1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 70 # define _BSD_SOURCE 71 #endif 72 73 /* 74 ** Include standard header files as necessary 75 */ 76 #ifdef HAVE_STDINT_H 77 #include <stdint.h> 78 #endif 79 #ifdef HAVE_INTTYPES_H 80 #include <inttypes.h> 81 #endif 82 83 /* 84 ** The following macros are used to cast pointers to integers and 85 ** integers to pointers. The way you do this varies from one compiler 86 ** to the next, so we have developed the following set of #if statements 87 ** to generate appropriate macros for a wide range of compilers. 88 ** 89 ** The correct "ANSI" way to do this is to use the intptr_t type. 90 ** Unfortunately, that typedef is not available on all compilers, or 91 ** if it is available, it requires an #include of specific headers 92 ** that vary from one machine to the next. 93 ** 94 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 95 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 96 ** So we have to define the macros in different ways depending on the 97 ** compiler. 98 */ 99 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 100 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 101 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 102 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 103 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 104 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 105 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 106 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 107 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 108 #else /* Generates a warning - but it always works */ 109 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 110 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 111 #endif 112 113 /* 114 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 115 ** 0 means mutexes are permanently disable and the library is never 116 ** threadsafe. 1 means the library is serialized which is the highest 117 ** level of threadsafety. 2 means the libary is multithreaded - multiple 118 ** threads can use SQLite as long as no two threads try to use the same 119 ** database connection at the same time. 120 ** 121 ** Older versions of SQLite used an optional THREADSAFE macro. 122 ** We support that for legacy. 123 */ 124 #if !defined(SQLITE_THREADSAFE) 125 #if defined(THREADSAFE) 126 # define SQLITE_THREADSAFE THREADSAFE 127 #else 128 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 129 #endif 130 #endif 131 132 /* 133 ** Powersafe overwrite is on by default. But can be turned off using 134 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 135 */ 136 #ifndef SQLITE_POWERSAFE_OVERWRITE 137 # define SQLITE_POWERSAFE_OVERWRITE 1 138 #endif 139 140 /* 141 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 142 ** It determines whether or not the features related to 143 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 144 ** be overridden at runtime using the sqlite3_config() API. 145 */ 146 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 147 # define SQLITE_DEFAULT_MEMSTATUS 1 148 #endif 149 150 /* 151 ** Exactly one of the following macros must be defined in order to 152 ** specify which memory allocation subsystem to use. 153 ** 154 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 155 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 156 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 157 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 158 ** 159 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 160 ** assert() macro is enabled, each call into the Win32 native heap subsystem 161 ** will cause HeapValidate to be called. If heap validation should fail, an 162 ** assertion will be triggered. 163 ** 164 ** (Historical note: There used to be several other options, but we've 165 ** pared it down to just these three.) 166 ** 167 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 168 ** the default. 169 */ 170 #if defined(SQLITE_SYSTEM_MALLOC) \ 171 + defined(SQLITE_WIN32_MALLOC) \ 172 + defined(SQLITE_ZERO_MALLOC) \ 173 + defined(SQLITE_MEMDEBUG)>1 174 # error "Two or more of the following compile-time configuration options\ 175 are defined but at most one is allowed:\ 176 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 177 SQLITE_ZERO_MALLOC" 178 #endif 179 #if defined(SQLITE_SYSTEM_MALLOC) \ 180 + defined(SQLITE_WIN32_MALLOC) \ 181 + defined(SQLITE_ZERO_MALLOC) \ 182 + defined(SQLITE_MEMDEBUG)==0 183 # define SQLITE_SYSTEM_MALLOC 1 184 #endif 185 186 /* 187 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 188 ** sizes of memory allocations below this value where possible. 189 */ 190 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 191 # define SQLITE_MALLOC_SOFT_LIMIT 1024 192 #endif 193 194 /* 195 ** We need to define _XOPEN_SOURCE as follows in order to enable 196 ** recursive mutexes on most Unix systems. But Mac OS X is different. 197 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 198 ** so it is omitted there. See ticket #2673. 199 ** 200 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 201 ** implemented on some systems. So we avoid defining it at all 202 ** if it is already defined or if it is unneeded because we are 203 ** not doing a threadsafe build. Ticket #2681. 204 ** 205 ** See also ticket #2741. 206 */ 207 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) \ 208 && !defined(__APPLE__) && SQLITE_THREADSAFE 209 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 210 #endif 211 212 /* 213 ** The TCL headers are only needed when compiling the TCL bindings. 214 */ 215 #if defined(SQLITE_TCL) || defined(TCLSH) 216 # include <tcl.h> 217 #endif 218 219 /* 220 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 221 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 222 ** make it true by defining or undefining NDEBUG. 223 ** 224 ** Setting NDEBUG makes the code smaller and run faster by disabling the 225 ** number assert() statements in the code. So we want the default action 226 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 227 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 228 ** feature. 229 */ 230 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 231 # define NDEBUG 1 232 #endif 233 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 234 # undef NDEBUG 235 #endif 236 237 /* 238 ** The testcase() macro is used to aid in coverage testing. When 239 ** doing coverage testing, the condition inside the argument to 240 ** testcase() must be evaluated both true and false in order to 241 ** get full branch coverage. The testcase() macro is inserted 242 ** to help ensure adequate test coverage in places where simple 243 ** condition/decision coverage is inadequate. For example, testcase() 244 ** can be used to make sure boundary values are tested. For 245 ** bitmask tests, testcase() can be used to make sure each bit 246 ** is significant and used at least once. On switch statements 247 ** where multiple cases go to the same block of code, testcase() 248 ** can insure that all cases are evaluated. 249 ** 250 */ 251 #ifdef SQLITE_COVERAGE_TEST 252 void sqlite3Coverage(int); 253 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 254 #else 255 # define testcase(X) 256 #endif 257 258 /* 259 ** The TESTONLY macro is used to enclose variable declarations or 260 ** other bits of code that are needed to support the arguments 261 ** within testcase() and assert() macros. 262 */ 263 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 264 # define TESTONLY(X) X 265 #else 266 # define TESTONLY(X) 267 #endif 268 269 /* 270 ** Sometimes we need a small amount of code such as a variable initialization 271 ** to setup for a later assert() statement. We do not want this code to 272 ** appear when assert() is disabled. The following macro is therefore 273 ** used to contain that setup code. The "VVA" acronym stands for 274 ** "Verification, Validation, and Accreditation". In other words, the 275 ** code within VVA_ONLY() will only run during verification processes. 276 */ 277 #ifndef NDEBUG 278 # define VVA_ONLY(X) X 279 #else 280 # define VVA_ONLY(X) 281 #endif 282 283 /* 284 ** The ALWAYS and NEVER macros surround boolean expressions which 285 ** are intended to always be true or false, respectively. Such 286 ** expressions could be omitted from the code completely. But they 287 ** are included in a few cases in order to enhance the resilience 288 ** of SQLite to unexpected behavior - to make the code "self-healing" 289 ** or "ductile" rather than being "brittle" and crashing at the first 290 ** hint of unplanned behavior. 291 ** 292 ** In other words, ALWAYS and NEVER are added for defensive code. 293 ** 294 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 295 ** be true and false so that the unreachable code then specify will 296 ** not be counted as untested code. 297 */ 298 #if defined(SQLITE_COVERAGE_TEST) 299 # define ALWAYS(X) (1) 300 # define NEVER(X) (0) 301 #elif !defined(NDEBUG) 302 # define ALWAYS(X) ((X)?1:(assert(0),0)) 303 # define NEVER(X) ((X)?(assert(0),1):0) 304 #else 305 # define ALWAYS(X) (X) 306 # define NEVER(X) (X) 307 #endif 308 309 /* 310 ** Return true (non-zero) if the input is a integer that is too large 311 ** to fit in 32-bits. This macro is used inside of various testcase() 312 ** macros to verify that we have tested SQLite for large-file support. 313 */ 314 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 315 316 /* 317 ** The macro unlikely() is a hint that surrounds a boolean 318 ** expression that is usually false. Macro likely() surrounds 319 ** a boolean expression that is usually true. GCC is able to 320 ** use these hints to generate better code, sometimes. 321 */ 322 #if defined(__GNUC__) && 0 323 # define likely(X) __builtin_expect((X),1) 324 # define unlikely(X) __builtin_expect((X),0) 325 #else 326 # define likely(X) !!(X) 327 # define unlikely(X) !!(X) 328 #endif 329 330 #include "sqlite3.h" 331 #include "hash.h" 332 #include "parse.h" 333 #include <stdio.h> 334 #include <stdlib.h> 335 #include <string.h> 336 #include <assert.h> 337 #include <stddef.h> 338 339 /* 340 ** If compiling for a processor that lacks floating point support, 341 ** substitute integer for floating-point 342 */ 343 #ifdef SQLITE_OMIT_FLOATING_POINT 344 # define double sqlite_int64 345 # define float sqlite_int64 346 # define LONGDOUBLE_TYPE sqlite_int64 347 # ifndef SQLITE_BIG_DBL 348 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 349 # endif 350 # define SQLITE_OMIT_DATETIME_FUNCS 1 351 # define SQLITE_OMIT_TRACE 1 352 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 353 # undef SQLITE_HAVE_ISNAN 354 #endif 355 #ifndef SQLITE_BIG_DBL 356 # define SQLITE_BIG_DBL (1e99) 357 #endif 358 359 /* 360 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 361 ** afterward. Having this macro allows us to cause the C compiler 362 ** to omit code used by TEMP tables without messy #ifndef statements. 363 */ 364 #ifdef SQLITE_OMIT_TEMPDB 365 #define OMIT_TEMPDB 1 366 #else 367 #define OMIT_TEMPDB 0 368 #endif 369 370 /* 371 ** The "file format" number is an integer that is incremented whenever 372 ** the VDBE-level file format changes. The following macros define the 373 ** the default file format for new databases and the maximum file format 374 ** that the library can read. 375 */ 376 #define SQLITE_MAX_FILE_FORMAT 4 377 #ifndef SQLITE_DEFAULT_FILE_FORMAT 378 # define SQLITE_DEFAULT_FILE_FORMAT 4 379 #endif 380 381 /* 382 ** Determine whether triggers are recursive by default. This can be 383 ** changed at run-time using a pragma. 384 */ 385 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 386 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 387 #endif 388 389 /* 390 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 391 ** on the command-line 392 */ 393 #ifndef SQLITE_TEMP_STORE 394 # define SQLITE_TEMP_STORE 1 395 #endif 396 397 /* 398 ** GCC does not define the offsetof() macro so we'll have to do it 399 ** ourselves. 400 */ 401 #ifndef offsetof 402 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 403 #endif 404 405 /* 406 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 407 ** not, there are still machines out there that use EBCDIC.) 408 */ 409 #if 'A' == '\301' 410 # define SQLITE_EBCDIC 1 411 #else 412 # define SQLITE_ASCII 1 413 #endif 414 415 /* 416 ** Integers of known sizes. These typedefs might change for architectures 417 ** where the sizes very. Preprocessor macros are available so that the 418 ** types can be conveniently redefined at compile-type. Like this: 419 ** 420 ** cc '-DUINTPTR_TYPE=long long int' ... 421 */ 422 #ifndef UINT32_TYPE 423 # ifdef HAVE_UINT32_T 424 # define UINT32_TYPE uint32_t 425 # else 426 # define UINT32_TYPE unsigned int 427 # endif 428 #endif 429 #ifndef UINT16_TYPE 430 # ifdef HAVE_UINT16_T 431 # define UINT16_TYPE uint16_t 432 # else 433 # define UINT16_TYPE unsigned short int 434 # endif 435 #endif 436 #ifndef INT16_TYPE 437 # ifdef HAVE_INT16_T 438 # define INT16_TYPE int16_t 439 # else 440 # define INT16_TYPE short int 441 # endif 442 #endif 443 #ifndef UINT8_TYPE 444 # ifdef HAVE_UINT8_T 445 # define UINT8_TYPE uint8_t 446 # else 447 # define UINT8_TYPE unsigned char 448 # endif 449 #endif 450 #ifndef INT8_TYPE 451 # ifdef HAVE_INT8_T 452 # define INT8_TYPE int8_t 453 # else 454 # define INT8_TYPE signed char 455 # endif 456 #endif 457 #ifndef LONGDOUBLE_TYPE 458 # define LONGDOUBLE_TYPE long double 459 #endif 460 typedef sqlite_int64 i64; /* 8-byte signed integer */ 461 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 462 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 463 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 464 typedef INT16_TYPE i16; /* 2-byte signed integer */ 465 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 466 typedef INT8_TYPE i8; /* 1-byte signed integer */ 467 468 /* 469 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 470 ** that can be stored in a u32 without loss of data. The value 471 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 472 ** have to specify the value in the less intuitive manner shown: 473 */ 474 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 475 476 /* 477 ** The datatype used to store estimates of the number of rows in a 478 ** table or index. This is an unsigned integer type. For 99.9% of 479 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 480 ** can be used at compile-time if desired. 481 */ 482 #ifdef SQLITE_64BIT_STATS 483 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 484 #else 485 typedef u32 tRowcnt; /* 32-bit is the default */ 486 #endif 487 488 /* 489 ** Macros to determine whether the machine is big or little endian, 490 ** evaluated at runtime. 491 */ 492 #ifdef SQLITE_AMALGAMATION 493 const int sqlite3one = 1; 494 #else 495 extern const int sqlite3one; 496 #endif 497 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 498 || defined(__x86_64) || defined(__x86_64__) 499 # define SQLITE_BIGENDIAN 0 500 # define SQLITE_LITTLEENDIAN 1 501 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 502 #else 503 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 504 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 505 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 506 #endif 507 508 /* 509 ** Constants for the largest and smallest possible 64-bit signed integers. 510 ** These macros are designed to work correctly on both 32-bit and 64-bit 511 ** compilers. 512 */ 513 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 514 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 515 516 /* 517 ** Round up a number to the next larger multiple of 8. This is used 518 ** to force 8-byte alignment on 64-bit architectures. 519 */ 520 #define ROUND8(x) (((x)+7)&~7) 521 522 /* 523 ** Round down to the nearest multiple of 8 524 */ 525 #define ROUNDDOWN8(x) ((x)&~7) 526 527 /* 528 ** Assert that the pointer X is aligned to an 8-byte boundary. This 529 ** macro is used only within assert() to verify that the code gets 530 ** all alignment restrictions correct. 531 ** 532 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 533 ** underlying malloc() implemention might return us 4-byte aligned 534 ** pointers. In that case, only verify 4-byte alignment. 535 */ 536 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 537 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 538 #else 539 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 540 #endif 541 542 /* 543 ** Disable MMAP on platforms where it is not supported 544 */ 545 #if defined(__OpenBSD__) || defined(__QNXNTO__) 546 # undef SQLITE_DISABLE_MMAP 547 # define SQLITE_DISABLE_MMAP 1 548 #endif 549 550 551 /* 552 ** An instance of the following structure is used to store the busy-handler 553 ** callback for a given sqlite handle. 554 ** 555 ** The sqlite.busyHandler member of the sqlite struct contains the busy 556 ** callback for the database handle. Each pager opened via the sqlite 557 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 558 ** callback is currently invoked only from within pager.c. 559 */ 560 typedef struct BusyHandler BusyHandler; 561 struct BusyHandler { 562 int (*xFunc)(void *,int); /* The busy callback */ 563 void *pArg; /* First arg to busy callback */ 564 int nBusy; /* Incremented with each busy call */ 565 }; 566 567 /* 568 ** Name of the master database table. The master database table 569 ** is a special table that holds the names and attributes of all 570 ** user tables and indices. 571 */ 572 #define MASTER_NAME "sqlite_master" 573 #define TEMP_MASTER_NAME "sqlite_temp_master" 574 575 /* 576 ** The root-page of the master database table. 577 */ 578 #define MASTER_ROOT 1 579 580 /* 581 ** The name of the schema table. 582 */ 583 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 584 585 /* 586 ** A convenience macro that returns the number of elements in 587 ** an array. 588 */ 589 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 590 591 /* 592 ** Determine if the argument is a power of two 593 */ 594 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 595 596 /* 597 ** The following value as a destructor means to use sqlite3DbFree(). 598 ** The sqlite3DbFree() routine requires two parameters instead of the 599 ** one parameter that destructors normally want. So we have to introduce 600 ** this magic value that the code knows to handle differently. Any 601 ** pointer will work here as long as it is distinct from SQLITE_STATIC 602 ** and SQLITE_TRANSIENT. 603 */ 604 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 605 606 /* 607 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 608 ** not support Writable Static Data (WSD) such as global and static variables. 609 ** All variables must either be on the stack or dynamically allocated from 610 ** the heap. When WSD is unsupported, the variable declarations scattered 611 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 612 ** macro is used for this purpose. And instead of referencing the variable 613 ** directly, we use its constant as a key to lookup the run-time allocated 614 ** buffer that holds real variable. The constant is also the initializer 615 ** for the run-time allocated buffer. 616 ** 617 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 618 ** macros become no-ops and have zero performance impact. 619 */ 620 #ifdef SQLITE_OMIT_WSD 621 #define SQLITE_WSD const 622 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 623 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 624 int sqlite3_wsd_init(int N, int J); 625 void *sqlite3_wsd_find(void *K, int L); 626 #else 627 #define SQLITE_WSD 628 #define GLOBAL(t,v) v 629 #define sqlite3GlobalConfig sqlite3Config 630 #endif 631 632 /* 633 ** The following macros are used to suppress compiler warnings and to 634 ** make it clear to human readers when a function parameter is deliberately 635 ** left unused within the body of a function. This usually happens when 636 ** a function is called via a function pointer. For example the 637 ** implementation of an SQL aggregate step callback may not use the 638 ** parameter indicating the number of arguments passed to the aggregate, 639 ** if it knows that this is enforced elsewhere. 640 ** 641 ** When a function parameter is not used at all within the body of a function, 642 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 643 ** However, these macros may also be used to suppress warnings related to 644 ** parameters that may or may not be used depending on compilation options. 645 ** For example those parameters only used in assert() statements. In these 646 ** cases the parameters are named as per the usual conventions. 647 */ 648 #define UNUSED_PARAMETER(x) (void)(x) 649 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 650 651 /* 652 ** Forward references to structures 653 */ 654 typedef struct AggInfo AggInfo; 655 typedef struct AuthContext AuthContext; 656 typedef struct AutoincInfo AutoincInfo; 657 typedef struct Bitvec Bitvec; 658 typedef struct CollSeq CollSeq; 659 typedef struct Column Column; 660 typedef struct Db Db; 661 typedef struct Schema Schema; 662 typedef struct Expr Expr; 663 typedef struct ExprList ExprList; 664 typedef struct ExprSpan ExprSpan; 665 typedef struct FKey FKey; 666 typedef struct FuncDestructor FuncDestructor; 667 typedef struct FuncDef FuncDef; 668 typedef struct FuncDefHash FuncDefHash; 669 typedef struct IdList IdList; 670 typedef struct Index Index; 671 typedef struct IndexSample IndexSample; 672 typedef struct KeyClass KeyClass; 673 typedef struct KeyInfo KeyInfo; 674 typedef struct Lookaside Lookaside; 675 typedef struct LookasideSlot LookasideSlot; 676 typedef struct Module Module; 677 typedef struct NameContext NameContext; 678 typedef struct Parse Parse; 679 typedef struct RowSet RowSet; 680 typedef struct Savepoint Savepoint; 681 typedef struct Select Select; 682 typedef struct SelectDest SelectDest; 683 typedef struct SrcList SrcList; 684 typedef struct StrAccum StrAccum; 685 typedef struct Table Table; 686 typedef struct TableLock TableLock; 687 typedef struct Token Token; 688 typedef struct Trigger Trigger; 689 typedef struct TriggerPrg TriggerPrg; 690 typedef struct TriggerStep TriggerStep; 691 typedef struct UnpackedRecord UnpackedRecord; 692 typedef struct VTable VTable; 693 typedef struct VtabCtx VtabCtx; 694 typedef struct Walker Walker; 695 typedef struct WherePlan WherePlan; 696 typedef struct WhereInfo WhereInfo; 697 typedef struct WhereLevel WhereLevel; 698 699 /* 700 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 701 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 702 ** pointer types (i.e. FuncDef) defined above. 703 */ 704 #include "btree.h" 705 #include "vdbe.h" 706 #include "pager.h" 707 #include "pcache.h" 708 709 #include "os.h" 710 #include "mutex.h" 711 712 713 /* 714 ** Each database file to be accessed by the system is an instance 715 ** of the following structure. There are normally two of these structures 716 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 717 ** aDb[1] is the database file used to hold temporary tables. Additional 718 ** databases may be attached. 719 */ 720 struct Db { 721 char *zName; /* Name of this database */ 722 Btree *pBt; /* The B*Tree structure for this database file */ 723 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 724 u8 safety_level; /* How aggressive at syncing data to disk */ 725 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 726 }; 727 728 /* 729 ** An instance of the following structure stores a database schema. 730 ** 731 ** Most Schema objects are associated with a Btree. The exception is 732 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 733 ** In shared cache mode, a single Schema object can be shared by multiple 734 ** Btrees that refer to the same underlying BtShared object. 735 ** 736 ** Schema objects are automatically deallocated when the last Btree that 737 ** references them is destroyed. The TEMP Schema is manually freed by 738 ** sqlite3_close(). 739 * 740 ** A thread must be holding a mutex on the corresponding Btree in order 741 ** to access Schema content. This implies that the thread must also be 742 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 743 ** For a TEMP Schema, only the connection mutex is required. 744 */ 745 struct Schema { 746 int schema_cookie; /* Database schema version number for this file */ 747 int iGeneration; /* Generation counter. Incremented with each change */ 748 Hash tblHash; /* All tables indexed by name */ 749 Hash idxHash; /* All (named) indices indexed by name */ 750 Hash trigHash; /* All triggers indexed by name */ 751 Hash fkeyHash; /* All foreign keys by referenced table name */ 752 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 753 u8 file_format; /* Schema format version for this file */ 754 u8 enc; /* Text encoding used by this database */ 755 u16 flags; /* Flags associated with this schema */ 756 int cache_size; /* Number of pages to use in the cache */ 757 }; 758 759 /* 760 ** These macros can be used to test, set, or clear bits in the 761 ** Db.pSchema->flags field. 762 */ 763 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 764 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 765 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 766 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 767 768 /* 769 ** Allowed values for the DB.pSchema->flags field. 770 ** 771 ** The DB_SchemaLoaded flag is set after the database schema has been 772 ** read into internal hash tables. 773 ** 774 ** DB_UnresetViews means that one or more views have column names that 775 ** have been filled out. If the schema changes, these column names might 776 ** changes and so the view will need to be reset. 777 */ 778 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 779 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 780 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 781 782 /* 783 ** The number of different kinds of things that can be limited 784 ** using the sqlite3_limit() interface. 785 */ 786 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 787 788 /* 789 ** Lookaside malloc is a set of fixed-size buffers that can be used 790 ** to satisfy small transient memory allocation requests for objects 791 ** associated with a particular database connection. The use of 792 ** lookaside malloc provides a significant performance enhancement 793 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 794 ** SQL statements. 795 ** 796 ** The Lookaside structure holds configuration information about the 797 ** lookaside malloc subsystem. Each available memory allocation in 798 ** the lookaside subsystem is stored on a linked list of LookasideSlot 799 ** objects. 800 ** 801 ** Lookaside allocations are only allowed for objects that are associated 802 ** with a particular database connection. Hence, schema information cannot 803 ** be stored in lookaside because in shared cache mode the schema information 804 ** is shared by multiple database connections. Therefore, while parsing 805 ** schema information, the Lookaside.bEnabled flag is cleared so that 806 ** lookaside allocations are not used to construct the schema objects. 807 */ 808 struct Lookaside { 809 u16 sz; /* Size of each buffer in bytes */ 810 u8 bEnabled; /* False to disable new lookaside allocations */ 811 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 812 int nOut; /* Number of buffers currently checked out */ 813 int mxOut; /* Highwater mark for nOut */ 814 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 815 LookasideSlot *pFree; /* List of available buffers */ 816 void *pStart; /* First byte of available memory space */ 817 void *pEnd; /* First byte past end of available space */ 818 }; 819 struct LookasideSlot { 820 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 821 }; 822 823 /* 824 ** A hash table for function definitions. 825 ** 826 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 827 ** Collisions are on the FuncDef.pHash chain. 828 */ 829 struct FuncDefHash { 830 FuncDef *a[23]; /* Hash table for functions */ 831 }; 832 833 /* 834 ** Each database connection is an instance of the following structure. 835 */ 836 struct sqlite3 { 837 sqlite3_vfs *pVfs; /* OS Interface */ 838 struct Vdbe *pVdbe; /* List of active virtual machines */ 839 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 840 sqlite3_mutex *mutex; /* Connection mutex */ 841 Db *aDb; /* All backends */ 842 int nDb; /* Number of backends currently in use */ 843 int flags; /* Miscellaneous flags. See below */ 844 i64 lastRowid; /* ROWID of most recent insert (see above) */ 845 i64 mxMmap; /* Default mmap_limit setting */ 846 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 847 int errCode; /* Most recent error code (SQLITE_*) */ 848 int errMask; /* & result codes with this before returning */ 849 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 850 u8 autoCommit; /* The auto-commit flag. */ 851 u8 temp_store; /* 1: file 2: memory 0: default */ 852 u8 mallocFailed; /* True if we have seen a malloc failure */ 853 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 854 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 855 u8 suppressErr; /* Do not issue error messages if true */ 856 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 857 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 858 int nextPagesize; /* Pagesize after VACUUM if >0 */ 859 u32 magic; /* Magic number for detect library misuse */ 860 int nChange; /* Value returned by sqlite3_changes() */ 861 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 862 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 863 struct sqlite3InitInfo { /* Information used during initialization */ 864 int newTnum; /* Rootpage of table being initialized */ 865 u8 iDb; /* Which db file is being initialized */ 866 u8 busy; /* TRUE if currently initializing */ 867 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 868 } init; 869 int activeVdbeCnt; /* Number of VDBEs currently executing */ 870 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 871 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ 872 int nExtension; /* Number of loaded extensions */ 873 void **aExtension; /* Array of shared library handles */ 874 void (*xTrace)(void*,const char*); /* Trace function */ 875 void *pTraceArg; /* Argument to the trace function */ 876 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 877 void *pProfileArg; /* Argument to profile function */ 878 void *pCommitArg; /* Argument to xCommitCallback() */ 879 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 880 void *pRollbackArg; /* Argument to xRollbackCallback() */ 881 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 882 void *pUpdateArg; 883 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 884 #ifndef SQLITE_OMIT_WAL 885 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 886 void *pWalArg; 887 #endif 888 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 889 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 890 void *pCollNeededArg; 891 sqlite3_value *pErr; /* Most recent error message */ 892 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 893 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 894 union { 895 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 896 double notUsed1; /* Spacer */ 897 } u1; 898 Lookaside lookaside; /* Lookaside malloc configuration */ 899 #ifndef SQLITE_OMIT_AUTHORIZATION 900 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 901 /* Access authorization function */ 902 void *pAuthArg; /* 1st argument to the access auth function */ 903 #endif 904 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 905 int (*xProgress)(void *); /* The progress callback */ 906 void *pProgressArg; /* Argument to the progress callback */ 907 int nProgressOps; /* Number of opcodes for progress callback */ 908 #endif 909 #ifndef SQLITE_OMIT_VIRTUALTABLE 910 int nVTrans; /* Allocated size of aVTrans */ 911 Hash aModule; /* populated by sqlite3_create_module() */ 912 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 913 VTable **aVTrans; /* Virtual tables with open transactions */ 914 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 915 #endif 916 FuncDefHash aFunc; /* Hash table of connection functions */ 917 Hash aCollSeq; /* All collating sequences */ 918 BusyHandler busyHandler; /* Busy callback */ 919 Db aDbStatic[2]; /* Static space for the 2 default backends */ 920 Savepoint *pSavepoint; /* List of active savepoints */ 921 int busyTimeout; /* Busy handler timeout, in msec */ 922 int nSavepoint; /* Number of non-transaction savepoints */ 923 int nStatement; /* Number of nested statement-transactions */ 924 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 925 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 926 927 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 928 /* The following variables are all protected by the STATIC_MASTER 929 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 930 ** 931 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 932 ** unlock so that it can proceed. 933 ** 934 ** When X.pBlockingConnection==Y, that means that something that X tried 935 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 936 ** held by Y. 937 */ 938 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 939 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 940 void *pUnlockArg; /* Argument to xUnlockNotify */ 941 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 942 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 943 #endif 944 }; 945 946 /* 947 ** A macro to discover the encoding of a database. 948 */ 949 #define ENC(db) ((db)->aDb[0].pSchema->enc) 950 951 /* 952 ** Possible values for the sqlite3.flags. 953 */ 954 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 955 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 956 #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ 957 #define SQLITE_ShortColNames 0x00000008 /* Show short columns names */ 958 #define SQLITE_CountRows 0x00000010 /* Count rows changed by INSERT, */ 959 /* DELETE, or UPDATE and return */ 960 /* the count using a callback. */ 961 #define SQLITE_NullCallback 0x00000020 /* Invoke the callback once if the */ 962 /* result set is empty */ 963 #define SQLITE_SqlTrace 0x00000040 /* Debug print SQL as it executes */ 964 #define SQLITE_VdbeListing 0x00000080 /* Debug listings of VDBE programs */ 965 #define SQLITE_WriteSchema 0x00000100 /* OK to update SQLITE_MASTER */ 966 #define SQLITE_VdbeAddopTrace 0x00000200 /* Trace sqlite3VdbeAddOp() calls */ 967 #define SQLITE_IgnoreChecks 0x00000400 /* Do not enforce check constraints */ 968 #define SQLITE_ReadUncommitted 0x0000800 /* For shared-cache mode */ 969 #define SQLITE_LegacyFileFmt 0x00001000 /* Create new databases in format 1 */ 970 #define SQLITE_FullFSync 0x00002000 /* Use full fsync on the backend */ 971 #define SQLITE_CkptFullFSync 0x00004000 /* Use full fsync for checkpoint */ 972 #define SQLITE_RecoveryMode 0x00008000 /* Ignore schema errors */ 973 #define SQLITE_ReverseOrder 0x00010000 /* Reverse unordered SELECTs */ 974 #define SQLITE_RecTriggers 0x00020000 /* Enable recursive triggers */ 975 #define SQLITE_ForeignKeys 0x00040000 /* Enforce foreign key constraints */ 976 #define SQLITE_AutoIndex 0x00080000 /* Enable automatic indexes */ 977 #define SQLITE_PreferBuiltin 0x00100000 /* Preference to built-in funcs */ 978 #define SQLITE_LoadExtension 0x00200000 /* Enable load_extension */ 979 #define SQLITE_EnableTrigger 0x00400000 /* True to enable triggers */ 980 981 /* 982 ** Bits of the sqlite3.dbOptFlags field that are used by the 983 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 984 ** selectively disable various optimizations. 985 */ 986 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 987 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 988 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 989 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 990 #define SQLITE_IdxRealAsInt 0x0010 /* Store REAL as INT in indices */ 991 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 992 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 993 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 994 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 995 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 996 #define SQLITE_AllOpts 0xffff /* All optimizations */ 997 998 /* 999 ** Macros for testing whether or not optimizations are enabled or disabled. 1000 */ 1001 #ifndef SQLITE_OMIT_BUILTIN_TEST 1002 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1003 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1004 #else 1005 #define OptimizationDisabled(db, mask) 0 1006 #define OptimizationEnabled(db, mask) 1 1007 #endif 1008 1009 /* 1010 ** Possible values for the sqlite.magic field. 1011 ** The numbers are obtained at random and have no special meaning, other 1012 ** than being distinct from one another. 1013 */ 1014 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1015 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1016 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1017 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1018 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1019 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1020 1021 /* 1022 ** Each SQL function is defined by an instance of the following 1023 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1024 ** hash table. When multiple functions have the same name, the hash table 1025 ** points to a linked list of these structures. 1026 */ 1027 struct FuncDef { 1028 i16 nArg; /* Number of arguments. -1 means unlimited */ 1029 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 1030 u8 flags; /* Some combination of SQLITE_FUNC_* */ 1031 void *pUserData; /* User data parameter */ 1032 FuncDef *pNext; /* Next function with same name */ 1033 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1034 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1035 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1036 char *zName; /* SQL name of the function. */ 1037 FuncDef *pHash; /* Next with a different name but the same hash */ 1038 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1039 }; 1040 1041 /* 1042 ** This structure encapsulates a user-function destructor callback (as 1043 ** configured using create_function_v2()) and a reference counter. When 1044 ** create_function_v2() is called to create a function with a destructor, 1045 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1046 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1047 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1048 ** member of each of the new FuncDef objects is set to point to the allocated 1049 ** FuncDestructor. 1050 ** 1051 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1052 ** count on this object is decremented. When it reaches 0, the destructor 1053 ** is invoked and the FuncDestructor structure freed. 1054 */ 1055 struct FuncDestructor { 1056 int nRef; 1057 void (*xDestroy)(void *); 1058 void *pUserData; 1059 }; 1060 1061 /* 1062 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1063 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1064 ** are assert() statements in the code to verify this. 1065 */ 1066 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 1067 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 1068 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 1069 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 1070 #define SQLITE_FUNC_COUNT 0x10 /* Built-in count(*) aggregate */ 1071 #define SQLITE_FUNC_COALESCE 0x20 /* Built-in coalesce() or ifnull() function */ 1072 #define SQLITE_FUNC_LENGTH 0x40 /* Built-in length() function */ 1073 #define SQLITE_FUNC_TYPEOF 0x80 /* Built-in typeof() function */ 1074 1075 /* 1076 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1077 ** used to create the initializers for the FuncDef structures. 1078 ** 1079 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1080 ** Used to create a scalar function definition of a function zName 1081 ** implemented by C function xFunc that accepts nArg arguments. The 1082 ** value passed as iArg is cast to a (void*) and made available 1083 ** as the user-data (sqlite3_user_data()) for the function. If 1084 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1085 ** 1086 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1087 ** Used to create an aggregate function definition implemented by 1088 ** the C functions xStep and xFinal. The first four parameters 1089 ** are interpreted in the same way as the first 4 parameters to 1090 ** FUNCTION(). 1091 ** 1092 ** LIKEFUNC(zName, nArg, pArg, flags) 1093 ** Used to create a scalar function definition of a function zName 1094 ** that accepts nArg arguments and is implemented by a call to C 1095 ** function likeFunc. Argument pArg is cast to a (void *) and made 1096 ** available as the function user-data (sqlite3_user_data()). The 1097 ** FuncDef.flags variable is set to the value passed as the flags 1098 ** parameter. 1099 */ 1100 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1101 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL), \ 1102 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1103 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1104 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1105 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1106 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1107 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1108 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1109 #define LIKEFUNC(zName, nArg, arg, flags) \ 1110 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1111 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1112 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1113 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1114 1115 /* 1116 ** All current savepoints are stored in a linked list starting at 1117 ** sqlite3.pSavepoint. The first element in the list is the most recently 1118 ** opened savepoint. Savepoints are added to the list by the vdbe 1119 ** OP_Savepoint instruction. 1120 */ 1121 struct Savepoint { 1122 char *zName; /* Savepoint name (nul-terminated) */ 1123 i64 nDeferredCons; /* Number of deferred fk violations */ 1124 Savepoint *pNext; /* Parent savepoint (if any) */ 1125 }; 1126 1127 /* 1128 ** The following are used as the second parameter to sqlite3Savepoint(), 1129 ** and as the P1 argument to the OP_Savepoint instruction. 1130 */ 1131 #define SAVEPOINT_BEGIN 0 1132 #define SAVEPOINT_RELEASE 1 1133 #define SAVEPOINT_ROLLBACK 2 1134 1135 1136 /* 1137 ** Each SQLite module (virtual table definition) is defined by an 1138 ** instance of the following structure, stored in the sqlite3.aModule 1139 ** hash table. 1140 */ 1141 struct Module { 1142 const sqlite3_module *pModule; /* Callback pointers */ 1143 const char *zName; /* Name passed to create_module() */ 1144 void *pAux; /* pAux passed to create_module() */ 1145 void (*xDestroy)(void *); /* Module destructor function */ 1146 }; 1147 1148 /* 1149 ** information about each column of an SQL table is held in an instance 1150 ** of this structure. 1151 */ 1152 struct Column { 1153 char *zName; /* Name of this column */ 1154 Expr *pDflt; /* Default value of this column */ 1155 char *zDflt; /* Original text of the default value */ 1156 char *zType; /* Data type for this column */ 1157 char *zColl; /* Collating sequence. If NULL, use the default */ 1158 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1159 char affinity; /* One of the SQLITE_AFF_... values */ 1160 u16 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1161 }; 1162 1163 /* Allowed values for Column.colFlags: 1164 */ 1165 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1166 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1167 1168 /* 1169 ** A "Collating Sequence" is defined by an instance of the following 1170 ** structure. Conceptually, a collating sequence consists of a name and 1171 ** a comparison routine that defines the order of that sequence. 1172 ** 1173 ** If CollSeq.xCmp is NULL, it means that the 1174 ** collating sequence is undefined. Indices built on an undefined 1175 ** collating sequence may not be read or written. 1176 */ 1177 struct CollSeq { 1178 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1179 u8 enc; /* Text encoding handled by xCmp() */ 1180 void *pUser; /* First argument to xCmp() */ 1181 int (*xCmp)(void*,int, const void*, int, const void*); 1182 void (*xDel)(void*); /* Destructor for pUser */ 1183 }; 1184 1185 /* 1186 ** A sort order can be either ASC or DESC. 1187 */ 1188 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1189 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1190 1191 /* 1192 ** Column affinity types. 1193 ** 1194 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1195 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1196 ** the speed a little by numbering the values consecutively. 1197 ** 1198 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1199 ** when multiple affinity types are concatenated into a string and 1200 ** used as the P4 operand, they will be more readable. 1201 ** 1202 ** Note also that the numeric types are grouped together so that testing 1203 ** for a numeric type is a single comparison. 1204 */ 1205 #define SQLITE_AFF_TEXT 'a' 1206 #define SQLITE_AFF_NONE 'b' 1207 #define SQLITE_AFF_NUMERIC 'c' 1208 #define SQLITE_AFF_INTEGER 'd' 1209 #define SQLITE_AFF_REAL 'e' 1210 1211 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1212 1213 /* 1214 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1215 ** affinity value. 1216 */ 1217 #define SQLITE_AFF_MASK 0x67 1218 1219 /* 1220 ** Additional bit values that can be ORed with an affinity without 1221 ** changing the affinity. 1222 */ 1223 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1224 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1225 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1226 1227 /* 1228 ** An object of this type is created for each virtual table present in 1229 ** the database schema. 1230 ** 1231 ** If the database schema is shared, then there is one instance of this 1232 ** structure for each database connection (sqlite3*) that uses the shared 1233 ** schema. This is because each database connection requires its own unique 1234 ** instance of the sqlite3_vtab* handle used to access the virtual table 1235 ** implementation. sqlite3_vtab* handles can not be shared between 1236 ** database connections, even when the rest of the in-memory database 1237 ** schema is shared, as the implementation often stores the database 1238 ** connection handle passed to it via the xConnect() or xCreate() method 1239 ** during initialization internally. This database connection handle may 1240 ** then be used by the virtual table implementation to access real tables 1241 ** within the database. So that they appear as part of the callers 1242 ** transaction, these accesses need to be made via the same database 1243 ** connection as that used to execute SQL operations on the virtual table. 1244 ** 1245 ** All VTable objects that correspond to a single table in a shared 1246 ** database schema are initially stored in a linked-list pointed to by 1247 ** the Table.pVTable member variable of the corresponding Table object. 1248 ** When an sqlite3_prepare() operation is required to access the virtual 1249 ** table, it searches the list for the VTable that corresponds to the 1250 ** database connection doing the preparing so as to use the correct 1251 ** sqlite3_vtab* handle in the compiled query. 1252 ** 1253 ** When an in-memory Table object is deleted (for example when the 1254 ** schema is being reloaded for some reason), the VTable objects are not 1255 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1256 ** immediately. Instead, they are moved from the Table.pVTable list to 1257 ** another linked list headed by the sqlite3.pDisconnect member of the 1258 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1259 ** next time a statement is prepared using said sqlite3*. This is done 1260 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1261 ** Refer to comments above function sqlite3VtabUnlockList() for an 1262 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1263 ** list without holding the corresponding sqlite3.mutex mutex. 1264 ** 1265 ** The memory for objects of this type is always allocated by 1266 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1267 ** the first argument. 1268 */ 1269 struct VTable { 1270 sqlite3 *db; /* Database connection associated with this table */ 1271 Module *pMod; /* Pointer to module implementation */ 1272 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1273 int nRef; /* Number of pointers to this structure */ 1274 u8 bConstraint; /* True if constraints are supported */ 1275 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1276 VTable *pNext; /* Next in linked list (see above) */ 1277 }; 1278 1279 /* 1280 ** Each SQL table is represented in memory by an instance of the 1281 ** following structure. 1282 ** 1283 ** Table.zName is the name of the table. The case of the original 1284 ** CREATE TABLE statement is stored, but case is not significant for 1285 ** comparisons. 1286 ** 1287 ** Table.nCol is the number of columns in this table. Table.aCol is a 1288 ** pointer to an array of Column structures, one for each column. 1289 ** 1290 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1291 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1292 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1293 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1294 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1295 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1296 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1297 ** 1298 ** Table.tnum is the page number for the root BTree page of the table in the 1299 ** database file. If Table.iDb is the index of the database table backend 1300 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1301 ** holds temporary tables and indices. If TF_Ephemeral is set 1302 ** then the table is stored in a file that is automatically deleted 1303 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1304 ** refers VDBE cursor number that holds the table open, not to the root 1305 ** page number. Transient tables are used to hold the results of a 1306 ** sub-query that appears instead of a real table name in the FROM clause 1307 ** of a SELECT statement. 1308 */ 1309 struct Table { 1310 char *zName; /* Name of the table or view */ 1311 Column *aCol; /* Information about each column */ 1312 Index *pIndex; /* List of SQL indexes on this table. */ 1313 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1314 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1315 char *zColAff; /* String defining the affinity of each column */ 1316 #ifndef SQLITE_OMIT_CHECK 1317 ExprList *pCheck; /* All CHECK constraints */ 1318 #endif 1319 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1320 int tnum; /* Root BTree node for this table (see note above) */ 1321 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1322 i16 nCol; /* Number of columns in this table */ 1323 u16 nRef; /* Number of pointers to this Table */ 1324 u8 tabFlags; /* Mask of TF_* values */ 1325 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1326 #ifndef SQLITE_OMIT_ALTERTABLE 1327 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1328 #endif 1329 #ifndef SQLITE_OMIT_VIRTUALTABLE 1330 int nModuleArg; /* Number of arguments to the module */ 1331 char **azModuleArg; /* Text of all module args. [0] is module name */ 1332 VTable *pVTable; /* List of VTable objects. */ 1333 #endif 1334 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1335 Schema *pSchema; /* Schema that contains this table */ 1336 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1337 }; 1338 1339 /* 1340 ** Allowed values for Tabe.tabFlags. 1341 */ 1342 #define TF_Readonly 0x01 /* Read-only system table */ 1343 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1344 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1345 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1346 #define TF_Virtual 0x10 /* Is a virtual table */ 1347 1348 1349 /* 1350 ** Test to see whether or not a table is a virtual table. This is 1351 ** done as a macro so that it will be optimized out when virtual 1352 ** table support is omitted from the build. 1353 */ 1354 #ifndef SQLITE_OMIT_VIRTUALTABLE 1355 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1356 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1357 #else 1358 # define IsVirtual(X) 0 1359 # define IsHiddenColumn(X) 0 1360 #endif 1361 1362 /* 1363 ** Each foreign key constraint is an instance of the following structure. 1364 ** 1365 ** A foreign key is associated with two tables. The "from" table is 1366 ** the table that contains the REFERENCES clause that creates the foreign 1367 ** key. The "to" table is the table that is named in the REFERENCES clause. 1368 ** Consider this example: 1369 ** 1370 ** CREATE TABLE ex1( 1371 ** a INTEGER PRIMARY KEY, 1372 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1373 ** ); 1374 ** 1375 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1376 ** 1377 ** Each REFERENCES clause generates an instance of the following structure 1378 ** which is attached to the from-table. The to-table need not exist when 1379 ** the from-table is created. The existence of the to-table is not checked. 1380 */ 1381 struct FKey { 1382 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1383 FKey *pNextFrom; /* Next foreign key in pFrom */ 1384 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1385 FKey *pNextTo; /* Next foreign key on table named zTo */ 1386 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1387 int nCol; /* Number of columns in this key */ 1388 /* EV: R-30323-21917 */ 1389 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1390 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1391 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1392 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1393 int iFrom; /* Index of column in pFrom */ 1394 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1395 } aCol[1]; /* One entry for each of nCol column s */ 1396 }; 1397 1398 /* 1399 ** SQLite supports many different ways to resolve a constraint 1400 ** error. ROLLBACK processing means that a constraint violation 1401 ** causes the operation in process to fail and for the current transaction 1402 ** to be rolled back. ABORT processing means the operation in process 1403 ** fails and any prior changes from that one operation are backed out, 1404 ** but the transaction is not rolled back. FAIL processing means that 1405 ** the operation in progress stops and returns an error code. But prior 1406 ** changes due to the same operation are not backed out and no rollback 1407 ** occurs. IGNORE means that the particular row that caused the constraint 1408 ** error is not inserted or updated. Processing continues and no error 1409 ** is returned. REPLACE means that preexisting database rows that caused 1410 ** a UNIQUE constraint violation are removed so that the new insert or 1411 ** update can proceed. Processing continues and no error is reported. 1412 ** 1413 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1414 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1415 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1416 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1417 ** referenced table row is propagated into the row that holds the 1418 ** foreign key. 1419 ** 1420 ** The following symbolic values are used to record which type 1421 ** of action to take. 1422 */ 1423 #define OE_None 0 /* There is no constraint to check */ 1424 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1425 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1426 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1427 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1428 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1429 1430 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1431 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1432 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1433 #define OE_Cascade 9 /* Cascade the changes */ 1434 1435 #define OE_Default 99 /* Do whatever the default action is */ 1436 1437 1438 /* 1439 ** An instance of the following structure is passed as the first 1440 ** argument to sqlite3VdbeKeyCompare and is used to control the 1441 ** comparison of the two index keys. 1442 */ 1443 struct KeyInfo { 1444 sqlite3 *db; /* The database connection */ 1445 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1446 u16 nField; /* Number of entries in aColl[] */ 1447 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1448 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1449 }; 1450 1451 /* 1452 ** An instance of the following structure holds information about a 1453 ** single index record that has already been parsed out into individual 1454 ** values. 1455 ** 1456 ** A record is an object that contains one or more fields of data. 1457 ** Records are used to store the content of a table row and to store 1458 ** the key of an index. A blob encoding of a record is created by 1459 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1460 ** OP_Column opcode. 1461 ** 1462 ** This structure holds a record that has already been disassembled 1463 ** into its constituent fields. 1464 */ 1465 struct UnpackedRecord { 1466 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1467 u16 nField; /* Number of entries in apMem[] */ 1468 u8 flags; /* Boolean settings. UNPACKED_... below */ 1469 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1470 Mem *aMem; /* Values */ 1471 }; 1472 1473 /* 1474 ** Allowed values of UnpackedRecord.flags 1475 */ 1476 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1477 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1478 #define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */ 1479 1480 /* 1481 ** Each SQL index is represented in memory by an 1482 ** instance of the following structure. 1483 ** 1484 ** The columns of the table that are to be indexed are described 1485 ** by the aiColumn[] field of this structure. For example, suppose 1486 ** we have the following table and index: 1487 ** 1488 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1489 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1490 ** 1491 ** In the Table structure describing Ex1, nCol==3 because there are 1492 ** three columns in the table. In the Index structure describing 1493 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1494 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1495 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1496 ** The second column to be indexed (c1) has an index of 0 in 1497 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1498 ** 1499 ** The Index.onError field determines whether or not the indexed columns 1500 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1501 ** it means this is not a unique index. Otherwise it is a unique index 1502 ** and the value of Index.onError indicate the which conflict resolution 1503 ** algorithm to employ whenever an attempt is made to insert a non-unique 1504 ** element. 1505 */ 1506 struct Index { 1507 char *zName; /* Name of this index */ 1508 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1509 tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ 1510 Table *pTable; /* The SQL table being indexed */ 1511 char *zColAff; /* String defining the affinity of each column */ 1512 Index *pNext; /* The next index associated with the same table */ 1513 Schema *pSchema; /* Schema containing this index */ 1514 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1515 char **azColl; /* Array of collation sequence names for index */ 1516 int tnum; /* DB Page containing root of this index */ 1517 u16 nColumn; /* Number of columns in table used by this index */ 1518 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1519 unsigned autoIndex:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1520 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1521 #ifdef SQLITE_ENABLE_STAT3 1522 int nSample; /* Number of elements in aSample[] */ 1523 tRowcnt avgEq; /* Average nEq value for key values not in aSample */ 1524 IndexSample *aSample; /* Samples of the left-most key */ 1525 #endif 1526 }; 1527 1528 /* 1529 ** Each sample stored in the sqlite_stat3 table is represented in memory 1530 ** using a structure of this type. See documentation at the top of the 1531 ** analyze.c source file for additional information. 1532 */ 1533 struct IndexSample { 1534 union { 1535 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1536 double r; /* Value if eType is SQLITE_FLOAT */ 1537 i64 i; /* Value if eType is SQLITE_INTEGER */ 1538 } u; 1539 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1540 int nByte; /* Size in byte of text or blob. */ 1541 tRowcnt nEq; /* Est. number of rows where the key equals this sample */ 1542 tRowcnt nLt; /* Est. number of rows where key is less than this sample */ 1543 tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ 1544 }; 1545 1546 /* 1547 ** Each token coming out of the lexer is an instance of 1548 ** this structure. Tokens are also used as part of an expression. 1549 ** 1550 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1551 ** may contain random values. Do not make any assumptions about Token.dyn 1552 ** and Token.n when Token.z==0. 1553 */ 1554 struct Token { 1555 const char *z; /* Text of the token. Not NULL-terminated! */ 1556 unsigned int n; /* Number of characters in this token */ 1557 }; 1558 1559 /* 1560 ** An instance of this structure contains information needed to generate 1561 ** code for a SELECT that contains aggregate functions. 1562 ** 1563 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1564 ** pointer to this structure. The Expr.iColumn field is the index in 1565 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1566 ** code for that node. 1567 ** 1568 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1569 ** original Select structure that describes the SELECT statement. These 1570 ** fields do not need to be freed when deallocating the AggInfo structure. 1571 */ 1572 struct AggInfo { 1573 u8 directMode; /* Direct rendering mode means take data directly 1574 ** from source tables rather than from accumulators */ 1575 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1576 ** than the source table */ 1577 int sortingIdx; /* Cursor number of the sorting index */ 1578 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1579 int nSortingColumn; /* Number of columns in the sorting index */ 1580 ExprList *pGroupBy; /* The group by clause */ 1581 struct AggInfo_col { /* For each column used in source tables */ 1582 Table *pTab; /* Source table */ 1583 int iTable; /* Cursor number of the source table */ 1584 int iColumn; /* Column number within the source table */ 1585 int iSorterColumn; /* Column number in the sorting index */ 1586 int iMem; /* Memory location that acts as accumulator */ 1587 Expr *pExpr; /* The original expression */ 1588 } *aCol; 1589 int nColumn; /* Number of used entries in aCol[] */ 1590 int nAccumulator; /* Number of columns that show through to the output. 1591 ** Additional columns are used only as parameters to 1592 ** aggregate functions */ 1593 struct AggInfo_func { /* For each aggregate function */ 1594 Expr *pExpr; /* Expression encoding the function */ 1595 FuncDef *pFunc; /* The aggregate function implementation */ 1596 int iMem; /* Memory location that acts as accumulator */ 1597 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1598 } *aFunc; 1599 int nFunc; /* Number of entries in aFunc[] */ 1600 }; 1601 1602 /* 1603 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1604 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1605 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1606 ** it uses less memory in the Expr object, which is a big memory user 1607 ** in systems with lots of prepared statements. And few applications 1608 ** need more than about 10 or 20 variables. But some extreme users want 1609 ** to have prepared statements with over 32767 variables, and for them 1610 ** the option is available (at compile-time). 1611 */ 1612 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1613 typedef i16 ynVar; 1614 #else 1615 typedef int ynVar; 1616 #endif 1617 1618 /* 1619 ** Each node of an expression in the parse tree is an instance 1620 ** of this structure. 1621 ** 1622 ** Expr.op is the opcode. The integer parser token codes are reused 1623 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1624 ** code representing the ">=" operator. This same integer code is reused 1625 ** to represent the greater-than-or-equal-to operator in the expression 1626 ** tree. 1627 ** 1628 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1629 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1630 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1631 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1632 ** then Expr.token contains the name of the function. 1633 ** 1634 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1635 ** binary operator. Either or both may be NULL. 1636 ** 1637 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1638 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1639 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1640 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1641 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1642 ** valid. 1643 ** 1644 ** An expression of the form ID or ID.ID refers to a column in a table. 1645 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1646 ** the integer cursor number of a VDBE cursor pointing to that table and 1647 ** Expr.iColumn is the column number for the specific column. If the 1648 ** expression is used as a result in an aggregate SELECT, then the 1649 ** value is also stored in the Expr.iAgg column in the aggregate so that 1650 ** it can be accessed after all aggregates are computed. 1651 ** 1652 ** If the expression is an unbound variable marker (a question mark 1653 ** character '?' in the original SQL) then the Expr.iTable holds the index 1654 ** number for that variable. 1655 ** 1656 ** If the expression is a subquery then Expr.iColumn holds an integer 1657 ** register number containing the result of the subquery. If the 1658 ** subquery gives a constant result, then iTable is -1. If the subquery 1659 ** gives a different answer at different times during statement processing 1660 ** then iTable is the address of a subroutine that computes the subquery. 1661 ** 1662 ** If the Expr is of type OP_Column, and the table it is selecting from 1663 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1664 ** corresponding table definition. 1665 ** 1666 ** ALLOCATION NOTES: 1667 ** 1668 ** Expr objects can use a lot of memory space in database schema. To 1669 ** help reduce memory requirements, sometimes an Expr object will be 1670 ** truncated. And to reduce the number of memory allocations, sometimes 1671 ** two or more Expr objects will be stored in a single memory allocation, 1672 ** together with Expr.zToken strings. 1673 ** 1674 ** If the EP_Reduced and EP_TokenOnly flags are set when 1675 ** an Expr object is truncated. When EP_Reduced is set, then all 1676 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1677 ** are contained within the same memory allocation. Note, however, that 1678 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1679 ** allocated, regardless of whether or not EP_Reduced is set. 1680 */ 1681 struct Expr { 1682 u8 op; /* Operation performed by this node */ 1683 char affinity; /* The affinity of the column or 0 if not a column */ 1684 u16 flags; /* Various flags. EP_* See below */ 1685 union { 1686 char *zToken; /* Token value. Zero terminated and dequoted */ 1687 int iValue; /* Non-negative integer value if EP_IntValue */ 1688 } u; 1689 1690 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1691 ** space is allocated for the fields below this point. An attempt to 1692 ** access them will result in a segfault or malfunction. 1693 *********************************************************************/ 1694 1695 Expr *pLeft; /* Left subnode */ 1696 Expr *pRight; /* Right subnode */ 1697 union { 1698 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1699 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1700 } x; 1701 1702 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1703 ** space is allocated for the fields below this point. An attempt to 1704 ** access them will result in a segfault or malfunction. 1705 *********************************************************************/ 1706 1707 #if SQLITE_MAX_EXPR_DEPTH>0 1708 int nHeight; /* Height of the tree headed by this node */ 1709 #endif 1710 int iTable; /* TK_COLUMN: cursor number of table holding column 1711 ** TK_REGISTER: register number 1712 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1713 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1714 ** TK_VARIABLE: variable number (always >= 1). */ 1715 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1716 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1717 u8 flags2; /* Second set of flags. EP2_... */ 1718 u8 op2; /* TK_REGISTER: original value of Expr.op 1719 ** TK_COLUMN: the value of p5 for OP_Column 1720 ** TK_AGG_FUNCTION: nesting depth */ 1721 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1722 Table *pTab; /* Table for TK_COLUMN expressions. */ 1723 }; 1724 1725 /* 1726 ** The following are the meanings of bits in the Expr.flags field. 1727 */ 1728 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1729 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1730 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1731 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1732 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1733 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1734 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1735 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1736 #define EP_Collate 0x0100 /* Tree contains a TK_COLLATE opeartor */ 1737 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1738 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1739 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1740 #define EP_Hint 0x1000 /* Not used */ 1741 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1742 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1743 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1744 1745 /* 1746 ** The following are the meanings of bits in the Expr.flags2 field. 1747 */ 1748 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1749 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1750 1751 /* 1752 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1753 ** flag on an expression structure. This flag is used for VV&A only. The 1754 ** routine is implemented as a macro that only works when in debugging mode, 1755 ** so as not to burden production code. 1756 */ 1757 #ifdef SQLITE_DEBUG 1758 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1759 #else 1760 # define ExprSetIrreducible(X) 1761 #endif 1762 1763 /* 1764 ** These macros can be used to test, set, or clear bits in the 1765 ** Expr.flags field. 1766 */ 1767 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1768 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1769 #define ExprSetProperty(E,P) (E)->flags|=(P) 1770 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1771 1772 /* 1773 ** Macros to determine the number of bytes required by a normal Expr 1774 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1775 ** and an Expr struct with the EP_TokenOnly flag set. 1776 */ 1777 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1778 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1779 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1780 1781 /* 1782 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1783 ** above sqlite3ExprDup() for details. 1784 */ 1785 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1786 1787 /* 1788 ** A list of expressions. Each expression may optionally have a 1789 ** name. An expr/name combination can be used in several ways, such 1790 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1791 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1792 ** also be used as the argument to a function, in which case the a.zName 1793 ** field is not used. 1794 ** 1795 ** By default the Expr.zSpan field holds a human-readable description of 1796 ** the expression that is used in the generation of error messages and 1797 ** column labels. In this case, Expr.zSpan is typically the text of a 1798 ** column expression as it exists in a SELECT statement. However, if 1799 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 1800 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 1801 ** form is used for name resolution with nested FROM clauses. 1802 */ 1803 struct ExprList { 1804 int nExpr; /* Number of expressions on the list */ 1805 int iECursor; /* VDBE Cursor associated with this ExprList */ 1806 struct ExprList_item { /* For each expression in the list */ 1807 Expr *pExpr; /* The list of expressions */ 1808 char *zName; /* Token associated with this expression */ 1809 char *zSpan; /* Original text of the expression */ 1810 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1811 unsigned done :1; /* A flag to indicate when processing is finished */ 1812 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 1813 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1814 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1815 } *a; /* Alloc a power of two greater or equal to nExpr */ 1816 }; 1817 1818 /* 1819 ** An instance of this structure is used by the parser to record both 1820 ** the parse tree for an expression and the span of input text for an 1821 ** expression. 1822 */ 1823 struct ExprSpan { 1824 Expr *pExpr; /* The expression parse tree */ 1825 const char *zStart; /* First character of input text */ 1826 const char *zEnd; /* One character past the end of input text */ 1827 }; 1828 1829 /* 1830 ** An instance of this structure can hold a simple list of identifiers, 1831 ** such as the list "a,b,c" in the following statements: 1832 ** 1833 ** INSERT INTO t(a,b,c) VALUES ...; 1834 ** CREATE INDEX idx ON t(a,b,c); 1835 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1836 ** 1837 ** The IdList.a.idx field is used when the IdList represents the list of 1838 ** column names after a table name in an INSERT statement. In the statement 1839 ** 1840 ** INSERT INTO t(a,b,c) ... 1841 ** 1842 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1843 */ 1844 struct IdList { 1845 struct IdList_item { 1846 char *zName; /* Name of the identifier */ 1847 int idx; /* Index in some Table.aCol[] of a column named zName */ 1848 } *a; 1849 int nId; /* Number of identifiers on the list */ 1850 }; 1851 1852 /* 1853 ** The bitmask datatype defined below is used for various optimizations. 1854 ** 1855 ** Changing this from a 64-bit to a 32-bit type limits the number of 1856 ** tables in a join to 32 instead of 64. But it also reduces the size 1857 ** of the library by 738 bytes on ix86. 1858 */ 1859 typedef u64 Bitmask; 1860 1861 /* 1862 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1863 */ 1864 #define BMS ((int)(sizeof(Bitmask)*8)) 1865 1866 /* 1867 ** The following structure describes the FROM clause of a SELECT statement. 1868 ** Each table or subquery in the FROM clause is a separate element of 1869 ** the SrcList.a[] array. 1870 ** 1871 ** With the addition of multiple database support, the following structure 1872 ** can also be used to describe a particular table such as the table that 1873 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1874 ** such a table must be a simple name: ID. But in SQLite, the table can 1875 ** now be identified by a database name, a dot, then the table name: ID.ID. 1876 ** 1877 ** The jointype starts out showing the join type between the current table 1878 ** and the next table on the list. The parser builds the list this way. 1879 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1880 ** jointype expresses the join between the table and the previous table. 1881 ** 1882 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1883 ** contains more than 63 columns and the 64-th or later column is used. 1884 */ 1885 struct SrcList { 1886 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1887 i16 nAlloc; /* Number of entries allocated in a[] below */ 1888 struct SrcList_item { 1889 Schema *pSchema; /* Schema to which this item is fixed */ 1890 char *zDatabase; /* Name of database holding this table */ 1891 char *zName; /* Name of the table */ 1892 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1893 Table *pTab; /* An SQL table corresponding to zName */ 1894 Select *pSelect; /* A SELECT statement used in place of a table name */ 1895 int addrFillSub; /* Address of subroutine to manifest a subquery */ 1896 int regReturn; /* Register holding return address of addrFillSub */ 1897 u8 jointype; /* Type of join between this able and the previous */ 1898 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 1899 unsigned isCorrelated :1; /* True if sub-query is correlated */ 1900 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 1901 #ifndef SQLITE_OMIT_EXPLAIN 1902 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 1903 #endif 1904 int iCursor; /* The VDBE cursor number used to access this table */ 1905 Expr *pOn; /* The ON clause of a join */ 1906 IdList *pUsing; /* The USING clause of a join */ 1907 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1908 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1909 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1910 } a[1]; /* One entry for each identifier on the list */ 1911 }; 1912 1913 /* 1914 ** Permitted values of the SrcList.a.jointype field 1915 */ 1916 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1917 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1918 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1919 #define JT_LEFT 0x0008 /* Left outer join */ 1920 #define JT_RIGHT 0x0010 /* Right outer join */ 1921 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1922 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1923 1924 1925 /* 1926 ** A WherePlan object holds information that describes a lookup 1927 ** strategy. 1928 ** 1929 ** This object is intended to be opaque outside of the where.c module. 1930 ** It is included here only so that that compiler will know how big it 1931 ** is. None of the fields in this object should be used outside of 1932 ** the where.c module. 1933 ** 1934 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1935 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1936 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1937 ** case that more than one of these conditions is true. 1938 */ 1939 struct WherePlan { 1940 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1941 u16 nEq; /* Number of == constraints */ 1942 u16 nOBSat; /* Number of ORDER BY terms satisfied */ 1943 double nRow; /* Estimated number of rows (for EQP) */ 1944 union { 1945 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1946 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1947 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1948 } u; 1949 }; 1950 1951 /* 1952 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1953 ** structure contains a single instance of this structure. This structure 1954 ** is intended to be private to the where.c module and should not be 1955 ** access or modified by other modules. 1956 ** 1957 ** The pIdxInfo field is used to help pick the best index on a 1958 ** virtual table. The pIdxInfo pointer contains indexing 1959 ** information for the i-th table in the FROM clause before reordering. 1960 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1961 ** All other information in the i-th WhereLevel object for the i-th table 1962 ** after FROM clause ordering. 1963 */ 1964 struct WhereLevel { 1965 WherePlan plan; /* query plan for this element of the FROM clause */ 1966 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1967 int iTabCur; /* The VDBE cursor used to access the table */ 1968 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1969 int addrBrk; /* Jump here to break out of the loop */ 1970 int addrNxt; /* Jump here to start the next IN combination */ 1971 int addrCont; /* Jump here to continue with the next loop cycle */ 1972 int addrFirst; /* First instruction of interior of the loop */ 1973 u8 iFrom; /* Which entry in the FROM clause */ 1974 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1975 int p1, p2; /* Operands of the opcode used to ends the loop */ 1976 union { /* Information that depends on plan.wsFlags */ 1977 struct { 1978 int nIn; /* Number of entries in aInLoop[] */ 1979 struct InLoop { 1980 int iCur; /* The VDBE cursor used by this IN operator */ 1981 int addrInTop; /* Top of the IN loop */ 1982 u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ 1983 } *aInLoop; /* Information about each nested IN operator */ 1984 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1985 Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ 1986 } u; 1987 double rOptCost; /* "Optimal" cost for this level */ 1988 1989 /* The following field is really not part of the current level. But 1990 ** we need a place to cache virtual table index information for each 1991 ** virtual table in the FROM clause and the WhereLevel structure is 1992 ** a convenient place since there is one WhereLevel for each FROM clause 1993 ** element. 1994 */ 1995 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1996 }; 1997 1998 /* 1999 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2000 ** and the WhereInfo.wctrlFlags member. 2001 */ 2002 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2003 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2004 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2005 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2006 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2007 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2008 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2009 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2010 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 2011 2012 /* 2013 ** The WHERE clause processing routine has two halves. The 2014 ** first part does the start of the WHERE loop and the second 2015 ** half does the tail of the WHERE loop. An instance of 2016 ** this structure is returned by the first half and passed 2017 ** into the second half to give some continuity. 2018 */ 2019 struct WhereInfo { 2020 Parse *pParse; /* Parsing and code generating context */ 2021 SrcList *pTabList; /* List of tables in the join */ 2022 u16 nOBSat; /* Number of ORDER BY terms satisfied by indices */ 2023 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 2024 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE/DELETE */ 2025 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 2026 u8 eDistinct; /* One of the WHERE_DISTINCT_* values below */ 2027 int iTop; /* The very beginning of the WHERE loop */ 2028 int iContinue; /* Jump here to continue with next record */ 2029 int iBreak; /* Jump here to break out of the loop */ 2030 int nLevel; /* Number of nested loop */ 2031 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 2032 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 2033 double nRowOut; /* Estimated number of output rows */ 2034 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 2035 }; 2036 2037 /* Allowed values for WhereInfo.eDistinct and DistinctCtx.eTnctType */ 2038 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2039 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2040 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2041 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2042 2043 /* 2044 ** A NameContext defines a context in which to resolve table and column 2045 ** names. The context consists of a list of tables (the pSrcList) field and 2046 ** a list of named expression (pEList). The named expression list may 2047 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2048 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2049 ** pEList corresponds to the result set of a SELECT and is NULL for 2050 ** other statements. 2051 ** 2052 ** NameContexts can be nested. When resolving names, the inner-most 2053 ** context is searched first. If no match is found, the next outer 2054 ** context is checked. If there is still no match, the next context 2055 ** is checked. This process continues until either a match is found 2056 ** or all contexts are check. When a match is found, the nRef member of 2057 ** the context containing the match is incremented. 2058 ** 2059 ** Each subquery gets a new NameContext. The pNext field points to the 2060 ** NameContext in the parent query. Thus the process of scanning the 2061 ** NameContext list corresponds to searching through successively outer 2062 ** subqueries looking for a match. 2063 */ 2064 struct NameContext { 2065 Parse *pParse; /* The parser */ 2066 SrcList *pSrcList; /* One or more tables used to resolve names */ 2067 ExprList *pEList; /* Optional list of named expressions */ 2068 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2069 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2070 int nRef; /* Number of names resolved by this context */ 2071 int nErr; /* Number of errors encountered while resolving names */ 2072 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2073 }; 2074 2075 /* 2076 ** Allowed values for the NameContext, ncFlags field. 2077 */ 2078 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2079 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2080 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2081 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2082 2083 /* 2084 ** An instance of the following structure contains all information 2085 ** needed to generate code for a single SELECT statement. 2086 ** 2087 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2088 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2089 ** limit and nOffset to the value of the offset (or 0 if there is not 2090 ** offset). But later on, nLimit and nOffset become the memory locations 2091 ** in the VDBE that record the limit and offset counters. 2092 ** 2093 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2094 ** These addresses must be stored so that we can go back and fill in 2095 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2096 ** the number of columns in P2 can be computed at the same time 2097 ** as the OP_OpenEphm instruction is coded because not 2098 ** enough information about the compound query is known at that point. 2099 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2100 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2101 ** sequences for the ORDER BY clause. 2102 */ 2103 struct Select { 2104 ExprList *pEList; /* The fields of the result */ 2105 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2106 u16 selFlags; /* Various SF_* values */ 2107 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2108 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2109 double nSelectRow; /* Estimated number of result rows */ 2110 SrcList *pSrc; /* The FROM clause */ 2111 Expr *pWhere; /* The WHERE clause */ 2112 ExprList *pGroupBy; /* The GROUP BY clause */ 2113 Expr *pHaving; /* The HAVING clause */ 2114 ExprList *pOrderBy; /* The ORDER BY clause */ 2115 Select *pPrior; /* Prior select in a compound select statement */ 2116 Select *pNext; /* Next select to the left in a compound */ 2117 Select *pRightmost; /* Right-most select in a compound select statement */ 2118 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2119 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2120 }; 2121 2122 /* 2123 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2124 ** "Select Flag". 2125 */ 2126 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2127 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2128 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2129 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2130 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2131 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2132 #define SF_UseSorter 0x0040 /* Sort using a sorter */ 2133 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2134 #define SF_Materialize 0x0100 /* Force materialization of views */ 2135 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2136 2137 2138 /* 2139 ** The results of a select can be distributed in several ways. The 2140 ** "SRT" prefix means "SELECT Result Type". 2141 */ 2142 #define SRT_Union 1 /* Store result as keys in an index */ 2143 #define SRT_Except 2 /* Remove result from a UNION index */ 2144 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2145 #define SRT_Discard 4 /* Do not save the results anywhere */ 2146 2147 /* The ORDER BY clause is ignored for all of the above */ 2148 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2149 2150 #define SRT_Output 5 /* Output each row of result */ 2151 #define SRT_Mem 6 /* Store result in a memory cell */ 2152 #define SRT_Set 7 /* Store results as keys in an index */ 2153 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2154 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2155 #define SRT_Coroutine 10 /* Generate a single row of result */ 2156 2157 /* 2158 ** An instance of this object describes where to put of the results of 2159 ** a SELECT statement. 2160 */ 2161 struct SelectDest { 2162 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2163 char affSdst; /* Affinity used when eDest==SRT_Set */ 2164 int iSDParm; /* A parameter used by the eDest disposal method */ 2165 int iSdst; /* Base register where results are written */ 2166 int nSdst; /* Number of registers allocated */ 2167 }; 2168 2169 /* 2170 ** During code generation of statements that do inserts into AUTOINCREMENT 2171 ** tables, the following information is attached to the Table.u.autoInc.p 2172 ** pointer of each autoincrement table to record some side information that 2173 ** the code generator needs. We have to keep per-table autoincrement 2174 ** information in case inserts are down within triggers. Triggers do not 2175 ** normally coordinate their activities, but we do need to coordinate the 2176 ** loading and saving of autoincrement information. 2177 */ 2178 struct AutoincInfo { 2179 AutoincInfo *pNext; /* Next info block in a list of them all */ 2180 Table *pTab; /* Table this info block refers to */ 2181 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2182 int regCtr; /* Memory register holding the rowid counter */ 2183 }; 2184 2185 /* 2186 ** Size of the column cache 2187 */ 2188 #ifndef SQLITE_N_COLCACHE 2189 # define SQLITE_N_COLCACHE 10 2190 #endif 2191 2192 /* 2193 ** At least one instance of the following structure is created for each 2194 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2195 ** statement. All such objects are stored in the linked list headed at 2196 ** Parse.pTriggerPrg and deleted once statement compilation has been 2197 ** completed. 2198 ** 2199 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2200 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2201 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2202 ** The Parse.pTriggerPrg list never contains two entries with the same 2203 ** values for both pTrigger and orconf. 2204 ** 2205 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2206 ** accessed (or set to 0 for triggers fired as a result of INSERT 2207 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2208 ** a mask of new.* columns used by the program. 2209 */ 2210 struct TriggerPrg { 2211 Trigger *pTrigger; /* Trigger this program was coded from */ 2212 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2213 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2214 int orconf; /* Default ON CONFLICT policy */ 2215 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2216 }; 2217 2218 /* 2219 ** The yDbMask datatype for the bitmask of all attached databases. 2220 */ 2221 #if SQLITE_MAX_ATTACHED>30 2222 typedef sqlite3_uint64 yDbMask; 2223 #else 2224 typedef unsigned int yDbMask; 2225 #endif 2226 2227 /* 2228 ** An SQL parser context. A copy of this structure is passed through 2229 ** the parser and down into all the parser action routine in order to 2230 ** carry around information that is global to the entire parse. 2231 ** 2232 ** The structure is divided into two parts. When the parser and code 2233 ** generate call themselves recursively, the first part of the structure 2234 ** is constant but the second part is reset at the beginning and end of 2235 ** each recursion. 2236 ** 2237 ** The nTableLock and aTableLock variables are only used if the shared-cache 2238 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2239 ** used to store the set of table-locks required by the statement being 2240 ** compiled. Function sqlite3TableLock() is used to add entries to the 2241 ** list. 2242 */ 2243 struct Parse { 2244 sqlite3 *db; /* The main database structure */ 2245 char *zErrMsg; /* An error message */ 2246 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2247 int rc; /* Return code from execution */ 2248 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2249 u8 checkSchema; /* Causes schema cookie check after an error */ 2250 u8 nested; /* Number of nested calls to the parser/code generator */ 2251 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2252 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2253 u8 nColCache; /* Number of entries in aColCache[] */ 2254 u8 iColCache; /* Next entry in aColCache[] to replace */ 2255 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2256 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2257 int aTempReg[8]; /* Holding area for temporary registers */ 2258 int nRangeReg; /* Size of the temporary register block */ 2259 int iRangeReg; /* First register in temporary register block */ 2260 int nErr; /* Number of errors seen */ 2261 int nTab; /* Number of previously allocated VDBE cursors */ 2262 int nMem; /* Number of memory cells used so far */ 2263 int nSet; /* Number of sets used so far */ 2264 int nOnce; /* Number of OP_Once instructions so far */ 2265 int ckBase; /* Base register of data during check constraints */ 2266 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2267 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2268 struct yColCache { 2269 int iTable; /* Table cursor number */ 2270 int iColumn; /* Table column number */ 2271 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2272 int iLevel; /* Nesting level */ 2273 int iReg; /* Reg with value of this column. 0 means none. */ 2274 int lru; /* Least recently used entry has the smallest value */ 2275 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2276 yDbMask writeMask; /* Start a write transaction on these databases */ 2277 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2278 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2279 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2280 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2281 int regRoot; /* Register holding root page number for new objects */ 2282 int nMaxArg; /* Max args passed to user function by sub-program */ 2283 Token constraintName;/* Name of the constraint currently being parsed */ 2284 #ifndef SQLITE_OMIT_SHARED_CACHE 2285 int nTableLock; /* Number of locks in aTableLock */ 2286 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2287 #endif 2288 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2289 2290 /* Information used while coding trigger programs. */ 2291 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2292 Table *pTriggerTab; /* Table triggers are being coded for */ 2293 double nQueryLoop; /* Estimated number of iterations of a query */ 2294 u32 oldmask; /* Mask of old.* columns referenced */ 2295 u32 newmask; /* Mask of new.* columns referenced */ 2296 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2297 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2298 u8 disableTriggers; /* True to disable triggers */ 2299 2300 /* Above is constant between recursions. Below is reset before and after 2301 ** each recursion */ 2302 2303 int nVar; /* Number of '?' variables seen in the SQL so far */ 2304 int nzVar; /* Number of available slots in azVar[] */ 2305 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2306 #ifndef SQLITE_OMIT_VIRTUALTABLE 2307 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2308 int nVtabLock; /* Number of virtual tables to lock */ 2309 #endif 2310 int nAlias; /* Number of aliased result set columns */ 2311 int nHeight; /* Expression tree height of current sub-select */ 2312 #ifndef SQLITE_OMIT_EXPLAIN 2313 int iSelectId; /* ID of current select for EXPLAIN output */ 2314 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2315 #endif 2316 char **azVar; /* Pointers to names of parameters */ 2317 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2318 int *aAlias; /* Register used to hold aliased result */ 2319 const char *zTail; /* All SQL text past the last semicolon parsed */ 2320 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2321 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2322 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2323 Token sNameToken; /* Token with unqualified schema object name */ 2324 Token sLastToken; /* The last token parsed */ 2325 #ifndef SQLITE_OMIT_VIRTUALTABLE 2326 Token sArg; /* Complete text of a module argument */ 2327 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2328 #endif 2329 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2330 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2331 }; 2332 2333 /* 2334 ** Return true if currently inside an sqlite3_declare_vtab() call. 2335 */ 2336 #ifdef SQLITE_OMIT_VIRTUALTABLE 2337 #define IN_DECLARE_VTAB 0 2338 #else 2339 #define IN_DECLARE_VTAB (pParse->declareVtab) 2340 #endif 2341 2342 /* 2343 ** An instance of the following structure can be declared on a stack and used 2344 ** to save the Parse.zAuthContext value so that it can be restored later. 2345 */ 2346 struct AuthContext { 2347 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2348 Parse *pParse; /* The Parse structure */ 2349 }; 2350 2351 /* 2352 ** Bitfield flags for P5 value in various opcodes. 2353 */ 2354 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2355 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2356 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2357 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2358 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2359 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2360 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2361 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2362 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2363 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2364 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2365 2366 /* 2367 * Each trigger present in the database schema is stored as an instance of 2368 * struct Trigger. 2369 * 2370 * Pointers to instances of struct Trigger are stored in two ways. 2371 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2372 * database). This allows Trigger structures to be retrieved by name. 2373 * 2. All triggers associated with a single table form a linked list, using the 2374 * pNext member of struct Trigger. A pointer to the first element of the 2375 * linked list is stored as the "pTrigger" member of the associated 2376 * struct Table. 2377 * 2378 * The "step_list" member points to the first element of a linked list 2379 * containing the SQL statements specified as the trigger program. 2380 */ 2381 struct Trigger { 2382 char *zName; /* The name of the trigger */ 2383 char *table; /* The table or view to which the trigger applies */ 2384 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2385 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2386 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2387 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2388 the <column-list> is stored here */ 2389 Schema *pSchema; /* Schema containing the trigger */ 2390 Schema *pTabSchema; /* Schema containing the table */ 2391 TriggerStep *step_list; /* Link list of trigger program steps */ 2392 Trigger *pNext; /* Next trigger associated with the table */ 2393 }; 2394 2395 /* 2396 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2397 ** determine which. 2398 ** 2399 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2400 ** In that cases, the constants below can be ORed together. 2401 */ 2402 #define TRIGGER_BEFORE 1 2403 #define TRIGGER_AFTER 2 2404 2405 /* 2406 * An instance of struct TriggerStep is used to store a single SQL statement 2407 * that is a part of a trigger-program. 2408 * 2409 * Instances of struct TriggerStep are stored in a singly linked list (linked 2410 * using the "pNext" member) referenced by the "step_list" member of the 2411 * associated struct Trigger instance. The first element of the linked list is 2412 * the first step of the trigger-program. 2413 * 2414 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2415 * "SELECT" statement. The meanings of the other members is determined by the 2416 * value of "op" as follows: 2417 * 2418 * (op == TK_INSERT) 2419 * orconf -> stores the ON CONFLICT algorithm 2420 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2421 * this stores a pointer to the SELECT statement. Otherwise NULL. 2422 * target -> A token holding the quoted name of the table to insert into. 2423 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2424 * this stores values to be inserted. Otherwise NULL. 2425 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2426 * statement, then this stores the column-names to be 2427 * inserted into. 2428 * 2429 * (op == TK_DELETE) 2430 * target -> A token holding the quoted name of the table to delete from. 2431 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2432 * Otherwise NULL. 2433 * 2434 * (op == TK_UPDATE) 2435 * target -> A token holding the quoted name of the table to update rows of. 2436 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2437 * Otherwise NULL. 2438 * pExprList -> A list of the columns to update and the expressions to update 2439 * them to. See sqlite3Update() documentation of "pChanges" 2440 * argument. 2441 * 2442 */ 2443 struct TriggerStep { 2444 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2445 u8 orconf; /* OE_Rollback etc. */ 2446 Trigger *pTrig; /* The trigger that this step is a part of */ 2447 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2448 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2449 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2450 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2451 IdList *pIdList; /* Column names for INSERT */ 2452 TriggerStep *pNext; /* Next in the link-list */ 2453 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2454 }; 2455 2456 /* 2457 ** The following structure contains information used by the sqliteFix... 2458 ** routines as they walk the parse tree to make database references 2459 ** explicit. 2460 */ 2461 typedef struct DbFixer DbFixer; 2462 struct DbFixer { 2463 Parse *pParse; /* The parsing context. Error messages written here */ 2464 Schema *pSchema; /* Fix items to this schema */ 2465 const char *zDb; /* Make sure all objects are contained in this database */ 2466 const char *zType; /* Type of the container - used for error messages */ 2467 const Token *pName; /* Name of the container - used for error messages */ 2468 }; 2469 2470 /* 2471 ** An objected used to accumulate the text of a string where we 2472 ** do not necessarily know how big the string will be in the end. 2473 */ 2474 struct StrAccum { 2475 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2476 char *zBase; /* A base allocation. Not from malloc. */ 2477 char *zText; /* The string collected so far */ 2478 int nChar; /* Length of the string so far */ 2479 int nAlloc; /* Amount of space allocated in zText */ 2480 int mxAlloc; /* Maximum allowed string length */ 2481 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2482 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2483 u8 tooBig; /* Becomes true if string size exceeds limits */ 2484 }; 2485 2486 /* 2487 ** A pointer to this structure is used to communicate information 2488 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2489 */ 2490 typedef struct { 2491 sqlite3 *db; /* The database being initialized */ 2492 char **pzErrMsg; /* Error message stored here */ 2493 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2494 int rc; /* Result code stored here */ 2495 } InitData; 2496 2497 /* 2498 ** Structure containing global configuration data for the SQLite library. 2499 ** 2500 ** This structure also contains some state information. 2501 */ 2502 struct Sqlite3Config { 2503 int bMemstat; /* True to enable memory status */ 2504 int bCoreMutex; /* True to enable core mutexing */ 2505 int bFullMutex; /* True to enable full mutexing */ 2506 int bOpenUri; /* True to interpret filenames as URIs */ 2507 int bUseCis; /* Use covering indices for full-scans */ 2508 int mxStrlen; /* Maximum string length */ 2509 int szLookaside; /* Default lookaside buffer size */ 2510 int nLookaside; /* Default lookaside buffer count */ 2511 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2512 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2513 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2514 void *pHeap; /* Heap storage space */ 2515 int nHeap; /* Size of pHeap[] */ 2516 int mnReq, mxReq; /* Min and max heap requests sizes */ 2517 sqlite3_int64 mxMmap; /* Maximum mmap() space per open file */ 2518 void *pScratch; /* Scratch memory */ 2519 int szScratch; /* Size of each scratch buffer */ 2520 int nScratch; /* Number of scratch buffers */ 2521 void *pPage; /* Page cache memory */ 2522 int szPage; /* Size of each page in pPage[] */ 2523 int nPage; /* Number of pages in pPage[] */ 2524 int mxParserStack; /* maximum depth of the parser stack */ 2525 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2526 /* The above might be initialized to non-zero. The following need to always 2527 ** initially be zero, however. */ 2528 int isInit; /* True after initialization has finished */ 2529 int inProgress; /* True while initialization in progress */ 2530 int isMutexInit; /* True after mutexes are initialized */ 2531 int isMallocInit; /* True after malloc is initialized */ 2532 int isPCacheInit; /* True after malloc is initialized */ 2533 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2534 int nRefInitMutex; /* Number of users of pInitMutex */ 2535 void (*xLog)(void*,int,const char*); /* Function for logging */ 2536 void *pLogArg; /* First argument to xLog() */ 2537 int bLocaltimeFault; /* True to fail localtime() calls */ 2538 #ifdef SQLITE_ENABLE_SQLLOG 2539 void(*xSqllog)(void*,sqlite3*,const char*, int); 2540 void *pSqllogArg; 2541 #endif 2542 }; 2543 2544 /* 2545 ** Context pointer passed down through the tree-walk. 2546 */ 2547 struct Walker { 2548 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2549 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2550 Parse *pParse; /* Parser context. */ 2551 int walkerDepth; /* Number of subqueries */ 2552 union { /* Extra data for callback */ 2553 NameContext *pNC; /* Naming context */ 2554 int i; /* Integer value */ 2555 SrcList *pSrcList; /* FROM clause */ 2556 struct SrcCount *pSrcCount; /* Counting column references */ 2557 } u; 2558 }; 2559 2560 /* Forward declarations */ 2561 int sqlite3WalkExpr(Walker*, Expr*); 2562 int sqlite3WalkExprList(Walker*, ExprList*); 2563 int sqlite3WalkSelect(Walker*, Select*); 2564 int sqlite3WalkSelectExpr(Walker*, Select*); 2565 int sqlite3WalkSelectFrom(Walker*, Select*); 2566 2567 /* 2568 ** Return code from the parse-tree walking primitives and their 2569 ** callbacks. 2570 */ 2571 #define WRC_Continue 0 /* Continue down into children */ 2572 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2573 #define WRC_Abort 2 /* Abandon the tree walk */ 2574 2575 /* 2576 ** Assuming zIn points to the first byte of a UTF-8 character, 2577 ** advance zIn to point to the first byte of the next UTF-8 character. 2578 */ 2579 #define SQLITE_SKIP_UTF8(zIn) { \ 2580 if( (*(zIn++))>=0xc0 ){ \ 2581 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2582 } \ 2583 } 2584 2585 /* 2586 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2587 ** the same name but without the _BKPT suffix. These macros invoke 2588 ** routines that report the line-number on which the error originated 2589 ** using sqlite3_log(). The routines also provide a convenient place 2590 ** to set a debugger breakpoint. 2591 */ 2592 int sqlite3CorruptError(int); 2593 int sqlite3MisuseError(int); 2594 int sqlite3CantopenError(int); 2595 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2596 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2597 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2598 2599 2600 /* 2601 ** FTS4 is really an extension for FTS3. It is enabled using the 2602 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2603 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2604 */ 2605 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2606 # define SQLITE_ENABLE_FTS3 2607 #endif 2608 2609 /* 2610 ** The ctype.h header is needed for non-ASCII systems. It is also 2611 ** needed by FTS3 when FTS3 is included in the amalgamation. 2612 */ 2613 #if !defined(SQLITE_ASCII) || \ 2614 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2615 # include <ctype.h> 2616 #endif 2617 2618 /* 2619 ** The following macros mimic the standard library functions toupper(), 2620 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2621 ** sqlite versions only work for ASCII characters, regardless of locale. 2622 */ 2623 #ifdef SQLITE_ASCII 2624 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2625 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2626 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2627 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2628 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2629 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2630 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2631 #else 2632 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2633 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2634 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2635 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2636 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2637 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2638 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2639 #endif 2640 2641 /* 2642 ** Internal function prototypes 2643 */ 2644 #define sqlite3StrICmp sqlite3_stricmp 2645 int sqlite3Strlen30(const char*); 2646 #define sqlite3StrNICmp sqlite3_strnicmp 2647 2648 int sqlite3MallocInit(void); 2649 void sqlite3MallocEnd(void); 2650 void *sqlite3Malloc(int); 2651 void *sqlite3MallocZero(int); 2652 void *sqlite3DbMallocZero(sqlite3*, int); 2653 void *sqlite3DbMallocRaw(sqlite3*, int); 2654 char *sqlite3DbStrDup(sqlite3*,const char*); 2655 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2656 void *sqlite3Realloc(void*, int); 2657 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2658 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2659 void sqlite3DbFree(sqlite3*, void*); 2660 int sqlite3MallocSize(void*); 2661 int sqlite3DbMallocSize(sqlite3*, void*); 2662 void *sqlite3ScratchMalloc(int); 2663 void sqlite3ScratchFree(void*); 2664 void *sqlite3PageMalloc(int); 2665 void sqlite3PageFree(void*); 2666 void sqlite3MemSetDefault(void); 2667 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2668 int sqlite3HeapNearlyFull(void); 2669 2670 /* 2671 ** On systems with ample stack space and that support alloca(), make 2672 ** use of alloca() to obtain space for large automatic objects. By default, 2673 ** obtain space from malloc(). 2674 ** 2675 ** The alloca() routine never returns NULL. This will cause code paths 2676 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2677 */ 2678 #ifdef SQLITE_USE_ALLOCA 2679 # define sqlite3StackAllocRaw(D,N) alloca(N) 2680 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2681 # define sqlite3StackFree(D,P) 2682 #else 2683 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2684 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2685 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2686 #endif 2687 2688 #ifdef SQLITE_ENABLE_MEMSYS3 2689 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2690 #endif 2691 #ifdef SQLITE_ENABLE_MEMSYS5 2692 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2693 #endif 2694 2695 2696 #ifndef SQLITE_MUTEX_OMIT 2697 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2698 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2699 sqlite3_mutex *sqlite3MutexAlloc(int); 2700 int sqlite3MutexInit(void); 2701 int sqlite3MutexEnd(void); 2702 #endif 2703 2704 int sqlite3StatusValue(int); 2705 void sqlite3StatusAdd(int, int); 2706 void sqlite3StatusSet(int, int); 2707 2708 #ifndef SQLITE_OMIT_FLOATING_POINT 2709 int sqlite3IsNaN(double); 2710 #else 2711 # define sqlite3IsNaN(X) 0 2712 #endif 2713 2714 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2715 #ifndef SQLITE_OMIT_TRACE 2716 void sqlite3XPrintf(StrAccum*, const char*, ...); 2717 #endif 2718 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2719 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2720 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2721 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2722 void sqlite3DebugPrintf(const char*, ...); 2723 #endif 2724 #if defined(SQLITE_TEST) 2725 void *sqlite3TestTextToPtr(const char*); 2726 #endif 2727 2728 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2729 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2730 void sqlite3ExplainBegin(Vdbe*); 2731 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2732 void sqlite3ExplainNL(Vdbe*); 2733 void sqlite3ExplainPush(Vdbe*); 2734 void sqlite3ExplainPop(Vdbe*); 2735 void sqlite3ExplainFinish(Vdbe*); 2736 void sqlite3ExplainSelect(Vdbe*, Select*); 2737 void sqlite3ExplainExpr(Vdbe*, Expr*); 2738 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2739 const char *sqlite3VdbeExplanation(Vdbe*); 2740 #else 2741 # define sqlite3ExplainBegin(X) 2742 # define sqlite3ExplainSelect(A,B) 2743 # define sqlite3ExplainExpr(A,B) 2744 # define sqlite3ExplainExprList(A,B) 2745 # define sqlite3ExplainFinish(X) 2746 # define sqlite3VdbeExplanation(X) 0 2747 #endif 2748 2749 2750 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2751 void sqlite3ErrorMsg(Parse*, const char*, ...); 2752 int sqlite3Dequote(char*); 2753 int sqlite3KeywordCode(const unsigned char*, int); 2754 int sqlite3RunParser(Parse*, const char*, char **); 2755 void sqlite3FinishCoding(Parse*); 2756 int sqlite3GetTempReg(Parse*); 2757 void sqlite3ReleaseTempReg(Parse*,int); 2758 int sqlite3GetTempRange(Parse*,int); 2759 void sqlite3ReleaseTempRange(Parse*,int,int); 2760 void sqlite3ClearTempRegCache(Parse*); 2761 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2762 Expr *sqlite3Expr(sqlite3*,int,const char*); 2763 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2764 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2765 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2766 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2767 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2768 void sqlite3ExprDelete(sqlite3*, Expr*); 2769 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2770 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2771 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2772 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2773 int sqlite3Init(sqlite3*, char**); 2774 int sqlite3InitCallback(void*, int, char**, char**); 2775 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2776 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 2777 void sqlite3ResetOneSchema(sqlite3*,int); 2778 void sqlite3CollapseDatabaseArray(sqlite3*); 2779 void sqlite3BeginParse(Parse*,int); 2780 void sqlite3CommitInternalChanges(sqlite3*); 2781 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2782 void sqlite3OpenMasterTable(Parse *, int); 2783 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2784 void sqlite3AddColumn(Parse*,Token*); 2785 void sqlite3AddNotNull(Parse*, int); 2786 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2787 void sqlite3AddCheckConstraint(Parse*, Expr*); 2788 void sqlite3AddColumnType(Parse*,Token*); 2789 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2790 void sqlite3AddCollateType(Parse*, Token*); 2791 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2792 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2793 sqlite3_vfs**,char**,char **); 2794 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 2795 int sqlite3CodeOnce(Parse *); 2796 2797 Bitvec *sqlite3BitvecCreate(u32); 2798 int sqlite3BitvecTest(Bitvec*, u32); 2799 int sqlite3BitvecSet(Bitvec*, u32); 2800 void sqlite3BitvecClear(Bitvec*, u32, void*); 2801 void sqlite3BitvecDestroy(Bitvec*); 2802 u32 sqlite3BitvecSize(Bitvec*); 2803 int sqlite3BitvecBuiltinTest(int,int*); 2804 2805 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2806 void sqlite3RowSetClear(RowSet*); 2807 void sqlite3RowSetInsert(RowSet*, i64); 2808 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2809 int sqlite3RowSetNext(RowSet*, i64*); 2810 2811 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2812 2813 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2814 int sqlite3ViewGetColumnNames(Parse*,Table*); 2815 #else 2816 # define sqlite3ViewGetColumnNames(A,B) 0 2817 #endif 2818 2819 void sqlite3DropTable(Parse*, SrcList*, int, int); 2820 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2821 void sqlite3DeleteTable(sqlite3*, Table*); 2822 #ifndef SQLITE_OMIT_AUTOINCREMENT 2823 void sqlite3AutoincrementBegin(Parse *pParse); 2824 void sqlite3AutoincrementEnd(Parse *pParse); 2825 #else 2826 # define sqlite3AutoincrementBegin(X) 2827 # define sqlite3AutoincrementEnd(X) 2828 #endif 2829 int sqlite3CodeCoroutine(Parse*, Select*, SelectDest*); 2830 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2831 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 2832 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2833 int sqlite3IdListIndex(IdList*,const char*); 2834 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2835 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2836 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2837 Token*, Select*, Expr*, IdList*); 2838 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2839 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2840 void sqlite3SrcListShiftJoinType(SrcList*); 2841 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2842 void sqlite3IdListDelete(sqlite3*, IdList*); 2843 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2844 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2845 Token*, int, int); 2846 void sqlite3DropIndex(Parse*, SrcList*, int); 2847 int sqlite3Select(Parse*, Select*, SelectDest*); 2848 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2849 Expr*,ExprList*,u16,Expr*,Expr*); 2850 void sqlite3SelectDelete(sqlite3*, Select*); 2851 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2852 int sqlite3IsReadOnly(Parse*, Table*, int); 2853 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2854 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2855 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 2856 #endif 2857 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2858 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2859 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 2860 void sqlite3WhereEnd(WhereInfo*); 2861 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 2862 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2863 void sqlite3ExprCodeMove(Parse*, int, int, int); 2864 void sqlite3ExprCacheStore(Parse*, int, int, int); 2865 void sqlite3ExprCachePush(Parse*); 2866 void sqlite3ExprCachePop(Parse*, int); 2867 void sqlite3ExprCacheRemove(Parse*, int, int); 2868 void sqlite3ExprCacheClear(Parse*); 2869 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2870 int sqlite3ExprCode(Parse*, Expr*, int); 2871 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2872 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2873 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2874 void sqlite3ExprCodeConstants(Parse*, Expr*); 2875 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2876 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2877 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2878 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2879 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2880 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 2881 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2882 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2883 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2884 void sqlite3Vacuum(Parse*); 2885 int sqlite3RunVacuum(char**, sqlite3*); 2886 char *sqlite3NameFromToken(sqlite3*, Token*); 2887 int sqlite3ExprCompare(Expr*, Expr*); 2888 int sqlite3ExprListCompare(ExprList*, ExprList*); 2889 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2890 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2891 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 2892 Vdbe *sqlite3GetVdbe(Parse*); 2893 void sqlite3PrngSaveState(void); 2894 void sqlite3PrngRestoreState(void); 2895 void sqlite3PrngResetState(void); 2896 void sqlite3RollbackAll(sqlite3*,int); 2897 void sqlite3CodeVerifySchema(Parse*, int); 2898 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 2899 void sqlite3BeginTransaction(Parse*, int); 2900 void sqlite3CommitTransaction(Parse*); 2901 void sqlite3RollbackTransaction(Parse*); 2902 void sqlite3Savepoint(Parse*, int, Token*); 2903 void sqlite3CloseSavepoints(sqlite3 *); 2904 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 2905 int sqlite3ExprIsConstant(Expr*); 2906 int sqlite3ExprIsConstantNotJoin(Expr*); 2907 int sqlite3ExprIsConstantOrFunction(Expr*); 2908 int sqlite3ExprIsInteger(Expr*, int*); 2909 int sqlite3ExprCanBeNull(const Expr*); 2910 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2911 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2912 int sqlite3IsRowid(const char*); 2913 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2914 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2915 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2916 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2917 int*,int,int,int,int,int*); 2918 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2919 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2920 void sqlite3BeginWriteOperation(Parse*, int, int); 2921 void sqlite3MultiWrite(Parse*); 2922 void sqlite3MayAbort(Parse*); 2923 void sqlite3HaltConstraint(Parse*, int, int, char*, int); 2924 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2925 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2926 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2927 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2928 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2929 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2930 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 2931 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2932 void sqlite3RegisterDateTimeFunctions(void); 2933 void sqlite3RegisterGlobalFunctions(void); 2934 int sqlite3SafetyCheckOk(sqlite3*); 2935 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2936 void sqlite3ChangeCookie(Parse*, int); 2937 2938 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2939 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2940 #endif 2941 2942 #ifndef SQLITE_OMIT_TRIGGER 2943 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2944 Expr*,int, int); 2945 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2946 void sqlite3DropTrigger(Parse*, SrcList*, int); 2947 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2948 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2949 Trigger *sqlite3TriggerList(Parse *, Table *); 2950 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2951 int, int, int); 2952 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2953 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2954 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2955 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2956 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2957 ExprList*,Select*,u8); 2958 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2959 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2960 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2961 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2962 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2963 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2964 #else 2965 # define sqlite3TriggersExist(B,C,D,E,F) 0 2966 # define sqlite3DeleteTrigger(A,B) 2967 # define sqlite3DropTriggerPtr(A,B) 2968 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2969 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2970 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2971 # define sqlite3TriggerList(X, Y) 0 2972 # define sqlite3ParseToplevel(p) p 2973 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2974 #endif 2975 2976 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2977 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2978 void sqlite3DeferForeignKey(Parse*, int); 2979 #ifndef SQLITE_OMIT_AUTHORIZATION 2980 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2981 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2982 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2983 void sqlite3AuthContextPop(AuthContext*); 2984 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2985 #else 2986 # define sqlite3AuthRead(a,b,c,d) 2987 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2988 # define sqlite3AuthContextPush(a,b,c) 2989 # define sqlite3AuthContextPop(a) ((void)(a)) 2990 #endif 2991 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2992 void sqlite3Detach(Parse*, Expr*); 2993 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2994 int sqlite3FixSrcList(DbFixer*, SrcList*); 2995 int sqlite3FixSelect(DbFixer*, Select*); 2996 int sqlite3FixExpr(DbFixer*, Expr*); 2997 int sqlite3FixExprList(DbFixer*, ExprList*); 2998 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2999 int sqlite3AtoF(const char *z, double*, int, u8); 3000 int sqlite3GetInt32(const char *, int*); 3001 int sqlite3Atoi(const char*); 3002 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3003 int sqlite3Utf8CharLen(const char *pData, int nByte); 3004 u32 sqlite3Utf8Read(const u8**); 3005 3006 /* 3007 ** Routines to read and write variable-length integers. These used to 3008 ** be defined locally, but now we use the varint routines in the util.c 3009 ** file. Code should use the MACRO forms below, as the Varint32 versions 3010 ** are coded to assume the single byte case is already handled (which 3011 ** the MACRO form does). 3012 */ 3013 int sqlite3PutVarint(unsigned char*, u64); 3014 int sqlite3PutVarint32(unsigned char*, u32); 3015 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3016 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3017 int sqlite3VarintLen(u64 v); 3018 3019 /* 3020 ** The header of a record consists of a sequence variable-length integers. 3021 ** These integers are almost always small and are encoded as a single byte. 3022 ** The following macros take advantage this fact to provide a fast encode 3023 ** and decode of the integers in a record header. It is faster for the common 3024 ** case where the integer is a single byte. It is a little slower when the 3025 ** integer is two or more bytes. But overall it is faster. 3026 ** 3027 ** The following expressions are equivalent: 3028 ** 3029 ** x = sqlite3GetVarint32( A, &B ); 3030 ** x = sqlite3PutVarint32( A, B ); 3031 ** 3032 ** x = getVarint32( A, B ); 3033 ** x = putVarint32( A, B ); 3034 ** 3035 */ 3036 #define getVarint32(A,B) \ 3037 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3038 #define putVarint32(A,B) \ 3039 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3040 sqlite3PutVarint32((A),(B))) 3041 #define getVarint sqlite3GetVarint 3042 #define putVarint sqlite3PutVarint 3043 3044 3045 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3046 void sqlite3TableAffinityStr(Vdbe *, Table *); 3047 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3048 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3049 char sqlite3ExprAffinity(Expr *pExpr); 3050 int sqlite3Atoi64(const char*, i64*, int, u8); 3051 void sqlite3Error(sqlite3*, int, const char*,...); 3052 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3053 u8 sqlite3HexToInt(int h); 3054 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3055 const char *sqlite3ErrStr(int); 3056 int sqlite3ReadSchema(Parse *pParse); 3057 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3058 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3059 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3060 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*); 3061 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3062 Expr *sqlite3ExprSkipCollate(Expr*); 3063 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3064 int sqlite3CheckObjectName(Parse *, const char *); 3065 void sqlite3VdbeSetChanges(sqlite3 *, int); 3066 int sqlite3AddInt64(i64*,i64); 3067 int sqlite3SubInt64(i64*,i64); 3068 int sqlite3MulInt64(i64*,i64); 3069 int sqlite3AbsInt32(int); 3070 #ifdef SQLITE_ENABLE_8_3_NAMES 3071 void sqlite3FileSuffix3(const char*, char*); 3072 #else 3073 # define sqlite3FileSuffix3(X,Y) 3074 #endif 3075 u8 sqlite3GetBoolean(const char *z,int); 3076 3077 const void *sqlite3ValueText(sqlite3_value*, u8); 3078 int sqlite3ValueBytes(sqlite3_value*, u8); 3079 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3080 void(*)(void*)); 3081 void sqlite3ValueFree(sqlite3_value*); 3082 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3083 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3084 #ifdef SQLITE_ENABLE_STAT3 3085 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 3086 #endif 3087 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3088 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3089 #ifndef SQLITE_AMALGAMATION 3090 extern const unsigned char sqlite3OpcodeProperty[]; 3091 extern const unsigned char sqlite3UpperToLower[]; 3092 extern const unsigned char sqlite3CtypeMap[]; 3093 extern const Token sqlite3IntTokens[]; 3094 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3095 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3096 #ifndef SQLITE_OMIT_WSD 3097 extern int sqlite3PendingByte; 3098 #endif 3099 #endif 3100 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3101 void sqlite3Reindex(Parse*, Token*, Token*); 3102 void sqlite3AlterFunctions(void); 3103 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3104 int sqlite3GetToken(const unsigned char *, int *); 3105 void sqlite3NestedParse(Parse*, const char*, ...); 3106 void sqlite3ExpirePreparedStatements(sqlite3*); 3107 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3108 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3109 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3110 int sqlite3ResolveExprNames(NameContext*, Expr*); 3111 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3112 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3113 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3114 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3115 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3116 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3117 char sqlite3AffinityType(const char*); 3118 void sqlite3Analyze(Parse*, Token*, Token*); 3119 int sqlite3InvokeBusyHandler(BusyHandler*); 3120 int sqlite3FindDb(sqlite3*, Token*); 3121 int sqlite3FindDbName(sqlite3 *, const char *); 3122 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3123 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3124 void sqlite3DefaultRowEst(Index*); 3125 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3126 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3127 void sqlite3MinimumFileFormat(Parse*, int, int); 3128 void sqlite3SchemaClear(void *); 3129 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3130 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3131 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 3132 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3133 void (*)(sqlite3_context*,int,sqlite3_value **), 3134 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3135 FuncDestructor *pDestructor 3136 ); 3137 int sqlite3ApiExit(sqlite3 *db, int); 3138 int sqlite3OpenTempDatabase(Parse *); 3139 3140 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3141 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3142 void sqlite3AppendSpace(StrAccum*,int); 3143 char *sqlite3StrAccumFinish(StrAccum*); 3144 void sqlite3StrAccumReset(StrAccum*); 3145 void sqlite3SelectDestInit(SelectDest*,int,int); 3146 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3147 3148 void sqlite3BackupRestart(sqlite3_backup *); 3149 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3150 3151 /* 3152 ** The interface to the LEMON-generated parser 3153 */ 3154 void *sqlite3ParserAlloc(void*(*)(size_t)); 3155 void sqlite3ParserFree(void*, void(*)(void*)); 3156 void sqlite3Parser(void*, int, Token, Parse*); 3157 #ifdef YYTRACKMAXSTACKDEPTH 3158 int sqlite3ParserStackPeak(void*); 3159 #endif 3160 3161 void sqlite3AutoLoadExtensions(sqlite3*); 3162 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3163 void sqlite3CloseExtensions(sqlite3*); 3164 #else 3165 # define sqlite3CloseExtensions(X) 3166 #endif 3167 3168 #ifndef SQLITE_OMIT_SHARED_CACHE 3169 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3170 #else 3171 #define sqlite3TableLock(v,w,x,y,z) 3172 #endif 3173 3174 #ifdef SQLITE_TEST 3175 int sqlite3Utf8To8(unsigned char*); 3176 #endif 3177 3178 #ifdef SQLITE_OMIT_VIRTUALTABLE 3179 # define sqlite3VtabClear(Y) 3180 # define sqlite3VtabSync(X,Y) SQLITE_OK 3181 # define sqlite3VtabRollback(X) 3182 # define sqlite3VtabCommit(X) 3183 # define sqlite3VtabInSync(db) 0 3184 # define sqlite3VtabLock(X) 3185 # define sqlite3VtabUnlock(X) 3186 # define sqlite3VtabUnlockList(X) 3187 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3188 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3189 #else 3190 void sqlite3VtabClear(sqlite3 *db, Table*); 3191 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3192 int sqlite3VtabSync(sqlite3 *db, char **); 3193 int sqlite3VtabRollback(sqlite3 *db); 3194 int sqlite3VtabCommit(sqlite3 *db); 3195 void sqlite3VtabLock(VTable *); 3196 void sqlite3VtabUnlock(VTable *); 3197 void sqlite3VtabUnlockList(sqlite3*); 3198 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3199 VTable *sqlite3GetVTable(sqlite3*, Table*); 3200 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3201 #endif 3202 void sqlite3VtabMakeWritable(Parse*,Table*); 3203 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3204 void sqlite3VtabFinishParse(Parse*, Token*); 3205 void sqlite3VtabArgInit(Parse*); 3206 void sqlite3VtabArgExtend(Parse*, Token*); 3207 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3208 int sqlite3VtabCallConnect(Parse*, Table*); 3209 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3210 int sqlite3VtabBegin(sqlite3 *, VTable *); 3211 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3212 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3213 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3214 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3215 int sqlite3Reprepare(Vdbe*); 3216 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3217 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3218 int sqlite3TempInMemory(const sqlite3*); 3219 const char *sqlite3JournalModename(int); 3220 #ifndef SQLITE_OMIT_WAL 3221 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3222 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3223 #endif 3224 3225 /* Declarations for functions in fkey.c. All of these are replaced by 3226 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3227 ** key functionality is available. If OMIT_TRIGGER is defined but 3228 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3229 ** this case foreign keys are parsed, but no other functionality is 3230 ** provided (enforcement of FK constraints requires the triggers sub-system). 3231 */ 3232 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3233 void sqlite3FkCheck(Parse*, Table*, int, int); 3234 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3235 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3236 int sqlite3FkRequired(Parse*, Table*, int*, int); 3237 u32 sqlite3FkOldmask(Parse*, Table*); 3238 FKey *sqlite3FkReferences(Table *); 3239 #else 3240 #define sqlite3FkActions(a,b,c,d) 3241 #define sqlite3FkCheck(a,b,c,d) 3242 #define sqlite3FkDropTable(a,b,c) 3243 #define sqlite3FkOldmask(a,b) 0 3244 #define sqlite3FkRequired(a,b,c,d) 0 3245 #endif 3246 #ifndef SQLITE_OMIT_FOREIGN_KEY 3247 void sqlite3FkDelete(sqlite3 *, Table*); 3248 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3249 #else 3250 #define sqlite3FkDelete(a,b) 3251 #define sqlite3FkLocateIndex(a,b,c,d,e) 3252 #endif 3253 3254 3255 /* 3256 ** Available fault injectors. Should be numbered beginning with 0. 3257 */ 3258 #define SQLITE_FAULTINJECTOR_MALLOC 0 3259 #define SQLITE_FAULTINJECTOR_COUNT 1 3260 3261 /* 3262 ** The interface to the code in fault.c used for identifying "benign" 3263 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3264 ** is not defined. 3265 */ 3266 #ifndef SQLITE_OMIT_BUILTIN_TEST 3267 void sqlite3BeginBenignMalloc(void); 3268 void sqlite3EndBenignMalloc(void); 3269 #else 3270 #define sqlite3BeginBenignMalloc() 3271 #define sqlite3EndBenignMalloc() 3272 #endif 3273 3274 #define IN_INDEX_ROWID 1 3275 #define IN_INDEX_EPH 2 3276 #define IN_INDEX_INDEX_ASC 3 3277 #define IN_INDEX_INDEX_DESC 4 3278 int sqlite3FindInIndex(Parse *, Expr *, int*); 3279 3280 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3281 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3282 int sqlite3JournalSize(sqlite3_vfs *); 3283 int sqlite3JournalCreate(sqlite3_file *); 3284 int sqlite3JournalExists(sqlite3_file *p); 3285 #else 3286 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3287 #define sqlite3JournalExists(p) 1 3288 #endif 3289 3290 void sqlite3MemJournalOpen(sqlite3_file *); 3291 int sqlite3MemJournalSize(void); 3292 int sqlite3IsMemJournal(sqlite3_file *); 3293 3294 #if SQLITE_MAX_EXPR_DEPTH>0 3295 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3296 int sqlite3SelectExprHeight(Select *); 3297 int sqlite3ExprCheckHeight(Parse*, int); 3298 #else 3299 #define sqlite3ExprSetHeight(x,y) 3300 #define sqlite3SelectExprHeight(x) 0 3301 #define sqlite3ExprCheckHeight(x,y) 3302 #endif 3303 3304 u32 sqlite3Get4byte(const u8*); 3305 void sqlite3Put4byte(u8*, u32); 3306 3307 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3308 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3309 void sqlite3ConnectionUnlocked(sqlite3 *db); 3310 void sqlite3ConnectionClosed(sqlite3 *db); 3311 #else 3312 #define sqlite3ConnectionBlocked(x,y) 3313 #define sqlite3ConnectionUnlocked(x) 3314 #define sqlite3ConnectionClosed(x) 3315 #endif 3316 3317 #ifdef SQLITE_DEBUG 3318 void sqlite3ParserTrace(FILE*, char *); 3319 #endif 3320 3321 /* 3322 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3323 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3324 ** print I/O tracing messages. 3325 */ 3326 #ifdef SQLITE_ENABLE_IOTRACE 3327 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3328 void sqlite3VdbeIOTraceSql(Vdbe*); 3329 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3330 #else 3331 # define IOTRACE(A) 3332 # define sqlite3VdbeIOTraceSql(X) 3333 #endif 3334 3335 /* 3336 ** These routines are available for the mem2.c debugging memory allocator 3337 ** only. They are used to verify that different "types" of memory 3338 ** allocations are properly tracked by the system. 3339 ** 3340 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3341 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3342 ** a single bit set. 3343 ** 3344 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3345 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3346 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3347 ** 3348 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3349 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3350 ** 3351 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3352 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3353 ** it might have been allocated by lookaside, except the allocation was 3354 ** too large or lookaside was already full. It is important to verify 3355 ** that allocations that might have been satisfied by lookaside are not 3356 ** passed back to non-lookaside free() routines. Asserts such as the 3357 ** example above are placed on the non-lookaside free() routines to verify 3358 ** this constraint. 3359 ** 3360 ** All of this is no-op for a production build. It only comes into 3361 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3362 */ 3363 #ifdef SQLITE_MEMDEBUG 3364 void sqlite3MemdebugSetType(void*,u8); 3365 int sqlite3MemdebugHasType(void*,u8); 3366 int sqlite3MemdebugNoType(void*,u8); 3367 #else 3368 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3369 # define sqlite3MemdebugHasType(X,Y) 1 3370 # define sqlite3MemdebugNoType(X,Y) 1 3371 #endif 3372 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3373 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3374 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3375 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3376 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3377 3378 #endif /* _SQLITEINT_H_ */ 3379