1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.569 2007/05/16 17:28:43 danielk1977 Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 #include "limits.h" 19 20 21 #if defined(SQLITE_TCL) || defined(TCLSH) 22 # include <tcl.h> 23 #endif 24 25 /* 26 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 27 ** Setting NDEBUG makes the code smaller and run faster. So the following 28 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 29 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 30 ** feature. 31 */ 32 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 33 # define NDEBUG 1 34 #endif 35 36 /* 37 ** These #defines should enable >2GB file support on Posix if the 38 ** underlying operating system supports it. If the OS lacks 39 ** large file support, or if the OS is windows, these should be no-ops. 40 ** 41 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 42 ** on the compiler command line. This is necessary if you are compiling 43 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 44 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 45 ** without this option, LFS is enable. But LFS does not exist in the kernel 46 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 47 ** portability you should omit LFS. 48 ** 49 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 50 */ 51 #ifndef SQLITE_DISABLE_LFS 52 # define _LARGE_FILE 1 53 # ifndef _FILE_OFFSET_BITS 54 # define _FILE_OFFSET_BITS 64 55 # endif 56 # define _LARGEFILE_SOURCE 1 57 #endif 58 59 #include "sqlite3.h" 60 #include "hash.h" 61 #include "parse.h" 62 #include <stdio.h> 63 #include <stdlib.h> 64 #include <string.h> 65 #include <assert.h> 66 #include <stddef.h> 67 68 /* 69 ** If compiling for a processor that lacks floating point support, 70 ** substitute integer for floating-point 71 */ 72 #ifdef SQLITE_OMIT_FLOATING_POINT 73 # define double sqlite_int64 74 # define LONGDOUBLE_TYPE sqlite_int64 75 # ifndef SQLITE_BIG_DBL 76 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 77 # endif 78 # define SQLITE_OMIT_DATETIME_FUNCS 1 79 # define SQLITE_OMIT_TRACE 1 80 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 81 #endif 82 #ifndef SQLITE_BIG_DBL 83 # define SQLITE_BIG_DBL (1e99) 84 #endif 85 86 /* 87 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 88 ** afterward. Having this macro allows us to cause the C compiler 89 ** to omit code used by TEMP tables without messy #ifndef statements. 90 */ 91 #ifdef SQLITE_OMIT_TEMPDB 92 #define OMIT_TEMPDB 1 93 #else 94 #define OMIT_TEMPDB 0 95 #endif 96 97 /* 98 ** If the following macro is set to 1, then NULL values are considered 99 ** distinct when determining whether or not two entries are the same 100 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 101 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 102 ** is the way things are suppose to work. 103 ** 104 ** If the following macro is set to 0, the NULLs are indistinct for 105 ** a UNIQUE index. In this mode, you can only have a single NULL entry 106 ** for a column declared UNIQUE. This is the way Informix and SQL Server 107 ** work. 108 */ 109 #define NULL_DISTINCT_FOR_UNIQUE 1 110 111 /* 112 ** The "file format" number is an integer that is incremented whenever 113 ** the VDBE-level file format changes. The following macros define the 114 ** the default file format for new databases and the maximum file format 115 ** that the library can read. 116 */ 117 #define SQLITE_MAX_FILE_FORMAT 4 118 #ifndef SQLITE_DEFAULT_FILE_FORMAT 119 # define SQLITE_DEFAULT_FILE_FORMAT 1 120 #endif 121 122 /* 123 ** Provide a default value for TEMP_STORE in case it is not specified 124 ** on the command-line 125 */ 126 #ifndef TEMP_STORE 127 # define TEMP_STORE 1 128 #endif 129 130 /* 131 ** GCC does not define the offsetof() macro so we'll have to do it 132 ** ourselves. 133 */ 134 #ifndef offsetof 135 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 136 #endif 137 138 /* 139 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 140 ** not, there are still machines out there that use EBCDIC.) 141 */ 142 #if 'A' == '\301' 143 # define SQLITE_EBCDIC 1 144 #else 145 # define SQLITE_ASCII 1 146 #endif 147 148 /* 149 ** Integers of known sizes. These typedefs might change for architectures 150 ** where the sizes very. Preprocessor macros are available so that the 151 ** types can be conveniently redefined at compile-type. Like this: 152 ** 153 ** cc '-DUINTPTR_TYPE=long long int' ... 154 */ 155 #ifndef UINT32_TYPE 156 # define UINT32_TYPE unsigned int 157 #endif 158 #ifndef UINT16_TYPE 159 # define UINT16_TYPE unsigned short int 160 #endif 161 #ifndef INT16_TYPE 162 # define INT16_TYPE short int 163 #endif 164 #ifndef UINT8_TYPE 165 # define UINT8_TYPE unsigned char 166 #endif 167 #ifndef INT8_TYPE 168 # define INT8_TYPE signed char 169 #endif 170 #ifndef LONGDOUBLE_TYPE 171 # define LONGDOUBLE_TYPE long double 172 #endif 173 typedef sqlite_int64 i64; /* 8-byte signed integer */ 174 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 175 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 176 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 177 typedef INT16_TYPE i16; /* 2-byte signed integer */ 178 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 179 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 180 181 /* 182 ** Macros to determine whether the machine is big or little endian, 183 ** evaluated at runtime. 184 */ 185 extern const int sqlite3one; 186 #if defined(i386) || defined(__i386__) || defined(_M_IX86) 187 # define SQLITE_BIGENDIAN 0 188 # define SQLITE_LITTLEENDIAN 1 189 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 190 #else 191 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 192 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 193 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 194 #endif 195 196 /* 197 ** An instance of the following structure is used to store the busy-handler 198 ** callback for a given sqlite handle. 199 ** 200 ** The sqlite.busyHandler member of the sqlite struct contains the busy 201 ** callback for the database handle. Each pager opened via the sqlite 202 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 203 ** callback is currently invoked only from within pager.c. 204 */ 205 typedef struct BusyHandler BusyHandler; 206 struct BusyHandler { 207 int (*xFunc)(void *,int); /* The busy callback */ 208 void *pArg; /* First arg to busy callback */ 209 int nBusy; /* Incremented with each busy call */ 210 }; 211 212 /* 213 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 214 ** "BusyHandler typedefs. 215 */ 216 #include "vdbe.h" 217 #include "btree.h" 218 #include "pager.h" 219 220 #ifdef SQLITE_MEMDEBUG 221 /* 222 ** The following global variables are used for testing and debugging 223 ** only. They only work if SQLITE_MEMDEBUG is defined. 224 */ 225 extern int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ 226 extern int sqlite3_nFree; /* Number of sqliteFree() calls */ 227 extern int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ 228 extern int sqlite3_iMallocReset; /* Set iMallocFail to this when it reaches 0 */ 229 230 extern void *sqlite3_pFirst; /* Pointer to linked list of allocations */ 231 extern int sqlite3_nMaxAlloc; /* High water mark of ThreadData.nAlloc */ 232 extern int sqlite3_mallocDisallowed; /* assert() in sqlite3Malloc() if set */ 233 extern int sqlite3_isFail; /* True if all malloc calls should fail */ 234 extern const char *sqlite3_zFile; /* Filename to associate debug info with */ 235 extern int sqlite3_iLine; /* Line number for debug info */ 236 237 #define ENTER_MALLOC (sqlite3_zFile = __FILE__, sqlite3_iLine = __LINE__) 238 #define sqliteMalloc(x) (ENTER_MALLOC, sqlite3Malloc(x,1)) 239 #define sqliteMallocRaw(x) (ENTER_MALLOC, sqlite3MallocRaw(x,1)) 240 #define sqliteRealloc(x,y) (ENTER_MALLOC, sqlite3Realloc(x,y)) 241 #define sqliteStrDup(x) (ENTER_MALLOC, sqlite3StrDup(x)) 242 #define sqliteStrNDup(x,y) (ENTER_MALLOC, sqlite3StrNDup(x,y)) 243 #define sqliteReallocOrFree(x,y) (ENTER_MALLOC, sqlite3ReallocOrFree(x,y)) 244 245 #else 246 247 #define ENTER_MALLOC 0 248 #define sqliteMalloc(x) sqlite3Malloc(x,1) 249 #define sqliteMallocRaw(x) sqlite3MallocRaw(x,1) 250 #define sqliteRealloc(x,y) sqlite3Realloc(x,y) 251 #define sqliteStrDup(x) sqlite3StrDup(x) 252 #define sqliteStrNDup(x,y) sqlite3StrNDup(x,y) 253 #define sqliteReallocOrFree(x,y) sqlite3ReallocOrFree(x,y) 254 255 #endif 256 257 /* Variable sqlite3_mallocHasFailed is set to true after a malloc() 258 ** failure occurs. 259 ** 260 ** The sqlite3MallocFailed() macro returns true if a malloc has failed 261 ** in this thread since the last call to sqlite3ApiExit(), or false 262 ** otherwise. 263 */ 264 extern int sqlite3_mallocHasFailed; 265 #define sqlite3MallocFailed() (sqlite3_mallocHasFailed && sqlite3OsInMutex(1)) 266 267 #define sqliteFree(x) sqlite3FreeX(x) 268 #define sqliteAllocSize(x) sqlite3AllocSize(x) 269 270 /* 271 ** An instance of this structure might be allocated to store information 272 ** specific to a single thread. 273 */ 274 struct ThreadData { 275 int dummy; /* So that this structure is never empty */ 276 277 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 278 int nSoftHeapLimit; /* Suggested max mem allocation. No limit if <0 */ 279 int nAlloc; /* Number of bytes currently allocated */ 280 Pager *pPager; /* Linked list of all pagers in this thread */ 281 #endif 282 283 #ifndef SQLITE_OMIT_SHARED_CACHE 284 u8 useSharedData; /* True if shared pagers and schemas are enabled */ 285 BtShared *pBtree; /* Linked list of all currently open BTrees */ 286 #endif 287 }; 288 289 /* 290 ** Name of the master database table. The master database table 291 ** is a special table that holds the names and attributes of all 292 ** user tables and indices. 293 */ 294 #define MASTER_NAME "sqlite_master" 295 #define TEMP_MASTER_NAME "sqlite_temp_master" 296 297 /* 298 ** The root-page of the master database table. 299 */ 300 #define MASTER_ROOT 1 301 302 /* 303 ** The name of the schema table. 304 */ 305 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 306 307 /* 308 ** A convenience macro that returns the number of elements in 309 ** an array. 310 */ 311 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 312 313 /* 314 ** Forward references to structures 315 */ 316 typedef struct AggInfo AggInfo; 317 typedef struct AuthContext AuthContext; 318 typedef struct CollSeq CollSeq; 319 typedef struct Column Column; 320 typedef struct Db Db; 321 typedef struct Schema Schema; 322 typedef struct Expr Expr; 323 typedef struct ExprList ExprList; 324 typedef struct FKey FKey; 325 typedef struct FuncDef FuncDef; 326 typedef struct IdList IdList; 327 typedef struct Index Index; 328 typedef struct KeyClass KeyClass; 329 typedef struct KeyInfo KeyInfo; 330 typedef struct Module Module; 331 typedef struct NameContext NameContext; 332 typedef struct Parse Parse; 333 typedef struct Select Select; 334 typedef struct SrcList SrcList; 335 typedef struct ThreadData ThreadData; 336 typedef struct Table Table; 337 typedef struct TableLock TableLock; 338 typedef struct Token Token; 339 typedef struct TriggerStack TriggerStack; 340 typedef struct TriggerStep TriggerStep; 341 typedef struct Trigger Trigger; 342 typedef struct WhereInfo WhereInfo; 343 typedef struct WhereLevel WhereLevel; 344 345 #include "os.h" 346 347 /* 348 ** Each database file to be accessed by the system is an instance 349 ** of the following structure. There are normally two of these structures 350 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 351 ** aDb[1] is the database file used to hold temporary tables. Additional 352 ** databases may be attached. 353 */ 354 struct Db { 355 char *zName; /* Name of this database */ 356 Btree *pBt; /* The B*Tree structure for this database file */ 357 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 358 u8 safety_level; /* How aggressive at synching data to disk */ 359 void *pAux; /* Auxiliary data. Usually NULL */ 360 void (*xFreeAux)(void*); /* Routine to free pAux */ 361 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 362 }; 363 364 /* 365 ** An instance of the following structure stores a database schema. 366 ** 367 ** If there are no virtual tables configured in this schema, the 368 ** Schema.db variable is set to NULL. After the first virtual table 369 ** has been added, it is set to point to the database connection 370 ** used to create the connection. Once a virtual table has been 371 ** added to the Schema structure and the Schema.db variable populated, 372 ** only that database connection may use the Schema to prepare 373 ** statements. 374 */ 375 struct Schema { 376 int schema_cookie; /* Database schema version number for this file */ 377 Hash tblHash; /* All tables indexed by name */ 378 Hash idxHash; /* All (named) indices indexed by name */ 379 Hash trigHash; /* All triggers indexed by name */ 380 Hash aFKey; /* Foreign keys indexed by to-table */ 381 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 382 u8 file_format; /* Schema format version for this file */ 383 u8 enc; /* Text encoding used by this database */ 384 u16 flags; /* Flags associated with this schema */ 385 int cache_size; /* Number of pages to use in the cache */ 386 #ifndef SQLITE_OMIT_VIRTUALTABLE 387 sqlite3 *db; /* "Owner" connection. See comment above */ 388 #endif 389 }; 390 391 /* 392 ** These macros can be used to test, set, or clear bits in the 393 ** Db.flags field. 394 */ 395 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 396 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 397 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 398 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 399 400 /* 401 ** Allowed values for the DB.flags field. 402 ** 403 ** The DB_SchemaLoaded flag is set after the database schema has been 404 ** read into internal hash tables. 405 ** 406 ** DB_UnresetViews means that one or more views have column names that 407 ** have been filled out. If the schema changes, these column names might 408 ** changes and so the view will need to be reset. 409 */ 410 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 411 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 412 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 413 414 415 /* 416 ** Each database is an instance of the following structure. 417 ** 418 ** The sqlite.lastRowid records the last insert rowid generated by an 419 ** insert statement. Inserts on views do not affect its value. Each 420 ** trigger has its own context, so that lastRowid can be updated inside 421 ** triggers as usual. The previous value will be restored once the trigger 422 ** exits. Upon entering a before or instead of trigger, lastRowid is no 423 ** longer (since after version 2.8.12) reset to -1. 424 ** 425 ** The sqlite.nChange does not count changes within triggers and keeps no 426 ** context. It is reset at start of sqlite3_exec. 427 ** The sqlite.lsChange represents the number of changes made by the last 428 ** insert, update, or delete statement. It remains constant throughout the 429 ** length of a statement and is then updated by OP_SetCounts. It keeps a 430 ** context stack just like lastRowid so that the count of changes 431 ** within a trigger is not seen outside the trigger. Changes to views do not 432 ** affect the value of lsChange. 433 ** The sqlite.csChange keeps track of the number of current changes (since 434 ** the last statement) and is used to update sqlite_lsChange. 435 ** 436 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 437 ** store the most recent error code and, if applicable, string. The 438 ** internal function sqlite3Error() is used to set these variables 439 ** consistently. 440 */ 441 struct sqlite3 { 442 int nDb; /* Number of backends currently in use */ 443 Db *aDb; /* All backends */ 444 int flags; /* Miscellanous flags. See below */ 445 int errCode; /* Most recent error code (SQLITE_*) */ 446 int errMask; /* & result codes with this before returning */ 447 u8 autoCommit; /* The auto-commit flag. */ 448 u8 temp_store; /* 1: file 2: memory 0: default */ 449 int nTable; /* Number of tables in the database */ 450 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 451 i64 lastRowid; /* ROWID of most recent insert (see above) */ 452 i64 priorNewRowid; /* Last randomly generated ROWID */ 453 int magic; /* Magic number for detect library misuse */ 454 int nChange; /* Value returned by sqlite3_changes() */ 455 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 456 struct sqlite3InitInfo { /* Information used during initialization */ 457 int iDb; /* When back is being initialized */ 458 int newTnum; /* Rootpage of table being initialized */ 459 u8 busy; /* TRUE if currently initializing */ 460 } init; 461 int nExtension; /* Number of loaded extensions */ 462 void **aExtension; /* Array of shared libraray handles */ 463 struct Vdbe *pVdbe; /* List of active virtual machines */ 464 int activeVdbeCnt; /* Number of vdbes currently executing */ 465 void (*xTrace)(void*,const char*); /* Trace function */ 466 void *pTraceArg; /* Argument to the trace function */ 467 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 468 void *pProfileArg; /* Argument to profile function */ 469 void *pCommitArg; /* Argument to xCommitCallback() */ 470 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 471 void *pRollbackArg; /* Argument to xRollbackCallback() */ 472 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 473 void *pUpdateArg; 474 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 475 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 476 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 477 void *pCollNeededArg; 478 sqlite3_value *pErr; /* Most recent error message */ 479 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 480 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 481 union { 482 int isInterrupted; /* True if sqlite3_interrupt has been called */ 483 double notUsed1; /* Spacer */ 484 } u1; 485 #ifndef SQLITE_OMIT_AUTHORIZATION 486 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 487 /* Access authorization function */ 488 void *pAuthArg; /* 1st argument to the access auth function */ 489 #endif 490 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 491 int (*xProgress)(void *); /* The progress callback */ 492 void *pProgressArg; /* Argument to the progress callback */ 493 int nProgressOps; /* Number of opcodes for progress callback */ 494 #endif 495 #ifndef SQLITE_OMIT_VIRTUALTABLE 496 Hash aModule; /* populated by sqlite3_create_module() */ 497 Table *pVTab; /* vtab with active Connect/Create method */ 498 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 499 int nVTrans; /* Allocated size of aVTrans */ 500 #endif 501 Hash aFunc; /* All functions that can be in SQL exprs */ 502 Hash aCollSeq; /* All collating sequences */ 503 BusyHandler busyHandler; /* Busy callback */ 504 int busyTimeout; /* Busy handler timeout, in msec */ 505 Db aDbStatic[2]; /* Static space for the 2 default backends */ 506 #ifdef SQLITE_SSE 507 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 508 #endif 509 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 510 }; 511 512 /* 513 ** A macro to discover the encoding of a database. 514 */ 515 #define ENC(db) ((db)->aDb[0].pSchema->enc) 516 517 /* 518 ** Possible values for the sqlite.flags and or Db.flags fields. 519 ** 520 ** On sqlite.flags, the SQLITE_InTrans value means that we have 521 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 522 ** transaction is active on that particular database file. 523 */ 524 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 525 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 526 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 527 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 528 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 529 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 530 /* DELETE, or UPDATE and return */ 531 /* the count using a callback. */ 532 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 533 /* result set is empty */ 534 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 535 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 536 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 537 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 538 ** accessing read-only databases */ 539 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 540 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 541 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 542 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 543 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 544 545 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 546 547 /* 548 ** Possible values for the sqlite.magic field. 549 ** The numbers are obtained at random and have no special meaning, other 550 ** than being distinct from one another. 551 */ 552 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 553 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 554 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 555 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 556 557 /* 558 ** Each SQL function is defined by an instance of the following 559 ** structure. A pointer to this structure is stored in the sqlite.aFunc 560 ** hash table. When multiple functions have the same name, the hash table 561 ** points to a linked list of these structures. 562 */ 563 struct FuncDef { 564 i16 nArg; /* Number of arguments. -1 means unlimited */ 565 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 566 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 567 u8 flags; /* Some combination of SQLITE_FUNC_* */ 568 void *pUserData; /* User data parameter */ 569 FuncDef *pNext; /* Next function with same name */ 570 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 571 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 572 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 573 char zName[1]; /* SQL name of the function. MUST BE LAST */ 574 }; 575 576 /* 577 ** Each SQLite module (virtual table definition) is defined by an 578 ** instance of the following structure, stored in the sqlite3.aModule 579 ** hash table. 580 */ 581 struct Module { 582 const sqlite3_module *pModule; /* Callback pointers */ 583 const char *zName; /* Name passed to create_module() */ 584 void *pAux; /* pAux passed to create_module() */ 585 }; 586 587 /* 588 ** Possible values for FuncDef.flags 589 */ 590 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 591 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 592 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ 593 594 /* 595 ** information about each column of an SQL table is held in an instance 596 ** of this structure. 597 */ 598 struct Column { 599 char *zName; /* Name of this column */ 600 Expr *pDflt; /* Default value of this column */ 601 char *zType; /* Data type for this column */ 602 char *zColl; /* Collating sequence. If NULL, use the default */ 603 u8 notNull; /* True if there is a NOT NULL constraint */ 604 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 605 char affinity; /* One of the SQLITE_AFF_... values */ 606 }; 607 608 /* 609 ** A "Collating Sequence" is defined by an instance of the following 610 ** structure. Conceptually, a collating sequence consists of a name and 611 ** a comparison routine that defines the order of that sequence. 612 ** 613 ** There may two seperate implementations of the collation function, one 614 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 615 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 616 ** native byte order. When a collation sequence is invoked, SQLite selects 617 ** the version that will require the least expensive encoding 618 ** translations, if any. 619 ** 620 ** The CollSeq.pUser member variable is an extra parameter that passed in 621 ** as the first argument to the UTF-8 comparison function, xCmp. 622 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 623 ** xCmp16. 624 ** 625 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 626 ** collating sequence is undefined. Indices built on an undefined 627 ** collating sequence may not be read or written. 628 */ 629 struct CollSeq { 630 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 631 u8 enc; /* Text encoding handled by xCmp() */ 632 u8 type; /* One of the SQLITE_COLL_... values below */ 633 void *pUser; /* First argument to xCmp() */ 634 int (*xCmp)(void*,int, const void*, int, const void*); 635 void (*xDel)(void*); /* Destructor for pUser */ 636 }; 637 638 /* 639 ** Allowed values of CollSeq flags: 640 */ 641 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 642 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 643 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 644 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 645 646 /* 647 ** A sort order can be either ASC or DESC. 648 */ 649 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 650 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 651 652 /* 653 ** Column affinity types. 654 ** 655 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 656 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 657 ** the speed a little by number the values consecutively. 658 ** 659 ** But rather than start with 0 or 1, we begin with 'a'. That way, 660 ** when multiple affinity types are concatenated into a string and 661 ** used as the P3 operand, they will be more readable. 662 ** 663 ** Note also that the numeric types are grouped together so that testing 664 ** for a numeric type is a single comparison. 665 */ 666 #define SQLITE_AFF_TEXT 'a' 667 #define SQLITE_AFF_NONE 'b' 668 #define SQLITE_AFF_NUMERIC 'c' 669 #define SQLITE_AFF_INTEGER 'd' 670 #define SQLITE_AFF_REAL 'e' 671 672 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 673 674 /* 675 ** Each SQL table is represented in memory by an instance of the 676 ** following structure. 677 ** 678 ** Table.zName is the name of the table. The case of the original 679 ** CREATE TABLE statement is stored, but case is not significant for 680 ** comparisons. 681 ** 682 ** Table.nCol is the number of columns in this table. Table.aCol is a 683 ** pointer to an array of Column structures, one for each column. 684 ** 685 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 686 ** the column that is that key. Otherwise Table.iPKey is negative. Note 687 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 688 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 689 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 690 ** is generated for each row of the table. Table.hasPrimKey is true if 691 ** the table has any PRIMARY KEY, INTEGER or otherwise. 692 ** 693 ** Table.tnum is the page number for the root BTree page of the table in the 694 ** database file. If Table.iDb is the index of the database table backend 695 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 696 ** holds temporary tables and indices. If Table.isEphem 697 ** is true, then the table is stored in a file that is automatically deleted 698 ** when the VDBE cursor to the table is closed. In this case Table.tnum 699 ** refers VDBE cursor number that holds the table open, not to the root 700 ** page number. Transient tables are used to hold the results of a 701 ** sub-query that appears instead of a real table name in the FROM clause 702 ** of a SELECT statement. 703 */ 704 struct Table { 705 char *zName; /* Name of the table */ 706 int nCol; /* Number of columns in this table */ 707 Column *aCol; /* Information about each column */ 708 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 709 Index *pIndex; /* List of SQL indexes on this table. */ 710 int tnum; /* Root BTree node for this table (see note above) */ 711 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 712 int nRef; /* Number of pointers to this Table */ 713 Trigger *pTrigger; /* List of SQL triggers on this table */ 714 FKey *pFKey; /* Linked list of all foreign keys in this table */ 715 char *zColAff; /* String defining the affinity of each column */ 716 #ifndef SQLITE_OMIT_CHECK 717 Expr *pCheck; /* The AND of all CHECK constraints */ 718 #endif 719 #ifndef SQLITE_OMIT_ALTERTABLE 720 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 721 #endif 722 u8 readOnly; /* True if this table should not be written by the user */ 723 u8 isEphem; /* True if created using OP_OpenEphermeral */ 724 u8 hasPrimKey; /* True if there exists a primary key */ 725 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 726 u8 autoInc; /* True if the integer primary key is autoincrement */ 727 #ifndef SQLITE_OMIT_VIRTUALTABLE 728 u8 isVirtual; /* True if this is a virtual table */ 729 u8 isCommit; /* True once the CREATE TABLE has been committed */ 730 Module *pMod; /* Pointer to the implementation of the module */ 731 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 732 int nModuleArg; /* Number of arguments to the module */ 733 char **azModuleArg; /* Text of all module args. [0] is module name */ 734 #endif 735 Schema *pSchema; 736 }; 737 738 /* 739 ** Test to see whether or not a table is a virtual table. This is 740 ** done as a macro so that it will be optimized out when virtual 741 ** table support is omitted from the build. 742 */ 743 #ifndef SQLITE_OMIT_VIRTUALTABLE 744 # define IsVirtual(X) ((X)->isVirtual) 745 #else 746 # define IsVirtual(X) 0 747 #endif 748 749 /* 750 ** Each foreign key constraint is an instance of the following structure. 751 ** 752 ** A foreign key is associated with two tables. The "from" table is 753 ** the table that contains the REFERENCES clause that creates the foreign 754 ** key. The "to" table is the table that is named in the REFERENCES clause. 755 ** Consider this example: 756 ** 757 ** CREATE TABLE ex1( 758 ** a INTEGER PRIMARY KEY, 759 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 760 ** ); 761 ** 762 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 763 ** 764 ** Each REFERENCES clause generates an instance of the following structure 765 ** which is attached to the from-table. The to-table need not exist when 766 ** the from-table is created. The existance of the to-table is not checked 767 ** until an attempt is made to insert data into the from-table. 768 ** 769 ** The sqlite.aFKey hash table stores pointers to this structure 770 ** given the name of a to-table. For each to-table, all foreign keys 771 ** associated with that table are on a linked list using the FKey.pNextTo 772 ** field. 773 */ 774 struct FKey { 775 Table *pFrom; /* The table that constains the REFERENCES clause */ 776 FKey *pNextFrom; /* Next foreign key in pFrom */ 777 char *zTo; /* Name of table that the key points to */ 778 FKey *pNextTo; /* Next foreign key that points to zTo */ 779 int nCol; /* Number of columns in this key */ 780 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 781 int iFrom; /* Index of column in pFrom */ 782 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 783 } *aCol; /* One entry for each of nCol column s */ 784 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 785 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 786 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 787 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 788 }; 789 790 /* 791 ** SQLite supports many different ways to resolve a contraint 792 ** error. ROLLBACK processing means that a constraint violation 793 ** causes the operation in process to fail and for the current transaction 794 ** to be rolled back. ABORT processing means the operation in process 795 ** fails and any prior changes from that one operation are backed out, 796 ** but the transaction is not rolled back. FAIL processing means that 797 ** the operation in progress stops and returns an error code. But prior 798 ** changes due to the same operation are not backed out and no rollback 799 ** occurs. IGNORE means that the particular row that caused the constraint 800 ** error is not inserted or updated. Processing continues and no error 801 ** is returned. REPLACE means that preexisting database rows that caused 802 ** a UNIQUE constraint violation are removed so that the new insert or 803 ** update can proceed. Processing continues and no error is reported. 804 ** 805 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 806 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 807 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 808 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 809 ** referenced table row is propagated into the row that holds the 810 ** foreign key. 811 ** 812 ** The following symbolic values are used to record which type 813 ** of action to take. 814 */ 815 #define OE_None 0 /* There is no constraint to check */ 816 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 817 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 818 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 819 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 820 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 821 822 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 823 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 824 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 825 #define OE_Cascade 9 /* Cascade the changes */ 826 827 #define OE_Default 99 /* Do whatever the default action is */ 828 829 830 /* 831 ** An instance of the following structure is passed as the first 832 ** argument to sqlite3VdbeKeyCompare and is used to control the 833 ** comparison of the two index keys. 834 ** 835 ** If the KeyInfo.incrKey value is true and the comparison would 836 ** otherwise be equal, then return a result as if the second key 837 ** were larger. 838 */ 839 struct KeyInfo { 840 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 841 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 842 int nField; /* Number of entries in aColl[] */ 843 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 844 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 845 }; 846 847 /* 848 ** Each SQL index is represented in memory by an 849 ** instance of the following structure. 850 ** 851 ** The columns of the table that are to be indexed are described 852 ** by the aiColumn[] field of this structure. For example, suppose 853 ** we have the following table and index: 854 ** 855 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 856 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 857 ** 858 ** In the Table structure describing Ex1, nCol==3 because there are 859 ** three columns in the table. In the Index structure describing 860 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 861 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 862 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 863 ** The second column to be indexed (c1) has an index of 0 in 864 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 865 ** 866 ** The Index.onError field determines whether or not the indexed columns 867 ** must be unique and what to do if they are not. When Index.onError=OE_None, 868 ** it means this is not a unique index. Otherwise it is a unique index 869 ** and the value of Index.onError indicate the which conflict resolution 870 ** algorithm to employ whenever an attempt is made to insert a non-unique 871 ** element. 872 */ 873 struct Index { 874 char *zName; /* Name of this index */ 875 int nColumn; /* Number of columns in the table used by this index */ 876 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 877 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 878 Table *pTable; /* The SQL table being indexed */ 879 int tnum; /* Page containing root of this index in database file */ 880 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 881 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 882 char *zColAff; /* String defining the affinity of each column */ 883 Index *pNext; /* The next index associated with the same table */ 884 Schema *pSchema; /* Schema containing this index */ 885 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 886 char **azColl; /* Array of collation sequence names for index */ 887 }; 888 889 /* 890 ** Each token coming out of the lexer is an instance of 891 ** this structure. Tokens are also used as part of an expression. 892 ** 893 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 894 ** may contain random values. Do not make any assuptions about Token.dyn 895 ** and Token.n when Token.z==0. 896 */ 897 struct Token { 898 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 899 unsigned dyn : 1; /* True for malloced memory, false for static */ 900 unsigned n : 31; /* Number of characters in this token */ 901 }; 902 903 /* 904 ** An instance of this structure contains information needed to generate 905 ** code for a SELECT that contains aggregate functions. 906 ** 907 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 908 ** pointer to this structure. The Expr.iColumn field is the index in 909 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 910 ** code for that node. 911 ** 912 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 913 ** original Select structure that describes the SELECT statement. These 914 ** fields do not need to be freed when deallocating the AggInfo structure. 915 */ 916 struct AggInfo { 917 u8 directMode; /* Direct rendering mode means take data directly 918 ** from source tables rather than from accumulators */ 919 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 920 ** than the source table */ 921 int sortingIdx; /* Cursor number of the sorting index */ 922 ExprList *pGroupBy; /* The group by clause */ 923 int nSortingColumn; /* Number of columns in the sorting index */ 924 struct AggInfo_col { /* For each column used in source tables */ 925 Table *pTab; /* Source table */ 926 int iTable; /* Cursor number of the source table */ 927 int iColumn; /* Column number within the source table */ 928 int iSorterColumn; /* Column number in the sorting index */ 929 int iMem; /* Memory location that acts as accumulator */ 930 Expr *pExpr; /* The original expression */ 931 } *aCol; 932 int nColumn; /* Number of used entries in aCol[] */ 933 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 934 int nAccumulator; /* Number of columns that show through to the output. 935 ** Additional columns are used only as parameters to 936 ** aggregate functions */ 937 struct AggInfo_func { /* For each aggregate function */ 938 Expr *pExpr; /* Expression encoding the function */ 939 FuncDef *pFunc; /* The aggregate function implementation */ 940 int iMem; /* Memory location that acts as accumulator */ 941 int iDistinct; /* Ephermeral table used to enforce DISTINCT */ 942 } *aFunc; 943 int nFunc; /* Number of entries in aFunc[] */ 944 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 945 }; 946 947 /* 948 ** Each node of an expression in the parse tree is an instance 949 ** of this structure. 950 ** 951 ** Expr.op is the opcode. The integer parser token codes are reused 952 ** as opcodes here. For example, the parser defines TK_GE to be an integer 953 ** code representing the ">=" operator. This same integer code is reused 954 ** to represent the greater-than-or-equal-to operator in the expression 955 ** tree. 956 ** 957 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 958 ** of argument if the expression is a function. 959 ** 960 ** Expr.token is the operator token for this node. For some expressions 961 ** that have subexpressions, Expr.token can be the complete text that gave 962 ** rise to the Expr. In the latter case, the token is marked as being 963 ** a compound token. 964 ** 965 ** An expression of the form ID or ID.ID refers to a column in a table. 966 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 967 ** the integer cursor number of a VDBE cursor pointing to that table and 968 ** Expr.iColumn is the column number for the specific column. If the 969 ** expression is used as a result in an aggregate SELECT, then the 970 ** value is also stored in the Expr.iAgg column in the aggregate so that 971 ** it can be accessed after all aggregates are computed. 972 ** 973 ** If the expression is a function, the Expr.iTable is an integer code 974 ** representing which function. If the expression is an unbound variable 975 ** marker (a question mark character '?' in the original SQL) then the 976 ** Expr.iTable holds the index number for that variable. 977 ** 978 ** If the expression is a subquery then Expr.iColumn holds an integer 979 ** register number containing the result of the subquery. If the 980 ** subquery gives a constant result, then iTable is -1. If the subquery 981 ** gives a different answer at different times during statement processing 982 ** then iTable is the address of a subroutine that computes the subquery. 983 ** 984 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 985 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 986 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 987 ** operand. 988 ** 989 ** If the Expr is of type OP_Column, and the table it is selecting from 990 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 991 ** corresponding table definition. 992 */ 993 struct Expr { 994 u8 op; /* Operation performed by this node */ 995 char affinity; /* The affinity of the column or 0 if not a column */ 996 u16 flags; /* Various flags. See below */ 997 CollSeq *pColl; /* The collation type of the column or 0 */ 998 Expr *pLeft, *pRight; /* Left and right subnodes */ 999 ExprList *pList; /* A list of expressions used as function arguments 1000 ** or in "<expr> IN (<expr-list)" */ 1001 Token token; /* An operand token */ 1002 Token span; /* Complete text of the expression */ 1003 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 1004 ** iColumn-th field of the iTable-th table. */ 1005 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1006 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1007 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1008 Select *pSelect; /* When the expression is a sub-select. Also the 1009 ** right side of "<expr> IN (<select>)" */ 1010 Table *pTab; /* Table for OP_Column expressions. */ 1011 Schema *pSchema; 1012 #if SQLITE_MAX_EXPR_DEPTH>0 1013 int nHeight; /* Height of the tree headed by this node */ 1014 #endif 1015 }; 1016 1017 /* 1018 ** The following are the meanings of bits in the Expr.flags field. 1019 */ 1020 #define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */ 1021 #define EP_Agg 0x02 /* Contains one or more aggregate functions */ 1022 #define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */ 1023 #define EP_Error 0x08 /* Expression contains one or more errors */ 1024 #define EP_Distinct 0x10 /* Aggregate function with DISTINCT keyword */ 1025 #define EP_VarSelect 0x20 /* pSelect is correlated, not constant */ 1026 #define EP_Dequoted 0x40 /* True if the string has been dequoted */ 1027 #define EP_InfixFunc 0x80 /* True for an infix function: LIKE, GLOB, etc */ 1028 #define EP_ExpCollate 0x100 /* Collating sequence specified explicitly */ 1029 1030 /* 1031 ** These macros can be used to test, set, or clear bits in the 1032 ** Expr.flags field. 1033 */ 1034 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1035 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1036 #define ExprSetProperty(E,P) (E)->flags|=(P) 1037 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1038 1039 /* 1040 ** A list of expressions. Each expression may optionally have a 1041 ** name. An expr/name combination can be used in several ways, such 1042 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1043 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1044 ** also be used as the argument to a function, in which case the a.zName 1045 ** field is not used. 1046 */ 1047 struct ExprList { 1048 int nExpr; /* Number of expressions on the list */ 1049 int nAlloc; /* Number of entries allocated below */ 1050 int iECursor; /* VDBE Cursor associated with this ExprList */ 1051 struct ExprList_item { 1052 Expr *pExpr; /* The list of expressions */ 1053 char *zName; /* Token associated with this expression */ 1054 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1055 u8 isAgg; /* True if this is an aggregate like count(*) */ 1056 u8 done; /* A flag to indicate when processing is finished */ 1057 } *a; /* One entry for each expression */ 1058 }; 1059 1060 /* 1061 ** An instance of this structure can hold a simple list of identifiers, 1062 ** such as the list "a,b,c" in the following statements: 1063 ** 1064 ** INSERT INTO t(a,b,c) VALUES ...; 1065 ** CREATE INDEX idx ON t(a,b,c); 1066 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1067 ** 1068 ** The IdList.a.idx field is used when the IdList represents the list of 1069 ** column names after a table name in an INSERT statement. In the statement 1070 ** 1071 ** INSERT INTO t(a,b,c) ... 1072 ** 1073 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1074 */ 1075 struct IdList { 1076 struct IdList_item { 1077 char *zName; /* Name of the identifier */ 1078 int idx; /* Index in some Table.aCol[] of a column named zName */ 1079 } *a; 1080 int nId; /* Number of identifiers on the list */ 1081 int nAlloc; /* Number of entries allocated for a[] below */ 1082 }; 1083 1084 /* 1085 ** The bitmask datatype defined below is used for various optimizations. 1086 ** 1087 ** Changing this from a 64-bit to a 32-bit type limits the number of 1088 ** tables in a join to 32 instead of 64. But it also reduces the size 1089 ** of the library by 738 bytes on ix86. 1090 */ 1091 typedef u64 Bitmask; 1092 1093 /* 1094 ** The following structure describes the FROM clause of a SELECT statement. 1095 ** Each table or subquery in the FROM clause is a separate element of 1096 ** the SrcList.a[] array. 1097 ** 1098 ** With the addition of multiple database support, the following structure 1099 ** can also be used to describe a particular table such as the table that 1100 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1101 ** such a table must be a simple name: ID. But in SQLite, the table can 1102 ** now be identified by a database name, a dot, then the table name: ID.ID. 1103 ** 1104 ** The jointype starts out showing the join type between the current table 1105 ** and the next table on the list. The parser builds the list this way. 1106 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1107 ** jointype expresses the join between the table and the previous table. 1108 */ 1109 struct SrcList { 1110 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1111 i16 nAlloc; /* Number of entries allocated in a[] below */ 1112 struct SrcList_item { 1113 char *zDatabase; /* Name of database holding this table */ 1114 char *zName; /* Name of the table */ 1115 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1116 Table *pTab; /* An SQL table corresponding to zName */ 1117 Select *pSelect; /* A SELECT statement used in place of a table name */ 1118 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1119 u8 jointype; /* Type of join between this able and the previous */ 1120 int iCursor; /* The VDBE cursor number used to access this table */ 1121 Expr *pOn; /* The ON clause of a join */ 1122 IdList *pUsing; /* The USING clause of a join */ 1123 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1124 } a[1]; /* One entry for each identifier on the list */ 1125 }; 1126 1127 /* 1128 ** Permitted values of the SrcList.a.jointype field 1129 */ 1130 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1131 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1132 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1133 #define JT_LEFT 0x0008 /* Left outer join */ 1134 #define JT_RIGHT 0x0010 /* Right outer join */ 1135 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1136 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1137 1138 /* 1139 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1140 ** structure contains a single instance of this structure. This structure 1141 ** is intended to be private the the where.c module and should not be 1142 ** access or modified by other modules. 1143 ** 1144 ** The pIdxInfo and pBestIdx fields are used to help pick the best 1145 ** index on a virtual table. The pIdxInfo pointer contains indexing 1146 ** information for the i-th table in the FROM clause before reordering. 1147 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1148 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after 1149 ** FROM clause ordering. This is a little confusing so I will repeat 1150 ** it in different words. WhereInfo.a[i].pIdxInfo is index information 1151 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the 1152 ** index information for the i-th loop of the join. pBestInfo is always 1153 ** either NULL or a copy of some pIdxInfo. So for cleanup it is 1154 ** sufficient to free all of the pIdxInfo pointers. 1155 ** 1156 */ 1157 struct WhereLevel { 1158 int iFrom; /* Which entry in the FROM clause */ 1159 int flags; /* Flags associated with this level */ 1160 int iMem; /* First memory cell used by this level */ 1161 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1162 Index *pIdx; /* Index used. NULL if no index */ 1163 int iTabCur; /* The VDBE cursor used to access the table */ 1164 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 1165 int brk; /* Jump here to break out of the loop */ 1166 int nxt; /* Jump here to start the next IN combination */ 1167 int cont; /* Jump here to continue with the next loop cycle */ 1168 int top; /* First instruction of interior of the loop */ 1169 int op, p1, p2; /* Opcode used to terminate the loop */ 1170 int nEq; /* Number of == or IN constraints on this loop */ 1171 int nIn; /* Number of IN operators constraining this loop */ 1172 struct InLoop { 1173 int iCur; /* The VDBE cursor used by this IN operator */ 1174 int topAddr; /* Top of the IN loop */ 1175 } *aInLoop; /* Information about each nested IN operator */ 1176 sqlite3_index_info *pBestIdx; /* Index information for this level */ 1177 1178 /* The following field is really not part of the current level. But 1179 ** we need a place to cache index information for each table in the 1180 ** FROM clause and the WhereLevel structure is a convenient place. 1181 */ 1182 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1183 }; 1184 1185 /* 1186 ** The WHERE clause processing routine has two halves. The 1187 ** first part does the start of the WHERE loop and the second 1188 ** half does the tail of the WHERE loop. An instance of 1189 ** this structure is returned by the first half and passed 1190 ** into the second half to give some continuity. 1191 */ 1192 struct WhereInfo { 1193 Parse *pParse; 1194 SrcList *pTabList; /* List of tables in the join */ 1195 int iTop; /* The very beginning of the WHERE loop */ 1196 int iContinue; /* Jump here to continue with next record */ 1197 int iBreak; /* Jump here to break out of the loop */ 1198 int nLevel; /* Number of nested loop */ 1199 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ 1200 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 1201 }; 1202 1203 /* 1204 ** A NameContext defines a context in which to resolve table and column 1205 ** names. The context consists of a list of tables (the pSrcList) field and 1206 ** a list of named expression (pEList). The named expression list may 1207 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1208 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1209 ** pEList corresponds to the result set of a SELECT and is NULL for 1210 ** other statements. 1211 ** 1212 ** NameContexts can be nested. When resolving names, the inner-most 1213 ** context is searched first. If no match is found, the next outer 1214 ** context is checked. If there is still no match, the next context 1215 ** is checked. This process continues until either a match is found 1216 ** or all contexts are check. When a match is found, the nRef member of 1217 ** the context containing the match is incremented. 1218 ** 1219 ** Each subquery gets a new NameContext. The pNext field points to the 1220 ** NameContext in the parent query. Thus the process of scanning the 1221 ** NameContext list corresponds to searching through successively outer 1222 ** subqueries looking for a match. 1223 */ 1224 struct NameContext { 1225 Parse *pParse; /* The parser */ 1226 SrcList *pSrcList; /* One or more tables used to resolve names */ 1227 ExprList *pEList; /* Optional list of named expressions */ 1228 int nRef; /* Number of names resolved by this context */ 1229 int nErr; /* Number of errors encountered while resolving names */ 1230 u8 allowAgg; /* Aggregate functions allowed here */ 1231 u8 hasAgg; /* True if aggregates are seen */ 1232 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1233 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1234 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1235 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1236 }; 1237 1238 /* 1239 ** An instance of the following structure contains all information 1240 ** needed to generate code for a single SELECT statement. 1241 ** 1242 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1243 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1244 ** limit and nOffset to the value of the offset (or 0 if there is not 1245 ** offset). But later on, nLimit and nOffset become the memory locations 1246 ** in the VDBE that record the limit and offset counters. 1247 ** 1248 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1249 ** These addresses must be stored so that we can go back and fill in 1250 ** the P3_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1251 ** the number of columns in P2 can be computed at the same time 1252 ** as the OP_OpenEphm instruction is coded because not 1253 ** enough information about the compound query is known at that point. 1254 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1255 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1256 ** sequences for the ORDER BY clause. 1257 */ 1258 struct Select { 1259 ExprList *pEList; /* The fields of the result */ 1260 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1261 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1262 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1263 u8 isAgg; /* True if this is an aggregate query */ 1264 u8 usesEphm; /* True if uses an OpenEphemeral opcode */ 1265 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ 1266 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1267 SrcList *pSrc; /* The FROM clause */ 1268 Expr *pWhere; /* The WHERE clause */ 1269 ExprList *pGroupBy; /* The GROUP BY clause */ 1270 Expr *pHaving; /* The HAVING clause */ 1271 ExprList *pOrderBy; /* The ORDER BY clause */ 1272 Select *pPrior; /* Prior select in a compound select statement */ 1273 Select *pRightmost; /* Right-most select in a compound select statement */ 1274 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1275 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1276 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1277 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1278 }; 1279 1280 /* 1281 ** The results of a select can be distributed in several ways. 1282 */ 1283 #define SRT_Union 1 /* Store result as keys in an index */ 1284 #define SRT_Except 2 /* Remove result from a UNION index */ 1285 #define SRT_Discard 3 /* Do not save the results anywhere */ 1286 1287 /* The ORDER BY clause is ignored for all of the above */ 1288 #define IgnorableOrderby(X) (X<=SRT_Discard) 1289 1290 #define SRT_Callback 4 /* Invoke a callback with each row of result */ 1291 #define SRT_Mem 5 /* Store result in a memory cell */ 1292 #define SRT_Set 6 /* Store non-null results as keys in an index */ 1293 #define SRT_Table 7 /* Store result as data with an automatic rowid */ 1294 #define SRT_EphemTab 8 /* Create transient tab and store like SRT_Table */ 1295 #define SRT_Subroutine 9 /* Call a subroutine to handle results */ 1296 #define SRT_Exists 10 /* Store 1 if the result is not empty */ 1297 1298 /* 1299 ** An SQL parser context. A copy of this structure is passed through 1300 ** the parser and down into all the parser action routine in order to 1301 ** carry around information that is global to the entire parse. 1302 ** 1303 ** The structure is divided into two parts. When the parser and code 1304 ** generate call themselves recursively, the first part of the structure 1305 ** is constant but the second part is reset at the beginning and end of 1306 ** each recursion. 1307 ** 1308 ** The nTableLock and aTableLock variables are only used if the shared-cache 1309 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 1310 ** used to store the set of table-locks required by the statement being 1311 ** compiled. Function sqlite3TableLock() is used to add entries to the 1312 ** list. 1313 */ 1314 struct Parse { 1315 sqlite3 *db; /* The main database structure */ 1316 int rc; /* Return code from execution */ 1317 char *zErrMsg; /* An error message */ 1318 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1319 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1320 u8 nameClash; /* A permanent table name clashes with temp table name */ 1321 u8 checkSchema; /* Causes schema cookie check after an error */ 1322 u8 nested; /* Number of nested calls to the parser/code generator */ 1323 u8 parseError; /* True after a parsing error. Ticket #1794 */ 1324 int nErr; /* Number of errors seen */ 1325 int nTab; /* Number of previously allocated VDBE cursors */ 1326 int nMem; /* Number of memory cells used so far */ 1327 int nSet; /* Number of sets used so far */ 1328 int ckOffset; /* Stack offset to data used by CHECK constraints */ 1329 u32 writeMask; /* Start a write transaction on these databases */ 1330 u32 cookieMask; /* Bitmask of schema verified databases */ 1331 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1332 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 1333 #ifndef SQLITE_OMIT_SHARED_CACHE 1334 int nTableLock; /* Number of locks in aTableLock */ 1335 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 1336 #endif 1337 1338 /* Above is constant between recursions. Below is reset before and after 1339 ** each recursion */ 1340 1341 int nVar; /* Number of '?' variables seen in the SQL so far */ 1342 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1343 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1344 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1345 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1346 Token sErrToken; /* The token at which the error occurred */ 1347 Token sNameToken; /* Token with unqualified schema object name */ 1348 Token sLastToken; /* The last token parsed */ 1349 const char *zSql; /* All SQL text */ 1350 const char *zTail; /* All SQL text past the last semicolon parsed */ 1351 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1352 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1353 TriggerStack *trigStack; /* Trigger actions being coded */ 1354 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1355 #ifndef SQLITE_OMIT_VIRTUALTABLE 1356 Token sArg; /* Complete text of a module argument */ 1357 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 1358 Table *pVirtualLock; /* Require virtual table lock on this table */ 1359 #endif 1360 #if SQLITE_MAX_EXPR_DEPTH>0 1361 int nHeight; /* Expression tree height of current sub-select */ 1362 #endif 1363 }; 1364 1365 #ifdef SQLITE_OMIT_VIRTUALTABLE 1366 #define IN_DECLARE_VTAB 0 1367 #else 1368 #define IN_DECLARE_VTAB (pParse->declareVtab) 1369 #endif 1370 1371 /* 1372 ** An instance of the following structure can be declared on a stack and used 1373 ** to save the Parse.zAuthContext value so that it can be restored later. 1374 */ 1375 struct AuthContext { 1376 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1377 Parse *pParse; /* The Parse structure */ 1378 }; 1379 1380 /* 1381 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1382 */ 1383 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1384 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1385 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 1386 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 1387 1388 /* 1389 * Each trigger present in the database schema is stored as an instance of 1390 * struct Trigger. 1391 * 1392 * Pointers to instances of struct Trigger are stored in two ways. 1393 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1394 * database). This allows Trigger structures to be retrieved by name. 1395 * 2. All triggers associated with a single table form a linked list, using the 1396 * pNext member of struct Trigger. A pointer to the first element of the 1397 * linked list is stored as the "pTrigger" member of the associated 1398 * struct Table. 1399 * 1400 * The "step_list" member points to the first element of a linked list 1401 * containing the SQL statements specified as the trigger program. 1402 */ 1403 struct Trigger { 1404 char *name; /* The name of the trigger */ 1405 char *table; /* The table or view to which the trigger applies */ 1406 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1407 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1408 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1409 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1410 the <column-list> is stored here */ 1411 Token nameToken; /* Token containing zName. Use during parsing only */ 1412 Schema *pSchema; /* Schema containing the trigger */ 1413 Schema *pTabSchema; /* Schema containing the table */ 1414 TriggerStep *step_list; /* Link list of trigger program steps */ 1415 Trigger *pNext; /* Next trigger associated with the table */ 1416 }; 1417 1418 /* 1419 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1420 ** determine which. 1421 ** 1422 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1423 ** In that cases, the constants below can be ORed together. 1424 */ 1425 #define TRIGGER_BEFORE 1 1426 #define TRIGGER_AFTER 2 1427 1428 /* 1429 * An instance of struct TriggerStep is used to store a single SQL statement 1430 * that is a part of a trigger-program. 1431 * 1432 * Instances of struct TriggerStep are stored in a singly linked list (linked 1433 * using the "pNext" member) referenced by the "step_list" member of the 1434 * associated struct Trigger instance. The first element of the linked list is 1435 * the first step of the trigger-program. 1436 * 1437 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1438 * "SELECT" statement. The meanings of the other members is determined by the 1439 * value of "op" as follows: 1440 * 1441 * (op == TK_INSERT) 1442 * orconf -> stores the ON CONFLICT algorithm 1443 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1444 * this stores a pointer to the SELECT statement. Otherwise NULL. 1445 * target -> A token holding the name of the table to insert into. 1446 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1447 * this stores values to be inserted. Otherwise NULL. 1448 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1449 * statement, then this stores the column-names to be 1450 * inserted into. 1451 * 1452 * (op == TK_DELETE) 1453 * target -> A token holding the name of the table to delete from. 1454 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1455 * Otherwise NULL. 1456 * 1457 * (op == TK_UPDATE) 1458 * target -> A token holding the name of the table to update rows of. 1459 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1460 * Otherwise NULL. 1461 * pExprList -> A list of the columns to update and the expressions to update 1462 * them to. See sqlite3Update() documentation of "pChanges" 1463 * argument. 1464 * 1465 */ 1466 struct TriggerStep { 1467 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1468 int orconf; /* OE_Rollback etc. */ 1469 Trigger *pTrig; /* The trigger that this step is a part of */ 1470 1471 Select *pSelect; /* Valid for SELECT and sometimes 1472 INSERT steps (when pExprList == 0) */ 1473 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1474 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1475 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1476 INSERT steps (when pSelect == 0) */ 1477 IdList *pIdList; /* Valid for INSERT statements only */ 1478 TriggerStep *pNext; /* Next in the link-list */ 1479 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 1480 }; 1481 1482 /* 1483 * An instance of struct TriggerStack stores information required during code 1484 * generation of a single trigger program. While the trigger program is being 1485 * coded, its associated TriggerStack instance is pointed to by the 1486 * "pTriggerStack" member of the Parse structure. 1487 * 1488 * The pTab member points to the table that triggers are being coded on. The 1489 * newIdx member contains the index of the vdbe cursor that points at the temp 1490 * table that stores the new.* references. If new.* references are not valid 1491 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1492 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1493 * 1494 * The ON CONFLICT policy to be used for the trigger program steps is stored 1495 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1496 * specified for individual triggers steps is used. 1497 * 1498 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1499 * constructed. When coding nested triggers (triggers fired by other triggers) 1500 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1501 * pointer. Once the nested trigger has been coded, the pNext value is restored 1502 * to the pTriggerStack member of the Parse stucture and coding of the parent 1503 * trigger continues. 1504 * 1505 * Before a nested trigger is coded, the linked list pointed to by the 1506 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1507 * recursively. If this condition is detected, the nested trigger is not coded. 1508 */ 1509 struct TriggerStack { 1510 Table *pTab; /* Table that triggers are currently being coded on */ 1511 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1512 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1513 int orconf; /* Current orconf policy */ 1514 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1515 Trigger *pTrigger; /* The trigger currently being coded */ 1516 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1517 }; 1518 1519 /* 1520 ** The following structure contains information used by the sqliteFix... 1521 ** routines as they walk the parse tree to make database references 1522 ** explicit. 1523 */ 1524 typedef struct DbFixer DbFixer; 1525 struct DbFixer { 1526 Parse *pParse; /* The parsing context. Error messages written here */ 1527 const char *zDb; /* Make sure all objects are contained in this database */ 1528 const char *zType; /* Type of the container - used for error messages */ 1529 const Token *pName; /* Name of the container - used for error messages */ 1530 }; 1531 1532 /* 1533 ** A pointer to this structure is used to communicate information 1534 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1535 */ 1536 typedef struct { 1537 sqlite3 *db; /* The database being initialized */ 1538 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 1539 char **pzErrMsg; /* Error message stored here */ 1540 int rc; /* Result code stored here */ 1541 } InitData; 1542 1543 /* 1544 * This global flag is set for performance testing of triggers. When it is set 1545 * SQLite will perform the overhead of building new and old trigger references 1546 * even when no triggers exist 1547 */ 1548 extern int sqlite3_always_code_trigger_setup; 1549 1550 /* 1551 ** A lookup table used by the SQLITE_READ_UTF8 macro. The definition 1552 ** is in utf.c. 1553 */ 1554 extern const unsigned char sqlite3UtfTrans1[]; 1555 1556 /* 1557 ** Macros for reading UTF8 characters. 1558 ** 1559 ** SQLITE_READ_UTF8(x,c) reads a single UTF8 value out of x and writes 1560 ** that value into c. The type of x must be unsigned char*. The type 1561 ** of c must be unsigned int. 1562 ** 1563 ** SQLITE_SKIP_UTF8(x) advances x forward by one character. The type of 1564 ** x must be unsigned char*. 1565 ** 1566 ** Notes On Invalid UTF-8: 1567 ** 1568 ** * These macros never allow a 7-bit character (0x00 through 0x7f) to 1569 ** be encoded as a multi-byte character. Any multi-byte character that 1570 ** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. 1571 ** 1572 ** * These macros never allow a UTF16 surragate value to be encoded. 1573 ** If a multi-byte character attempts to encode a value between 1574 ** 0xd800 and 0xe000 then it is rendered as 0xfffd. 1575 ** 1576 ** * Bytes in the range of 0x80 through 0xbf which occur as the first 1577 ** byte of a character are interpreted as single-byte characters 1578 ** and rendered as themselves even though they are technically 1579 ** invalid characters. 1580 ** 1581 ** * These routines accept an infinite number of different UTF8 encodings 1582 ** for unicode values 0x80 and greater. They do not change over-length 1583 ** encodings to 0xfffd as some systems recommend. 1584 ** 1585 */ 1586 #define SQLITE_READ_UTF8(zIn, c) { \ 1587 c = *(zIn++); \ 1588 if( c>=0xc0 ){ \ 1589 c = sqlite3UtfTrans1[c-0xc0]; \ 1590 while( (*zIn & 0xc0)==0x80 ){ \ 1591 c = (c<<6) + (0x3f & *(zIn++)); \ 1592 } \ 1593 if( c<0x80 \ 1594 || (c&0xFFFFF800)==0xD800 \ 1595 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ 1596 } \ 1597 } 1598 #define SQLITE_SKIP_UTF8(zIn) { \ 1599 if( (*(zIn++))>=0xc0 ){ \ 1600 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 1601 } \ 1602 } 1603 1604 1605 1606 1607 /* 1608 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 1609 ** builds) or a function call (for debugging). If it is a function call, 1610 ** it allows the operator to set a breakpoint at the spot where database 1611 ** corruption is first detected. 1612 */ 1613 #ifdef SQLITE_DEBUG 1614 int sqlite3Corrupt(void); 1615 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 1616 #else 1617 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 1618 #endif 1619 1620 /* 1621 ** Internal function prototypes 1622 */ 1623 int sqlite3StrICmp(const char *, const char *); 1624 int sqlite3StrNICmp(const char *, const char *, int); 1625 int sqlite3IsNumber(const char*, int*, u8); 1626 1627 void *sqlite3Malloc(int,int); 1628 void *sqlite3MallocRaw(int,int); 1629 void *sqlite3Realloc(void*,int); 1630 char *sqlite3StrDup(const char*); 1631 char *sqlite3StrNDup(const char*, int); 1632 # define sqlite3CheckMemory(a,b) 1633 void *sqlite3ReallocOrFree(void*,int); 1634 void sqlite3FreeX(void*); 1635 void *sqlite3MallocX(int); 1636 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1637 int sqlite3AllocSize(void *); 1638 #endif 1639 1640 char *sqlite3MPrintf(const char*, ...); 1641 char *sqlite3VMPrintf(const char*, va_list); 1642 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 1643 void sqlite3DebugPrintf(const char*, ...); 1644 void *sqlite3TextToPtr(const char*); 1645 #endif 1646 void sqlite3SetString(char **, ...); 1647 void sqlite3ErrorMsg(Parse*, const char*, ...); 1648 void sqlite3ErrorClear(Parse*); 1649 void sqlite3Dequote(char*); 1650 void sqlite3DequoteExpr(Expr*); 1651 int sqlite3KeywordCode(const unsigned char*, int); 1652 int sqlite3RunParser(Parse*, const char*, char **); 1653 void sqlite3FinishCoding(Parse*); 1654 Expr *sqlite3Expr(int, Expr*, Expr*, const Token*); 1655 Expr *sqlite3ExprOrFree(int, Expr*, Expr*, const Token*); 1656 Expr *sqlite3RegisterExpr(Parse*,Token*); 1657 Expr *sqlite3ExprAnd(Expr*, Expr*); 1658 void sqlite3ExprSpan(Expr*,Token*,Token*); 1659 Expr *sqlite3ExprFunction(ExprList*, Token*); 1660 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1661 void sqlite3ExprDelete(Expr*); 1662 ExprList *sqlite3ExprListAppend(ExprList*,Expr*,Token*); 1663 void sqlite3ExprListDelete(ExprList*); 1664 int sqlite3Init(sqlite3*, char**); 1665 int sqlite3InitCallback(void*, int, char**, char**); 1666 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1667 void sqlite3ResetInternalSchema(sqlite3*, int); 1668 void sqlite3BeginParse(Parse*,int); 1669 void sqlite3CommitInternalChanges(sqlite3*); 1670 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1671 void sqlite3OpenMasterTable(Parse *, int); 1672 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 1673 void sqlite3AddColumn(Parse*,Token*); 1674 void sqlite3AddNotNull(Parse*, int); 1675 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 1676 void sqlite3AddCheckConstraint(Parse*, Expr*); 1677 void sqlite3AddColumnType(Parse*,Token*); 1678 void sqlite3AddDefaultValue(Parse*,Expr*); 1679 void sqlite3AddCollateType(Parse*, const char*, int); 1680 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1681 1682 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 1683 1684 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1685 int sqlite3ViewGetColumnNames(Parse*,Table*); 1686 #else 1687 # define sqlite3ViewGetColumnNames(A,B) 0 1688 #endif 1689 1690 void sqlite3DropTable(Parse*, SrcList*, int, int); 1691 void sqlite3DeleteTable(Table*); 1692 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1693 void *sqlite3ArrayAllocate(void*,int,int,int*,int*,int*); 1694 IdList *sqlite3IdListAppend(IdList*, Token*); 1695 int sqlite3IdListIndex(IdList*,const char*); 1696 SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*); 1697 SrcList *sqlite3SrcListAppendFromTerm(SrcList*, Token*, Token*, Token*, 1698 Select*, Expr*, IdList*); 1699 void sqlite3SrcListShiftJoinType(SrcList*); 1700 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1701 void sqlite3IdListDelete(IdList*); 1702 void sqlite3SrcListDelete(SrcList*); 1703 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1704 Token*, int, int); 1705 void sqlite3DropIndex(Parse*, SrcList*, int); 1706 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); 1707 Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, 1708 int,Expr*,Expr*); 1709 void sqlite3SelectDelete(Select*); 1710 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1711 int sqlite3IsReadOnly(Parse*, Table*, int); 1712 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 1713 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1714 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1715 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**); 1716 void sqlite3WhereEnd(WhereInfo*); 1717 void sqlite3ExprCodeGetColumn(Vdbe*, Table*, int, int); 1718 void sqlite3ExprCode(Parse*, Expr*); 1719 void sqlite3ExprCodeAndCache(Parse*, Expr*); 1720 int sqlite3ExprCodeExprList(Parse*, ExprList*); 1721 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 1722 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 1723 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 1724 Table *sqlite3LocateTable(Parse*,const char*, const char*); 1725 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 1726 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 1727 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 1728 void sqlite3Vacuum(Parse*); 1729 int sqlite3RunVacuum(char**, sqlite3*); 1730 char *sqlite3NameFromToken(Token*); 1731 int sqlite3ExprCompare(Expr*, Expr*); 1732 int sqliteFuncId(Token*); 1733 int sqlite3ExprResolveNames(NameContext *, Expr *); 1734 int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 1735 int sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 1736 Vdbe *sqlite3GetVdbe(Parse*); 1737 Expr *sqlite3CreateIdExpr(const char*); 1738 void sqlite3Randomness(int, void*); 1739 void sqlite3RollbackAll(sqlite3*); 1740 void sqlite3CodeVerifySchema(Parse*, int); 1741 void sqlite3BeginTransaction(Parse*, int); 1742 void sqlite3CommitTransaction(Parse*); 1743 void sqlite3RollbackTransaction(Parse*); 1744 int sqlite3ExprIsConstant(Expr*); 1745 int sqlite3ExprIsConstantOrFunction(Expr*); 1746 int sqlite3ExprIsInteger(Expr*, int*); 1747 int sqlite3IsRowid(const char*); 1748 void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int); 1749 void sqlite3GenerateRowIndexDelete(Vdbe*, Table*, int, char*); 1750 void sqlite3GenerateIndexKey(Vdbe*, Index*, int); 1751 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1752 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int, int); 1753 void sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 1754 void sqlite3BeginWriteOperation(Parse*, int, int); 1755 Expr *sqlite3ExprDup(Expr*); 1756 void sqlite3TokenCopy(Token*, Token*); 1757 ExprList *sqlite3ExprListDup(ExprList*); 1758 SrcList *sqlite3SrcListDup(SrcList*); 1759 IdList *sqlite3IdListDup(IdList*); 1760 Select *sqlite3SelectDup(Select*); 1761 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 1762 void sqlite3RegisterBuiltinFunctions(sqlite3*); 1763 void sqlite3RegisterDateTimeFunctions(sqlite3*); 1764 int sqlite3SafetyOn(sqlite3*); 1765 int sqlite3SafetyOff(sqlite3*); 1766 int sqlite3SafetyCheck(sqlite3*); 1767 void sqlite3ChangeCookie(sqlite3*, Vdbe*, int); 1768 1769 #ifndef SQLITE_OMIT_TRIGGER 1770 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 1771 Expr*,int, int); 1772 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 1773 void sqlite3DropTrigger(Parse*, SrcList*, int); 1774 void sqlite3DropTriggerPtr(Parse*, Trigger*); 1775 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 1776 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1777 int, int); 1778 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1779 void sqlite3DeleteTriggerStep(TriggerStep*); 1780 TriggerStep *sqlite3TriggerSelectStep(Select*); 1781 TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*,Select*,int); 1782 TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int); 1783 TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*); 1784 void sqlite3DeleteTrigger(Trigger*); 1785 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 1786 #else 1787 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 1788 # define sqlite3DeleteTrigger(A) 1789 # define sqlite3DropTriggerPtr(A,B) 1790 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 1791 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0 1792 #endif 1793 1794 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 1795 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 1796 void sqlite3DeferForeignKey(Parse*, int); 1797 #ifndef SQLITE_OMIT_AUTHORIZATION 1798 void sqlite3AuthRead(Parse*,Expr*,SrcList*); 1799 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 1800 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 1801 void sqlite3AuthContextPop(AuthContext*); 1802 #else 1803 # define sqlite3AuthRead(a,b,c) 1804 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 1805 # define sqlite3AuthContextPush(a,b,c) 1806 # define sqlite3AuthContextPop(a) ((void)(a)) 1807 #endif 1808 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 1809 void sqlite3Detach(Parse*, Expr*); 1810 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 1811 int omitJournal, int nCache, Btree **ppBtree); 1812 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 1813 int sqlite3FixSrcList(DbFixer*, SrcList*); 1814 int sqlite3FixSelect(DbFixer*, Select*); 1815 int sqlite3FixExpr(DbFixer*, Expr*); 1816 int sqlite3FixExprList(DbFixer*, ExprList*); 1817 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 1818 int sqlite3AtoF(const char *z, double*); 1819 char *sqlite3_snprintf(int,char*,const char*,...); 1820 int sqlite3GetInt32(const char *, int*); 1821 int sqlite3FitsIn64Bits(const char *); 1822 int sqlite3Utf16ByteLen(const void *pData, int nChar); 1823 int sqlite3Utf8CharLen(const char *pData, int nByte); 1824 u32 sqlite3ReadUtf8(const unsigned char *); 1825 int sqlite3PutVarint(unsigned char *, u64); 1826 int sqlite3GetVarint(const unsigned char *, u64 *); 1827 int sqlite3GetVarint32(const unsigned char *, u32 *); 1828 int sqlite3VarintLen(u64 v); 1829 void sqlite3IndexAffinityStr(Vdbe *, Index *); 1830 void sqlite3TableAffinityStr(Vdbe *, Table *); 1831 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 1832 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 1833 char sqlite3ExprAffinity(Expr *pExpr); 1834 int sqlite3Atoi64(const char*, i64*); 1835 void sqlite3Error(sqlite3*, int, const char*,...); 1836 void *sqlite3HexToBlob(const char *z); 1837 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 1838 const char *sqlite3ErrStr(int); 1839 int sqlite3ReadSchema(Parse *pParse); 1840 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 1841 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 1842 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 1843 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 1844 int sqlite3CheckCollSeq(Parse *, CollSeq *); 1845 int sqlite3CheckObjectName(Parse *, const char *); 1846 void sqlite3VdbeSetChanges(sqlite3 *, int); 1847 void sqlite3Utf16Substr(sqlite3_context *,int,sqlite3_value **); 1848 1849 const void *sqlite3ValueText(sqlite3_value*, u8); 1850 int sqlite3ValueBytes(sqlite3_value*, u8); 1851 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); 1852 void sqlite3ValueFree(sqlite3_value*); 1853 sqlite3_value *sqlite3ValueNew(void); 1854 char *sqlite3Utf16to8(const void*, int); 1855 int sqlite3ValueFromExpr(Expr *, u8, u8, sqlite3_value **); 1856 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 1857 extern const unsigned char sqlite3UpperToLower[]; 1858 void sqlite3RootPageMoved(Db*, int, int); 1859 void sqlite3Reindex(Parse*, Token*, Token*); 1860 void sqlite3AlterFunctions(sqlite3*); 1861 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 1862 int sqlite3GetToken(const unsigned char *, int *); 1863 void sqlite3NestedParse(Parse*, const char*, ...); 1864 void sqlite3ExpirePreparedStatements(sqlite3*); 1865 void sqlite3CodeSubselect(Parse *, Expr *); 1866 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 1867 void sqlite3ColumnDefault(Vdbe *, Table *, int); 1868 void sqlite3AlterFinishAddColumn(Parse *, Token *); 1869 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 1870 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 1871 char sqlite3AffinityType(const Token*); 1872 void sqlite3Analyze(Parse*, Token*, Token*); 1873 int sqlite3InvokeBusyHandler(BusyHandler*); 1874 int sqlite3FindDb(sqlite3*, Token*); 1875 int sqlite3AnalysisLoad(sqlite3*,int iDB); 1876 void sqlite3DefaultRowEst(Index*); 1877 void sqlite3RegisterLikeFunctions(sqlite3*, int); 1878 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 1879 ThreadData *sqlite3ThreadData(void); 1880 const ThreadData *sqlite3ThreadDataReadOnly(void); 1881 void sqlite3ReleaseThreadData(void); 1882 void sqlite3AttachFunctions(sqlite3 *); 1883 void sqlite3MinimumFileFormat(Parse*, int, int); 1884 void sqlite3SchemaFree(void *); 1885 Schema *sqlite3SchemaGet(Btree *); 1886 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 1887 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 1888 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 1889 void (*)(sqlite3_context*,int,sqlite3_value **), 1890 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 1891 int sqlite3ApiExit(sqlite3 *db, int); 1892 void sqlite3FailedMalloc(void); 1893 void sqlite3AbortOtherActiveVdbes(sqlite3 *, Vdbe *); 1894 int sqlite3OpenTempDatabase(Parse *); 1895 1896 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1897 void sqlite3CloseExtensions(sqlite3*); 1898 int sqlite3AutoLoadExtensions(sqlite3*); 1899 #else 1900 # define sqlite3CloseExtensions(X) 1901 # define sqlite3AutoLoadExtensions(X) SQLITE_OK 1902 #endif 1903 1904 #ifndef SQLITE_OMIT_SHARED_CACHE 1905 void sqlite3TableLock(Parse *, int, int, u8, const char *); 1906 #else 1907 #define sqlite3TableLock(v,w,x,y,z) 1908 #endif 1909 1910 #ifdef SQLITE_TEST 1911 int sqlite3Utf8To8(unsigned char*); 1912 #endif 1913 1914 #ifdef SQLITE_MEMDEBUG 1915 void sqlite3MallocDisallow(void); 1916 void sqlite3MallocAllow(void); 1917 int sqlite3TestMallocFail(void); 1918 #else 1919 #define sqlite3TestMallocFail() 0 1920 #define sqlite3MallocDisallow() 1921 #define sqlite3MallocAllow() 1922 #endif 1923 1924 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1925 void *sqlite3ThreadSafeMalloc(int); 1926 void sqlite3ThreadSafeFree(void *); 1927 #else 1928 #define sqlite3ThreadSafeMalloc sqlite3MallocX 1929 #define sqlite3ThreadSafeFree sqlite3FreeX 1930 #endif 1931 1932 #ifdef SQLITE_OMIT_VIRTUALTABLE 1933 # define sqlite3VtabClear(X) 1934 # define sqlite3VtabSync(X,Y) (Y) 1935 # define sqlite3VtabRollback(X) 1936 # define sqlite3VtabCommit(X) 1937 #else 1938 void sqlite3VtabClear(Table*); 1939 int sqlite3VtabSync(sqlite3 *db, int rc); 1940 int sqlite3VtabRollback(sqlite3 *db); 1941 int sqlite3VtabCommit(sqlite3 *db); 1942 #endif 1943 void sqlite3VtabLock(sqlite3_vtab*); 1944 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*); 1945 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 1946 void sqlite3VtabFinishParse(Parse*, Token*); 1947 void sqlite3VtabArgInit(Parse*); 1948 void sqlite3VtabArgExtend(Parse*, Token*); 1949 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 1950 int sqlite3VtabCallConnect(Parse*, Table*); 1951 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 1952 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 1953 FuncDef *sqlite3VtabOverloadFunction(FuncDef*, int nArg, Expr*); 1954 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 1955 int sqlite3Reprepare(Vdbe*); 1956 void sqlite3ExprListCheckLength(Parse*, ExprList*, int, const char*); 1957 1958 #if SQLITE_MAX_EXPR_DEPTH>0 1959 void sqlite3ExprSetHeight(Expr *); 1960 int sqlite3SelectExprHeight(Select *); 1961 #else 1962 #define sqlite3ExprSetHeight(x) 1963 #endif 1964 1965 u32 sqlite3Get2byte(const u8*); 1966 u32 sqlite3Get4byte(const u8*); 1967 void sqlite3Put2byte(u8*, u32); 1968 void sqlite3Put4byte(u8*, u32); 1969 1970 #ifdef SQLITE_SSE 1971 #include "sseInt.h" 1972 #endif 1973 1974 #ifdef SQLITE_DEBUG 1975 void sqlite3ParserTrace(FILE*, char *); 1976 #endif 1977 1978 /* 1979 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 1980 ** sqlite3_io_trace is a pointer to a printf-like routine used to 1981 ** print I/O tracing messages. 1982 */ 1983 #ifdef SQLITE_ENABLE_IOTRACE 1984 # define IOTRACE(A) if( sqlite3_io_trace ){ sqlite3_io_trace A; } 1985 void sqlite3VdbeIOTraceSql(Vdbe*); 1986 #else 1987 # define IOTRACE(A) 1988 # define sqlite3VdbeIOTraceSql(X) 1989 #endif 1990 extern void (*sqlite3_io_trace)(const char*,...); 1991 1992 #endif 1993