1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.580 2007/07/23 19:31:17 drh Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 #include "sqliteLimit.h" 19 20 21 #if defined(SQLITE_TCL) || defined(TCLSH) 22 # include <tcl.h> 23 #endif 24 25 /* 26 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 27 ** Setting NDEBUG makes the code smaller and run faster. So the following 28 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 29 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 30 ** feature. 31 */ 32 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 33 # define NDEBUG 1 34 #endif 35 36 /* 37 ** These #defines should enable >2GB file support on Posix if the 38 ** underlying operating system supports it. If the OS lacks 39 ** large file support, or if the OS is windows, these should be no-ops. 40 ** 41 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 42 ** on the compiler command line. This is necessary if you are compiling 43 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 44 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 45 ** without this option, LFS is enable. But LFS does not exist in the kernel 46 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 47 ** portability you should omit LFS. 48 ** 49 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 50 */ 51 #ifndef SQLITE_DISABLE_LFS 52 # define _LARGE_FILE 1 53 # ifndef _FILE_OFFSET_BITS 54 # define _FILE_OFFSET_BITS 64 55 # endif 56 # define _LARGEFILE_SOURCE 1 57 #endif 58 59 #include "sqlite3.h" 60 #include "hash.h" 61 #include "parse.h" 62 #include <stdio.h> 63 #include <stdlib.h> 64 #include <string.h> 65 #include <assert.h> 66 #include <stddef.h> 67 68 #define sqlite3_isnan(X) ((X)!=(X)) 69 70 /* 71 ** If compiling for a processor that lacks floating point support, 72 ** substitute integer for floating-point 73 */ 74 #ifdef SQLITE_OMIT_FLOATING_POINT 75 # define double sqlite_int64 76 # define LONGDOUBLE_TYPE sqlite_int64 77 # ifndef SQLITE_BIG_DBL 78 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 79 # endif 80 # define SQLITE_OMIT_DATETIME_FUNCS 1 81 # define SQLITE_OMIT_TRACE 1 82 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 83 #endif 84 #ifndef SQLITE_BIG_DBL 85 # define SQLITE_BIG_DBL (1e99) 86 #endif 87 88 /* 89 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 90 ** afterward. Having this macro allows us to cause the C compiler 91 ** to omit code used by TEMP tables without messy #ifndef statements. 92 */ 93 #ifdef SQLITE_OMIT_TEMPDB 94 #define OMIT_TEMPDB 1 95 #else 96 #define OMIT_TEMPDB 0 97 #endif 98 99 /* 100 ** If the following macro is set to 1, then NULL values are considered 101 ** distinct when determining whether or not two entries are the same 102 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 103 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 104 ** is the way things are suppose to work. 105 ** 106 ** If the following macro is set to 0, the NULLs are indistinct for 107 ** a UNIQUE index. In this mode, you can only have a single NULL entry 108 ** for a column declared UNIQUE. This is the way Informix and SQL Server 109 ** work. 110 */ 111 #define NULL_DISTINCT_FOR_UNIQUE 1 112 113 /* 114 ** The "file format" number is an integer that is incremented whenever 115 ** the VDBE-level file format changes. The following macros define the 116 ** the default file format for new databases and the maximum file format 117 ** that the library can read. 118 */ 119 #define SQLITE_MAX_FILE_FORMAT 4 120 #ifndef SQLITE_DEFAULT_FILE_FORMAT 121 # define SQLITE_DEFAULT_FILE_FORMAT 1 122 #endif 123 124 /* 125 ** Provide a default value for TEMP_STORE in case it is not specified 126 ** on the command-line 127 */ 128 #ifndef TEMP_STORE 129 # define TEMP_STORE 1 130 #endif 131 132 /* 133 ** GCC does not define the offsetof() macro so we'll have to do it 134 ** ourselves. 135 */ 136 #ifndef offsetof 137 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 138 #endif 139 140 /* 141 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 142 ** not, there are still machines out there that use EBCDIC.) 143 */ 144 #if 'A' == '\301' 145 # define SQLITE_EBCDIC 1 146 #else 147 # define SQLITE_ASCII 1 148 #endif 149 150 /* 151 ** Integers of known sizes. These typedefs might change for architectures 152 ** where the sizes very. Preprocessor macros are available so that the 153 ** types can be conveniently redefined at compile-type. Like this: 154 ** 155 ** cc '-DUINTPTR_TYPE=long long int' ... 156 */ 157 #ifndef UINT32_TYPE 158 # define UINT32_TYPE unsigned int 159 #endif 160 #ifndef UINT16_TYPE 161 # define UINT16_TYPE unsigned short int 162 #endif 163 #ifndef INT16_TYPE 164 # define INT16_TYPE short int 165 #endif 166 #ifndef UINT8_TYPE 167 # define UINT8_TYPE unsigned char 168 #endif 169 #ifndef INT8_TYPE 170 # define INT8_TYPE signed char 171 #endif 172 #ifndef LONGDOUBLE_TYPE 173 # define LONGDOUBLE_TYPE long double 174 #endif 175 typedef sqlite_int64 i64; /* 8-byte signed integer */ 176 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 177 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 178 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 179 typedef INT16_TYPE i16; /* 2-byte signed integer */ 180 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 181 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 182 183 /* 184 ** Macros to determine whether the machine is big or little endian, 185 ** evaluated at runtime. 186 */ 187 extern const int sqlite3one; 188 #if defined(i386) || defined(__i386__) || defined(_M_IX86) 189 # define SQLITE_BIGENDIAN 0 190 # define SQLITE_LITTLEENDIAN 1 191 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 192 #else 193 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 194 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 195 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 196 #endif 197 198 /* 199 ** An instance of the following structure is used to store the busy-handler 200 ** callback for a given sqlite handle. 201 ** 202 ** The sqlite.busyHandler member of the sqlite struct contains the busy 203 ** callback for the database handle. Each pager opened via the sqlite 204 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 205 ** callback is currently invoked only from within pager.c. 206 */ 207 typedef struct BusyHandler BusyHandler; 208 struct BusyHandler { 209 int (*xFunc)(void *,int); /* The busy callback */ 210 void *pArg; /* First arg to busy callback */ 211 int nBusy; /* Incremented with each busy call */ 212 }; 213 214 /* 215 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 216 ** "BusyHandler typedefs. 217 */ 218 #include "vdbe.h" 219 #include "btree.h" 220 #include "pager.h" 221 222 #ifdef SQLITE_MEMDEBUG 223 /* 224 ** The following global variables are used for testing and debugging 225 ** only. They only work if SQLITE_MEMDEBUG is defined. 226 */ 227 extern int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ 228 extern int sqlite3_nFree; /* Number of sqliteFree() calls */ 229 extern int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ 230 extern int sqlite3_iMallocReset; /* Set iMallocFail to this when it reaches 0 */ 231 232 extern void *sqlite3_pFirst; /* Pointer to linked list of allocations */ 233 extern int sqlite3_nMaxAlloc; /* High water mark of ThreadData.nAlloc */ 234 extern int sqlite3_mallocDisallowed; /* assert() in sqlite3Malloc() if set */ 235 extern int sqlite3_isFail; /* True if all malloc calls should fail */ 236 extern const char *sqlite3_zFile; /* Filename to associate debug info with */ 237 extern int sqlite3_iLine; /* Line number for debug info */ 238 239 #define ENTER_MALLOC (sqlite3_zFile = __FILE__, sqlite3_iLine = __LINE__) 240 #define sqliteMalloc(x) (ENTER_MALLOC, sqlite3Malloc(x,1)) 241 #define sqliteMallocRaw(x) (ENTER_MALLOC, sqlite3MallocRaw(x,1)) 242 #define sqliteRealloc(x,y) (ENTER_MALLOC, sqlite3Realloc(x,y)) 243 #define sqliteStrDup(x) (ENTER_MALLOC, sqlite3StrDup(x)) 244 #define sqliteStrNDup(x,y) (ENTER_MALLOC, sqlite3StrNDup(x,y)) 245 #define sqliteReallocOrFree(x,y) (ENTER_MALLOC, sqlite3ReallocOrFree(x,y)) 246 247 #else 248 249 #define ENTER_MALLOC 0 250 #define sqliteMalloc(x) sqlite3Malloc(x,1) 251 #define sqliteMallocRaw(x) sqlite3MallocRaw(x,1) 252 #define sqliteRealloc(x,y) sqlite3Realloc(x,y) 253 #define sqliteStrDup(x) sqlite3StrDup(x) 254 #define sqliteStrNDup(x,y) sqlite3StrNDup(x,y) 255 #define sqliteReallocOrFree(x,y) sqlite3ReallocOrFree(x,y) 256 257 #endif 258 259 /* Variable sqlite3_mallocHasFailed is set to true after a malloc() 260 ** failure occurs. 261 ** 262 ** The sqlite3MallocFailed() macro returns true if a malloc has failed 263 ** in this thread since the last call to sqlite3ApiExit(), or false 264 ** otherwise. 265 */ 266 extern int sqlite3_mallocHasFailed; 267 #define sqlite3MallocFailed() (sqlite3_mallocHasFailed && sqlite3OsInMutex(1)) 268 269 #define sqliteFree(x) sqlite3FreeX(x) 270 #define sqliteAllocSize(x) sqlite3AllocSize(x) 271 272 /* 273 ** An instance of this structure might be allocated to store information 274 ** specific to a single thread. 275 */ 276 struct ThreadData { 277 int dummy; /* So that this structure is never empty */ 278 279 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 280 int nSoftHeapLimit; /* Suggested max mem allocation. No limit if <0 */ 281 int nAlloc; /* Number of bytes currently allocated */ 282 Pager *pPager; /* Linked list of all pagers in this thread */ 283 #endif 284 285 #ifndef SQLITE_OMIT_SHARED_CACHE 286 u8 useSharedData; /* True if shared pagers and schemas are enabled */ 287 BtShared *pBtree; /* Linked list of all currently open BTrees */ 288 #endif 289 }; 290 291 /* 292 ** Name of the master database table. The master database table 293 ** is a special table that holds the names and attributes of all 294 ** user tables and indices. 295 */ 296 #define MASTER_NAME "sqlite_master" 297 #define TEMP_MASTER_NAME "sqlite_temp_master" 298 299 /* 300 ** The root-page of the master database table. 301 */ 302 #define MASTER_ROOT 1 303 304 /* 305 ** The name of the schema table. 306 */ 307 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 308 309 /* 310 ** A convenience macro that returns the number of elements in 311 ** an array. 312 */ 313 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 314 315 /* 316 ** Forward references to structures 317 */ 318 typedef struct AggInfo AggInfo; 319 typedef struct AuthContext AuthContext; 320 typedef struct CollSeq CollSeq; 321 typedef struct Column Column; 322 typedef struct Db Db; 323 typedef struct Schema Schema; 324 typedef struct Expr Expr; 325 typedef struct ExprList ExprList; 326 typedef struct FKey FKey; 327 typedef struct FuncDef FuncDef; 328 typedef struct IdList IdList; 329 typedef struct Index Index; 330 typedef struct KeyClass KeyClass; 331 typedef struct KeyInfo KeyInfo; 332 typedef struct Module Module; 333 typedef struct NameContext NameContext; 334 typedef struct Parse Parse; 335 typedef struct Select Select; 336 typedef struct SrcList SrcList; 337 typedef struct ThreadData ThreadData; 338 typedef struct Table Table; 339 typedef struct TableLock TableLock; 340 typedef struct Token Token; 341 typedef struct TriggerStack TriggerStack; 342 typedef struct TriggerStep TriggerStep; 343 typedef struct Trigger Trigger; 344 typedef struct WhereInfo WhereInfo; 345 typedef struct WhereLevel WhereLevel; 346 347 #include "os.h" 348 349 /* 350 ** Each database file to be accessed by the system is an instance 351 ** of the following structure. There are normally two of these structures 352 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 353 ** aDb[1] is the database file used to hold temporary tables. Additional 354 ** databases may be attached. 355 */ 356 struct Db { 357 char *zName; /* Name of this database */ 358 Btree *pBt; /* The B*Tree structure for this database file */ 359 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 360 u8 safety_level; /* How aggressive at synching data to disk */ 361 void *pAux; /* Auxiliary data. Usually NULL */ 362 void (*xFreeAux)(void*); /* Routine to free pAux */ 363 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 364 }; 365 366 /* 367 ** An instance of the following structure stores a database schema. 368 ** 369 ** If there are no virtual tables configured in this schema, the 370 ** Schema.db variable is set to NULL. After the first virtual table 371 ** has been added, it is set to point to the database connection 372 ** used to create the connection. Once a virtual table has been 373 ** added to the Schema structure and the Schema.db variable populated, 374 ** only that database connection may use the Schema to prepare 375 ** statements. 376 */ 377 struct Schema { 378 int schema_cookie; /* Database schema version number for this file */ 379 Hash tblHash; /* All tables indexed by name */ 380 Hash idxHash; /* All (named) indices indexed by name */ 381 Hash trigHash; /* All triggers indexed by name */ 382 Hash aFKey; /* Foreign keys indexed by to-table */ 383 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 384 u8 file_format; /* Schema format version for this file */ 385 u8 enc; /* Text encoding used by this database */ 386 u16 flags; /* Flags associated with this schema */ 387 int cache_size; /* Number of pages to use in the cache */ 388 #ifndef SQLITE_OMIT_VIRTUALTABLE 389 sqlite3 *db; /* "Owner" connection. See comment above */ 390 #endif 391 }; 392 393 /* 394 ** These macros can be used to test, set, or clear bits in the 395 ** Db.flags field. 396 */ 397 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 398 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 399 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 400 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 401 402 /* 403 ** Allowed values for the DB.flags field. 404 ** 405 ** The DB_SchemaLoaded flag is set after the database schema has been 406 ** read into internal hash tables. 407 ** 408 ** DB_UnresetViews means that one or more views have column names that 409 ** have been filled out. If the schema changes, these column names might 410 ** changes and so the view will need to be reset. 411 */ 412 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 413 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 414 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 415 416 417 /* 418 ** Each database is an instance of the following structure. 419 ** 420 ** The sqlite.lastRowid records the last insert rowid generated by an 421 ** insert statement. Inserts on views do not affect its value. Each 422 ** trigger has its own context, so that lastRowid can be updated inside 423 ** triggers as usual. The previous value will be restored once the trigger 424 ** exits. Upon entering a before or instead of trigger, lastRowid is no 425 ** longer (since after version 2.8.12) reset to -1. 426 ** 427 ** The sqlite.nChange does not count changes within triggers and keeps no 428 ** context. It is reset at start of sqlite3_exec. 429 ** The sqlite.lsChange represents the number of changes made by the last 430 ** insert, update, or delete statement. It remains constant throughout the 431 ** length of a statement and is then updated by OP_SetCounts. It keeps a 432 ** context stack just like lastRowid so that the count of changes 433 ** within a trigger is not seen outside the trigger. Changes to views do not 434 ** affect the value of lsChange. 435 ** The sqlite.csChange keeps track of the number of current changes (since 436 ** the last statement) and is used to update sqlite_lsChange. 437 ** 438 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 439 ** store the most recent error code and, if applicable, string. The 440 ** internal function sqlite3Error() is used to set these variables 441 ** consistently. 442 */ 443 struct sqlite3 { 444 int nDb; /* Number of backends currently in use */ 445 Db *aDb; /* All backends */ 446 int flags; /* Miscellanous flags. See below */ 447 int errCode; /* Most recent error code (SQLITE_*) */ 448 int errMask; /* & result codes with this before returning */ 449 u8 autoCommit; /* The auto-commit flag. */ 450 u8 temp_store; /* 1: file 2: memory 0: default */ 451 int nTable; /* Number of tables in the database */ 452 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 453 i64 lastRowid; /* ROWID of most recent insert (see above) */ 454 i64 priorNewRowid; /* Last randomly generated ROWID */ 455 int magic; /* Magic number for detect library misuse */ 456 int nChange; /* Value returned by sqlite3_changes() */ 457 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 458 struct sqlite3InitInfo { /* Information used during initialization */ 459 int iDb; /* When back is being initialized */ 460 int newTnum; /* Rootpage of table being initialized */ 461 u8 busy; /* TRUE if currently initializing */ 462 } init; 463 int nExtension; /* Number of loaded extensions */ 464 void **aExtension; /* Array of shared libraray handles */ 465 struct Vdbe *pVdbe; /* List of active virtual machines */ 466 int activeVdbeCnt; /* Number of vdbes currently executing */ 467 void (*xTrace)(void*,const char*); /* Trace function */ 468 void *pTraceArg; /* Argument to the trace function */ 469 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 470 void *pProfileArg; /* Argument to profile function */ 471 void *pCommitArg; /* Argument to xCommitCallback() */ 472 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 473 void *pRollbackArg; /* Argument to xRollbackCallback() */ 474 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 475 void *pUpdateArg; 476 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 477 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 478 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 479 void *pCollNeededArg; 480 sqlite3_value *pErr; /* Most recent error message */ 481 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 482 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 483 union { 484 int isInterrupted; /* True if sqlite3_interrupt has been called */ 485 double notUsed1; /* Spacer */ 486 } u1; 487 #ifndef SQLITE_OMIT_AUTHORIZATION 488 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 489 /* Access authorization function */ 490 void *pAuthArg; /* 1st argument to the access auth function */ 491 #endif 492 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 493 int (*xProgress)(void *); /* The progress callback */ 494 void *pProgressArg; /* Argument to the progress callback */ 495 int nProgressOps; /* Number of opcodes for progress callback */ 496 #endif 497 #ifndef SQLITE_OMIT_VIRTUALTABLE 498 Hash aModule; /* populated by sqlite3_create_module() */ 499 Table *pVTab; /* vtab with active Connect/Create method */ 500 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 501 int nVTrans; /* Allocated size of aVTrans */ 502 #endif 503 Hash aFunc; /* All functions that can be in SQL exprs */ 504 Hash aCollSeq; /* All collating sequences */ 505 BusyHandler busyHandler; /* Busy callback */ 506 int busyTimeout; /* Busy handler timeout, in msec */ 507 Db aDbStatic[2]; /* Static space for the 2 default backends */ 508 #ifdef SQLITE_SSE 509 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 510 #endif 511 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 512 }; 513 514 /* 515 ** A macro to discover the encoding of a database. 516 */ 517 #define ENC(db) ((db)->aDb[0].pSchema->enc) 518 519 /* 520 ** Possible values for the sqlite.flags and or Db.flags fields. 521 ** 522 ** On sqlite.flags, the SQLITE_InTrans value means that we have 523 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 524 ** transaction is active on that particular database file. 525 */ 526 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 527 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 528 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 529 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 530 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 531 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 532 /* DELETE, or UPDATE and return */ 533 /* the count using a callback. */ 534 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 535 /* result set is empty */ 536 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 537 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 538 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 539 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 540 ** accessing read-only databases */ 541 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 542 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 543 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 544 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 545 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 546 547 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 548 549 /* 550 ** Possible values for the sqlite.magic field. 551 ** The numbers are obtained at random and have no special meaning, other 552 ** than being distinct from one another. 553 */ 554 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 555 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 556 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 557 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 558 559 /* 560 ** Each SQL function is defined by an instance of the following 561 ** structure. A pointer to this structure is stored in the sqlite.aFunc 562 ** hash table. When multiple functions have the same name, the hash table 563 ** points to a linked list of these structures. 564 */ 565 struct FuncDef { 566 i16 nArg; /* Number of arguments. -1 means unlimited */ 567 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 568 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 569 u8 flags; /* Some combination of SQLITE_FUNC_* */ 570 void *pUserData; /* User data parameter */ 571 FuncDef *pNext; /* Next function with same name */ 572 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 573 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 574 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 575 char zName[1]; /* SQL name of the function. MUST BE LAST */ 576 }; 577 578 /* 579 ** Each SQLite module (virtual table definition) is defined by an 580 ** instance of the following structure, stored in the sqlite3.aModule 581 ** hash table. 582 */ 583 struct Module { 584 const sqlite3_module *pModule; /* Callback pointers */ 585 const char *zName; /* Name passed to create_module() */ 586 void *pAux; /* pAux passed to create_module() */ 587 void (*xDestroy)(void *); /* Module destructor function */ 588 }; 589 590 /* 591 ** Possible values for FuncDef.flags 592 */ 593 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 594 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 595 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ 596 597 /* 598 ** information about each column of an SQL table is held in an instance 599 ** of this structure. 600 */ 601 struct Column { 602 char *zName; /* Name of this column */ 603 Expr *pDflt; /* Default value of this column */ 604 char *zType; /* Data type for this column */ 605 char *zColl; /* Collating sequence. If NULL, use the default */ 606 u8 notNull; /* True if there is a NOT NULL constraint */ 607 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 608 char affinity; /* One of the SQLITE_AFF_... values */ 609 #ifndef SQLITE_OMIT_VIRTUALTABLE 610 u8 isHidden; /* True if this column is 'hidden' */ 611 #endif 612 }; 613 614 /* 615 ** A "Collating Sequence" is defined by an instance of the following 616 ** structure. Conceptually, a collating sequence consists of a name and 617 ** a comparison routine that defines the order of that sequence. 618 ** 619 ** There may two seperate implementations of the collation function, one 620 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 621 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 622 ** native byte order. When a collation sequence is invoked, SQLite selects 623 ** the version that will require the least expensive encoding 624 ** translations, if any. 625 ** 626 ** The CollSeq.pUser member variable is an extra parameter that passed in 627 ** as the first argument to the UTF-8 comparison function, xCmp. 628 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 629 ** xCmp16. 630 ** 631 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 632 ** collating sequence is undefined. Indices built on an undefined 633 ** collating sequence may not be read or written. 634 */ 635 struct CollSeq { 636 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 637 u8 enc; /* Text encoding handled by xCmp() */ 638 u8 type; /* One of the SQLITE_COLL_... values below */ 639 void *pUser; /* First argument to xCmp() */ 640 int (*xCmp)(void*,int, const void*, int, const void*); 641 void (*xDel)(void*); /* Destructor for pUser */ 642 }; 643 644 /* 645 ** Allowed values of CollSeq flags: 646 */ 647 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 648 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 649 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 650 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 651 652 /* 653 ** A sort order can be either ASC or DESC. 654 */ 655 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 656 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 657 658 /* 659 ** Column affinity types. 660 ** 661 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 662 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 663 ** the speed a little by number the values consecutively. 664 ** 665 ** But rather than start with 0 or 1, we begin with 'a'. That way, 666 ** when multiple affinity types are concatenated into a string and 667 ** used as the P3 operand, they will be more readable. 668 ** 669 ** Note also that the numeric types are grouped together so that testing 670 ** for a numeric type is a single comparison. 671 */ 672 #define SQLITE_AFF_TEXT 'a' 673 #define SQLITE_AFF_NONE 'b' 674 #define SQLITE_AFF_NUMERIC 'c' 675 #define SQLITE_AFF_INTEGER 'd' 676 #define SQLITE_AFF_REAL 'e' 677 678 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 679 680 /* 681 ** Each SQL table is represented in memory by an instance of the 682 ** following structure. 683 ** 684 ** Table.zName is the name of the table. The case of the original 685 ** CREATE TABLE statement is stored, but case is not significant for 686 ** comparisons. 687 ** 688 ** Table.nCol is the number of columns in this table. Table.aCol is a 689 ** pointer to an array of Column structures, one for each column. 690 ** 691 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 692 ** the column that is that key. Otherwise Table.iPKey is negative. Note 693 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 694 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 695 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 696 ** is generated for each row of the table. Table.hasPrimKey is true if 697 ** the table has any PRIMARY KEY, INTEGER or otherwise. 698 ** 699 ** Table.tnum is the page number for the root BTree page of the table in the 700 ** database file. If Table.iDb is the index of the database table backend 701 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 702 ** holds temporary tables and indices. If Table.isEphem 703 ** is true, then the table is stored in a file that is automatically deleted 704 ** when the VDBE cursor to the table is closed. In this case Table.tnum 705 ** refers VDBE cursor number that holds the table open, not to the root 706 ** page number. Transient tables are used to hold the results of a 707 ** sub-query that appears instead of a real table name in the FROM clause 708 ** of a SELECT statement. 709 */ 710 struct Table { 711 char *zName; /* Name of the table */ 712 int nCol; /* Number of columns in this table */ 713 Column *aCol; /* Information about each column */ 714 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 715 Index *pIndex; /* List of SQL indexes on this table. */ 716 int tnum; /* Root BTree node for this table (see note above) */ 717 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 718 int nRef; /* Number of pointers to this Table */ 719 Trigger *pTrigger; /* List of SQL triggers on this table */ 720 FKey *pFKey; /* Linked list of all foreign keys in this table */ 721 char *zColAff; /* String defining the affinity of each column */ 722 #ifndef SQLITE_OMIT_CHECK 723 Expr *pCheck; /* The AND of all CHECK constraints */ 724 #endif 725 #ifndef SQLITE_OMIT_ALTERTABLE 726 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 727 #endif 728 u8 readOnly; /* True if this table should not be written by the user */ 729 u8 isEphem; /* True if created using OP_OpenEphermeral */ 730 u8 hasPrimKey; /* True if there exists a primary key */ 731 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 732 u8 autoInc; /* True if the integer primary key is autoincrement */ 733 #ifndef SQLITE_OMIT_VIRTUALTABLE 734 u8 isVirtual; /* True if this is a virtual table */ 735 u8 isCommit; /* True once the CREATE TABLE has been committed */ 736 Module *pMod; /* Pointer to the implementation of the module */ 737 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 738 int nModuleArg; /* Number of arguments to the module */ 739 char **azModuleArg; /* Text of all module args. [0] is module name */ 740 #endif 741 Schema *pSchema; 742 }; 743 744 /* 745 ** Test to see whether or not a table is a virtual table. This is 746 ** done as a macro so that it will be optimized out when virtual 747 ** table support is omitted from the build. 748 */ 749 #ifndef SQLITE_OMIT_VIRTUALTABLE 750 # define IsVirtual(X) ((X)->isVirtual) 751 # define IsHiddenColumn(X) ((X)->isHidden) 752 #else 753 # define IsVirtual(X) 0 754 # define IsHiddenColumn(X) 0 755 #endif 756 757 /* 758 ** Each foreign key constraint is an instance of the following structure. 759 ** 760 ** A foreign key is associated with two tables. The "from" table is 761 ** the table that contains the REFERENCES clause that creates the foreign 762 ** key. The "to" table is the table that is named in the REFERENCES clause. 763 ** Consider this example: 764 ** 765 ** CREATE TABLE ex1( 766 ** a INTEGER PRIMARY KEY, 767 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 768 ** ); 769 ** 770 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 771 ** 772 ** Each REFERENCES clause generates an instance of the following structure 773 ** which is attached to the from-table. The to-table need not exist when 774 ** the from-table is created. The existance of the to-table is not checked 775 ** until an attempt is made to insert data into the from-table. 776 ** 777 ** The sqlite.aFKey hash table stores pointers to this structure 778 ** given the name of a to-table. For each to-table, all foreign keys 779 ** associated with that table are on a linked list using the FKey.pNextTo 780 ** field. 781 */ 782 struct FKey { 783 Table *pFrom; /* The table that constains the REFERENCES clause */ 784 FKey *pNextFrom; /* Next foreign key in pFrom */ 785 char *zTo; /* Name of table that the key points to */ 786 FKey *pNextTo; /* Next foreign key that points to zTo */ 787 int nCol; /* Number of columns in this key */ 788 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 789 int iFrom; /* Index of column in pFrom */ 790 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 791 } *aCol; /* One entry for each of nCol column s */ 792 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 793 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 794 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 795 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 796 }; 797 798 /* 799 ** SQLite supports many different ways to resolve a contraint 800 ** error. ROLLBACK processing means that a constraint violation 801 ** causes the operation in process to fail and for the current transaction 802 ** to be rolled back. ABORT processing means the operation in process 803 ** fails and any prior changes from that one operation are backed out, 804 ** but the transaction is not rolled back. FAIL processing means that 805 ** the operation in progress stops and returns an error code. But prior 806 ** changes due to the same operation are not backed out and no rollback 807 ** occurs. IGNORE means that the particular row that caused the constraint 808 ** error is not inserted or updated. Processing continues and no error 809 ** is returned. REPLACE means that preexisting database rows that caused 810 ** a UNIQUE constraint violation are removed so that the new insert or 811 ** update can proceed. Processing continues and no error is reported. 812 ** 813 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 814 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 815 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 816 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 817 ** referenced table row is propagated into the row that holds the 818 ** foreign key. 819 ** 820 ** The following symbolic values are used to record which type 821 ** of action to take. 822 */ 823 #define OE_None 0 /* There is no constraint to check */ 824 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 825 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 826 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 827 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 828 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 829 830 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 831 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 832 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 833 #define OE_Cascade 9 /* Cascade the changes */ 834 835 #define OE_Default 99 /* Do whatever the default action is */ 836 837 838 /* 839 ** An instance of the following structure is passed as the first 840 ** argument to sqlite3VdbeKeyCompare and is used to control the 841 ** comparison of the two index keys. 842 ** 843 ** If the KeyInfo.incrKey value is true and the comparison would 844 ** otherwise be equal, then return a result as if the second key 845 ** were larger. 846 */ 847 struct KeyInfo { 848 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 849 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 850 int nField; /* Number of entries in aColl[] */ 851 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 852 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 853 }; 854 855 /* 856 ** Each SQL index is represented in memory by an 857 ** instance of the following structure. 858 ** 859 ** The columns of the table that are to be indexed are described 860 ** by the aiColumn[] field of this structure. For example, suppose 861 ** we have the following table and index: 862 ** 863 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 864 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 865 ** 866 ** In the Table structure describing Ex1, nCol==3 because there are 867 ** three columns in the table. In the Index structure describing 868 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 869 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 870 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 871 ** The second column to be indexed (c1) has an index of 0 in 872 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 873 ** 874 ** The Index.onError field determines whether or not the indexed columns 875 ** must be unique and what to do if they are not. When Index.onError=OE_None, 876 ** it means this is not a unique index. Otherwise it is a unique index 877 ** and the value of Index.onError indicate the which conflict resolution 878 ** algorithm to employ whenever an attempt is made to insert a non-unique 879 ** element. 880 */ 881 struct Index { 882 char *zName; /* Name of this index */ 883 int nColumn; /* Number of columns in the table used by this index */ 884 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 885 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 886 Table *pTable; /* The SQL table being indexed */ 887 int tnum; /* Page containing root of this index in database file */ 888 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 889 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 890 char *zColAff; /* String defining the affinity of each column */ 891 Index *pNext; /* The next index associated with the same table */ 892 Schema *pSchema; /* Schema containing this index */ 893 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 894 char **azColl; /* Array of collation sequence names for index */ 895 }; 896 897 /* 898 ** Each token coming out of the lexer is an instance of 899 ** this structure. Tokens are also used as part of an expression. 900 ** 901 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 902 ** may contain random values. Do not make any assuptions about Token.dyn 903 ** and Token.n when Token.z==0. 904 */ 905 struct Token { 906 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 907 unsigned dyn : 1; /* True for malloced memory, false for static */ 908 unsigned n : 31; /* Number of characters in this token */ 909 }; 910 911 /* 912 ** An instance of this structure contains information needed to generate 913 ** code for a SELECT that contains aggregate functions. 914 ** 915 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 916 ** pointer to this structure. The Expr.iColumn field is the index in 917 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 918 ** code for that node. 919 ** 920 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 921 ** original Select structure that describes the SELECT statement. These 922 ** fields do not need to be freed when deallocating the AggInfo structure. 923 */ 924 struct AggInfo { 925 u8 directMode; /* Direct rendering mode means take data directly 926 ** from source tables rather than from accumulators */ 927 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 928 ** than the source table */ 929 int sortingIdx; /* Cursor number of the sorting index */ 930 ExprList *pGroupBy; /* The group by clause */ 931 int nSortingColumn; /* Number of columns in the sorting index */ 932 struct AggInfo_col { /* For each column used in source tables */ 933 Table *pTab; /* Source table */ 934 int iTable; /* Cursor number of the source table */ 935 int iColumn; /* Column number within the source table */ 936 int iSorterColumn; /* Column number in the sorting index */ 937 int iMem; /* Memory location that acts as accumulator */ 938 Expr *pExpr; /* The original expression */ 939 } *aCol; 940 int nColumn; /* Number of used entries in aCol[] */ 941 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 942 int nAccumulator; /* Number of columns that show through to the output. 943 ** Additional columns are used only as parameters to 944 ** aggregate functions */ 945 struct AggInfo_func { /* For each aggregate function */ 946 Expr *pExpr; /* Expression encoding the function */ 947 FuncDef *pFunc; /* The aggregate function implementation */ 948 int iMem; /* Memory location that acts as accumulator */ 949 int iDistinct; /* Ephermeral table used to enforce DISTINCT */ 950 } *aFunc; 951 int nFunc; /* Number of entries in aFunc[] */ 952 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 953 }; 954 955 /* 956 ** Each node of an expression in the parse tree is an instance 957 ** of this structure. 958 ** 959 ** Expr.op is the opcode. The integer parser token codes are reused 960 ** as opcodes here. For example, the parser defines TK_GE to be an integer 961 ** code representing the ">=" operator. This same integer code is reused 962 ** to represent the greater-than-or-equal-to operator in the expression 963 ** tree. 964 ** 965 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 966 ** of argument if the expression is a function. 967 ** 968 ** Expr.token is the operator token for this node. For some expressions 969 ** that have subexpressions, Expr.token can be the complete text that gave 970 ** rise to the Expr. In the latter case, the token is marked as being 971 ** a compound token. 972 ** 973 ** An expression of the form ID or ID.ID refers to a column in a table. 974 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 975 ** the integer cursor number of a VDBE cursor pointing to that table and 976 ** Expr.iColumn is the column number for the specific column. If the 977 ** expression is used as a result in an aggregate SELECT, then the 978 ** value is also stored in the Expr.iAgg column in the aggregate so that 979 ** it can be accessed after all aggregates are computed. 980 ** 981 ** If the expression is a function, the Expr.iTable is an integer code 982 ** representing which function. If the expression is an unbound variable 983 ** marker (a question mark character '?' in the original SQL) then the 984 ** Expr.iTable holds the index number for that variable. 985 ** 986 ** If the expression is a subquery then Expr.iColumn holds an integer 987 ** register number containing the result of the subquery. If the 988 ** subquery gives a constant result, then iTable is -1. If the subquery 989 ** gives a different answer at different times during statement processing 990 ** then iTable is the address of a subroutine that computes the subquery. 991 ** 992 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 993 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 994 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 995 ** operand. 996 ** 997 ** If the Expr is of type OP_Column, and the table it is selecting from 998 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 999 ** corresponding table definition. 1000 */ 1001 struct Expr { 1002 u8 op; /* Operation performed by this node */ 1003 char affinity; /* The affinity of the column or 0 if not a column */ 1004 u16 flags; /* Various flags. See below */ 1005 CollSeq *pColl; /* The collation type of the column or 0 */ 1006 Expr *pLeft, *pRight; /* Left and right subnodes */ 1007 ExprList *pList; /* A list of expressions used as function arguments 1008 ** or in "<expr> IN (<expr-list)" */ 1009 Token token; /* An operand token */ 1010 Token span; /* Complete text of the expression */ 1011 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 1012 ** iColumn-th field of the iTable-th table. */ 1013 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1014 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1015 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1016 Select *pSelect; /* When the expression is a sub-select. Also the 1017 ** right side of "<expr> IN (<select>)" */ 1018 Table *pTab; /* Table for OP_Column expressions. */ 1019 Schema *pSchema; 1020 #if SQLITE_MAX_EXPR_DEPTH>0 1021 int nHeight; /* Height of the tree headed by this node */ 1022 #endif 1023 }; 1024 1025 /* 1026 ** The following are the meanings of bits in the Expr.flags field. 1027 */ 1028 #define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */ 1029 #define EP_Agg 0x02 /* Contains one or more aggregate functions */ 1030 #define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */ 1031 #define EP_Error 0x08 /* Expression contains one or more errors */ 1032 #define EP_Distinct 0x10 /* Aggregate function with DISTINCT keyword */ 1033 #define EP_VarSelect 0x20 /* pSelect is correlated, not constant */ 1034 #define EP_Dequoted 0x40 /* True if the string has been dequoted */ 1035 #define EP_InfixFunc 0x80 /* True for an infix function: LIKE, GLOB, etc */ 1036 #define EP_ExpCollate 0x100 /* Collating sequence specified explicitly */ 1037 1038 /* 1039 ** These macros can be used to test, set, or clear bits in the 1040 ** Expr.flags field. 1041 */ 1042 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1043 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1044 #define ExprSetProperty(E,P) (E)->flags|=(P) 1045 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1046 1047 /* 1048 ** A list of expressions. Each expression may optionally have a 1049 ** name. An expr/name combination can be used in several ways, such 1050 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1051 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1052 ** also be used as the argument to a function, in which case the a.zName 1053 ** field is not used. 1054 */ 1055 struct ExprList { 1056 int nExpr; /* Number of expressions on the list */ 1057 int nAlloc; /* Number of entries allocated below */ 1058 int iECursor; /* VDBE Cursor associated with this ExprList */ 1059 struct ExprList_item { 1060 Expr *pExpr; /* The list of expressions */ 1061 char *zName; /* Token associated with this expression */ 1062 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1063 u8 isAgg; /* True if this is an aggregate like count(*) */ 1064 u8 done; /* A flag to indicate when processing is finished */ 1065 } *a; /* One entry for each expression */ 1066 }; 1067 1068 /* 1069 ** An instance of this structure can hold a simple list of identifiers, 1070 ** such as the list "a,b,c" in the following statements: 1071 ** 1072 ** INSERT INTO t(a,b,c) VALUES ...; 1073 ** CREATE INDEX idx ON t(a,b,c); 1074 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1075 ** 1076 ** The IdList.a.idx field is used when the IdList represents the list of 1077 ** column names after a table name in an INSERT statement. In the statement 1078 ** 1079 ** INSERT INTO t(a,b,c) ... 1080 ** 1081 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1082 */ 1083 struct IdList { 1084 struct IdList_item { 1085 char *zName; /* Name of the identifier */ 1086 int idx; /* Index in some Table.aCol[] of a column named zName */ 1087 } *a; 1088 int nId; /* Number of identifiers on the list */ 1089 int nAlloc; /* Number of entries allocated for a[] below */ 1090 }; 1091 1092 /* 1093 ** The bitmask datatype defined below is used for various optimizations. 1094 ** 1095 ** Changing this from a 64-bit to a 32-bit type limits the number of 1096 ** tables in a join to 32 instead of 64. But it also reduces the size 1097 ** of the library by 738 bytes on ix86. 1098 */ 1099 typedef u64 Bitmask; 1100 1101 /* 1102 ** The following structure describes the FROM clause of a SELECT statement. 1103 ** Each table or subquery in the FROM clause is a separate element of 1104 ** the SrcList.a[] array. 1105 ** 1106 ** With the addition of multiple database support, the following structure 1107 ** can also be used to describe a particular table such as the table that 1108 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1109 ** such a table must be a simple name: ID. But in SQLite, the table can 1110 ** now be identified by a database name, a dot, then the table name: ID.ID. 1111 ** 1112 ** The jointype starts out showing the join type between the current table 1113 ** and the next table on the list. The parser builds the list this way. 1114 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1115 ** jointype expresses the join between the table and the previous table. 1116 */ 1117 struct SrcList { 1118 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1119 i16 nAlloc; /* Number of entries allocated in a[] below */ 1120 struct SrcList_item { 1121 char *zDatabase; /* Name of database holding this table */ 1122 char *zName; /* Name of the table */ 1123 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1124 Table *pTab; /* An SQL table corresponding to zName */ 1125 Select *pSelect; /* A SELECT statement used in place of a table name */ 1126 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1127 u8 jointype; /* Type of join between this able and the previous */ 1128 int iCursor; /* The VDBE cursor number used to access this table */ 1129 Expr *pOn; /* The ON clause of a join */ 1130 IdList *pUsing; /* The USING clause of a join */ 1131 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1132 } a[1]; /* One entry for each identifier on the list */ 1133 }; 1134 1135 /* 1136 ** Permitted values of the SrcList.a.jointype field 1137 */ 1138 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1139 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1140 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1141 #define JT_LEFT 0x0008 /* Left outer join */ 1142 #define JT_RIGHT 0x0010 /* Right outer join */ 1143 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1144 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1145 1146 /* 1147 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1148 ** structure contains a single instance of this structure. This structure 1149 ** is intended to be private the the where.c module and should not be 1150 ** access or modified by other modules. 1151 ** 1152 ** The pIdxInfo and pBestIdx fields are used to help pick the best 1153 ** index on a virtual table. The pIdxInfo pointer contains indexing 1154 ** information for the i-th table in the FROM clause before reordering. 1155 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1156 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after 1157 ** FROM clause ordering. This is a little confusing so I will repeat 1158 ** it in different words. WhereInfo.a[i].pIdxInfo is index information 1159 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the 1160 ** index information for the i-th loop of the join. pBestInfo is always 1161 ** either NULL or a copy of some pIdxInfo. So for cleanup it is 1162 ** sufficient to free all of the pIdxInfo pointers. 1163 ** 1164 */ 1165 struct WhereLevel { 1166 int iFrom; /* Which entry in the FROM clause */ 1167 int flags; /* Flags associated with this level */ 1168 int iMem; /* First memory cell used by this level */ 1169 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1170 Index *pIdx; /* Index used. NULL if no index */ 1171 int iTabCur; /* The VDBE cursor used to access the table */ 1172 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 1173 int brk; /* Jump here to break out of the loop */ 1174 int nxt; /* Jump here to start the next IN combination */ 1175 int cont; /* Jump here to continue with the next loop cycle */ 1176 int top; /* First instruction of interior of the loop */ 1177 int op, p1, p2; /* Opcode used to terminate the loop */ 1178 int nEq; /* Number of == or IN constraints on this loop */ 1179 int nIn; /* Number of IN operators constraining this loop */ 1180 struct InLoop { 1181 int iCur; /* The VDBE cursor used by this IN operator */ 1182 int topAddr; /* Top of the IN loop */ 1183 } *aInLoop; /* Information about each nested IN operator */ 1184 sqlite3_index_info *pBestIdx; /* Index information for this level */ 1185 1186 /* The following field is really not part of the current level. But 1187 ** we need a place to cache index information for each table in the 1188 ** FROM clause and the WhereLevel structure is a convenient place. 1189 */ 1190 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1191 }; 1192 1193 /* 1194 ** The WHERE clause processing routine has two halves. The 1195 ** first part does the start of the WHERE loop and the second 1196 ** half does the tail of the WHERE loop. An instance of 1197 ** this structure is returned by the first half and passed 1198 ** into the second half to give some continuity. 1199 */ 1200 struct WhereInfo { 1201 Parse *pParse; 1202 SrcList *pTabList; /* List of tables in the join */ 1203 int iTop; /* The very beginning of the WHERE loop */ 1204 int iContinue; /* Jump here to continue with next record */ 1205 int iBreak; /* Jump here to break out of the loop */ 1206 int nLevel; /* Number of nested loop */ 1207 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ 1208 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 1209 }; 1210 1211 /* 1212 ** A NameContext defines a context in which to resolve table and column 1213 ** names. The context consists of a list of tables (the pSrcList) field and 1214 ** a list of named expression (pEList). The named expression list may 1215 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1216 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1217 ** pEList corresponds to the result set of a SELECT and is NULL for 1218 ** other statements. 1219 ** 1220 ** NameContexts can be nested. When resolving names, the inner-most 1221 ** context is searched first. If no match is found, the next outer 1222 ** context is checked. If there is still no match, the next context 1223 ** is checked. This process continues until either a match is found 1224 ** or all contexts are check. When a match is found, the nRef member of 1225 ** the context containing the match is incremented. 1226 ** 1227 ** Each subquery gets a new NameContext. The pNext field points to the 1228 ** NameContext in the parent query. Thus the process of scanning the 1229 ** NameContext list corresponds to searching through successively outer 1230 ** subqueries looking for a match. 1231 */ 1232 struct NameContext { 1233 Parse *pParse; /* The parser */ 1234 SrcList *pSrcList; /* One or more tables used to resolve names */ 1235 ExprList *pEList; /* Optional list of named expressions */ 1236 int nRef; /* Number of names resolved by this context */ 1237 int nErr; /* Number of errors encountered while resolving names */ 1238 u8 allowAgg; /* Aggregate functions allowed here */ 1239 u8 hasAgg; /* True if aggregates are seen */ 1240 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1241 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1242 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1243 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1244 }; 1245 1246 /* 1247 ** An instance of the following structure contains all information 1248 ** needed to generate code for a single SELECT statement. 1249 ** 1250 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1251 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1252 ** limit and nOffset to the value of the offset (or 0 if there is not 1253 ** offset). But later on, nLimit and nOffset become the memory locations 1254 ** in the VDBE that record the limit and offset counters. 1255 ** 1256 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1257 ** These addresses must be stored so that we can go back and fill in 1258 ** the P3_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1259 ** the number of columns in P2 can be computed at the same time 1260 ** as the OP_OpenEphm instruction is coded because not 1261 ** enough information about the compound query is known at that point. 1262 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1263 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1264 ** sequences for the ORDER BY clause. 1265 */ 1266 struct Select { 1267 ExprList *pEList; /* The fields of the result */ 1268 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1269 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1270 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1271 u8 isAgg; /* True if this is an aggregate query */ 1272 u8 usesEphm; /* True if uses an OpenEphemeral opcode */ 1273 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ 1274 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1275 SrcList *pSrc; /* The FROM clause */ 1276 Expr *pWhere; /* The WHERE clause */ 1277 ExprList *pGroupBy; /* The GROUP BY clause */ 1278 Expr *pHaving; /* The HAVING clause */ 1279 ExprList *pOrderBy; /* The ORDER BY clause */ 1280 Select *pPrior; /* Prior select in a compound select statement */ 1281 Select *pRightmost; /* Right-most select in a compound select statement */ 1282 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1283 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1284 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1285 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1286 }; 1287 1288 /* 1289 ** The results of a select can be distributed in several ways. 1290 */ 1291 #define SRT_Union 1 /* Store result as keys in an index */ 1292 #define SRT_Except 2 /* Remove result from a UNION index */ 1293 #define SRT_Discard 3 /* Do not save the results anywhere */ 1294 1295 /* The ORDER BY clause is ignored for all of the above */ 1296 #define IgnorableOrderby(X) (X<=SRT_Discard) 1297 1298 #define SRT_Callback 4 /* Invoke a callback with each row of result */ 1299 #define SRT_Mem 5 /* Store result in a memory cell */ 1300 #define SRT_Set 6 /* Store non-null results as keys in an index */ 1301 #define SRT_Table 7 /* Store result as data with an automatic rowid */ 1302 #define SRT_EphemTab 8 /* Create transient tab and store like SRT_Table */ 1303 #define SRT_Subroutine 9 /* Call a subroutine to handle results */ 1304 #define SRT_Exists 10 /* Store 1 if the result is not empty */ 1305 1306 /* 1307 ** An SQL parser context. A copy of this structure is passed through 1308 ** the parser and down into all the parser action routine in order to 1309 ** carry around information that is global to the entire parse. 1310 ** 1311 ** The structure is divided into two parts. When the parser and code 1312 ** generate call themselves recursively, the first part of the structure 1313 ** is constant but the second part is reset at the beginning and end of 1314 ** each recursion. 1315 ** 1316 ** The nTableLock and aTableLock variables are only used if the shared-cache 1317 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 1318 ** used to store the set of table-locks required by the statement being 1319 ** compiled. Function sqlite3TableLock() is used to add entries to the 1320 ** list. 1321 */ 1322 struct Parse { 1323 sqlite3 *db; /* The main database structure */ 1324 int rc; /* Return code from execution */ 1325 char *zErrMsg; /* An error message */ 1326 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1327 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1328 u8 nameClash; /* A permanent table name clashes with temp table name */ 1329 u8 checkSchema; /* Causes schema cookie check after an error */ 1330 u8 nested; /* Number of nested calls to the parser/code generator */ 1331 u8 parseError; /* True after a parsing error. Ticket #1794 */ 1332 int nErr; /* Number of errors seen */ 1333 int nTab; /* Number of previously allocated VDBE cursors */ 1334 int nMem; /* Number of memory cells used so far */ 1335 int nSet; /* Number of sets used so far */ 1336 int ckOffset; /* Stack offset to data used by CHECK constraints */ 1337 u32 writeMask; /* Start a write transaction on these databases */ 1338 u32 cookieMask; /* Bitmask of schema verified databases */ 1339 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1340 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 1341 #ifndef SQLITE_OMIT_SHARED_CACHE 1342 int nTableLock; /* Number of locks in aTableLock */ 1343 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 1344 #endif 1345 1346 /* Above is constant between recursions. Below is reset before and after 1347 ** each recursion */ 1348 1349 int nVar; /* Number of '?' variables seen in the SQL so far */ 1350 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1351 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1352 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1353 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1354 Token sErrToken; /* The token at which the error occurred */ 1355 Token sNameToken; /* Token with unqualified schema object name */ 1356 Token sLastToken; /* The last token parsed */ 1357 const char *zSql; /* All SQL text */ 1358 const char *zTail; /* All SQL text past the last semicolon parsed */ 1359 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1360 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1361 TriggerStack *trigStack; /* Trigger actions being coded */ 1362 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1363 #ifndef SQLITE_OMIT_VIRTUALTABLE 1364 Token sArg; /* Complete text of a module argument */ 1365 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 1366 Table *pVirtualLock; /* Require virtual table lock on this table */ 1367 #endif 1368 #if SQLITE_MAX_EXPR_DEPTH>0 1369 int nHeight; /* Expression tree height of current sub-select */ 1370 #endif 1371 }; 1372 1373 #ifdef SQLITE_OMIT_VIRTUALTABLE 1374 #define IN_DECLARE_VTAB 0 1375 #else 1376 #define IN_DECLARE_VTAB (pParse->declareVtab) 1377 #endif 1378 1379 /* 1380 ** An instance of the following structure can be declared on a stack and used 1381 ** to save the Parse.zAuthContext value so that it can be restored later. 1382 */ 1383 struct AuthContext { 1384 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1385 Parse *pParse; /* The Parse structure */ 1386 }; 1387 1388 /* 1389 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1390 */ 1391 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1392 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1393 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 1394 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 1395 1396 /* 1397 * Each trigger present in the database schema is stored as an instance of 1398 * struct Trigger. 1399 * 1400 * Pointers to instances of struct Trigger are stored in two ways. 1401 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1402 * database). This allows Trigger structures to be retrieved by name. 1403 * 2. All triggers associated with a single table form a linked list, using the 1404 * pNext member of struct Trigger. A pointer to the first element of the 1405 * linked list is stored as the "pTrigger" member of the associated 1406 * struct Table. 1407 * 1408 * The "step_list" member points to the first element of a linked list 1409 * containing the SQL statements specified as the trigger program. 1410 */ 1411 struct Trigger { 1412 char *name; /* The name of the trigger */ 1413 char *table; /* The table or view to which the trigger applies */ 1414 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1415 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1416 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1417 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1418 the <column-list> is stored here */ 1419 Token nameToken; /* Token containing zName. Use during parsing only */ 1420 Schema *pSchema; /* Schema containing the trigger */ 1421 Schema *pTabSchema; /* Schema containing the table */ 1422 TriggerStep *step_list; /* Link list of trigger program steps */ 1423 Trigger *pNext; /* Next trigger associated with the table */ 1424 }; 1425 1426 /* 1427 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1428 ** determine which. 1429 ** 1430 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1431 ** In that cases, the constants below can be ORed together. 1432 */ 1433 #define TRIGGER_BEFORE 1 1434 #define TRIGGER_AFTER 2 1435 1436 /* 1437 * An instance of struct TriggerStep is used to store a single SQL statement 1438 * that is a part of a trigger-program. 1439 * 1440 * Instances of struct TriggerStep are stored in a singly linked list (linked 1441 * using the "pNext" member) referenced by the "step_list" member of the 1442 * associated struct Trigger instance. The first element of the linked list is 1443 * the first step of the trigger-program. 1444 * 1445 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1446 * "SELECT" statement. The meanings of the other members is determined by the 1447 * value of "op" as follows: 1448 * 1449 * (op == TK_INSERT) 1450 * orconf -> stores the ON CONFLICT algorithm 1451 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1452 * this stores a pointer to the SELECT statement. Otherwise NULL. 1453 * target -> A token holding the name of the table to insert into. 1454 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1455 * this stores values to be inserted. Otherwise NULL. 1456 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1457 * statement, then this stores the column-names to be 1458 * inserted into. 1459 * 1460 * (op == TK_DELETE) 1461 * target -> A token holding the name of the table to delete from. 1462 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1463 * Otherwise NULL. 1464 * 1465 * (op == TK_UPDATE) 1466 * target -> A token holding the name of the table to update rows of. 1467 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1468 * Otherwise NULL. 1469 * pExprList -> A list of the columns to update and the expressions to update 1470 * them to. See sqlite3Update() documentation of "pChanges" 1471 * argument. 1472 * 1473 */ 1474 struct TriggerStep { 1475 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1476 int orconf; /* OE_Rollback etc. */ 1477 Trigger *pTrig; /* The trigger that this step is a part of */ 1478 1479 Select *pSelect; /* Valid for SELECT and sometimes 1480 INSERT steps (when pExprList == 0) */ 1481 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1482 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1483 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1484 INSERT steps (when pSelect == 0) */ 1485 IdList *pIdList; /* Valid for INSERT statements only */ 1486 TriggerStep *pNext; /* Next in the link-list */ 1487 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 1488 }; 1489 1490 /* 1491 * An instance of struct TriggerStack stores information required during code 1492 * generation of a single trigger program. While the trigger program is being 1493 * coded, its associated TriggerStack instance is pointed to by the 1494 * "pTriggerStack" member of the Parse structure. 1495 * 1496 * The pTab member points to the table that triggers are being coded on. The 1497 * newIdx member contains the index of the vdbe cursor that points at the temp 1498 * table that stores the new.* references. If new.* references are not valid 1499 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1500 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1501 * 1502 * The ON CONFLICT policy to be used for the trigger program steps is stored 1503 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1504 * specified for individual triggers steps is used. 1505 * 1506 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1507 * constructed. When coding nested triggers (triggers fired by other triggers) 1508 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1509 * pointer. Once the nested trigger has been coded, the pNext value is restored 1510 * to the pTriggerStack member of the Parse stucture and coding of the parent 1511 * trigger continues. 1512 * 1513 * Before a nested trigger is coded, the linked list pointed to by the 1514 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1515 * recursively. If this condition is detected, the nested trigger is not coded. 1516 */ 1517 struct TriggerStack { 1518 Table *pTab; /* Table that triggers are currently being coded on */ 1519 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1520 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1521 int orconf; /* Current orconf policy */ 1522 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1523 Trigger *pTrigger; /* The trigger currently being coded */ 1524 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1525 }; 1526 1527 /* 1528 ** The following structure contains information used by the sqliteFix... 1529 ** routines as they walk the parse tree to make database references 1530 ** explicit. 1531 */ 1532 typedef struct DbFixer DbFixer; 1533 struct DbFixer { 1534 Parse *pParse; /* The parsing context. Error messages written here */ 1535 const char *zDb; /* Make sure all objects are contained in this database */ 1536 const char *zType; /* Type of the container - used for error messages */ 1537 const Token *pName; /* Name of the container - used for error messages */ 1538 }; 1539 1540 /* 1541 ** A pointer to this structure is used to communicate information 1542 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1543 */ 1544 typedef struct { 1545 sqlite3 *db; /* The database being initialized */ 1546 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 1547 char **pzErrMsg; /* Error message stored here */ 1548 int rc; /* Result code stored here */ 1549 } InitData; 1550 1551 /* 1552 * This global flag is set for performance testing of triggers. When it is set 1553 * SQLite will perform the overhead of building new and old trigger references 1554 * even when no triggers exist 1555 */ 1556 extern int sqlite3_always_code_trigger_setup; 1557 1558 /* 1559 ** Assuming zIn points to the first byte of a UTF-8 character, 1560 ** advance zIn to point to the first byte of the next UTF-8 character. 1561 */ 1562 #define SQLITE_SKIP_UTF8(zIn) { \ 1563 if( (*(zIn++))>=0xc0 ){ \ 1564 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 1565 } \ 1566 } 1567 1568 /* 1569 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 1570 ** builds) or a function call (for debugging). If it is a function call, 1571 ** it allows the operator to set a breakpoint at the spot where database 1572 ** corruption is first detected. 1573 */ 1574 #ifdef SQLITE_DEBUG 1575 int sqlite3Corrupt(void); 1576 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 1577 #else 1578 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 1579 #endif 1580 1581 /* 1582 ** Internal function prototypes 1583 */ 1584 int sqlite3StrICmp(const char *, const char *); 1585 int sqlite3StrNICmp(const char *, const char *, int); 1586 int sqlite3IsNumber(const char*, int*, u8); 1587 1588 void *sqlite3Malloc(int,int); 1589 void *sqlite3MallocRaw(int,int); 1590 void *sqlite3Realloc(void*,int); 1591 char *sqlite3StrDup(const char*); 1592 char *sqlite3StrNDup(const char*, int); 1593 # define sqlite3CheckMemory(a,b) 1594 void *sqlite3ReallocOrFree(void*,int); 1595 void sqlite3FreeX(void*); 1596 void *sqlite3MallocX(int); 1597 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1598 int sqlite3AllocSize(void *); 1599 #endif 1600 1601 char *sqlite3MPrintf(const char*, ...); 1602 char *sqlite3VMPrintf(const char*, va_list); 1603 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 1604 void sqlite3DebugPrintf(const char*, ...); 1605 void *sqlite3TextToPtr(const char*); 1606 #endif 1607 void sqlite3SetString(char **, ...); 1608 void sqlite3ErrorMsg(Parse*, const char*, ...); 1609 void sqlite3ErrorClear(Parse*); 1610 void sqlite3Dequote(char*); 1611 void sqlite3DequoteExpr(Expr*); 1612 int sqlite3KeywordCode(const unsigned char*, int); 1613 int sqlite3RunParser(Parse*, const char*, char **); 1614 void sqlite3FinishCoding(Parse*); 1615 Expr *sqlite3Expr(int, Expr*, Expr*, const Token*); 1616 Expr *sqlite3ExprOrFree(int, Expr*, Expr*, const Token*); 1617 Expr *sqlite3RegisterExpr(Parse*,Token*); 1618 Expr *sqlite3ExprAnd(Expr*, Expr*); 1619 void sqlite3ExprSpan(Expr*,Token*,Token*); 1620 Expr *sqlite3ExprFunction(ExprList*, Token*); 1621 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1622 void sqlite3ExprDelete(Expr*); 1623 ExprList *sqlite3ExprListAppend(ExprList*,Expr*,Token*); 1624 void sqlite3ExprListDelete(ExprList*); 1625 int sqlite3Init(sqlite3*, char**); 1626 int sqlite3InitCallback(void*, int, char**, char**); 1627 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1628 void sqlite3ResetInternalSchema(sqlite3*, int); 1629 void sqlite3BeginParse(Parse*,int); 1630 void sqlite3CommitInternalChanges(sqlite3*); 1631 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1632 void sqlite3OpenMasterTable(Parse *, int); 1633 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 1634 void sqlite3AddColumn(Parse*,Token*); 1635 void sqlite3AddNotNull(Parse*, int); 1636 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 1637 void sqlite3AddCheckConstraint(Parse*, Expr*); 1638 void sqlite3AddColumnType(Parse*,Token*); 1639 void sqlite3AddDefaultValue(Parse*,Expr*); 1640 void sqlite3AddCollateType(Parse*, const char*, int); 1641 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1642 1643 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 1644 1645 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1646 int sqlite3ViewGetColumnNames(Parse*,Table*); 1647 #else 1648 # define sqlite3ViewGetColumnNames(A,B) 0 1649 #endif 1650 1651 void sqlite3DropTable(Parse*, SrcList*, int, int); 1652 void sqlite3DeleteTable(Table*); 1653 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1654 void *sqlite3ArrayAllocate(void*,int,int,int*,int*,int*); 1655 IdList *sqlite3IdListAppend(IdList*, Token*); 1656 int sqlite3IdListIndex(IdList*,const char*); 1657 SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*); 1658 SrcList *sqlite3SrcListAppendFromTerm(SrcList*, Token*, Token*, Token*, 1659 Select*, Expr*, IdList*); 1660 void sqlite3SrcListShiftJoinType(SrcList*); 1661 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1662 void sqlite3IdListDelete(IdList*); 1663 void sqlite3SrcListDelete(SrcList*); 1664 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1665 Token*, int, int); 1666 void sqlite3DropIndex(Parse*, SrcList*, int); 1667 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); 1668 Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, 1669 int,Expr*,Expr*); 1670 void sqlite3SelectDelete(Select*); 1671 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1672 int sqlite3IsReadOnly(Parse*, Table*, int); 1673 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 1674 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1675 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1676 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**); 1677 void sqlite3WhereEnd(WhereInfo*); 1678 void sqlite3ExprCodeGetColumn(Vdbe*, Table*, int, int); 1679 void sqlite3ExprCode(Parse*, Expr*); 1680 void sqlite3ExprCodeAndCache(Parse*, Expr*); 1681 int sqlite3ExprCodeExprList(Parse*, ExprList*); 1682 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 1683 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 1684 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 1685 Table *sqlite3LocateTable(Parse*,const char*, const char*); 1686 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 1687 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 1688 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 1689 void sqlite3Vacuum(Parse*); 1690 int sqlite3RunVacuum(char**, sqlite3*); 1691 char *sqlite3NameFromToken(Token*); 1692 int sqlite3ExprCompare(Expr*, Expr*); 1693 int sqliteFuncId(Token*); 1694 int sqlite3ExprResolveNames(NameContext *, Expr *); 1695 int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 1696 int sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 1697 Vdbe *sqlite3GetVdbe(Parse*); 1698 Expr *sqlite3CreateIdExpr(const char*); 1699 void sqlite3Randomness(int, void*); 1700 void sqlite3RollbackAll(sqlite3*); 1701 void sqlite3CodeVerifySchema(Parse*, int); 1702 void sqlite3BeginTransaction(Parse*, int); 1703 void sqlite3CommitTransaction(Parse*); 1704 void sqlite3RollbackTransaction(Parse*); 1705 int sqlite3ExprIsConstant(Expr*); 1706 int sqlite3ExprIsConstantNotJoin(Expr*); 1707 int sqlite3ExprIsConstantOrFunction(Expr*); 1708 int sqlite3ExprIsInteger(Expr*, int*); 1709 int sqlite3IsRowid(const char*); 1710 void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int); 1711 void sqlite3GenerateRowIndexDelete(Vdbe*, Table*, int, char*); 1712 void sqlite3GenerateIndexKey(Vdbe*, Index*, int); 1713 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1714 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int, int); 1715 void sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 1716 void sqlite3BeginWriteOperation(Parse*, int, int); 1717 Expr *sqlite3ExprDup(Expr*); 1718 void sqlite3TokenCopy(Token*, Token*); 1719 ExprList *sqlite3ExprListDup(ExprList*); 1720 SrcList *sqlite3SrcListDup(SrcList*); 1721 IdList *sqlite3IdListDup(IdList*); 1722 Select *sqlite3SelectDup(Select*); 1723 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 1724 void sqlite3RegisterBuiltinFunctions(sqlite3*); 1725 void sqlite3RegisterDateTimeFunctions(sqlite3*); 1726 int sqlite3SafetyOn(sqlite3*); 1727 int sqlite3SafetyOff(sqlite3*); 1728 int sqlite3SafetyCheck(sqlite3*); 1729 void sqlite3ChangeCookie(sqlite3*, Vdbe*, int); 1730 1731 #ifndef SQLITE_OMIT_TRIGGER 1732 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 1733 Expr*,int, int); 1734 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 1735 void sqlite3DropTrigger(Parse*, SrcList*, int); 1736 void sqlite3DropTriggerPtr(Parse*, Trigger*); 1737 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 1738 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1739 int, int); 1740 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1741 void sqlite3DeleteTriggerStep(TriggerStep*); 1742 TriggerStep *sqlite3TriggerSelectStep(Select*); 1743 TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*,Select*,int); 1744 TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int); 1745 TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*); 1746 void sqlite3DeleteTrigger(Trigger*); 1747 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 1748 #else 1749 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 1750 # define sqlite3DeleteTrigger(A) 1751 # define sqlite3DropTriggerPtr(A,B) 1752 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 1753 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0 1754 #endif 1755 1756 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 1757 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 1758 void sqlite3DeferForeignKey(Parse*, int); 1759 #ifndef SQLITE_OMIT_AUTHORIZATION 1760 void sqlite3AuthRead(Parse*,Expr*,SrcList*); 1761 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 1762 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 1763 void sqlite3AuthContextPop(AuthContext*); 1764 #else 1765 # define sqlite3AuthRead(a,b,c) 1766 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 1767 # define sqlite3AuthContextPush(a,b,c) 1768 # define sqlite3AuthContextPop(a) ((void)(a)) 1769 #endif 1770 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 1771 void sqlite3Detach(Parse*, Expr*); 1772 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 1773 int omitJournal, int nCache, Btree **ppBtree); 1774 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 1775 int sqlite3FixSrcList(DbFixer*, SrcList*); 1776 int sqlite3FixSelect(DbFixer*, Select*); 1777 int sqlite3FixExpr(DbFixer*, Expr*); 1778 int sqlite3FixExprList(DbFixer*, ExprList*); 1779 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 1780 int sqlite3AtoF(const char *z, double*); 1781 char *sqlite3_snprintf(int,char*,const char*,...); 1782 int sqlite3GetInt32(const char *, int*); 1783 int sqlite3FitsIn64Bits(const char *); 1784 int sqlite3Utf16ByteLen(const void *pData, int nChar); 1785 int sqlite3Utf8CharLen(const char *pData, int nByte); 1786 int sqlite3Utf8Read(const u8*, const u8*, const u8**); 1787 int sqlite3PutVarint(unsigned char *, u64); 1788 int sqlite3GetVarint(const unsigned char *, u64 *); 1789 int sqlite3GetVarint32(const unsigned char *, u32 *); 1790 int sqlite3VarintLen(u64 v); 1791 void sqlite3IndexAffinityStr(Vdbe *, Index *); 1792 void sqlite3TableAffinityStr(Vdbe *, Table *); 1793 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 1794 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 1795 char sqlite3ExprAffinity(Expr *pExpr); 1796 int sqlite3Atoi64(const char*, i64*); 1797 void sqlite3Error(sqlite3*, int, const char*,...); 1798 void *sqlite3HexToBlob(const char *z); 1799 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 1800 const char *sqlite3ErrStr(int); 1801 int sqlite3ReadSchema(Parse *pParse); 1802 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 1803 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 1804 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 1805 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 1806 int sqlite3CheckCollSeq(Parse *, CollSeq *); 1807 int sqlite3CheckObjectName(Parse *, const char *); 1808 void sqlite3VdbeSetChanges(sqlite3 *, int); 1809 void sqlite3Utf16Substr(sqlite3_context *,int,sqlite3_value **); 1810 1811 const void *sqlite3ValueText(sqlite3_value*, u8); 1812 int sqlite3ValueBytes(sqlite3_value*, u8); 1813 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); 1814 void sqlite3ValueFree(sqlite3_value*); 1815 sqlite3_value *sqlite3ValueNew(void); 1816 char *sqlite3Utf16to8(const void*, int); 1817 int sqlite3ValueFromExpr(Expr *, u8, u8, sqlite3_value **); 1818 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 1819 extern const unsigned char sqlite3UpperToLower[]; 1820 void sqlite3RootPageMoved(Db*, int, int); 1821 void sqlite3Reindex(Parse*, Token*, Token*); 1822 void sqlite3AlterFunctions(sqlite3*); 1823 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 1824 int sqlite3GetToken(const unsigned char *, int *); 1825 void sqlite3NestedParse(Parse*, const char*, ...); 1826 void sqlite3ExpirePreparedStatements(sqlite3*); 1827 void sqlite3CodeSubselect(Parse *, Expr *); 1828 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 1829 void sqlite3ColumnDefault(Vdbe *, Table *, int); 1830 void sqlite3AlterFinishAddColumn(Parse *, Token *); 1831 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 1832 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 1833 char sqlite3AffinityType(const Token*); 1834 void sqlite3Analyze(Parse*, Token*, Token*); 1835 int sqlite3InvokeBusyHandler(BusyHandler*); 1836 int sqlite3FindDb(sqlite3*, Token*); 1837 int sqlite3AnalysisLoad(sqlite3*,int iDB); 1838 void sqlite3DefaultRowEst(Index*); 1839 void sqlite3RegisterLikeFunctions(sqlite3*, int); 1840 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 1841 ThreadData *sqlite3ThreadData(void); 1842 const ThreadData *sqlite3ThreadDataReadOnly(void); 1843 void sqlite3ReleaseThreadData(void); 1844 void sqlite3AttachFunctions(sqlite3 *); 1845 void sqlite3MinimumFileFormat(Parse*, int, int); 1846 void sqlite3SchemaFree(void *); 1847 Schema *sqlite3SchemaGet(Btree *); 1848 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 1849 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 1850 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 1851 void (*)(sqlite3_context*,int,sqlite3_value **), 1852 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 1853 int sqlite3ApiExit(sqlite3 *db, int); 1854 void sqlite3FailedMalloc(void); 1855 void sqlite3AbortOtherActiveVdbes(sqlite3 *, Vdbe *); 1856 int sqlite3OpenTempDatabase(Parse *); 1857 1858 /* 1859 ** The interface to the LEMON-generated parser 1860 */ 1861 void *sqlite3ParserAlloc(void*(*)(size_t)); 1862 void sqlite3ParserFree(void*, void(*)(void*)); 1863 void sqlite3Parser(void*, int, Token, Parse*); 1864 1865 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1866 void sqlite3CloseExtensions(sqlite3*); 1867 int sqlite3AutoLoadExtensions(sqlite3*); 1868 #else 1869 # define sqlite3CloseExtensions(X) 1870 # define sqlite3AutoLoadExtensions(X) SQLITE_OK 1871 #endif 1872 1873 #ifndef SQLITE_OMIT_SHARED_CACHE 1874 void sqlite3TableLock(Parse *, int, int, u8, const char *); 1875 #else 1876 #define sqlite3TableLock(v,w,x,y,z) 1877 #endif 1878 1879 #ifdef SQLITE_TEST 1880 int sqlite3Utf8To8(unsigned char*); 1881 #endif 1882 1883 #ifdef SQLITE_MEMDEBUG 1884 void sqlite3MallocDisallow(void); 1885 void sqlite3MallocAllow(void); 1886 int sqlite3TestMallocFail(void); 1887 #else 1888 #define sqlite3TestMallocFail() 0 1889 #define sqlite3MallocDisallow() 1890 #define sqlite3MallocAllow() 1891 #endif 1892 1893 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1894 void *sqlite3ThreadSafeMalloc(int); 1895 void sqlite3ThreadSafeFree(void *); 1896 #else 1897 #define sqlite3ThreadSafeMalloc sqlite3MallocX 1898 #define sqlite3ThreadSafeFree sqlite3FreeX 1899 #endif 1900 1901 #ifdef SQLITE_OMIT_VIRTUALTABLE 1902 # define sqlite3VtabClear(X) 1903 # define sqlite3VtabSync(X,Y) (Y) 1904 # define sqlite3VtabRollback(X) 1905 # define sqlite3VtabCommit(X) 1906 #else 1907 void sqlite3VtabClear(Table*); 1908 int sqlite3VtabSync(sqlite3 *db, int rc); 1909 int sqlite3VtabRollback(sqlite3 *db); 1910 int sqlite3VtabCommit(sqlite3 *db); 1911 #endif 1912 void sqlite3VtabLock(sqlite3_vtab*); 1913 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*); 1914 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 1915 void sqlite3VtabFinishParse(Parse*, Token*); 1916 void sqlite3VtabArgInit(Parse*); 1917 void sqlite3VtabArgExtend(Parse*, Token*); 1918 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 1919 int sqlite3VtabCallConnect(Parse*, Table*); 1920 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 1921 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 1922 FuncDef *sqlite3VtabOverloadFunction(FuncDef*, int nArg, Expr*); 1923 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 1924 int sqlite3Reprepare(Vdbe*); 1925 void sqlite3ExprListCheckLength(Parse*, ExprList*, int, const char*); 1926 CollSeq* sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 1927 1928 #if SQLITE_MAX_EXPR_DEPTH>0 1929 void sqlite3ExprSetHeight(Expr *); 1930 int sqlite3SelectExprHeight(Select *); 1931 #else 1932 #define sqlite3ExprSetHeight(x) 1933 #endif 1934 1935 u32 sqlite3Get2byte(const u8*); 1936 u32 sqlite3Get4byte(const u8*); 1937 void sqlite3Put2byte(u8*, u32); 1938 void sqlite3Put4byte(u8*, u32); 1939 1940 #ifdef SQLITE_SSE 1941 #include "sseInt.h" 1942 #endif 1943 1944 #ifdef SQLITE_DEBUG 1945 void sqlite3ParserTrace(FILE*, char *); 1946 #endif 1947 1948 /* 1949 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 1950 ** sqlite3_io_trace is a pointer to a printf-like routine used to 1951 ** print I/O tracing messages. 1952 */ 1953 #ifdef SQLITE_ENABLE_IOTRACE 1954 # define IOTRACE(A) if( sqlite3_io_trace ){ sqlite3_io_trace A; } 1955 void sqlite3VdbeIOTraceSql(Vdbe*); 1956 #else 1957 # define IOTRACE(A) 1958 # define sqlite3VdbeIOTraceSql(X) 1959 #endif 1960 extern void (*sqlite3_io_trace)(const char*,...); 1961 1962 #endif 1963