xref: /sqlite-3.40.0/src/sqliteInt.h (revision 9edb5ceb)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17 
18 /*
19 ** Include the header file used to customize the compiler options for MSVC.
20 ** This should be done first so that it can successfully prevent spurious
21 ** compiler warnings due to subsequent content in this file and other files
22 ** that are included by this file.
23 */
24 #include "msvc.h"
25 
26 /*
27 ** Special setup for VxWorks
28 */
29 #include "vxworks.h"
30 
31 /*
32 ** These #defines should enable >2GB file support on POSIX if the
33 ** underlying operating system supports it.  If the OS lacks
34 ** large file support, or if the OS is windows, these should be no-ops.
35 **
36 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
37 ** system #includes.  Hence, this block of code must be the very first
38 ** code in all source files.
39 **
40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
41 ** on the compiler command line.  This is necessary if you are compiling
42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
43 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
44 ** without this option, LFS is enable.  But LFS does not exist in the kernel
45 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
46 ** portability you should omit LFS.
47 **
48 ** The previous paragraph was written in 2005.  (This paragraph is written
49 ** on 2008-11-28.) These days, all Linux kernels support large files, so
50 ** you should probably leave LFS enabled.  But some embedded platforms might
51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
52 **
53 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
54 */
55 #ifndef SQLITE_DISABLE_LFS
56 # define _LARGE_FILE       1
57 # ifndef _FILE_OFFSET_BITS
58 #   define _FILE_OFFSET_BITS 64
59 # endif
60 # define _LARGEFILE_SOURCE 1
61 #endif
62 
63 /* What version of GCC is being used.  0 means GCC is not being used */
64 #ifdef __GNUC__
65 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
66 #else
67 # define GCC_VERSION 0
68 #endif
69 
70 /* Needed for various definitions... */
71 #if defined(__GNUC__) && !defined(_GNU_SOURCE)
72 # define _GNU_SOURCE
73 #endif
74 
75 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
76 # define _BSD_SOURCE
77 #endif
78 
79 /*
80 ** For MinGW, check to see if we can include the header file containing its
81 ** version information, among other things.  Normally, this internal MinGW
82 ** header file would [only] be included automatically by other MinGW header
83 ** files; however, the contained version information is now required by this
84 ** header file to work around binary compatibility issues (see below) and
85 ** this is the only known way to reliably obtain it.  This entire #if block
86 ** would be completely unnecessary if there was any other way of detecting
87 ** MinGW via their preprocessor (e.g. if they customized their GCC to define
88 ** some MinGW-specific macros).  When compiling for MinGW, either the
89 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
90 ** defined; otherwise, detection of conditions specific to MinGW will be
91 ** disabled.
92 */
93 #if defined(_HAVE_MINGW_H)
94 # include "mingw.h"
95 #elif defined(_HAVE__MINGW_H)
96 # include "_mingw.h"
97 #endif
98 
99 /*
100 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
101 ** define is required to maintain binary compatibility with the MSVC runtime
102 ** library in use (e.g. for Windows XP).
103 */
104 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
105     defined(_WIN32) && !defined(_WIN64) && \
106     defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
107     defined(__MSVCRT__)
108 # define _USE_32BIT_TIME_T
109 #endif
110 
111 /* The public SQLite interface.  The _FILE_OFFSET_BITS macro must appear
112 ** first in QNX.  Also, the _USE_32BIT_TIME_T macro must appear first for
113 ** MinGW.
114 */
115 #include "sqlite3.h"
116 
117 /*
118 ** Include the configuration header output by 'configure' if we're using the
119 ** autoconf-based build
120 */
121 #ifdef _HAVE_SQLITE_CONFIG_H
122 #include "config.h"
123 #endif
124 
125 #include "sqliteLimit.h"
126 
127 /* Disable nuisance warnings on Borland compilers */
128 #if defined(__BORLANDC__)
129 #pragma warn -rch /* unreachable code */
130 #pragma warn -ccc /* Condition is always true or false */
131 #pragma warn -aus /* Assigned value is never used */
132 #pragma warn -csu /* Comparing signed and unsigned */
133 #pragma warn -spa /* Suspicious pointer arithmetic */
134 #endif
135 
136 /*
137 ** Include standard header files as necessary
138 */
139 #ifdef HAVE_STDINT_H
140 #include <stdint.h>
141 #endif
142 #ifdef HAVE_INTTYPES_H
143 #include <inttypes.h>
144 #endif
145 
146 /*
147 ** The following macros are used to cast pointers to integers and
148 ** integers to pointers.  The way you do this varies from one compiler
149 ** to the next, so we have developed the following set of #if statements
150 ** to generate appropriate macros for a wide range of compilers.
151 **
152 ** The correct "ANSI" way to do this is to use the intptr_t type.
153 ** Unfortunately, that typedef is not available on all compilers, or
154 ** if it is available, it requires an #include of specific headers
155 ** that vary from one machine to the next.
156 **
157 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
158 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
159 ** So we have to define the macros in different ways depending on the
160 ** compiler.
161 */
162 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
163 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
164 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
165 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
166 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
167 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
168 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
169 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
170 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
171 #else                          /* Generates a warning - but it always works */
172 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
173 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
174 #endif
175 
176 /*
177 ** A macro to hint to the compiler that a function should not be
178 ** inlined.
179 */
180 #if defined(__GNUC__)
181 #  define SQLITE_NOINLINE  __attribute__((noinline))
182 #elif defined(_MSC_VER) && _MSC_VER>=1310
183 #  define SQLITE_NOINLINE  __declspec(noinline)
184 #else
185 #  define SQLITE_NOINLINE
186 #endif
187 
188 /*
189 ** Make sure that the compiler intrinsics we desire are enabled when
190 ** compiling with an appropriate version of MSVC.
191 */
192 #if defined(_MSC_VER) && _MSC_VER>=1300 && !defined(_WIN32_WCE)
193 #  include <intrin.h>
194 #  pragma intrinsic(_byteswap_ushort)
195 #  pragma intrinsic(_byteswap_ulong)
196 #endif
197 
198 /*
199 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
200 ** 0 means mutexes are permanently disable and the library is never
201 ** threadsafe.  1 means the library is serialized which is the highest
202 ** level of threadsafety.  2 means the library is multithreaded - multiple
203 ** threads can use SQLite as long as no two threads try to use the same
204 ** database connection at the same time.
205 **
206 ** Older versions of SQLite used an optional THREADSAFE macro.
207 ** We support that for legacy.
208 */
209 #if !defined(SQLITE_THREADSAFE)
210 # if defined(THREADSAFE)
211 #   define SQLITE_THREADSAFE THREADSAFE
212 # else
213 #   define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
214 # endif
215 #endif
216 
217 /*
218 ** Powersafe overwrite is on by default.  But can be turned off using
219 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
220 */
221 #ifndef SQLITE_POWERSAFE_OVERWRITE
222 # define SQLITE_POWERSAFE_OVERWRITE 1
223 #endif
224 
225 /*
226 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
227 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
228 ** which case memory allocation statistics are disabled by default.
229 */
230 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
231 # define SQLITE_DEFAULT_MEMSTATUS 1
232 #endif
233 
234 /*
235 ** Exactly one of the following macros must be defined in order to
236 ** specify which memory allocation subsystem to use.
237 **
238 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
239 **     SQLITE_WIN32_MALLOC           // Use Win32 native heap API
240 **     SQLITE_ZERO_MALLOC            // Use a stub allocator that always fails
241 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
242 **
243 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
244 ** assert() macro is enabled, each call into the Win32 native heap subsystem
245 ** will cause HeapValidate to be called.  If heap validation should fail, an
246 ** assertion will be triggered.
247 **
248 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
249 ** the default.
250 */
251 #if defined(SQLITE_SYSTEM_MALLOC) \
252   + defined(SQLITE_WIN32_MALLOC) \
253   + defined(SQLITE_ZERO_MALLOC) \
254   + defined(SQLITE_MEMDEBUG)>1
255 # error "Two or more of the following compile-time configuration options\
256  are defined but at most one is allowed:\
257  SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
258  SQLITE_ZERO_MALLOC"
259 #endif
260 #if defined(SQLITE_SYSTEM_MALLOC) \
261   + defined(SQLITE_WIN32_MALLOC) \
262   + defined(SQLITE_ZERO_MALLOC) \
263   + defined(SQLITE_MEMDEBUG)==0
264 # define SQLITE_SYSTEM_MALLOC 1
265 #endif
266 
267 /*
268 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
269 ** sizes of memory allocations below this value where possible.
270 */
271 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
272 # define SQLITE_MALLOC_SOFT_LIMIT 1024
273 #endif
274 
275 /*
276 ** We need to define _XOPEN_SOURCE as follows in order to enable
277 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
278 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
279 ** it.
280 */
281 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
282 #  define _XOPEN_SOURCE 600
283 #endif
284 
285 /*
286 ** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
287 ** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
288 ** make it true by defining or undefining NDEBUG.
289 **
290 ** Setting NDEBUG makes the code smaller and faster by disabling the
291 ** assert() statements in the code.  So we want the default action
292 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
293 ** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
294 ** feature.
295 */
296 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
297 # define NDEBUG 1
298 #endif
299 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
300 # undef NDEBUG
301 #endif
302 
303 /*
304 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
305 */
306 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
307 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
308 #endif
309 
310 /*
311 ** The testcase() macro is used to aid in coverage testing.  When
312 ** doing coverage testing, the condition inside the argument to
313 ** testcase() must be evaluated both true and false in order to
314 ** get full branch coverage.  The testcase() macro is inserted
315 ** to help ensure adequate test coverage in places where simple
316 ** condition/decision coverage is inadequate.  For example, testcase()
317 ** can be used to make sure boundary values are tested.  For
318 ** bitmask tests, testcase() can be used to make sure each bit
319 ** is significant and used at least once.  On switch statements
320 ** where multiple cases go to the same block of code, testcase()
321 ** can insure that all cases are evaluated.
322 **
323 */
324 #ifdef SQLITE_COVERAGE_TEST
325   void sqlite3Coverage(int);
326 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
327 #else
328 # define testcase(X)
329 #endif
330 
331 /*
332 ** The TESTONLY macro is used to enclose variable declarations or
333 ** other bits of code that are needed to support the arguments
334 ** within testcase() and assert() macros.
335 */
336 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
337 # define TESTONLY(X)  X
338 #else
339 # define TESTONLY(X)
340 #endif
341 
342 /*
343 ** Sometimes we need a small amount of code such as a variable initialization
344 ** to setup for a later assert() statement.  We do not want this code to
345 ** appear when assert() is disabled.  The following macro is therefore
346 ** used to contain that setup code.  The "VVA" acronym stands for
347 ** "Verification, Validation, and Accreditation".  In other words, the
348 ** code within VVA_ONLY() will only run during verification processes.
349 */
350 #ifndef NDEBUG
351 # define VVA_ONLY(X)  X
352 #else
353 # define VVA_ONLY(X)
354 #endif
355 
356 /*
357 ** The ALWAYS and NEVER macros surround boolean expressions which
358 ** are intended to always be true or false, respectively.  Such
359 ** expressions could be omitted from the code completely.  But they
360 ** are included in a few cases in order to enhance the resilience
361 ** of SQLite to unexpected behavior - to make the code "self-healing"
362 ** or "ductile" rather than being "brittle" and crashing at the first
363 ** hint of unplanned behavior.
364 **
365 ** In other words, ALWAYS and NEVER are added for defensive code.
366 **
367 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
368 ** be true and false so that the unreachable code they specify will
369 ** not be counted as untested code.
370 */
371 #if defined(SQLITE_COVERAGE_TEST)
372 # define ALWAYS(X)      (1)
373 # define NEVER(X)       (0)
374 #elif !defined(NDEBUG)
375 # define ALWAYS(X)      ((X)?1:(assert(0),0))
376 # define NEVER(X)       ((X)?(assert(0),1):0)
377 #else
378 # define ALWAYS(X)      (X)
379 # define NEVER(X)       (X)
380 #endif
381 
382 /*
383 ** Declarations used for tracing the operating system interfaces.
384 */
385 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \
386     (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
387   extern int sqlite3OSTrace;
388 # define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
389 # define SQLITE_HAVE_OS_TRACE
390 #else
391 # define OSTRACE(X)
392 # undef  SQLITE_HAVE_OS_TRACE
393 #endif
394 
395 /*
396 ** Is the sqlite3ErrName() function needed in the build?  Currently,
397 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when
398 ** OSTRACE is enabled), and by several "test*.c" files (which are
399 ** compiled using SQLITE_TEST).
400 */
401 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \
402     (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
403 # define SQLITE_NEED_ERR_NAME
404 #else
405 # undef  SQLITE_NEED_ERR_NAME
406 #endif
407 
408 /*
409 ** Return true (non-zero) if the input is an integer that is too large
410 ** to fit in 32-bits.  This macro is used inside of various testcase()
411 ** macros to verify that we have tested SQLite for large-file support.
412 */
413 #define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
414 
415 /*
416 ** The macro unlikely() is a hint that surrounds a boolean
417 ** expression that is usually false.  Macro likely() surrounds
418 ** a boolean expression that is usually true.  These hints could,
419 ** in theory, be used by the compiler to generate better code, but
420 ** currently they are just comments for human readers.
421 */
422 #define likely(X)    (X)
423 #define unlikely(X)  (X)
424 
425 #include "hash.h"
426 #include "parse.h"
427 #include <stdio.h>
428 #include <stdlib.h>
429 #include <string.h>
430 #include <assert.h>
431 #include <stddef.h>
432 
433 /*
434 ** If compiling for a processor that lacks floating point support,
435 ** substitute integer for floating-point
436 */
437 #ifdef SQLITE_OMIT_FLOATING_POINT
438 # define double sqlite_int64
439 # define float sqlite_int64
440 # define LONGDOUBLE_TYPE sqlite_int64
441 # ifndef SQLITE_BIG_DBL
442 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
443 # endif
444 # define SQLITE_OMIT_DATETIME_FUNCS 1
445 # define SQLITE_OMIT_TRACE 1
446 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
447 # undef SQLITE_HAVE_ISNAN
448 #endif
449 #ifndef SQLITE_BIG_DBL
450 # define SQLITE_BIG_DBL (1e99)
451 #endif
452 
453 /*
454 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
455 ** afterward. Having this macro allows us to cause the C compiler
456 ** to omit code used by TEMP tables without messy #ifndef statements.
457 */
458 #ifdef SQLITE_OMIT_TEMPDB
459 #define OMIT_TEMPDB 1
460 #else
461 #define OMIT_TEMPDB 0
462 #endif
463 
464 /*
465 ** The "file format" number is an integer that is incremented whenever
466 ** the VDBE-level file format changes.  The following macros define the
467 ** the default file format for new databases and the maximum file format
468 ** that the library can read.
469 */
470 #define SQLITE_MAX_FILE_FORMAT 4
471 #ifndef SQLITE_DEFAULT_FILE_FORMAT
472 # define SQLITE_DEFAULT_FILE_FORMAT 4
473 #endif
474 
475 /*
476 ** Determine whether triggers are recursive by default.  This can be
477 ** changed at run-time using a pragma.
478 */
479 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
480 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
481 #endif
482 
483 /*
484 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
485 ** on the command-line
486 */
487 #ifndef SQLITE_TEMP_STORE
488 # define SQLITE_TEMP_STORE 1
489 # define SQLITE_TEMP_STORE_xc 1  /* Exclude from ctime.c */
490 #endif
491 
492 /*
493 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
494 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
495 ** to zero.
496 */
497 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
498 # undef SQLITE_MAX_WORKER_THREADS
499 # define SQLITE_MAX_WORKER_THREADS 0
500 #endif
501 #ifndef SQLITE_MAX_WORKER_THREADS
502 # define SQLITE_MAX_WORKER_THREADS 8
503 #endif
504 #ifndef SQLITE_DEFAULT_WORKER_THREADS
505 # define SQLITE_DEFAULT_WORKER_THREADS 0
506 #endif
507 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
508 # undef SQLITE_MAX_WORKER_THREADS
509 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
510 #endif
511 
512 /*
513 ** The default initial allocation for the pagecache when using separate
514 ** pagecaches for each database connection.  A positive number is the
515 ** number of pages.  A negative number N translations means that a buffer
516 ** of -1024*N bytes is allocated and used for as many pages as it will hold.
517 */
518 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ
519 # define SQLITE_DEFAULT_PCACHE_INITSZ 100
520 #endif
521 
522 
523 /*
524 ** GCC does not define the offsetof() macro so we'll have to do it
525 ** ourselves.
526 */
527 #ifndef offsetof
528 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
529 #endif
530 
531 /*
532 ** Macros to compute minimum and maximum of two numbers.
533 */
534 #define MIN(A,B) ((A)<(B)?(A):(B))
535 #define MAX(A,B) ((A)>(B)?(A):(B))
536 
537 /*
538 ** Swap two objects of type TYPE.
539 */
540 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
541 
542 /*
543 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
544 ** not, there are still machines out there that use EBCDIC.)
545 */
546 #if 'A' == '\301'
547 # define SQLITE_EBCDIC 1
548 #else
549 # define SQLITE_ASCII 1
550 #endif
551 
552 /*
553 ** Integers of known sizes.  These typedefs might change for architectures
554 ** where the sizes very.  Preprocessor macros are available so that the
555 ** types can be conveniently redefined at compile-type.  Like this:
556 **
557 **         cc '-DUINTPTR_TYPE=long long int' ...
558 */
559 #ifndef UINT32_TYPE
560 # ifdef HAVE_UINT32_T
561 #  define UINT32_TYPE uint32_t
562 # else
563 #  define UINT32_TYPE unsigned int
564 # endif
565 #endif
566 #ifndef UINT16_TYPE
567 # ifdef HAVE_UINT16_T
568 #  define UINT16_TYPE uint16_t
569 # else
570 #  define UINT16_TYPE unsigned short int
571 # endif
572 #endif
573 #ifndef INT16_TYPE
574 # ifdef HAVE_INT16_T
575 #  define INT16_TYPE int16_t
576 # else
577 #  define INT16_TYPE short int
578 # endif
579 #endif
580 #ifndef UINT8_TYPE
581 # ifdef HAVE_UINT8_T
582 #  define UINT8_TYPE uint8_t
583 # else
584 #  define UINT8_TYPE unsigned char
585 # endif
586 #endif
587 #ifndef INT8_TYPE
588 # ifdef HAVE_INT8_T
589 #  define INT8_TYPE int8_t
590 # else
591 #  define INT8_TYPE signed char
592 # endif
593 #endif
594 #ifndef LONGDOUBLE_TYPE
595 # define LONGDOUBLE_TYPE long double
596 #endif
597 typedef sqlite_int64 i64;          /* 8-byte signed integer */
598 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
599 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
600 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
601 typedef INT16_TYPE i16;            /* 2-byte signed integer */
602 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
603 typedef INT8_TYPE i8;              /* 1-byte signed integer */
604 
605 /*
606 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
607 ** that can be stored in a u32 without loss of data.  The value
608 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
609 ** have to specify the value in the less intuitive manner shown:
610 */
611 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
612 
613 /*
614 ** The datatype used to store estimates of the number of rows in a
615 ** table or index.  This is an unsigned integer type.  For 99.9% of
616 ** the world, a 32-bit integer is sufficient.  But a 64-bit integer
617 ** can be used at compile-time if desired.
618 */
619 #ifdef SQLITE_64BIT_STATS
620  typedef u64 tRowcnt;    /* 64-bit only if requested at compile-time */
621 #else
622  typedef u32 tRowcnt;    /* 32-bit is the default */
623 #endif
624 
625 /*
626 ** Estimated quantities used for query planning are stored as 16-bit
627 ** logarithms.  For quantity X, the value stored is 10*log2(X).  This
628 ** gives a possible range of values of approximately 1.0e986 to 1e-986.
629 ** But the allowed values are "grainy".  Not every value is representable.
630 ** For example, quantities 16 and 17 are both represented by a LogEst
631 ** of 40.  However, since LogEst quantities are suppose to be estimates,
632 ** not exact values, this imprecision is not a problem.
633 **
634 ** "LogEst" is short for "Logarithmic Estimate".
635 **
636 ** Examples:
637 **      1 -> 0              20 -> 43          10000 -> 132
638 **      2 -> 10             25 -> 46          25000 -> 146
639 **      3 -> 16            100 -> 66        1000000 -> 199
640 **      4 -> 20           1000 -> 99        1048576 -> 200
641 **     10 -> 33           1024 -> 100    4294967296 -> 320
642 **
643 ** The LogEst can be negative to indicate fractional values.
644 ** Examples:
645 **
646 **    0.5 -> -10           0.1 -> -33        0.0625 -> -40
647 */
648 typedef INT16_TYPE LogEst;
649 
650 /*
651 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
652 */
653 #ifndef SQLITE_PTRSIZE
654 # if defined(__SIZEOF_POINTER__)
655 #   define SQLITE_PTRSIZE __SIZEOF_POINTER__
656 # elif defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
657        defined(_M_ARM)   || defined(__arm__)    || defined(__x86)
658 #   define SQLITE_PTRSIZE 4
659 # else
660 #   define SQLITE_PTRSIZE 8
661 # endif
662 #endif
663 
664 /*
665 ** Macros to determine whether the machine is big or little endian,
666 ** and whether or not that determination is run-time or compile-time.
667 **
668 ** For best performance, an attempt is made to guess at the byte-order
669 ** using C-preprocessor macros.  If that is unsuccessful, or if
670 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
671 ** at run-time.
672 */
673 #ifdef SQLITE_AMALGAMATION
674 const int sqlite3one = 1;
675 #else
676 extern const int sqlite3one;
677 #endif
678 #if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
679      defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
680      defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
681      defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
682 # define SQLITE_BYTEORDER    1234
683 # define SQLITE_BIGENDIAN    0
684 # define SQLITE_LITTLEENDIAN 1
685 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
686 #endif
687 #if (defined(sparc)    || defined(__ppc__))  \
688     && !defined(SQLITE_RUNTIME_BYTEORDER)
689 # define SQLITE_BYTEORDER    4321
690 # define SQLITE_BIGENDIAN    1
691 # define SQLITE_LITTLEENDIAN 0
692 # define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
693 #endif
694 #if !defined(SQLITE_BYTEORDER)
695 # define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
696 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
697 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
698 # define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
699 #endif
700 
701 /*
702 ** Constants for the largest and smallest possible 64-bit signed integers.
703 ** These macros are designed to work correctly on both 32-bit and 64-bit
704 ** compilers.
705 */
706 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
707 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
708 
709 /*
710 ** Round up a number to the next larger multiple of 8.  This is used
711 ** to force 8-byte alignment on 64-bit architectures.
712 */
713 #define ROUND8(x)     (((x)+7)&~7)
714 
715 /*
716 ** Round down to the nearest multiple of 8
717 */
718 #define ROUNDDOWN8(x) ((x)&~7)
719 
720 /*
721 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
722 ** macro is used only within assert() to verify that the code gets
723 ** all alignment restrictions correct.
724 **
725 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
726 ** underlying malloc() implementation might return us 4-byte aligned
727 ** pointers.  In that case, only verify 4-byte alignment.
728 */
729 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
730 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
731 #else
732 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
733 #endif
734 
735 /*
736 ** Disable MMAP on platforms where it is known to not work
737 */
738 #if defined(__OpenBSD__) || defined(__QNXNTO__)
739 # undef SQLITE_MAX_MMAP_SIZE
740 # define SQLITE_MAX_MMAP_SIZE 0
741 #endif
742 
743 /*
744 ** Default maximum size of memory used by memory-mapped I/O in the VFS
745 */
746 #ifdef __APPLE__
747 # include <TargetConditionals.h>
748 # if TARGET_OS_IPHONE
749 #   undef SQLITE_MAX_MMAP_SIZE
750 #   define SQLITE_MAX_MMAP_SIZE 0
751 # endif
752 #endif
753 #ifndef SQLITE_MAX_MMAP_SIZE
754 # if defined(__linux__) \
755   || defined(_WIN32) \
756   || (defined(__APPLE__) && defined(__MACH__)) \
757   || defined(__sun) \
758   || defined(__FreeBSD__) \
759   || defined(__DragonFly__)
760 #   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
761 # else
762 #   define SQLITE_MAX_MMAP_SIZE 0
763 # endif
764 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
765 #endif
766 
767 /*
768 ** The default MMAP_SIZE is zero on all platforms.  Or, even if a larger
769 ** default MMAP_SIZE is specified at compile-time, make sure that it does
770 ** not exceed the maximum mmap size.
771 */
772 #ifndef SQLITE_DEFAULT_MMAP_SIZE
773 # define SQLITE_DEFAULT_MMAP_SIZE 0
774 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1  /* Exclude from ctime.c */
775 #endif
776 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
777 # undef SQLITE_DEFAULT_MMAP_SIZE
778 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
779 #endif
780 
781 /*
782 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
783 ** Priority is given to SQLITE_ENABLE_STAT4.  If either are defined, also
784 ** define SQLITE_ENABLE_STAT3_OR_STAT4
785 */
786 #ifdef SQLITE_ENABLE_STAT4
787 # undef SQLITE_ENABLE_STAT3
788 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
789 #elif SQLITE_ENABLE_STAT3
790 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
791 #elif SQLITE_ENABLE_STAT3_OR_STAT4
792 # undef SQLITE_ENABLE_STAT3_OR_STAT4
793 #endif
794 
795 /*
796 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not
797 ** the Select query generator tracing logic is turned on.
798 */
799 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE)
800 # define SELECTTRACE_ENABLED 1
801 #else
802 # define SELECTTRACE_ENABLED 0
803 #endif
804 
805 /*
806 ** An instance of the following structure is used to store the busy-handler
807 ** callback for a given sqlite handle.
808 **
809 ** The sqlite.busyHandler member of the sqlite struct contains the busy
810 ** callback for the database handle. Each pager opened via the sqlite
811 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
812 ** callback is currently invoked only from within pager.c.
813 */
814 typedef struct BusyHandler BusyHandler;
815 struct BusyHandler {
816   int (*xFunc)(void *,int);  /* The busy callback */
817   void *pArg;                /* First arg to busy callback */
818   int nBusy;                 /* Incremented with each busy call */
819 };
820 
821 /*
822 ** Name of the master database table.  The master database table
823 ** is a special table that holds the names and attributes of all
824 ** user tables and indices.
825 */
826 #define MASTER_NAME       "sqlite_master"
827 #define TEMP_MASTER_NAME  "sqlite_temp_master"
828 
829 /*
830 ** The root-page of the master database table.
831 */
832 #define MASTER_ROOT       1
833 
834 /*
835 ** The name of the schema table.
836 */
837 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
838 
839 /*
840 ** A convenience macro that returns the number of elements in
841 ** an array.
842 */
843 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
844 
845 /*
846 ** Determine if the argument is a power of two
847 */
848 #define IsPowerOfTwo(X) (((X)&((X)-1))==0)
849 
850 /*
851 ** The following value as a destructor means to use sqlite3DbFree().
852 ** The sqlite3DbFree() routine requires two parameters instead of the
853 ** one parameter that destructors normally want.  So we have to introduce
854 ** this magic value that the code knows to handle differently.  Any
855 ** pointer will work here as long as it is distinct from SQLITE_STATIC
856 ** and SQLITE_TRANSIENT.
857 */
858 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3MallocSize)
859 
860 /*
861 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
862 ** not support Writable Static Data (WSD) such as global and static variables.
863 ** All variables must either be on the stack or dynamically allocated from
864 ** the heap.  When WSD is unsupported, the variable declarations scattered
865 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
866 ** macro is used for this purpose.  And instead of referencing the variable
867 ** directly, we use its constant as a key to lookup the run-time allocated
868 ** buffer that holds real variable.  The constant is also the initializer
869 ** for the run-time allocated buffer.
870 **
871 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
872 ** macros become no-ops and have zero performance impact.
873 */
874 #ifdef SQLITE_OMIT_WSD
875   #define SQLITE_WSD const
876   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
877   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
878   int sqlite3_wsd_init(int N, int J);
879   void *sqlite3_wsd_find(void *K, int L);
880 #else
881   #define SQLITE_WSD
882   #define GLOBAL(t,v) v
883   #define sqlite3GlobalConfig sqlite3Config
884 #endif
885 
886 /*
887 ** The following macros are used to suppress compiler warnings and to
888 ** make it clear to human readers when a function parameter is deliberately
889 ** left unused within the body of a function. This usually happens when
890 ** a function is called via a function pointer. For example the
891 ** implementation of an SQL aggregate step callback may not use the
892 ** parameter indicating the number of arguments passed to the aggregate,
893 ** if it knows that this is enforced elsewhere.
894 **
895 ** When a function parameter is not used at all within the body of a function,
896 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
897 ** However, these macros may also be used to suppress warnings related to
898 ** parameters that may or may not be used depending on compilation options.
899 ** For example those parameters only used in assert() statements. In these
900 ** cases the parameters are named as per the usual conventions.
901 */
902 #define UNUSED_PARAMETER(x) (void)(x)
903 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
904 
905 /*
906 ** Forward references to structures
907 */
908 typedef struct AggInfo AggInfo;
909 typedef struct AuthContext AuthContext;
910 typedef struct AutoincInfo AutoincInfo;
911 typedef struct Bitvec Bitvec;
912 typedef struct CollSeq CollSeq;
913 typedef struct Column Column;
914 typedef struct Db Db;
915 typedef struct Schema Schema;
916 typedef struct Expr Expr;
917 typedef struct ExprList ExprList;
918 typedef struct ExprSpan ExprSpan;
919 typedef struct FKey FKey;
920 typedef struct FuncDestructor FuncDestructor;
921 typedef struct FuncDef FuncDef;
922 typedef struct FuncDefHash FuncDefHash;
923 typedef struct IdList IdList;
924 typedef struct Index Index;
925 typedef struct IndexSample IndexSample;
926 typedef struct KeyClass KeyClass;
927 typedef struct KeyInfo KeyInfo;
928 typedef struct Lookaside Lookaside;
929 typedef struct LookasideSlot LookasideSlot;
930 typedef struct Module Module;
931 typedef struct NameContext NameContext;
932 typedef struct Parse Parse;
933 typedef struct PrintfArguments PrintfArguments;
934 typedef struct RowSet RowSet;
935 typedef struct Savepoint Savepoint;
936 typedef struct Select Select;
937 typedef struct SQLiteThread SQLiteThread;
938 typedef struct SelectDest SelectDest;
939 typedef struct SrcList SrcList;
940 typedef struct StrAccum StrAccum;
941 typedef struct Table Table;
942 typedef struct TableLock TableLock;
943 typedef struct Token Token;
944 typedef struct TreeView TreeView;
945 typedef struct Trigger Trigger;
946 typedef struct TriggerPrg TriggerPrg;
947 typedef struct TriggerStep TriggerStep;
948 typedef struct UnpackedRecord UnpackedRecord;
949 typedef struct VTable VTable;
950 typedef struct VtabCtx VtabCtx;
951 typedef struct Walker Walker;
952 typedef struct WhereInfo WhereInfo;
953 typedef struct With With;
954 
955 /*
956 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
957 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
958 ** pointer types (i.e. FuncDef) defined above.
959 */
960 #include "btree.h"
961 #include "vdbe.h"
962 #include "pager.h"
963 #include "pcache.h"
964 
965 #include "os.h"
966 #include "mutex.h"
967 
968 
969 /*
970 ** Each database file to be accessed by the system is an instance
971 ** of the following structure.  There are normally two of these structures
972 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
973 ** aDb[1] is the database file used to hold temporary tables.  Additional
974 ** databases may be attached.
975 */
976 struct Db {
977   char *zName;         /* Name of this database */
978   Btree *pBt;          /* The B*Tree structure for this database file */
979   u8 safety_level;     /* How aggressive at syncing data to disk */
980   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
981 };
982 
983 /*
984 ** An instance of the following structure stores a database schema.
985 **
986 ** Most Schema objects are associated with a Btree.  The exception is
987 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
988 ** In shared cache mode, a single Schema object can be shared by multiple
989 ** Btrees that refer to the same underlying BtShared object.
990 **
991 ** Schema objects are automatically deallocated when the last Btree that
992 ** references them is destroyed.   The TEMP Schema is manually freed by
993 ** sqlite3_close().
994 *
995 ** A thread must be holding a mutex on the corresponding Btree in order
996 ** to access Schema content.  This implies that the thread must also be
997 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
998 ** For a TEMP Schema, only the connection mutex is required.
999 */
1000 struct Schema {
1001   int schema_cookie;   /* Database schema version number for this file */
1002   int iGeneration;     /* Generation counter.  Incremented with each change */
1003   Hash tblHash;        /* All tables indexed by name */
1004   Hash idxHash;        /* All (named) indices indexed by name */
1005   Hash trigHash;       /* All triggers indexed by name */
1006   Hash fkeyHash;       /* All foreign keys by referenced table name */
1007   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
1008   u8 file_format;      /* Schema format version for this file */
1009   u8 enc;              /* Text encoding used by this database */
1010   u16 schemaFlags;     /* Flags associated with this schema */
1011   int cache_size;      /* Number of pages to use in the cache */
1012 };
1013 
1014 /*
1015 ** These macros can be used to test, set, or clear bits in the
1016 ** Db.pSchema->flags field.
1017 */
1018 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
1019 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
1020 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->schemaFlags|=(P)
1021 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->schemaFlags&=~(P)
1022 
1023 /*
1024 ** Allowed values for the DB.pSchema->flags field.
1025 **
1026 ** The DB_SchemaLoaded flag is set after the database schema has been
1027 ** read into internal hash tables.
1028 **
1029 ** DB_UnresetViews means that one or more views have column names that
1030 ** have been filled out.  If the schema changes, these column names might
1031 ** changes and so the view will need to be reset.
1032 */
1033 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
1034 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
1035 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
1036 
1037 /*
1038 ** The number of different kinds of things that can be limited
1039 ** using the sqlite3_limit() interface.
1040 */
1041 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
1042 
1043 /*
1044 ** Lookaside malloc is a set of fixed-size buffers that can be used
1045 ** to satisfy small transient memory allocation requests for objects
1046 ** associated with a particular database connection.  The use of
1047 ** lookaside malloc provides a significant performance enhancement
1048 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
1049 ** SQL statements.
1050 **
1051 ** The Lookaside structure holds configuration information about the
1052 ** lookaside malloc subsystem.  Each available memory allocation in
1053 ** the lookaside subsystem is stored on a linked list of LookasideSlot
1054 ** objects.
1055 **
1056 ** Lookaside allocations are only allowed for objects that are associated
1057 ** with a particular database connection.  Hence, schema information cannot
1058 ** be stored in lookaside because in shared cache mode the schema information
1059 ** is shared by multiple database connections.  Therefore, while parsing
1060 ** schema information, the Lookaside.bEnabled flag is cleared so that
1061 ** lookaside allocations are not used to construct the schema objects.
1062 */
1063 struct Lookaside {
1064   u16 sz;                 /* Size of each buffer in bytes */
1065   u8 bEnabled;            /* False to disable new lookaside allocations */
1066   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
1067   int nOut;               /* Number of buffers currently checked out */
1068   int mxOut;              /* Highwater mark for nOut */
1069   int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
1070   LookasideSlot *pFree;   /* List of available buffers */
1071   void *pStart;           /* First byte of available memory space */
1072   void *pEnd;             /* First byte past end of available space */
1073 };
1074 struct LookasideSlot {
1075   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
1076 };
1077 
1078 /*
1079 ** A hash table for function definitions.
1080 **
1081 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
1082 ** Collisions are on the FuncDef.pHash chain.
1083 */
1084 struct FuncDefHash {
1085   FuncDef *a[23];       /* Hash table for functions */
1086 };
1087 
1088 #ifdef SQLITE_USER_AUTHENTICATION
1089 /*
1090 ** Information held in the "sqlite3" database connection object and used
1091 ** to manage user authentication.
1092 */
1093 typedef struct sqlite3_userauth sqlite3_userauth;
1094 struct sqlite3_userauth {
1095   u8 authLevel;                 /* Current authentication level */
1096   int nAuthPW;                  /* Size of the zAuthPW in bytes */
1097   char *zAuthPW;                /* Password used to authenticate */
1098   char *zAuthUser;              /* User name used to authenticate */
1099 };
1100 
1101 /* Allowed values for sqlite3_userauth.authLevel */
1102 #define UAUTH_Unknown     0     /* Authentication not yet checked */
1103 #define UAUTH_Fail        1     /* User authentication failed */
1104 #define UAUTH_User        2     /* Authenticated as a normal user */
1105 #define UAUTH_Admin       3     /* Authenticated as an administrator */
1106 
1107 /* Functions used only by user authorization logic */
1108 int sqlite3UserAuthTable(const char*);
1109 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
1110 void sqlite3UserAuthInit(sqlite3*);
1111 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);
1112 
1113 #endif /* SQLITE_USER_AUTHENTICATION */
1114 
1115 /*
1116 ** typedef for the authorization callback function.
1117 */
1118 #ifdef SQLITE_USER_AUTHENTICATION
1119   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1120                                const char*, const char*);
1121 #else
1122   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1123                                const char*);
1124 #endif
1125 
1126 
1127 /*
1128 ** Each database connection is an instance of the following structure.
1129 */
1130 struct sqlite3 {
1131   sqlite3_vfs *pVfs;            /* OS Interface */
1132   struct Vdbe *pVdbe;           /* List of active virtual machines */
1133   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
1134   sqlite3_mutex *mutex;         /* Connection mutex */
1135   Db *aDb;                      /* All backends */
1136   int nDb;                      /* Number of backends currently in use */
1137   int flags;                    /* Miscellaneous flags. See below */
1138   i64 lastRowid;                /* ROWID of most recent insert (see above) */
1139   i64 szMmap;                   /* Default mmap_size setting */
1140   unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
1141   int errCode;                  /* Most recent error code (SQLITE_*) */
1142   int errMask;                  /* & result codes with this before returning */
1143   u16 dbOptFlags;               /* Flags to enable/disable optimizations */
1144   u8 enc;                       /* Text encoding */
1145   u8 autoCommit;                /* The auto-commit flag. */
1146   u8 temp_store;                /* 1: file 2: memory 0: default */
1147   u8 mallocFailed;              /* True if we have seen a malloc failure */
1148   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
1149   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
1150   u8 suppressErr;               /* Do not issue error messages if true */
1151   u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
1152   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
1153   int nextPagesize;             /* Pagesize after VACUUM if >0 */
1154   u32 magic;                    /* Magic number for detect library misuse */
1155   int nChange;                  /* Value returned by sqlite3_changes() */
1156   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
1157   int aLimit[SQLITE_N_LIMIT];   /* Limits */
1158   int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
1159   struct sqlite3InitInfo {      /* Information used during initialization */
1160     int newTnum;                /* Rootpage of table being initialized */
1161     u8 iDb;                     /* Which db file is being initialized */
1162     u8 busy;                    /* TRUE if currently initializing */
1163     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
1164     u8 imposterTable;           /* Building an imposter table */
1165   } init;
1166   int nVdbeActive;              /* Number of VDBEs currently running */
1167   int nVdbeRead;                /* Number of active VDBEs that read or write */
1168   int nVdbeWrite;               /* Number of active VDBEs that read and write */
1169   int nVdbeExec;                /* Number of nested calls to VdbeExec() */
1170   int nVDestroy;                /* Number of active OP_VDestroy operations */
1171   int nExtension;               /* Number of loaded extensions */
1172   void **aExtension;            /* Array of shared library handles */
1173   void (*xTrace)(void*,const char*);        /* Trace function */
1174   void *pTraceArg;                          /* Argument to the trace function */
1175   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
1176   void *pProfileArg;                        /* Argument to profile function */
1177   void *pCommitArg;                 /* Argument to xCommitCallback() */
1178   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
1179   void *pRollbackArg;               /* Argument to xRollbackCallback() */
1180   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
1181   void *pUpdateArg;
1182   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
1183 #ifndef SQLITE_OMIT_WAL
1184   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
1185   void *pWalArg;
1186 #endif
1187   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
1188   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
1189   void *pCollNeededArg;
1190   sqlite3_value *pErr;          /* Most recent error message */
1191   union {
1192     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
1193     double notUsed1;            /* Spacer */
1194   } u1;
1195   Lookaside lookaside;          /* Lookaside malloc configuration */
1196 #ifndef SQLITE_OMIT_AUTHORIZATION
1197   sqlite3_xauth xAuth;          /* Access authorization function */
1198   void *pAuthArg;               /* 1st argument to the access auth function */
1199 #endif
1200 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1201   int (*xProgress)(void *);     /* The progress callback */
1202   void *pProgressArg;           /* Argument to the progress callback */
1203   unsigned nProgressOps;        /* Number of opcodes for progress callback */
1204 #endif
1205 #ifndef SQLITE_OMIT_VIRTUALTABLE
1206   int nVTrans;                  /* Allocated size of aVTrans */
1207   Hash aModule;                 /* populated by sqlite3_create_module() */
1208   VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
1209   VTable **aVTrans;             /* Virtual tables with open transactions */
1210   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
1211 #endif
1212   FuncDefHash aFunc;            /* Hash table of connection functions */
1213   Hash aCollSeq;                /* All collating sequences */
1214   BusyHandler busyHandler;      /* Busy callback */
1215   Db aDbStatic[2];              /* Static space for the 2 default backends */
1216   Savepoint *pSavepoint;        /* List of active savepoints */
1217   int busyTimeout;              /* Busy handler timeout, in msec */
1218   int nSavepoint;               /* Number of non-transaction savepoints */
1219   int nStatement;               /* Number of nested statement-transactions  */
1220   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
1221   i64 nDeferredImmCons;         /* Net deferred immediate constraints */
1222   int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
1223 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
1224   /* The following variables are all protected by the STATIC_MASTER
1225   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
1226   **
1227   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
1228   ** unlock so that it can proceed.
1229   **
1230   ** When X.pBlockingConnection==Y, that means that something that X tried
1231   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
1232   ** held by Y.
1233   */
1234   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
1235   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
1236   void *pUnlockArg;                     /* Argument to xUnlockNotify */
1237   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
1238   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
1239 #endif
1240 #ifdef SQLITE_USER_AUTHENTICATION
1241   sqlite3_userauth auth;        /* User authentication information */
1242 #endif
1243 };
1244 
1245 /*
1246 ** A macro to discover the encoding of a database.
1247 */
1248 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
1249 #define ENC(db)        ((db)->enc)
1250 
1251 /*
1252 ** Possible values for the sqlite3.flags.
1253 */
1254 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
1255 #define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
1256 #define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
1257 #define SQLITE_CkptFullFSync  0x00000008  /* Use full fsync for checkpoint */
1258 #define SQLITE_CacheSpill     0x00000010  /* OK to spill pager cache */
1259 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
1260 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
1261 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
1262                                           /*   DELETE, or UPDATE and return */
1263                                           /*   the count using a callback. */
1264 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
1265                                           /*   result set is empty */
1266 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
1267 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
1268 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
1269 #define SQLITE_VdbeAddopTrace 0x00001000  /* Trace sqlite3VdbeAddOp() calls */
1270 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
1271 #define SQLITE_ReadUncommitted 0x0004000  /* For shared-cache mode */
1272 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
1273 #define SQLITE_RecoveryMode   0x00010000  /* Ignore schema errors */
1274 #define SQLITE_ReverseOrder   0x00020000  /* Reverse unordered SELECTs */
1275 #define SQLITE_RecTriggers    0x00040000  /* Enable recursive triggers */
1276 #define SQLITE_ForeignKeys    0x00080000  /* Enforce foreign key constraints  */
1277 #define SQLITE_AutoIndex      0x00100000  /* Enable automatic indexes */
1278 #define SQLITE_PreferBuiltin  0x00200000  /* Preference to built-in funcs */
1279 #define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
1280 #define SQLITE_EnableTrigger  0x00800000  /* True to enable triggers */
1281 #define SQLITE_DeferFKs       0x01000000  /* Defer all FK constraints */
1282 #define SQLITE_QueryOnly      0x02000000  /* Disable database changes */
1283 #define SQLITE_VdbeEQP        0x04000000  /* Debug EXPLAIN QUERY PLAN */
1284 #define SQLITE_Vacuum         0x08000000  /* Currently in a VACUUM */
1285 #define SQLITE_CellSizeCk     0x10000000  /* Check btree cell sizes on load */
1286 
1287 
1288 /*
1289 ** Bits of the sqlite3.dbOptFlags field that are used by the
1290 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
1291 ** selectively disable various optimizations.
1292 */
1293 #define SQLITE_QueryFlattener 0x0001   /* Query flattening */
1294 #define SQLITE_ColumnCache    0x0002   /* Column cache */
1295 #define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
1296 #define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
1297 /*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
1298 #define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
1299 #define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
1300 #define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
1301 #define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
1302 #define SQLITE_Transitive     0x0200   /* Transitive constraints */
1303 #define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
1304 #define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */
1305 #define SQLITE_AllOpts        0xffff   /* All optimizations */
1306 
1307 /*
1308 ** Macros for testing whether or not optimizations are enabled or disabled.
1309 */
1310 #ifndef SQLITE_OMIT_BUILTIN_TEST
1311 #define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1312 #define OptimizationEnabled(db, mask)   (((db)->dbOptFlags&(mask))==0)
1313 #else
1314 #define OptimizationDisabled(db, mask)  0
1315 #define OptimizationEnabled(db, mask)   1
1316 #endif
1317 
1318 /*
1319 ** Return true if it OK to factor constant expressions into the initialization
1320 ** code. The argument is a Parse object for the code generator.
1321 */
1322 #define ConstFactorOk(P) ((P)->okConstFactor)
1323 
1324 /*
1325 ** Possible values for the sqlite.magic field.
1326 ** The numbers are obtained at random and have no special meaning, other
1327 ** than being distinct from one another.
1328 */
1329 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
1330 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
1331 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
1332 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
1333 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
1334 #define SQLITE_MAGIC_ZOMBIE   0x64cffc7f  /* Close with last statement close */
1335 
1336 /*
1337 ** Each SQL function is defined by an instance of the following
1338 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
1339 ** hash table.  When multiple functions have the same name, the hash table
1340 ** points to a linked list of these structures.
1341 */
1342 struct FuncDef {
1343   i16 nArg;            /* Number of arguments.  -1 means unlimited */
1344   u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
1345   void *pUserData;     /* User data parameter */
1346   FuncDef *pNext;      /* Next function with same name */
1347   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
1348   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
1349   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
1350   char *zName;         /* SQL name of the function. */
1351   FuncDef *pHash;      /* Next with a different name but the same hash */
1352   FuncDestructor *pDestructor;   /* Reference counted destructor function */
1353 };
1354 
1355 /*
1356 ** This structure encapsulates a user-function destructor callback (as
1357 ** configured using create_function_v2()) and a reference counter. When
1358 ** create_function_v2() is called to create a function with a destructor,
1359 ** a single object of this type is allocated. FuncDestructor.nRef is set to
1360 ** the number of FuncDef objects created (either 1 or 3, depending on whether
1361 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
1362 ** member of each of the new FuncDef objects is set to point to the allocated
1363 ** FuncDestructor.
1364 **
1365 ** Thereafter, when one of the FuncDef objects is deleted, the reference
1366 ** count on this object is decremented. When it reaches 0, the destructor
1367 ** is invoked and the FuncDestructor structure freed.
1368 */
1369 struct FuncDestructor {
1370   int nRef;
1371   void (*xDestroy)(void *);
1372   void *pUserData;
1373 };
1374 
1375 /*
1376 ** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
1377 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  There
1378 ** are assert() statements in the code to verify this.
1379 */
1380 #define SQLITE_FUNC_ENCMASK  0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
1381 #define SQLITE_FUNC_LIKE     0x004 /* Candidate for the LIKE optimization */
1382 #define SQLITE_FUNC_CASE     0x008 /* Case-sensitive LIKE-type function */
1383 #define SQLITE_FUNC_EPHEM    0x010 /* Ephemeral.  Delete with VDBE */
1384 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
1385 #define SQLITE_FUNC_LENGTH   0x040 /* Built-in length() function */
1386 #define SQLITE_FUNC_TYPEOF   0x080 /* Built-in typeof() function */
1387 #define SQLITE_FUNC_COUNT    0x100 /* Built-in count(*) aggregate */
1388 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
1389 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */
1390 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */
1391 #define SQLITE_FUNC_MINMAX  0x1000 /* True for min() and max() aggregates */
1392 
1393 /*
1394 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1395 ** used to create the initializers for the FuncDef structures.
1396 **
1397 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
1398 **     Used to create a scalar function definition of a function zName
1399 **     implemented by C function xFunc that accepts nArg arguments. The
1400 **     value passed as iArg is cast to a (void*) and made available
1401 **     as the user-data (sqlite3_user_data()) for the function. If
1402 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1403 **
1404 **   VFUNCTION(zName, nArg, iArg, bNC, xFunc)
1405 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
1406 **
1407 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1408 **     Used to create an aggregate function definition implemented by
1409 **     the C functions xStep and xFinal. The first four parameters
1410 **     are interpreted in the same way as the first 4 parameters to
1411 **     FUNCTION().
1412 **
1413 **   LIKEFUNC(zName, nArg, pArg, flags)
1414 **     Used to create a scalar function definition of a function zName
1415 **     that accepts nArg arguments and is implemented by a call to C
1416 **     function likeFunc. Argument pArg is cast to a (void *) and made
1417 **     available as the function user-data (sqlite3_user_data()). The
1418 **     FuncDef.flags variable is set to the value passed as the flags
1419 **     parameter.
1420 */
1421 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1422   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1423    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1424 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
1425   {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1426    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1427 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
1428   {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
1429    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1430 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1431   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1432    pArg, 0, xFunc, 0, 0, #zName, 0, 0}
1433 #define LIKEFUNC(zName, nArg, arg, flags) \
1434   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
1435    (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
1436 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1437   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
1438    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1439 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
1440   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
1441    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1442 
1443 /*
1444 ** All current savepoints are stored in a linked list starting at
1445 ** sqlite3.pSavepoint. The first element in the list is the most recently
1446 ** opened savepoint. Savepoints are added to the list by the vdbe
1447 ** OP_Savepoint instruction.
1448 */
1449 struct Savepoint {
1450   char *zName;                        /* Savepoint name (nul-terminated) */
1451   i64 nDeferredCons;                  /* Number of deferred fk violations */
1452   i64 nDeferredImmCons;               /* Number of deferred imm fk. */
1453   Savepoint *pNext;                   /* Parent savepoint (if any) */
1454 };
1455 
1456 /*
1457 ** The following are used as the second parameter to sqlite3Savepoint(),
1458 ** and as the P1 argument to the OP_Savepoint instruction.
1459 */
1460 #define SAVEPOINT_BEGIN      0
1461 #define SAVEPOINT_RELEASE    1
1462 #define SAVEPOINT_ROLLBACK   2
1463 
1464 
1465 /*
1466 ** Each SQLite module (virtual table definition) is defined by an
1467 ** instance of the following structure, stored in the sqlite3.aModule
1468 ** hash table.
1469 */
1470 struct Module {
1471   const sqlite3_module *pModule;       /* Callback pointers */
1472   const char *zName;                   /* Name passed to create_module() */
1473   void *pAux;                          /* pAux passed to create_module() */
1474   void (*xDestroy)(void *);            /* Module destructor function */
1475 };
1476 
1477 /*
1478 ** information about each column of an SQL table is held in an instance
1479 ** of this structure.
1480 */
1481 struct Column {
1482   char *zName;     /* Name of this column */
1483   Expr *pDflt;     /* Default value of this column */
1484   char *zDflt;     /* Original text of the default value */
1485   char *zType;     /* Data type for this column */
1486   char *zColl;     /* Collating sequence.  If NULL, use the default */
1487   u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
1488   char affinity;   /* One of the SQLITE_AFF_... values */
1489   u8 szEst;        /* Estimated size of this column.  INT==1 */
1490   u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
1491 };
1492 
1493 /* Allowed values for Column.colFlags:
1494 */
1495 #define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
1496 #define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
1497 
1498 /*
1499 ** A "Collating Sequence" is defined by an instance of the following
1500 ** structure. Conceptually, a collating sequence consists of a name and
1501 ** a comparison routine that defines the order of that sequence.
1502 **
1503 ** If CollSeq.xCmp is NULL, it means that the
1504 ** collating sequence is undefined.  Indices built on an undefined
1505 ** collating sequence may not be read or written.
1506 */
1507 struct CollSeq {
1508   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1509   u8 enc;               /* Text encoding handled by xCmp() */
1510   void *pUser;          /* First argument to xCmp() */
1511   int (*xCmp)(void*,int, const void*, int, const void*);
1512   void (*xDel)(void*);  /* Destructor for pUser */
1513 };
1514 
1515 /*
1516 ** A sort order can be either ASC or DESC.
1517 */
1518 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1519 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1520 
1521 /*
1522 ** Column affinity types.
1523 **
1524 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1525 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1526 ** the speed a little by numbering the values consecutively.
1527 **
1528 ** But rather than start with 0 or 1, we begin with 'A'.  That way,
1529 ** when multiple affinity types are concatenated into a string and
1530 ** used as the P4 operand, they will be more readable.
1531 **
1532 ** Note also that the numeric types are grouped together so that testing
1533 ** for a numeric type is a single comparison.  And the BLOB type is first.
1534 */
1535 #define SQLITE_AFF_BLOB     'A'
1536 #define SQLITE_AFF_TEXT     'B'
1537 #define SQLITE_AFF_NUMERIC  'C'
1538 #define SQLITE_AFF_INTEGER  'D'
1539 #define SQLITE_AFF_REAL     'E'
1540 
1541 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1542 
1543 /*
1544 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1545 ** affinity value.
1546 */
1547 #define SQLITE_AFF_MASK     0x47
1548 
1549 /*
1550 ** Additional bit values that can be ORed with an affinity without
1551 ** changing the affinity.
1552 **
1553 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
1554 ** It causes an assert() to fire if either operand to a comparison
1555 ** operator is NULL.  It is added to certain comparison operators to
1556 ** prove that the operands are always NOT NULL.
1557 */
1558 #define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
1559 #define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
1560 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1561 #define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */
1562 
1563 /*
1564 ** An object of this type is created for each virtual table present in
1565 ** the database schema.
1566 **
1567 ** If the database schema is shared, then there is one instance of this
1568 ** structure for each database connection (sqlite3*) that uses the shared
1569 ** schema. This is because each database connection requires its own unique
1570 ** instance of the sqlite3_vtab* handle used to access the virtual table
1571 ** implementation. sqlite3_vtab* handles can not be shared between
1572 ** database connections, even when the rest of the in-memory database
1573 ** schema is shared, as the implementation often stores the database
1574 ** connection handle passed to it via the xConnect() or xCreate() method
1575 ** during initialization internally. This database connection handle may
1576 ** then be used by the virtual table implementation to access real tables
1577 ** within the database. So that they appear as part of the callers
1578 ** transaction, these accesses need to be made via the same database
1579 ** connection as that used to execute SQL operations on the virtual table.
1580 **
1581 ** All VTable objects that correspond to a single table in a shared
1582 ** database schema are initially stored in a linked-list pointed to by
1583 ** the Table.pVTable member variable of the corresponding Table object.
1584 ** When an sqlite3_prepare() operation is required to access the virtual
1585 ** table, it searches the list for the VTable that corresponds to the
1586 ** database connection doing the preparing so as to use the correct
1587 ** sqlite3_vtab* handle in the compiled query.
1588 **
1589 ** When an in-memory Table object is deleted (for example when the
1590 ** schema is being reloaded for some reason), the VTable objects are not
1591 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1592 ** immediately. Instead, they are moved from the Table.pVTable list to
1593 ** another linked list headed by the sqlite3.pDisconnect member of the
1594 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1595 ** next time a statement is prepared using said sqlite3*. This is done
1596 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1597 ** Refer to comments above function sqlite3VtabUnlockList() for an
1598 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1599 ** list without holding the corresponding sqlite3.mutex mutex.
1600 **
1601 ** The memory for objects of this type is always allocated by
1602 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1603 ** the first argument.
1604 */
1605 struct VTable {
1606   sqlite3 *db;              /* Database connection associated with this table */
1607   Module *pMod;             /* Pointer to module implementation */
1608   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1609   int nRef;                 /* Number of pointers to this structure */
1610   u8 bConstraint;           /* True if constraints are supported */
1611   int iSavepoint;           /* Depth of the SAVEPOINT stack */
1612   VTable *pNext;            /* Next in linked list (see above) */
1613 };
1614 
1615 /*
1616 ** The schema for each SQL table and view is represented in memory
1617 ** by an instance of the following structure.
1618 */
1619 struct Table {
1620   char *zName;         /* Name of the table or view */
1621   Column *aCol;        /* Information about each column */
1622   Index *pIndex;       /* List of SQL indexes on this table. */
1623   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1624   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1625   char *zColAff;       /* String defining the affinity of each column */
1626 #ifndef SQLITE_OMIT_CHECK
1627   ExprList *pCheck;    /* All CHECK constraints */
1628 #endif
1629   int tnum;            /* Root BTree page for this table */
1630   i16 iPKey;           /* If not negative, use aCol[iPKey] as the rowid */
1631   i16 nCol;            /* Number of columns in this table */
1632   u16 nRef;            /* Number of pointers to this Table */
1633   LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
1634   LogEst szTabRow;     /* Estimated size of each table row in bytes */
1635 #ifdef SQLITE_ENABLE_COSTMULT
1636   LogEst costMult;     /* Cost multiplier for using this table */
1637 #endif
1638   u8 tabFlags;         /* Mask of TF_* values */
1639   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1640 #ifndef SQLITE_OMIT_ALTERTABLE
1641   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1642 #endif
1643 #ifndef SQLITE_OMIT_VIRTUALTABLE
1644   int nModuleArg;      /* Number of arguments to the module */
1645   char **azModuleArg;  /* Text of all module args. [0] is module name */
1646   VTable *pVTable;     /* List of VTable objects. */
1647 #endif
1648   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1649   Schema *pSchema;     /* Schema that contains this table */
1650   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1651 };
1652 
1653 /*
1654 ** Allowed values for Table.tabFlags.
1655 **
1656 ** TF_OOOHidden applies to virtual tables that have hidden columns that are
1657 ** followed by non-hidden columns.  Example:  "CREATE VIRTUAL TABLE x USING
1658 ** vtab1(a HIDDEN, b);".  Since "b" is a non-hidden column but "a" is hidden,
1659 ** the TF_OOOHidden attribute would apply in this case.  Such tables require
1660 ** special handling during INSERT processing.
1661 */
1662 #define TF_Readonly        0x01    /* Read-only system table */
1663 #define TF_Ephemeral       0x02    /* An ephemeral table */
1664 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1665 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1666 #define TF_Virtual         0x10    /* Is a virtual table */
1667 #define TF_WithoutRowid    0x20    /* No rowid.  PRIMARY KEY is the key */
1668 #define TF_NoVisibleRowid  0x40    /* No user-visible "rowid" column */
1669 #define TF_OOOHidden       0x80    /* Out-of-Order hidden columns */
1670 
1671 
1672 /*
1673 ** Test to see whether or not a table is a virtual table.  This is
1674 ** done as a macro so that it will be optimized out when virtual
1675 ** table support is omitted from the build.
1676 */
1677 #ifndef SQLITE_OMIT_VIRTUALTABLE
1678 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1679 #  define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1680 #else
1681 #  define IsVirtual(X)      0
1682 #  define IsHiddenColumn(X) 0
1683 #endif
1684 
1685 /* Does the table have a rowid */
1686 #define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
1687 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0)
1688 
1689 /*
1690 ** Each foreign key constraint is an instance of the following structure.
1691 **
1692 ** A foreign key is associated with two tables.  The "from" table is
1693 ** the table that contains the REFERENCES clause that creates the foreign
1694 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1695 ** Consider this example:
1696 **
1697 **     CREATE TABLE ex1(
1698 **       a INTEGER PRIMARY KEY,
1699 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1700 **     );
1701 **
1702 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1703 ** Equivalent names:
1704 **
1705 **     from-table == child-table
1706 **       to-table == parent-table
1707 **
1708 ** Each REFERENCES clause generates an instance of the following structure
1709 ** which is attached to the from-table.  The to-table need not exist when
1710 ** the from-table is created.  The existence of the to-table is not checked.
1711 **
1712 ** The list of all parents for child Table X is held at X.pFKey.
1713 **
1714 ** A list of all children for a table named Z (which might not even exist)
1715 ** is held in Schema.fkeyHash with a hash key of Z.
1716 */
1717 struct FKey {
1718   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1719   FKey *pNextFrom;  /* Next FKey with the same in pFrom. Next parent of pFrom */
1720   char *zTo;        /* Name of table that the key points to (aka: Parent) */
1721   FKey *pNextTo;    /* Next with the same zTo. Next child of zTo. */
1722   FKey *pPrevTo;    /* Previous with the same zTo */
1723   int nCol;         /* Number of columns in this key */
1724   /* EV: R-30323-21917 */
1725   u8 isDeferred;       /* True if constraint checking is deferred till COMMIT */
1726   u8 aAction[2];        /* ON DELETE and ON UPDATE actions, respectively */
1727   Trigger *apTrigger[2];/* Triggers for aAction[] actions */
1728   struct sColMap {      /* Mapping of columns in pFrom to columns in zTo */
1729     int iFrom;            /* Index of column in pFrom */
1730     char *zCol;           /* Name of column in zTo.  If NULL use PRIMARY KEY */
1731   } aCol[1];            /* One entry for each of nCol columns */
1732 };
1733 
1734 /*
1735 ** SQLite supports many different ways to resolve a constraint
1736 ** error.  ROLLBACK processing means that a constraint violation
1737 ** causes the operation in process to fail and for the current transaction
1738 ** to be rolled back.  ABORT processing means the operation in process
1739 ** fails and any prior changes from that one operation are backed out,
1740 ** but the transaction is not rolled back.  FAIL processing means that
1741 ** the operation in progress stops and returns an error code.  But prior
1742 ** changes due to the same operation are not backed out and no rollback
1743 ** occurs.  IGNORE means that the particular row that caused the constraint
1744 ** error is not inserted or updated.  Processing continues and no error
1745 ** is returned.  REPLACE means that preexisting database rows that caused
1746 ** a UNIQUE constraint violation are removed so that the new insert or
1747 ** update can proceed.  Processing continues and no error is reported.
1748 **
1749 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1750 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1751 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1752 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1753 ** referenced table row is propagated into the row that holds the
1754 ** foreign key.
1755 **
1756 ** The following symbolic values are used to record which type
1757 ** of action to take.
1758 */
1759 #define OE_None     0   /* There is no constraint to check */
1760 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1761 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1762 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1763 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1764 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1765 
1766 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1767 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1768 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1769 #define OE_Cascade  9   /* Cascade the changes */
1770 
1771 #define OE_Default  10  /* Do whatever the default action is */
1772 
1773 
1774 /*
1775 ** An instance of the following structure is passed as the first
1776 ** argument to sqlite3VdbeKeyCompare and is used to control the
1777 ** comparison of the two index keys.
1778 **
1779 ** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
1780 ** are nField slots for the columns of an index then one extra slot
1781 ** for the rowid at the end.
1782 */
1783 struct KeyInfo {
1784   u32 nRef;           /* Number of references to this KeyInfo object */
1785   u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
1786   u16 nField;         /* Number of key columns in the index */
1787   u16 nXField;        /* Number of columns beyond the key columns */
1788   sqlite3 *db;        /* The database connection */
1789   u8 *aSortOrder;     /* Sort order for each column. */
1790   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1791 };
1792 
1793 /*
1794 ** An instance of the following structure holds information about a
1795 ** single index record that has already been parsed out into individual
1796 ** values.
1797 **
1798 ** A record is an object that contains one or more fields of data.
1799 ** Records are used to store the content of a table row and to store
1800 ** the key of an index.  A blob encoding of a record is created by
1801 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1802 ** OP_Column opcode.
1803 **
1804 ** This structure holds a record that has already been disassembled
1805 ** into its constituent fields.
1806 **
1807 ** The r1 and r2 member variables are only used by the optimized comparison
1808 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
1809 */
1810 struct UnpackedRecord {
1811   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1812   u16 nField;         /* Number of entries in apMem[] */
1813   i8 default_rc;      /* Comparison result if keys are equal */
1814   u8 errCode;         /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
1815   Mem *aMem;          /* Values */
1816   int r1;             /* Value to return if (lhs > rhs) */
1817   int r2;             /* Value to return if (rhs < lhs) */
1818 };
1819 
1820 
1821 /*
1822 ** Each SQL index is represented in memory by an
1823 ** instance of the following structure.
1824 **
1825 ** The columns of the table that are to be indexed are described
1826 ** by the aiColumn[] field of this structure.  For example, suppose
1827 ** we have the following table and index:
1828 **
1829 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1830 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1831 **
1832 ** In the Table structure describing Ex1, nCol==3 because there are
1833 ** three columns in the table.  In the Index structure describing
1834 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1835 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1836 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1837 ** The second column to be indexed (c1) has an index of 0 in
1838 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1839 **
1840 ** The Index.onError field determines whether or not the indexed columns
1841 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1842 ** it means this is not a unique index.  Otherwise it is a unique index
1843 ** and the value of Index.onError indicate the which conflict resolution
1844 ** algorithm to employ whenever an attempt is made to insert a non-unique
1845 ** element.
1846 **
1847 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to
1848 ** generate VDBE code (as opposed to parsing one read from an sqlite_master
1849 ** table as part of parsing an existing database schema), transient instances
1850 ** of this structure may be created. In this case the Index.tnum variable is
1851 ** used to store the address of a VDBE instruction, not a database page
1852 ** number (it cannot - the database page is not allocated until the VDBE
1853 ** program is executed). See convertToWithoutRowidTable() for details.
1854 */
1855 struct Index {
1856   char *zName;             /* Name of this index */
1857   i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
1858   LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
1859   Table *pTable;           /* The SQL table being indexed */
1860   char *zColAff;           /* String defining the affinity of each column */
1861   Index *pNext;            /* The next index associated with the same table */
1862   Schema *pSchema;         /* Schema containing this index */
1863   u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
1864   char **azColl;           /* Array of collation sequence names for index */
1865   Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
1866   int tnum;                /* DB Page containing root of this index */
1867   LogEst szIdxRow;         /* Estimated average row size in bytes */
1868   u16 nKeyCol;             /* Number of columns forming the key */
1869   u16 nColumn;             /* Number of columns stored in the index */
1870   u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1871   unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
1872   unsigned bUnordered:1;   /* Use this index for == or IN queries only */
1873   unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
1874   unsigned isResized:1;    /* True if resizeIndexObject() has been called */
1875   unsigned isCovering:1;   /* True if this is a covering index */
1876   unsigned noSkipScan:1;   /* Do not try to use skip-scan if true */
1877 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1878   int nSample;             /* Number of elements in aSample[] */
1879   int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
1880   tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
1881   IndexSample *aSample;    /* Samples of the left-most key */
1882   tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this index */
1883   tRowcnt nRowEst0;        /* Non-logarithmic number of rows in the index */
1884 #endif
1885 };
1886 
1887 /*
1888 ** Allowed values for Index.idxType
1889 */
1890 #define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
1891 #define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
1892 #define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */
1893 
1894 /* Return true if index X is a PRIMARY KEY index */
1895 #define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
1896 
1897 /* Return true if index X is a UNIQUE index */
1898 #define IsUniqueIndex(X)      ((X)->onError!=OE_None)
1899 
1900 /*
1901 ** Each sample stored in the sqlite_stat3 table is represented in memory
1902 ** using a structure of this type.  See documentation at the top of the
1903 ** analyze.c source file for additional information.
1904 */
1905 struct IndexSample {
1906   void *p;          /* Pointer to sampled record */
1907   int n;            /* Size of record in bytes */
1908   tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
1909   tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
1910   tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
1911 };
1912 
1913 /*
1914 ** Each token coming out of the lexer is an instance of
1915 ** this structure.  Tokens are also used as part of an expression.
1916 **
1917 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1918 ** may contain random values.  Do not make any assumptions about Token.dyn
1919 ** and Token.n when Token.z==0.
1920 */
1921 struct Token {
1922   const char *z;     /* Text of the token.  Not NULL-terminated! */
1923   unsigned int n;    /* Number of characters in this token */
1924 };
1925 
1926 /*
1927 ** An instance of this structure contains information needed to generate
1928 ** code for a SELECT that contains aggregate functions.
1929 **
1930 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1931 ** pointer to this structure.  The Expr.iColumn field is the index in
1932 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1933 ** code for that node.
1934 **
1935 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1936 ** original Select structure that describes the SELECT statement.  These
1937 ** fields do not need to be freed when deallocating the AggInfo structure.
1938 */
1939 struct AggInfo {
1940   u8 directMode;          /* Direct rendering mode means take data directly
1941                           ** from source tables rather than from accumulators */
1942   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1943                           ** than the source table */
1944   int sortingIdx;         /* Cursor number of the sorting index */
1945   int sortingIdxPTab;     /* Cursor number of pseudo-table */
1946   int nSortingColumn;     /* Number of columns in the sorting index */
1947   int mnReg, mxReg;       /* Range of registers allocated for aCol and aFunc */
1948   ExprList *pGroupBy;     /* The group by clause */
1949   struct AggInfo_col {    /* For each column used in source tables */
1950     Table *pTab;             /* Source table */
1951     int iTable;              /* Cursor number of the source table */
1952     int iColumn;             /* Column number within the source table */
1953     int iSorterColumn;       /* Column number in the sorting index */
1954     int iMem;                /* Memory location that acts as accumulator */
1955     Expr *pExpr;             /* The original expression */
1956   } *aCol;
1957   int nColumn;            /* Number of used entries in aCol[] */
1958   int nAccumulator;       /* Number of columns that show through to the output.
1959                           ** Additional columns are used only as parameters to
1960                           ** aggregate functions */
1961   struct AggInfo_func {   /* For each aggregate function */
1962     Expr *pExpr;             /* Expression encoding the function */
1963     FuncDef *pFunc;          /* The aggregate function implementation */
1964     int iMem;                /* Memory location that acts as accumulator */
1965     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1966   } *aFunc;
1967   int nFunc;              /* Number of entries in aFunc[] */
1968 };
1969 
1970 /*
1971 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
1972 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
1973 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
1974 ** it uses less memory in the Expr object, which is a big memory user
1975 ** in systems with lots of prepared statements.  And few applications
1976 ** need more than about 10 or 20 variables.  But some extreme users want
1977 ** to have prepared statements with over 32767 variables, and for them
1978 ** the option is available (at compile-time).
1979 */
1980 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
1981 typedef i16 ynVar;
1982 #else
1983 typedef int ynVar;
1984 #endif
1985 
1986 /*
1987 ** Each node of an expression in the parse tree is an instance
1988 ** of this structure.
1989 **
1990 ** Expr.op is the opcode. The integer parser token codes are reused
1991 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1992 ** code representing the ">=" operator. This same integer code is reused
1993 ** to represent the greater-than-or-equal-to operator in the expression
1994 ** tree.
1995 **
1996 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1997 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1998 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1999 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
2000 ** then Expr.token contains the name of the function.
2001 **
2002 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
2003 ** binary operator. Either or both may be NULL.
2004 **
2005 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
2006 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
2007 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
2008 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
2009 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
2010 ** valid.
2011 **
2012 ** An expression of the form ID or ID.ID refers to a column in a table.
2013 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
2014 ** the integer cursor number of a VDBE cursor pointing to that table and
2015 ** Expr.iColumn is the column number for the specific column.  If the
2016 ** expression is used as a result in an aggregate SELECT, then the
2017 ** value is also stored in the Expr.iAgg column in the aggregate so that
2018 ** it can be accessed after all aggregates are computed.
2019 **
2020 ** If the expression is an unbound variable marker (a question mark
2021 ** character '?' in the original SQL) then the Expr.iTable holds the index
2022 ** number for that variable.
2023 **
2024 ** If the expression is a subquery then Expr.iColumn holds an integer
2025 ** register number containing the result of the subquery.  If the
2026 ** subquery gives a constant result, then iTable is -1.  If the subquery
2027 ** gives a different answer at different times during statement processing
2028 ** then iTable is the address of a subroutine that computes the subquery.
2029 **
2030 ** If the Expr is of type OP_Column, and the table it is selecting from
2031 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
2032 ** corresponding table definition.
2033 **
2034 ** ALLOCATION NOTES:
2035 **
2036 ** Expr objects can use a lot of memory space in database schema.  To
2037 ** help reduce memory requirements, sometimes an Expr object will be
2038 ** truncated.  And to reduce the number of memory allocations, sometimes
2039 ** two or more Expr objects will be stored in a single memory allocation,
2040 ** together with Expr.zToken strings.
2041 **
2042 ** If the EP_Reduced and EP_TokenOnly flags are set when
2043 ** an Expr object is truncated.  When EP_Reduced is set, then all
2044 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
2045 ** are contained within the same memory allocation.  Note, however, that
2046 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
2047 ** allocated, regardless of whether or not EP_Reduced is set.
2048 */
2049 struct Expr {
2050   u8 op;                 /* Operation performed by this node */
2051   char affinity;         /* The affinity of the column or 0 if not a column */
2052   u32 flags;             /* Various flags.  EP_* See below */
2053   union {
2054     char *zToken;          /* Token value. Zero terminated and dequoted */
2055     int iValue;            /* Non-negative integer value if EP_IntValue */
2056   } u;
2057 
2058   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
2059   ** space is allocated for the fields below this point. An attempt to
2060   ** access them will result in a segfault or malfunction.
2061   *********************************************************************/
2062 
2063   Expr *pLeft;           /* Left subnode */
2064   Expr *pRight;          /* Right subnode */
2065   union {
2066     ExprList *pList;     /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
2067     Select *pSelect;     /* EP_xIsSelect and op = IN, EXISTS, SELECT */
2068   } x;
2069 
2070   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
2071   ** space is allocated for the fields below this point. An attempt to
2072   ** access them will result in a segfault or malfunction.
2073   *********************************************************************/
2074 
2075 #if SQLITE_MAX_EXPR_DEPTH>0
2076   int nHeight;           /* Height of the tree headed by this node */
2077 #endif
2078   int iTable;            /* TK_COLUMN: cursor number of table holding column
2079                          ** TK_REGISTER: register number
2080                          ** TK_TRIGGER: 1 -> new, 0 -> old
2081                          ** EP_Unlikely:  134217728 times likelihood */
2082   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
2083                          ** TK_VARIABLE: variable number (always >= 1). */
2084   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
2085   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
2086   u8 op2;                /* TK_REGISTER: original value of Expr.op
2087                          ** TK_COLUMN: the value of p5 for OP_Column
2088                          ** TK_AGG_FUNCTION: nesting depth */
2089   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
2090   Table *pTab;           /* Table for TK_COLUMN expressions. */
2091 };
2092 
2093 /*
2094 ** The following are the meanings of bits in the Expr.flags field.
2095 */
2096 #define EP_FromJoin  0x000001 /* Originates in ON/USING clause of outer join */
2097 #define EP_Agg       0x000002 /* Contains one or more aggregate functions */
2098 #define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
2099 #define EP_Error     0x000008 /* Expression contains one or more errors */
2100 #define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
2101 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
2102 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
2103 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
2104 #define EP_Collate   0x000100 /* Tree contains a TK_COLLATE operator */
2105 #define EP_Generic   0x000200 /* Ignore COLLATE or affinity on this tree */
2106 #define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
2107 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
2108 #define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
2109 #define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
2110 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
2111 #define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
2112 #define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
2113 #define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
2114 #define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
2115 #define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */
2116 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
2117 #define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */
2118 
2119 /*
2120 ** Combinations of two or more EP_* flags
2121 */
2122 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */
2123 
2124 /*
2125 ** These macros can be used to test, set, or clear bits in the
2126 ** Expr.flags field.
2127 */
2128 #define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
2129 #define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
2130 #define ExprSetProperty(E,P)     (E)->flags|=(P)
2131 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
2132 
2133 /* The ExprSetVVAProperty() macro is used for Verification, Validation,
2134 ** and Accreditation only.  It works like ExprSetProperty() during VVA
2135 ** processes but is a no-op for delivery.
2136 */
2137 #ifdef SQLITE_DEBUG
2138 # define ExprSetVVAProperty(E,P)  (E)->flags|=(P)
2139 #else
2140 # define ExprSetVVAProperty(E,P)
2141 #endif
2142 
2143 /*
2144 ** Macros to determine the number of bytes required by a normal Expr
2145 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
2146 ** and an Expr struct with the EP_TokenOnly flag set.
2147 */
2148 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
2149 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
2150 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
2151 
2152 /*
2153 ** Flags passed to the sqlite3ExprDup() function. See the header comment
2154 ** above sqlite3ExprDup() for details.
2155 */
2156 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
2157 
2158 /*
2159 ** A list of expressions.  Each expression may optionally have a
2160 ** name.  An expr/name combination can be used in several ways, such
2161 ** as the list of "expr AS ID" fields following a "SELECT" or in the
2162 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
2163 ** also be used as the argument to a function, in which case the a.zName
2164 ** field is not used.
2165 **
2166 ** By default the Expr.zSpan field holds a human-readable description of
2167 ** the expression that is used in the generation of error messages and
2168 ** column labels.  In this case, Expr.zSpan is typically the text of a
2169 ** column expression as it exists in a SELECT statement.  However, if
2170 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
2171 ** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
2172 ** form is used for name resolution with nested FROM clauses.
2173 */
2174 struct ExprList {
2175   int nExpr;             /* Number of expressions on the list */
2176   struct ExprList_item { /* For each expression in the list */
2177     Expr *pExpr;            /* The list of expressions */
2178     char *zName;            /* Token associated with this expression */
2179     char *zSpan;            /* Original text of the expression */
2180     u8 sortOrder;           /* 1 for DESC or 0 for ASC */
2181     unsigned done :1;       /* A flag to indicate when processing is finished */
2182     unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
2183     unsigned reusable :1;   /* Constant expression is reusable */
2184     union {
2185       struct {
2186         u16 iOrderByCol;      /* For ORDER BY, column number in result set */
2187         u16 iAlias;           /* Index into Parse.aAlias[] for zName */
2188       } x;
2189       int iConstExprReg;      /* Register in which Expr value is cached */
2190     } u;
2191   } *a;                  /* Alloc a power of two greater or equal to nExpr */
2192 };
2193 
2194 /*
2195 ** An instance of this structure is used by the parser to record both
2196 ** the parse tree for an expression and the span of input text for an
2197 ** expression.
2198 */
2199 struct ExprSpan {
2200   Expr *pExpr;          /* The expression parse tree */
2201   const char *zStart;   /* First character of input text */
2202   const char *zEnd;     /* One character past the end of input text */
2203 };
2204 
2205 /*
2206 ** An instance of this structure can hold a simple list of identifiers,
2207 ** such as the list "a,b,c" in the following statements:
2208 **
2209 **      INSERT INTO t(a,b,c) VALUES ...;
2210 **      CREATE INDEX idx ON t(a,b,c);
2211 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
2212 **
2213 ** The IdList.a.idx field is used when the IdList represents the list of
2214 ** column names after a table name in an INSERT statement.  In the statement
2215 **
2216 **     INSERT INTO t(a,b,c) ...
2217 **
2218 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
2219 */
2220 struct IdList {
2221   struct IdList_item {
2222     char *zName;      /* Name of the identifier */
2223     int idx;          /* Index in some Table.aCol[] of a column named zName */
2224   } *a;
2225   int nId;         /* Number of identifiers on the list */
2226 };
2227 
2228 /*
2229 ** The bitmask datatype defined below is used for various optimizations.
2230 **
2231 ** Changing this from a 64-bit to a 32-bit type limits the number of
2232 ** tables in a join to 32 instead of 64.  But it also reduces the size
2233 ** of the library by 738 bytes on ix86.
2234 */
2235 typedef u64 Bitmask;
2236 
2237 /*
2238 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
2239 */
2240 #define BMS  ((int)(sizeof(Bitmask)*8))
2241 
2242 /*
2243 ** A bit in a Bitmask
2244 */
2245 #define MASKBIT(n)   (((Bitmask)1)<<(n))
2246 #define MASKBIT32(n) (((unsigned int)1)<<(n))
2247 
2248 /*
2249 ** The following structure describes the FROM clause of a SELECT statement.
2250 ** Each table or subquery in the FROM clause is a separate element of
2251 ** the SrcList.a[] array.
2252 **
2253 ** With the addition of multiple database support, the following structure
2254 ** can also be used to describe a particular table such as the table that
2255 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
2256 ** such a table must be a simple name: ID.  But in SQLite, the table can
2257 ** now be identified by a database name, a dot, then the table name: ID.ID.
2258 **
2259 ** The jointype starts out showing the join type between the current table
2260 ** and the next table on the list.  The parser builds the list this way.
2261 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
2262 ** jointype expresses the join between the table and the previous table.
2263 **
2264 ** In the colUsed field, the high-order bit (bit 63) is set if the table
2265 ** contains more than 63 columns and the 64-th or later column is used.
2266 */
2267 struct SrcList {
2268   int nSrc;        /* Number of tables or subqueries in the FROM clause */
2269   u32 nAlloc;      /* Number of entries allocated in a[] below */
2270   struct SrcList_item {
2271     Schema *pSchema;  /* Schema to which this item is fixed */
2272     char *zDatabase;  /* Name of database holding this table */
2273     char *zName;      /* Name of the table */
2274     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
2275     Table *pTab;      /* An SQL table corresponding to zName */
2276     Select *pSelect;  /* A SELECT statement used in place of a table name */
2277     int addrFillSub;  /* Address of subroutine to manifest a subquery */
2278     int regReturn;    /* Register holding return address of addrFillSub */
2279     int regResult;    /* Registers holding results of a co-routine */
2280     u8 jointype;      /* Type of join between this able and the previous */
2281     unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
2282     unsigned isCorrelated :1;  /* True if sub-query is correlated */
2283     unsigned viaCoroutine :1;  /* Implemented as a co-routine */
2284     unsigned isRecursive :1;   /* True for recursive reference in WITH */
2285 #ifndef SQLITE_OMIT_EXPLAIN
2286     u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
2287 #endif
2288     int iCursor;      /* The VDBE cursor number used to access this table */
2289     Expr *pOn;        /* The ON clause of a join */
2290     IdList *pUsing;   /* The USING clause of a join */
2291     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
2292     char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */
2293     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
2294   } a[1];             /* One entry for each identifier on the list */
2295 };
2296 
2297 /*
2298 ** Permitted values of the SrcList.a.jointype field
2299 */
2300 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
2301 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
2302 #define JT_NATURAL   0x0004    /* True for a "natural" join */
2303 #define JT_LEFT      0x0008    /* Left outer join */
2304 #define JT_RIGHT     0x0010    /* Right outer join */
2305 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
2306 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
2307 
2308 
2309 /*
2310 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
2311 ** and the WhereInfo.wctrlFlags member.
2312 */
2313 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
2314 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
2315 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
2316 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
2317 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
2318 #define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
2319 #define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
2320 #define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
2321 #define WHERE_NO_AUTOINDEX     0x0080 /* Disallow automatic indexes */
2322 #define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
2323 #define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
2324 #define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
2325 #define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
2326 #define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */
2327 
2328 /* Allowed return values from sqlite3WhereIsDistinct()
2329 */
2330 #define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
2331 #define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
2332 #define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
2333 #define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
2334 
2335 /*
2336 ** A NameContext defines a context in which to resolve table and column
2337 ** names.  The context consists of a list of tables (the pSrcList) field and
2338 ** a list of named expression (pEList).  The named expression list may
2339 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
2340 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
2341 ** pEList corresponds to the result set of a SELECT and is NULL for
2342 ** other statements.
2343 **
2344 ** NameContexts can be nested.  When resolving names, the inner-most
2345 ** context is searched first.  If no match is found, the next outer
2346 ** context is checked.  If there is still no match, the next context
2347 ** is checked.  This process continues until either a match is found
2348 ** or all contexts are check.  When a match is found, the nRef member of
2349 ** the context containing the match is incremented.
2350 **
2351 ** Each subquery gets a new NameContext.  The pNext field points to the
2352 ** NameContext in the parent query.  Thus the process of scanning the
2353 ** NameContext list corresponds to searching through successively outer
2354 ** subqueries looking for a match.
2355 */
2356 struct NameContext {
2357   Parse *pParse;       /* The parser */
2358   SrcList *pSrcList;   /* One or more tables used to resolve names */
2359   ExprList *pEList;    /* Optional list of result-set columns */
2360   AggInfo *pAggInfo;   /* Information about aggregates at this level */
2361   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
2362   int nRef;            /* Number of names resolved by this context */
2363   int nErr;            /* Number of errors encountered while resolving names */
2364   u16 ncFlags;         /* Zero or more NC_* flags defined below */
2365 };
2366 
2367 /*
2368 ** Allowed values for the NameContext, ncFlags field.
2369 **
2370 ** Note:  NC_MinMaxAgg must have the same value as SF_MinMaxAgg and
2371 ** SQLITE_FUNC_MINMAX.
2372 **
2373 */
2374 #define NC_AllowAgg  0x0001  /* Aggregate functions are allowed here */
2375 #define NC_HasAgg    0x0002  /* One or more aggregate functions seen */
2376 #define NC_IsCheck   0x0004  /* True if resolving names in a CHECK constraint */
2377 #define NC_InAggFunc 0x0008  /* True if analyzing arguments to an agg func */
2378 #define NC_PartIdx   0x0010  /* True if resolving a partial index WHERE */
2379 #define NC_MinMaxAgg 0x1000  /* min/max aggregates seen.  See note above */
2380 
2381 /*
2382 ** An instance of the following structure contains all information
2383 ** needed to generate code for a single SELECT statement.
2384 **
2385 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
2386 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
2387 ** limit and nOffset to the value of the offset (or 0 if there is not
2388 ** offset).  But later on, nLimit and nOffset become the memory locations
2389 ** in the VDBE that record the limit and offset counters.
2390 **
2391 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
2392 ** These addresses must be stored so that we can go back and fill in
2393 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
2394 ** the number of columns in P2 can be computed at the same time
2395 ** as the OP_OpenEphm instruction is coded because not
2396 ** enough information about the compound query is known at that point.
2397 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2398 ** for the result set.  The KeyInfo for addrOpenEphm[2] contains collating
2399 ** sequences for the ORDER BY clause.
2400 */
2401 struct Select {
2402   ExprList *pEList;      /* The fields of the result */
2403   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2404   u16 selFlags;          /* Various SF_* values */
2405   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2406 #if SELECTTRACE_ENABLED
2407   char zSelName[12];     /* Symbolic name of this SELECT use for debugging */
2408 #endif
2409   int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
2410   u64 nSelectRow;        /* Estimated number of result rows */
2411   SrcList *pSrc;         /* The FROM clause */
2412   Expr *pWhere;          /* The WHERE clause */
2413   ExprList *pGroupBy;    /* The GROUP BY clause */
2414   Expr *pHaving;         /* The HAVING clause */
2415   ExprList *pOrderBy;    /* The ORDER BY clause */
2416   Select *pPrior;        /* Prior select in a compound select statement */
2417   Select *pNext;         /* Next select to the left in a compound */
2418   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2419   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2420   With *pWith;           /* WITH clause attached to this select. Or NULL. */
2421 };
2422 
2423 /*
2424 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
2425 ** "Select Flag".
2426 */
2427 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
2428 #define SF_All             0x0002  /* Includes the ALL keyword */
2429 #define SF_Resolved        0x0004  /* Identifiers have been resolved */
2430 #define SF_Aggregate       0x0008  /* Contains aggregate functions */
2431 #define SF_UsesEphemeral   0x0010  /* Uses the OpenEphemeral opcode */
2432 #define SF_Expanded        0x0020  /* sqlite3SelectExpand() called on this */
2433 #define SF_HasTypeInfo     0x0040  /* FROM subqueries have Table metadata */
2434 #define SF_Compound        0x0080  /* Part of a compound query */
2435 #define SF_Values          0x0100  /* Synthesized from VALUES clause */
2436 #define SF_MultiValue      0x0200  /* Single VALUES term with multiple rows */
2437 #define SF_NestedFrom      0x0400  /* Part of a parenthesized FROM clause */
2438 #define SF_MaybeConvert    0x0800  /* Need convertCompoundSelectToSubquery() */
2439 #define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */
2440 #define SF_Recursive       0x2000  /* The recursive part of a recursive CTE */
2441 #define SF_Converted       0x4000  /* By convertCompoundSelectToSubquery() */
2442 
2443 
2444 /*
2445 ** The results of a SELECT can be distributed in several ways, as defined
2446 ** by one of the following macros.  The "SRT" prefix means "SELECT Result
2447 ** Type".
2448 **
2449 **     SRT_Union       Store results as a key in a temporary index
2450 **                     identified by pDest->iSDParm.
2451 **
2452 **     SRT_Except      Remove results from the temporary index pDest->iSDParm.
2453 **
2454 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
2455 **                     set is not empty.
2456 **
2457 **     SRT_Discard     Throw the results away.  This is used by SELECT
2458 **                     statements within triggers whose only purpose is
2459 **                     the side-effects of functions.
2460 **
2461 ** All of the above are free to ignore their ORDER BY clause. Those that
2462 ** follow must honor the ORDER BY clause.
2463 **
2464 **     SRT_Output      Generate a row of output (using the OP_ResultRow
2465 **                     opcode) for each row in the result set.
2466 **
2467 **     SRT_Mem         Only valid if the result is a single column.
2468 **                     Store the first column of the first result row
2469 **                     in register pDest->iSDParm then abandon the rest
2470 **                     of the query.  This destination implies "LIMIT 1".
2471 **
2472 **     SRT_Set         The result must be a single column.  Store each
2473 **                     row of result as the key in table pDest->iSDParm.
2474 **                     Apply the affinity pDest->affSdst before storing
2475 **                     results.  Used to implement "IN (SELECT ...)".
2476 **
2477 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
2478 **                     the result there. The cursor is left open after
2479 **                     returning.  This is like SRT_Table except that
2480 **                     this destination uses OP_OpenEphemeral to create
2481 **                     the table first.
2482 **
2483 **     SRT_Coroutine   Generate a co-routine that returns a new row of
2484 **                     results each time it is invoked.  The entry point
2485 **                     of the co-routine is stored in register pDest->iSDParm
2486 **                     and the result row is stored in pDest->nDest registers
2487 **                     starting with pDest->iSdst.
2488 **
2489 **     SRT_Table       Store results in temporary table pDest->iSDParm.
2490 **     SRT_Fifo        This is like SRT_EphemTab except that the table
2491 **                     is assumed to already be open.  SRT_Fifo has
2492 **                     the additional property of being able to ignore
2493 **                     the ORDER BY clause.
2494 **
2495 **     SRT_DistFifo    Store results in a temporary table pDest->iSDParm.
2496 **                     But also use temporary table pDest->iSDParm+1 as
2497 **                     a record of all prior results and ignore any duplicate
2498 **                     rows.  Name means:  "Distinct Fifo".
2499 **
2500 **     SRT_Queue       Store results in priority queue pDest->iSDParm (really
2501 **                     an index).  Append a sequence number so that all entries
2502 **                     are distinct.
2503 **
2504 **     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
2505 **                     the same record has never been stored before.  The
2506 **                     index at pDest->iSDParm+1 hold all prior stores.
2507 */
2508 #define SRT_Union        1  /* Store result as keys in an index */
2509 #define SRT_Except       2  /* Remove result from a UNION index */
2510 #define SRT_Exists       3  /* Store 1 if the result is not empty */
2511 #define SRT_Discard      4  /* Do not save the results anywhere */
2512 #define SRT_Fifo         5  /* Store result as data with an automatic rowid */
2513 #define SRT_DistFifo     6  /* Like SRT_Fifo, but unique results only */
2514 #define SRT_Queue        7  /* Store result in an queue */
2515 #define SRT_DistQueue    8  /* Like SRT_Queue, but unique results only */
2516 
2517 /* The ORDER BY clause is ignored for all of the above */
2518 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)
2519 
2520 #define SRT_Output       9  /* Output each row of result */
2521 #define SRT_Mem         10  /* Store result in a memory cell */
2522 #define SRT_Set         11  /* Store results as keys in an index */
2523 #define SRT_EphemTab    12  /* Create transient tab and store like SRT_Table */
2524 #define SRT_Coroutine   13  /* Generate a single row of result */
2525 #define SRT_Table       14  /* Store result as data with an automatic rowid */
2526 
2527 /*
2528 ** An instance of this object describes where to put of the results of
2529 ** a SELECT statement.
2530 */
2531 struct SelectDest {
2532   u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
2533   char affSdst;        /* Affinity used when eDest==SRT_Set */
2534   int iSDParm;         /* A parameter used by the eDest disposal method */
2535   int iSdst;           /* Base register where results are written */
2536   int nSdst;           /* Number of registers allocated */
2537   ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
2538 };
2539 
2540 /*
2541 ** During code generation of statements that do inserts into AUTOINCREMENT
2542 ** tables, the following information is attached to the Table.u.autoInc.p
2543 ** pointer of each autoincrement table to record some side information that
2544 ** the code generator needs.  We have to keep per-table autoincrement
2545 ** information in case inserts are down within triggers.  Triggers do not
2546 ** normally coordinate their activities, but we do need to coordinate the
2547 ** loading and saving of autoincrement information.
2548 */
2549 struct AutoincInfo {
2550   AutoincInfo *pNext;   /* Next info block in a list of them all */
2551   Table *pTab;          /* Table this info block refers to */
2552   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2553   int regCtr;           /* Memory register holding the rowid counter */
2554 };
2555 
2556 /*
2557 ** Size of the column cache
2558 */
2559 #ifndef SQLITE_N_COLCACHE
2560 # define SQLITE_N_COLCACHE 10
2561 #endif
2562 
2563 /*
2564 ** At least one instance of the following structure is created for each
2565 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2566 ** statement. All such objects are stored in the linked list headed at
2567 ** Parse.pTriggerPrg and deleted once statement compilation has been
2568 ** completed.
2569 **
2570 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2571 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2572 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2573 ** The Parse.pTriggerPrg list never contains two entries with the same
2574 ** values for both pTrigger and orconf.
2575 **
2576 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2577 ** accessed (or set to 0 for triggers fired as a result of INSERT
2578 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2579 ** a mask of new.* columns used by the program.
2580 */
2581 struct TriggerPrg {
2582   Trigger *pTrigger;      /* Trigger this program was coded from */
2583   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2584   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2585   int orconf;             /* Default ON CONFLICT policy */
2586   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2587 };
2588 
2589 /*
2590 ** The yDbMask datatype for the bitmask of all attached databases.
2591 */
2592 #if SQLITE_MAX_ATTACHED>30
2593   typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
2594 # define DbMaskTest(M,I)    (((M)[(I)/8]&(1<<((I)&7)))!=0)
2595 # define DbMaskZero(M)      memset((M),0,sizeof(M))
2596 # define DbMaskSet(M,I)     (M)[(I)/8]|=(1<<((I)&7))
2597 # define DbMaskAllZero(M)   sqlite3DbMaskAllZero(M)
2598 # define DbMaskNonZero(M)   (sqlite3DbMaskAllZero(M)==0)
2599 #else
2600   typedef unsigned int yDbMask;
2601 # define DbMaskTest(M,I)    (((M)&(((yDbMask)1)<<(I)))!=0)
2602 # define DbMaskZero(M)      (M)=0
2603 # define DbMaskSet(M,I)     (M)|=(((yDbMask)1)<<(I))
2604 # define DbMaskAllZero(M)   (M)==0
2605 # define DbMaskNonZero(M)   (M)!=0
2606 #endif
2607 
2608 /*
2609 ** An SQL parser context.  A copy of this structure is passed through
2610 ** the parser and down into all the parser action routine in order to
2611 ** carry around information that is global to the entire parse.
2612 **
2613 ** The structure is divided into two parts.  When the parser and code
2614 ** generate call themselves recursively, the first part of the structure
2615 ** is constant but the second part is reset at the beginning and end of
2616 ** each recursion.
2617 **
2618 ** The nTableLock and aTableLock variables are only used if the shared-cache
2619 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2620 ** used to store the set of table-locks required by the statement being
2621 ** compiled. Function sqlite3TableLock() is used to add entries to the
2622 ** list.
2623 */
2624 struct Parse {
2625   sqlite3 *db;         /* The main database structure */
2626   char *zErrMsg;       /* An error message */
2627   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2628   int rc;              /* Return code from execution */
2629   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2630   u8 checkSchema;      /* Causes schema cookie check after an error */
2631   u8 nested;           /* Number of nested calls to the parser/code generator */
2632   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2633   u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
2634   u8 mayAbort;         /* True if statement may throw an ABORT exception */
2635   u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
2636   u8 okConstFactor;    /* OK to factor out constants */
2637   int aTempReg[8];     /* Holding area for temporary registers */
2638   int nRangeReg;       /* Size of the temporary register block */
2639   int iRangeReg;       /* First register in temporary register block */
2640   int nErr;            /* Number of errors seen */
2641   int nTab;            /* Number of previously allocated VDBE cursors */
2642   int nMem;            /* Number of memory cells used so far */
2643   int nSet;            /* Number of sets used so far */
2644   int nOnce;           /* Number of OP_Once instructions so far */
2645   int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */
2646   int iFixedOp;        /* Never back out opcodes iFixedOp-1 or earlier */
2647   int ckBase;          /* Base register of data during check constraints */
2648   int iPartIdxTab;     /* Table corresponding to a partial index */
2649   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2650   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2651   int nLabel;          /* Number of labels used */
2652   int *aLabel;         /* Space to hold the labels */
2653   struct yColCache {
2654     int iTable;           /* Table cursor number */
2655     i16 iColumn;          /* Table column number */
2656     u8 tempReg;           /* iReg is a temp register that needs to be freed */
2657     int iLevel;           /* Nesting level */
2658     int iReg;             /* Reg with value of this column. 0 means none. */
2659     int lru;              /* Least recently used entry has the smallest value */
2660   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2661   ExprList *pConstExpr;/* Constant expressions */
2662   Token constraintName;/* Name of the constraint currently being parsed */
2663   yDbMask writeMask;   /* Start a write transaction on these databases */
2664   yDbMask cookieMask;  /* Bitmask of schema verified databases */
2665   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2666   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2667   int regRoot;         /* Register holding root page number for new objects */
2668   int nMaxArg;         /* Max args passed to user function by sub-program */
2669 #if SELECTTRACE_ENABLED
2670   int nSelect;         /* Number of SELECT statements seen */
2671   int nSelectIndent;   /* How far to indent SELECTTRACE() output */
2672 #endif
2673 #ifndef SQLITE_OMIT_SHARED_CACHE
2674   int nTableLock;        /* Number of locks in aTableLock */
2675   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2676 #endif
2677   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2678 
2679   /* Information used while coding trigger programs. */
2680   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
2681   Table *pTriggerTab;  /* Table triggers are being coded for */
2682   int addrCrTab;       /* Address of OP_CreateTable opcode on CREATE TABLE */
2683   u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
2684   u32 oldmask;         /* Mask of old.* columns referenced */
2685   u32 newmask;         /* Mask of new.* columns referenced */
2686   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
2687   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
2688   u8 disableTriggers;  /* True to disable triggers */
2689 
2690   /************************************************************************
2691   ** Above is constant between recursions.  Below is reset before and after
2692   ** each recursion.  The boundary between these two regions is determined
2693   ** using offsetof(Parse,nVar) so the nVar field must be the first field
2694   ** in the recursive region.
2695   ************************************************************************/
2696 
2697   int nVar;                 /* Number of '?' variables seen in the SQL so far */
2698   int nzVar;                /* Number of available slots in azVar[] */
2699   u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
2700   u8 bFreeWith;             /* True if pWith should be freed with parser */
2701   u8 explain;               /* True if the EXPLAIN flag is found on the query */
2702 #ifndef SQLITE_OMIT_VIRTUALTABLE
2703   u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
2704   int nVtabLock;            /* Number of virtual tables to lock */
2705 #endif
2706   int nAlias;               /* Number of aliased result set columns */
2707   int nHeight;              /* Expression tree height of current sub-select */
2708 #ifndef SQLITE_OMIT_EXPLAIN
2709   int iSelectId;            /* ID of current select for EXPLAIN output */
2710   int iNextSelectId;        /* Next available select ID for EXPLAIN output */
2711 #endif
2712   char **azVar;             /* Pointers to names of parameters */
2713   Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
2714   const char *zTail;        /* All SQL text past the last semicolon parsed */
2715   Table *pNewTable;         /* A table being constructed by CREATE TABLE */
2716   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2717   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2718   Token sNameToken;         /* Token with unqualified schema object name */
2719   Token sLastToken;         /* The last token parsed */
2720 #ifndef SQLITE_OMIT_VIRTUALTABLE
2721   Token sArg;               /* Complete text of a module argument */
2722   Table **apVtabLock;       /* Pointer to virtual tables needing locking */
2723 #endif
2724   Table *pZombieTab;        /* List of Table objects to delete after code gen */
2725   TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
2726   With *pWith;              /* Current WITH clause, or NULL */
2727 };
2728 
2729 /*
2730 ** Return true if currently inside an sqlite3_declare_vtab() call.
2731 */
2732 #ifdef SQLITE_OMIT_VIRTUALTABLE
2733   #define IN_DECLARE_VTAB 0
2734 #else
2735   #define IN_DECLARE_VTAB (pParse->declareVtab)
2736 #endif
2737 
2738 /*
2739 ** An instance of the following structure can be declared on a stack and used
2740 ** to save the Parse.zAuthContext value so that it can be restored later.
2741 */
2742 struct AuthContext {
2743   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2744   Parse *pParse;              /* The Parse structure */
2745 };
2746 
2747 /*
2748 ** Bitfield flags for P5 value in various opcodes.
2749 */
2750 #define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
2751 #define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
2752 #define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
2753 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
2754 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
2755 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
2756 #define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
2757 #define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
2758 #define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
2759 #define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
2760 #define OPFLAG_P2ISREG       0x04    /* P2 to OP_Open** is a register number */
2761 #define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
2762 
2763 /*
2764  * Each trigger present in the database schema is stored as an instance of
2765  * struct Trigger.
2766  *
2767  * Pointers to instances of struct Trigger are stored in two ways.
2768  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2769  *    database). This allows Trigger structures to be retrieved by name.
2770  * 2. All triggers associated with a single table form a linked list, using the
2771  *    pNext member of struct Trigger. A pointer to the first element of the
2772  *    linked list is stored as the "pTrigger" member of the associated
2773  *    struct Table.
2774  *
2775  * The "step_list" member points to the first element of a linked list
2776  * containing the SQL statements specified as the trigger program.
2777  */
2778 struct Trigger {
2779   char *zName;            /* The name of the trigger                        */
2780   char *table;            /* The table or view to which the trigger applies */
2781   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2782   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2783   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2784   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2785                              the <column-list> is stored here */
2786   Schema *pSchema;        /* Schema containing the trigger */
2787   Schema *pTabSchema;     /* Schema containing the table */
2788   TriggerStep *step_list; /* Link list of trigger program steps             */
2789   Trigger *pNext;         /* Next trigger associated with the table */
2790 };
2791 
2792 /*
2793 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2794 ** determine which.
2795 **
2796 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2797 ** In that cases, the constants below can be ORed together.
2798 */
2799 #define TRIGGER_BEFORE  1
2800 #define TRIGGER_AFTER   2
2801 
2802 /*
2803  * An instance of struct TriggerStep is used to store a single SQL statement
2804  * that is a part of a trigger-program.
2805  *
2806  * Instances of struct TriggerStep are stored in a singly linked list (linked
2807  * using the "pNext" member) referenced by the "step_list" member of the
2808  * associated struct Trigger instance. The first element of the linked list is
2809  * the first step of the trigger-program.
2810  *
2811  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2812  * "SELECT" statement. The meanings of the other members is determined by the
2813  * value of "op" as follows:
2814  *
2815  * (op == TK_INSERT)
2816  * orconf    -> stores the ON CONFLICT algorithm
2817  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2818  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2819  * zTarget   -> Dequoted name of the table to insert into.
2820  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2821  *              this stores values to be inserted. Otherwise NULL.
2822  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2823  *              statement, then this stores the column-names to be
2824  *              inserted into.
2825  *
2826  * (op == TK_DELETE)
2827  * zTarget   -> Dequoted name of the table to delete from.
2828  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2829  *              Otherwise NULL.
2830  *
2831  * (op == TK_UPDATE)
2832  * zTarget   -> Dequoted name of the table to update.
2833  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2834  *              Otherwise NULL.
2835  * pExprList -> A list of the columns to update and the expressions to update
2836  *              them to. See sqlite3Update() documentation of "pChanges"
2837  *              argument.
2838  *
2839  */
2840 struct TriggerStep {
2841   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2842   u8 orconf;           /* OE_Rollback etc. */
2843   Trigger *pTrig;      /* The trigger that this step is a part of */
2844   Select *pSelect;     /* SELECT statement or RHS of INSERT INTO SELECT ... */
2845   char *zTarget;       /* Target table for DELETE, UPDATE, INSERT */
2846   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2847   ExprList *pExprList; /* SET clause for UPDATE. */
2848   IdList *pIdList;     /* Column names for INSERT */
2849   TriggerStep *pNext;  /* Next in the link-list */
2850   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2851 };
2852 
2853 /*
2854 ** The following structure contains information used by the sqliteFix...
2855 ** routines as they walk the parse tree to make database references
2856 ** explicit.
2857 */
2858 typedef struct DbFixer DbFixer;
2859 struct DbFixer {
2860   Parse *pParse;      /* The parsing context.  Error messages written here */
2861   Schema *pSchema;    /* Fix items to this schema */
2862   int bVarOnly;       /* Check for variable references only */
2863   const char *zDb;    /* Make sure all objects are contained in this database */
2864   const char *zType;  /* Type of the container - used for error messages */
2865   const Token *pName; /* Name of the container - used for error messages */
2866 };
2867 
2868 /*
2869 ** An objected used to accumulate the text of a string where we
2870 ** do not necessarily know how big the string will be in the end.
2871 */
2872 struct StrAccum {
2873   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2874   char *zBase;         /* A base allocation.  Not from malloc. */
2875   char *zText;         /* The string collected so far */
2876   int  nChar;          /* Length of the string so far */
2877   int  nAlloc;         /* Amount of space allocated in zText */
2878   int  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
2879   u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
2880 };
2881 #define STRACCUM_NOMEM   1
2882 #define STRACCUM_TOOBIG  2
2883 
2884 /*
2885 ** A pointer to this structure is used to communicate information
2886 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2887 */
2888 typedef struct {
2889   sqlite3 *db;        /* The database being initialized */
2890   char **pzErrMsg;    /* Error message stored here */
2891   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2892   int rc;             /* Result code stored here */
2893 } InitData;
2894 
2895 /*
2896 ** Structure containing global configuration data for the SQLite library.
2897 **
2898 ** This structure also contains some state information.
2899 */
2900 struct Sqlite3Config {
2901   int bMemstat;                     /* True to enable memory status */
2902   int bCoreMutex;                   /* True to enable core mutexing */
2903   int bFullMutex;                   /* True to enable full mutexing */
2904   int bOpenUri;                     /* True to interpret filenames as URIs */
2905   int bUseCis;                      /* Use covering indices for full-scans */
2906   int mxStrlen;                     /* Maximum string length */
2907   int neverCorrupt;                 /* Database is always well-formed */
2908   int szLookaside;                  /* Default lookaside buffer size */
2909   int nLookaside;                   /* Default lookaside buffer count */
2910   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2911   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2912   sqlite3_pcache_methods2 pcache2;  /* Low-level page-cache interface */
2913   void *pHeap;                      /* Heap storage space */
2914   int nHeap;                        /* Size of pHeap[] */
2915   int mnReq, mxReq;                 /* Min and max heap requests sizes */
2916   sqlite3_int64 szMmap;             /* mmap() space per open file */
2917   sqlite3_int64 mxMmap;             /* Maximum value for szMmap */
2918   void *pScratch;                   /* Scratch memory */
2919   int szScratch;                    /* Size of each scratch buffer */
2920   int nScratch;                     /* Number of scratch buffers */
2921   void *pPage;                      /* Page cache memory */
2922   int szPage;                       /* Size of each page in pPage[] */
2923   int nPage;                        /* Number of pages in pPage[] */
2924   int mxParserStack;                /* maximum depth of the parser stack */
2925   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2926   u32 szPma;                        /* Maximum Sorter PMA size */
2927   /* The above might be initialized to non-zero.  The following need to always
2928   ** initially be zero, however. */
2929   int isInit;                       /* True after initialization has finished */
2930   int inProgress;                   /* True while initialization in progress */
2931   int isMutexInit;                  /* True after mutexes are initialized */
2932   int isMallocInit;                 /* True after malloc is initialized */
2933   int isPCacheInit;                 /* True after malloc is initialized */
2934   int nRefInitMutex;                /* Number of users of pInitMutex */
2935   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2936   void (*xLog)(void*,int,const char*); /* Function for logging */
2937   void *pLogArg;                       /* First argument to xLog() */
2938 #ifdef SQLITE_ENABLE_SQLLOG
2939   void(*xSqllog)(void*,sqlite3*,const char*, int);
2940   void *pSqllogArg;
2941 #endif
2942 #ifdef SQLITE_VDBE_COVERAGE
2943   /* The following callback (if not NULL) is invoked on every VDBE branch
2944   ** operation.  Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
2945   */
2946   void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx);  /* Callback */
2947   void *pVdbeBranchArg;                                     /* 1st argument */
2948 #endif
2949 #ifndef SQLITE_OMIT_BUILTIN_TEST
2950   int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
2951 #endif
2952   int bLocaltimeFault;              /* True to fail localtime() calls */
2953 };
2954 
2955 /*
2956 ** This macro is used inside of assert() statements to indicate that
2957 ** the assert is only valid on a well-formed database.  Instead of:
2958 **
2959 **     assert( X );
2960 **
2961 ** One writes:
2962 **
2963 **     assert( X || CORRUPT_DB );
2964 **
2965 ** CORRUPT_DB is true during normal operation.  CORRUPT_DB does not indicate
2966 ** that the database is definitely corrupt, only that it might be corrupt.
2967 ** For most test cases, CORRUPT_DB is set to false using a special
2968 ** sqlite3_test_control().  This enables assert() statements to prove
2969 ** things that are always true for well-formed databases.
2970 */
2971 #define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)
2972 
2973 /*
2974 ** Context pointer passed down through the tree-walk.
2975 */
2976 struct Walker {
2977   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2978   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2979   void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
2980   Parse *pParse;                            /* Parser context.  */
2981   int walkerDepth;                          /* Number of subqueries */
2982   u8 eCode;                                 /* A small processing code */
2983   union {                                   /* Extra data for callback */
2984     NameContext *pNC;                          /* Naming context */
2985     int n;                                     /* A counter */
2986     int iCur;                                  /* A cursor number */
2987     SrcList *pSrcList;                         /* FROM clause */
2988     struct SrcCount *pSrcCount;                /* Counting column references */
2989   } u;
2990 };
2991 
2992 /* Forward declarations */
2993 int sqlite3WalkExpr(Walker*, Expr*);
2994 int sqlite3WalkExprList(Walker*, ExprList*);
2995 int sqlite3WalkSelect(Walker*, Select*);
2996 int sqlite3WalkSelectExpr(Walker*, Select*);
2997 int sqlite3WalkSelectFrom(Walker*, Select*);
2998 
2999 /*
3000 ** Return code from the parse-tree walking primitives and their
3001 ** callbacks.
3002 */
3003 #define WRC_Continue    0   /* Continue down into children */
3004 #define WRC_Prune       1   /* Omit children but continue walking siblings */
3005 #define WRC_Abort       2   /* Abandon the tree walk */
3006 
3007 /*
3008 ** An instance of this structure represents a set of one or more CTEs
3009 ** (common table expressions) created by a single WITH clause.
3010 */
3011 struct With {
3012   int nCte;                       /* Number of CTEs in the WITH clause */
3013   With *pOuter;                   /* Containing WITH clause, or NULL */
3014   struct Cte {                    /* For each CTE in the WITH clause.... */
3015     char *zName;                    /* Name of this CTE */
3016     ExprList *pCols;                /* List of explicit column names, or NULL */
3017     Select *pSelect;                /* The definition of this CTE */
3018     const char *zErr;               /* Error message for circular references */
3019   } a[1];
3020 };
3021 
3022 #ifdef SQLITE_DEBUG
3023 /*
3024 ** An instance of the TreeView object is used for printing the content of
3025 ** data structures on sqlite3DebugPrintf() using a tree-like view.
3026 */
3027 struct TreeView {
3028   int iLevel;             /* Which level of the tree we are on */
3029   u8  bLine[100];         /* Draw vertical in column i if bLine[i] is true */
3030 };
3031 #endif /* SQLITE_DEBUG */
3032 
3033 /*
3034 ** Assuming zIn points to the first byte of a UTF-8 character,
3035 ** advance zIn to point to the first byte of the next UTF-8 character.
3036 */
3037 #define SQLITE_SKIP_UTF8(zIn) {                        \
3038   if( (*(zIn++))>=0xc0 ){                              \
3039     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
3040   }                                                    \
3041 }
3042 
3043 /*
3044 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
3045 ** the same name but without the _BKPT suffix.  These macros invoke
3046 ** routines that report the line-number on which the error originated
3047 ** using sqlite3_log().  The routines also provide a convenient place
3048 ** to set a debugger breakpoint.
3049 */
3050 int sqlite3CorruptError(int);
3051 int sqlite3MisuseError(int);
3052 int sqlite3CantopenError(int);
3053 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
3054 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
3055 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
3056 
3057 
3058 /*
3059 ** FTS4 is really an extension for FTS3.  It is enabled using the
3060 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
3061 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
3062 */
3063 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
3064 # define SQLITE_ENABLE_FTS3 1
3065 #endif
3066 
3067 /*
3068 ** The ctype.h header is needed for non-ASCII systems.  It is also
3069 ** needed by FTS3 when FTS3 is included in the amalgamation.
3070 */
3071 #if !defined(SQLITE_ASCII) || \
3072     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
3073 # include <ctype.h>
3074 #endif
3075 
3076 /*
3077 ** The following macros mimic the standard library functions toupper(),
3078 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
3079 ** sqlite versions only work for ASCII characters, regardless of locale.
3080 */
3081 #ifdef SQLITE_ASCII
3082 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
3083 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
3084 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
3085 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
3086 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
3087 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
3088 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
3089 #else
3090 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
3091 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
3092 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
3093 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
3094 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
3095 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
3096 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
3097 #endif
3098 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
3099 int sqlite3IsIdChar(u8);
3100 #endif
3101 
3102 /*
3103 ** Internal function prototypes
3104 */
3105 #define sqlite3StrICmp sqlite3_stricmp
3106 int sqlite3Strlen30(const char*);
3107 #define sqlite3StrNICmp sqlite3_strnicmp
3108 
3109 int sqlite3MallocInit(void);
3110 void sqlite3MallocEnd(void);
3111 void *sqlite3Malloc(u64);
3112 void *sqlite3MallocZero(u64);
3113 void *sqlite3DbMallocZero(sqlite3*, u64);
3114 void *sqlite3DbMallocRaw(sqlite3*, u64);
3115 char *sqlite3DbStrDup(sqlite3*,const char*);
3116 char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
3117 void *sqlite3Realloc(void*, u64);
3118 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
3119 void *sqlite3DbRealloc(sqlite3 *, void *, u64);
3120 void sqlite3DbFree(sqlite3*, void*);
3121 int sqlite3MallocSize(void*);
3122 int sqlite3DbMallocSize(sqlite3*, void*);
3123 void *sqlite3ScratchMalloc(int);
3124 void sqlite3ScratchFree(void*);
3125 void *sqlite3PageMalloc(int);
3126 void sqlite3PageFree(void*);
3127 void sqlite3MemSetDefault(void);
3128 #ifndef SQLITE_OMIT_BUILTIN_TEST
3129 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
3130 #endif
3131 int sqlite3HeapNearlyFull(void);
3132 
3133 /*
3134 ** On systems with ample stack space and that support alloca(), make
3135 ** use of alloca() to obtain space for large automatic objects.  By default,
3136 ** obtain space from malloc().
3137 **
3138 ** The alloca() routine never returns NULL.  This will cause code paths
3139 ** that deal with sqlite3StackAlloc() failures to be unreachable.
3140 */
3141 #ifdef SQLITE_USE_ALLOCA
3142 # define sqlite3StackAllocRaw(D,N)   alloca(N)
3143 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
3144 # define sqlite3StackFree(D,P)
3145 #else
3146 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
3147 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
3148 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
3149 #endif
3150 
3151 #ifdef SQLITE_ENABLE_MEMSYS3
3152 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
3153 #endif
3154 #ifdef SQLITE_ENABLE_MEMSYS5
3155 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
3156 #endif
3157 
3158 
3159 #ifndef SQLITE_MUTEX_OMIT
3160   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
3161   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
3162   sqlite3_mutex *sqlite3MutexAlloc(int);
3163   int sqlite3MutexInit(void);
3164   int sqlite3MutexEnd(void);
3165 #endif
3166 
3167 sqlite3_int64 sqlite3StatusValue(int);
3168 void sqlite3StatusUp(int, int);
3169 void sqlite3StatusDown(int, int);
3170 void sqlite3StatusSet(int, int);
3171 
3172 /* Access to mutexes used by sqlite3_status() */
3173 sqlite3_mutex *sqlite3Pcache1Mutex(void);
3174 sqlite3_mutex *sqlite3MallocMutex(void);
3175 
3176 #ifndef SQLITE_OMIT_FLOATING_POINT
3177   int sqlite3IsNaN(double);
3178 #else
3179 # define sqlite3IsNaN(X)  0
3180 #endif
3181 
3182 /*
3183 ** An instance of the following structure holds information about SQL
3184 ** functions arguments that are the parameters to the printf() function.
3185 */
3186 struct PrintfArguments {
3187   int nArg;                /* Total number of arguments */
3188   int nUsed;               /* Number of arguments used so far */
3189   sqlite3_value **apArg;   /* The argument values */
3190 };
3191 
3192 #define SQLITE_PRINTF_INTERNAL 0x01
3193 #define SQLITE_PRINTF_SQLFUNC  0x02
3194 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list);
3195 void sqlite3XPrintf(StrAccum*, u32, const char*, ...);
3196 char *sqlite3MPrintf(sqlite3*,const char*, ...);
3197 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
3198 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
3199   void sqlite3DebugPrintf(const char*, ...);
3200 #endif
3201 #if defined(SQLITE_TEST)
3202   void *sqlite3TestTextToPtr(const char*);
3203 #endif
3204 
3205 #if defined(SQLITE_DEBUG)
3206   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
3207   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
3208   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
3209 #endif
3210 
3211 
3212 void sqlite3SetString(char **, sqlite3*, const char*);
3213 void sqlite3ErrorMsg(Parse*, const char*, ...);
3214 int sqlite3Dequote(char*);
3215 int sqlite3KeywordCode(const unsigned char*, int);
3216 int sqlite3RunParser(Parse*, const char*, char **);
3217 void sqlite3FinishCoding(Parse*);
3218 int sqlite3GetTempReg(Parse*);
3219 void sqlite3ReleaseTempReg(Parse*,int);
3220 int sqlite3GetTempRange(Parse*,int);
3221 void sqlite3ReleaseTempRange(Parse*,int,int);
3222 void sqlite3ClearTempRegCache(Parse*);
3223 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
3224 Expr *sqlite3Expr(sqlite3*,int,const char*);
3225 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
3226 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
3227 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
3228 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
3229 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
3230 void sqlite3ExprDelete(sqlite3*, Expr*);
3231 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
3232 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
3233 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
3234 void sqlite3ExprListDelete(sqlite3*, ExprList*);
3235 u32 sqlite3ExprListFlags(const ExprList*);
3236 int sqlite3Init(sqlite3*, char**);
3237 int sqlite3InitCallback(void*, int, char**, char**);
3238 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
3239 void sqlite3ResetAllSchemasOfConnection(sqlite3*);
3240 void sqlite3ResetOneSchema(sqlite3*,int);
3241 void sqlite3CollapseDatabaseArray(sqlite3*);
3242 void sqlite3BeginParse(Parse*,int);
3243 void sqlite3CommitInternalChanges(sqlite3*);
3244 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
3245 void sqlite3OpenMasterTable(Parse *, int);
3246 Index *sqlite3PrimaryKeyIndex(Table*);
3247 i16 sqlite3ColumnOfIndex(Index*, i16);
3248 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
3249 void sqlite3AddColumn(Parse*,Token*);
3250 void sqlite3AddNotNull(Parse*, int);
3251 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
3252 void sqlite3AddCheckConstraint(Parse*, Expr*);
3253 void sqlite3AddColumnType(Parse*,Token*);
3254 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
3255 void sqlite3AddCollateType(Parse*, Token*);
3256 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
3257 int sqlite3ParseUri(const char*,const char*,unsigned int*,
3258                     sqlite3_vfs**,char**,char **);
3259 Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
3260 int sqlite3CodeOnce(Parse *);
3261 
3262 #ifdef SQLITE_OMIT_BUILTIN_TEST
3263 # define sqlite3FaultSim(X) SQLITE_OK
3264 #else
3265   int sqlite3FaultSim(int);
3266 #endif
3267 
3268 Bitvec *sqlite3BitvecCreate(u32);
3269 int sqlite3BitvecTest(Bitvec*, u32);
3270 int sqlite3BitvecTestNotNull(Bitvec*, u32);
3271 int sqlite3BitvecSet(Bitvec*, u32);
3272 void sqlite3BitvecClear(Bitvec*, u32, void*);
3273 void sqlite3BitvecDestroy(Bitvec*);
3274 u32 sqlite3BitvecSize(Bitvec*);
3275 #ifndef SQLITE_OMIT_BUILTIN_TEST
3276 int sqlite3BitvecBuiltinTest(int,int*);
3277 #endif
3278 
3279 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
3280 void sqlite3RowSetClear(RowSet*);
3281 void sqlite3RowSetInsert(RowSet*, i64);
3282 int sqlite3RowSetTest(RowSet*, int iBatch, i64);
3283 int sqlite3RowSetNext(RowSet*, i64*);
3284 
3285 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
3286 
3287 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3288   int sqlite3ViewGetColumnNames(Parse*,Table*);
3289 #else
3290 # define sqlite3ViewGetColumnNames(A,B) 0
3291 #endif
3292 
3293 #if SQLITE_MAX_ATTACHED>30
3294   int sqlite3DbMaskAllZero(yDbMask);
3295 #endif
3296 void sqlite3DropTable(Parse*, SrcList*, int, int);
3297 void sqlite3CodeDropTable(Parse*, Table*, int, int);
3298 void sqlite3DeleteTable(sqlite3*, Table*);
3299 #ifndef SQLITE_OMIT_AUTOINCREMENT
3300   void sqlite3AutoincrementBegin(Parse *pParse);
3301   void sqlite3AutoincrementEnd(Parse *pParse);
3302 #else
3303 # define sqlite3AutoincrementBegin(X)
3304 # define sqlite3AutoincrementEnd(X)
3305 #endif
3306 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
3307 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
3308 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
3309 int sqlite3IdListIndex(IdList*,const char*);
3310 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
3311 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
3312 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
3313                                       Token*, Select*, Expr*, IdList*);
3314 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
3315 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
3316 void sqlite3SrcListShiftJoinType(SrcList*);
3317 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
3318 void sqlite3IdListDelete(sqlite3*, IdList*);
3319 void sqlite3SrcListDelete(sqlite3*, SrcList*);
3320 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
3321 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
3322                           Expr*, int, int);
3323 void sqlite3DropIndex(Parse*, SrcList*, int);
3324 int sqlite3Select(Parse*, Select*, SelectDest*);
3325 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
3326                          Expr*,ExprList*,u16,Expr*,Expr*);
3327 void sqlite3SelectDelete(sqlite3*, Select*);
3328 Table *sqlite3SrcListLookup(Parse*, SrcList*);
3329 int sqlite3IsReadOnly(Parse*, Table*, int);
3330 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
3331 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
3332 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
3333 #endif
3334 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
3335 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
3336 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
3337 void sqlite3WhereEnd(WhereInfo*);
3338 u64 sqlite3WhereOutputRowCount(WhereInfo*);
3339 int sqlite3WhereIsDistinct(WhereInfo*);
3340 int sqlite3WhereIsOrdered(WhereInfo*);
3341 int sqlite3WhereIsSorted(WhereInfo*);
3342 int sqlite3WhereContinueLabel(WhereInfo*);
3343 int sqlite3WhereBreakLabel(WhereInfo*);
3344 int sqlite3WhereOkOnePass(WhereInfo*, int*);
3345 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
3346 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
3347 void sqlite3ExprCodeMove(Parse*, int, int, int);
3348 void sqlite3ExprCacheStore(Parse*, int, int, int);
3349 void sqlite3ExprCachePush(Parse*);
3350 void sqlite3ExprCachePop(Parse*);
3351 void sqlite3ExprCacheRemove(Parse*, int, int);
3352 void sqlite3ExprCacheClear(Parse*);
3353 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
3354 void sqlite3ExprCode(Parse*, Expr*, int);
3355 void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
3356 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
3357 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
3358 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
3359 void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
3360 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8);
3361 #define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
3362 #define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
3363 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
3364 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
3365 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int);
3366 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
3367 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
3368 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
3369 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
3370 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
3371 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
3372 void sqlite3Vacuum(Parse*);
3373 int sqlite3RunVacuum(char**, sqlite3*);
3374 char *sqlite3NameFromToken(sqlite3*, Token*);
3375 int sqlite3ExprCompare(Expr*, Expr*, int);
3376 int sqlite3ExprListCompare(ExprList*, ExprList*, int);
3377 int sqlite3ExprImpliesExpr(Expr*, Expr*, int);
3378 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
3379 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
3380 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
3381 Vdbe *sqlite3GetVdbe(Parse*);
3382 #ifndef SQLITE_OMIT_BUILTIN_TEST
3383 void sqlite3PrngSaveState(void);
3384 void sqlite3PrngRestoreState(void);
3385 #endif
3386 void sqlite3RollbackAll(sqlite3*,int);
3387 void sqlite3CodeVerifySchema(Parse*, int);
3388 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
3389 void sqlite3BeginTransaction(Parse*, int);
3390 void sqlite3CommitTransaction(Parse*);
3391 void sqlite3RollbackTransaction(Parse*);
3392 void sqlite3Savepoint(Parse*, int, Token*);
3393 void sqlite3CloseSavepoints(sqlite3 *);
3394 void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
3395 int sqlite3ExprIsConstant(Expr*);
3396 int sqlite3ExprIsConstantNotJoin(Expr*);
3397 int sqlite3ExprIsConstantOrFunction(Expr*, u8);
3398 int sqlite3ExprIsTableConstant(Expr*,int);
3399 int sqlite3ExprIsInteger(Expr*, int*);
3400 int sqlite3ExprCanBeNull(const Expr*);
3401 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
3402 int sqlite3IsRowid(const char*);
3403 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
3404 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
3405 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
3406 void sqlite3ResolvePartIdxLabel(Parse*,int);
3407 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
3408                                      u8,u8,int,int*);
3409 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
3410 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
3411 void sqlite3BeginWriteOperation(Parse*, int, int);
3412 void sqlite3MultiWrite(Parse*);
3413 void sqlite3MayAbort(Parse*);
3414 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
3415 void sqlite3UniqueConstraint(Parse*, int, Index*);
3416 void sqlite3RowidConstraint(Parse*, int, Table*);
3417 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
3418 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
3419 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
3420 IdList *sqlite3IdListDup(sqlite3*,IdList*);
3421 Select *sqlite3SelectDup(sqlite3*,Select*,int);
3422 #if SELECTTRACE_ENABLED
3423 void sqlite3SelectSetName(Select*,const char*);
3424 #else
3425 # define sqlite3SelectSetName(A,B)
3426 #endif
3427 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
3428 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
3429 void sqlite3RegisterBuiltinFunctions(sqlite3*);
3430 void sqlite3RegisterDateTimeFunctions(void);
3431 void sqlite3RegisterGlobalFunctions(void);
3432 int sqlite3SafetyCheckOk(sqlite3*);
3433 int sqlite3SafetyCheckSickOrOk(sqlite3*);
3434 void sqlite3ChangeCookie(Parse*, int);
3435 
3436 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
3437 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
3438 #endif
3439 
3440 #ifndef SQLITE_OMIT_TRIGGER
3441   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
3442                            Expr*,int, int);
3443   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
3444   void sqlite3DropTrigger(Parse*, SrcList*, int);
3445   void sqlite3DropTriggerPtr(Parse*, Trigger*);
3446   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
3447   Trigger *sqlite3TriggerList(Parse *, Table *);
3448   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
3449                             int, int, int);
3450   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
3451   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
3452   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
3453   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
3454   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
3455                                         Select*,u8);
3456   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
3457   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
3458   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
3459   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
3460   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
3461 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
3462 #else
3463 # define sqlite3TriggersExist(B,C,D,E,F) 0
3464 # define sqlite3DeleteTrigger(A,B)
3465 # define sqlite3DropTriggerPtr(A,B)
3466 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
3467 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
3468 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
3469 # define sqlite3TriggerList(X, Y) 0
3470 # define sqlite3ParseToplevel(p) p
3471 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
3472 #endif
3473 
3474 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
3475 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
3476 void sqlite3DeferForeignKey(Parse*, int);
3477 #ifndef SQLITE_OMIT_AUTHORIZATION
3478   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
3479   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
3480   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
3481   void sqlite3AuthContextPop(AuthContext*);
3482   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
3483 #else
3484 # define sqlite3AuthRead(a,b,c,d)
3485 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
3486 # define sqlite3AuthContextPush(a,b,c)
3487 # define sqlite3AuthContextPop(a)  ((void)(a))
3488 #endif
3489 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
3490 void sqlite3Detach(Parse*, Expr*);
3491 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
3492 int sqlite3FixSrcList(DbFixer*, SrcList*);
3493 int sqlite3FixSelect(DbFixer*, Select*);
3494 int sqlite3FixExpr(DbFixer*, Expr*);
3495 int sqlite3FixExprList(DbFixer*, ExprList*);
3496 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
3497 int sqlite3AtoF(const char *z, double*, int, u8);
3498 int sqlite3GetInt32(const char *, int*);
3499 int sqlite3Atoi(const char*);
3500 int sqlite3Utf16ByteLen(const void *pData, int nChar);
3501 int sqlite3Utf8CharLen(const char *pData, int nByte);
3502 u32 sqlite3Utf8Read(const u8**);
3503 LogEst sqlite3LogEst(u64);
3504 LogEst sqlite3LogEstAdd(LogEst,LogEst);
3505 #ifndef SQLITE_OMIT_VIRTUALTABLE
3506 LogEst sqlite3LogEstFromDouble(double);
3507 #endif
3508 u64 sqlite3LogEstToInt(LogEst);
3509 
3510 /*
3511 ** Routines to read and write variable-length integers.  These used to
3512 ** be defined locally, but now we use the varint routines in the util.c
3513 ** file.
3514 */
3515 int sqlite3PutVarint(unsigned char*, u64);
3516 u8 sqlite3GetVarint(const unsigned char *, u64 *);
3517 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
3518 int sqlite3VarintLen(u64 v);
3519 
3520 /*
3521 ** The common case is for a varint to be a single byte.  They following
3522 ** macros handle the common case without a procedure call, but then call
3523 ** the procedure for larger varints.
3524 */
3525 #define getVarint32(A,B)  \
3526   (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
3527 #define putVarint32(A,B)  \
3528   (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
3529   sqlite3PutVarint((A),(B)))
3530 #define getVarint    sqlite3GetVarint
3531 #define putVarint    sqlite3PutVarint
3532 
3533 
3534 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
3535 void sqlite3TableAffinity(Vdbe*, Table*, int);
3536 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
3537 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
3538 char sqlite3ExprAffinity(Expr *pExpr);
3539 int sqlite3Atoi64(const char*, i64*, int, u8);
3540 int sqlite3DecOrHexToI64(const char*, i64*);
3541 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
3542 void sqlite3Error(sqlite3*,int);
3543 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
3544 u8 sqlite3HexToInt(int h);
3545 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
3546 
3547 #if defined(SQLITE_NEED_ERR_NAME)
3548 const char *sqlite3ErrName(int);
3549 #endif
3550 
3551 const char *sqlite3ErrStr(int);
3552 int sqlite3ReadSchema(Parse *pParse);
3553 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
3554 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
3555 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
3556 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int);
3557 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
3558 Expr *sqlite3ExprSkipCollate(Expr*);
3559 int sqlite3CheckCollSeq(Parse *, CollSeq *);
3560 int sqlite3CheckObjectName(Parse *, const char *);
3561 void sqlite3VdbeSetChanges(sqlite3 *, int);
3562 int sqlite3AddInt64(i64*,i64);
3563 int sqlite3SubInt64(i64*,i64);
3564 int sqlite3MulInt64(i64*,i64);
3565 int sqlite3AbsInt32(int);
3566 #ifdef SQLITE_ENABLE_8_3_NAMES
3567 void sqlite3FileSuffix3(const char*, char*);
3568 #else
3569 # define sqlite3FileSuffix3(X,Y)
3570 #endif
3571 u8 sqlite3GetBoolean(const char *z,u8);
3572 
3573 const void *sqlite3ValueText(sqlite3_value*, u8);
3574 int sqlite3ValueBytes(sqlite3_value*, u8);
3575 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
3576                         void(*)(void*));
3577 void sqlite3ValueSetNull(sqlite3_value*);
3578 void sqlite3ValueFree(sqlite3_value*);
3579 sqlite3_value *sqlite3ValueNew(sqlite3 *);
3580 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
3581 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
3582 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
3583 #ifndef SQLITE_AMALGAMATION
3584 extern const unsigned char sqlite3OpcodeProperty[];
3585 extern const unsigned char sqlite3UpperToLower[];
3586 extern const unsigned char sqlite3CtypeMap[];
3587 extern const Token sqlite3IntTokens[];
3588 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
3589 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
3590 #ifndef SQLITE_OMIT_WSD
3591 extern int sqlite3PendingByte;
3592 #endif
3593 #endif
3594 void sqlite3RootPageMoved(sqlite3*, int, int, int);
3595 void sqlite3Reindex(Parse*, Token*, Token*);
3596 void sqlite3AlterFunctions(void);
3597 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
3598 int sqlite3GetToken(const unsigned char *, int *);
3599 void sqlite3NestedParse(Parse*, const char*, ...);
3600 void sqlite3ExpirePreparedStatements(sqlite3*);
3601 int sqlite3CodeSubselect(Parse *, Expr *, int, int);
3602 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
3603 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
3604 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
3605 int sqlite3ResolveExprNames(NameContext*, Expr*);
3606 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
3607 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
3608 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
3609 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
3610 void sqlite3AlterFinishAddColumn(Parse *, Token *);
3611 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
3612 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
3613 char sqlite3AffinityType(const char*, u8*);
3614 void sqlite3Analyze(Parse*, Token*, Token*);
3615 int sqlite3InvokeBusyHandler(BusyHandler*);
3616 int sqlite3FindDb(sqlite3*, Token*);
3617 int sqlite3FindDbName(sqlite3 *, const char *);
3618 int sqlite3AnalysisLoad(sqlite3*,int iDB);
3619 void sqlite3DeleteIndexSamples(sqlite3*,Index*);
3620 void sqlite3DefaultRowEst(Index*);
3621 void sqlite3RegisterLikeFunctions(sqlite3*, int);
3622 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
3623 void sqlite3MinimumFileFormat(Parse*, int, int);
3624 void sqlite3SchemaClear(void *);
3625 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
3626 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
3627 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
3628 void sqlite3KeyInfoUnref(KeyInfo*);
3629 KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
3630 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
3631 #ifdef SQLITE_DEBUG
3632 int sqlite3KeyInfoIsWriteable(KeyInfo*);
3633 #endif
3634 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
3635   void (*)(sqlite3_context*,int,sqlite3_value **),
3636   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
3637   FuncDestructor *pDestructor
3638 );
3639 int sqlite3ApiExit(sqlite3 *db, int);
3640 int sqlite3OpenTempDatabase(Parse *);
3641 
3642 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
3643 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
3644 void sqlite3StrAccumAppendAll(StrAccum*,const char*);
3645 void sqlite3AppendChar(StrAccum*,int,char);
3646 char *sqlite3StrAccumFinish(StrAccum*);
3647 void sqlite3StrAccumReset(StrAccum*);
3648 void sqlite3SelectDestInit(SelectDest*,int,int);
3649 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
3650 
3651 void sqlite3BackupRestart(sqlite3_backup *);
3652 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
3653 
3654 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3655 void sqlite3AnalyzeFunctions(void);
3656 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
3657 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
3658 void sqlite3Stat4ProbeFree(UnpackedRecord*);
3659 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
3660 #endif
3661 
3662 /*
3663 ** The interface to the LEMON-generated parser
3664 */
3665 void *sqlite3ParserAlloc(void*(*)(u64));
3666 void sqlite3ParserFree(void*, void(*)(void*));
3667 void sqlite3Parser(void*, int, Token, Parse*);
3668 #ifdef YYTRACKMAXSTACKDEPTH
3669   int sqlite3ParserStackPeak(void*);
3670 #endif
3671 
3672 void sqlite3AutoLoadExtensions(sqlite3*);
3673 #ifndef SQLITE_OMIT_LOAD_EXTENSION
3674   void sqlite3CloseExtensions(sqlite3*);
3675 #else
3676 # define sqlite3CloseExtensions(X)
3677 #endif
3678 
3679 #ifndef SQLITE_OMIT_SHARED_CACHE
3680   void sqlite3TableLock(Parse *, int, int, u8, const char *);
3681 #else
3682   #define sqlite3TableLock(v,w,x,y,z)
3683 #endif
3684 
3685 #ifdef SQLITE_TEST
3686   int sqlite3Utf8To8(unsigned char*);
3687 #endif
3688 
3689 #ifdef SQLITE_OMIT_VIRTUALTABLE
3690 #  define sqlite3VtabClear(Y)
3691 #  define sqlite3VtabSync(X,Y) SQLITE_OK
3692 #  define sqlite3VtabRollback(X)
3693 #  define sqlite3VtabCommit(X)
3694 #  define sqlite3VtabInSync(db) 0
3695 #  define sqlite3VtabLock(X)
3696 #  define sqlite3VtabUnlock(X)
3697 #  define sqlite3VtabUnlockList(X)
3698 #  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
3699 #  define sqlite3GetVTable(X,Y)  ((VTable*)0)
3700 #else
3701    void sqlite3VtabClear(sqlite3 *db, Table*);
3702    void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
3703    int sqlite3VtabSync(sqlite3 *db, Vdbe*);
3704    int sqlite3VtabRollback(sqlite3 *db);
3705    int sqlite3VtabCommit(sqlite3 *db);
3706    void sqlite3VtabLock(VTable *);
3707    void sqlite3VtabUnlock(VTable *);
3708    void sqlite3VtabUnlockList(sqlite3*);
3709    int sqlite3VtabSavepoint(sqlite3 *, int, int);
3710    void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
3711    VTable *sqlite3GetVTable(sqlite3*, Table*);
3712 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
3713 #endif
3714 void sqlite3VtabMakeWritable(Parse*,Table*);
3715 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
3716 void sqlite3VtabFinishParse(Parse*, Token*);
3717 void sqlite3VtabArgInit(Parse*);
3718 void sqlite3VtabArgExtend(Parse*, Token*);
3719 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
3720 int sqlite3VtabCallConnect(Parse*, Table*);
3721 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3722 int sqlite3VtabBegin(sqlite3 *, VTable *);
3723 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3724 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3725 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
3726 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3727 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3728 void sqlite3ParserReset(Parse*);
3729 int sqlite3Reprepare(Vdbe*);
3730 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3731 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3732 int sqlite3TempInMemory(const sqlite3*);
3733 const char *sqlite3JournalModename(int);
3734 #ifndef SQLITE_OMIT_WAL
3735   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
3736   int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3737 #endif
3738 #ifndef SQLITE_OMIT_CTE
3739   With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
3740   void sqlite3WithDelete(sqlite3*,With*);
3741   void sqlite3WithPush(Parse*, With*, u8);
3742 #else
3743 #define sqlite3WithPush(x,y,z)
3744 #define sqlite3WithDelete(x,y)
3745 #endif
3746 
3747 /* Declarations for functions in fkey.c. All of these are replaced by
3748 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3749 ** key functionality is available. If OMIT_TRIGGER is defined but
3750 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3751 ** this case foreign keys are parsed, but no other functionality is
3752 ** provided (enforcement of FK constraints requires the triggers sub-system).
3753 */
3754 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3755   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
3756   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3757   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
3758   int sqlite3FkRequired(Parse*, Table*, int*, int);
3759   u32 sqlite3FkOldmask(Parse*, Table*);
3760   FKey *sqlite3FkReferences(Table *);
3761 #else
3762   #define sqlite3FkActions(a,b,c,d,e,f)
3763   #define sqlite3FkCheck(a,b,c,d,e,f)
3764   #define sqlite3FkDropTable(a,b,c)
3765   #define sqlite3FkOldmask(a,b)         0
3766   #define sqlite3FkRequired(a,b,c,d)    0
3767 #endif
3768 #ifndef SQLITE_OMIT_FOREIGN_KEY
3769   void sqlite3FkDelete(sqlite3 *, Table*);
3770   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
3771 #else
3772   #define sqlite3FkDelete(a,b)
3773   #define sqlite3FkLocateIndex(a,b,c,d,e)
3774 #endif
3775 
3776 
3777 /*
3778 ** Available fault injectors.  Should be numbered beginning with 0.
3779 */
3780 #define SQLITE_FAULTINJECTOR_MALLOC     0
3781 #define SQLITE_FAULTINJECTOR_COUNT      1
3782 
3783 /*
3784 ** The interface to the code in fault.c used for identifying "benign"
3785 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3786 ** is not defined.
3787 */
3788 #ifndef SQLITE_OMIT_BUILTIN_TEST
3789   void sqlite3BeginBenignMalloc(void);
3790   void sqlite3EndBenignMalloc(void);
3791 #else
3792   #define sqlite3BeginBenignMalloc()
3793   #define sqlite3EndBenignMalloc()
3794 #endif
3795 
3796 /*
3797 ** Allowed return values from sqlite3FindInIndex()
3798 */
3799 #define IN_INDEX_ROWID        1   /* Search the rowid of the table */
3800 #define IN_INDEX_EPH          2   /* Search an ephemeral b-tree */
3801 #define IN_INDEX_INDEX_ASC    3   /* Existing index ASCENDING */
3802 #define IN_INDEX_INDEX_DESC   4   /* Existing index DESCENDING */
3803 #define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
3804 /*
3805 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
3806 */
3807 #define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
3808 #define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
3809 #define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
3810 int sqlite3FindInIndex(Parse *, Expr *, u32, int*);
3811 
3812 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3813   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3814   int sqlite3JournalSize(sqlite3_vfs *);
3815   int sqlite3JournalCreate(sqlite3_file *);
3816   int sqlite3JournalExists(sqlite3_file *p);
3817 #else
3818   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
3819   #define sqlite3JournalExists(p) 1
3820 #endif
3821 
3822 void sqlite3MemJournalOpen(sqlite3_file *);
3823 int sqlite3MemJournalSize(void);
3824 int sqlite3IsMemJournal(sqlite3_file *);
3825 
3826 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p);
3827 #if SQLITE_MAX_EXPR_DEPTH>0
3828   int sqlite3SelectExprHeight(Select *);
3829   int sqlite3ExprCheckHeight(Parse*, int);
3830 #else
3831   #define sqlite3SelectExprHeight(x) 0
3832   #define sqlite3ExprCheckHeight(x,y)
3833 #endif
3834 
3835 u32 sqlite3Get4byte(const u8*);
3836 void sqlite3Put4byte(u8*, u32);
3837 
3838 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
3839   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
3840   void sqlite3ConnectionUnlocked(sqlite3 *db);
3841   void sqlite3ConnectionClosed(sqlite3 *db);
3842 #else
3843   #define sqlite3ConnectionBlocked(x,y)
3844   #define sqlite3ConnectionUnlocked(x)
3845   #define sqlite3ConnectionClosed(x)
3846 #endif
3847 
3848 #ifdef SQLITE_DEBUG
3849   void sqlite3ParserTrace(FILE*, char *);
3850 #endif
3851 
3852 /*
3853 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
3854 ** sqlite3IoTrace is a pointer to a printf-like routine used to
3855 ** print I/O tracing messages.
3856 */
3857 #ifdef SQLITE_ENABLE_IOTRACE
3858 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3859   void sqlite3VdbeIOTraceSql(Vdbe*);
3860 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...);
3861 #else
3862 # define IOTRACE(A)
3863 # define sqlite3VdbeIOTraceSql(X)
3864 #endif
3865 
3866 /*
3867 ** These routines are available for the mem2.c debugging memory allocator
3868 ** only.  They are used to verify that different "types" of memory
3869 ** allocations are properly tracked by the system.
3870 **
3871 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
3872 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
3873 ** a single bit set.
3874 **
3875 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
3876 ** argument match the type set by the previous sqlite3MemdebugSetType().
3877 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
3878 **
3879 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
3880 ** argument match the type set by the previous sqlite3MemdebugSetType().
3881 **
3882 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
3883 ** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
3884 ** it might have been allocated by lookaside, except the allocation was
3885 ** too large or lookaside was already full.  It is important to verify
3886 ** that allocations that might have been satisfied by lookaside are not
3887 ** passed back to non-lookaside free() routines.  Asserts such as the
3888 ** example above are placed on the non-lookaside free() routines to verify
3889 ** this constraint.
3890 **
3891 ** All of this is no-op for a production build.  It only comes into
3892 ** play when the SQLITE_MEMDEBUG compile-time option is used.
3893 */
3894 #ifdef SQLITE_MEMDEBUG
3895   void sqlite3MemdebugSetType(void*,u8);
3896   int sqlite3MemdebugHasType(void*,u8);
3897   int sqlite3MemdebugNoType(void*,u8);
3898 #else
3899 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
3900 # define sqlite3MemdebugHasType(X,Y)  1
3901 # define sqlite3MemdebugNoType(X,Y)   1
3902 #endif
3903 #define MEMTYPE_HEAP       0x01  /* General heap allocations */
3904 #define MEMTYPE_LOOKASIDE  0x02  /* Heap that might have been lookaside */
3905 #define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
3906 #define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
3907 
3908 /*
3909 ** Threading interface
3910 */
3911 #if SQLITE_MAX_WORKER_THREADS>0
3912 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
3913 int sqlite3ThreadJoin(SQLiteThread*, void**);
3914 #endif
3915 
3916 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)
3917 int sqlite3DbstatRegister(sqlite3*);
3918 #endif
3919 
3920 #endif /* _SQLITEINT_H_ */
3921