheRemove(Parse*, int, int);
3268 void sqlite3ExprCacheClear(Parse*);
3269 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
3270 void sqlite3ExprCode(Parse*, Expr*, int);
3271 void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
3272 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
3273 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
3274 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
3275 void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
3276 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8);
3277 #define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
3278 #define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
3279 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
3280 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
3281 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
3282 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
3283 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
3284 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
3285 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
3286 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
3287 void sqlite3Vacuum(Parse*);
3288 int sqlite3RunVacuum(char**, sqlite3*);
3289 char *sqlite3NameFromToken(sqlite3*, Token*);
3290 int sqlite3ExprCompare(Expr*, Expr*, int);
3291 int sqlite3ExprListCompare(ExprList*, ExprList*, int);
3292 int sqlite3ExprImpliesExpr(Expr*, Expr*, int);
3293 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
3294 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
3295 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
3296 Vdbe *sqlite3GetVdbe(Parse*);
3297 void sqlite3PrngSaveState(void);
3298 void sqlite3PrngRestoreState(void);
3299 void sqlite3RollbackAll(sqlite3*,int);
3300 void sqlite3CodeVerifySchema(Parse*, int);
3301 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
3302 void sqlite3BeginTransaction(Parse*, int);
3303 void sqlite3CommitTransaction(Parse*);
3304 void sqlite3RollbackTransaction(Parse*);
3305 void sqlite3Savepoint(Parse*, int, Token*);
3306 void sqlite3CloseSavepoints(sqlite3 *);
3307 void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
3308 int sqlite3ExprIsConstant(Expr*);
3309 int sqlite3ExprIsConstantNotJoin(Expr*);
3310 int sqlite3ExprIsConstantOrFunction(Expr*, u8);
3311 int sqlite3ExprIsTableConstant(Expr*,int);
3312 int sqlite3ExprIsInteger(Expr*, int*);
3313 int sqlite3ExprCanBeNull(const Expr*);
3314 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
3315 int sqlite3IsRowid(const char*);
3316 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
3317 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
3318 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
3319 void sqlite3ResolvePartIdxLabel(Parse*,int);
3320 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
3321                                      u8,u8,int,int*);
3322 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
3323 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
3324 void sqlite3BeginWriteOperation(Parse*, int, int);
3325 void sqlite3MultiWrite(Parse*);
3326 void sqlite3MayAbort(Parse*);
3327 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
3328 void sqlite3UniqueConstraint(Parse*, int, Index*);
3329 void sqlite3RowidConstraint(Parse*, int, Table*);
3330 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
3331 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
3332 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
3333 IdList *sqlite3IdListDup(sqlite3*,IdList*);
3334 Select *sqlite3SelectDup(sqlite3*,Select*,int);
3335 #if SELECTTRACE_ENABLED
3336 void sqlite3SelectSetName(Select*,const char*);
3337 #else
3338 # define sqlite3SelectSetName(A,B)
3339 #endif
3340 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
3341 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
3342 void sqlite3RegisterBuiltinFunctions(sqlite3*);
3343 void sqlite3RegisterDateTimeFunctions(void);
3344 void sqlite3RegisterGlobalFunctions(void);
3345 int sqlite3SafetyCheckOk(sqlite3*);
3346 int sqlite3SafetyCheckSickOrOk(sqlite3*);
3347 void sqlite3ChangeCookie(Parse*, int);
3348 
3349 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
3350 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
3351 #endif
3352 
3353 #ifndef SQLITE_OMIT_TRIGGER
3354   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
3355                            Expr*,int, int);
3356   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
3357   void sqlite3DropTrigger(Parse*, SrcList*, int);
3358   void sqlite3DropTriggerPtr(Parse*, Trigger*);
3359   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
3360   Trigger *sqlite3TriggerList(Parse *, Table *);
3361   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
3362                             int, int, int);
3363   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
3364   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
3365   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
3366   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
3367   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
3368                                         Select*,u8);
3369   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
3370   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
3371   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
3372   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
3373   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
3374 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
3375 #else
3376 # define sqlite3TriggersExist(B,C,D,E,F) 0
3377 # define sqlite3DeleteTrigger(A,B)
3378 # define sqlite3DropTriggerPtr(A,B)
3379 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
3380 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
3381 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
3382 # define sqlite3TriggerList(X, Y) 0
3383 # define sqlite3ParseToplevel(p) p
3384 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
3385 #endif
3386 
3387 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
3388 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
3389 void sqlite3DeferForeignKey(Parse*, int);
3390 #ifndef SQLITE_OMIT_AUTHORIZATION
3391   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
3392   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
3393   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
3394   void sqlite3AuthContextPop(AuthContext*);
3395   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
3396 #else
3397 # define sqlite3AuthRead(a,b,c,d)
3398 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
3399 # define sqlite3AuthContextPush(a,b,c)
3400 # define sqlite3AuthContextPop(a)  ((void)(a))
3401 #endif
3402 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
3403 void sqlite3Detach(Parse*, Expr*);
3404 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
3405 int sqlite3FixSrcList(DbFixer*, SrcList*);
3406 int sqlite3FixSelect(DbFixer*, Select*);
3407 int sqlite3FixExpr(DbFixer*, Expr*);
3408 int sqlite3FixExprList(DbFixer*, ExprList*);
3409 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
3410 int sqlite3AtoF(const char *z, double*, int, u8);
3411 int sqlite3GetInt32(const char *, int*);
3412 int sqlite3Atoi(const char*);
3413 int sqlite3Utf16ByteLen(const void *pData, int nChar);
3414 int sqlite3Utf8CharLen(const char *pData, int nByte);
3415 u32 sqlite3Utf8Read(const u8**);
3416 LogEst sqlite3LogEst(u64);
3417 LogEst sqlite3LogEstAdd(LogEst,LogEst);
3418 #ifndef SQLITE_OMIT_VIRTUALTABLE
3419 LogEst sqlite3LogEstFromDouble(double);
3420 #endif
3421 u64 sqlite3LogEstToInt(LogEst);
3422 
3423 /*
3424 ** Routines to read and write variable-length integers.  These used to
3425 ** be defined locally, but now we use the varint routines in the util.c
3426 ** file.
3427 */
3428 int sqlite3PutVarint(unsigned char*, u64);
3429 u8 sqlite3GetVarint(const unsigned char *, u64 *);
3430 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
3431 int sqlite3VarintLen(u64 v);
3432 
3433 /*
3434 ** The common case is for a varint to be a single byte.  They following
3435 ** macros handle the common case without a procedure call, but then call
3436 ** the procedure for larger varints.
3437 */
3438 #define getVarint32(A,B)  \
3439   (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
3440 #define putVarint32(A,B)  \
3441   (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
3442   sqlite3PutVarint((A),(B)))
3443 #define getVarint    sqlite3GetVarint
3444 #define putVarint    sqlite3PutVarint
3445 
3446 
3447 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
3448 void sqlite3TableAffinity(Vdbe*, Table*, int);
3449 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
3450 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
3451 char sqlite3ExprAffinity(Expr *pExpr);
3452 int sqlite3Atoi64(const char*, i64*, int, u8);
3453 int sqlite3DecOrHexToI64(const char*, i64*);
3454 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
3455 void sqlite3Error(sqlite3*,int);
3456 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
3457 u8 sqlite3HexToInt(int h);
3458 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
3459 
3460 #if defined(SQLITE_TEST)
3461 const char *sqlite3ErrName(int);
3462 #endif
3463 
3464 const char *sqlite3ErrStr(int);
3465 int sqlite3ReadSchema(Parse *pParse);
3466 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
3467 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
3468 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
3469 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*);
3470 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
3471 Expr *sqlite3ExprSkipCollate(Expr*);
3472 int sqlite3CheckCollSeq(Parse *, CollSeq *);
3473 int sqlite3CheckObjectName(Parse *, const char *);
3474 void sqlite3VdbeSetChanges(sqlite3 *, int);
3475 int sqlite3AddInt64(i64*,i64);
3476 int sqlite3SubInt64(i64*,i64);
3477 int sqlite3MulInt64(i64*,i64);
3478 int sqlite3AbsInt32(int);
3479 #ifdef SQLITE_ENABLE_8_3_NAMES
3480 void sqlite3FileSuffix3(const char*, char*);
3481 #else
3482 # define sqlite3FileSuffix3(X,Y)
3483 #endif
3484 u8 sqlite3GetBoolean(const char *z,u8);
3485 
3486 const void *sqlite3ValueText(sqlite3_value*, u8);
3487 int sqlite3ValueBytes(sqlite3_value*, u8);
3488 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
3489                         void(*)(void*));
3490 void sqlite3ValueSetNull(sqlite3_value*);
3491 void sqlite3ValueFree(sqlite3_value*);
3492 sqlite3_value *sqlite3ValueNew(sqlite3 *);
3493 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
3494 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
3495 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
3496 #ifndef SQLITE_AMALGAMATION
3497 extern const unsigned char sqlite3OpcodeProperty[];
3498 extern const unsigned char sqlite3UpperToLower[];
3499 extern const unsigned char sqlite3CtypeMap[];
3500 extern const Token sqlite3IntTokens[];
3501 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
3502 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
3503 #ifndef SQLITE_OMIT_WSD
3504 extern int sqlite3PendingByte;
3505 #endif
3506 #endif
3507 void sqlite3RootPageMoved(sqlite3*, int, int, int);
3508 void sqlite3Reindex(Parse*, Token*, Token*);
3509 void sqlite3AlterFunctions(void);
3510 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
3511 int sqlite3GetToken(const unsigned char *, int *);
3512 void sqlite3NestedParse(Parse*, const char*, ...);
3513 void sqlite3ExpirePreparedStatements(sqlite3*);
3514 int sqlite3CodeSubselect(Parse *, Expr *, int, int);
3515 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
3516 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
3517 int sqlite3ResolveExprNames(NameContext*, Expr*);
3518 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
3519 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
3520 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
3521 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
3522 void sqlite3AlterFinishAddColumn(Parse *, Token *);
3523 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
3524 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
3525 char sqlite3AffinityType(const char*, u8*);
3526 void sqlite3Analyze(Parse*, Token*, Token*);
3527 int sqlite3InvokeBusyHandler(BusyHandler*);
3528 int sqlite3FindDb(sqlite3*, Token*);
3529 int sqlite3FindDbName(sqlite3 *, const char *);
3530 int sqlite3AnalysisLoad(sqlite3*,int iDB);
3531 void sqlite3DeleteIndexSamples(sqlite3*,Index*);
3532 void sqlite3DefaultRowEst(Index*);
3533 void sqlite3RegisterLikeFunctions(sqlite3*, int);
3534 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
3535 void sqlite3MinimumFileFormat(Parse*, int, int);
3536 void sqlite3SchemaClear(void *);
3537 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
3538 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
3539 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
3540 void sqlite3KeyInfoUnref(KeyInfo*);
3541 KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
3542 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
3543 #ifdef SQLITE_DEBUG
3544 int sqlite3KeyInfoIsWriteable(KeyInfo*);
3545 #endif
3546 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
3547   void (*)(sqlite3_context*,int,sqlite3_value **),
3548   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
3549   FuncDestructor *pDestructor
3550 );
3551 int sqlite3ApiExit(sqlite3 *db, int);
3552 int sqlite3OpenTempDatabase(Parse *);
3553 
3554 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
3555 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
3556 void sqlite3StrAccumAppendAll(StrAccum*,const char*);
3557 void sqlite3AppendChar(StrAccum*,int,char);
3558 char *sqlite3StrAccumFinish(StrAccum*);
3559 void sqlite3StrAccumReset(StrAccum*);
3560 void sqlite3SelectDestInit(SelectDest*,int,int);
3561 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
3562 
3563 void sqlite3BackupRestart(sqlite3_backup *);
3564 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
3565 
3566 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3567 void sqlite3AnalyzeFunctions(void);
3568 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
3569 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
3570 void sqlite3Stat4ProbeFree(UnpackedRecord*);
3571 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
3572 #endif
3573 
3574 /*
3575 ** The interface to the LEMON-generated parser
3576 */
3577 void *sqlite3ParserAlloc(void*(*)(u64));
3578 void sqlite3ParserFree(void*, void(*)(void*));
3579 void sqlite3Parser(void*, int, Token, Parse*);
3580 #ifdef YYTRACKMAXSTACKDEPTH
3581   int sqlite3ParserStackPeak(void*);
3582 #endif
3583 
3584 void sqlite3AutoLoadExtensions(sqlite3*);
3585 #ifndef SQLITE_OMIT_LOAD_EXTENSION
3586   void sqlite3CloseExtensions(sqlite3*);
3587 #else
3588 # define sqlite3CloseExtensions(X)
3589 #endif
3590 
3591 #ifndef SQLITE_OMIT_SHARED_CACHE
3592   void sqlite3TableLock(Parse *, int, int, u8, const char *);
3593 #else
3594   #define sqlite3TableLock(v,w,x,y,z)
3595 #endif
3596 
3597 #ifdef SQLITE_TEST
3598   int sqlite3Utf8To8(unsigned char*);
3599 #endif
3600 
3601 #ifdef SQLITE_OMIT_VIRTUALTABLE
3602 #  define sqlite3VtabClear(Y)
3603 #  define sqlite3VtabSync(X,Y) SQLITE_OK
3604 #  define sqlite3VtabRollback(X)
3605 #  define sqlite3VtabCommit(X)
3606 #  define sqlite3VtabInSync(db) 0
3607 #  define sqlite3VtabLock(X)
3608 #  define sqlite3VtabUnlock(X)
3609 #  define sqlite3VtabUnlockList(X)
3610 #  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
3611 #  define sqlite3GetVTable(X,Y)  ((VTable*)0)
3612 #else
3613    void sqlite3VtabClear(sqlite3 *db, Table*);
3614    void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
3615    int sqlite3VtabSync(sqlite3 *db, Vdbe*);
3616    int sqlite3VtabRollback(sqlite3 *db);
3617    int sqlite3VtabCommit(sqlite3 *db);
3618    void sqlite3VtabLock(VTable *);
3619    void sqlite3VtabUnlock(VTable *);
3620    void sqlite3VtabUnlockList(sqlite3*);
3621    int sqlite3VtabSavepoint(sqlite3 *, int, int);
3622    void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
3623    VTable *sqlite3GetVTable(sqlite3*, Table*);
3624 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
3625 #endif
3626 void sqlite3VtabMakeWritable(Parse*,Table*);
3627 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
3628 void sqlite3VtabFinishParse(Parse*, Token*);
3629 void sqlite3VtabArgInit(Parse*);
3630 void sqlite3VtabArgExtend(Parse*, Token*);
3631 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
3632 int sqlite3VtabCallConnect(Parse*, Table*);
3633 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3634 int sqlite3VtabBegin(sqlite3 *, VTable *);
3635 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3636 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3637 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
3638 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3639 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3640 void sqlite3ParserReset(Parse*);
3641 int sqlite3Reprepare(Vdbe*);
3642 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3643 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3644 int sqlite3TempInMemory(const sqlite3*);
3645 const char *sqlite3JournalModename(int);
3646 #ifndef SQLITE_OMIT_WAL
3647   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
3648   int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3649 #endif
3650 #ifndef SQLITE_OMIT_CTE
3651   With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
3652   void sqlite3WithDelete(sqlite3*,With*);
3653   void sqlite3WithPush(Parse*, With*, u8);
3654 #else
3655 #define sqlite3WithPush(x,y,z)
3656 #define sqlite3WithDelete(x,y)
3657 #endif
3658 
3659 /* Declarations for functions in fkey.c. All of these are replaced by
3660 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3661 ** key functionality is available. If OMIT_TRIGGER is defined but
3662 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3663 ** this case foreign keys are parsed, but no other functionality is
3664 ** provided (enforcement of FK constraints requires the triggers sub-system).
3665 */
3666 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3667   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
3668   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3669   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
3670   int sqlite3FkRequired(Parse*, Table*, int*, int);
3671   u32 sqlite3FkOldmask(Parse*, Table*);
3672   FKey *sqlite3FkReferences(Table *);
3673 #else
3674   #define sqlite3FkActions(a,b,c,d,e,f)
3675   #define sqlite3FkCheck(a,b,c,d,e,f)
3676   #define sqlite3FkDropTable(a,b,c)
3677   #define sqlite3FkOldmask(a,b)         0
3678   #define sqlite3FkRequired(a,b,c,d)    0
3679 #endif
3680 #ifndef SQLITE_OMIT_FOREIGN_KEY
3681   void sqlite3FkDelete(sqlite3 *, Table*);
3682   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
3683 #else
3684   #define sqlite3FkDelete(a,b)
3685   #define sqlite3FkLocateIndex(a,b,c,d,e)
3686 #endif
3687 
3688 
3689 /*
3690 ** Available fault injectors.  Should be numbered beginning with 0.
3691 */
3692 #define SQLITE_FAULTINJECTOR_MALLOC     0
3693 #define SQLITE_FAULTINJECTOR_COUNT      1
3694 
3695 /*
3696 ** The interface to the code in fault.c used for identifying "benign"
3697 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3698 ** is not defined.
3699 */
3700 #ifndef SQLITE_OMIT_BUILTIN_TEST
3701   void sqlite3BeginBenignMalloc(void);
3702   void sqlite3EndBenignMalloc(void);
3703 #else
3704   #define sqlite3BeginBenignMalloc()
3705   #define sqlite3EndBenignMalloc()
3706 #endif
3707 
3708 /*
3709 ** Allowed return values from sqlite3FindInIndex()
3710 */
3711 #define IN_INDEX_ROWID        1   /* Search the rowid of the table */
3712 #define IN_INDEX_EPH          2   /* Search an ephemeral b-tree */
3713 #define IN_INDEX_INDEX_ASC    3   /* Existing index ASCENDING */
3714 #define IN_INDEX_INDEX_DESC   4   /* Existing index DESCENDING */
3715 #define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
3716 /*
3717 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
3718 */
3719 #define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
3720 #define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
3721 #define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
3722 int sqlite3FindInIndex(Parse *, Expr *, u32, int*);
3723 
3724 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3725   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3726   int sqlite3JournalSize(sqlite3_vfs *);
3727   int sqlite3JournalCreate(sqlite3_file *);
3728   int sqlite3JournalExists(sqlite3_file *p);
3729 #else
3730   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
3731   #define sqlite3JournalExists(p) 1
3732 #endif
3733 
3734 void sqlite3MemJournalOpen(sqlite3_file *);
3735 int sqlite3MemJournalSize(void);
3736 int sqlite3IsMemJournal(sqlite3_file *);
3737 
3738 #if SQLITE_MAX_EXPR_DEPTH>0
3739   void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
3740   int sqlite3SelectExprHeight(Select *);
3741   int sqlite3ExprCheckHeight(Parse*, int);
3742 #else
3743   #define sqlite3ExprSetHeight(x,y)
3744   #define sqlite3SelectExprHeight(x) 0
3745   #define sqlite3ExprCheckHeight(x,y)
3746 #endif
3747 
3748 u32 sqlite3Get4byte(const u8*);
3749 void sqlite3Put4byte(u8*, u32);
3750 
3751 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
3752   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
3753   void sqlite3ConnectionUnlocked(sqlite3 *db);
3754   void sqlite3ConnectionClosed(sqlite3 *db);
3755 #else
3756   #define sqlite3ConnectionBlocked(x,y)
3757   #define sqlite3ConnectionUnlocked(x)
3758   #define sqlite3ConnectionClosed(x)
3759 #endif
3760 
3761 #ifdef SQLITE_DEBUG
3762   void sqlite3ParserTrace(FILE*, char *);
3763 #endif
3764 
3765 /*
3766 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
3767 ** sqlite3IoTrace is a pointer to a printf-like routine used to
3768 ** print I/O tracing messages.
3769 */
3770 #ifdef SQLITE_ENABLE_IOTRACE
3771 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3772   void sqlite3VdbeIOTraceSql(Vdbe*);
3773 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
3774 #else
3775 # define IOTRACE(A)
3776 # define sqlite3VdbeIOTraceSql(X)
3777 #endif
3778 
3779 /*
3780 ** These routines are available for the mem2.c debugging memory allocator
3781 ** only.  They are used to verify that different "types" of memory
3782 ** allocations are properly tracked by the system.
3783 **
3784 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
3785 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
3786 ** a single bit set.
3787 **
3788 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
3789 ** argument match the type set by the previous sqlite3MemdebugSetType().
3790 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
3791 **
3792 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
3793 ** argument match the type set by the previous sqlite3MemdebugSetType().
3794 **
3795 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
3796 ** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
3797 ** it might have been allocated by lookaside, except the allocation was
3798 ** too large or lookaside was already full.  It is important to verify
3799 ** that allocations that might have been satisfied by lookaside are not
3800 ** passed back to non-lookaside free() routines.  Asserts such as the
3801 ** example above are placed on the non-lookaside free() routines to verify
3802 ** this constraint.
3803 **
3804 ** All of this is no-op for a production build.  It only comes into
3805 ** play when the SQLITE_MEMDEBUG compile-time option is used.
3806 */
3807 #ifdef SQLITE_MEMDEBUG
3808   void sqlite3MemdebugSetType(void*,u8);
3809   int sqlite3MemdebugHasType(void*,u8);
3810   int sqlite3MemdebugNoType(void*,u8);
3811 #else
3812 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
3813 # define sqlite3MemdebugHasType(X,Y)  1
3814 # define sqlite3MemdebugNoType(X,Y)   1
3815 #endif
3816 #define MEMTYPE_HEAP       0x01  /* General heap allocations */
3817 #define MEMTYPE_LOOKASIDE  0x02  /* Heap that might have been lookaside */
3818 #define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
3819 #define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
3820 
3821 /*
3822 ** Threading interface
3823 */
3824 #if SQLITE_MAX_WORKER_THREADS>0
3825 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
3826 int sqlite3ThreadJoin(SQLiteThread*, void**);
3827 #endif
3828 
3829 #endif /* _SQLITEINT_H_ */
3830