1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.816 2008/12/28 16:55:25 drh Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 19 /* 20 ** Include the configuration header output by 'configure' if we're using the 21 ** autoconf-based build 22 */ 23 #ifdef _HAVE_SQLITE_CONFIG_H 24 #include "config.h" 25 #endif 26 27 #include "sqliteLimit.h" 28 29 /* Disable nuisance warnings on Borland compilers */ 30 #if defined(__BORLANDC__) 31 #pragma warn -rch /* unreachable code */ 32 #pragma warn -ccc /* Condition is always true or false */ 33 #pragma warn -aus /* Assigned value is never used */ 34 #pragma warn -csu /* Comparing signed and unsigned */ 35 #pragma warn -spa /* Suspicious pointer arithmetic */ 36 #endif 37 38 /* Needed for various definitions... */ 39 #ifndef _GNU_SOURCE 40 # define _GNU_SOURCE 41 #endif 42 43 /* 44 ** Include standard header files as necessary 45 */ 46 #ifdef HAVE_STDINT_H 47 #include <stdint.h> 48 #endif 49 #ifdef HAVE_INTTYPES_H 50 #include <inttypes.h> 51 #endif 52 53 /* 54 ** A macro used to aid in coverage testing. When doing coverage 55 ** testing, the condition inside the argument must be evaluated 56 ** both true and false in order to get full branch coverage. 57 ** This macro can be inserted to ensure adequate test coverage 58 ** in places where simple condition/decision coverage is inadequate. 59 */ 60 #ifdef SQLITE_COVERAGE_TEST 61 void sqlite3Coverage(int); 62 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 63 #else 64 # define testcase(X) 65 #endif 66 67 /* 68 ** The ALWAYS and NEVER macros surround boolean expressions which 69 ** are intended to always be true or false, respectively. Such 70 ** expressions could be omitted from the code completely. But they 71 ** are included in a few cases in order to enhance the resilience 72 ** of SQLite to unexpected behavior - to make the code "self-healing" 73 ** or "ductile" rather than being "brittle" and crashing at the first 74 ** hint of unplanned behavior. 75 ** 76 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 77 ** be true and false so that the unreachable code then specify will 78 ** not be counted as untested code. 79 */ 80 #ifdef SQLITE_COVERAGE_TEST 81 # define ALWAYS(X) (1) 82 # define NEVER(X) (0) 83 #else 84 # define ALWAYS(X) (X) 85 # define NEVER(X) (X) 86 #endif 87 88 /* 89 ** The macro unlikely() is a hint that surrounds a boolean 90 ** expression that is usually false. Macro likely() surrounds 91 ** a boolean expression that is usually true. GCC is able to 92 ** use these hints to generate better code, sometimes. 93 */ 94 #if defined(__GNUC__) && 0 95 # define likely(X) __builtin_expect((X),1) 96 # define unlikely(X) __builtin_expect((X),0) 97 #else 98 # define likely(X) !!(X) 99 # define unlikely(X) !!(X) 100 #endif 101 102 /* 103 * This macro is used to "hide" some ugliness in casting an int 104 * value to a ptr value under the MSVC 64-bit compiler. Casting 105 * non 64-bit values to ptr types results in a "hard" error with 106 * the MSVC 64-bit compiler which this attempts to avoid. 107 * 108 * A simple compiler pragma or casting sequence could not be found 109 * to correct this in all situations, so this macro was introduced. 110 * 111 * It could be argued that the intptr_t type could be used in this 112 * case, but that type is not available on all compilers, or 113 * requires the #include of specific headers which differs between 114 * platforms. 115 */ 116 #define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 117 #define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 118 119 /* 120 ** These #defines should enable >2GB file support on POSIX if the 121 ** underlying operating system supports it. If the OS lacks 122 ** large file support, or if the OS is windows, these should be no-ops. 123 ** 124 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 125 ** system #includes. Hence, this block of code must be the very first 126 ** code in all source files. 127 ** 128 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 129 ** on the compiler command line. This is necessary if you are compiling 130 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 131 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 132 ** without this option, LFS is enable. But LFS does not exist in the kernel 133 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 134 ** portability you should omit LFS. 135 ** 136 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 137 */ 138 #ifndef SQLITE_DISABLE_LFS 139 # define _LARGE_FILE 1 140 # ifndef _FILE_OFFSET_BITS 141 # define _FILE_OFFSET_BITS 64 142 # endif 143 # define _LARGEFILE_SOURCE 1 144 #endif 145 146 147 /* 148 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 149 ** Older versions of SQLite used an optional THREADSAFE macro. 150 ** We support that for legacy 151 */ 152 #if !defined(SQLITE_THREADSAFE) 153 #if defined(THREADSAFE) 154 # define SQLITE_THREADSAFE THREADSAFE 155 #else 156 # define SQLITE_THREADSAFE 1 157 #endif 158 #endif 159 160 /* 161 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 162 ** It determines whether or not the features related to 163 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 164 ** be overridden at runtime using the sqlite3_config() API. 165 */ 166 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 167 # define SQLITE_DEFAULT_MEMSTATUS 1 168 #endif 169 170 /* 171 ** Exactly one of the following macros must be defined in order to 172 ** specify which memory allocation subsystem to use. 173 ** 174 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 175 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 176 ** SQLITE_MEMORY_SIZE // internal allocator #1 177 ** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator 178 ** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator 179 ** 180 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 181 ** the default. 182 */ 183 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 184 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 185 defined(SQLITE_POW2_MEMORY_SIZE)>1 186 # error "At most one of the following compile-time configuration options\ 187 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\ 188 SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE" 189 #endif 190 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 191 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 192 defined(SQLITE_POW2_MEMORY_SIZE)==0 193 # define SQLITE_SYSTEM_MALLOC 1 194 #endif 195 196 /* 197 ** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the 198 ** sizes of memory allocations below this value where possible. 199 */ 200 #if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT) 201 # define SQLITE_MALLOC_SOFT_LIMIT 1024 202 #endif 203 204 /* 205 ** We need to define _XOPEN_SOURCE as follows in order to enable 206 ** recursive mutexes on most Unix systems. But Mac OS X is different. 207 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 208 ** so it is omitted there. See ticket #2673. 209 ** 210 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 211 ** implemented on some systems. So we avoid defining it at all 212 ** if it is already defined or if it is unneeded because we are 213 ** not doing a threadsafe build. Ticket #2681. 214 ** 215 ** See also ticket #2741. 216 */ 217 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 218 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 219 #endif 220 221 /* 222 ** The TCL headers are only needed when compiling the TCL bindings. 223 */ 224 #if defined(SQLITE_TCL) || defined(TCLSH) 225 # include <tcl.h> 226 #endif 227 228 /* 229 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 230 ** Setting NDEBUG makes the code smaller and run faster. So the following 231 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 232 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 233 ** feature. 234 */ 235 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 236 # define NDEBUG 1 237 #endif 238 239 #include "sqlite3.h" 240 #include "hash.h" 241 #include "parse.h" 242 #include <stdio.h> 243 #include <stdlib.h> 244 #include <string.h> 245 #include <assert.h> 246 #include <stddef.h> 247 248 /* 249 ** If compiling for a processor that lacks floating point support, 250 ** substitute integer for floating-point 251 */ 252 #ifdef SQLITE_OMIT_FLOATING_POINT 253 # define double sqlite_int64 254 # define LONGDOUBLE_TYPE sqlite_int64 255 # ifndef SQLITE_BIG_DBL 256 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 257 # endif 258 # define SQLITE_OMIT_DATETIME_FUNCS 1 259 # define SQLITE_OMIT_TRACE 1 260 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 261 #endif 262 #ifndef SQLITE_BIG_DBL 263 # define SQLITE_BIG_DBL (1e99) 264 #endif 265 266 /* 267 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 268 ** afterward. Having this macro allows us to cause the C compiler 269 ** to omit code used by TEMP tables without messy #ifndef statements. 270 */ 271 #ifdef SQLITE_OMIT_TEMPDB 272 #define OMIT_TEMPDB 1 273 #else 274 #define OMIT_TEMPDB 0 275 #endif 276 277 /* 278 ** If the following macro is set to 1, then NULL values are considered 279 ** distinct when determining whether or not two entries are the same 280 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 281 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 282 ** is the way things are suppose to work. 283 ** 284 ** If the following macro is set to 0, the NULLs are indistinct for 285 ** a UNIQUE index. In this mode, you can only have a single NULL entry 286 ** for a column declared UNIQUE. This is the way Informix and SQL Server 287 ** work. 288 */ 289 #define NULL_DISTINCT_FOR_UNIQUE 1 290 291 /* 292 ** The "file format" number is an integer that is incremented whenever 293 ** the VDBE-level file format changes. The following macros define the 294 ** the default file format for new databases and the maximum file format 295 ** that the library can read. 296 */ 297 #define SQLITE_MAX_FILE_FORMAT 4 298 #ifndef SQLITE_DEFAULT_FILE_FORMAT 299 # define SQLITE_DEFAULT_FILE_FORMAT 1 300 #endif 301 302 /* 303 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 304 ** on the command-line 305 */ 306 #ifndef SQLITE_TEMP_STORE 307 # define SQLITE_TEMP_STORE 1 308 #endif 309 310 /* 311 ** GCC does not define the offsetof() macro so we'll have to do it 312 ** ourselves. 313 */ 314 #ifndef offsetof 315 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 316 #endif 317 318 /* 319 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 320 ** not, there are still machines out there that use EBCDIC.) 321 */ 322 #if 'A' == '\301' 323 # define SQLITE_EBCDIC 1 324 #else 325 # define SQLITE_ASCII 1 326 #endif 327 328 /* 329 ** Integers of known sizes. These typedefs might change for architectures 330 ** where the sizes very. Preprocessor macros are available so that the 331 ** types can be conveniently redefined at compile-type. Like this: 332 ** 333 ** cc '-DUINTPTR_TYPE=long long int' ... 334 */ 335 #ifndef UINT32_TYPE 336 # ifdef HAVE_UINT32_T 337 # define UINT32_TYPE uint32_t 338 # else 339 # define UINT32_TYPE unsigned int 340 # endif 341 #endif 342 #ifndef UINT16_TYPE 343 # ifdef HAVE_UINT16_T 344 # define UINT16_TYPE uint16_t 345 # else 346 # define UINT16_TYPE unsigned short int 347 # endif 348 #endif 349 #ifndef INT16_TYPE 350 # ifdef HAVE_INT16_T 351 # define INT16_TYPE int16_t 352 # else 353 # define INT16_TYPE short int 354 # endif 355 #endif 356 #ifndef UINT8_TYPE 357 # ifdef HAVE_UINT8_T 358 # define UINT8_TYPE uint8_t 359 # else 360 # define UINT8_TYPE unsigned char 361 # endif 362 #endif 363 #ifndef INT8_TYPE 364 # ifdef HAVE_INT8_T 365 # define INT8_TYPE int8_t 366 # else 367 # define INT8_TYPE signed char 368 # endif 369 #endif 370 #ifndef LONGDOUBLE_TYPE 371 # define LONGDOUBLE_TYPE long double 372 #endif 373 typedef sqlite_int64 i64; /* 8-byte signed integer */ 374 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 375 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 376 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 377 typedef INT16_TYPE i16; /* 2-byte signed integer */ 378 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 379 typedef INT8_TYPE i8; /* 1-byte signed integer */ 380 381 /* 382 ** Macros to determine whether the machine is big or little endian, 383 ** evaluated at runtime. 384 */ 385 #ifdef SQLITE_AMALGAMATION 386 const int sqlite3one = 1; 387 #else 388 extern const int sqlite3one; 389 #endif 390 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 391 || defined(__x86_64) || defined(__x86_64__) 392 # define SQLITE_BIGENDIAN 0 393 # define SQLITE_LITTLEENDIAN 1 394 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 395 #else 396 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 397 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 398 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 399 #endif 400 401 /* 402 ** Constants for the largest and smallest possible 64-bit signed integers. 403 ** These macros are designed to work correctly on both 32-bit and 64-bit 404 ** compilers. 405 */ 406 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 407 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 408 409 /* 410 ** An instance of the following structure is used to store the busy-handler 411 ** callback for a given sqlite handle. 412 ** 413 ** The sqlite.busyHandler member of the sqlite struct contains the busy 414 ** callback for the database handle. Each pager opened via the sqlite 415 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 416 ** callback is currently invoked only from within pager.c. 417 */ 418 typedef struct BusyHandler BusyHandler; 419 struct BusyHandler { 420 int (*xFunc)(void *,int); /* The busy callback */ 421 void *pArg; /* First arg to busy callback */ 422 int nBusy; /* Incremented with each busy call */ 423 }; 424 425 /* 426 ** Name of the master database table. The master database table 427 ** is a special table that holds the names and attributes of all 428 ** user tables and indices. 429 */ 430 #define MASTER_NAME "sqlite_master" 431 #define TEMP_MASTER_NAME "sqlite_temp_master" 432 433 /* 434 ** The root-page of the master database table. 435 */ 436 #define MASTER_ROOT 1 437 438 /* 439 ** The name of the schema table. 440 */ 441 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 442 443 /* 444 ** A convenience macro that returns the number of elements in 445 ** an array. 446 */ 447 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 448 449 /* 450 ** The following value as a destructor means to use sqlite3DbFree(). 451 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. 452 */ 453 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) 454 455 /* 456 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 457 ** not support Writable Static Data (WSD) such as global and static variables. 458 ** All variables must either be on the stack or dynamically allocated from 459 ** the heap. When WSD is unsupported, the variable declarations scattered 460 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 461 ** macro is used for this purpose. And instead of referencing the variable 462 ** directly, we use its constant as a key to lookup the run-time allocated 463 ** buffer that holds real variable. The constant is also the initializer 464 ** for the run-time allocated buffer. 465 ** 466 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 467 ** macros become no-ops and have zero performance impact. 468 */ 469 #ifdef SQLITE_OMIT_WSD 470 #define SQLITE_WSD const 471 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 472 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 473 int sqlite3_wsd_init(int N, int J); 474 void *sqlite3_wsd_find(void *K, int L); 475 #else 476 #define SQLITE_WSD 477 #define GLOBAL(t,v) v 478 #define sqlite3GlobalConfig sqlite3Config 479 #endif 480 481 /* 482 ** The following macros are used to suppress compiler warnings and to 483 ** make it clear to human readers when a function parameter is deliberately 484 ** left unused within the body of a function. This usually happens when 485 ** a function is called via a function pointer. For example the 486 ** implementation of an SQL aggregate step callback may not use the 487 ** parameter indicating the number of arguments passed to the aggregate, 488 ** if it knows that this is enforced elsewhere. 489 ** 490 ** When a function parameter is not used at all within the body of a function, 491 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 492 ** However, these macros may also be used to suppress warnings related to 493 ** parameters that may or may not be used depending on compilation options. 494 ** For example those parameters only used in assert() statements. In these 495 ** cases the parameters are named as per the usual conventions. 496 */ 497 #define UNUSED_PARAMETER(x) (void)(x) 498 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 499 500 /* 501 ** Forward references to structures 502 */ 503 typedef struct AggInfo AggInfo; 504 typedef struct AuthContext AuthContext; 505 typedef struct Bitvec Bitvec; 506 typedef struct RowSet RowSet; 507 typedef struct CollSeq CollSeq; 508 typedef struct Column Column; 509 typedef struct Db Db; 510 typedef struct Schema Schema; 511 typedef struct Expr Expr; 512 typedef struct ExprList ExprList; 513 typedef struct FKey FKey; 514 typedef struct FuncDef FuncDef; 515 typedef struct FuncDefHash FuncDefHash; 516 typedef struct IdList IdList; 517 typedef struct Index Index; 518 typedef struct KeyClass KeyClass; 519 typedef struct KeyInfo KeyInfo; 520 typedef struct Lookaside Lookaside; 521 typedef struct LookasideSlot LookasideSlot; 522 typedef struct Module Module; 523 typedef struct NameContext NameContext; 524 typedef struct Parse Parse; 525 typedef struct Savepoint Savepoint; 526 typedef struct Select Select; 527 typedef struct SrcList SrcList; 528 typedef struct StrAccum StrAccum; 529 typedef struct Table Table; 530 typedef struct TableLock TableLock; 531 typedef struct Token Token; 532 typedef struct TriggerStack TriggerStack; 533 typedef struct TriggerStep TriggerStep; 534 typedef struct Trigger Trigger; 535 typedef struct UnpackedRecord UnpackedRecord; 536 typedef struct Walker Walker; 537 typedef struct WherePlan WherePlan; 538 typedef struct WhereInfo WhereInfo; 539 typedef struct WhereLevel WhereLevel; 540 541 /* 542 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 543 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 544 ** pointer types (i.e. FuncDef) defined above. 545 */ 546 #include "btree.h" 547 #include "vdbe.h" 548 #include "pager.h" 549 #include "pcache.h" 550 551 #include "os.h" 552 #include "mutex.h" 553 554 555 /* 556 ** Each database file to be accessed by the system is an instance 557 ** of the following structure. There are normally two of these structures 558 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 559 ** aDb[1] is the database file used to hold temporary tables. Additional 560 ** databases may be attached. 561 */ 562 struct Db { 563 char *zName; /* Name of this database */ 564 Btree *pBt; /* The B*Tree structure for this database file */ 565 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 566 u8 safety_level; /* How aggressive at syncing data to disk */ 567 void *pAux; /* Auxiliary data. Usually NULL */ 568 void (*xFreeAux)(void*); /* Routine to free pAux */ 569 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 570 }; 571 572 /* 573 ** An instance of the following structure stores a database schema. 574 ** 575 ** If there are no virtual tables configured in this schema, the 576 ** Schema.db variable is set to NULL. After the first virtual table 577 ** has been added, it is set to point to the database connection 578 ** used to create the connection. Once a virtual table has been 579 ** added to the Schema structure and the Schema.db variable populated, 580 ** only that database connection may use the Schema to prepare 581 ** statements. 582 */ 583 struct Schema { 584 int schema_cookie; /* Database schema version number for this file */ 585 Hash tblHash; /* All tables indexed by name */ 586 Hash idxHash; /* All (named) indices indexed by name */ 587 Hash trigHash; /* All triggers indexed by name */ 588 Hash aFKey; /* Foreign keys indexed by to-table */ 589 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 590 u8 file_format; /* Schema format version for this file */ 591 u8 enc; /* Text encoding used by this database */ 592 u16 flags; /* Flags associated with this schema */ 593 int cache_size; /* Number of pages to use in the cache */ 594 #ifndef SQLITE_OMIT_VIRTUALTABLE 595 sqlite3 *db; /* "Owner" connection. See comment above */ 596 #endif 597 }; 598 599 /* 600 ** These macros can be used to test, set, or clear bits in the 601 ** Db.flags field. 602 */ 603 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 604 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 605 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 606 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 607 608 /* 609 ** Allowed values for the DB.flags field. 610 ** 611 ** The DB_SchemaLoaded flag is set after the database schema has been 612 ** read into internal hash tables. 613 ** 614 ** DB_UnresetViews means that one or more views have column names that 615 ** have been filled out. If the schema changes, these column names might 616 ** changes and so the view will need to be reset. 617 */ 618 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 619 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 620 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 621 622 /* 623 ** The number of different kinds of things that can be limited 624 ** using the sqlite3_limit() interface. 625 */ 626 #define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1) 627 628 /* 629 ** Lookaside malloc is a set of fixed-size buffers that can be used 630 ** to satisfy small transient memory allocation requests for objects 631 ** associated with a particular database connection. The use of 632 ** lookaside malloc provides a significant performance enhancement 633 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 634 ** SQL statements. 635 ** 636 ** The Lookaside structure holds configuration information about the 637 ** lookaside malloc subsystem. Each available memory allocation in 638 ** the lookaside subsystem is stored on a linked list of LookasideSlot 639 ** objects. 640 */ 641 struct Lookaside { 642 u16 sz; /* Size of each buffer in bytes */ 643 u8 bEnabled; /* True if use lookaside. False to ignore it */ 644 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 645 int nOut; /* Number of buffers currently checked out */ 646 int mxOut; /* Highwater mark for nOut */ 647 LookasideSlot *pFree; /* List of available buffers */ 648 void *pStart; /* First byte of available memory space */ 649 void *pEnd; /* First byte past end of available space */ 650 }; 651 struct LookasideSlot { 652 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 653 }; 654 655 /* 656 ** A hash table for function definitions. 657 ** 658 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 659 ** Collisions are on the FuncDef.pHash chain. 660 */ 661 struct FuncDefHash { 662 FuncDef *a[23]; /* Hash table for functions */ 663 }; 664 665 /* 666 ** Each database is an instance of the following structure. 667 ** 668 ** The sqlite.lastRowid records the last insert rowid generated by an 669 ** insert statement. Inserts on views do not affect its value. Each 670 ** trigger has its own context, so that lastRowid can be updated inside 671 ** triggers as usual. The previous value will be restored once the trigger 672 ** exits. Upon entering a before or instead of trigger, lastRowid is no 673 ** longer (since after version 2.8.12) reset to -1. 674 ** 675 ** The sqlite.nChange does not count changes within triggers and keeps no 676 ** context. It is reset at start of sqlite3_exec. 677 ** The sqlite.lsChange represents the number of changes made by the last 678 ** insert, update, or delete statement. It remains constant throughout the 679 ** length of a statement and is then updated by OP_SetCounts. It keeps a 680 ** context stack just like lastRowid so that the count of changes 681 ** within a trigger is not seen outside the trigger. Changes to views do not 682 ** affect the value of lsChange. 683 ** The sqlite.csChange keeps track of the number of current changes (since 684 ** the last statement) and is used to update sqlite_lsChange. 685 ** 686 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 687 ** store the most recent error code and, if applicable, string. The 688 ** internal function sqlite3Error() is used to set these variables 689 ** consistently. 690 */ 691 struct sqlite3 { 692 sqlite3_vfs *pVfs; /* OS Interface */ 693 int nDb; /* Number of backends currently in use */ 694 Db *aDb; /* All backends */ 695 int flags; /* Miscellaneous flags. See below */ 696 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 697 int errCode; /* Most recent error code (SQLITE_*) */ 698 int errMask; /* & result codes with this before returning */ 699 u8 autoCommit; /* The auto-commit flag. */ 700 u8 temp_store; /* 1: file 2: memory 0: default */ 701 u8 mallocFailed; /* True if we have seen a malloc failure */ 702 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 703 u8 dfltJournalMode; /* Default journal mode for attached dbs */ 704 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 705 int nextPagesize; /* Pagesize after VACUUM if >0 */ 706 int nTable; /* Number of tables in the database */ 707 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 708 i64 lastRowid; /* ROWID of most recent insert (see above) */ 709 i64 priorNewRowid; /* Last randomly generated ROWID */ 710 u32 magic; /* Magic number for detect library misuse */ 711 int nChange; /* Value returned by sqlite3_changes() */ 712 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 713 sqlite3_mutex *mutex; /* Connection mutex */ 714 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 715 struct sqlite3InitInfo { /* Information used during initialization */ 716 int iDb; /* When back is being initialized */ 717 int newTnum; /* Rootpage of table being initialized */ 718 u8 busy; /* TRUE if currently initializing */ 719 } init; 720 int nExtension; /* Number of loaded extensions */ 721 void **aExtension; /* Array of shared library handles */ 722 struct Vdbe *pVdbe; /* List of active virtual machines */ 723 int activeVdbeCnt; /* Number of VDBEs currently executing */ 724 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 725 void (*xTrace)(void*,const char*); /* Trace function */ 726 void *pTraceArg; /* Argument to the trace function */ 727 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 728 void *pProfileArg; /* Argument to profile function */ 729 void *pCommitArg; /* Argument to xCommitCallback() */ 730 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 731 void *pRollbackArg; /* Argument to xRollbackCallback() */ 732 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 733 void *pUpdateArg; 734 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 735 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 736 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 737 void *pCollNeededArg; 738 sqlite3_value *pErr; /* Most recent error message */ 739 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 740 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 741 union { 742 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 743 double notUsed1; /* Spacer */ 744 } u1; 745 Lookaside lookaside; /* Lookaside malloc configuration */ 746 #ifndef SQLITE_OMIT_AUTHORIZATION 747 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 748 /* Access authorization function */ 749 void *pAuthArg; /* 1st argument to the access auth function */ 750 #endif 751 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 752 int (*xProgress)(void *); /* The progress callback */ 753 void *pProgressArg; /* Argument to the progress callback */ 754 int nProgressOps; /* Number of opcodes for progress callback */ 755 #endif 756 #ifndef SQLITE_OMIT_VIRTUALTABLE 757 Hash aModule; /* populated by sqlite3_create_module() */ 758 Table *pVTab; /* vtab with active Connect/Create method */ 759 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 760 int nVTrans; /* Allocated size of aVTrans */ 761 #endif 762 FuncDefHash aFunc; /* Hash table of connection functions */ 763 Hash aCollSeq; /* All collating sequences */ 764 BusyHandler busyHandler; /* Busy callback */ 765 int busyTimeout; /* Busy handler timeout, in msec */ 766 Db aDbStatic[2]; /* Static space for the 2 default backends */ 767 #ifdef SQLITE_SSE 768 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 769 #endif 770 Savepoint *pSavepoint; /* List of active savepoints */ 771 int nSavepoint; /* Number of non-transaction savepoints */ 772 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 773 }; 774 775 /* 776 ** A macro to discover the encoding of a database. 777 */ 778 #define ENC(db) ((db)->aDb[0].pSchema->enc) 779 780 /* 781 ** Possible values for the sqlite.flags and or Db.flags fields. 782 ** 783 ** On sqlite.flags, the SQLITE_InTrans value means that we have 784 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 785 ** transaction is active on that particular database file. 786 */ 787 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 788 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 789 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 790 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 791 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 792 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 793 /* DELETE, or UPDATE and return */ 794 /* the count using a callback. */ 795 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 796 /* result set is empty */ 797 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 798 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 799 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 800 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 801 ** accessing read-only databases */ 802 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 803 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 804 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 805 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 806 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 807 808 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 809 #define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */ 810 #define SQLITE_Vtab 0x00100000 /* There exists a virtual table */ 811 812 /* 813 ** Possible values for the sqlite.magic field. 814 ** The numbers are obtained at random and have no special meaning, other 815 ** than being distinct from one another. 816 */ 817 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 818 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 819 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 820 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 821 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 822 823 /* 824 ** Each SQL function is defined by an instance of the following 825 ** structure. A pointer to this structure is stored in the sqlite.aFunc 826 ** hash table. When multiple functions have the same name, the hash table 827 ** points to a linked list of these structures. 828 */ 829 struct FuncDef { 830 i16 nArg; /* Number of arguments. -1 means unlimited */ 831 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 832 u8 flags; /* Some combination of SQLITE_FUNC_* */ 833 void *pUserData; /* User data parameter */ 834 FuncDef *pNext; /* Next function with same name */ 835 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 836 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 837 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 838 char *zName; /* SQL name of the function. */ 839 FuncDef *pHash; /* Next with a different name but the same hash */ 840 }; 841 842 /* 843 ** Possible values for FuncDef.flags 844 */ 845 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 846 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 847 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 848 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 849 850 /* 851 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 852 ** used to create the initializers for the FuncDef structures. 853 ** 854 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 855 ** Used to create a scalar function definition of a function zName 856 ** implemented by C function xFunc that accepts nArg arguments. The 857 ** value passed as iArg is cast to a (void*) and made available 858 ** as the user-data (sqlite3_user_data()) for the function. If 859 ** argument bNC is true, then the FuncDef.needCollate flag is set. 860 ** 861 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 862 ** Used to create an aggregate function definition implemented by 863 ** the C functions xStep and xFinal. The first four parameters 864 ** are interpreted in the same way as the first 4 parameters to 865 ** FUNCTION(). 866 ** 867 ** LIKEFUNC(zName, nArg, pArg, flags) 868 ** Used to create a scalar function definition of a function zName 869 ** that accepts nArg arguments and is implemented by a call to C 870 ** function likeFunc. Argument pArg is cast to a (void *) and made 871 ** available as the function user-data (sqlite3_user_data()). The 872 ** FuncDef.flags variable is set to the value passed as the flags 873 ** parameter. 874 */ 875 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 876 {nArg, SQLITE_UTF8, bNC*8, SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0} 877 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 878 {nArg, SQLITE_UTF8, bNC*8, pArg, 0, xFunc, 0, 0, #zName, 0} 879 #define LIKEFUNC(zName, nArg, arg, flags) \ 880 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0} 881 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 882 {nArg, SQLITE_UTF8, nc*8, SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0} 883 884 /* 885 ** All current savepoints are stored in a linked list starting at 886 ** sqlite3.pSavepoint. The first element in the list is the most recently 887 ** opened savepoint. Savepoints are added to the list by the vdbe 888 ** OP_Savepoint instruction. 889 */ 890 struct Savepoint { 891 char *zName; /* Savepoint name (nul-terminated) */ 892 Savepoint *pNext; /* Parent savepoint (if any) */ 893 }; 894 895 /* 896 ** The following are used as the second parameter to sqlite3Savepoint(), 897 ** and as the P1 argument to the OP_Savepoint instruction. 898 */ 899 #define SAVEPOINT_BEGIN 0 900 #define SAVEPOINT_RELEASE 1 901 #define SAVEPOINT_ROLLBACK 2 902 903 904 /* 905 ** Each SQLite module (virtual table definition) is defined by an 906 ** instance of the following structure, stored in the sqlite3.aModule 907 ** hash table. 908 */ 909 struct Module { 910 const sqlite3_module *pModule; /* Callback pointers */ 911 const char *zName; /* Name passed to create_module() */ 912 void *pAux; /* pAux passed to create_module() */ 913 void (*xDestroy)(void *); /* Module destructor function */ 914 }; 915 916 /* 917 ** information about each column of an SQL table is held in an instance 918 ** of this structure. 919 */ 920 struct Column { 921 char *zName; /* Name of this column */ 922 Expr *pDflt; /* Default value of this column */ 923 char *zType; /* Data type for this column */ 924 char *zColl; /* Collating sequence. If NULL, use the default */ 925 u8 notNull; /* True if there is a NOT NULL constraint */ 926 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 927 char affinity; /* One of the SQLITE_AFF_... values */ 928 #ifndef SQLITE_OMIT_VIRTUALTABLE 929 u8 isHidden; /* True if this column is 'hidden' */ 930 #endif 931 }; 932 933 /* 934 ** A "Collating Sequence" is defined by an instance of the following 935 ** structure. Conceptually, a collating sequence consists of a name and 936 ** a comparison routine that defines the order of that sequence. 937 ** 938 ** There may two separate implementations of the collation function, one 939 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 940 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 941 ** native byte order. When a collation sequence is invoked, SQLite selects 942 ** the version that will require the least expensive encoding 943 ** translations, if any. 944 ** 945 ** The CollSeq.pUser member variable is an extra parameter that passed in 946 ** as the first argument to the UTF-8 comparison function, xCmp. 947 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 948 ** xCmp16. 949 ** 950 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 951 ** collating sequence is undefined. Indices built on an undefined 952 ** collating sequence may not be read or written. 953 */ 954 struct CollSeq { 955 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 956 u8 enc; /* Text encoding handled by xCmp() */ 957 u8 type; /* One of the SQLITE_COLL_... values below */ 958 void *pUser; /* First argument to xCmp() */ 959 int (*xCmp)(void*,int, const void*, int, const void*); 960 void (*xDel)(void*); /* Destructor for pUser */ 961 }; 962 963 /* 964 ** Allowed values of CollSeq.type: 965 */ 966 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 967 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 968 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 969 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 970 971 /* 972 ** A sort order can be either ASC or DESC. 973 */ 974 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 975 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 976 977 /* 978 ** Column affinity types. 979 ** 980 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 981 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 982 ** the speed a little by numbering the values consecutively. 983 ** 984 ** But rather than start with 0 or 1, we begin with 'a'. That way, 985 ** when multiple affinity types are concatenated into a string and 986 ** used as the P4 operand, they will be more readable. 987 ** 988 ** Note also that the numeric types are grouped together so that testing 989 ** for a numeric type is a single comparison. 990 */ 991 #define SQLITE_AFF_TEXT 'a' 992 #define SQLITE_AFF_NONE 'b' 993 #define SQLITE_AFF_NUMERIC 'c' 994 #define SQLITE_AFF_INTEGER 'd' 995 #define SQLITE_AFF_REAL 'e' 996 997 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 998 999 /* 1000 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1001 ** affinity value. 1002 */ 1003 #define SQLITE_AFF_MASK 0x67 1004 1005 /* 1006 ** Additional bit values that can be ORed with an affinity without 1007 ** changing the affinity. 1008 */ 1009 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1010 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1011 1012 /* 1013 ** Each SQL table is represented in memory by an instance of the 1014 ** following structure. 1015 ** 1016 ** Table.zName is the name of the table. The case of the original 1017 ** CREATE TABLE statement is stored, but case is not significant for 1018 ** comparisons. 1019 ** 1020 ** Table.nCol is the number of columns in this table. Table.aCol is a 1021 ** pointer to an array of Column structures, one for each column. 1022 ** 1023 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1024 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1025 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1026 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1027 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1028 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1029 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1030 ** 1031 ** Table.tnum is the page number for the root BTree page of the table in the 1032 ** database file. If Table.iDb is the index of the database table backend 1033 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1034 ** holds temporary tables and indices. If TF_Ephemeral is set 1035 ** then the table is stored in a file that is automatically deleted 1036 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1037 ** refers VDBE cursor number that holds the table open, not to the root 1038 ** page number. Transient tables are used to hold the results of a 1039 ** sub-query that appears instead of a real table name in the FROM clause 1040 ** of a SELECT statement. 1041 */ 1042 struct Table { 1043 sqlite3 *db; /* Associated database connection. Might be NULL. */ 1044 char *zName; /* Name of the table or view */ 1045 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1046 int nCol; /* Number of columns in this table */ 1047 Column *aCol; /* Information about each column */ 1048 Index *pIndex; /* List of SQL indexes on this table. */ 1049 int tnum; /* Root BTree node for this table (see note above) */ 1050 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1051 u16 nRef; /* Number of pointers to this Table */ 1052 u8 tabFlags; /* Mask of TF_* values */ 1053 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1054 Trigger *pTrigger; /* List of SQL triggers on this table */ 1055 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1056 char *zColAff; /* String defining the affinity of each column */ 1057 #ifndef SQLITE_OMIT_CHECK 1058 Expr *pCheck; /* The AND of all CHECK constraints */ 1059 #endif 1060 #ifndef SQLITE_OMIT_ALTERTABLE 1061 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1062 #endif 1063 #ifndef SQLITE_OMIT_VIRTUALTABLE 1064 Module *pMod; /* Pointer to the implementation of the module */ 1065 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 1066 int nModuleArg; /* Number of arguments to the module */ 1067 char **azModuleArg; /* Text of all module args. [0] is module name */ 1068 #endif 1069 Schema *pSchema; /* Schema that contains this table */ 1070 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1071 }; 1072 1073 /* 1074 ** Allowed values for Tabe.tabFlags. 1075 */ 1076 #define TF_Readonly 0x01 /* Read-only system table */ 1077 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1078 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1079 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1080 #define TF_Virtual 0x10 /* Is a virtual table */ 1081 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ 1082 1083 1084 1085 /* 1086 ** Test to see whether or not a table is a virtual table. This is 1087 ** done as a macro so that it will be optimized out when virtual 1088 ** table support is omitted from the build. 1089 */ 1090 #ifndef SQLITE_OMIT_VIRTUALTABLE 1091 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1092 # define IsHiddenColumn(X) ((X)->isHidden) 1093 #else 1094 # define IsVirtual(X) 0 1095 # define IsHiddenColumn(X) 0 1096 #endif 1097 1098 /* 1099 ** Each foreign key constraint is an instance of the following structure. 1100 ** 1101 ** A foreign key is associated with two tables. The "from" table is 1102 ** the table that contains the REFERENCES clause that creates the foreign 1103 ** key. The "to" table is the table that is named in the REFERENCES clause. 1104 ** Consider this example: 1105 ** 1106 ** CREATE TABLE ex1( 1107 ** a INTEGER PRIMARY KEY, 1108 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1109 ** ); 1110 ** 1111 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1112 ** 1113 ** Each REFERENCES clause generates an instance of the following structure 1114 ** which is attached to the from-table. The to-table need not exist when 1115 ** the from-table is created. The existence of the to-table is not checked 1116 ** until an attempt is made to insert data into the from-table. 1117 ** 1118 ** The sqlite.aFKey hash table stores pointers to this structure 1119 ** given the name of a to-table. For each to-table, all foreign keys 1120 ** associated with that table are on a linked list using the FKey.pNextTo 1121 ** field. 1122 */ 1123 struct FKey { 1124 Table *pFrom; /* The table that contains the REFERENCES clause */ 1125 FKey *pNextFrom; /* Next foreign key in pFrom */ 1126 char *zTo; /* Name of table that the key points to */ 1127 FKey *pNextTo; /* Next foreign key that points to zTo */ 1128 int nCol; /* Number of columns in this key */ 1129 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1130 int iFrom; /* Index of column in pFrom */ 1131 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1132 } *aCol; /* One entry for each of nCol column s */ 1133 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1134 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 1135 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 1136 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 1137 }; 1138 1139 /* 1140 ** SQLite supports many different ways to resolve a constraint 1141 ** error. ROLLBACK processing means that a constraint violation 1142 ** causes the operation in process to fail and for the current transaction 1143 ** to be rolled back. ABORT processing means the operation in process 1144 ** fails and any prior changes from that one operation are backed out, 1145 ** but the transaction is not rolled back. FAIL processing means that 1146 ** the operation in progress stops and returns an error code. But prior 1147 ** changes due to the same operation are not backed out and no rollback 1148 ** occurs. IGNORE means that the particular row that caused the constraint 1149 ** error is not inserted or updated. Processing continues and no error 1150 ** is returned. REPLACE means that preexisting database rows that caused 1151 ** a UNIQUE constraint violation are removed so that the new insert or 1152 ** update can proceed. Processing continues and no error is reported. 1153 ** 1154 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1155 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1156 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1157 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1158 ** referenced table row is propagated into the row that holds the 1159 ** foreign key. 1160 ** 1161 ** The following symbolic values are used to record which type 1162 ** of action to take. 1163 */ 1164 #define OE_None 0 /* There is no constraint to check */ 1165 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1166 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1167 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1168 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1169 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1170 1171 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1172 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1173 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1174 #define OE_Cascade 9 /* Cascade the changes */ 1175 1176 #define OE_Default 99 /* Do whatever the default action is */ 1177 1178 1179 /* 1180 ** An instance of the following structure is passed as the first 1181 ** argument to sqlite3VdbeKeyCompare and is used to control the 1182 ** comparison of the two index keys. 1183 */ 1184 struct KeyInfo { 1185 sqlite3 *db; /* The database connection */ 1186 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 1187 u16 nField; /* Number of entries in aColl[] */ 1188 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 1189 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1190 }; 1191 1192 /* 1193 ** An instance of the following structure holds information about a 1194 ** single index record that has already been parsed out into individual 1195 ** values. 1196 ** 1197 ** A record is an object that contains one or more fields of data. 1198 ** Records are used to store the content of a table row and to store 1199 ** the key of an index. A blob encoding of a record is created by 1200 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1201 ** OP_Column opcode. 1202 ** 1203 ** This structure holds a record that has already been disassembled 1204 ** into its constituent fields. 1205 */ 1206 struct UnpackedRecord { 1207 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1208 u16 nField; /* Number of entries in apMem[] */ 1209 u16 flags; /* Boolean settings. UNPACKED_... below */ 1210 Mem *aMem; /* Values */ 1211 }; 1212 1213 /* 1214 ** Allowed values of UnpackedRecord.flags 1215 */ 1216 #define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ 1217 #define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ 1218 #define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ 1219 #define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ 1220 #define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ 1221 1222 /* 1223 ** Each SQL index is represented in memory by an 1224 ** instance of the following structure. 1225 ** 1226 ** The columns of the table that are to be indexed are described 1227 ** by the aiColumn[] field of this structure. For example, suppose 1228 ** we have the following table and index: 1229 ** 1230 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1231 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1232 ** 1233 ** In the Table structure describing Ex1, nCol==3 because there are 1234 ** three columns in the table. In the Index structure describing 1235 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1236 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1237 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1238 ** The second column to be indexed (c1) has an index of 0 in 1239 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1240 ** 1241 ** The Index.onError field determines whether or not the indexed columns 1242 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1243 ** it means this is not a unique index. Otherwise it is a unique index 1244 ** and the value of Index.onError indicate the which conflict resolution 1245 ** algorithm to employ whenever an attempt is made to insert a non-unique 1246 ** element. 1247 */ 1248 struct Index { 1249 char *zName; /* Name of this index */ 1250 int nColumn; /* Number of columns in the table used by this index */ 1251 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1252 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1253 Table *pTable; /* The SQL table being indexed */ 1254 int tnum; /* Page containing root of this index in database file */ 1255 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1256 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1257 char *zColAff; /* String defining the affinity of each column */ 1258 Index *pNext; /* The next index associated with the same table */ 1259 Schema *pSchema; /* Schema containing this index */ 1260 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1261 char **azColl; /* Array of collation sequence names for index */ 1262 }; 1263 1264 /* 1265 ** Each token coming out of the lexer is an instance of 1266 ** this structure. Tokens are also used as part of an expression. 1267 ** 1268 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1269 ** may contain random values. Do not make any assumptions about Token.dyn 1270 ** and Token.n when Token.z==0. 1271 */ 1272 struct Token { 1273 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 1274 unsigned dyn : 1; /* True for malloced memory, false for static */ 1275 unsigned n : 31; /* Number of characters in this token */ 1276 }; 1277 1278 /* 1279 ** An instance of this structure contains information needed to generate 1280 ** code for a SELECT that contains aggregate functions. 1281 ** 1282 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1283 ** pointer to this structure. The Expr.iColumn field is the index in 1284 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1285 ** code for that node. 1286 ** 1287 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1288 ** original Select structure that describes the SELECT statement. These 1289 ** fields do not need to be freed when deallocating the AggInfo structure. 1290 */ 1291 struct AggInfo { 1292 u8 directMode; /* Direct rendering mode means take data directly 1293 ** from source tables rather than from accumulators */ 1294 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1295 ** than the source table */ 1296 int sortingIdx; /* Cursor number of the sorting index */ 1297 ExprList *pGroupBy; /* The group by clause */ 1298 int nSortingColumn; /* Number of columns in the sorting index */ 1299 struct AggInfo_col { /* For each column used in source tables */ 1300 Table *pTab; /* Source table */ 1301 int iTable; /* Cursor number of the source table */ 1302 int iColumn; /* Column number within the source table */ 1303 int iSorterColumn; /* Column number in the sorting index */ 1304 int iMem; /* Memory location that acts as accumulator */ 1305 Expr *pExpr; /* The original expression */ 1306 } *aCol; 1307 int nColumn; /* Number of used entries in aCol[] */ 1308 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 1309 int nAccumulator; /* Number of columns that show through to the output. 1310 ** Additional columns are used only as parameters to 1311 ** aggregate functions */ 1312 struct AggInfo_func { /* For each aggregate function */ 1313 Expr *pExpr; /* Expression encoding the function */ 1314 FuncDef *pFunc; /* The aggregate function implementation */ 1315 int iMem; /* Memory location that acts as accumulator */ 1316 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1317 } *aFunc; 1318 int nFunc; /* Number of entries in aFunc[] */ 1319 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 1320 }; 1321 1322 /* 1323 ** Each node of an expression in the parse tree is an instance 1324 ** of this structure. 1325 ** 1326 ** Expr.op is the opcode. The integer parser token codes are reused 1327 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1328 ** code representing the ">=" operator. This same integer code is reused 1329 ** to represent the greater-than-or-equal-to operator in the expression 1330 ** tree. 1331 ** 1332 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 1333 ** of argument if the expression is a function. 1334 ** 1335 ** Expr.token is the operator token for this node. For some expressions 1336 ** that have subexpressions, Expr.token can be the complete text that gave 1337 ** rise to the Expr. In the latter case, the token is marked as being 1338 ** a compound token. 1339 ** 1340 ** An expression of the form ID or ID.ID refers to a column in a table. 1341 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1342 ** the integer cursor number of a VDBE cursor pointing to that table and 1343 ** Expr.iColumn is the column number for the specific column. If the 1344 ** expression is used as a result in an aggregate SELECT, then the 1345 ** value is also stored in the Expr.iAgg column in the aggregate so that 1346 ** it can be accessed after all aggregates are computed. 1347 ** 1348 ** If the expression is a function, the Expr.iTable is an integer code 1349 ** representing which function. If the expression is an unbound variable 1350 ** marker (a question mark character '?' in the original SQL) then the 1351 ** Expr.iTable holds the index number for that variable. 1352 ** 1353 ** If the expression is a subquery then Expr.iColumn holds an integer 1354 ** register number containing the result of the subquery. If the 1355 ** subquery gives a constant result, then iTable is -1. If the subquery 1356 ** gives a different answer at different times during statement processing 1357 ** then iTable is the address of a subroutine that computes the subquery. 1358 ** 1359 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 1360 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 1361 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 1362 ** operand. 1363 ** 1364 ** If the Expr is of type OP_Column, and the table it is selecting from 1365 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1366 ** corresponding table definition. 1367 */ 1368 struct Expr { 1369 u8 op; /* Operation performed by this node */ 1370 char affinity; /* The affinity of the column or 0 if not a column */ 1371 u16 flags; /* Various flags. See below */ 1372 CollSeq *pColl; /* The collation type of the column or 0 */ 1373 Expr *pLeft, *pRight; /* Left and right subnodes */ 1374 ExprList *pList; /* A list of expressions used as function arguments 1375 ** or in "<expr> IN (<expr-list)" */ 1376 Token token; /* An operand token */ 1377 Token span; /* Complete text of the expression */ 1378 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 1379 ** iColumn-th field of the iTable-th table. */ 1380 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1381 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1382 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1383 Select *pSelect; /* When the expression is a sub-select. Also the 1384 ** right side of "<expr> IN (<select>)" */ 1385 Table *pTab; /* Table for TK_COLUMN expressions. */ 1386 #if SQLITE_MAX_EXPR_DEPTH>0 1387 int nHeight; /* Height of the tree headed by this node */ 1388 #endif 1389 }; 1390 1391 /* 1392 ** The following are the meanings of bits in the Expr.flags field. 1393 */ 1394 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1395 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1396 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1397 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1398 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1399 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1400 #define EP_Dequoted 0x0040 /* True if the string has been dequoted */ 1401 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1402 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1403 #define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */ 1404 #define EP_FixedDest 0x0400 /* Result needed in a specific register */ 1405 #define EP_IntValue 0x0800 /* Integer value contained in iTable */ 1406 /* 1407 ** These macros can be used to test, set, or clear bits in the 1408 ** Expr.flags field. 1409 */ 1410 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1411 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1412 #define ExprSetProperty(E,P) (E)->flags|=(P) 1413 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1414 1415 /* 1416 ** A list of expressions. Each expression may optionally have a 1417 ** name. An expr/name combination can be used in several ways, such 1418 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1419 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1420 ** also be used as the argument to a function, in which case the a.zName 1421 ** field is not used. 1422 */ 1423 struct ExprList { 1424 int nExpr; /* Number of expressions on the list */ 1425 int nAlloc; /* Number of entries allocated below */ 1426 int iECursor; /* VDBE Cursor associated with this ExprList */ 1427 struct ExprList_item { 1428 Expr *pExpr; /* The list of expressions */ 1429 char *zName; /* Token associated with this expression */ 1430 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1431 u8 done; /* A flag to indicate when processing is finished */ 1432 u16 iCol; /* For ORDER BY, column number in result set */ 1433 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1434 } *a; /* One entry for each expression */ 1435 }; 1436 1437 /* 1438 ** An instance of this structure can hold a simple list of identifiers, 1439 ** such as the list "a,b,c" in the following statements: 1440 ** 1441 ** INSERT INTO t(a,b,c) VALUES ...; 1442 ** CREATE INDEX idx ON t(a,b,c); 1443 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1444 ** 1445 ** The IdList.a.idx field is used when the IdList represents the list of 1446 ** column names after a table name in an INSERT statement. In the statement 1447 ** 1448 ** INSERT INTO t(a,b,c) ... 1449 ** 1450 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1451 */ 1452 struct IdList { 1453 struct IdList_item { 1454 char *zName; /* Name of the identifier */ 1455 int idx; /* Index in some Table.aCol[] of a column named zName */ 1456 } *a; 1457 int nId; /* Number of identifiers on the list */ 1458 int nAlloc; /* Number of entries allocated for a[] below */ 1459 }; 1460 1461 /* 1462 ** The bitmask datatype defined below is used for various optimizations. 1463 ** 1464 ** Changing this from a 64-bit to a 32-bit type limits the number of 1465 ** tables in a join to 32 instead of 64. But it also reduces the size 1466 ** of the library by 738 bytes on ix86. 1467 */ 1468 typedef u64 Bitmask; 1469 1470 /* 1471 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1472 */ 1473 #define BMS ((int)(sizeof(Bitmask)*8)) 1474 1475 /* 1476 ** The following structure describes the FROM clause of a SELECT statement. 1477 ** Each table or subquery in the FROM clause is a separate element of 1478 ** the SrcList.a[] array. 1479 ** 1480 ** With the addition of multiple database support, the following structure 1481 ** can also be used to describe a particular table such as the table that 1482 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1483 ** such a table must be a simple name: ID. But in SQLite, the table can 1484 ** now be identified by a database name, a dot, then the table name: ID.ID. 1485 ** 1486 ** The jointype starts out showing the join type between the current table 1487 ** and the next table on the list. The parser builds the list this way. 1488 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1489 ** jointype expresses the join between the table and the previous table. 1490 */ 1491 struct SrcList { 1492 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1493 i16 nAlloc; /* Number of entries allocated in a[] below */ 1494 struct SrcList_item { 1495 char *zDatabase; /* Name of database holding this table */ 1496 char *zName; /* Name of the table */ 1497 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1498 Table *pTab; /* An SQL table corresponding to zName */ 1499 Select *pSelect; /* A SELECT statement used in place of a table name */ 1500 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1501 u8 jointype; /* Type of join between this able and the previous */ 1502 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1503 int iCursor; /* The VDBE cursor number used to access this table */ 1504 Expr *pOn; /* The ON clause of a join */ 1505 IdList *pUsing; /* The USING clause of a join */ 1506 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1507 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1508 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1509 } a[1]; /* One entry for each identifier on the list */ 1510 }; 1511 1512 /* 1513 ** Permitted values of the SrcList.a.jointype field 1514 */ 1515 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1516 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1517 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1518 #define JT_LEFT 0x0008 /* Left outer join */ 1519 #define JT_RIGHT 0x0010 /* Right outer join */ 1520 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1521 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1522 1523 1524 /* 1525 ** A WherePlan object holds information that describes a lookup 1526 ** strategy. 1527 ** 1528 ** This object is intended to be opaque outside of the where.c module. 1529 ** It is included here only so that that compiler will know how big it 1530 ** is. None of the fields in this object should be used outside of 1531 ** the where.c module. 1532 ** 1533 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1534 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1535 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1536 ** case that more than one of these conditions is true. 1537 */ 1538 struct WherePlan { 1539 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1540 u32 nEq; /* Number of == constraints */ 1541 union { 1542 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1543 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1544 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1545 } u; 1546 }; 1547 1548 /* 1549 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1550 ** structure contains a single instance of this structure. This structure 1551 ** is intended to be private the the where.c module and should not be 1552 ** access or modified by other modules. 1553 ** 1554 ** The pIdxInfo field is used to help pick the best index on a 1555 ** virtual table. The pIdxInfo pointer contains indexing 1556 ** information for the i-th table in the FROM clause before reordering. 1557 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1558 ** All other information in the i-th WhereLevel object for the i-th table 1559 ** after FROM clause ordering. 1560 */ 1561 struct WhereLevel { 1562 WherePlan plan; /* query plan for this element of the FROM clause */ 1563 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1564 int iTabCur; /* The VDBE cursor used to access the table */ 1565 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1566 int addrBrk; /* Jump here to break out of the loop */ 1567 int addrNxt; /* Jump here to start the next IN combination */ 1568 int addrCont; /* Jump here to continue with the next loop cycle */ 1569 int addrFirst; /* First instruction of interior of the loop */ 1570 u8 iFrom; /* Which entry in the FROM clause */ 1571 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1572 int p1, p2; /* Operands of the opcode used to ends the loop */ 1573 union { /* Information that depends on plan.wsFlags */ 1574 struct { 1575 int nIn; /* Number of entries in aInLoop[] */ 1576 struct InLoop { 1577 int iCur; /* The VDBE cursor used by this IN operator */ 1578 int addrInTop; /* Top of the IN loop */ 1579 } *aInLoop; /* Information about each nested IN operator */ 1580 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1581 struct { 1582 WherePlan *aPlan; /* Plans for each term of the WHERE clause */ 1583 } or; /* Used when plan.wsFlags&WHERE_MULTI_OR */ 1584 } u; 1585 1586 /* The following field is really not part of the current level. But 1587 ** we need a place to cache virtual table index information for each 1588 ** virtual table in the FROM clause and the WhereLevel structure is 1589 ** a convenient place since there is one WhereLevel for each FROM clause 1590 ** element. 1591 */ 1592 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1593 }; 1594 1595 /* 1596 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin(). 1597 */ 1598 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1599 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1600 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1601 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1602 #define WHERE_FILL_ROWSET 0x0008 /* Save results in a RowSet object */ 1603 #define WHERE_OMIT_OPEN 0x0010 /* Table cursor are already open */ 1604 #define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */ 1605 1606 /* 1607 ** The WHERE clause processing routine has two halves. The 1608 ** first part does the start of the WHERE loop and the second 1609 ** half does the tail of the WHERE loop. An instance of 1610 ** this structure is returned by the first half and passed 1611 ** into the second half to give some continuity. 1612 */ 1613 struct WhereInfo { 1614 Parse *pParse; /* Parsing and code generating context */ 1615 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1616 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1617 int regRowSet; /* Store rowids in this rowset if >=0 */ 1618 SrcList *pTabList; /* List of tables in the join */ 1619 int iTop; /* The very beginning of the WHERE loop */ 1620 int iContinue; /* Jump here to continue with next record */ 1621 int iBreak; /* Jump here to break out of the loop */ 1622 int nLevel; /* Number of nested loop */ 1623 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1624 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 1625 }; 1626 1627 /* 1628 ** A NameContext defines a context in which to resolve table and column 1629 ** names. The context consists of a list of tables (the pSrcList) field and 1630 ** a list of named expression (pEList). The named expression list may 1631 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1632 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1633 ** pEList corresponds to the result set of a SELECT and is NULL for 1634 ** other statements. 1635 ** 1636 ** NameContexts can be nested. When resolving names, the inner-most 1637 ** context is searched first. If no match is found, the next outer 1638 ** context is checked. If there is still no match, the next context 1639 ** is checked. This process continues until either a match is found 1640 ** or all contexts are check. When a match is found, the nRef member of 1641 ** the context containing the match is incremented. 1642 ** 1643 ** Each subquery gets a new NameContext. The pNext field points to the 1644 ** NameContext in the parent query. Thus the process of scanning the 1645 ** NameContext list corresponds to searching through successively outer 1646 ** subqueries looking for a match. 1647 */ 1648 struct NameContext { 1649 Parse *pParse; /* The parser */ 1650 SrcList *pSrcList; /* One or more tables used to resolve names */ 1651 ExprList *pEList; /* Optional list of named expressions */ 1652 int nRef; /* Number of names resolved by this context */ 1653 int nErr; /* Number of errors encountered while resolving names */ 1654 u8 allowAgg; /* Aggregate functions allowed here */ 1655 u8 hasAgg; /* True if aggregates are seen */ 1656 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1657 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1658 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1659 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1660 }; 1661 1662 /* 1663 ** An instance of the following structure contains all information 1664 ** needed to generate code for a single SELECT statement. 1665 ** 1666 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1667 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1668 ** limit and nOffset to the value of the offset (or 0 if there is not 1669 ** offset). But later on, nLimit and nOffset become the memory locations 1670 ** in the VDBE that record the limit and offset counters. 1671 ** 1672 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1673 ** These addresses must be stored so that we can go back and fill in 1674 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1675 ** the number of columns in P2 can be computed at the same time 1676 ** as the OP_OpenEphm instruction is coded because not 1677 ** enough information about the compound query is known at that point. 1678 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1679 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1680 ** sequences for the ORDER BY clause. 1681 */ 1682 struct Select { 1683 ExprList *pEList; /* The fields of the result */ 1684 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1685 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1686 u16 selFlags; /* Various SF_* values */ 1687 SrcList *pSrc; /* The FROM clause */ 1688 Expr *pWhere; /* The WHERE clause */ 1689 ExprList *pGroupBy; /* The GROUP BY clause */ 1690 Expr *pHaving; /* The HAVING clause */ 1691 ExprList *pOrderBy; /* The ORDER BY clause */ 1692 Select *pPrior; /* Prior select in a compound select statement */ 1693 Select *pNext; /* Next select to the left in a compound */ 1694 Select *pRightmost; /* Right-most select in a compound select statement */ 1695 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1696 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1697 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1698 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1699 }; 1700 1701 /* 1702 ** Allowed values for Select.selFlags. The "SF" prefix stands for 1703 ** "Select Flag". 1704 */ 1705 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 1706 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 1707 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 1708 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 1709 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 1710 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 1711 1712 1713 /* 1714 ** The results of a select can be distributed in several ways. The 1715 ** "SRT" prefix means "SELECT Result Type". 1716 */ 1717 #define SRT_Union 1 /* Store result as keys in an index */ 1718 #define SRT_Except 2 /* Remove result from a UNION index */ 1719 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 1720 #define SRT_Discard 4 /* Do not save the results anywhere */ 1721 1722 /* The ORDER BY clause is ignored for all of the above */ 1723 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 1724 1725 #define SRT_Output 5 /* Output each row of result */ 1726 #define SRT_Mem 6 /* Store result in a memory cell */ 1727 #define SRT_Set 7 /* Store results as keys in an index */ 1728 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 1729 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 1730 #define SRT_Coroutine 10 /* Generate a single row of result */ 1731 1732 /* 1733 ** A structure used to customize the behavior of sqlite3Select(). See 1734 ** comments above sqlite3Select() for details. 1735 */ 1736 typedef struct SelectDest SelectDest; 1737 struct SelectDest { 1738 u8 eDest; /* How to dispose of the results */ 1739 u8 affinity; /* Affinity used when eDest==SRT_Set */ 1740 int iParm; /* A parameter used by the eDest disposal method */ 1741 int iMem; /* Base register where results are written */ 1742 int nMem; /* Number of registers allocated */ 1743 }; 1744 1745 /* 1746 ** An SQL parser context. A copy of this structure is passed through 1747 ** the parser and down into all the parser action routine in order to 1748 ** carry around information that is global to the entire parse. 1749 ** 1750 ** The structure is divided into two parts. When the parser and code 1751 ** generate call themselves recursively, the first part of the structure 1752 ** is constant but the second part is reset at the beginning and end of 1753 ** each recursion. 1754 ** 1755 ** The nTableLock and aTableLock variables are only used if the shared-cache 1756 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 1757 ** used to store the set of table-locks required by the statement being 1758 ** compiled. Function sqlite3TableLock() is used to add entries to the 1759 ** list. 1760 */ 1761 struct Parse { 1762 sqlite3 *db; /* The main database structure */ 1763 int rc; /* Return code from execution */ 1764 char *zErrMsg; /* An error message */ 1765 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1766 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1767 u8 nameClash; /* A permanent table name clashes with temp table name */ 1768 u8 checkSchema; /* Causes schema cookie check after an error */ 1769 u8 nested; /* Number of nested calls to the parser/code generator */ 1770 u8 parseError; /* True after a parsing error. Ticket #1794 */ 1771 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 1772 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 1773 int aTempReg[8]; /* Holding area for temporary registers */ 1774 int nRangeReg; /* Size of the temporary register block */ 1775 int iRangeReg; /* First register in temporary register block */ 1776 int nErr; /* Number of errors seen */ 1777 int nTab; /* Number of previously allocated VDBE cursors */ 1778 int nMem; /* Number of memory cells used so far */ 1779 int nSet; /* Number of sets used so far */ 1780 int ckBase; /* Base register of data during check constraints */ 1781 int disableColCache; /* True to disable adding to column cache */ 1782 int nColCache; /* Number of entries in the column cache */ 1783 int iColCache; /* Next entry of the cache to replace */ 1784 struct yColCache { 1785 int iTable; /* Table cursor number */ 1786 int iColumn; /* Table column number */ 1787 char affChange; /* True if this register has had an affinity change */ 1788 int iReg; /* Register holding value of this column */ 1789 } aColCache[10]; /* One for each valid column cache entry */ 1790 u32 writeMask; /* Start a write transaction on these databases */ 1791 u32 cookieMask; /* Bitmask of schema verified databases */ 1792 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1793 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 1794 #ifndef SQLITE_OMIT_SHARED_CACHE 1795 int nTableLock; /* Number of locks in aTableLock */ 1796 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 1797 #endif 1798 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 1799 int regRoot; /* Register holding root page number for new objects */ 1800 1801 /* Above is constant between recursions. Below is reset before and after 1802 ** each recursion */ 1803 1804 int nVar; /* Number of '?' variables seen in the SQL so far */ 1805 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1806 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1807 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1808 int nAlias; /* Number of aliased result set columns */ 1809 int nAliasAlloc; /* Number of allocated slots for aAlias[] */ 1810 int *aAlias; /* Register used to hold aliased result */ 1811 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1812 Token sErrToken; /* The token at which the error occurred */ 1813 Token sNameToken; /* Token with unqualified schema object name */ 1814 Token sLastToken; /* The last token parsed */ 1815 const char *zSql; /* All SQL text */ 1816 const char *zTail; /* All SQL text past the last semicolon parsed */ 1817 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1818 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1819 TriggerStack *trigStack; /* Trigger actions being coded */ 1820 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1821 #ifndef SQLITE_OMIT_VIRTUALTABLE 1822 Token sArg; /* Complete text of a module argument */ 1823 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 1824 int nVtabLock; /* Number of virtual tables to lock */ 1825 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 1826 #endif 1827 int nHeight; /* Expression tree height of current sub-select */ 1828 Table *pZombieTab; /* List of Table objects to delete after code gen */ 1829 }; 1830 1831 #ifdef SQLITE_OMIT_VIRTUALTABLE 1832 #define IN_DECLARE_VTAB 0 1833 #else 1834 #define IN_DECLARE_VTAB (pParse->declareVtab) 1835 #endif 1836 1837 /* 1838 ** An instance of the following structure can be declared on a stack and used 1839 ** to save the Parse.zAuthContext value so that it can be restored later. 1840 */ 1841 struct AuthContext { 1842 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1843 Parse *pParse; /* The Parse structure */ 1844 }; 1845 1846 /* 1847 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1848 */ 1849 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1850 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1851 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 1852 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 1853 1854 /* 1855 * Each trigger present in the database schema is stored as an instance of 1856 * struct Trigger. 1857 * 1858 * Pointers to instances of struct Trigger are stored in two ways. 1859 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1860 * database). This allows Trigger structures to be retrieved by name. 1861 * 2. All triggers associated with a single table form a linked list, using the 1862 * pNext member of struct Trigger. A pointer to the first element of the 1863 * linked list is stored as the "pTrigger" member of the associated 1864 * struct Table. 1865 * 1866 * The "step_list" member points to the first element of a linked list 1867 * containing the SQL statements specified as the trigger program. 1868 */ 1869 struct Trigger { 1870 char *name; /* The name of the trigger */ 1871 char *table; /* The table or view to which the trigger applies */ 1872 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1873 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1874 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 1875 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1876 the <column-list> is stored here */ 1877 Token nameToken; /* Token containing zName. Use during parsing only */ 1878 Schema *pSchema; /* Schema containing the trigger */ 1879 Schema *pTabSchema; /* Schema containing the table */ 1880 TriggerStep *step_list; /* Link list of trigger program steps */ 1881 Trigger *pNext; /* Next trigger associated with the table */ 1882 }; 1883 1884 /* 1885 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1886 ** determine which. 1887 ** 1888 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1889 ** In that cases, the constants below can be ORed together. 1890 */ 1891 #define TRIGGER_BEFORE 1 1892 #define TRIGGER_AFTER 2 1893 1894 /* 1895 * An instance of struct TriggerStep is used to store a single SQL statement 1896 * that is a part of a trigger-program. 1897 * 1898 * Instances of struct TriggerStep are stored in a singly linked list (linked 1899 * using the "pNext" member) referenced by the "step_list" member of the 1900 * associated struct Trigger instance. The first element of the linked list is 1901 * the first step of the trigger-program. 1902 * 1903 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1904 * "SELECT" statement. The meanings of the other members is determined by the 1905 * value of "op" as follows: 1906 * 1907 * (op == TK_INSERT) 1908 * orconf -> stores the ON CONFLICT algorithm 1909 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1910 * this stores a pointer to the SELECT statement. Otherwise NULL. 1911 * target -> A token holding the name of the table to insert into. 1912 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1913 * this stores values to be inserted. Otherwise NULL. 1914 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1915 * statement, then this stores the column-names to be 1916 * inserted into. 1917 * 1918 * (op == TK_DELETE) 1919 * target -> A token holding the name of the table to delete from. 1920 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1921 * Otherwise NULL. 1922 * 1923 * (op == TK_UPDATE) 1924 * target -> A token holding the name of the table to update rows of. 1925 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1926 * Otherwise NULL. 1927 * pExprList -> A list of the columns to update and the expressions to update 1928 * them to. See sqlite3Update() documentation of "pChanges" 1929 * argument. 1930 * 1931 */ 1932 struct TriggerStep { 1933 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1934 int orconf; /* OE_Rollback etc. */ 1935 Trigger *pTrig; /* The trigger that this step is a part of */ 1936 1937 Select *pSelect; /* Valid for SELECT and sometimes 1938 INSERT steps (when pExprList == 0) */ 1939 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1940 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1941 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1942 INSERT steps (when pSelect == 0) */ 1943 IdList *pIdList; /* Valid for INSERT statements only */ 1944 TriggerStep *pNext; /* Next in the link-list */ 1945 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 1946 }; 1947 1948 /* 1949 * An instance of struct TriggerStack stores information required during code 1950 * generation of a single trigger program. While the trigger program is being 1951 * coded, its associated TriggerStack instance is pointed to by the 1952 * "pTriggerStack" member of the Parse structure. 1953 * 1954 * The pTab member points to the table that triggers are being coded on. The 1955 * newIdx member contains the index of the vdbe cursor that points at the temp 1956 * table that stores the new.* references. If new.* references are not valid 1957 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1958 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1959 * 1960 * The ON CONFLICT policy to be used for the trigger program steps is stored 1961 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1962 * specified for individual triggers steps is used. 1963 * 1964 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1965 * constructed. When coding nested triggers (triggers fired by other triggers) 1966 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1967 * pointer. Once the nested trigger has been coded, the pNext value is restored 1968 * to the pTriggerStack member of the Parse stucture and coding of the parent 1969 * trigger continues. 1970 * 1971 * Before a nested trigger is coded, the linked list pointed to by the 1972 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1973 * recursively. If this condition is detected, the nested trigger is not coded. 1974 */ 1975 struct TriggerStack { 1976 Table *pTab; /* Table that triggers are currently being coded on */ 1977 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1978 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1979 u32 newColMask; 1980 u32 oldColMask; 1981 int orconf; /* Current orconf policy */ 1982 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1983 Trigger *pTrigger; /* The trigger currently being coded */ 1984 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1985 }; 1986 1987 /* 1988 ** The following structure contains information used by the sqliteFix... 1989 ** routines as they walk the parse tree to make database references 1990 ** explicit. 1991 */ 1992 typedef struct DbFixer DbFixer; 1993 struct DbFixer { 1994 Parse *pParse; /* The parsing context. Error messages written here */ 1995 const char *zDb; /* Make sure all objects are contained in this database */ 1996 const char *zType; /* Type of the container - used for error messages */ 1997 const Token *pName; /* Name of the container - used for error messages */ 1998 }; 1999 2000 /* 2001 ** An objected used to accumulate the text of a string where we 2002 ** do not necessarily know how big the string will be in the end. 2003 */ 2004 struct StrAccum { 2005 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2006 char *zBase; /* A base allocation. Not from malloc. */ 2007 char *zText; /* The string collected so far */ 2008 int nChar; /* Length of the string so far */ 2009 int nAlloc; /* Amount of space allocated in zText */ 2010 int mxAlloc; /* Maximum allowed string length */ 2011 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2012 u8 useMalloc; /* True if zText is enlargeable using realloc */ 2013 u8 tooBig; /* Becomes true if string size exceeds limits */ 2014 }; 2015 2016 /* 2017 ** A pointer to this structure is used to communicate information 2018 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2019 */ 2020 typedef struct { 2021 sqlite3 *db; /* The database being initialized */ 2022 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2023 char **pzErrMsg; /* Error message stored here */ 2024 int rc; /* Result code stored here */ 2025 } InitData; 2026 2027 /* 2028 ** Structure containing global configuration data for the SQLite library. 2029 ** 2030 ** This structure also contains some state information. 2031 */ 2032 struct Sqlite3Config { 2033 int bMemstat; /* True to enable memory status */ 2034 int bCoreMutex; /* True to enable core mutexing */ 2035 int bFullMutex; /* True to enable full mutexing */ 2036 int mxStrlen; /* Maximum string length */ 2037 int szLookaside; /* Default lookaside buffer size */ 2038 int nLookaside; /* Default lookaside buffer count */ 2039 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2040 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2041 sqlite3_pcache_methods pcache; /* Low-level page-cache interface */ 2042 void *pHeap; /* Heap storage space */ 2043 int nHeap; /* Size of pHeap[] */ 2044 int mnReq, mxReq; /* Min and max heap requests sizes */ 2045 void *pScratch; /* Scratch memory */ 2046 int szScratch; /* Size of each scratch buffer */ 2047 int nScratch; /* Number of scratch buffers */ 2048 void *pPage; /* Page cache memory */ 2049 int szPage; /* Size of each page in pPage[] */ 2050 int nPage; /* Number of pages in pPage[] */ 2051 int mxParserStack; /* maximum depth of the parser stack */ 2052 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2053 /* The above might be initialized to non-zero. The following need to always 2054 ** initially be zero, however. */ 2055 int isInit; /* True after initialization has finished */ 2056 int inProgress; /* True while initialization in progress */ 2057 int isMallocInit; /* True after malloc is initialized */ 2058 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2059 int nRefInitMutex; /* Number of users of pInitMutex */ 2060 }; 2061 2062 /* 2063 ** Context pointer passed down through the tree-walk. 2064 */ 2065 struct Walker { 2066 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2067 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2068 Parse *pParse; /* Parser context. */ 2069 union { /* Extra data for callback */ 2070 NameContext *pNC; /* Naming context */ 2071 int i; /* Integer value */ 2072 } u; 2073 }; 2074 2075 /* Forward declarations */ 2076 int sqlite3WalkExpr(Walker*, Expr*); 2077 int sqlite3WalkExprList(Walker*, ExprList*); 2078 int sqlite3WalkSelect(Walker*, Select*); 2079 int sqlite3WalkSelectExpr(Walker*, Select*); 2080 int sqlite3WalkSelectFrom(Walker*, Select*); 2081 2082 /* 2083 ** Return code from the parse-tree walking primitives and their 2084 ** callbacks. 2085 */ 2086 #define WRC_Continue 0 /* Continue down into children */ 2087 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2088 #define WRC_Abort 2 /* Abandon the tree walk */ 2089 2090 /* 2091 ** Assuming zIn points to the first byte of a UTF-8 character, 2092 ** advance zIn to point to the first byte of the next UTF-8 character. 2093 */ 2094 #define SQLITE_SKIP_UTF8(zIn) { \ 2095 if( (*(zIn++))>=0xc0 ){ \ 2096 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2097 } \ 2098 } 2099 2100 /* 2101 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 2102 ** builds) or a function call (for debugging). If it is a function call, 2103 ** it allows the operator to set a breakpoint at the spot where database 2104 ** corruption is first detected. 2105 */ 2106 #ifdef SQLITE_DEBUG 2107 int sqlite3Corrupt(void); 2108 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 2109 #else 2110 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 2111 #endif 2112 2113 /* 2114 ** Internal function prototypes 2115 */ 2116 int sqlite3StrICmp(const char *, const char *); 2117 int sqlite3StrNICmp(const char *, const char *, int); 2118 int sqlite3IsNumber(const char*, int*, u8); 2119 int sqlite3Strlen(sqlite3*, const char*); 2120 int sqlite3Strlen30(const char*); 2121 2122 int sqlite3MallocInit(void); 2123 void sqlite3MallocEnd(void); 2124 void *sqlite3Malloc(int); 2125 void *sqlite3MallocZero(int); 2126 void *sqlite3DbMallocZero(sqlite3*, int); 2127 void *sqlite3DbMallocRaw(sqlite3*, int); 2128 char *sqlite3DbStrDup(sqlite3*,const char*); 2129 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2130 void *sqlite3Realloc(void*, int); 2131 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2132 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2133 void sqlite3DbFree(sqlite3*, void*); 2134 int sqlite3MallocSize(void*); 2135 int sqlite3DbMallocSize(sqlite3*, void*); 2136 void *sqlite3ScratchMalloc(int); 2137 void sqlite3ScratchFree(void*); 2138 void *sqlite3PageMalloc(int); 2139 void sqlite3PageFree(void*); 2140 void sqlite3MemSetDefault(void); 2141 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2142 int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64); 2143 2144 #ifdef SQLITE_ENABLE_MEMSYS3 2145 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2146 #endif 2147 #ifdef SQLITE_ENABLE_MEMSYS5 2148 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2149 #endif 2150 2151 2152 #ifndef SQLITE_MUTEX_OMIT 2153 sqlite3_mutex_methods *sqlite3DefaultMutex(void); 2154 sqlite3_mutex *sqlite3MutexAlloc(int); 2155 int sqlite3MutexInit(void); 2156 int sqlite3MutexEnd(void); 2157 #endif 2158 2159 int sqlite3StatusValue(int); 2160 void sqlite3StatusAdd(int, int); 2161 void sqlite3StatusSet(int, int); 2162 2163 int sqlite3IsNaN(double); 2164 2165 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2166 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2167 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2168 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2169 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2170 void sqlite3DebugPrintf(const char*, ...); 2171 #endif 2172 #if defined(SQLITE_TEST) 2173 void *sqlite3TestTextToPtr(const char*); 2174 #endif 2175 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2176 void sqlite3ErrorMsg(Parse*, const char*, ...); 2177 void sqlite3ErrorClear(Parse*); 2178 void sqlite3Dequote(char*); 2179 void sqlite3DequoteExpr(sqlite3*, Expr*); 2180 int sqlite3KeywordCode(const unsigned char*, int); 2181 int sqlite3RunParser(Parse*, const char*, char **); 2182 void sqlite3FinishCoding(Parse*); 2183 int sqlite3GetTempReg(Parse*); 2184 void sqlite3ReleaseTempReg(Parse*,int); 2185 int sqlite3GetTempRange(Parse*,int); 2186 void sqlite3ReleaseTempRange(Parse*,int,int); 2187 Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*); 2188 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2189 Expr *sqlite3RegisterExpr(Parse*,Token*); 2190 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2191 void sqlite3ExprSpan(Expr*,Token*,Token*); 2192 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2193 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2194 void sqlite3ExprClear(sqlite3*, Expr*); 2195 void sqlite3ExprDelete(sqlite3*, Expr*); 2196 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*); 2197 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2198 int sqlite3Init(sqlite3*, char**); 2199 int sqlite3InitCallback(void*, int, char**, char**); 2200 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2201 void sqlite3ResetInternalSchema(sqlite3*, int); 2202 void sqlite3BeginParse(Parse*,int); 2203 void sqlite3CommitInternalChanges(sqlite3*); 2204 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2205 void sqlite3OpenMasterTable(Parse *, int); 2206 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2207 void sqlite3AddColumn(Parse*,Token*); 2208 void sqlite3AddNotNull(Parse*, int); 2209 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2210 void sqlite3AddCheckConstraint(Parse*, Expr*); 2211 void sqlite3AddColumnType(Parse*,Token*); 2212 void sqlite3AddDefaultValue(Parse*,Expr*); 2213 void sqlite3AddCollateType(Parse*, Token*); 2214 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2215 2216 Bitvec *sqlite3BitvecCreate(u32); 2217 int sqlite3BitvecTest(Bitvec*, u32); 2218 int sqlite3BitvecSet(Bitvec*, u32); 2219 void sqlite3BitvecClear(Bitvec*, u32); 2220 void sqlite3BitvecDestroy(Bitvec*); 2221 int sqlite3BitvecBuiltinTest(int,int*); 2222 2223 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2224 void sqlite3RowSetClear(RowSet*); 2225 void sqlite3RowSetInsert(RowSet*, i64); 2226 int sqlite3RowSetNext(RowSet*, i64*); 2227 2228 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2229 2230 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2231 int sqlite3ViewGetColumnNames(Parse*,Table*); 2232 #else 2233 # define sqlite3ViewGetColumnNames(A,B) 0 2234 #endif 2235 2236 void sqlite3DropTable(Parse*, SrcList*, int, int); 2237 void sqlite3DeleteTable(Table*); 2238 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2239 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 2240 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2241 int sqlite3IdListIndex(IdList*,const char*); 2242 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2243 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2244 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2245 Token*, Select*, Expr*, IdList*); 2246 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2247 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2248 void sqlite3SrcListShiftJoinType(SrcList*); 2249 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2250 void sqlite3IdListDelete(sqlite3*, IdList*); 2251 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2252 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2253 Token*, int, int); 2254 void sqlite3DropIndex(Parse*, SrcList*, int); 2255 int sqlite3Select(Parse*, Select*, SelectDest*); 2256 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2257 Expr*,ExprList*,int,Expr*,Expr*); 2258 void sqlite3SelectDelete(sqlite3*, Select*); 2259 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2260 int sqlite3IsReadOnly(Parse*, Table*, int); 2261 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2262 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2263 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2264 #endif 2265 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2266 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2267 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8, int); 2268 void sqlite3WhereEnd(WhereInfo*); 2269 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int); 2270 void sqlite3ExprCodeMove(Parse*, int, int, int); 2271 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2272 void sqlite3ExprClearColumnCache(Parse*, int); 2273 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2274 int sqlite3ExprWritableRegister(Parse*,int,int); 2275 void sqlite3ExprHardCopy(Parse*,int,int); 2276 int sqlite3ExprCode(Parse*, Expr*, int); 2277 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2278 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2279 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2280 void sqlite3ExprCodeConstants(Parse*, Expr*); 2281 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2282 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2283 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2284 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2285 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2286 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2287 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2288 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2289 void sqlite3Vacuum(Parse*); 2290 int sqlite3RunVacuum(char**, sqlite3*); 2291 char *sqlite3NameFromToken(sqlite3*, Token*); 2292 int sqlite3ExprCompare(Expr*, Expr*); 2293 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2294 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2295 Vdbe *sqlite3GetVdbe(Parse*); 2296 Expr *sqlite3CreateIdExpr(Parse *, const char*); 2297 void sqlite3PrngSaveState(void); 2298 void sqlite3PrngRestoreState(void); 2299 void sqlite3PrngResetState(void); 2300 void sqlite3RollbackAll(sqlite3*); 2301 void sqlite3CodeVerifySchema(Parse*, int); 2302 void sqlite3BeginTransaction(Parse*, int); 2303 void sqlite3CommitTransaction(Parse*); 2304 void sqlite3RollbackTransaction(Parse*); 2305 void sqlite3Savepoint(Parse*, int, Token*); 2306 void sqlite3CloseSavepoints(sqlite3 *); 2307 int sqlite3ExprIsConstant(Expr*); 2308 int sqlite3ExprIsConstantNotJoin(Expr*); 2309 int sqlite3ExprIsConstantOrFunction(Expr*); 2310 int sqlite3ExprIsInteger(Expr*, int*); 2311 int sqlite3IsRowid(const char*); 2312 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int); 2313 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2314 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2315 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2316 int*,int,int,int,int); 2317 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2318 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2319 void sqlite3BeginWriteOperation(Parse*, int, int); 2320 Expr *sqlite3ExprDup(sqlite3*,Expr*); 2321 void sqlite3TokenCopy(sqlite3*,Token*, Token*); 2322 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*); 2323 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*); 2324 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2325 Select *sqlite3SelectDup(sqlite3*,Select*); 2326 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2327 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2328 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2329 void sqlite3RegisterDateTimeFunctions(void); 2330 void sqlite3RegisterGlobalFunctions(void); 2331 #ifdef SQLITE_DEBUG 2332 int sqlite3SafetyOn(sqlite3*); 2333 int sqlite3SafetyOff(sqlite3*); 2334 #else 2335 # define sqlite3SafetyOn(A) 0 2336 # define sqlite3SafetyOff(A) 0 2337 #endif 2338 int sqlite3SafetyCheckOk(sqlite3*); 2339 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2340 void sqlite3ChangeCookie(Parse*, int); 2341 2342 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2343 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2344 #endif 2345 2346 #ifndef SQLITE_OMIT_TRIGGER 2347 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2348 Expr*,int, int); 2349 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2350 void sqlite3DropTrigger(Parse*, SrcList*, int); 2351 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2352 int sqlite3TriggersExist(Table*, int, ExprList*); 2353 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 2354 int, int, u32*, u32*); 2355 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2356 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2357 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2358 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2359 ExprList*,Select*,int); 2360 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int); 2361 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2362 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2363 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2364 #else 2365 # define sqlite3TriggersExist(B,C,D,E,F) 0 2366 # define sqlite3DeleteTrigger(A,B) 2367 # define sqlite3DropTriggerPtr(A,B) 2368 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2369 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0 2370 #endif 2371 2372 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2373 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2374 void sqlite3DeferForeignKey(Parse*, int); 2375 #ifndef SQLITE_OMIT_AUTHORIZATION 2376 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2377 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2378 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2379 void sqlite3AuthContextPop(AuthContext*); 2380 #else 2381 # define sqlite3AuthRead(a,b,c,d) 2382 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2383 # define sqlite3AuthContextPush(a,b,c) 2384 # define sqlite3AuthContextPop(a) ((void)(a)) 2385 #endif 2386 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2387 void sqlite3Detach(Parse*, Expr*); 2388 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 2389 int omitJournal, int nCache, int flags, Btree **ppBtree); 2390 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2391 int sqlite3FixSrcList(DbFixer*, SrcList*); 2392 int sqlite3FixSelect(DbFixer*, Select*); 2393 int sqlite3FixExpr(DbFixer*, Expr*); 2394 int sqlite3FixExprList(DbFixer*, ExprList*); 2395 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2396 int sqlite3AtoF(const char *z, double*); 2397 int sqlite3GetInt32(const char *, int*); 2398 int sqlite3FitsIn64Bits(const char *, int); 2399 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2400 int sqlite3Utf8CharLen(const char *pData, int nByte); 2401 int sqlite3Utf8Read(const u8*, const u8*, const u8**); 2402 2403 /* 2404 ** Routines to read and write variable-length integers. These used to 2405 ** be defined locally, but now we use the varint routines in the util.c 2406 ** file. Code should use the MACRO forms below, as the Varint32 versions 2407 ** are coded to assume the single byte case is already handled (which 2408 ** the MACRO form does). 2409 */ 2410 int sqlite3PutVarint(unsigned char*, u64); 2411 int sqlite3PutVarint32(unsigned char*, u32); 2412 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2413 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2414 int sqlite3VarintLen(u64 v); 2415 2416 /* 2417 ** The header of a record consists of a sequence variable-length integers. 2418 ** These integers are almost always small and are encoded as a single byte. 2419 ** The following macros take advantage this fact to provide a fast encode 2420 ** and decode of the integers in a record header. It is faster for the common 2421 ** case where the integer is a single byte. It is a little slower when the 2422 ** integer is two or more bytes. But overall it is faster. 2423 ** 2424 ** The following expressions are equivalent: 2425 ** 2426 ** x = sqlite3GetVarint32( A, &B ); 2427 ** x = sqlite3PutVarint32( A, B ); 2428 ** 2429 ** x = getVarint32( A, B ); 2430 ** x = putVarint32( A, B ); 2431 ** 2432 */ 2433 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2434 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2435 #define getVarint sqlite3GetVarint 2436 #define putVarint sqlite3PutVarint 2437 2438 2439 void sqlite3IndexAffinityStr(Vdbe *, Index *); 2440 void sqlite3TableAffinityStr(Vdbe *, Table *); 2441 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2442 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2443 char sqlite3ExprAffinity(Expr *pExpr); 2444 int sqlite3Atoi64(const char*, i64*); 2445 void sqlite3Error(sqlite3*, int, const char*,...); 2446 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2447 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2448 const char *sqlite3ErrStr(int); 2449 int sqlite3ReadSchema(Parse *pParse); 2450 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 2451 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 2452 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2453 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 2454 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2455 int sqlite3CheckObjectName(Parse *, const char *); 2456 void sqlite3VdbeSetChanges(sqlite3 *, int); 2457 2458 const void *sqlite3ValueText(sqlite3_value*, u8); 2459 int sqlite3ValueBytes(sqlite3_value*, u8); 2460 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 2461 void(*)(void*)); 2462 void sqlite3ValueFree(sqlite3_value*); 2463 sqlite3_value *sqlite3ValueNew(sqlite3 *); 2464 char *sqlite3Utf16to8(sqlite3 *, const void*, int); 2465 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 2466 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 2467 #ifndef SQLITE_AMALGAMATION 2468 extern const unsigned char sqlite3UpperToLower[]; 2469 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 2470 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 2471 #endif 2472 void sqlite3RootPageMoved(Db*, int, int); 2473 void sqlite3Reindex(Parse*, Token*, Token*); 2474 void sqlite3AlterFunctions(sqlite3*); 2475 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 2476 int sqlite3GetToken(const unsigned char *, int *); 2477 void sqlite3NestedParse(Parse*, const char*, ...); 2478 void sqlite3ExpirePreparedStatements(sqlite3*); 2479 void sqlite3CodeSubselect(Parse *, Expr *, int, int); 2480 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 2481 int sqlite3ResolveExprNames(NameContext*, Expr*); 2482 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 2483 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 2484 void sqlite3ColumnDefault(Vdbe *, Table *, int); 2485 void sqlite3AlterFinishAddColumn(Parse *, Token *); 2486 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 2487 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 2488 char sqlite3AffinityType(const Token*); 2489 void sqlite3Analyze(Parse*, Token*, Token*); 2490 int sqlite3InvokeBusyHandler(BusyHandler*); 2491 int sqlite3FindDb(sqlite3*, Token*); 2492 int sqlite3AnalysisLoad(sqlite3*,int iDB); 2493 void sqlite3DefaultRowEst(Index*); 2494 void sqlite3RegisterLikeFunctions(sqlite3*, int); 2495 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 2496 void sqlite3MinimumFileFormat(Parse*, int, int); 2497 void sqlite3SchemaFree(void *); 2498 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 2499 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 2500 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 2501 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 2502 void (*)(sqlite3_context*,int,sqlite3_value **), 2503 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 2504 int sqlite3ApiExit(sqlite3 *db, int); 2505 int sqlite3OpenTempDatabase(Parse *); 2506 2507 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 2508 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 2509 char *sqlite3StrAccumFinish(StrAccum*); 2510 void sqlite3StrAccumReset(StrAccum*); 2511 void sqlite3SelectDestInit(SelectDest*,int,int); 2512 2513 /* 2514 ** The interface to the LEMON-generated parser 2515 */ 2516 void *sqlite3ParserAlloc(void*(*)(size_t)); 2517 void sqlite3ParserFree(void*, void(*)(void*)); 2518 void sqlite3Parser(void*, int, Token, Parse*); 2519 #ifdef YYTRACKMAXSTACKDEPTH 2520 int sqlite3ParserStackPeak(void*); 2521 #endif 2522 2523 int sqlite3AutoLoadExtensions(sqlite3*); 2524 #ifndef SQLITE_OMIT_LOAD_EXTENSION 2525 void sqlite3CloseExtensions(sqlite3*); 2526 #else 2527 # define sqlite3CloseExtensions(X) 2528 #endif 2529 2530 #ifndef SQLITE_OMIT_SHARED_CACHE 2531 void sqlite3TableLock(Parse *, int, int, u8, const char *); 2532 #else 2533 #define sqlite3TableLock(v,w,x,y,z) 2534 #endif 2535 2536 #ifdef SQLITE_TEST 2537 int sqlite3Utf8To8(unsigned char*); 2538 #endif 2539 2540 #ifdef SQLITE_OMIT_VIRTUALTABLE 2541 # define sqlite3VtabClear(X) 2542 # define sqlite3VtabSync(X,Y) SQLITE_OK 2543 # define sqlite3VtabRollback(X) 2544 # define sqlite3VtabCommit(X) 2545 # define sqlite3VtabInSync(db) 0 2546 #else 2547 void sqlite3VtabClear(Table*); 2548 int sqlite3VtabSync(sqlite3 *db, char **); 2549 int sqlite3VtabRollback(sqlite3 *db); 2550 int sqlite3VtabCommit(sqlite3 *db); 2551 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 2552 #endif 2553 void sqlite3VtabMakeWritable(Parse*,Table*); 2554 void sqlite3VtabLock(sqlite3_vtab*); 2555 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*); 2556 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 2557 void sqlite3VtabFinishParse(Parse*, Token*); 2558 void sqlite3VtabArgInit(Parse*); 2559 void sqlite3VtabArgExtend(Parse*, Token*); 2560 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 2561 int sqlite3VtabCallConnect(Parse*, Table*); 2562 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 2563 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 2564 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 2565 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 2566 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 2567 int sqlite3Reprepare(Vdbe*); 2568 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 2569 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 2570 2571 2572 /* 2573 ** Available fault injectors. Should be numbered beginning with 0. 2574 */ 2575 #define SQLITE_FAULTINJECTOR_MALLOC 0 2576 #define SQLITE_FAULTINJECTOR_COUNT 1 2577 2578 /* 2579 ** The interface to the code in fault.c used for identifying "benign" 2580 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 2581 ** is not defined. 2582 */ 2583 #ifndef SQLITE_OMIT_BUILTIN_TEST 2584 void sqlite3BeginBenignMalloc(void); 2585 void sqlite3EndBenignMalloc(void); 2586 #else 2587 #define sqlite3BeginBenignMalloc() 2588 #define sqlite3EndBenignMalloc() 2589 #endif 2590 2591 #define IN_INDEX_ROWID 1 2592 #define IN_INDEX_EPH 2 2593 #define IN_INDEX_INDEX 3 2594 int sqlite3FindInIndex(Parse *, Expr *, int*); 2595 2596 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 2597 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 2598 int sqlite3JournalSize(sqlite3_vfs *); 2599 int sqlite3JournalCreate(sqlite3_file *); 2600 #else 2601 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 2602 #endif 2603 2604 void sqlite3MemJournalOpen(sqlite3_file *); 2605 int sqlite3MemJournalSize(void); 2606 int sqlite3IsMemJournal(sqlite3_file *); 2607 2608 #if SQLITE_MAX_EXPR_DEPTH>0 2609 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 2610 int sqlite3SelectExprHeight(Select *); 2611 int sqlite3ExprCheckHeight(Parse*, int); 2612 #else 2613 #define sqlite3ExprSetHeight(x,y) 2614 #define sqlite3SelectExprHeight(x) 0 2615 #define sqlite3ExprCheckHeight(x,y) 2616 #endif 2617 2618 u32 sqlite3Get4byte(const u8*); 2619 void sqlite3Put4byte(u8*, u32); 2620 2621 #ifdef SQLITE_SSE 2622 #include "sseInt.h" 2623 #endif 2624 2625 #ifdef SQLITE_DEBUG 2626 void sqlite3ParserTrace(FILE*, char *); 2627 #endif 2628 2629 /* 2630 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 2631 ** sqlite3IoTrace is a pointer to a printf-like routine used to 2632 ** print I/O tracing messages. 2633 */ 2634 #ifdef SQLITE_ENABLE_IOTRACE 2635 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 2636 void sqlite3VdbeIOTraceSql(Vdbe*); 2637 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 2638 #else 2639 # define IOTRACE(A) 2640 # define sqlite3VdbeIOTraceSql(X) 2641 #endif 2642 2643 #endif 2644