1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #include "sqlite3.h" 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 19 /* 20 ** These #defines should enable >2GB file support on POSIX if the 21 ** underlying operating system supports it. If the OS lacks 22 ** large file support, or if the OS is windows, these should be no-ops. 23 ** 24 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 25 ** system #includes. Hence, this block of code must be the very first 26 ** code in all source files. 27 ** 28 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 29 ** on the compiler command line. This is necessary if you are compiling 30 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 31 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 32 ** without this option, LFS is enable. But LFS does not exist in the kernel 33 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 34 ** portability you should omit LFS. 35 ** 36 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 37 */ 38 #ifndef SQLITE_DISABLE_LFS 39 # define _LARGE_FILE 1 40 # ifndef _FILE_OFFSET_BITS 41 # define _FILE_OFFSET_BITS 64 42 # endif 43 # define _LARGEFILE_SOURCE 1 44 #endif 45 46 /* 47 ** Include the configuration header output by 'configure' if we're using the 48 ** autoconf-based build 49 */ 50 #ifdef _HAVE_SQLITE_CONFIG_H 51 #include "config.h" 52 #endif 53 54 #include "sqliteLimit.h" 55 56 /* Disable nuisance warnings on Borland compilers */ 57 #if defined(__BORLANDC__) 58 #pragma warn -rch /* unreachable code */ 59 #pragma warn -ccc /* Condition is always true or false */ 60 #pragma warn -aus /* Assigned value is never used */ 61 #pragma warn -csu /* Comparing signed and unsigned */ 62 #pragma warn -spa /* Suspicious pointer arithmetic */ 63 #endif 64 65 /* Needed for various definitions... */ 66 #ifndef _GNU_SOURCE 67 # define _GNU_SOURCE 68 #endif 69 70 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 71 # define _BSD_SOURCE 72 #endif 73 74 /* 75 ** Include standard header files as necessary 76 */ 77 #ifdef HAVE_STDINT_H 78 #include <stdint.h> 79 #endif 80 #ifdef HAVE_INTTYPES_H 81 #include <inttypes.h> 82 #endif 83 84 /* 85 ** The following macros are used to cast pointers to integers and 86 ** integers to pointers. The way you do this varies from one compiler 87 ** to the next, so we have developed the following set of #if statements 88 ** to generate appropriate macros for a wide range of compilers. 89 ** 90 ** The correct "ANSI" way to do this is to use the intptr_t type. 91 ** Unfortunately, that typedef is not available on all compilers, or 92 ** if it is available, it requires an #include of specific headers 93 ** that vary from one machine to the next. 94 ** 95 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 96 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 97 ** So we have to define the macros in different ways depending on the 98 ** compiler. 99 */ 100 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 101 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 102 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 103 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 104 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 105 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 106 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 107 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 108 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 109 #else /* Generates a warning - but it always works */ 110 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 111 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 112 #endif 113 114 /* 115 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 116 ** 0 means mutexes are permanently disable and the library is never 117 ** threadsafe. 1 means the library is serialized which is the highest 118 ** level of threadsafety. 2 means the library is multithreaded - multiple 119 ** threads can use SQLite as long as no two threads try to use the same 120 ** database connection at the same time. 121 ** 122 ** Older versions of SQLite used an optional THREADSAFE macro. 123 ** We support that for legacy. 124 */ 125 #if !defined(SQLITE_THREADSAFE) 126 # if defined(THREADSAFE) 127 # define SQLITE_THREADSAFE THREADSAFE 128 # else 129 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 130 # endif 131 #endif 132 133 /* 134 ** Powersafe overwrite is on by default. But can be turned off using 135 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 136 */ 137 #ifndef SQLITE_POWERSAFE_OVERWRITE 138 # define SQLITE_POWERSAFE_OVERWRITE 1 139 #endif 140 141 /* 142 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 143 ** It determines whether or not the features related to 144 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 145 ** be overridden at runtime using the sqlite3_config() API. 146 */ 147 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 148 # define SQLITE_DEFAULT_MEMSTATUS 1 149 #endif 150 151 /* 152 ** Exactly one of the following macros must be defined in order to 153 ** specify which memory allocation subsystem to use. 154 ** 155 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 156 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 157 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 158 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 159 ** 160 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 161 ** assert() macro is enabled, each call into the Win32 native heap subsystem 162 ** will cause HeapValidate to be called. If heap validation should fail, an 163 ** assertion will be triggered. 164 ** 165 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 166 ** the default. 167 */ 168 #if defined(SQLITE_SYSTEM_MALLOC) \ 169 + defined(SQLITE_WIN32_MALLOC) \ 170 + defined(SQLITE_ZERO_MALLOC) \ 171 + defined(SQLITE_MEMDEBUG)>1 172 # error "Two or more of the following compile-time configuration options\ 173 are defined but at most one is allowed:\ 174 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 175 SQLITE_ZERO_MALLOC" 176 #endif 177 #if defined(SQLITE_SYSTEM_MALLOC) \ 178 + defined(SQLITE_WIN32_MALLOC) \ 179 + defined(SQLITE_ZERO_MALLOC) \ 180 + defined(SQLITE_MEMDEBUG)==0 181 # define SQLITE_SYSTEM_MALLOC 1 182 #endif 183 184 /* 185 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 186 ** sizes of memory allocations below this value where possible. 187 */ 188 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 189 # define SQLITE_MALLOC_SOFT_LIMIT 1024 190 #endif 191 192 /* 193 ** We need to define _XOPEN_SOURCE as follows in order to enable 194 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 195 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 196 ** it. 197 */ 198 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 199 # define _XOPEN_SOURCE 600 200 #endif 201 202 /* 203 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 204 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 205 ** make it true by defining or undefining NDEBUG. 206 ** 207 ** Setting NDEBUG makes the code smaller and faster by disabling the 208 ** assert() statements in the code. So we want the default action 209 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 210 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 211 ** feature. 212 */ 213 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 214 # define NDEBUG 1 215 #endif 216 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 217 # undef NDEBUG 218 #endif 219 220 /* 221 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 222 */ 223 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 224 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 225 #endif 226 227 /* 228 ** The testcase() macro is used to aid in coverage testing. When 229 ** doing coverage testing, the condition inside the argument to 230 ** testcase() must be evaluated both true and false in order to 231 ** get full branch coverage. The testcase() macro is inserted 232 ** to help ensure adequate test coverage in places where simple 233 ** condition/decision coverage is inadequate. For example, testcase() 234 ** can be used to make sure boundary values are tested. For 235 ** bitmask tests, testcase() can be used to make sure each bit 236 ** is significant and used at least once. On switch statements 237 ** where multiple cases go to the same block of code, testcase() 238 ** can insure that all cases are evaluated. 239 ** 240 */ 241 #ifdef SQLITE_COVERAGE_TEST 242 void sqlite3Coverage(int); 243 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 244 #else 245 # define testcase(X) 246 #endif 247 248 /* 249 ** The TESTONLY macro is used to enclose variable declarations or 250 ** other bits of code that are needed to support the arguments 251 ** within testcase() and assert() macros. 252 */ 253 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 254 # define TESTONLY(X) X 255 #else 256 # define TESTONLY(X) 257 #endif 258 259 /* 260 ** Sometimes we need a small amount of code such as a variable initialization 261 ** to setup for a later assert() statement. We do not want this code to 262 ** appear when assert() is disabled. The following macro is therefore 263 ** used to contain that setup code. The "VVA" acronym stands for 264 ** "Verification, Validation, and Accreditation". In other words, the 265 ** code within VVA_ONLY() will only run during verification processes. 266 */ 267 #ifndef NDEBUG 268 # define VVA_ONLY(X) X 269 #else 270 # define VVA_ONLY(X) 271 #endif 272 273 /* 274 ** The ALWAYS and NEVER macros surround boolean expressions which 275 ** are intended to always be true or false, respectively. Such 276 ** expressions could be omitted from the code completely. But they 277 ** are included in a few cases in order to enhance the resilience 278 ** of SQLite to unexpected behavior - to make the code "self-healing" 279 ** or "ductile" rather than being "brittle" and crashing at the first 280 ** hint of unplanned behavior. 281 ** 282 ** In other words, ALWAYS and NEVER are added for defensive code. 283 ** 284 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 285 ** be true and false so that the unreachable code they specify will 286 ** not be counted as untested code. 287 */ 288 #if defined(SQLITE_COVERAGE_TEST) 289 # define ALWAYS(X) (1) 290 # define NEVER(X) (0) 291 #elif !defined(NDEBUG) 292 # define ALWAYS(X) ((X)?1:(assert(0),0)) 293 # define NEVER(X) ((X)?(assert(0),1):0) 294 #else 295 # define ALWAYS(X) (X) 296 # define NEVER(X) (X) 297 #endif 298 299 /* 300 ** Return true (non-zero) if the input is a integer that is too large 301 ** to fit in 32-bits. This macro is used inside of various testcase() 302 ** macros to verify that we have tested SQLite for large-file support. 303 */ 304 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 305 306 /* 307 ** The macro unlikely() is a hint that surrounds a boolean 308 ** expression that is usually false. Macro likely() surrounds 309 ** a boolean expression that is usually true. These hints could, 310 ** in theory, be used by the compiler to generate better code, but 311 ** currently they are just comments for human readers. 312 */ 313 #define likely(X) (X) 314 #define unlikely(X) (X) 315 316 #include "hash.h" 317 #include "parse.h" 318 #include <stdio.h> 319 #include <stdlib.h> 320 #include <string.h> 321 #include <assert.h> 322 #include <stddef.h> 323 324 /* 325 ** If compiling for a processor that lacks floating point support, 326 ** substitute integer for floating-point 327 */ 328 #ifdef SQLITE_OMIT_FLOATING_POINT 329 # define double sqlite_int64 330 # define float sqlite_int64 331 # define LONGDOUBLE_TYPE sqlite_int64 332 # ifndef SQLITE_BIG_DBL 333 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 334 # endif 335 # define SQLITE_OMIT_DATETIME_FUNCS 1 336 # define SQLITE_OMIT_TRACE 1 337 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 338 # undef SQLITE_HAVE_ISNAN 339 #endif 340 #ifndef SQLITE_BIG_DBL 341 # define SQLITE_BIG_DBL (1e99) 342 #endif 343 344 /* 345 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 346 ** afterward. Having this macro allows us to cause the C compiler 347 ** to omit code used by TEMP tables without messy #ifndef statements. 348 */ 349 #ifdef SQLITE_OMIT_TEMPDB 350 #define OMIT_TEMPDB 1 351 #else 352 #define OMIT_TEMPDB 0 353 #endif 354 355 /* 356 ** The "file format" number is an integer that is incremented whenever 357 ** the VDBE-level file format changes. The following macros define the 358 ** the default file format for new databases and the maximum file format 359 ** that the library can read. 360 */ 361 #define SQLITE_MAX_FILE_FORMAT 4 362 #ifndef SQLITE_DEFAULT_FILE_FORMAT 363 # define SQLITE_DEFAULT_FILE_FORMAT 4 364 #endif 365 366 /* 367 ** Determine whether triggers are recursive by default. This can be 368 ** changed at run-time using a pragma. 369 */ 370 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 371 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 372 #endif 373 374 /* 375 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 376 ** on the command-line 377 */ 378 #ifndef SQLITE_TEMP_STORE 379 # define SQLITE_TEMP_STORE 1 380 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 381 #endif 382 383 /* 384 ** GCC does not define the offsetof() macro so we'll have to do it 385 ** ourselves. 386 */ 387 #ifndef offsetof 388 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 389 #endif 390 391 /* 392 ** Macros to compute minimum and maximum of two numbers. 393 */ 394 #define MIN(A,B) ((A)<(B)?(A):(B)) 395 #define MAX(A,B) ((A)>(B)?(A):(B)) 396 397 /* 398 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 399 ** not, there are still machines out there that use EBCDIC.) 400 */ 401 #if 'A' == '\301' 402 # define SQLITE_EBCDIC 1 403 #else 404 # define SQLITE_ASCII 1 405 #endif 406 407 /* 408 ** Integers of known sizes. These typedefs might change for architectures 409 ** where the sizes very. Preprocessor macros are available so that the 410 ** types can be conveniently redefined at compile-type. Like this: 411 ** 412 ** cc '-DUINTPTR_TYPE=long long int' ... 413 */ 414 #ifndef UINT32_TYPE 415 # ifdef HAVE_UINT32_T 416 # define UINT32_TYPE uint32_t 417 # else 418 # define UINT32_TYPE unsigned int 419 # endif 420 #endif 421 #ifndef UINT16_TYPE 422 # ifdef HAVE_UINT16_T 423 # define UINT16_TYPE uint16_t 424 # else 425 # define UINT16_TYPE unsigned short int 426 # endif 427 #endif 428 #ifndef INT16_TYPE 429 # ifdef HAVE_INT16_T 430 # define INT16_TYPE int16_t 431 # else 432 # define INT16_TYPE short int 433 # endif 434 #endif 435 #ifndef UINT8_TYPE 436 # ifdef HAVE_UINT8_T 437 # define UINT8_TYPE uint8_t 438 # else 439 # define UINT8_TYPE unsigned char 440 # endif 441 #endif 442 #ifndef INT8_TYPE 443 # ifdef HAVE_INT8_T 444 # define INT8_TYPE int8_t 445 # else 446 # define INT8_TYPE signed char 447 # endif 448 #endif 449 #ifndef LONGDOUBLE_TYPE 450 # define LONGDOUBLE_TYPE long double 451 #endif 452 typedef sqlite_int64 i64; /* 8-byte signed integer */ 453 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 454 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 455 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 456 typedef INT16_TYPE i16; /* 2-byte signed integer */ 457 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 458 typedef INT8_TYPE i8; /* 1-byte signed integer */ 459 460 /* 461 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 462 ** that can be stored in a u32 without loss of data. The value 463 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 464 ** have to specify the value in the less intuitive manner shown: 465 */ 466 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 467 468 /* 469 ** The datatype used to store estimates of the number of rows in a 470 ** table or index. This is an unsigned integer type. For 99.9% of 471 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 472 ** can be used at compile-time if desired. 473 */ 474 #ifdef SQLITE_64BIT_STATS 475 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 476 #else 477 typedef u32 tRowcnt; /* 32-bit is the default */ 478 #endif 479 480 /* 481 ** Estimated quantities used for query planning are stored as 16-bit 482 ** logarithms. For quantity X, the value stored is 10*log2(X). This 483 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 484 ** But the allowed values are "grainy". Not every value is representable. 485 ** For example, quantities 16 and 17 are both represented by a LogEst 486 ** of 40. However, since LogEst quantatites are suppose to be estimates, 487 ** not exact values, this imprecision is not a problem. 488 ** 489 ** "LogEst" is short for "Logarithimic Estimate". 490 ** 491 ** Examples: 492 ** 1 -> 0 20 -> 43 10000 -> 132 493 ** 2 -> 10 25 -> 46 25000 -> 146 494 ** 3 -> 16 100 -> 66 1000000 -> 199 495 ** 4 -> 20 1000 -> 99 1048576 -> 200 496 ** 10 -> 33 1024 -> 100 4294967296 -> 320 497 ** 498 ** The LogEst can be negative to indicate fractional values. 499 ** Examples: 500 ** 501 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 502 */ 503 typedef INT16_TYPE LogEst; 504 505 /* 506 ** Macros to determine whether the machine is big or little endian, 507 ** evaluated at runtime. 508 */ 509 #ifdef SQLITE_AMALGAMATION 510 const int sqlite3one = 1; 511 #else 512 extern const int sqlite3one; 513 #endif 514 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 515 || defined(__x86_64) || defined(__x86_64__) 516 # define SQLITE_BIGENDIAN 0 517 # define SQLITE_LITTLEENDIAN 1 518 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 519 #else 520 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 521 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 522 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 523 #endif 524 525 /* 526 ** Constants for the largest and smallest possible 64-bit signed integers. 527 ** These macros are designed to work correctly on both 32-bit and 64-bit 528 ** compilers. 529 */ 530 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 531 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 532 533 /* 534 ** Round up a number to the next larger multiple of 8. This is used 535 ** to force 8-byte alignment on 64-bit architectures. 536 */ 537 #define ROUND8(x) (((x)+7)&~7) 538 539 /* 540 ** Round down to the nearest multiple of 8 541 */ 542 #define ROUNDDOWN8(x) ((x)&~7) 543 544 /* 545 ** Assert that the pointer X is aligned to an 8-byte boundary. This 546 ** macro is used only within assert() to verify that the code gets 547 ** all alignment restrictions correct. 548 ** 549 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 550 ** underlying malloc() implemention might return us 4-byte aligned 551 ** pointers. In that case, only verify 4-byte alignment. 552 */ 553 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 554 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 555 #else 556 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 557 #endif 558 559 /* 560 ** Disable MMAP on platforms where it is known to not work 561 */ 562 #if defined(__OpenBSD__) || defined(__QNXNTO__) 563 # undef SQLITE_MAX_MMAP_SIZE 564 # define SQLITE_MAX_MMAP_SIZE 0 565 #endif 566 567 /* 568 ** Default maximum size of memory used by memory-mapped I/O in the VFS 569 */ 570 #ifdef __APPLE__ 571 # include <TargetConditionals.h> 572 # if TARGET_OS_IPHONE 573 # undef SQLITE_MAX_MMAP_SIZE 574 # define SQLITE_MAX_MMAP_SIZE 0 575 # endif 576 #endif 577 #ifndef SQLITE_MAX_MMAP_SIZE 578 # if defined(__linux__) \ 579 || defined(_WIN32) \ 580 || (defined(__APPLE__) && defined(__MACH__)) \ 581 || defined(__sun) 582 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 583 # else 584 # define SQLITE_MAX_MMAP_SIZE 0 585 # endif 586 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 587 #endif 588 589 /* 590 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 591 ** default MMAP_SIZE is specified at compile-time, make sure that it does 592 ** not exceed the maximum mmap size. 593 */ 594 #ifndef SQLITE_DEFAULT_MMAP_SIZE 595 # define SQLITE_DEFAULT_MMAP_SIZE 0 596 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 597 #endif 598 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 599 # undef SQLITE_DEFAULT_MMAP_SIZE 600 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 601 #endif 602 603 /* 604 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 605 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 606 ** define SQLITE_ENABLE_STAT3_OR_STAT4 607 */ 608 #ifdef SQLITE_ENABLE_STAT4 609 # undef SQLITE_ENABLE_STAT3 610 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 611 #elif SQLITE_ENABLE_STAT3 612 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 613 #elif SQLITE_ENABLE_STAT3_OR_STAT4 614 # undef SQLITE_ENABLE_STAT3_OR_STAT4 615 #endif 616 617 /* 618 ** An instance of the following structure is used to store the busy-handler 619 ** callback for a given sqlite handle. 620 ** 621 ** The sqlite.busyHandler member of the sqlite struct contains the busy 622 ** callback for the database handle. Each pager opened via the sqlite 623 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 624 ** callback is currently invoked only from within pager.c. 625 */ 626 typedef struct BusyHandler BusyHandler; 627 struct BusyHandler { 628 int (*xFunc)(void *,int); /* The busy callback */ 629 void *pArg; /* First arg to busy callback */ 630 int nBusy; /* Incremented with each busy call */ 631 }; 632 633 /* 634 ** Name of the master database table. The master database table 635 ** is a special table that holds the names and attributes of all 636 ** user tables and indices. 637 */ 638 #define MASTER_NAME "sqlite_master" 639 #define TEMP_MASTER_NAME "sqlite_temp_master" 640 641 /* 642 ** The root-page of the master database table. 643 */ 644 #define MASTER_ROOT 1 645 646 /* 647 ** The name of the schema table. 648 */ 649 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 650 651 /* 652 ** A convenience macro that returns the number of elements in 653 ** an array. 654 */ 655 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 656 657 /* 658 ** Determine if the argument is a power of two 659 */ 660 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 661 662 /* 663 ** The following value as a destructor means to use sqlite3DbFree(). 664 ** The sqlite3DbFree() routine requires two parameters instead of the 665 ** one parameter that destructors normally want. So we have to introduce 666 ** this magic value that the code knows to handle differently. Any 667 ** pointer will work here as long as it is distinct from SQLITE_STATIC 668 ** and SQLITE_TRANSIENT. 669 */ 670 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 671 672 /* 673 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 674 ** not support Writable Static Data (WSD) such as global and static variables. 675 ** All variables must either be on the stack or dynamically allocated from 676 ** the heap. When WSD is unsupported, the variable declarations scattered 677 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 678 ** macro is used for this purpose. And instead of referencing the variable 679 ** directly, we use its constant as a key to lookup the run-time allocated 680 ** buffer that holds real variable. The constant is also the initializer 681 ** for the run-time allocated buffer. 682 ** 683 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 684 ** macros become no-ops and have zero performance impact. 685 */ 686 #ifdef SQLITE_OMIT_WSD 687 #define SQLITE_WSD const 688 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 689 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 690 int sqlite3_wsd_init(int N, int J); 691 void *sqlite3_wsd_find(void *K, int L); 692 #else 693 #define SQLITE_WSD 694 #define GLOBAL(t,v) v 695 #define sqlite3GlobalConfig sqlite3Config 696 #endif 697 698 /* 699 ** The following macros are used to suppress compiler warnings and to 700 ** make it clear to human readers when a function parameter is deliberately 701 ** left unused within the body of a function. This usually happens when 702 ** a function is called via a function pointer. For example the 703 ** implementation of an SQL aggregate step callback may not use the 704 ** parameter indicating the number of arguments passed to the aggregate, 705 ** if it knows that this is enforced elsewhere. 706 ** 707 ** When a function parameter is not used at all within the body of a function, 708 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 709 ** However, these macros may also be used to suppress warnings related to 710 ** parameters that may or may not be used depending on compilation options. 711 ** For example those parameters only used in assert() statements. In these 712 ** cases the parameters are named as per the usual conventions. 713 */ 714 #define UNUSED_PARAMETER(x) (void)(x) 715 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 716 717 /* 718 ** Forward references to structures 719 */ 720 typedef struct AggInfo AggInfo; 721 typedef struct AuthContext AuthContext; 722 typedef struct AutoincInfo AutoincInfo; 723 typedef struct Bitvec Bitvec; 724 typedef struct CollSeq CollSeq; 725 typedef struct Column Column; 726 typedef struct Db Db; 727 typedef struct Schema Schema; 728 typedef struct Expr Expr; 729 typedef struct ExprList ExprList; 730 typedef struct ExprSpan ExprSpan; 731 typedef struct FKey FKey; 732 typedef struct FuncDestructor FuncDestructor; 733 typedef struct FuncDef FuncDef; 734 typedef struct FuncDefHash FuncDefHash; 735 typedef struct IdList IdList; 736 typedef struct Index Index; 737 typedef struct IndexSample IndexSample; 738 typedef struct KeyClass KeyClass; 739 typedef struct KeyInfo KeyInfo; 740 typedef struct Lookaside Lookaside; 741 typedef struct LookasideSlot LookasideSlot; 742 typedef struct Module Module; 743 typedef struct NameContext NameContext; 744 typedef struct Parse Parse; 745 typedef struct PrintfArguments PrintfArguments; 746 typedef struct RowSet RowSet; 747 typedef struct Savepoint Savepoint; 748 typedef struct Select Select; 749 typedef struct SelectDest SelectDest; 750 typedef struct SrcList SrcList; 751 typedef struct StrAccum StrAccum; 752 typedef struct Table Table; 753 typedef struct TableLock TableLock; 754 typedef struct Token Token; 755 typedef struct Trigger Trigger; 756 typedef struct TriggerPrg TriggerPrg; 757 typedef struct TriggerStep TriggerStep; 758 typedef struct UnpackedRecord UnpackedRecord; 759 typedef struct VTable VTable; 760 typedef struct VtabCtx VtabCtx; 761 typedef struct Walker Walker; 762 typedef struct WhereInfo WhereInfo; 763 typedef struct With With; 764 765 /* 766 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 767 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 768 ** pointer types (i.e. FuncDef) defined above. 769 */ 770 #include "btree.h" 771 #include "vdbe.h" 772 #include "pager.h" 773 #include "pcache.h" 774 775 #include "os.h" 776 #include "mutex.h" 777 778 779 /* 780 ** Each database file to be accessed by the system is an instance 781 ** of the following structure. There are normally two of these structures 782 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 783 ** aDb[1] is the database file used to hold temporary tables. Additional 784 ** databases may be attached. 785 */ 786 struct Db { 787 char *zName; /* Name of this database */ 788 Btree *pBt; /* The B*Tree structure for this database file */ 789 u8 safety_level; /* How aggressive at syncing data to disk */ 790 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 791 }; 792 793 /* 794 ** An instance of the following structure stores a database schema. 795 ** 796 ** Most Schema objects are associated with a Btree. The exception is 797 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 798 ** In shared cache mode, a single Schema object can be shared by multiple 799 ** Btrees that refer to the same underlying BtShared object. 800 ** 801 ** Schema objects are automatically deallocated when the last Btree that 802 ** references them is destroyed. The TEMP Schema is manually freed by 803 ** sqlite3_close(). 804 * 805 ** A thread must be holding a mutex on the corresponding Btree in order 806 ** to access Schema content. This implies that the thread must also be 807 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 808 ** For a TEMP Schema, only the connection mutex is required. 809 */ 810 struct Schema { 811 int schema_cookie; /* Database schema version number for this file */ 812 int iGeneration; /* Generation counter. Incremented with each change */ 813 Hash tblHash; /* All tables indexed by name */ 814 Hash idxHash; /* All (named) indices indexed by name */ 815 Hash trigHash; /* All triggers indexed by name */ 816 Hash fkeyHash; /* All foreign keys by referenced table name */ 817 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 818 u8 file_format; /* Schema format version for this file */ 819 u8 enc; /* Text encoding used by this database */ 820 u16 flags; /* Flags associated with this schema */ 821 int cache_size; /* Number of pages to use in the cache */ 822 }; 823 824 /* 825 ** These macros can be used to test, set, or clear bits in the 826 ** Db.pSchema->flags field. 827 */ 828 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 829 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 830 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 831 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 832 833 /* 834 ** Allowed values for the DB.pSchema->flags field. 835 ** 836 ** The DB_SchemaLoaded flag is set after the database schema has been 837 ** read into internal hash tables. 838 ** 839 ** DB_UnresetViews means that one or more views have column names that 840 ** have been filled out. If the schema changes, these column names might 841 ** changes and so the view will need to be reset. 842 */ 843 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 844 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 845 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 846 847 /* 848 ** The number of different kinds of things that can be limited 849 ** using the sqlite3_limit() interface. 850 */ 851 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 852 853 /* 854 ** Lookaside malloc is a set of fixed-size buffers that can be used 855 ** to satisfy small transient memory allocation requests for objects 856 ** associated with a particular database connection. The use of 857 ** lookaside malloc provides a significant performance enhancement 858 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 859 ** SQL statements. 860 ** 861 ** The Lookaside structure holds configuration information about the 862 ** lookaside malloc subsystem. Each available memory allocation in 863 ** the lookaside subsystem is stored on a linked list of LookasideSlot 864 ** objects. 865 ** 866 ** Lookaside allocations are only allowed for objects that are associated 867 ** with a particular database connection. Hence, schema information cannot 868 ** be stored in lookaside because in shared cache mode the schema information 869 ** is shared by multiple database connections. Therefore, while parsing 870 ** schema information, the Lookaside.bEnabled flag is cleared so that 871 ** lookaside allocations are not used to construct the schema objects. 872 */ 873 struct Lookaside { 874 u16 sz; /* Size of each buffer in bytes */ 875 u8 bEnabled; /* False to disable new lookaside allocations */ 876 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 877 int nOut; /* Number of buffers currently checked out */ 878 int mxOut; /* Highwater mark for nOut */ 879 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 880 LookasideSlot *pFree; /* List of available buffers */ 881 void *pStart; /* First byte of available memory space */ 882 void *pEnd; /* First byte past end of available space */ 883 }; 884 struct LookasideSlot { 885 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 886 }; 887 888 /* 889 ** A hash table for function definitions. 890 ** 891 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 892 ** Collisions are on the FuncDef.pHash chain. 893 */ 894 struct FuncDefHash { 895 FuncDef *a[23]; /* Hash table for functions */ 896 }; 897 898 /* 899 ** Each database connection is an instance of the following structure. 900 */ 901 struct sqlite3 { 902 sqlite3_vfs *pVfs; /* OS Interface */ 903 struct Vdbe *pVdbe; /* List of active virtual machines */ 904 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 905 sqlite3_mutex *mutex; /* Connection mutex */ 906 Db *aDb; /* All backends */ 907 int nDb; /* Number of backends currently in use */ 908 int flags; /* Miscellaneous flags. See below */ 909 i64 lastRowid; /* ROWID of most recent insert (see above) */ 910 i64 szMmap; /* Default mmap_size setting */ 911 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 912 int errCode; /* Most recent error code (SQLITE_*) */ 913 int errMask; /* & result codes with this before returning */ 914 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 915 u8 autoCommit; /* The auto-commit flag. */ 916 u8 temp_store; /* 1: file 2: memory 0: default */ 917 u8 mallocFailed; /* True if we have seen a malloc failure */ 918 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 919 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 920 u8 suppressErr; /* Do not issue error messages if true */ 921 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 922 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 923 int nextPagesize; /* Pagesize after VACUUM if >0 */ 924 u32 magic; /* Magic number for detect library misuse */ 925 int nChange; /* Value returned by sqlite3_changes() */ 926 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 927 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 928 struct sqlite3InitInfo { /* Information used during initialization */ 929 int newTnum; /* Rootpage of table being initialized */ 930 u8 iDb; /* Which db file is being initialized */ 931 u8 busy; /* TRUE if currently initializing */ 932 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 933 } init; 934 int nVdbeActive; /* Number of VDBEs currently running */ 935 int nVdbeRead; /* Number of active VDBEs that read or write */ 936 int nVdbeWrite; /* Number of active VDBEs that read and write */ 937 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 938 int nExtension; /* Number of loaded extensions */ 939 void **aExtension; /* Array of shared library handles */ 940 void (*xTrace)(void*,const char*); /* Trace function */ 941 void *pTraceArg; /* Argument to the trace function */ 942 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 943 void *pProfileArg; /* Argument to profile function */ 944 void *pCommitArg; /* Argument to xCommitCallback() */ 945 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 946 void *pRollbackArg; /* Argument to xRollbackCallback() */ 947 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 948 void *pUpdateArg; 949 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 950 #ifndef SQLITE_OMIT_WAL 951 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 952 void *pWalArg; 953 #endif 954 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 955 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 956 void *pCollNeededArg; 957 sqlite3_value *pErr; /* Most recent error message */ 958 union { 959 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 960 double notUsed1; /* Spacer */ 961 } u1; 962 Lookaside lookaside; /* Lookaside malloc configuration */ 963 #ifndef SQLITE_OMIT_AUTHORIZATION 964 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 965 /* Access authorization function */ 966 void *pAuthArg; /* 1st argument to the access auth function */ 967 #endif 968 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 969 int (*xProgress)(void *); /* The progress callback */ 970 void *pProgressArg; /* Argument to the progress callback */ 971 unsigned nProgressOps; /* Number of opcodes for progress callback */ 972 #endif 973 #ifndef SQLITE_OMIT_VIRTUALTABLE 974 int nVTrans; /* Allocated size of aVTrans */ 975 Hash aModule; /* populated by sqlite3_create_module() */ 976 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 977 VTable **aVTrans; /* Virtual tables with open transactions */ 978 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 979 #endif 980 FuncDefHash aFunc; /* Hash table of connection functions */ 981 Hash aCollSeq; /* All collating sequences */ 982 BusyHandler busyHandler; /* Busy callback */ 983 Db aDbStatic[2]; /* Static space for the 2 default backends */ 984 Savepoint *pSavepoint; /* List of active savepoints */ 985 int busyTimeout; /* Busy handler timeout, in msec */ 986 int nSavepoint; /* Number of non-transaction savepoints */ 987 int nStatement; /* Number of nested statement-transactions */ 988 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 989 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 990 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 991 992 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 993 /* The following variables are all protected by the STATIC_MASTER 994 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 995 ** 996 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 997 ** unlock so that it can proceed. 998 ** 999 ** When X.pBlockingConnection==Y, that means that something that X tried 1000 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1001 ** held by Y. 1002 */ 1003 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1004 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1005 void *pUnlockArg; /* Argument to xUnlockNotify */ 1006 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1007 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1008 #endif 1009 }; 1010 1011 /* 1012 ** A macro to discover the encoding of a database. 1013 */ 1014 #define ENC(db) ((db)->aDb[0].pSchema->enc) 1015 1016 /* 1017 ** Possible values for the sqlite3.flags. 1018 */ 1019 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1020 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1021 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1022 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1023 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1024 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1025 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1026 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1027 /* DELETE, or UPDATE and return */ 1028 /* the count using a callback. */ 1029 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1030 /* result set is empty */ 1031 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1032 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1033 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1034 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1035 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1036 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1037 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1038 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1039 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1040 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1041 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1042 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1043 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1044 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1045 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1046 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1047 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1048 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1049 1050 1051 /* 1052 ** Bits of the sqlite3.dbOptFlags field that are used by the 1053 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1054 ** selectively disable various optimizations. 1055 */ 1056 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1057 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1058 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1059 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1060 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1061 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1062 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1063 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1064 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1065 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1066 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1067 #define SQLITE_Stat3 0x0800 /* Use the SQLITE_STAT3 table */ 1068 #define SQLITE_AdjustOutEst 0x1000 /* Adjust output estimates using WHERE */ 1069 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1070 1071 /* 1072 ** Macros for testing whether or not optimizations are enabled or disabled. 1073 */ 1074 #ifndef SQLITE_OMIT_BUILTIN_TEST 1075 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1076 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1077 #else 1078 #define OptimizationDisabled(db, mask) 0 1079 #define OptimizationEnabled(db, mask) 1 1080 #endif 1081 1082 /* 1083 ** Return true if it OK to factor constant expressions into the initialization 1084 ** code. The argument is a Parse object for the code generator. 1085 */ 1086 #define ConstFactorOk(P) \ 1087 ((P)->cookieGoto>0 && OptimizationEnabled((P)->db,SQLITE_FactorOutConst)) 1088 1089 /* 1090 ** Possible values for the sqlite.magic field. 1091 ** The numbers are obtained at random and have no special meaning, other 1092 ** than being distinct from one another. 1093 */ 1094 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1095 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1096 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1097 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1098 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1099 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1100 1101 /* 1102 ** Each SQL function is defined by an instance of the following 1103 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1104 ** hash table. When multiple functions have the same name, the hash table 1105 ** points to a linked list of these structures. 1106 */ 1107 struct FuncDef { 1108 i16 nArg; /* Number of arguments. -1 means unlimited */ 1109 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1110 void *pUserData; /* User data parameter */ 1111 FuncDef *pNext; /* Next function with same name */ 1112 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1113 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1114 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1115 char *zName; /* SQL name of the function. */ 1116 FuncDef *pHash; /* Next with a different name but the same hash */ 1117 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1118 }; 1119 1120 /* 1121 ** This structure encapsulates a user-function destructor callback (as 1122 ** configured using create_function_v2()) and a reference counter. When 1123 ** create_function_v2() is called to create a function with a destructor, 1124 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1125 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1126 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1127 ** member of each of the new FuncDef objects is set to point to the allocated 1128 ** FuncDestructor. 1129 ** 1130 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1131 ** count on this object is decremented. When it reaches 0, the destructor 1132 ** is invoked and the FuncDestructor structure freed. 1133 */ 1134 struct FuncDestructor { 1135 int nRef; 1136 void (*xDestroy)(void *); 1137 void *pUserData; 1138 }; 1139 1140 /* 1141 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1142 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1143 ** are assert() statements in the code to verify this. 1144 */ 1145 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1146 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1147 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1148 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1149 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1150 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1151 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1152 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1153 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1154 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1155 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1156 1157 /* 1158 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1159 ** used to create the initializers for the FuncDef structures. 1160 ** 1161 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1162 ** Used to create a scalar function definition of a function zName 1163 ** implemented by C function xFunc that accepts nArg arguments. The 1164 ** value passed as iArg is cast to a (void*) and made available 1165 ** as the user-data (sqlite3_user_data()) for the function. If 1166 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1167 ** 1168 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1169 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1170 ** 1171 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1172 ** Used to create an aggregate function definition implemented by 1173 ** the C functions xStep and xFinal. The first four parameters 1174 ** are interpreted in the same way as the first 4 parameters to 1175 ** FUNCTION(). 1176 ** 1177 ** LIKEFUNC(zName, nArg, pArg, flags) 1178 ** Used to create a scalar function definition of a function zName 1179 ** that accepts nArg arguments and is implemented by a call to C 1180 ** function likeFunc. Argument pArg is cast to a (void *) and made 1181 ** available as the function user-data (sqlite3_user_data()). The 1182 ** FuncDef.flags variable is set to the value passed as the flags 1183 ** parameter. 1184 */ 1185 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1186 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1187 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1188 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1189 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1190 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1191 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1192 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1193 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1194 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1195 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1196 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1197 #define LIKEFUNC(zName, nArg, arg, flags) \ 1198 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1199 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1200 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1201 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1202 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1203 1204 /* 1205 ** All current savepoints are stored in a linked list starting at 1206 ** sqlite3.pSavepoint. The first element in the list is the most recently 1207 ** opened savepoint. Savepoints are added to the list by the vdbe 1208 ** OP_Savepoint instruction. 1209 */ 1210 struct Savepoint { 1211 char *zName; /* Savepoint name (nul-terminated) */ 1212 i64 nDeferredCons; /* Number of deferred fk violations */ 1213 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1214 Savepoint *pNext; /* Parent savepoint (if any) */ 1215 }; 1216 1217 /* 1218 ** The following are used as the second parameter to sqlite3Savepoint(), 1219 ** and as the P1 argument to the OP_Savepoint instruction. 1220 */ 1221 #define SAVEPOINT_BEGIN 0 1222 #define SAVEPOINT_RELEASE 1 1223 #define SAVEPOINT_ROLLBACK 2 1224 1225 1226 /* 1227 ** Each SQLite module (virtual table definition) is defined by an 1228 ** instance of the following structure, stored in the sqlite3.aModule 1229 ** hash table. 1230 */ 1231 struct Module { 1232 const sqlite3_module *pModule; /* Callback pointers */ 1233 const char *zName; /* Name passed to create_module() */ 1234 void *pAux; /* pAux passed to create_module() */ 1235 void (*xDestroy)(void *); /* Module destructor function */ 1236 }; 1237 1238 /* 1239 ** information about each column of an SQL table is held in an instance 1240 ** of this structure. 1241 */ 1242 struct Column { 1243 char *zName; /* Name of this column */ 1244 Expr *pDflt; /* Default value of this column */ 1245 char *zDflt; /* Original text of the default value */ 1246 char *zType; /* Data type for this column */ 1247 char *zColl; /* Collating sequence. If NULL, use the default */ 1248 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1249 char affinity; /* One of the SQLITE_AFF_... values */ 1250 u8 szEst; /* Estimated size of this column. INT==1 */ 1251 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1252 }; 1253 1254 /* Allowed values for Column.colFlags: 1255 */ 1256 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1257 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1258 1259 /* 1260 ** A "Collating Sequence" is defined by an instance of the following 1261 ** structure. Conceptually, a collating sequence consists of a name and 1262 ** a comparison routine that defines the order of that sequence. 1263 ** 1264 ** If CollSeq.xCmp is NULL, it means that the 1265 ** collating sequence is undefined. Indices built on an undefined 1266 ** collating sequence may not be read or written. 1267 */ 1268 struct CollSeq { 1269 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1270 u8 enc; /* Text encoding handled by xCmp() */ 1271 void *pUser; /* First argument to xCmp() */ 1272 int (*xCmp)(void*,int, const void*, int, const void*); 1273 void (*xDel)(void*); /* Destructor for pUser */ 1274 }; 1275 1276 /* 1277 ** A sort order can be either ASC or DESC. 1278 */ 1279 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1280 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1281 1282 /* 1283 ** Column affinity types. 1284 ** 1285 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1286 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1287 ** the speed a little by numbering the values consecutively. 1288 ** 1289 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1290 ** when multiple affinity types are concatenated into a string and 1291 ** used as the P4 operand, they will be more readable. 1292 ** 1293 ** Note also that the numeric types are grouped together so that testing 1294 ** for a numeric type is a single comparison. 1295 */ 1296 #define SQLITE_AFF_TEXT 'a' 1297 #define SQLITE_AFF_NONE 'b' 1298 #define SQLITE_AFF_NUMERIC 'c' 1299 #define SQLITE_AFF_INTEGER 'd' 1300 #define SQLITE_AFF_REAL 'e' 1301 1302 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1303 1304 /* 1305 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1306 ** affinity value. 1307 */ 1308 #define SQLITE_AFF_MASK 0x67 1309 1310 /* 1311 ** Additional bit values that can be ORed with an affinity without 1312 ** changing the affinity. 1313 */ 1314 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1315 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1316 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1317 1318 /* 1319 ** An object of this type is created for each virtual table present in 1320 ** the database schema. 1321 ** 1322 ** If the database schema is shared, then there is one instance of this 1323 ** structure for each database connection (sqlite3*) that uses the shared 1324 ** schema. This is because each database connection requires its own unique 1325 ** instance of the sqlite3_vtab* handle used to access the virtual table 1326 ** implementation. sqlite3_vtab* handles can not be shared between 1327 ** database connections, even when the rest of the in-memory database 1328 ** schema is shared, as the implementation often stores the database 1329 ** connection handle passed to it via the xConnect() or xCreate() method 1330 ** during initialization internally. This database connection handle may 1331 ** then be used by the virtual table implementation to access real tables 1332 ** within the database. So that they appear as part of the callers 1333 ** transaction, these accesses need to be made via the same database 1334 ** connection as that used to execute SQL operations on the virtual table. 1335 ** 1336 ** All VTable objects that correspond to a single table in a shared 1337 ** database schema are initially stored in a linked-list pointed to by 1338 ** the Table.pVTable member variable of the corresponding Table object. 1339 ** When an sqlite3_prepare() operation is required to access the virtual 1340 ** table, it searches the list for the VTable that corresponds to the 1341 ** database connection doing the preparing so as to use the correct 1342 ** sqlite3_vtab* handle in the compiled query. 1343 ** 1344 ** When an in-memory Table object is deleted (for example when the 1345 ** schema is being reloaded for some reason), the VTable objects are not 1346 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1347 ** immediately. Instead, they are moved from the Table.pVTable list to 1348 ** another linked list headed by the sqlite3.pDisconnect member of the 1349 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1350 ** next time a statement is prepared using said sqlite3*. This is done 1351 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1352 ** Refer to comments above function sqlite3VtabUnlockList() for an 1353 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1354 ** list without holding the corresponding sqlite3.mutex mutex. 1355 ** 1356 ** The memory for objects of this type is always allocated by 1357 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1358 ** the first argument. 1359 */ 1360 struct VTable { 1361 sqlite3 *db; /* Database connection associated with this table */ 1362 Module *pMod; /* Pointer to module implementation */ 1363 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1364 int nRef; /* Number of pointers to this structure */ 1365 u8 bConstraint; /* True if constraints are supported */ 1366 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1367 VTable *pNext; /* Next in linked list (see above) */ 1368 }; 1369 1370 /* 1371 ** Each SQL table is represented in memory by an instance of the 1372 ** following structure. 1373 ** 1374 ** Table.zName is the name of the table. The case of the original 1375 ** CREATE TABLE statement is stored, but case is not significant for 1376 ** comparisons. 1377 ** 1378 ** Table.nCol is the number of columns in this table. Table.aCol is a 1379 ** pointer to an array of Column structures, one for each column. 1380 ** 1381 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1382 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1383 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1384 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1385 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1386 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1387 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1388 ** 1389 ** Table.tnum is the page number for the root BTree page of the table in the 1390 ** database file. If Table.iDb is the index of the database table backend 1391 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1392 ** holds temporary tables and indices. If TF_Ephemeral is set 1393 ** then the table is stored in a file that is automatically deleted 1394 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1395 ** refers VDBE cursor number that holds the table open, not to the root 1396 ** page number. Transient tables are used to hold the results of a 1397 ** sub-query that appears instead of a real table name in the FROM clause 1398 ** of a SELECT statement. 1399 */ 1400 struct Table { 1401 char *zName; /* Name of the table or view */ 1402 Column *aCol; /* Information about each column */ 1403 Index *pIndex; /* List of SQL indexes on this table. */ 1404 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1405 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1406 char *zColAff; /* String defining the affinity of each column */ 1407 #ifndef SQLITE_OMIT_CHECK 1408 ExprList *pCheck; /* All CHECK constraints */ 1409 #endif 1410 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1411 int tnum; /* Root BTree node for this table (see note above) */ 1412 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1413 i16 nCol; /* Number of columns in this table */ 1414 u16 nRef; /* Number of pointers to this Table */ 1415 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1416 u8 tabFlags; /* Mask of TF_* values */ 1417 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1418 #ifndef SQLITE_OMIT_ALTERTABLE 1419 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1420 #endif 1421 #ifndef SQLITE_OMIT_VIRTUALTABLE 1422 int nModuleArg; /* Number of arguments to the module */ 1423 char **azModuleArg; /* Text of all module args. [0] is module name */ 1424 VTable *pVTable; /* List of VTable objects. */ 1425 #endif 1426 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1427 Schema *pSchema; /* Schema that contains this table */ 1428 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1429 }; 1430 1431 /* 1432 ** Allowed values for Table.tabFlags. 1433 */ 1434 #define TF_Readonly 0x01 /* Read-only system table */ 1435 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1436 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1437 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1438 #define TF_Virtual 0x10 /* Is a virtual table */ 1439 #define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */ 1440 1441 1442 /* 1443 ** Test to see whether or not a table is a virtual table. This is 1444 ** done as a macro so that it will be optimized out when virtual 1445 ** table support is omitted from the build. 1446 */ 1447 #ifndef SQLITE_OMIT_VIRTUALTABLE 1448 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1449 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1450 #else 1451 # define IsVirtual(X) 0 1452 # define IsHiddenColumn(X) 0 1453 #endif 1454 1455 /* Does the table have a rowid */ 1456 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1457 1458 /* 1459 ** Each foreign key constraint is an instance of the following structure. 1460 ** 1461 ** A foreign key is associated with two tables. The "from" table is 1462 ** the table that contains the REFERENCES clause that creates the foreign 1463 ** key. The "to" table is the table that is named in the REFERENCES clause. 1464 ** Consider this example: 1465 ** 1466 ** CREATE TABLE ex1( 1467 ** a INTEGER PRIMARY KEY, 1468 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1469 ** ); 1470 ** 1471 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1472 ** Equivalent names: 1473 ** 1474 ** from-table == child-table 1475 ** to-table == parent-table 1476 ** 1477 ** Each REFERENCES clause generates an instance of the following structure 1478 ** which is attached to the from-table. The to-table need not exist when 1479 ** the from-table is created. The existence of the to-table is not checked. 1480 ** 1481 ** The list of all parents for child Table X is held at X.pFKey. 1482 ** 1483 ** A list of all children for a table named Z (which might not even exist) 1484 ** is held in Schema.fkeyHash with a hash key of Z. 1485 */ 1486 struct FKey { 1487 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1488 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1489 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1490 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1491 FKey *pPrevTo; /* Previous with the same zTo */ 1492 int nCol; /* Number of columns in this key */ 1493 /* EV: R-30323-21917 */ 1494 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1495 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1496 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1497 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1498 int iFrom; /* Index of column in pFrom */ 1499 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1500 } aCol[1]; /* One entry for each of nCol columns */ 1501 }; 1502 1503 /* 1504 ** SQLite supports many different ways to resolve a constraint 1505 ** error. ROLLBACK processing means that a constraint violation 1506 ** causes the operation in process to fail and for the current transaction 1507 ** to be rolled back. ABORT processing means the operation in process 1508 ** fails and any prior changes from that one operation are backed out, 1509 ** but the transaction is not rolled back. FAIL processing means that 1510 ** the operation in progress stops and returns an error code. But prior 1511 ** changes due to the same operation are not backed out and no rollback 1512 ** occurs. IGNORE means that the particular row that caused the constraint 1513 ** error is not inserted or updated. Processing continues and no error 1514 ** is returned. REPLACE means that preexisting database rows that caused 1515 ** a UNIQUE constraint violation are removed so that the new insert or 1516 ** update can proceed. Processing continues and no error is reported. 1517 ** 1518 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1519 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1520 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1521 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1522 ** referenced table row is propagated into the row that holds the 1523 ** foreign key. 1524 ** 1525 ** The following symbolic values are used to record which type 1526 ** of action to take. 1527 */ 1528 #define OE_None 0 /* There is no constraint to check */ 1529 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1530 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1531 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1532 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1533 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1534 1535 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1536 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1537 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1538 #define OE_Cascade 9 /* Cascade the changes */ 1539 1540 #define OE_Default 10 /* Do whatever the default action is */ 1541 1542 1543 /* 1544 ** An instance of the following structure is passed as the first 1545 ** argument to sqlite3VdbeKeyCompare and is used to control the 1546 ** comparison of the two index keys. 1547 ** 1548 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1549 ** are nField slots for the columns of an index then one extra slot 1550 ** for the rowid at the end. 1551 */ 1552 struct KeyInfo { 1553 u32 nRef; /* Number of references to this KeyInfo object */ 1554 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1555 u16 nField; /* Number of key columns in the index */ 1556 u16 nXField; /* Number of columns beyond the key columns */ 1557 sqlite3 *db; /* The database connection */ 1558 u8 *aSortOrder; /* Sort order for each column. */ 1559 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1560 }; 1561 1562 /* 1563 ** An instance of the following structure holds information about a 1564 ** single index record that has already been parsed out into individual 1565 ** values. 1566 ** 1567 ** A record is an object that contains one or more fields of data. 1568 ** Records are used to store the content of a table row and to store 1569 ** the key of an index. A blob encoding of a record is created by 1570 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1571 ** OP_Column opcode. 1572 ** 1573 ** This structure holds a record that has already been disassembled 1574 ** into its constituent fields. 1575 */ 1576 struct UnpackedRecord { 1577 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1578 u16 nField; /* Number of entries in apMem[] */ 1579 u8 flags; /* Boolean settings. UNPACKED_... below */ 1580 Mem *aMem; /* Values */ 1581 }; 1582 1583 /* 1584 ** Allowed values of UnpackedRecord.flags 1585 */ 1586 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1587 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1588 1589 /* 1590 ** Each SQL index is represented in memory by an 1591 ** instance of the following structure. 1592 ** 1593 ** The columns of the table that are to be indexed are described 1594 ** by the aiColumn[] field of this structure. For example, suppose 1595 ** we have the following table and index: 1596 ** 1597 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1598 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1599 ** 1600 ** In the Table structure describing Ex1, nCol==3 because there are 1601 ** three columns in the table. In the Index structure describing 1602 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1603 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1604 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1605 ** The second column to be indexed (c1) has an index of 0 in 1606 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1607 ** 1608 ** The Index.onError field determines whether or not the indexed columns 1609 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1610 ** it means this is not a unique index. Otherwise it is a unique index 1611 ** and the value of Index.onError indicate the which conflict resolution 1612 ** algorithm to employ whenever an attempt is made to insert a non-unique 1613 ** element. 1614 */ 1615 struct Index { 1616 char *zName; /* Name of this index */ 1617 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1618 tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ 1619 Table *pTable; /* The SQL table being indexed */ 1620 char *zColAff; /* String defining the affinity of each column */ 1621 Index *pNext; /* The next index associated with the same table */ 1622 Schema *pSchema; /* Schema containing this index */ 1623 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1624 char **azColl; /* Array of collation sequence names for index */ 1625 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1626 KeyInfo *pKeyInfo; /* A KeyInfo object suitable for this index */ 1627 int tnum; /* DB Page containing root of this index */ 1628 LogEst szIdxRow; /* Estimated average row size in bytes */ 1629 u16 nKeyCol; /* Number of columns forming the key */ 1630 u16 nColumn; /* Number of columns stored in the index */ 1631 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1632 unsigned autoIndex:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1633 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1634 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1635 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1636 unsigned isCovering:1; /* True if this is a covering index */ 1637 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1638 int nSample; /* Number of elements in aSample[] */ 1639 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1640 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1641 IndexSample *aSample; /* Samples of the left-most key */ 1642 #endif 1643 }; 1644 1645 /* 1646 ** Each sample stored in the sqlite_stat3 table is represented in memory 1647 ** using a structure of this type. See documentation at the top of the 1648 ** analyze.c source file for additional information. 1649 */ 1650 struct IndexSample { 1651 void *p; /* Pointer to sampled record */ 1652 int n; /* Size of record in bytes */ 1653 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1654 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1655 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1656 }; 1657 1658 /* 1659 ** Each token coming out of the lexer is an instance of 1660 ** this structure. Tokens are also used as part of an expression. 1661 ** 1662 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1663 ** may contain random values. Do not make any assumptions about Token.dyn 1664 ** and Token.n when Token.z==0. 1665 */ 1666 struct Token { 1667 const char *z; /* Text of the token. Not NULL-terminated! */ 1668 unsigned int n; /* Number of characters in this token */ 1669 }; 1670 1671 /* 1672 ** An instance of this structure contains information needed to generate 1673 ** code for a SELECT that contains aggregate functions. 1674 ** 1675 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1676 ** pointer to this structure. The Expr.iColumn field is the index in 1677 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1678 ** code for that node. 1679 ** 1680 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1681 ** original Select structure that describes the SELECT statement. These 1682 ** fields do not need to be freed when deallocating the AggInfo structure. 1683 */ 1684 struct AggInfo { 1685 u8 directMode; /* Direct rendering mode means take data directly 1686 ** from source tables rather than from accumulators */ 1687 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1688 ** than the source table */ 1689 int sortingIdx; /* Cursor number of the sorting index */ 1690 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1691 int nSortingColumn; /* Number of columns in the sorting index */ 1692 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1693 ExprList *pGroupBy; /* The group by clause */ 1694 struct AggInfo_col { /* For each column used in source tables */ 1695 Table *pTab; /* Source table */ 1696 int iTable; /* Cursor number of the source table */ 1697 int iColumn; /* Column number within the source table */ 1698 int iSorterColumn; /* Column number in the sorting index */ 1699 int iMem; /* Memory location that acts as accumulator */ 1700 Expr *pExpr; /* The original expression */ 1701 } *aCol; 1702 int nColumn; /* Number of used entries in aCol[] */ 1703 int nAccumulator; /* Number of columns that show through to the output. 1704 ** Additional columns are used only as parameters to 1705 ** aggregate functions */ 1706 struct AggInfo_func { /* For each aggregate function */ 1707 Expr *pExpr; /* Expression encoding the function */ 1708 FuncDef *pFunc; /* The aggregate function implementation */ 1709 int iMem; /* Memory location that acts as accumulator */ 1710 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1711 } *aFunc; 1712 int nFunc; /* Number of entries in aFunc[] */ 1713 }; 1714 1715 /* 1716 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1717 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1718 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1719 ** it uses less memory in the Expr object, which is a big memory user 1720 ** in systems with lots of prepared statements. And few applications 1721 ** need more than about 10 or 20 variables. But some extreme users want 1722 ** to have prepared statements with over 32767 variables, and for them 1723 ** the option is available (at compile-time). 1724 */ 1725 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1726 typedef i16 ynVar; 1727 #else 1728 typedef int ynVar; 1729 #endif 1730 1731 /* 1732 ** Each node of an expression in the parse tree is an instance 1733 ** of this structure. 1734 ** 1735 ** Expr.op is the opcode. The integer parser token codes are reused 1736 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1737 ** code representing the ">=" operator. This same integer code is reused 1738 ** to represent the greater-than-or-equal-to operator in the expression 1739 ** tree. 1740 ** 1741 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1742 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1743 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1744 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1745 ** then Expr.token contains the name of the function. 1746 ** 1747 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1748 ** binary operator. Either or both may be NULL. 1749 ** 1750 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1751 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1752 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1753 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1754 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1755 ** valid. 1756 ** 1757 ** An expression of the form ID or ID.ID refers to a column in a table. 1758 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1759 ** the integer cursor number of a VDBE cursor pointing to that table and 1760 ** Expr.iColumn is the column number for the specific column. If the 1761 ** expression is used as a result in an aggregate SELECT, then the 1762 ** value is also stored in the Expr.iAgg column in the aggregate so that 1763 ** it can be accessed after all aggregates are computed. 1764 ** 1765 ** If the expression is an unbound variable marker (a question mark 1766 ** character '?' in the original SQL) then the Expr.iTable holds the index 1767 ** number for that variable. 1768 ** 1769 ** If the expression is a subquery then Expr.iColumn holds an integer 1770 ** register number containing the result of the subquery. If the 1771 ** subquery gives a constant result, then iTable is -1. If the subquery 1772 ** gives a different answer at different times during statement processing 1773 ** then iTable is the address of a subroutine that computes the subquery. 1774 ** 1775 ** If the Expr is of type OP_Column, and the table it is selecting from 1776 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1777 ** corresponding table definition. 1778 ** 1779 ** ALLOCATION NOTES: 1780 ** 1781 ** Expr objects can use a lot of memory space in database schema. To 1782 ** help reduce memory requirements, sometimes an Expr object will be 1783 ** truncated. And to reduce the number of memory allocations, sometimes 1784 ** two or more Expr objects will be stored in a single memory allocation, 1785 ** together with Expr.zToken strings. 1786 ** 1787 ** If the EP_Reduced and EP_TokenOnly flags are set when 1788 ** an Expr object is truncated. When EP_Reduced is set, then all 1789 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1790 ** are contained within the same memory allocation. Note, however, that 1791 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1792 ** allocated, regardless of whether or not EP_Reduced is set. 1793 */ 1794 struct Expr { 1795 u8 op; /* Operation performed by this node */ 1796 char affinity; /* The affinity of the column or 0 if not a column */ 1797 u32 flags; /* Various flags. EP_* See below */ 1798 union { 1799 char *zToken; /* Token value. Zero terminated and dequoted */ 1800 int iValue; /* Non-negative integer value if EP_IntValue */ 1801 } u; 1802 1803 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1804 ** space is allocated for the fields below this point. An attempt to 1805 ** access them will result in a segfault or malfunction. 1806 *********************************************************************/ 1807 1808 Expr *pLeft; /* Left subnode */ 1809 Expr *pRight; /* Right subnode */ 1810 union { 1811 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 1812 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 1813 } x; 1814 1815 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1816 ** space is allocated for the fields below this point. An attempt to 1817 ** access them will result in a segfault or malfunction. 1818 *********************************************************************/ 1819 1820 #if SQLITE_MAX_EXPR_DEPTH>0 1821 int nHeight; /* Height of the tree headed by this node */ 1822 #endif 1823 int iTable; /* TK_COLUMN: cursor number of table holding column 1824 ** TK_REGISTER: register number 1825 ** TK_TRIGGER: 1 -> new, 0 -> old 1826 ** EP_Unlikely: 1000 times likelihood */ 1827 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1828 ** TK_VARIABLE: variable number (always >= 1). */ 1829 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1830 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1831 u8 op2; /* TK_REGISTER: original value of Expr.op 1832 ** TK_COLUMN: the value of p5 for OP_Column 1833 ** TK_AGG_FUNCTION: nesting depth */ 1834 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1835 Table *pTab; /* Table for TK_COLUMN expressions. */ 1836 }; 1837 1838 /* 1839 ** The following are the meanings of bits in the Expr.flags field. 1840 */ 1841 #define EP_FromJoin 0x000001 /* Originated in ON or USING clause of a join */ 1842 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 1843 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 1844 #define EP_Error 0x000008 /* Expression contains one or more errors */ 1845 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 1846 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 1847 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 1848 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 1849 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE opeartor */ 1850 /* unused 0x000200 */ 1851 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 1852 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 1853 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 1854 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 1855 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 1856 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 1857 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 1858 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 1859 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 1860 #define EP_Constant 0x080000 /* Node is a constant */ 1861 1862 /* 1863 ** These macros can be used to test, set, or clear bits in the 1864 ** Expr.flags field. 1865 */ 1866 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 1867 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 1868 #define ExprSetProperty(E,P) (E)->flags|=(P) 1869 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1870 1871 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 1872 ** and Accreditation only. It works like ExprSetProperty() during VVA 1873 ** processes but is a no-op for delivery. 1874 */ 1875 #ifdef SQLITE_DEBUG 1876 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 1877 #else 1878 # define ExprSetVVAProperty(E,P) 1879 #endif 1880 1881 /* 1882 ** Macros to determine the number of bytes required by a normal Expr 1883 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1884 ** and an Expr struct with the EP_TokenOnly flag set. 1885 */ 1886 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1887 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1888 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1889 1890 /* 1891 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1892 ** above sqlite3ExprDup() for details. 1893 */ 1894 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1895 1896 /* 1897 ** A list of expressions. Each expression may optionally have a 1898 ** name. An expr/name combination can be used in several ways, such 1899 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1900 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1901 ** also be used as the argument to a function, in which case the a.zName 1902 ** field is not used. 1903 ** 1904 ** By default the Expr.zSpan field holds a human-readable description of 1905 ** the expression that is used in the generation of error messages and 1906 ** column labels. In this case, Expr.zSpan is typically the text of a 1907 ** column expression as it exists in a SELECT statement. However, if 1908 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 1909 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 1910 ** form is used for name resolution with nested FROM clauses. 1911 */ 1912 struct ExprList { 1913 int nExpr; /* Number of expressions on the list */ 1914 int iECursor; /* VDBE Cursor associated with this ExprList */ 1915 struct ExprList_item { /* For each expression in the list */ 1916 Expr *pExpr; /* The list of expressions */ 1917 char *zName; /* Token associated with this expression */ 1918 char *zSpan; /* Original text of the expression */ 1919 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1920 unsigned done :1; /* A flag to indicate when processing is finished */ 1921 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 1922 unsigned reusable :1; /* Constant expression is reusable */ 1923 union { 1924 struct { 1925 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1926 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1927 } x; 1928 int iConstExprReg; /* Register in which Expr value is cached */ 1929 } u; 1930 } *a; /* Alloc a power of two greater or equal to nExpr */ 1931 }; 1932 1933 /* 1934 ** An instance of this structure is used by the parser to record both 1935 ** the parse tree for an expression and the span of input text for an 1936 ** expression. 1937 */ 1938 struct ExprSpan { 1939 Expr *pExpr; /* The expression parse tree */ 1940 const char *zStart; /* First character of input text */ 1941 const char *zEnd; /* One character past the end of input text */ 1942 }; 1943 1944 /* 1945 ** An instance of this structure can hold a simple list of identifiers, 1946 ** such as the list "a,b,c" in the following statements: 1947 ** 1948 ** INSERT INTO t(a,b,c) VALUES ...; 1949 ** CREATE INDEX idx ON t(a,b,c); 1950 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1951 ** 1952 ** The IdList.a.idx field is used when the IdList represents the list of 1953 ** column names after a table name in an INSERT statement. In the statement 1954 ** 1955 ** INSERT INTO t(a,b,c) ... 1956 ** 1957 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1958 */ 1959 struct IdList { 1960 struct IdList_item { 1961 char *zName; /* Name of the identifier */ 1962 int idx; /* Index in some Table.aCol[] of a column named zName */ 1963 } *a; 1964 int nId; /* Number of identifiers on the list */ 1965 }; 1966 1967 /* 1968 ** The bitmask datatype defined below is used for various optimizations. 1969 ** 1970 ** Changing this from a 64-bit to a 32-bit type limits the number of 1971 ** tables in a join to 32 instead of 64. But it also reduces the size 1972 ** of the library by 738 bytes on ix86. 1973 */ 1974 typedef u64 Bitmask; 1975 1976 /* 1977 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1978 */ 1979 #define BMS ((int)(sizeof(Bitmask)*8)) 1980 1981 /* 1982 ** A bit in a Bitmask 1983 */ 1984 #define MASKBIT(n) (((Bitmask)1)<<(n)) 1985 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 1986 1987 /* 1988 ** The following structure describes the FROM clause of a SELECT statement. 1989 ** Each table or subquery in the FROM clause is a separate element of 1990 ** the SrcList.a[] array. 1991 ** 1992 ** With the addition of multiple database support, the following structure 1993 ** can also be used to describe a particular table such as the table that 1994 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1995 ** such a table must be a simple name: ID. But in SQLite, the table can 1996 ** now be identified by a database name, a dot, then the table name: ID.ID. 1997 ** 1998 ** The jointype starts out showing the join type between the current table 1999 ** and the next table on the list. The parser builds the list this way. 2000 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2001 ** jointype expresses the join between the table and the previous table. 2002 ** 2003 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2004 ** contains more than 63 columns and the 64-th or later column is used. 2005 */ 2006 struct SrcList { 2007 u8 nSrc; /* Number of tables or subqueries in the FROM clause */ 2008 u8 nAlloc; /* Number of entries allocated in a[] below */ 2009 struct SrcList_item { 2010 Schema *pSchema; /* Schema to which this item is fixed */ 2011 char *zDatabase; /* Name of database holding this table */ 2012 char *zName; /* Name of the table */ 2013 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2014 Table *pTab; /* An SQL table corresponding to zName */ 2015 Select *pSelect; /* A SELECT statement used in place of a table name */ 2016 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2017 int regReturn; /* Register holding return address of addrFillSub */ 2018 u8 jointype; /* Type of join between this able and the previous */ 2019 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2020 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2021 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2022 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2023 #ifndef SQLITE_OMIT_EXPLAIN 2024 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2025 #endif 2026 int iCursor; /* The VDBE cursor number used to access this table */ 2027 Expr *pOn; /* The ON clause of a join */ 2028 IdList *pUsing; /* The USING clause of a join */ 2029 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2030 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 2031 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2032 } a[1]; /* One entry for each identifier on the list */ 2033 }; 2034 2035 /* 2036 ** Permitted values of the SrcList.a.jointype field 2037 */ 2038 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2039 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2040 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2041 #define JT_LEFT 0x0008 /* Left outer join */ 2042 #define JT_RIGHT 0x0010 /* Right outer join */ 2043 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2044 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2045 2046 2047 /* 2048 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2049 ** and the WhereInfo.wctrlFlags member. 2050 */ 2051 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2052 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2053 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2054 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2055 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2056 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2057 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2058 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2059 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 2060 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2061 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2062 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2063 2064 /* Allowed return values from sqlite3WhereIsDistinct() 2065 */ 2066 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2067 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2068 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2069 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2070 2071 /* 2072 ** A NameContext defines a context in which to resolve table and column 2073 ** names. The context consists of a list of tables (the pSrcList) field and 2074 ** a list of named expression (pEList). The named expression list may 2075 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2076 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2077 ** pEList corresponds to the result set of a SELECT and is NULL for 2078 ** other statements. 2079 ** 2080 ** NameContexts can be nested. When resolving names, the inner-most 2081 ** context is searched first. If no match is found, the next outer 2082 ** context is checked. If there is still no match, the next context 2083 ** is checked. This process continues until either a match is found 2084 ** or all contexts are check. When a match is found, the nRef member of 2085 ** the context containing the match is incremented. 2086 ** 2087 ** Each subquery gets a new NameContext. The pNext field points to the 2088 ** NameContext in the parent query. Thus the process of scanning the 2089 ** NameContext list corresponds to searching through successively outer 2090 ** subqueries looking for a match. 2091 */ 2092 struct NameContext { 2093 Parse *pParse; /* The parser */ 2094 SrcList *pSrcList; /* One or more tables used to resolve names */ 2095 ExprList *pEList; /* Optional list of result-set columns */ 2096 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2097 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2098 int nRef; /* Number of names resolved by this context */ 2099 int nErr; /* Number of errors encountered while resolving names */ 2100 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2101 }; 2102 2103 /* 2104 ** Allowed values for the NameContext, ncFlags field. 2105 */ 2106 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2107 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2108 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2109 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2110 #define NC_PartIdx 0x10 /* True if resolving a partial index WHERE */ 2111 2112 /* 2113 ** An instance of the following structure contains all information 2114 ** needed to generate code for a single SELECT statement. 2115 ** 2116 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2117 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2118 ** limit and nOffset to the value of the offset (or 0 if there is not 2119 ** offset). But later on, nLimit and nOffset become the memory locations 2120 ** in the VDBE that record the limit and offset counters. 2121 ** 2122 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2123 ** These addresses must be stored so that we can go back and fill in 2124 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2125 ** the number of columns in P2 can be computed at the same time 2126 ** as the OP_OpenEphm instruction is coded because not 2127 ** enough information about the compound query is known at that point. 2128 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2129 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2130 ** sequences for the ORDER BY clause. 2131 */ 2132 struct Select { 2133 ExprList *pEList; /* The fields of the result */ 2134 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2135 u16 selFlags; /* Various SF_* values */ 2136 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2137 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2138 u64 nSelectRow; /* Estimated number of result rows */ 2139 SrcList *pSrc; /* The FROM clause */ 2140 Expr *pWhere; /* The WHERE clause */ 2141 ExprList *pGroupBy; /* The GROUP BY clause */ 2142 Expr *pHaving; /* The HAVING clause */ 2143 ExprList *pOrderBy; /* The ORDER BY clause */ 2144 Select *pPrior; /* Prior select in a compound select statement */ 2145 Select *pNext; /* Next select to the left in a compound */ 2146 Select *pRightmost; /* Right-most select in a compound select statement */ 2147 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2148 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2149 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2150 }; 2151 2152 /* 2153 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2154 ** "Select Flag". 2155 */ 2156 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2157 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2158 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2159 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2160 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2161 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2162 #define SF_UseSorter 0x0040 /* Sort using a sorter */ 2163 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2164 #define SF_Materialize 0x0100 /* Force materialization of views */ 2165 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2166 #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ 2167 #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ 2168 2169 2170 /* 2171 ** The results of a SELECT can be distributed in several ways, as defined 2172 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2173 ** Type". 2174 ** 2175 ** SRT_Union Store results as a key in a temporary index 2176 ** identified by pDest->iSDParm. 2177 ** 2178 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2179 ** 2180 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2181 ** set is not empty. 2182 ** 2183 ** SRT_Discard Throw the results away. This is used by SELECT 2184 ** statements within triggers whose only purpose is 2185 ** the side-effects of functions. 2186 ** 2187 ** All of the above are free to ignore their ORDER BY clause. Those that 2188 ** follow must honor the ORDER BY clause. 2189 ** 2190 ** SRT_Output Generate a row of output (using the OP_ResultRow 2191 ** opcode) for each row in the result set. 2192 ** 2193 ** SRT_Mem Only valid if the result is a single column. 2194 ** Store the first column of the first result row 2195 ** in register pDest->iSDParm then abandon the rest 2196 ** of the query. This destination implies "LIMIT 1". 2197 ** 2198 ** SRT_Set The result must be a single column. Store each 2199 ** row of result as the key in table pDest->iSDParm. 2200 ** Apply the affinity pDest->affSdst before storing 2201 ** results. Used to implement "IN (SELECT ...)". 2202 ** 2203 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2204 ** the result there. The cursor is left open after 2205 ** returning. This is like SRT_Table except that 2206 ** this destination uses OP_OpenEphemeral to create 2207 ** the table first. 2208 ** 2209 ** SRT_Coroutine Generate a co-routine that returns a new row of 2210 ** results each time it is invoked. The entry point 2211 ** of the co-routine is stored in register pDest->iSDParm 2212 ** and the result row is stored in pDest->nDest registers 2213 ** starting with pDest->iSdst. 2214 ** 2215 ** SRT_Table Store results in temporary table pDest->iSDParm. 2216 ** This is like SRT_EphemTab except that the table 2217 ** is assumed to already be open. 2218 ** 2219 ** SRT_DistTable Store results in a temporary table pDest->iSDParm. 2220 ** But also use temporary table pDest->iSDParm+1 as 2221 ** a record of all prior results and ignore any duplicate 2222 ** rows. Name means: "Distinct Table". 2223 ** 2224 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2225 ** an index). Append a sequence number so that all entries 2226 ** are distinct. 2227 ** 2228 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2229 ** the same record has never been stored before. The 2230 ** index at pDest->iSDParm+1 hold all prior stores. 2231 */ 2232 #define SRT_Union 1 /* Store result as keys in an index */ 2233 #define SRT_Except 2 /* Remove result from a UNION index */ 2234 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2235 #define SRT_Discard 4 /* Do not save the results anywhere */ 2236 2237 /* The ORDER BY clause is ignored for all of the above */ 2238 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2239 2240 #define SRT_Output 5 /* Output each row of result */ 2241 #define SRT_Mem 6 /* Store result in a memory cell */ 2242 #define SRT_Set 7 /* Store results as keys in an index */ 2243 #define SRT_EphemTab 8 /* Create transient tab and store like SRT_Table */ 2244 #define SRT_Coroutine 9 /* Generate a single row of result */ 2245 #define SRT_Table 10 /* Store result as data with an automatic rowid */ 2246 #define SRT_DistTable 11 /* Like SRT_Table, but unique results only */ 2247 #define SRT_Queue 12 /* Store result in an queue */ 2248 #define SRT_DistQueue 13 /* Like SRT_Queue, but unique results only */ 2249 2250 /* 2251 ** An instance of this object describes where to put of the results of 2252 ** a SELECT statement. 2253 */ 2254 struct SelectDest { 2255 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2256 char affSdst; /* Affinity used when eDest==SRT_Set */ 2257 int iSDParm; /* A parameter used by the eDest disposal method */ 2258 int iSdst; /* Base register where results are written */ 2259 int nSdst; /* Number of registers allocated */ 2260 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2261 }; 2262 2263 /* 2264 ** During code generation of statements that do inserts into AUTOINCREMENT 2265 ** tables, the following information is attached to the Table.u.autoInc.p 2266 ** pointer of each autoincrement table to record some side information that 2267 ** the code generator needs. We have to keep per-table autoincrement 2268 ** information in case inserts are down within triggers. Triggers do not 2269 ** normally coordinate their activities, but we do need to coordinate the 2270 ** loading and saving of autoincrement information. 2271 */ 2272 struct AutoincInfo { 2273 AutoincInfo *pNext; /* Next info block in a list of them all */ 2274 Table *pTab; /* Table this info block refers to */ 2275 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2276 int regCtr; /* Memory register holding the rowid counter */ 2277 }; 2278 2279 /* 2280 ** Size of the column cache 2281 */ 2282 #ifndef SQLITE_N_COLCACHE 2283 # define SQLITE_N_COLCACHE 10 2284 #endif 2285 2286 /* 2287 ** At least one instance of the following structure is created for each 2288 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2289 ** statement. All such objects are stored in the linked list headed at 2290 ** Parse.pTriggerPrg and deleted once statement compilation has been 2291 ** completed. 2292 ** 2293 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2294 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2295 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2296 ** The Parse.pTriggerPrg list never contains two entries with the same 2297 ** values for both pTrigger and orconf. 2298 ** 2299 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2300 ** accessed (or set to 0 for triggers fired as a result of INSERT 2301 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2302 ** a mask of new.* columns used by the program. 2303 */ 2304 struct TriggerPrg { 2305 Trigger *pTrigger; /* Trigger this program was coded from */ 2306 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2307 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2308 int orconf; /* Default ON CONFLICT policy */ 2309 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2310 }; 2311 2312 /* 2313 ** The yDbMask datatype for the bitmask of all attached databases. 2314 */ 2315 #if SQLITE_MAX_ATTACHED>30 2316 typedef sqlite3_uint64 yDbMask; 2317 #else 2318 typedef unsigned int yDbMask; 2319 #endif 2320 2321 /* 2322 ** An SQL parser context. A copy of this structure is passed through 2323 ** the parser and down into all the parser action routine in order to 2324 ** carry around information that is global to the entire parse. 2325 ** 2326 ** The structure is divided into two parts. When the parser and code 2327 ** generate call themselves recursively, the first part of the structure 2328 ** is constant but the second part is reset at the beginning and end of 2329 ** each recursion. 2330 ** 2331 ** The nTableLock and aTableLock variables are only used if the shared-cache 2332 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2333 ** used to store the set of table-locks required by the statement being 2334 ** compiled. Function sqlite3TableLock() is used to add entries to the 2335 ** list. 2336 */ 2337 struct Parse { 2338 sqlite3 *db; /* The main database structure */ 2339 char *zErrMsg; /* An error message */ 2340 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2341 int rc; /* Return code from execution */ 2342 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2343 u8 checkSchema; /* Causes schema cookie check after an error */ 2344 u8 nested; /* Number of nested calls to the parser/code generator */ 2345 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2346 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2347 u8 nColCache; /* Number of entries in aColCache[] */ 2348 u8 iColCache; /* Next entry in aColCache[] to replace */ 2349 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2350 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2351 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2352 int aTempReg[8]; /* Holding area for temporary registers */ 2353 int nRangeReg; /* Size of the temporary register block */ 2354 int iRangeReg; /* First register in temporary register block */ 2355 int nErr; /* Number of errors seen */ 2356 int nTab; /* Number of previously allocated VDBE cursors */ 2357 int nMem; /* Number of memory cells used so far */ 2358 int nSet; /* Number of sets used so far */ 2359 int nOnce; /* Number of OP_Once instructions so far */ 2360 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2361 int nLabel; /* Number of labels used */ 2362 int *aLabel; /* Space to hold the labels */ 2363 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2364 int ckBase; /* Base register of data during check constraints */ 2365 int iPartIdxTab; /* Table corresponding to a partial index */ 2366 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2367 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2368 struct yColCache { 2369 int iTable; /* Table cursor number */ 2370 int iColumn; /* Table column number */ 2371 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2372 int iLevel; /* Nesting level */ 2373 int iReg; /* Reg with value of this column. 0 means none. */ 2374 int lru; /* Least recently used entry has the smallest value */ 2375 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2376 ExprList *pConstExpr;/* Constant expressions */ 2377 yDbMask writeMask; /* Start a write transaction on these databases */ 2378 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2379 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2380 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2381 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2382 int regRoot; /* Register holding root page number for new objects */ 2383 int nMaxArg; /* Max args passed to user function by sub-program */ 2384 Token constraintName;/* Name of the constraint currently being parsed */ 2385 #ifndef SQLITE_OMIT_SHARED_CACHE 2386 int nTableLock; /* Number of locks in aTableLock */ 2387 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2388 #endif 2389 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2390 2391 /* Information used while coding trigger programs. */ 2392 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2393 Table *pTriggerTab; /* Table triggers are being coded for */ 2394 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2395 int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */ 2396 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2397 u32 oldmask; /* Mask of old.* columns referenced */ 2398 u32 newmask; /* Mask of new.* columns referenced */ 2399 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2400 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2401 u8 disableTriggers; /* True to disable triggers */ 2402 2403 /* Above is constant between recursions. Below is reset before and after 2404 ** each recursion */ 2405 2406 int nVar; /* Number of '?' variables seen in the SQL so far */ 2407 int nzVar; /* Number of available slots in azVar[] */ 2408 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2409 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2410 #ifndef SQLITE_OMIT_VIRTUALTABLE 2411 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2412 int nVtabLock; /* Number of virtual tables to lock */ 2413 #endif 2414 int nAlias; /* Number of aliased result set columns */ 2415 int nHeight; /* Expression tree height of current sub-select */ 2416 #ifndef SQLITE_OMIT_EXPLAIN 2417 int iSelectId; /* ID of current select for EXPLAIN output */ 2418 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2419 #endif 2420 char **azVar; /* Pointers to names of parameters */ 2421 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2422 const char *zTail; /* All SQL text past the last semicolon parsed */ 2423 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2424 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2425 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2426 Token sNameToken; /* Token with unqualified schema object name */ 2427 Token sLastToken; /* The last token parsed */ 2428 #ifndef SQLITE_OMIT_VIRTUALTABLE 2429 Token sArg; /* Complete text of a module argument */ 2430 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2431 #endif 2432 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2433 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2434 With *pWith; /* Current WITH clause, or NULL */ 2435 u8 bFreeWith; /* True if pWith should be freed with parser */ 2436 }; 2437 2438 /* 2439 ** Return true if currently inside an sqlite3_declare_vtab() call. 2440 */ 2441 #ifdef SQLITE_OMIT_VIRTUALTABLE 2442 #define IN_DECLARE_VTAB 0 2443 #else 2444 #define IN_DECLARE_VTAB (pParse->declareVtab) 2445 #endif 2446 2447 /* 2448 ** An instance of the following structure can be declared on a stack and used 2449 ** to save the Parse.zAuthContext value so that it can be restored later. 2450 */ 2451 struct AuthContext { 2452 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2453 Parse *pParse; /* The Parse structure */ 2454 }; 2455 2456 /* 2457 ** Bitfield flags for P5 value in various opcodes. 2458 */ 2459 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2460 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2461 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2462 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2463 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2464 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2465 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2466 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2467 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2468 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2469 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2470 2471 /* 2472 * Each trigger present in the database schema is stored as an instance of 2473 * struct Trigger. 2474 * 2475 * Pointers to instances of struct Trigger are stored in two ways. 2476 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2477 * database). This allows Trigger structures to be retrieved by name. 2478 * 2. All triggers associated with a single table form a linked list, using the 2479 * pNext member of struct Trigger. A pointer to the first element of the 2480 * linked list is stored as the "pTrigger" member of the associated 2481 * struct Table. 2482 * 2483 * The "step_list" member points to the first element of a linked list 2484 * containing the SQL statements specified as the trigger program. 2485 */ 2486 struct Trigger { 2487 char *zName; /* The name of the trigger */ 2488 char *table; /* The table or view to which the trigger applies */ 2489 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2490 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2491 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2492 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2493 the <column-list> is stored here */ 2494 Schema *pSchema; /* Schema containing the trigger */ 2495 Schema *pTabSchema; /* Schema containing the table */ 2496 TriggerStep *step_list; /* Link list of trigger program steps */ 2497 Trigger *pNext; /* Next trigger associated with the table */ 2498 }; 2499 2500 /* 2501 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2502 ** determine which. 2503 ** 2504 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2505 ** In that cases, the constants below can be ORed together. 2506 */ 2507 #define TRIGGER_BEFORE 1 2508 #define TRIGGER_AFTER 2 2509 2510 /* 2511 * An instance of struct TriggerStep is used to store a single SQL statement 2512 * that is a part of a trigger-program. 2513 * 2514 * Instances of struct TriggerStep are stored in a singly linked list (linked 2515 * using the "pNext" member) referenced by the "step_list" member of the 2516 * associated struct Trigger instance. The first element of the linked list is 2517 * the first step of the trigger-program. 2518 * 2519 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2520 * "SELECT" statement. The meanings of the other members is determined by the 2521 * value of "op" as follows: 2522 * 2523 * (op == TK_INSERT) 2524 * orconf -> stores the ON CONFLICT algorithm 2525 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2526 * this stores a pointer to the SELECT statement. Otherwise NULL. 2527 * target -> A token holding the quoted name of the table to insert into. 2528 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2529 * this stores values to be inserted. Otherwise NULL. 2530 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2531 * statement, then this stores the column-names to be 2532 * inserted into. 2533 * 2534 * (op == TK_DELETE) 2535 * target -> A token holding the quoted name of the table to delete from. 2536 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2537 * Otherwise NULL. 2538 * 2539 * (op == TK_UPDATE) 2540 * target -> A token holding the quoted name of the table to update rows of. 2541 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2542 * Otherwise NULL. 2543 * pExprList -> A list of the columns to update and the expressions to update 2544 * them to. See sqlite3Update() documentation of "pChanges" 2545 * argument. 2546 * 2547 */ 2548 struct TriggerStep { 2549 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2550 u8 orconf; /* OE_Rollback etc. */ 2551 Trigger *pTrig; /* The trigger that this step is a part of */ 2552 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2553 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2554 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2555 ExprList *pExprList; /* SET clause for UPDATE. */ 2556 IdList *pIdList; /* Column names for INSERT */ 2557 TriggerStep *pNext; /* Next in the link-list */ 2558 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2559 }; 2560 2561 /* 2562 ** The following structure contains information used by the sqliteFix... 2563 ** routines as they walk the parse tree to make database references 2564 ** explicit. 2565 */ 2566 typedef struct DbFixer DbFixer; 2567 struct DbFixer { 2568 Parse *pParse; /* The parsing context. Error messages written here */ 2569 Schema *pSchema; /* Fix items to this schema */ 2570 int bVarOnly; /* Check for variable references only */ 2571 const char *zDb; /* Make sure all objects are contained in this database */ 2572 const char *zType; /* Type of the container - used for error messages */ 2573 const Token *pName; /* Name of the container - used for error messages */ 2574 }; 2575 2576 /* 2577 ** An objected used to accumulate the text of a string where we 2578 ** do not necessarily know how big the string will be in the end. 2579 */ 2580 struct StrAccum { 2581 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2582 char *zBase; /* A base allocation. Not from malloc. */ 2583 char *zText; /* The string collected so far */ 2584 int nChar; /* Length of the string so far */ 2585 int nAlloc; /* Amount of space allocated in zText */ 2586 int mxAlloc; /* Maximum allowed string length */ 2587 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2588 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2589 }; 2590 #define STRACCUM_NOMEM 1 2591 #define STRACCUM_TOOBIG 2 2592 2593 /* 2594 ** A pointer to this structure is used to communicate information 2595 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2596 */ 2597 typedef struct { 2598 sqlite3 *db; /* The database being initialized */ 2599 char **pzErrMsg; /* Error message stored here */ 2600 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2601 int rc; /* Result code stored here */ 2602 } InitData; 2603 2604 /* 2605 ** Structure containing global configuration data for the SQLite library. 2606 ** 2607 ** This structure also contains some state information. 2608 */ 2609 struct Sqlite3Config { 2610 int bMemstat; /* True to enable memory status */ 2611 int bCoreMutex; /* True to enable core mutexing */ 2612 int bFullMutex; /* True to enable full mutexing */ 2613 int bOpenUri; /* True to interpret filenames as URIs */ 2614 int bUseCis; /* Use covering indices for full-scans */ 2615 int mxStrlen; /* Maximum string length */ 2616 int neverCorrupt; /* Database is always well-formed */ 2617 int szLookaside; /* Default lookaside buffer size */ 2618 int nLookaside; /* Default lookaside buffer count */ 2619 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2620 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2621 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2622 void *pHeap; /* Heap storage space */ 2623 int nHeap; /* Size of pHeap[] */ 2624 int mnReq, mxReq; /* Min and max heap requests sizes */ 2625 sqlite3_int64 szMmap; /* mmap() space per open file */ 2626 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2627 void *pScratch; /* Scratch memory */ 2628 int szScratch; /* Size of each scratch buffer */ 2629 int nScratch; /* Number of scratch buffers */ 2630 void *pPage; /* Page cache memory */ 2631 int szPage; /* Size of each page in pPage[] */ 2632 int nPage; /* Number of pages in pPage[] */ 2633 int mxParserStack; /* maximum depth of the parser stack */ 2634 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2635 /* The above might be initialized to non-zero. The following need to always 2636 ** initially be zero, however. */ 2637 int isInit; /* True after initialization has finished */ 2638 int inProgress; /* True while initialization in progress */ 2639 int isMutexInit; /* True after mutexes are initialized */ 2640 int isMallocInit; /* True after malloc is initialized */ 2641 int isPCacheInit; /* True after malloc is initialized */ 2642 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2643 int nRefInitMutex; /* Number of users of pInitMutex */ 2644 void (*xLog)(void*,int,const char*); /* Function for logging */ 2645 void *pLogArg; /* First argument to xLog() */ 2646 int bLocaltimeFault; /* True to fail localtime() calls */ 2647 #ifdef SQLITE_ENABLE_SQLLOG 2648 void(*xSqllog)(void*,sqlite3*,const char*, int); 2649 void *pSqllogArg; 2650 #endif 2651 }; 2652 2653 /* 2654 ** This macro is used inside of assert() statements to indicate that 2655 ** the assert is only valid on a well-formed database. Instead of: 2656 ** 2657 ** assert( X ); 2658 ** 2659 ** One writes: 2660 ** 2661 ** assert( X || CORRUPT_DB ); 2662 ** 2663 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2664 ** that the database is definitely corrupt, only that it might be corrupt. 2665 ** For most test cases, CORRUPT_DB is set to false using a special 2666 ** sqlite3_test_control(). This enables assert() statements to prove 2667 ** things that are always true for well-formed databases. 2668 */ 2669 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2670 2671 /* 2672 ** Context pointer passed down through the tree-walk. 2673 */ 2674 struct Walker { 2675 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2676 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2677 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2678 Parse *pParse; /* Parser context. */ 2679 int walkerDepth; /* Number of subqueries */ 2680 union { /* Extra data for callback */ 2681 NameContext *pNC; /* Naming context */ 2682 int i; /* Integer value */ 2683 SrcList *pSrcList; /* FROM clause */ 2684 struct SrcCount *pSrcCount; /* Counting column references */ 2685 } u; 2686 }; 2687 2688 /* Forward declarations */ 2689 int sqlite3WalkExpr(Walker*, Expr*); 2690 int sqlite3WalkExprList(Walker*, ExprList*); 2691 int sqlite3WalkSelect(Walker*, Select*); 2692 int sqlite3WalkSelectExpr(Walker*, Select*); 2693 int sqlite3WalkSelectFrom(Walker*, Select*); 2694 2695 /* 2696 ** Return code from the parse-tree walking primitives and their 2697 ** callbacks. 2698 */ 2699 #define WRC_Continue 0 /* Continue down into children */ 2700 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2701 #define WRC_Abort 2 /* Abandon the tree walk */ 2702 2703 /* 2704 ** An instance of this structure represents a set of one or more CTEs 2705 ** (common table expressions) created by a single WITH clause. 2706 */ 2707 struct With { 2708 int nCte; /* Number of CTEs in the WITH clause */ 2709 With *pOuter; /* Containing WITH clause, or NULL */ 2710 struct Cte { /* For each CTE in the WITH clause.... */ 2711 char *zName; /* Name of this CTE */ 2712 ExprList *pCols; /* List of explicit column names, or NULL */ 2713 Select *pSelect; /* The definition of this CTE */ 2714 const char *zErr; /* Error message for circular references */ 2715 } a[1]; 2716 }; 2717 2718 /* 2719 ** Assuming zIn points to the first byte of a UTF-8 character, 2720 ** advance zIn to point to the first byte of the next UTF-8 character. 2721 */ 2722 #define SQLITE_SKIP_UTF8(zIn) { \ 2723 if( (*(zIn++))>=0xc0 ){ \ 2724 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2725 } \ 2726 } 2727 2728 /* 2729 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2730 ** the same name but without the _BKPT suffix. These macros invoke 2731 ** routines that report the line-number on which the error originated 2732 ** using sqlite3_log(). The routines also provide a convenient place 2733 ** to set a debugger breakpoint. 2734 */ 2735 int sqlite3CorruptError(int); 2736 int sqlite3MisuseError(int); 2737 int sqlite3CantopenError(int); 2738 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2739 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2740 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2741 2742 2743 /* 2744 ** FTS4 is really an extension for FTS3. It is enabled using the 2745 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2746 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2747 */ 2748 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2749 # define SQLITE_ENABLE_FTS3 2750 #endif 2751 2752 /* 2753 ** The ctype.h header is needed for non-ASCII systems. It is also 2754 ** needed by FTS3 when FTS3 is included in the amalgamation. 2755 */ 2756 #if !defined(SQLITE_ASCII) || \ 2757 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2758 # include <ctype.h> 2759 #endif 2760 2761 /* 2762 ** The following macros mimic the standard library functions toupper(), 2763 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2764 ** sqlite versions only work for ASCII characters, regardless of locale. 2765 */ 2766 #ifdef SQLITE_ASCII 2767 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2768 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2769 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2770 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2771 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2772 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2773 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2774 #else 2775 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2776 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2777 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2778 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2779 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2780 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2781 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2782 #endif 2783 2784 /* 2785 ** Internal function prototypes 2786 */ 2787 #define sqlite3StrICmp sqlite3_stricmp 2788 int sqlite3Strlen30(const char*); 2789 #define sqlite3StrNICmp sqlite3_strnicmp 2790 2791 int sqlite3MallocInit(void); 2792 void sqlite3MallocEnd(void); 2793 void *sqlite3Malloc(int); 2794 void *sqlite3MallocZero(int); 2795 void *sqlite3DbMallocZero(sqlite3*, int); 2796 void *sqlite3DbMallocRaw(sqlite3*, int); 2797 char *sqlite3DbStrDup(sqlite3*,const char*); 2798 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2799 void *sqlite3Realloc(void*, int); 2800 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2801 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2802 void sqlite3DbFree(sqlite3*, void*); 2803 int sqlite3MallocSize(void*); 2804 int sqlite3DbMallocSize(sqlite3*, void*); 2805 void *sqlite3ScratchMalloc(int); 2806 void sqlite3ScratchFree(void*); 2807 void *sqlite3PageMalloc(int); 2808 void sqlite3PageFree(void*); 2809 void sqlite3MemSetDefault(void); 2810 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2811 int sqlite3HeapNearlyFull(void); 2812 2813 /* 2814 ** On systems with ample stack space and that support alloca(), make 2815 ** use of alloca() to obtain space for large automatic objects. By default, 2816 ** obtain space from malloc(). 2817 ** 2818 ** The alloca() routine never returns NULL. This will cause code paths 2819 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2820 */ 2821 #ifdef SQLITE_USE_ALLOCA 2822 # define sqlite3StackAllocRaw(D,N) alloca(N) 2823 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2824 # define sqlite3StackFree(D,P) 2825 #else 2826 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2827 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2828 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2829 #endif 2830 2831 #ifdef SQLITE_ENABLE_MEMSYS3 2832 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2833 #endif 2834 #ifdef SQLITE_ENABLE_MEMSYS5 2835 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2836 #endif 2837 2838 2839 #ifndef SQLITE_MUTEX_OMIT 2840 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2841 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2842 sqlite3_mutex *sqlite3MutexAlloc(int); 2843 int sqlite3MutexInit(void); 2844 int sqlite3MutexEnd(void); 2845 #endif 2846 2847 int sqlite3StatusValue(int); 2848 void sqlite3StatusAdd(int, int); 2849 void sqlite3StatusSet(int, int); 2850 2851 #ifndef SQLITE_OMIT_FLOATING_POINT 2852 int sqlite3IsNaN(double); 2853 #else 2854 # define sqlite3IsNaN(X) 0 2855 #endif 2856 2857 /* 2858 ** An instance of the following structure holds information about SQL 2859 ** functions arguments that are the parameters to the printf() function. 2860 */ 2861 struct PrintfArguments { 2862 int nArg; /* Total number of arguments */ 2863 int nUsed; /* Number of arguments used so far */ 2864 sqlite3_value **apArg; /* The argument values */ 2865 }; 2866 2867 #define SQLITE_PRINTF_INTERNAL 0x01 2868 #define SQLITE_PRINTF_SQLFUNC 0x02 2869 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 2870 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 2871 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2872 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2873 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2874 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2875 void sqlite3DebugPrintf(const char*, ...); 2876 #endif 2877 #if defined(SQLITE_TEST) 2878 void *sqlite3TestTextToPtr(const char*); 2879 #endif 2880 2881 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2882 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2883 void sqlite3ExplainBegin(Vdbe*); 2884 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2885 void sqlite3ExplainNL(Vdbe*); 2886 void sqlite3ExplainPush(Vdbe*); 2887 void sqlite3ExplainPop(Vdbe*); 2888 void sqlite3ExplainFinish(Vdbe*); 2889 void sqlite3ExplainSelect(Vdbe*, Select*); 2890 void sqlite3ExplainExpr(Vdbe*, Expr*); 2891 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2892 const char *sqlite3VdbeExplanation(Vdbe*); 2893 #else 2894 # define sqlite3ExplainBegin(X) 2895 # define sqlite3ExplainSelect(A,B) 2896 # define sqlite3ExplainExpr(A,B) 2897 # define sqlite3ExplainExprList(A,B) 2898 # define sqlite3ExplainFinish(X) 2899 # define sqlite3VdbeExplanation(X) 0 2900 #endif 2901 2902 2903 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2904 void sqlite3ErrorMsg(Parse*, const char*, ...); 2905 int sqlite3Dequote(char*); 2906 int sqlite3KeywordCode(const unsigned char*, int); 2907 int sqlite3RunParser(Parse*, const char*, char **); 2908 void sqlite3FinishCoding(Parse*); 2909 int sqlite3GetTempReg(Parse*); 2910 void sqlite3ReleaseTempReg(Parse*,int); 2911 int sqlite3GetTempRange(Parse*,int); 2912 void sqlite3ReleaseTempRange(Parse*,int,int); 2913 void sqlite3ClearTempRegCache(Parse*); 2914 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2915 Expr *sqlite3Expr(sqlite3*,int,const char*); 2916 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2917 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2918 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2919 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2920 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2921 void sqlite3ExprDelete(sqlite3*, Expr*); 2922 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2923 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2924 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2925 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2926 int sqlite3Init(sqlite3*, char**); 2927 int sqlite3InitCallback(void*, int, char**, char**); 2928 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2929 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 2930 void sqlite3ResetOneSchema(sqlite3*,int); 2931 void sqlite3CollapseDatabaseArray(sqlite3*); 2932 void sqlite3BeginParse(Parse*,int); 2933 void sqlite3CommitInternalChanges(sqlite3*); 2934 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2935 void sqlite3OpenMasterTable(Parse *, int); 2936 Index *sqlite3PrimaryKeyIndex(Table*); 2937 i16 sqlite3ColumnOfIndex(Index*, i16); 2938 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2939 void sqlite3AddColumn(Parse*,Token*); 2940 void sqlite3AddNotNull(Parse*, int); 2941 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2942 void sqlite3AddCheckConstraint(Parse*, Expr*); 2943 void sqlite3AddColumnType(Parse*,Token*); 2944 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2945 void sqlite3AddCollateType(Parse*, Token*); 2946 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 2947 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2948 sqlite3_vfs**,char**,char **); 2949 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 2950 int sqlite3CodeOnce(Parse *); 2951 2952 Bitvec *sqlite3BitvecCreate(u32); 2953 int sqlite3BitvecTest(Bitvec*, u32); 2954 int sqlite3BitvecSet(Bitvec*, u32); 2955 void sqlite3BitvecClear(Bitvec*, u32, void*); 2956 void sqlite3BitvecDestroy(Bitvec*); 2957 u32 sqlite3BitvecSize(Bitvec*); 2958 int sqlite3BitvecBuiltinTest(int,int*); 2959 2960 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2961 void sqlite3RowSetClear(RowSet*); 2962 void sqlite3RowSetInsert(RowSet*, i64); 2963 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2964 int sqlite3RowSetNext(RowSet*, i64*); 2965 2966 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2967 2968 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2969 int sqlite3ViewGetColumnNames(Parse*,Table*); 2970 #else 2971 # define sqlite3ViewGetColumnNames(A,B) 0 2972 #endif 2973 2974 void sqlite3DropTable(Parse*, SrcList*, int, int); 2975 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2976 void sqlite3DeleteTable(sqlite3*, Table*); 2977 #ifndef SQLITE_OMIT_AUTOINCREMENT 2978 void sqlite3AutoincrementBegin(Parse *pParse); 2979 void sqlite3AutoincrementEnd(Parse *pParse); 2980 #else 2981 # define sqlite3AutoincrementBegin(X) 2982 # define sqlite3AutoincrementEnd(X) 2983 #endif 2984 int sqlite3CodeCoroutine(Parse*, Select*, SelectDest*); 2985 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 2986 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 2987 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2988 int sqlite3IdListIndex(IdList*,const char*); 2989 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2990 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2991 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2992 Token*, Select*, Expr*, IdList*); 2993 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2994 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2995 void sqlite3SrcListShiftJoinType(SrcList*); 2996 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2997 void sqlite3IdListDelete(sqlite3*, IdList*); 2998 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2999 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3000 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3001 Expr*, int, int); 3002 void sqlite3DropIndex(Parse*, SrcList*, int); 3003 int sqlite3Select(Parse*, Select*, SelectDest*); 3004 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3005 Expr*,ExprList*,u16,Expr*,Expr*); 3006 void sqlite3SelectDelete(sqlite3*, Select*); 3007 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3008 int sqlite3IsReadOnly(Parse*, Table*, int); 3009 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3010 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3011 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3012 #endif 3013 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3014 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3015 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3016 void sqlite3WhereEnd(WhereInfo*); 3017 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3018 int sqlite3WhereIsDistinct(WhereInfo*); 3019 int sqlite3WhereIsOrdered(WhereInfo*); 3020 int sqlite3WhereContinueLabel(WhereInfo*); 3021 int sqlite3WhereBreakLabel(WhereInfo*); 3022 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3023 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3024 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3025 void sqlite3ExprCodeMove(Parse*, int, int, int); 3026 void sqlite3ExprCacheStore(Parse*, int, int, int); 3027 void sqlite3ExprCachePush(Parse*); 3028 void sqlite3ExprCachePop(Parse*, int); 3029 void sqlite3ExprCacheRemove(Parse*, int, int); 3030 void sqlite3ExprCacheClear(Parse*); 3031 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3032 int sqlite3ExprCode(Parse*, Expr*, int); 3033 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3034 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3035 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3036 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3037 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3038 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3039 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3040 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3041 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3042 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3043 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3044 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3045 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3046 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3047 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3048 void sqlite3Vacuum(Parse*); 3049 int sqlite3RunVacuum(char**, sqlite3*); 3050 char *sqlite3NameFromToken(sqlite3*, Token*); 3051 int sqlite3ExprCompare(Expr*, Expr*, int); 3052 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3053 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3054 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3055 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3056 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3057 Vdbe *sqlite3GetVdbe(Parse*); 3058 void sqlite3PrngSaveState(void); 3059 void sqlite3PrngRestoreState(void); 3060 void sqlite3RollbackAll(sqlite3*,int); 3061 void sqlite3CodeVerifySchema(Parse*, int); 3062 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3063 void sqlite3BeginTransaction(Parse*, int); 3064 void sqlite3CommitTransaction(Parse*); 3065 void sqlite3RollbackTransaction(Parse*); 3066 void sqlite3Savepoint(Parse*, int, Token*); 3067 void sqlite3CloseSavepoints(sqlite3 *); 3068 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3069 int sqlite3ExprIsConstant(Expr*); 3070 int sqlite3ExprIsConstantNotJoin(Expr*); 3071 int sqlite3ExprIsConstantOrFunction(Expr*); 3072 int sqlite3ExprIsInteger(Expr*, int*); 3073 int sqlite3ExprCanBeNull(const Expr*); 3074 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 3075 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3076 int sqlite3IsRowid(const char*); 3077 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3078 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3079 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3080 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3081 u8,u8,int,int*); 3082 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3083 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3084 void sqlite3BeginWriteOperation(Parse*, int, int); 3085 void sqlite3MultiWrite(Parse*); 3086 void sqlite3MayAbort(Parse*); 3087 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3088 void sqlite3UniqueConstraint(Parse*, int, Index*); 3089 void sqlite3RowidConstraint(Parse*, int, Table*); 3090 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3091 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3092 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3093 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3094 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3095 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3096 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3097 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3098 void sqlite3RegisterDateTimeFunctions(void); 3099 void sqlite3RegisterGlobalFunctions(void); 3100 int sqlite3SafetyCheckOk(sqlite3*); 3101 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3102 void sqlite3ChangeCookie(Parse*, int); 3103 3104 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3105 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3106 #endif 3107 3108 #ifndef SQLITE_OMIT_TRIGGER 3109 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3110 Expr*,int, int); 3111 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3112 void sqlite3DropTrigger(Parse*, SrcList*, int); 3113 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3114 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3115 Trigger *sqlite3TriggerList(Parse *, Table *); 3116 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3117 int, int, int); 3118 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3119 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3120 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3121 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3122 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3123 Select*,u8); 3124 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3125 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3126 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3127 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3128 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3129 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3130 #else 3131 # define sqlite3TriggersExist(B,C,D,E,F) 0 3132 # define sqlite3DeleteTrigger(A,B) 3133 # define sqlite3DropTriggerPtr(A,B) 3134 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3135 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3136 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3137 # define sqlite3TriggerList(X, Y) 0 3138 # define sqlite3ParseToplevel(p) p 3139 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3140 #endif 3141 3142 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3143 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3144 void sqlite3DeferForeignKey(Parse*, int); 3145 #ifndef SQLITE_OMIT_AUTHORIZATION 3146 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3147 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3148 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3149 void sqlite3AuthContextPop(AuthContext*); 3150 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3151 #else 3152 # define sqlite3AuthRead(a,b,c,d) 3153 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3154 # define sqlite3AuthContextPush(a,b,c) 3155 # define sqlite3AuthContextPop(a) ((void)(a)) 3156 #endif 3157 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3158 void sqlite3Detach(Parse*, Expr*); 3159 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3160 int sqlite3FixSrcList(DbFixer*, SrcList*); 3161 int sqlite3FixSelect(DbFixer*, Select*); 3162 int sqlite3FixExpr(DbFixer*, Expr*); 3163 int sqlite3FixExprList(DbFixer*, ExprList*); 3164 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3165 int sqlite3AtoF(const char *z, double*, int, u8); 3166 int sqlite3GetInt32(const char *, int*); 3167 int sqlite3Atoi(const char*); 3168 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3169 int sqlite3Utf8CharLen(const char *pData, int nByte); 3170 u32 sqlite3Utf8Read(const u8**); 3171 LogEst sqlite3LogEst(u64); 3172 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3173 #ifndef SQLITE_OMIT_VIRTUALTABLE 3174 LogEst sqlite3LogEstFromDouble(double); 3175 #endif 3176 u64 sqlite3LogEstToInt(LogEst); 3177 3178 /* 3179 ** Routines to read and write variable-length integers. These used to 3180 ** be defined locally, but now we use the varint routines in the util.c 3181 ** file. Code should use the MACRO forms below, as the Varint32 versions 3182 ** are coded to assume the single byte case is already handled (which 3183 ** the MACRO form does). 3184 */ 3185 int sqlite3PutVarint(unsigned char*, u64); 3186 int sqlite3PutVarint32(unsigned char*, u32); 3187 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3188 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3189 int sqlite3VarintLen(u64 v); 3190 3191 /* 3192 ** The header of a record consists of a sequence variable-length integers. 3193 ** These integers are almost always small and are encoded as a single byte. 3194 ** The following macros take advantage this fact to provide a fast encode 3195 ** and decode of the integers in a record header. It is faster for the common 3196 ** case where the integer is a single byte. It is a little slower when the 3197 ** integer is two or more bytes. But overall it is faster. 3198 ** 3199 ** The following expressions are equivalent: 3200 ** 3201 ** x = sqlite3GetVarint32( A, &B ); 3202 ** x = sqlite3PutVarint32( A, B ); 3203 ** 3204 ** x = getVarint32( A, B ); 3205 ** x = putVarint32( A, B ); 3206 ** 3207 */ 3208 #define getVarint32(A,B) \ 3209 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3210 #define putVarint32(A,B) \ 3211 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3212 sqlite3PutVarint32((A),(B))) 3213 #define getVarint sqlite3GetVarint 3214 #define putVarint sqlite3PutVarint 3215 3216 3217 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3218 void sqlite3TableAffinityStr(Vdbe *, Table *); 3219 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3220 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3221 char sqlite3ExprAffinity(Expr *pExpr); 3222 int sqlite3Atoi64(const char*, i64*, int, u8); 3223 void sqlite3Error(sqlite3*, int, const char*,...); 3224 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3225 u8 sqlite3HexToInt(int h); 3226 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3227 3228 #if defined(SQLITE_TEST) 3229 const char *sqlite3ErrName(int); 3230 #endif 3231 3232 const char *sqlite3ErrStr(int); 3233 int sqlite3ReadSchema(Parse *pParse); 3234 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3235 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3236 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3237 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*); 3238 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3239 Expr *sqlite3ExprSkipCollate(Expr*); 3240 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3241 int sqlite3CheckObjectName(Parse *, const char *); 3242 void sqlite3VdbeSetChanges(sqlite3 *, int); 3243 int sqlite3AddInt64(i64*,i64); 3244 int sqlite3SubInt64(i64*,i64); 3245 int sqlite3MulInt64(i64*,i64); 3246 int sqlite3AbsInt32(int); 3247 #ifdef SQLITE_ENABLE_8_3_NAMES 3248 void sqlite3FileSuffix3(const char*, char*); 3249 #else 3250 # define sqlite3FileSuffix3(X,Y) 3251 #endif 3252 u8 sqlite3GetBoolean(const char *z,int); 3253 3254 const void *sqlite3ValueText(sqlite3_value*, u8); 3255 int sqlite3ValueBytes(sqlite3_value*, u8); 3256 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3257 void(*)(void*)); 3258 void sqlite3ValueSetNull(sqlite3_value*); 3259 void sqlite3ValueFree(sqlite3_value*); 3260 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3261 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3262 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3263 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3264 #ifndef SQLITE_AMALGAMATION 3265 extern const unsigned char sqlite3OpcodeProperty[]; 3266 extern const unsigned char sqlite3UpperToLower[]; 3267 extern const unsigned char sqlite3CtypeMap[]; 3268 extern const Token sqlite3IntTokens[]; 3269 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3270 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3271 #ifndef SQLITE_OMIT_WSD 3272 extern int sqlite3PendingByte; 3273 #endif 3274 #endif 3275 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3276 void sqlite3Reindex(Parse*, Token*, Token*); 3277 void sqlite3AlterFunctions(void); 3278 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3279 int sqlite3GetToken(const unsigned char *, int *); 3280 void sqlite3NestedParse(Parse*, const char*, ...); 3281 void sqlite3ExpirePreparedStatements(sqlite3*); 3282 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3283 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3284 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3285 int sqlite3ResolveExprNames(NameContext*, Expr*); 3286 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3287 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3288 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3289 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3290 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3291 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3292 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3293 char sqlite3AffinityType(const char*, u8*); 3294 void sqlite3Analyze(Parse*, Token*, Token*); 3295 int sqlite3InvokeBusyHandler(BusyHandler*); 3296 int sqlite3FindDb(sqlite3*, Token*); 3297 int sqlite3FindDbName(sqlite3 *, const char *); 3298 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3299 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3300 void sqlite3DefaultRowEst(Index*); 3301 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3302 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3303 void sqlite3MinimumFileFormat(Parse*, int, int); 3304 void sqlite3SchemaClear(void *); 3305 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3306 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3307 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3308 void sqlite3KeyInfoUnref(KeyInfo*); 3309 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3310 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3311 #ifdef SQLITE_DEBUG 3312 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3313 #endif 3314 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3315 void (*)(sqlite3_context*,int,sqlite3_value **), 3316 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3317 FuncDestructor *pDestructor 3318 ); 3319 int sqlite3ApiExit(sqlite3 *db, int); 3320 int sqlite3OpenTempDatabase(Parse *); 3321 3322 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3323 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3324 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3325 void sqlite3AppendSpace(StrAccum*,int); 3326 char *sqlite3StrAccumFinish(StrAccum*); 3327 void sqlite3StrAccumReset(StrAccum*); 3328 void sqlite3SelectDestInit(SelectDest*,int,int); 3329 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3330 3331 void sqlite3BackupRestart(sqlite3_backup *); 3332 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3333 3334 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3335 void sqlite3AnalyzeFunctions(void); 3336 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3337 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3338 #endif 3339 3340 /* 3341 ** The interface to the LEMON-generated parser 3342 */ 3343 void *sqlite3ParserAlloc(void*(*)(size_t)); 3344 void sqlite3ParserFree(void*, void(*)(void*)); 3345 void sqlite3Parser(void*, int, Token, Parse*); 3346 #ifdef YYTRACKMAXSTACKDEPTH 3347 int sqlite3ParserStackPeak(void*); 3348 #endif 3349 3350 void sqlite3AutoLoadExtensions(sqlite3*); 3351 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3352 void sqlite3CloseExtensions(sqlite3*); 3353 #else 3354 # define sqlite3CloseExtensions(X) 3355 #endif 3356 3357 #ifndef SQLITE_OMIT_SHARED_CACHE 3358 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3359 #else 3360 #define sqlite3TableLock(v,w,x,y,z) 3361 #endif 3362 3363 #ifdef SQLITE_TEST 3364 int sqlite3Utf8To8(unsigned char*); 3365 #endif 3366 3367 #ifdef SQLITE_OMIT_VIRTUALTABLE 3368 # define sqlite3VtabClear(Y) 3369 # define sqlite3VtabSync(X,Y) SQLITE_OK 3370 # define sqlite3VtabRollback(X) 3371 # define sqlite3VtabCommit(X) 3372 # define sqlite3VtabInSync(db) 0 3373 # define sqlite3VtabLock(X) 3374 # define sqlite3VtabUnlock(X) 3375 # define sqlite3VtabUnlockList(X) 3376 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3377 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3378 #else 3379 void sqlite3VtabClear(sqlite3 *db, Table*); 3380 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3381 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3382 int sqlite3VtabRollback(sqlite3 *db); 3383 int sqlite3VtabCommit(sqlite3 *db); 3384 void sqlite3VtabLock(VTable *); 3385 void sqlite3VtabUnlock(VTable *); 3386 void sqlite3VtabUnlockList(sqlite3*); 3387 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3388 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3389 VTable *sqlite3GetVTable(sqlite3*, Table*); 3390 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3391 #endif 3392 void sqlite3VtabMakeWritable(Parse*,Table*); 3393 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3394 void sqlite3VtabFinishParse(Parse*, Token*); 3395 void sqlite3VtabArgInit(Parse*); 3396 void sqlite3VtabArgExtend(Parse*, Token*); 3397 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3398 int sqlite3VtabCallConnect(Parse*, Table*); 3399 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3400 int sqlite3VtabBegin(sqlite3 *, VTable *); 3401 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3402 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3403 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3404 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3405 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3406 void sqlite3ParserReset(Parse*); 3407 int sqlite3Reprepare(Vdbe*); 3408 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3409 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3410 int sqlite3TempInMemory(const sqlite3*); 3411 const char *sqlite3JournalModename(int); 3412 #ifndef SQLITE_OMIT_WAL 3413 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3414 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3415 #endif 3416 #ifndef SQLITE_OMIT_CTE 3417 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3418 void sqlite3WithDelete(sqlite3*,With*); 3419 void sqlite3WithPush(Parse*, With*, u8); 3420 #else 3421 #define sqlite3WithPush(x,y,z) 3422 #define sqlite3WithDelete(x,y) 3423 #endif 3424 3425 /* Declarations for functions in fkey.c. All of these are replaced by 3426 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3427 ** key functionality is available. If OMIT_TRIGGER is defined but 3428 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3429 ** this case foreign keys are parsed, but no other functionality is 3430 ** provided (enforcement of FK constraints requires the triggers sub-system). 3431 */ 3432 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3433 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3434 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3435 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3436 int sqlite3FkRequired(Parse*, Table*, int*, int); 3437 u32 sqlite3FkOldmask(Parse*, Table*); 3438 FKey *sqlite3FkReferences(Table *); 3439 #else 3440 #define sqlite3FkActions(a,b,c,d,e,f) 3441 #define sqlite3FkCheck(a,b,c,d,e,f) 3442 #define sqlite3FkDropTable(a,b,c) 3443 #define sqlite3FkOldmask(a,b) 0 3444 #define sqlite3FkRequired(a,b,c,d) 0 3445 #endif 3446 #ifndef SQLITE_OMIT_FOREIGN_KEY 3447 void sqlite3FkDelete(sqlite3 *, Table*); 3448 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3449 #else 3450 #define sqlite3FkDelete(a,b) 3451 #define sqlite3FkLocateIndex(a,b,c,d,e) 3452 #endif 3453 3454 3455 /* 3456 ** Available fault injectors. Should be numbered beginning with 0. 3457 */ 3458 #define SQLITE_FAULTINJECTOR_MALLOC 0 3459 #define SQLITE_FAULTINJECTOR_COUNT 1 3460 3461 /* 3462 ** The interface to the code in fault.c used for identifying "benign" 3463 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3464 ** is not defined. 3465 */ 3466 #ifndef SQLITE_OMIT_BUILTIN_TEST 3467 void sqlite3BeginBenignMalloc(void); 3468 void sqlite3EndBenignMalloc(void); 3469 #else 3470 #define sqlite3BeginBenignMalloc() 3471 #define sqlite3EndBenignMalloc() 3472 #endif 3473 3474 #define IN_INDEX_ROWID 1 3475 #define IN_INDEX_EPH 2 3476 #define IN_INDEX_INDEX_ASC 3 3477 #define IN_INDEX_INDEX_DESC 4 3478 int sqlite3FindInIndex(Parse *, Expr *, int*); 3479 3480 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3481 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3482 int sqlite3JournalSize(sqlite3_vfs *); 3483 int sqlite3JournalCreate(sqlite3_file *); 3484 int sqlite3JournalExists(sqlite3_file *p); 3485 #else 3486 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3487 #define sqlite3JournalExists(p) 1 3488 #endif 3489 3490 void sqlite3MemJournalOpen(sqlite3_file *); 3491 int sqlite3MemJournalSize(void); 3492 int sqlite3IsMemJournal(sqlite3_file *); 3493 3494 #if SQLITE_MAX_EXPR_DEPTH>0 3495 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3496 int sqlite3SelectExprHeight(Select *); 3497 int sqlite3ExprCheckHeight(Parse*, int); 3498 #else 3499 #define sqlite3ExprSetHeight(x,y) 3500 #define sqlite3SelectExprHeight(x) 0 3501 #define sqlite3ExprCheckHeight(x,y) 3502 #endif 3503 3504 u32 sqlite3Get4byte(const u8*); 3505 void sqlite3Put4byte(u8*, u32); 3506 3507 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3508 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3509 void sqlite3ConnectionUnlocked(sqlite3 *db); 3510 void sqlite3ConnectionClosed(sqlite3 *db); 3511 #else 3512 #define sqlite3ConnectionBlocked(x,y) 3513 #define sqlite3ConnectionUnlocked(x) 3514 #define sqlite3ConnectionClosed(x) 3515 #endif 3516 3517 #ifdef SQLITE_DEBUG 3518 void sqlite3ParserTrace(FILE*, char *); 3519 #endif 3520 3521 /* 3522 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3523 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3524 ** print I/O tracing messages. 3525 */ 3526 #ifdef SQLITE_ENABLE_IOTRACE 3527 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3528 void sqlite3VdbeIOTraceSql(Vdbe*); 3529 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3530 #else 3531 # define IOTRACE(A) 3532 # define sqlite3VdbeIOTraceSql(X) 3533 #endif 3534 3535 /* 3536 ** These routines are available for the mem2.c debugging memory allocator 3537 ** only. They are used to verify that different "types" of memory 3538 ** allocations are properly tracked by the system. 3539 ** 3540 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3541 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3542 ** a single bit set. 3543 ** 3544 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3545 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3546 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3547 ** 3548 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3549 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3550 ** 3551 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3552 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3553 ** it might have been allocated by lookaside, except the allocation was 3554 ** too large or lookaside was already full. It is important to verify 3555 ** that allocations that might have been satisfied by lookaside are not 3556 ** passed back to non-lookaside free() routines. Asserts such as the 3557 ** example above are placed on the non-lookaside free() routines to verify 3558 ** this constraint. 3559 ** 3560 ** All of this is no-op for a production build. It only comes into 3561 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3562 */ 3563 #ifdef SQLITE_MEMDEBUG 3564 void sqlite3MemdebugSetType(void*,u8); 3565 int sqlite3MemdebugHasType(void*,u8); 3566 int sqlite3MemdebugNoType(void*,u8); 3567 #else 3568 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3569 # define sqlite3MemdebugHasType(X,Y) 1 3570 # define sqlite3MemdebugNoType(X,Y) 1 3571 #endif 3572 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3573 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3574 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3575 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3576 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3577 3578 #endif /* _SQLITEINT_H_ */ 3579