1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 70 # define _BSD_SOURCE 71 #endif 72 73 /* 74 ** Include standard header files as necessary 75 */ 76 #ifdef HAVE_STDINT_H 77 #include <stdint.h> 78 #endif 79 #ifdef HAVE_INTTYPES_H 80 #include <inttypes.h> 81 #endif 82 83 /* 84 ** The following macros are used to cast pointers to integers and 85 ** integers to pointers. The way you do this varies from one compiler 86 ** to the next, so we have developed the following set of #if statements 87 ** to generate appropriate macros for a wide range of compilers. 88 ** 89 ** The correct "ANSI" way to do this is to use the intptr_t type. 90 ** Unfortunately, that typedef is not available on all compilers, or 91 ** if it is available, it requires an #include of specific headers 92 ** that vary from one machine to the next. 93 ** 94 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 95 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 96 ** So we have to define the macros in different ways depending on the 97 ** compiler. 98 */ 99 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 100 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 101 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 102 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 103 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 104 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 105 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 106 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 107 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 108 #else /* Generates a warning - but it always works */ 109 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 110 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 111 #endif 112 113 /* 114 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 115 ** 0 means mutexes are permanently disable and the library is never 116 ** threadsafe. 1 means the library is serialized which is the highest 117 ** level of threadsafety. 2 means the libary is multithreaded - multiple 118 ** threads can use SQLite as long as no two threads try to use the same 119 ** database connection at the same time. 120 ** 121 ** Older versions of SQLite used an optional THREADSAFE macro. 122 ** We support that for legacy. 123 */ 124 #if !defined(SQLITE_THREADSAFE) 125 #if defined(THREADSAFE) 126 # define SQLITE_THREADSAFE THREADSAFE 127 #else 128 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 129 #endif 130 #endif 131 132 /* 133 ** Powersafe overwrite is on by default. But can be turned off using 134 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 135 */ 136 #ifndef SQLITE_POWERSAFE_OVERWRITE 137 # define SQLITE_POWERSAFE_OVERWRITE 1 138 #endif 139 140 /* 141 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 142 ** It determines whether or not the features related to 143 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 144 ** be overridden at runtime using the sqlite3_config() API. 145 */ 146 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 147 # define SQLITE_DEFAULT_MEMSTATUS 1 148 #endif 149 150 /* 151 ** Exactly one of the following macros must be defined in order to 152 ** specify which memory allocation subsystem to use. 153 ** 154 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 155 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 156 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 157 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 158 ** 159 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 160 ** assert() macro is enabled, each call into the Win32 native heap subsystem 161 ** will cause HeapValidate to be called. If heap validation should fail, an 162 ** assertion will be triggered. 163 ** 164 ** (Historical note: There used to be several other options, but we've 165 ** pared it down to just these three.) 166 ** 167 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 168 ** the default. 169 */ 170 #if defined(SQLITE_SYSTEM_MALLOC) \ 171 + defined(SQLITE_WIN32_MALLOC) \ 172 + defined(SQLITE_ZERO_MALLOC) \ 173 + defined(SQLITE_MEMDEBUG)>1 174 # error "Two or more of the following compile-time configuration options\ 175 are defined but at most one is allowed:\ 176 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 177 SQLITE_ZERO_MALLOC" 178 #endif 179 #if defined(SQLITE_SYSTEM_MALLOC) \ 180 + defined(SQLITE_WIN32_MALLOC) \ 181 + defined(SQLITE_ZERO_MALLOC) \ 182 + defined(SQLITE_MEMDEBUG)==0 183 # define SQLITE_SYSTEM_MALLOC 1 184 #endif 185 186 /* 187 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 188 ** sizes of memory allocations below this value where possible. 189 */ 190 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 191 # define SQLITE_MALLOC_SOFT_LIMIT 1024 192 #endif 193 194 /* 195 ** We need to define _XOPEN_SOURCE as follows in order to enable 196 ** recursive mutexes on most Unix systems. But Mac OS X is different. 197 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 198 ** so it is omitted there. See ticket #2673. 199 ** 200 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 201 ** implemented on some systems. So we avoid defining it at all 202 ** if it is already defined or if it is unneeded because we are 203 ** not doing a threadsafe build. Ticket #2681. 204 ** 205 ** See also ticket #2741. 206 */ 207 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) \ 208 && !defined(__APPLE__) && SQLITE_THREADSAFE 209 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 210 #endif 211 212 /* 213 ** The TCL headers are only needed when compiling the TCL bindings. 214 */ 215 #if defined(SQLITE_TCL) || defined(TCLSH) 216 # include <tcl.h> 217 #endif 218 219 /* 220 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 221 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 222 ** make it true by defining or undefining NDEBUG. 223 ** 224 ** Setting NDEBUG makes the code smaller and run faster by disabling the 225 ** number assert() statements in the code. So we want the default action 226 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 227 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 228 ** feature. 229 */ 230 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 231 # define NDEBUG 1 232 #endif 233 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 234 # undef NDEBUG 235 #endif 236 237 /* 238 ** The testcase() macro is used to aid in coverage testing. When 239 ** doing coverage testing, the condition inside the argument to 240 ** testcase() must be evaluated both true and false in order to 241 ** get full branch coverage. The testcase() macro is inserted 242 ** to help ensure adequate test coverage in places where simple 243 ** condition/decision coverage is inadequate. For example, testcase() 244 ** can be used to make sure boundary values are tested. For 245 ** bitmask tests, testcase() can be used to make sure each bit 246 ** is significant and used at least once. On switch statements 247 ** where multiple cases go to the same block of code, testcase() 248 ** can insure that all cases are evaluated. 249 ** 250 */ 251 #ifdef SQLITE_COVERAGE_TEST 252 void sqlite3Coverage(int); 253 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 254 #else 255 # define testcase(X) 256 #endif 257 258 /* 259 ** The TESTONLY macro is used to enclose variable declarations or 260 ** other bits of code that are needed to support the arguments 261 ** within testcase() and assert() macros. 262 */ 263 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 264 # define TESTONLY(X) X 265 #else 266 # define TESTONLY(X) 267 #endif 268 269 /* 270 ** Sometimes we need a small amount of code such as a variable initialization 271 ** to setup for a later assert() statement. We do not want this code to 272 ** appear when assert() is disabled. The following macro is therefore 273 ** used to contain that setup code. The "VVA" acronym stands for 274 ** "Verification, Validation, and Accreditation". In other words, the 275 ** code within VVA_ONLY() will only run during verification processes. 276 */ 277 #ifndef NDEBUG 278 # define VVA_ONLY(X) X 279 #else 280 # define VVA_ONLY(X) 281 #endif 282 283 /* 284 ** The ALWAYS and NEVER macros surround boolean expressions which 285 ** are intended to always be true or false, respectively. Such 286 ** expressions could be omitted from the code completely. But they 287 ** are included in a few cases in order to enhance the resilience 288 ** of SQLite to unexpected behavior - to make the code "self-healing" 289 ** or "ductile" rather than being "brittle" and crashing at the first 290 ** hint of unplanned behavior. 291 ** 292 ** In other words, ALWAYS and NEVER are added for defensive code. 293 ** 294 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 295 ** be true and false so that the unreachable code then specify will 296 ** not be counted as untested code. 297 */ 298 #if defined(SQLITE_COVERAGE_TEST) 299 # define ALWAYS(X) (1) 300 # define NEVER(X) (0) 301 #elif !defined(NDEBUG) 302 # define ALWAYS(X) ((X)?1:(assert(0),0)) 303 # define NEVER(X) ((X)?(assert(0),1):0) 304 #else 305 # define ALWAYS(X) (X) 306 # define NEVER(X) (X) 307 #endif 308 309 /* 310 ** Return true (non-zero) if the input is a integer that is too large 311 ** to fit in 32-bits. This macro is used inside of various testcase() 312 ** macros to verify that we have tested SQLite for large-file support. 313 */ 314 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 315 316 /* 317 ** The macro unlikely() is a hint that surrounds a boolean 318 ** expression that is usually false. Macro likely() surrounds 319 ** a boolean expression that is usually true. GCC is able to 320 ** use these hints to generate better code, sometimes. 321 */ 322 #if defined(__GNUC__) && 0 323 # define likely(X) __builtin_expect((X),1) 324 # define unlikely(X) __builtin_expect((X),0) 325 #else 326 # define likely(X) !!(X) 327 # define unlikely(X) !!(X) 328 #endif 329 330 #include "sqlite3.h" 331 #include "hash.h" 332 #include "parse.h" 333 #include <stdio.h> 334 #include <stdlib.h> 335 #include <string.h> 336 #include <assert.h> 337 #include <stddef.h> 338 339 /* 340 ** If compiling for a processor that lacks floating point support, 341 ** substitute integer for floating-point 342 */ 343 #ifdef SQLITE_OMIT_FLOATING_POINT 344 # define double sqlite_int64 345 # define float sqlite_int64 346 # define LONGDOUBLE_TYPE sqlite_int64 347 # ifndef SQLITE_BIG_DBL 348 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 349 # endif 350 # define SQLITE_OMIT_DATETIME_FUNCS 1 351 # define SQLITE_OMIT_TRACE 1 352 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 353 # undef SQLITE_HAVE_ISNAN 354 #endif 355 #ifndef SQLITE_BIG_DBL 356 # define SQLITE_BIG_DBL (1e99) 357 #endif 358 359 /* 360 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 361 ** afterward. Having this macro allows us to cause the C compiler 362 ** to omit code used by TEMP tables without messy #ifndef statements. 363 */ 364 #ifdef SQLITE_OMIT_TEMPDB 365 #define OMIT_TEMPDB 1 366 #else 367 #define OMIT_TEMPDB 0 368 #endif 369 370 /* 371 ** The "file format" number is an integer that is incremented whenever 372 ** the VDBE-level file format changes. The following macros define the 373 ** the default file format for new databases and the maximum file format 374 ** that the library can read. 375 */ 376 #define SQLITE_MAX_FILE_FORMAT 4 377 #ifndef SQLITE_DEFAULT_FILE_FORMAT 378 # define SQLITE_DEFAULT_FILE_FORMAT 4 379 #endif 380 381 /* 382 ** Determine whether triggers are recursive by default. This can be 383 ** changed at run-time using a pragma. 384 */ 385 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 386 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 387 #endif 388 389 /* 390 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 391 ** on the command-line 392 */ 393 #ifndef SQLITE_TEMP_STORE 394 # define SQLITE_TEMP_STORE 1 395 #endif 396 397 /* 398 ** GCC does not define the offsetof() macro so we'll have to do it 399 ** ourselves. 400 */ 401 #ifndef offsetof 402 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 403 #endif 404 405 /* 406 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 407 ** not, there are still machines out there that use EBCDIC.) 408 */ 409 #if 'A' == '\301' 410 # define SQLITE_EBCDIC 1 411 #else 412 # define SQLITE_ASCII 1 413 #endif 414 415 /* 416 ** Integers of known sizes. These typedefs might change for architectures 417 ** where the sizes very. Preprocessor macros are available so that the 418 ** types can be conveniently redefined at compile-type. Like this: 419 ** 420 ** cc '-DUINTPTR_TYPE=long long int' ... 421 */ 422 #ifndef UINT32_TYPE 423 # ifdef HAVE_UINT32_T 424 # define UINT32_TYPE uint32_t 425 # else 426 # define UINT32_TYPE unsigned int 427 # endif 428 #endif 429 #ifndef UINT16_TYPE 430 # ifdef HAVE_UINT16_T 431 # define UINT16_TYPE uint16_t 432 # else 433 # define UINT16_TYPE unsigned short int 434 # endif 435 #endif 436 #ifndef INT16_TYPE 437 # ifdef HAVE_INT16_T 438 # define INT16_TYPE int16_t 439 # else 440 # define INT16_TYPE short int 441 # endif 442 #endif 443 #ifndef UINT8_TYPE 444 # ifdef HAVE_UINT8_T 445 # define UINT8_TYPE uint8_t 446 # else 447 # define UINT8_TYPE unsigned char 448 # endif 449 #endif 450 #ifndef INT8_TYPE 451 # ifdef HAVE_INT8_T 452 # define INT8_TYPE int8_t 453 # else 454 # define INT8_TYPE signed char 455 # endif 456 #endif 457 #ifndef LONGDOUBLE_TYPE 458 # define LONGDOUBLE_TYPE long double 459 #endif 460 typedef sqlite_int64 i64; /* 8-byte signed integer */ 461 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 462 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 463 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 464 typedef INT16_TYPE i16; /* 2-byte signed integer */ 465 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 466 typedef INT8_TYPE i8; /* 1-byte signed integer */ 467 468 /* 469 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 470 ** that can be stored in a u32 without loss of data. The value 471 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 472 ** have to specify the value in the less intuitive manner shown: 473 */ 474 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 475 476 /* 477 ** The datatype used to store estimates of the number of rows in a 478 ** table or index. This is an unsigned integer type. For 99.9% of 479 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 480 ** can be used at compile-time if desired. 481 */ 482 #ifdef SQLITE_64BIT_STATS 483 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 484 #else 485 typedef u32 tRowcnt; /* 32-bit is the default */ 486 #endif 487 488 /* 489 ** Macros to determine whether the machine is big or little endian, 490 ** evaluated at runtime. 491 */ 492 #ifdef SQLITE_AMALGAMATION 493 const int sqlite3one = 1; 494 #else 495 extern const int sqlite3one; 496 #endif 497 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 498 || defined(__x86_64) || defined(__x86_64__) 499 # define SQLITE_BIGENDIAN 0 500 # define SQLITE_LITTLEENDIAN 1 501 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 502 #else 503 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 504 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 505 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 506 #endif 507 508 /* 509 ** Constants for the largest and smallest possible 64-bit signed integers. 510 ** These macros are designed to work correctly on both 32-bit and 64-bit 511 ** compilers. 512 */ 513 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 514 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 515 516 /* 517 ** Round up a number to the next larger multiple of 8. This is used 518 ** to force 8-byte alignment on 64-bit architectures. 519 */ 520 #define ROUND8(x) (((x)+7)&~7) 521 522 /* 523 ** Round down to the nearest multiple of 8 524 */ 525 #define ROUNDDOWN8(x) ((x)&~7) 526 527 /* 528 ** Assert that the pointer X is aligned to an 8-byte boundary. This 529 ** macro is used only within assert() to verify that the code gets 530 ** all alignment restrictions correct. 531 ** 532 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 533 ** underlying malloc() implemention might return us 4-byte aligned 534 ** pointers. In that case, only verify 4-byte alignment. 535 */ 536 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 537 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 538 #else 539 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 540 #endif 541 542 /* 543 ** Disable MMAP on platforms where it is known to not work 544 */ 545 #if defined(__OpenBSD__) || defined(__QNXNTO__) 546 # undef SQLITE_MAX_MMAP_SIZE 547 # define SQLITE_MAX_MMAP_SIZE 0 548 #endif 549 550 /* 551 ** Default maximum size of memory used by memory-mapped I/O in the VFS 552 */ 553 #ifdef __APPLE__ 554 # include <TargetConditionals.h> 555 # if TARGET_OS_IPHONE 556 # undef SQLITE_MAX_MMAP_SIZE 557 # define SQLITE_MAX_MMAP_SIZE 0 558 # endif 559 #endif 560 #ifndef SQLITE_MAX_MMAP_SIZE 561 # if defined(__linux__) \ 562 || defined(_WIN32) \ 563 || (defined(__APPLE__) && defined(__MACH__)) \ 564 || defined(__sun) 565 # define SQLITE_MAX_MMAP_SIZE 2147483648 566 # else 567 # define SQLITE_MAX_MMAP_SIZE 0 568 # endif 569 #endif 570 571 /* 572 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 573 ** default MMAP_SIZE is specified at compile-time, make sure that it does 574 ** not exceed the maximum mmap size. 575 */ 576 #ifndef SQLITE_DEFAULT_MMAP_SIZE 577 # define SQLITE_DEFAULT_MMAP_SIZE 0 578 #endif 579 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 580 # undef SQLITE_DEFAULT_MMAP_SIZE 581 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 582 #endif 583 584 /* 585 ** An instance of the following structure is used to store the busy-handler 586 ** callback for a given sqlite handle. 587 ** 588 ** The sqlite.busyHandler member of the sqlite struct contains the busy 589 ** callback for the database handle. Each pager opened via the sqlite 590 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 591 ** callback is currently invoked only from within pager.c. 592 */ 593 typedef struct BusyHandler BusyHandler; 594 struct BusyHandler { 595 int (*xFunc)(void *,int); /* The busy callback */ 596 void *pArg; /* First arg to busy callback */ 597 int nBusy; /* Incremented with each busy call */ 598 }; 599 600 /* 601 ** Name of the master database table. The master database table 602 ** is a special table that holds the names and attributes of all 603 ** user tables and indices. 604 */ 605 #define MASTER_NAME "sqlite_master" 606 #define TEMP_MASTER_NAME "sqlite_temp_master" 607 608 /* 609 ** The root-page of the master database table. 610 */ 611 #define MASTER_ROOT 1 612 613 /* 614 ** The name of the schema table. 615 */ 616 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 617 618 /* 619 ** A convenience macro that returns the number of elements in 620 ** an array. 621 */ 622 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 623 624 /* 625 ** Determine if the argument is a power of two 626 */ 627 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 628 629 /* 630 ** The following value as a destructor means to use sqlite3DbFree(). 631 ** The sqlite3DbFree() routine requires two parameters instead of the 632 ** one parameter that destructors normally want. So we have to introduce 633 ** this magic value that the code knows to handle differently. Any 634 ** pointer will work here as long as it is distinct from SQLITE_STATIC 635 ** and SQLITE_TRANSIENT. 636 */ 637 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 638 639 /* 640 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 641 ** not support Writable Static Data (WSD) such as global and static variables. 642 ** All variables must either be on the stack or dynamically allocated from 643 ** the heap. When WSD is unsupported, the variable declarations scattered 644 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 645 ** macro is used for this purpose. And instead of referencing the variable 646 ** directly, we use its constant as a key to lookup the run-time allocated 647 ** buffer that holds real variable. The constant is also the initializer 648 ** for the run-time allocated buffer. 649 ** 650 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 651 ** macros become no-ops and have zero performance impact. 652 */ 653 #ifdef SQLITE_OMIT_WSD 654 #define SQLITE_WSD const 655 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 656 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 657 int sqlite3_wsd_init(int N, int J); 658 void *sqlite3_wsd_find(void *K, int L); 659 #else 660 #define SQLITE_WSD 661 #define GLOBAL(t,v) v 662 #define sqlite3GlobalConfig sqlite3Config 663 #endif 664 665 /* 666 ** The following macros are used to suppress compiler warnings and to 667 ** make it clear to human readers when a function parameter is deliberately 668 ** left unused within the body of a function. This usually happens when 669 ** a function is called via a function pointer. For example the 670 ** implementation of an SQL aggregate step callback may not use the 671 ** parameter indicating the number of arguments passed to the aggregate, 672 ** if it knows that this is enforced elsewhere. 673 ** 674 ** When a function parameter is not used at all within the body of a function, 675 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 676 ** However, these macros may also be used to suppress warnings related to 677 ** parameters that may or may not be used depending on compilation options. 678 ** For example those parameters only used in assert() statements. In these 679 ** cases the parameters are named as per the usual conventions. 680 */ 681 #define UNUSED_PARAMETER(x) (void)(x) 682 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 683 684 /* 685 ** Forward references to structures 686 */ 687 typedef struct AggInfo AggInfo; 688 typedef struct AuthContext AuthContext; 689 typedef struct AutoincInfo AutoincInfo; 690 typedef struct Bitvec Bitvec; 691 typedef struct CollSeq CollSeq; 692 typedef struct Column Column; 693 typedef struct Db Db; 694 typedef struct Schema Schema; 695 typedef struct Expr Expr; 696 typedef struct ExprList ExprList; 697 typedef struct ExprSpan ExprSpan; 698 typedef struct FKey FKey; 699 typedef struct FuncDestructor FuncDestructor; 700 typedef struct FuncDef FuncDef; 701 typedef struct FuncDefHash FuncDefHash; 702 typedef struct IdList IdList; 703 typedef struct Index Index; 704 typedef struct IndexSample IndexSample; 705 typedef struct KeyClass KeyClass; 706 typedef struct KeyInfo KeyInfo; 707 typedef struct Lookaside Lookaside; 708 typedef struct LookasideSlot LookasideSlot; 709 typedef struct Module Module; 710 typedef struct NameContext NameContext; 711 typedef struct Parse Parse; 712 typedef struct RowSet RowSet; 713 typedef struct Savepoint Savepoint; 714 typedef struct Select Select; 715 typedef struct SelectDest SelectDest; 716 typedef struct SrcList SrcList; 717 typedef struct StrAccum StrAccum; 718 typedef struct Table Table; 719 typedef struct TableLock TableLock; 720 typedef struct Token Token; 721 typedef struct Trigger Trigger; 722 typedef struct TriggerPrg TriggerPrg; 723 typedef struct TriggerStep TriggerStep; 724 typedef struct UnpackedRecord UnpackedRecord; 725 typedef struct VTable VTable; 726 typedef struct VtabCtx VtabCtx; 727 typedef struct Walker Walker; 728 typedef struct WherePlan WherePlan; 729 typedef struct WhereInfo WhereInfo; 730 typedef struct WhereLevel WhereLevel; 731 732 /* 733 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 734 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 735 ** pointer types (i.e. FuncDef) defined above. 736 */ 737 #include "btree.h" 738 #include "vdbe.h" 739 #include "pager.h" 740 #include "pcache.h" 741 742 #include "os.h" 743 #include "mutex.h" 744 745 746 /* 747 ** Each database file to be accessed by the system is an instance 748 ** of the following structure. There are normally two of these structures 749 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 750 ** aDb[1] is the database file used to hold temporary tables. Additional 751 ** databases may be attached. 752 */ 753 struct Db { 754 char *zName; /* Name of this database */ 755 Btree *pBt; /* The B*Tree structure for this database file */ 756 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 757 u8 safety_level; /* How aggressive at syncing data to disk */ 758 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 759 }; 760 761 /* 762 ** An instance of the following structure stores a database schema. 763 ** 764 ** Most Schema objects are associated with a Btree. The exception is 765 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 766 ** In shared cache mode, a single Schema object can be shared by multiple 767 ** Btrees that refer to the same underlying BtShared object. 768 ** 769 ** Schema objects are automatically deallocated when the last Btree that 770 ** references them is destroyed. The TEMP Schema is manually freed by 771 ** sqlite3_close(). 772 * 773 ** A thread must be holding a mutex on the corresponding Btree in order 774 ** to access Schema content. This implies that the thread must also be 775 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 776 ** For a TEMP Schema, only the connection mutex is required. 777 */ 778 struct Schema { 779 int schema_cookie; /* Database schema version number for this file */ 780 int iGeneration; /* Generation counter. Incremented with each change */ 781 Hash tblHash; /* All tables indexed by name */ 782 Hash idxHash; /* All (named) indices indexed by name */ 783 Hash trigHash; /* All triggers indexed by name */ 784 Hash fkeyHash; /* All foreign keys by referenced table name */ 785 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 786 u8 file_format; /* Schema format version for this file */ 787 u8 enc; /* Text encoding used by this database */ 788 u16 flags; /* Flags associated with this schema */ 789 int cache_size; /* Number of pages to use in the cache */ 790 }; 791 792 /* 793 ** These macros can be used to test, set, or clear bits in the 794 ** Db.pSchema->flags field. 795 */ 796 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 797 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 798 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 799 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 800 801 /* 802 ** Allowed values for the DB.pSchema->flags field. 803 ** 804 ** The DB_SchemaLoaded flag is set after the database schema has been 805 ** read into internal hash tables. 806 ** 807 ** DB_UnresetViews means that one or more views have column names that 808 ** have been filled out. If the schema changes, these column names might 809 ** changes and so the view will need to be reset. 810 */ 811 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 812 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 813 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 814 815 /* 816 ** The number of different kinds of things that can be limited 817 ** using the sqlite3_limit() interface. 818 */ 819 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 820 821 /* 822 ** Lookaside malloc is a set of fixed-size buffers that can be used 823 ** to satisfy small transient memory allocation requests for objects 824 ** associated with a particular database connection. The use of 825 ** lookaside malloc provides a significant performance enhancement 826 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 827 ** SQL statements. 828 ** 829 ** The Lookaside structure holds configuration information about the 830 ** lookaside malloc subsystem. Each available memory allocation in 831 ** the lookaside subsystem is stored on a linked list of LookasideSlot 832 ** objects. 833 ** 834 ** Lookaside allocations are only allowed for objects that are associated 835 ** with a particular database connection. Hence, schema information cannot 836 ** be stored in lookaside because in shared cache mode the schema information 837 ** is shared by multiple database connections. Therefore, while parsing 838 ** schema information, the Lookaside.bEnabled flag is cleared so that 839 ** lookaside allocations are not used to construct the schema objects. 840 */ 841 struct Lookaside { 842 u16 sz; /* Size of each buffer in bytes */ 843 u8 bEnabled; /* False to disable new lookaside allocations */ 844 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 845 int nOut; /* Number of buffers currently checked out */ 846 int mxOut; /* Highwater mark for nOut */ 847 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 848 LookasideSlot *pFree; /* List of available buffers */ 849 void *pStart; /* First byte of available memory space */ 850 void *pEnd; /* First byte past end of available space */ 851 }; 852 struct LookasideSlot { 853 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 854 }; 855 856 /* 857 ** A hash table for function definitions. 858 ** 859 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 860 ** Collisions are on the FuncDef.pHash chain. 861 */ 862 struct FuncDefHash { 863 FuncDef *a[23]; /* Hash table for functions */ 864 }; 865 866 /* 867 ** Each database connection is an instance of the following structure. 868 */ 869 struct sqlite3 { 870 sqlite3_vfs *pVfs; /* OS Interface */ 871 struct Vdbe *pVdbe; /* List of active virtual machines */ 872 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 873 sqlite3_mutex *mutex; /* Connection mutex */ 874 Db *aDb; /* All backends */ 875 int nDb; /* Number of backends currently in use */ 876 int flags; /* Miscellaneous flags. See below */ 877 i64 lastRowid; /* ROWID of most recent insert (see above) */ 878 i64 szMmap; /* Default mmap_size setting */ 879 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 880 int errCode; /* Most recent error code (SQLITE_*) */ 881 int errMask; /* & result codes with this before returning */ 882 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 883 u8 autoCommit; /* The auto-commit flag. */ 884 u8 temp_store; /* 1: file 2: memory 0: default */ 885 u8 mallocFailed; /* True if we have seen a malloc failure */ 886 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 887 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 888 u8 suppressErr; /* Do not issue error messages if true */ 889 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 890 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 891 int nextPagesize; /* Pagesize after VACUUM if >0 */ 892 u32 magic; /* Magic number for detect library misuse */ 893 int nChange; /* Value returned by sqlite3_changes() */ 894 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 895 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 896 struct sqlite3InitInfo { /* Information used during initialization */ 897 int newTnum; /* Rootpage of table being initialized */ 898 u8 iDb; /* Which db file is being initialized */ 899 u8 busy; /* TRUE if currently initializing */ 900 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 901 } init; 902 int activeVdbeCnt; /* Number of VDBEs currently executing */ 903 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 904 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ 905 int nExtension; /* Number of loaded extensions */ 906 void **aExtension; /* Array of shared library handles */ 907 void (*xTrace)(void*,const char*); /* Trace function */ 908 void *pTraceArg; /* Argument to the trace function */ 909 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 910 void *pProfileArg; /* Argument to profile function */ 911 void *pCommitArg; /* Argument to xCommitCallback() */ 912 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 913 void *pRollbackArg; /* Argument to xRollbackCallback() */ 914 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 915 void *pUpdateArg; 916 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 917 #ifndef SQLITE_OMIT_WAL 918 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 919 void *pWalArg; 920 #endif 921 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 922 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 923 void *pCollNeededArg; 924 sqlite3_value *pErr; /* Most recent error message */ 925 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 926 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 927 union { 928 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 929 double notUsed1; /* Spacer */ 930 } u1; 931 Lookaside lookaside; /* Lookaside malloc configuration */ 932 #ifndef SQLITE_OMIT_AUTHORIZATION 933 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 934 /* Access authorization function */ 935 void *pAuthArg; /* 1st argument to the access auth function */ 936 #endif 937 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 938 int (*xProgress)(void *); /* The progress callback */ 939 void *pProgressArg; /* Argument to the progress callback */ 940 int nProgressOps; /* Number of opcodes for progress callback */ 941 #endif 942 #ifndef SQLITE_OMIT_VIRTUALTABLE 943 int nVTrans; /* Allocated size of aVTrans */ 944 Hash aModule; /* populated by sqlite3_create_module() */ 945 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 946 VTable **aVTrans; /* Virtual tables with open transactions */ 947 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 948 #endif 949 FuncDefHash aFunc; /* Hash table of connection functions */ 950 Hash aCollSeq; /* All collating sequences */ 951 BusyHandler busyHandler; /* Busy callback */ 952 Db aDbStatic[2]; /* Static space for the 2 default backends */ 953 Savepoint *pSavepoint; /* List of active savepoints */ 954 int busyTimeout; /* Busy handler timeout, in msec */ 955 int nSavepoint; /* Number of non-transaction savepoints */ 956 int nStatement; /* Number of nested statement-transactions */ 957 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 958 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 959 960 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 961 /* The following variables are all protected by the STATIC_MASTER 962 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 963 ** 964 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 965 ** unlock so that it can proceed. 966 ** 967 ** When X.pBlockingConnection==Y, that means that something that X tried 968 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 969 ** held by Y. 970 */ 971 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 972 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 973 void *pUnlockArg; /* Argument to xUnlockNotify */ 974 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 975 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 976 #endif 977 }; 978 979 /* 980 ** A macro to discover the encoding of a database. 981 */ 982 #define ENC(db) ((db)->aDb[0].pSchema->enc) 983 984 /* 985 ** Possible values for the sqlite3.flags. 986 */ 987 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 988 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 989 #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ 990 #define SQLITE_ShortColNames 0x00000008 /* Show short columns names */ 991 #define SQLITE_CountRows 0x00000010 /* Count rows changed by INSERT, */ 992 /* DELETE, or UPDATE and return */ 993 /* the count using a callback. */ 994 #define SQLITE_NullCallback 0x00000020 /* Invoke the callback once if the */ 995 /* result set is empty */ 996 #define SQLITE_SqlTrace 0x00000040 /* Debug print SQL as it executes */ 997 #define SQLITE_VdbeListing 0x00000080 /* Debug listings of VDBE programs */ 998 #define SQLITE_WriteSchema 0x00000100 /* OK to update SQLITE_MASTER */ 999 #define SQLITE_VdbeAddopTrace 0x00000200 /* Trace sqlite3VdbeAddOp() calls */ 1000 #define SQLITE_IgnoreChecks 0x00000400 /* Do not enforce check constraints */ 1001 #define SQLITE_ReadUncommitted 0x0000800 /* For shared-cache mode */ 1002 #define SQLITE_LegacyFileFmt 0x00001000 /* Create new databases in format 1 */ 1003 #define SQLITE_FullFSync 0x00002000 /* Use full fsync on the backend */ 1004 #define SQLITE_CkptFullFSync 0x00004000 /* Use full fsync for checkpoint */ 1005 #define SQLITE_RecoveryMode 0x00008000 /* Ignore schema errors */ 1006 #define SQLITE_ReverseOrder 0x00010000 /* Reverse unordered SELECTs */ 1007 #define SQLITE_RecTriggers 0x00020000 /* Enable recursive triggers */ 1008 #define SQLITE_ForeignKeys 0x00040000 /* Enforce foreign key constraints */ 1009 #define SQLITE_AutoIndex 0x00080000 /* Enable automatic indexes */ 1010 #define SQLITE_PreferBuiltin 0x00100000 /* Preference to built-in funcs */ 1011 #define SQLITE_LoadExtension 0x00200000 /* Enable load_extension */ 1012 #define SQLITE_EnableTrigger 0x00400000 /* True to enable triggers */ 1013 1014 /* 1015 ** Bits of the sqlite3.dbOptFlags field that are used by the 1016 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1017 ** selectively disable various optimizations. 1018 */ 1019 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1020 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1021 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1022 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1023 #define SQLITE_IdxRealAsInt 0x0010 /* Store REAL as INT in indices */ 1024 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1025 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1026 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1027 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1028 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1029 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1030 1031 /* 1032 ** Macros for testing whether or not optimizations are enabled or disabled. 1033 */ 1034 #ifndef SQLITE_OMIT_BUILTIN_TEST 1035 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1036 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1037 #else 1038 #define OptimizationDisabled(db, mask) 0 1039 #define OptimizationEnabled(db, mask) 1 1040 #endif 1041 1042 /* 1043 ** Possible values for the sqlite.magic field. 1044 ** The numbers are obtained at random and have no special meaning, other 1045 ** than being distinct from one another. 1046 */ 1047 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1048 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1049 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1050 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1051 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1052 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1053 1054 /* 1055 ** Each SQL function is defined by an instance of the following 1056 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1057 ** hash table. When multiple functions have the same name, the hash table 1058 ** points to a linked list of these structures. 1059 */ 1060 struct FuncDef { 1061 i16 nArg; /* Number of arguments. -1 means unlimited */ 1062 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 1063 u8 flags; /* Some combination of SQLITE_FUNC_* */ 1064 void *pUserData; /* User data parameter */ 1065 FuncDef *pNext; /* Next function with same name */ 1066 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1067 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1068 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1069 char *zName; /* SQL name of the function. */ 1070 FuncDef *pHash; /* Next with a different name but the same hash */ 1071 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1072 }; 1073 1074 /* 1075 ** This structure encapsulates a user-function destructor callback (as 1076 ** configured using create_function_v2()) and a reference counter. When 1077 ** create_function_v2() is called to create a function with a destructor, 1078 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1079 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1080 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1081 ** member of each of the new FuncDef objects is set to point to the allocated 1082 ** FuncDestructor. 1083 ** 1084 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1085 ** count on this object is decremented. When it reaches 0, the destructor 1086 ** is invoked and the FuncDestructor structure freed. 1087 */ 1088 struct FuncDestructor { 1089 int nRef; 1090 void (*xDestroy)(void *); 1091 void *pUserData; 1092 }; 1093 1094 /* 1095 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1096 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1097 ** are assert() statements in the code to verify this. 1098 */ 1099 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 1100 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 1101 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 1102 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 1103 #define SQLITE_FUNC_COUNT 0x10 /* Built-in count(*) aggregate */ 1104 #define SQLITE_FUNC_COALESCE 0x20 /* Built-in coalesce() or ifnull() function */ 1105 #define SQLITE_FUNC_LENGTH 0x40 /* Built-in length() function */ 1106 #define SQLITE_FUNC_TYPEOF 0x80 /* Built-in typeof() function */ 1107 1108 /* 1109 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1110 ** used to create the initializers for the FuncDef structures. 1111 ** 1112 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1113 ** Used to create a scalar function definition of a function zName 1114 ** implemented by C function xFunc that accepts nArg arguments. The 1115 ** value passed as iArg is cast to a (void*) and made available 1116 ** as the user-data (sqlite3_user_data()) for the function. If 1117 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1118 ** 1119 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1120 ** Used to create an aggregate function definition implemented by 1121 ** the C functions xStep and xFinal. The first four parameters 1122 ** are interpreted in the same way as the first 4 parameters to 1123 ** FUNCTION(). 1124 ** 1125 ** LIKEFUNC(zName, nArg, pArg, flags) 1126 ** Used to create a scalar function definition of a function zName 1127 ** that accepts nArg arguments and is implemented by a call to C 1128 ** function likeFunc. Argument pArg is cast to a (void *) and made 1129 ** available as the function user-data (sqlite3_user_data()). The 1130 ** FuncDef.flags variable is set to the value passed as the flags 1131 ** parameter. 1132 */ 1133 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1134 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL), \ 1135 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1136 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1137 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1138 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1139 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1140 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1141 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1142 #define LIKEFUNC(zName, nArg, arg, flags) \ 1143 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1144 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1145 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1146 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1147 1148 /* 1149 ** All current savepoints are stored in a linked list starting at 1150 ** sqlite3.pSavepoint. The first element in the list is the most recently 1151 ** opened savepoint. Savepoints are added to the list by the vdbe 1152 ** OP_Savepoint instruction. 1153 */ 1154 struct Savepoint { 1155 char *zName; /* Savepoint name (nul-terminated) */ 1156 i64 nDeferredCons; /* Number of deferred fk violations */ 1157 Savepoint *pNext; /* Parent savepoint (if any) */ 1158 }; 1159 1160 /* 1161 ** The following are used as the second parameter to sqlite3Savepoint(), 1162 ** and as the P1 argument to the OP_Savepoint instruction. 1163 */ 1164 #define SAVEPOINT_BEGIN 0 1165 #define SAVEPOINT_RELEASE 1 1166 #define SAVEPOINT_ROLLBACK 2 1167 1168 1169 /* 1170 ** Each SQLite module (virtual table definition) is defined by an 1171 ** instance of the following structure, stored in the sqlite3.aModule 1172 ** hash table. 1173 */ 1174 struct Module { 1175 const sqlite3_module *pModule; /* Callback pointers */ 1176 const char *zName; /* Name passed to create_module() */ 1177 void *pAux; /* pAux passed to create_module() */ 1178 void (*xDestroy)(void *); /* Module destructor function */ 1179 }; 1180 1181 /* 1182 ** information about each column of an SQL table is held in an instance 1183 ** of this structure. 1184 */ 1185 struct Column { 1186 char *zName; /* Name of this column */ 1187 Expr *pDflt; /* Default value of this column */ 1188 char *zDflt; /* Original text of the default value */ 1189 char *zType; /* Data type for this column */ 1190 char *zColl; /* Collating sequence. If NULL, use the default */ 1191 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1192 char affinity; /* One of the SQLITE_AFF_... values */ 1193 u16 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1194 }; 1195 1196 /* Allowed values for Column.colFlags: 1197 */ 1198 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1199 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1200 1201 /* 1202 ** A "Collating Sequence" is defined by an instance of the following 1203 ** structure. Conceptually, a collating sequence consists of a name and 1204 ** a comparison routine that defines the order of that sequence. 1205 ** 1206 ** If CollSeq.xCmp is NULL, it means that the 1207 ** collating sequence is undefined. Indices built on an undefined 1208 ** collating sequence may not be read or written. 1209 */ 1210 struct CollSeq { 1211 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1212 u8 enc; /* Text encoding handled by xCmp() */ 1213 void *pUser; /* First argument to xCmp() */ 1214 int (*xCmp)(void*,int, const void*, int, const void*); 1215 void (*xDel)(void*); /* Destructor for pUser */ 1216 }; 1217 1218 /* 1219 ** A sort order can be either ASC or DESC. 1220 */ 1221 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1222 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1223 1224 /* 1225 ** Column affinity types. 1226 ** 1227 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1228 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1229 ** the speed a little by numbering the values consecutively. 1230 ** 1231 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1232 ** when multiple affinity types are concatenated into a string and 1233 ** used as the P4 operand, they will be more readable. 1234 ** 1235 ** Note also that the numeric types are grouped together so that testing 1236 ** for a numeric type is a single comparison. 1237 */ 1238 #define SQLITE_AFF_TEXT 'a' 1239 #define SQLITE_AFF_NONE 'b' 1240 #define SQLITE_AFF_NUMERIC 'c' 1241 #define SQLITE_AFF_INTEGER 'd' 1242 #define SQLITE_AFF_REAL 'e' 1243 1244 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1245 1246 /* 1247 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1248 ** affinity value. 1249 */ 1250 #define SQLITE_AFF_MASK 0x67 1251 1252 /* 1253 ** Additional bit values that can be ORed with an affinity without 1254 ** changing the affinity. 1255 */ 1256 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1257 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1258 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1259 1260 /* 1261 ** An object of this type is created for each virtual table present in 1262 ** the database schema. 1263 ** 1264 ** If the database schema is shared, then there is one instance of this 1265 ** structure for each database connection (sqlite3*) that uses the shared 1266 ** schema. This is because each database connection requires its own unique 1267 ** instance of the sqlite3_vtab* handle used to access the virtual table 1268 ** implementation. sqlite3_vtab* handles can not be shared between 1269 ** database connections, even when the rest of the in-memory database 1270 ** schema is shared, as the implementation often stores the database 1271 ** connection handle passed to it via the xConnect() or xCreate() method 1272 ** during initialization internally. This database connection handle may 1273 ** then be used by the virtual table implementation to access real tables 1274 ** within the database. So that they appear as part of the callers 1275 ** transaction, these accesses need to be made via the same database 1276 ** connection as that used to execute SQL operations on the virtual table. 1277 ** 1278 ** All VTable objects that correspond to a single table in a shared 1279 ** database schema are initially stored in a linked-list pointed to by 1280 ** the Table.pVTable member variable of the corresponding Table object. 1281 ** When an sqlite3_prepare() operation is required to access the virtual 1282 ** table, it searches the list for the VTable that corresponds to the 1283 ** database connection doing the preparing so as to use the correct 1284 ** sqlite3_vtab* handle in the compiled query. 1285 ** 1286 ** When an in-memory Table object is deleted (for example when the 1287 ** schema is being reloaded for some reason), the VTable objects are not 1288 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1289 ** immediately. Instead, they are moved from the Table.pVTable list to 1290 ** another linked list headed by the sqlite3.pDisconnect member of the 1291 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1292 ** next time a statement is prepared using said sqlite3*. This is done 1293 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1294 ** Refer to comments above function sqlite3VtabUnlockList() for an 1295 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1296 ** list without holding the corresponding sqlite3.mutex mutex. 1297 ** 1298 ** The memory for objects of this type is always allocated by 1299 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1300 ** the first argument. 1301 */ 1302 struct VTable { 1303 sqlite3 *db; /* Database connection associated with this table */ 1304 Module *pMod; /* Pointer to module implementation */ 1305 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1306 int nRef; /* Number of pointers to this structure */ 1307 u8 bConstraint; /* True if constraints are supported */ 1308 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1309 VTable *pNext; /* Next in linked list (see above) */ 1310 }; 1311 1312 /* 1313 ** Each SQL table is represented in memory by an instance of the 1314 ** following structure. 1315 ** 1316 ** Table.zName is the name of the table. The case of the original 1317 ** CREATE TABLE statement is stored, but case is not significant for 1318 ** comparisons. 1319 ** 1320 ** Table.nCol is the number of columns in this table. Table.aCol is a 1321 ** pointer to an array of Column structures, one for each column. 1322 ** 1323 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1324 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1325 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1326 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1327 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1328 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1329 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1330 ** 1331 ** Table.tnum is the page number for the root BTree page of the table in the 1332 ** database file. If Table.iDb is the index of the database table backend 1333 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1334 ** holds temporary tables and indices. If TF_Ephemeral is set 1335 ** then the table is stored in a file that is automatically deleted 1336 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1337 ** refers VDBE cursor number that holds the table open, not to the root 1338 ** page number. Transient tables are used to hold the results of a 1339 ** sub-query that appears instead of a real table name in the FROM clause 1340 ** of a SELECT statement. 1341 */ 1342 struct Table { 1343 char *zName; /* Name of the table or view */ 1344 Column *aCol; /* Information about each column */ 1345 Index *pIndex; /* List of SQL indexes on this table. */ 1346 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1347 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1348 char *zColAff; /* String defining the affinity of each column */ 1349 #ifndef SQLITE_OMIT_CHECK 1350 ExprList *pCheck; /* All CHECK constraints */ 1351 #endif 1352 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1353 int tnum; /* Root BTree node for this table (see note above) */ 1354 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1355 i16 nCol; /* Number of columns in this table */ 1356 u16 nRef; /* Number of pointers to this Table */ 1357 u8 tabFlags; /* Mask of TF_* values */ 1358 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1359 #ifndef SQLITE_OMIT_ALTERTABLE 1360 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1361 #endif 1362 #ifndef SQLITE_OMIT_VIRTUALTABLE 1363 int nModuleArg; /* Number of arguments to the module */ 1364 char **azModuleArg; /* Text of all module args. [0] is module name */ 1365 VTable *pVTable; /* List of VTable objects. */ 1366 #endif 1367 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1368 Schema *pSchema; /* Schema that contains this table */ 1369 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1370 }; 1371 1372 /* 1373 ** Allowed values for Tabe.tabFlags. 1374 */ 1375 #define TF_Readonly 0x01 /* Read-only system table */ 1376 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1377 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1378 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1379 #define TF_Virtual 0x10 /* Is a virtual table */ 1380 1381 1382 /* 1383 ** Test to see whether or not a table is a virtual table. This is 1384 ** done as a macro so that it will be optimized out when virtual 1385 ** table support is omitted from the build. 1386 */ 1387 #ifndef SQLITE_OMIT_VIRTUALTABLE 1388 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1389 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1390 #else 1391 # define IsVirtual(X) 0 1392 # define IsHiddenColumn(X) 0 1393 #endif 1394 1395 /* 1396 ** Each foreign key constraint is an instance of the following structure. 1397 ** 1398 ** A foreign key is associated with two tables. The "from" table is 1399 ** the table that contains the REFERENCES clause that creates the foreign 1400 ** key. The "to" table is the table that is named in the REFERENCES clause. 1401 ** Consider this example: 1402 ** 1403 ** CREATE TABLE ex1( 1404 ** a INTEGER PRIMARY KEY, 1405 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1406 ** ); 1407 ** 1408 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1409 ** 1410 ** Each REFERENCES clause generates an instance of the following structure 1411 ** which is attached to the from-table. The to-table need not exist when 1412 ** the from-table is created. The existence of the to-table is not checked. 1413 */ 1414 struct FKey { 1415 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1416 FKey *pNextFrom; /* Next foreign key in pFrom */ 1417 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1418 FKey *pNextTo; /* Next foreign key on table named zTo */ 1419 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1420 int nCol; /* Number of columns in this key */ 1421 /* EV: R-30323-21917 */ 1422 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1423 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1424 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1425 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1426 int iFrom; /* Index of column in pFrom */ 1427 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1428 } aCol[1]; /* One entry for each of nCol column s */ 1429 }; 1430 1431 /* 1432 ** SQLite supports many different ways to resolve a constraint 1433 ** error. ROLLBACK processing means that a constraint violation 1434 ** causes the operation in process to fail and for the current transaction 1435 ** to be rolled back. ABORT processing means the operation in process 1436 ** fails and any prior changes from that one operation are backed out, 1437 ** but the transaction is not rolled back. FAIL processing means that 1438 ** the operation in progress stops and returns an error code. But prior 1439 ** changes due to the same operation are not backed out and no rollback 1440 ** occurs. IGNORE means that the particular row that caused the constraint 1441 ** error is not inserted or updated. Processing continues and no error 1442 ** is returned. REPLACE means that preexisting database rows that caused 1443 ** a UNIQUE constraint violation are removed so that the new insert or 1444 ** update can proceed. Processing continues and no error is reported. 1445 ** 1446 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1447 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1448 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1449 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1450 ** referenced table row is propagated into the row that holds the 1451 ** foreign key. 1452 ** 1453 ** The following symbolic values are used to record which type 1454 ** of action to take. 1455 */ 1456 #define OE_None 0 /* There is no constraint to check */ 1457 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1458 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1459 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1460 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1461 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1462 1463 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1464 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1465 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1466 #define OE_Cascade 9 /* Cascade the changes */ 1467 1468 #define OE_Default 99 /* Do whatever the default action is */ 1469 1470 1471 /* 1472 ** An instance of the following structure is passed as the first 1473 ** argument to sqlite3VdbeKeyCompare and is used to control the 1474 ** comparison of the two index keys. 1475 */ 1476 struct KeyInfo { 1477 sqlite3 *db; /* The database connection */ 1478 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1479 u16 nField; /* Number of entries in aColl[] */ 1480 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1481 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1482 }; 1483 1484 /* 1485 ** An instance of the following structure holds information about a 1486 ** single index record that has already been parsed out into individual 1487 ** values. 1488 ** 1489 ** A record is an object that contains one or more fields of data. 1490 ** Records are used to store the content of a table row and to store 1491 ** the key of an index. A blob encoding of a record is created by 1492 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1493 ** OP_Column opcode. 1494 ** 1495 ** This structure holds a record that has already been disassembled 1496 ** into its constituent fields. 1497 */ 1498 struct UnpackedRecord { 1499 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1500 u16 nField; /* Number of entries in apMem[] */ 1501 u8 flags; /* Boolean settings. UNPACKED_... below */ 1502 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1503 Mem *aMem; /* Values */ 1504 }; 1505 1506 /* 1507 ** Allowed values of UnpackedRecord.flags 1508 */ 1509 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1510 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1511 #define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */ 1512 1513 /* 1514 ** Each SQL index is represented in memory by an 1515 ** instance of the following structure. 1516 ** 1517 ** The columns of the table that are to be indexed are described 1518 ** by the aiColumn[] field of this structure. For example, suppose 1519 ** we have the following table and index: 1520 ** 1521 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1522 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1523 ** 1524 ** In the Table structure describing Ex1, nCol==3 because there are 1525 ** three columns in the table. In the Index structure describing 1526 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1527 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1528 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1529 ** The second column to be indexed (c1) has an index of 0 in 1530 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1531 ** 1532 ** The Index.onError field determines whether or not the indexed columns 1533 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1534 ** it means this is not a unique index. Otherwise it is a unique index 1535 ** and the value of Index.onError indicate the which conflict resolution 1536 ** algorithm to employ whenever an attempt is made to insert a non-unique 1537 ** element. 1538 */ 1539 struct Index { 1540 char *zName; /* Name of this index */ 1541 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1542 tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ 1543 Table *pTable; /* The SQL table being indexed */ 1544 char *zColAff; /* String defining the affinity of each column */ 1545 Index *pNext; /* The next index associated with the same table */ 1546 Schema *pSchema; /* Schema containing this index */ 1547 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1548 char **azColl; /* Array of collation sequence names for index */ 1549 int tnum; /* DB Page containing root of this index */ 1550 u16 nColumn; /* Number of columns in table used by this index */ 1551 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1552 unsigned autoIndex:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1553 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1554 #ifdef SQLITE_ENABLE_STAT3 1555 int nSample; /* Number of elements in aSample[] */ 1556 tRowcnt avgEq; /* Average nEq value for key values not in aSample */ 1557 IndexSample *aSample; /* Samples of the left-most key */ 1558 #endif 1559 }; 1560 1561 /* 1562 ** Each sample stored in the sqlite_stat3 table is represented in memory 1563 ** using a structure of this type. See documentation at the top of the 1564 ** analyze.c source file for additional information. 1565 */ 1566 struct IndexSample { 1567 union { 1568 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1569 double r; /* Value if eType is SQLITE_FLOAT */ 1570 i64 i; /* Value if eType is SQLITE_INTEGER */ 1571 } u; 1572 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1573 int nByte; /* Size in byte of text or blob. */ 1574 tRowcnt nEq; /* Est. number of rows where the key equals this sample */ 1575 tRowcnt nLt; /* Est. number of rows where key is less than this sample */ 1576 tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ 1577 }; 1578 1579 /* 1580 ** Each token coming out of the lexer is an instance of 1581 ** this structure. Tokens are also used as part of an expression. 1582 ** 1583 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1584 ** may contain random values. Do not make any assumptions about Token.dyn 1585 ** and Token.n when Token.z==0. 1586 */ 1587 struct Token { 1588 const char *z; /* Text of the token. Not NULL-terminated! */ 1589 unsigned int n; /* Number of characters in this token */ 1590 }; 1591 1592 /* 1593 ** An instance of this structure contains information needed to generate 1594 ** code for a SELECT that contains aggregate functions. 1595 ** 1596 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1597 ** pointer to this structure. The Expr.iColumn field is the index in 1598 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1599 ** code for that node. 1600 ** 1601 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1602 ** original Select structure that describes the SELECT statement. These 1603 ** fields do not need to be freed when deallocating the AggInfo structure. 1604 */ 1605 struct AggInfo { 1606 u8 directMode; /* Direct rendering mode means take data directly 1607 ** from source tables rather than from accumulators */ 1608 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1609 ** than the source table */ 1610 int sortingIdx; /* Cursor number of the sorting index */ 1611 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1612 int nSortingColumn; /* Number of columns in the sorting index */ 1613 ExprList *pGroupBy; /* The group by clause */ 1614 struct AggInfo_col { /* For each column used in source tables */ 1615 Table *pTab; /* Source table */ 1616 int iTable; /* Cursor number of the source table */ 1617 int iColumn; /* Column number within the source table */ 1618 int iSorterColumn; /* Column number in the sorting index */ 1619 int iMem; /* Memory location that acts as accumulator */ 1620 Expr *pExpr; /* The original expression */ 1621 } *aCol; 1622 int nColumn; /* Number of used entries in aCol[] */ 1623 int nAccumulator; /* Number of columns that show through to the output. 1624 ** Additional columns are used only as parameters to 1625 ** aggregate functions */ 1626 struct AggInfo_func { /* For each aggregate function */ 1627 Expr *pExpr; /* Expression encoding the function */ 1628 FuncDef *pFunc; /* The aggregate function implementation */ 1629 int iMem; /* Memory location that acts as accumulator */ 1630 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1631 } *aFunc; 1632 int nFunc; /* Number of entries in aFunc[] */ 1633 }; 1634 1635 /* 1636 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1637 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1638 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1639 ** it uses less memory in the Expr object, which is a big memory user 1640 ** in systems with lots of prepared statements. And few applications 1641 ** need more than about 10 or 20 variables. But some extreme users want 1642 ** to have prepared statements with over 32767 variables, and for them 1643 ** the option is available (at compile-time). 1644 */ 1645 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1646 typedef i16 ynVar; 1647 #else 1648 typedef int ynVar; 1649 #endif 1650 1651 /* 1652 ** Each node of an expression in the parse tree is an instance 1653 ** of this structure. 1654 ** 1655 ** Expr.op is the opcode. The integer parser token codes are reused 1656 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1657 ** code representing the ">=" operator. This same integer code is reused 1658 ** to represent the greater-than-or-equal-to operator in the expression 1659 ** tree. 1660 ** 1661 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1662 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1663 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1664 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1665 ** then Expr.token contains the name of the function. 1666 ** 1667 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1668 ** binary operator. Either or both may be NULL. 1669 ** 1670 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1671 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1672 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1673 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1674 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1675 ** valid. 1676 ** 1677 ** An expression of the form ID or ID.ID refers to a column in a table. 1678 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1679 ** the integer cursor number of a VDBE cursor pointing to that table and 1680 ** Expr.iColumn is the column number for the specific column. If the 1681 ** expression is used as a result in an aggregate SELECT, then the 1682 ** value is also stored in the Expr.iAgg column in the aggregate so that 1683 ** it can be accessed after all aggregates are computed. 1684 ** 1685 ** If the expression is an unbound variable marker (a question mark 1686 ** character '?' in the original SQL) then the Expr.iTable holds the index 1687 ** number for that variable. 1688 ** 1689 ** If the expression is a subquery then Expr.iColumn holds an integer 1690 ** register number containing the result of the subquery. If the 1691 ** subquery gives a constant result, then iTable is -1. If the subquery 1692 ** gives a different answer at different times during statement processing 1693 ** then iTable is the address of a subroutine that computes the subquery. 1694 ** 1695 ** If the Expr is of type OP_Column, and the table it is selecting from 1696 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1697 ** corresponding table definition. 1698 ** 1699 ** ALLOCATION NOTES: 1700 ** 1701 ** Expr objects can use a lot of memory space in database schema. To 1702 ** help reduce memory requirements, sometimes an Expr object will be 1703 ** truncated. And to reduce the number of memory allocations, sometimes 1704 ** two or more Expr objects will be stored in a single memory allocation, 1705 ** together with Expr.zToken strings. 1706 ** 1707 ** If the EP_Reduced and EP_TokenOnly flags are set when 1708 ** an Expr object is truncated. When EP_Reduced is set, then all 1709 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1710 ** are contained within the same memory allocation. Note, however, that 1711 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1712 ** allocated, regardless of whether or not EP_Reduced is set. 1713 */ 1714 struct Expr { 1715 u8 op; /* Operation performed by this node */ 1716 char affinity; /* The affinity of the column or 0 if not a column */ 1717 u16 flags; /* Various flags. EP_* See below */ 1718 union { 1719 char *zToken; /* Token value. Zero terminated and dequoted */ 1720 int iValue; /* Non-negative integer value if EP_IntValue */ 1721 } u; 1722 1723 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1724 ** space is allocated for the fields below this point. An attempt to 1725 ** access them will result in a segfault or malfunction. 1726 *********************************************************************/ 1727 1728 Expr *pLeft; /* Left subnode */ 1729 Expr *pRight; /* Right subnode */ 1730 union { 1731 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1732 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1733 } x; 1734 1735 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1736 ** space is allocated for the fields below this point. An attempt to 1737 ** access them will result in a segfault or malfunction. 1738 *********************************************************************/ 1739 1740 #if SQLITE_MAX_EXPR_DEPTH>0 1741 int nHeight; /* Height of the tree headed by this node */ 1742 #endif 1743 int iTable; /* TK_COLUMN: cursor number of table holding column 1744 ** TK_REGISTER: register number 1745 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1746 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1747 ** TK_VARIABLE: variable number (always >= 1). */ 1748 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1749 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1750 u8 flags2; /* Second set of flags. EP2_... */ 1751 u8 op2; /* TK_REGISTER: original value of Expr.op 1752 ** TK_COLUMN: the value of p5 for OP_Column 1753 ** TK_AGG_FUNCTION: nesting depth */ 1754 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1755 Table *pTab; /* Table for TK_COLUMN expressions. */ 1756 }; 1757 1758 /* 1759 ** The following are the meanings of bits in the Expr.flags field. 1760 */ 1761 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1762 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1763 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1764 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1765 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1766 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1767 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1768 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1769 #define EP_Collate 0x0100 /* Tree contains a TK_COLLATE opeartor */ 1770 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1771 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1772 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1773 #define EP_Hint 0x1000 /* Not used */ 1774 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1775 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1776 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1777 1778 /* 1779 ** The following are the meanings of bits in the Expr.flags2 field. 1780 */ 1781 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1782 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1783 1784 /* 1785 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1786 ** flag on an expression structure. This flag is used for VV&A only. The 1787 ** routine is implemented as a macro that only works when in debugging mode, 1788 ** so as not to burden production code. 1789 */ 1790 #ifdef SQLITE_DEBUG 1791 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1792 #else 1793 # define ExprSetIrreducible(X) 1794 #endif 1795 1796 /* 1797 ** These macros can be used to test, set, or clear bits in the 1798 ** Expr.flags field. 1799 */ 1800 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1801 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1802 #define ExprSetProperty(E,P) (E)->flags|=(P) 1803 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1804 1805 /* 1806 ** Macros to determine the number of bytes required by a normal Expr 1807 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1808 ** and an Expr struct with the EP_TokenOnly flag set. 1809 */ 1810 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1811 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1812 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1813 1814 /* 1815 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1816 ** above sqlite3ExprDup() for details. 1817 */ 1818 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1819 1820 /* 1821 ** A list of expressions. Each expression may optionally have a 1822 ** name. An expr/name combination can be used in several ways, such 1823 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1824 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1825 ** also be used as the argument to a function, in which case the a.zName 1826 ** field is not used. 1827 ** 1828 ** By default the Expr.zSpan field holds a human-readable description of 1829 ** the expression that is used in the generation of error messages and 1830 ** column labels. In this case, Expr.zSpan is typically the text of a 1831 ** column expression as it exists in a SELECT statement. However, if 1832 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 1833 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 1834 ** form is used for name resolution with nested FROM clauses. 1835 */ 1836 struct ExprList { 1837 int nExpr; /* Number of expressions on the list */ 1838 int iECursor; /* VDBE Cursor associated with this ExprList */ 1839 struct ExprList_item { /* For each expression in the list */ 1840 Expr *pExpr; /* The list of expressions */ 1841 char *zName; /* Token associated with this expression */ 1842 char *zSpan; /* Original text of the expression */ 1843 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1844 unsigned done :1; /* A flag to indicate when processing is finished */ 1845 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 1846 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1847 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1848 } *a; /* Alloc a power of two greater or equal to nExpr */ 1849 }; 1850 1851 /* 1852 ** An instance of this structure is used by the parser to record both 1853 ** the parse tree for an expression and the span of input text for an 1854 ** expression. 1855 */ 1856 struct ExprSpan { 1857 Expr *pExpr; /* The expression parse tree */ 1858 const char *zStart; /* First character of input text */ 1859 const char *zEnd; /* One character past the end of input text */ 1860 }; 1861 1862 /* 1863 ** An instance of this structure can hold a simple list of identifiers, 1864 ** such as the list "a,b,c" in the following statements: 1865 ** 1866 ** INSERT INTO t(a,b,c) VALUES ...; 1867 ** CREATE INDEX idx ON t(a,b,c); 1868 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1869 ** 1870 ** The IdList.a.idx field is used when the IdList represents the list of 1871 ** column names after a table name in an INSERT statement. In the statement 1872 ** 1873 ** INSERT INTO t(a,b,c) ... 1874 ** 1875 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1876 */ 1877 struct IdList { 1878 struct IdList_item { 1879 char *zName; /* Name of the identifier */ 1880 int idx; /* Index in some Table.aCol[] of a column named zName */ 1881 } *a; 1882 int nId; /* Number of identifiers on the list */ 1883 }; 1884 1885 /* 1886 ** The bitmask datatype defined below is used for various optimizations. 1887 ** 1888 ** Changing this from a 64-bit to a 32-bit type limits the number of 1889 ** tables in a join to 32 instead of 64. But it also reduces the size 1890 ** of the library by 738 bytes on ix86. 1891 */ 1892 typedef u64 Bitmask; 1893 1894 /* 1895 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1896 */ 1897 #define BMS ((int)(sizeof(Bitmask)*8)) 1898 1899 /* 1900 ** The following structure describes the FROM clause of a SELECT statement. 1901 ** Each table or subquery in the FROM clause is a separate element of 1902 ** the SrcList.a[] array. 1903 ** 1904 ** With the addition of multiple database support, the following structure 1905 ** can also be used to describe a particular table such as the table that 1906 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1907 ** such a table must be a simple name: ID. But in SQLite, the table can 1908 ** now be identified by a database name, a dot, then the table name: ID.ID. 1909 ** 1910 ** The jointype starts out showing the join type between the current table 1911 ** and the next table on the list. The parser builds the list this way. 1912 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1913 ** jointype expresses the join between the table and the previous table. 1914 ** 1915 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1916 ** contains more than 63 columns and the 64-th or later column is used. 1917 */ 1918 struct SrcList { 1919 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1920 i16 nAlloc; /* Number of entries allocated in a[] below */ 1921 struct SrcList_item { 1922 Schema *pSchema; /* Schema to which this item is fixed */ 1923 char *zDatabase; /* Name of database holding this table */ 1924 char *zName; /* Name of the table */ 1925 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1926 Table *pTab; /* An SQL table corresponding to zName */ 1927 Select *pSelect; /* A SELECT statement used in place of a table name */ 1928 int addrFillSub; /* Address of subroutine to manifest a subquery */ 1929 int regReturn; /* Register holding return address of addrFillSub */ 1930 u8 jointype; /* Type of join between this able and the previous */ 1931 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 1932 unsigned isCorrelated :1; /* True if sub-query is correlated */ 1933 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 1934 #ifndef SQLITE_OMIT_EXPLAIN 1935 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 1936 #endif 1937 int iCursor; /* The VDBE cursor number used to access this table */ 1938 Expr *pOn; /* The ON clause of a join */ 1939 IdList *pUsing; /* The USING clause of a join */ 1940 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1941 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1942 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1943 } a[1]; /* One entry for each identifier on the list */ 1944 }; 1945 1946 /* 1947 ** Permitted values of the SrcList.a.jointype field 1948 */ 1949 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1950 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1951 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1952 #define JT_LEFT 0x0008 /* Left outer join */ 1953 #define JT_RIGHT 0x0010 /* Right outer join */ 1954 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1955 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1956 1957 1958 /* 1959 ** A WherePlan object holds information that describes a lookup 1960 ** strategy. 1961 ** 1962 ** This object is intended to be opaque outside of the where.c module. 1963 ** It is included here only so that that compiler will know how big it 1964 ** is. None of the fields in this object should be used outside of 1965 ** the where.c module. 1966 ** 1967 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1968 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1969 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1970 ** case that more than one of these conditions is true. 1971 */ 1972 struct WherePlan { 1973 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1974 u16 nEq; /* Number of == constraints */ 1975 u16 nOBSat; /* Number of ORDER BY terms satisfied */ 1976 double nRow; /* Estimated number of rows (for EQP) */ 1977 union { 1978 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1979 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1980 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1981 } u; 1982 }; 1983 1984 /* 1985 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1986 ** structure contains a single instance of this structure. This structure 1987 ** is intended to be private to the where.c module and should not be 1988 ** access or modified by other modules. 1989 ** 1990 ** The pIdxInfo field is used to help pick the best index on a 1991 ** virtual table. The pIdxInfo pointer contains indexing 1992 ** information for the i-th table in the FROM clause before reordering. 1993 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1994 ** All other information in the i-th WhereLevel object for the i-th table 1995 ** after FROM clause ordering. 1996 */ 1997 struct WhereLevel { 1998 WherePlan plan; /* query plan for this element of the FROM clause */ 1999 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 2000 int iTabCur; /* The VDBE cursor used to access the table */ 2001 int iIdxCur; /* The VDBE cursor used to access pIdx */ 2002 int addrBrk; /* Jump here to break out of the loop */ 2003 int addrNxt; /* Jump here to start the next IN combination */ 2004 int addrCont; /* Jump here to continue with the next loop cycle */ 2005 int addrFirst; /* First instruction of interior of the loop */ 2006 u8 iFrom; /* Which entry in the FROM clause */ 2007 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 2008 int p1, p2; /* Operands of the opcode used to ends the loop */ 2009 union { /* Information that depends on plan.wsFlags */ 2010 struct { 2011 int nIn; /* Number of entries in aInLoop[] */ 2012 struct InLoop { 2013 int iCur; /* The VDBE cursor used by this IN operator */ 2014 int addrInTop; /* Top of the IN loop */ 2015 u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ 2016 } *aInLoop; /* Information about each nested IN operator */ 2017 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 2018 Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ 2019 } u; 2020 double rOptCost; /* "Optimal" cost for this level */ 2021 2022 /* The following field is really not part of the current level. But 2023 ** we need a place to cache virtual table index information for each 2024 ** virtual table in the FROM clause and the WhereLevel structure is 2025 ** a convenient place since there is one WhereLevel for each FROM clause 2026 ** element. 2027 */ 2028 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 2029 }; 2030 2031 /* 2032 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2033 ** and the WhereInfo.wctrlFlags member. 2034 */ 2035 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2036 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2037 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2038 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2039 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2040 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2041 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2042 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2043 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 2044 2045 /* 2046 ** The WHERE clause processing routine has two halves. The 2047 ** first part does the start of the WHERE loop and the second 2048 ** half does the tail of the WHERE loop. An instance of 2049 ** this structure is returned by the first half and passed 2050 ** into the second half to give some continuity. 2051 */ 2052 struct WhereInfo { 2053 Parse *pParse; /* Parsing and code generating context */ 2054 SrcList *pTabList; /* List of tables in the join */ 2055 u16 nOBSat; /* Number of ORDER BY terms satisfied by indices */ 2056 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 2057 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE/DELETE */ 2058 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 2059 u8 eDistinct; /* One of the WHERE_DISTINCT_* values below */ 2060 int iTop; /* The very beginning of the WHERE loop */ 2061 int iContinue; /* Jump here to continue with next record */ 2062 int iBreak; /* Jump here to break out of the loop */ 2063 int nLevel; /* Number of nested loop */ 2064 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 2065 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 2066 double nRowOut; /* Estimated number of output rows */ 2067 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 2068 }; 2069 2070 /* Allowed values for WhereInfo.eDistinct and DistinctCtx.eTnctType */ 2071 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2072 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2073 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2074 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2075 2076 /* 2077 ** A NameContext defines a context in which to resolve table and column 2078 ** names. The context consists of a list of tables (the pSrcList) field and 2079 ** a list of named expression (pEList). The named expression list may 2080 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2081 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2082 ** pEList corresponds to the result set of a SELECT and is NULL for 2083 ** other statements. 2084 ** 2085 ** NameContexts can be nested. When resolving names, the inner-most 2086 ** context is searched first. If no match is found, the next outer 2087 ** context is checked. If there is still no match, the next context 2088 ** is checked. This process continues until either a match is found 2089 ** or all contexts are check. When a match is found, the nRef member of 2090 ** the context containing the match is incremented. 2091 ** 2092 ** Each subquery gets a new NameContext. The pNext field points to the 2093 ** NameContext in the parent query. Thus the process of scanning the 2094 ** NameContext list corresponds to searching through successively outer 2095 ** subqueries looking for a match. 2096 */ 2097 struct NameContext { 2098 Parse *pParse; /* The parser */ 2099 SrcList *pSrcList; /* One or more tables used to resolve names */ 2100 ExprList *pEList; /* Optional list of named expressions */ 2101 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2102 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2103 int nRef; /* Number of names resolved by this context */ 2104 int nErr; /* Number of errors encountered while resolving names */ 2105 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2106 }; 2107 2108 /* 2109 ** Allowed values for the NameContext, ncFlags field. 2110 */ 2111 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2112 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2113 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2114 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2115 #define NC_AsMaybe 0x10 /* Resolve to AS terms of the result set only 2116 ** if no other resolution is available */ 2117 2118 /* 2119 ** An instance of the following structure contains all information 2120 ** needed to generate code for a single SELECT statement. 2121 ** 2122 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2123 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2124 ** limit and nOffset to the value of the offset (or 0 if there is not 2125 ** offset). But later on, nLimit and nOffset become the memory locations 2126 ** in the VDBE that record the limit and offset counters. 2127 ** 2128 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2129 ** These addresses must be stored so that we can go back and fill in 2130 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2131 ** the number of columns in P2 can be computed at the same time 2132 ** as the OP_OpenEphm instruction is coded because not 2133 ** enough information about the compound query is known at that point. 2134 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2135 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2136 ** sequences for the ORDER BY clause. 2137 */ 2138 struct Select { 2139 ExprList *pEList; /* The fields of the result */ 2140 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2141 u16 selFlags; /* Various SF_* values */ 2142 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2143 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2144 double nSelectRow; /* Estimated number of result rows */ 2145 SrcList *pSrc; /* The FROM clause */ 2146 Expr *pWhere; /* The WHERE clause */ 2147 ExprList *pGroupBy; /* The GROUP BY clause */ 2148 Expr *pHaving; /* The HAVING clause */ 2149 ExprList *pOrderBy; /* The ORDER BY clause */ 2150 Select *pPrior; /* Prior select in a compound select statement */ 2151 Select *pNext; /* Next select to the left in a compound */ 2152 Select *pRightmost; /* Right-most select in a compound select statement */ 2153 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2154 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2155 }; 2156 2157 /* 2158 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2159 ** "Select Flag". 2160 */ 2161 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2162 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2163 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2164 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2165 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2166 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2167 #define SF_UseSorter 0x0040 /* Sort using a sorter */ 2168 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2169 #define SF_Materialize 0x0100 /* Force materialization of views */ 2170 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2171 2172 2173 /* 2174 ** The results of a select can be distributed in several ways. The 2175 ** "SRT" prefix means "SELECT Result Type". 2176 */ 2177 #define SRT_Union 1 /* Store result as keys in an index */ 2178 #define SRT_Except 2 /* Remove result from a UNION index */ 2179 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2180 #define SRT_Discard 4 /* Do not save the results anywhere */ 2181 2182 /* The ORDER BY clause is ignored for all of the above */ 2183 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2184 2185 #define SRT_Output 5 /* Output each row of result */ 2186 #define SRT_Mem 6 /* Store result in a memory cell */ 2187 #define SRT_Set 7 /* Store results as keys in an index */ 2188 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2189 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2190 #define SRT_Coroutine 10 /* Generate a single row of result */ 2191 2192 /* 2193 ** An instance of this object describes where to put of the results of 2194 ** a SELECT statement. 2195 */ 2196 struct SelectDest { 2197 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2198 char affSdst; /* Affinity used when eDest==SRT_Set */ 2199 int iSDParm; /* A parameter used by the eDest disposal method */ 2200 int iSdst; /* Base register where results are written */ 2201 int nSdst; /* Number of registers allocated */ 2202 }; 2203 2204 /* 2205 ** During code generation of statements that do inserts into AUTOINCREMENT 2206 ** tables, the following information is attached to the Table.u.autoInc.p 2207 ** pointer of each autoincrement table to record some side information that 2208 ** the code generator needs. We have to keep per-table autoincrement 2209 ** information in case inserts are down within triggers. Triggers do not 2210 ** normally coordinate their activities, but we do need to coordinate the 2211 ** loading and saving of autoincrement information. 2212 */ 2213 struct AutoincInfo { 2214 AutoincInfo *pNext; /* Next info block in a list of them all */ 2215 Table *pTab; /* Table this info block refers to */ 2216 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2217 int regCtr; /* Memory register holding the rowid counter */ 2218 }; 2219 2220 /* 2221 ** Size of the column cache 2222 */ 2223 #ifndef SQLITE_N_COLCACHE 2224 # define SQLITE_N_COLCACHE 10 2225 #endif 2226 2227 /* 2228 ** At least one instance of the following structure is created for each 2229 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2230 ** statement. All such objects are stored in the linked list headed at 2231 ** Parse.pTriggerPrg and deleted once statement compilation has been 2232 ** completed. 2233 ** 2234 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2235 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2236 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2237 ** The Parse.pTriggerPrg list never contains two entries with the same 2238 ** values for both pTrigger and orconf. 2239 ** 2240 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2241 ** accessed (or set to 0 for triggers fired as a result of INSERT 2242 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2243 ** a mask of new.* columns used by the program. 2244 */ 2245 struct TriggerPrg { 2246 Trigger *pTrigger; /* Trigger this program was coded from */ 2247 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2248 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2249 int orconf; /* Default ON CONFLICT policy */ 2250 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2251 }; 2252 2253 /* 2254 ** The yDbMask datatype for the bitmask of all attached databases. 2255 */ 2256 #if SQLITE_MAX_ATTACHED>30 2257 typedef sqlite3_uint64 yDbMask; 2258 #else 2259 typedef unsigned int yDbMask; 2260 #endif 2261 2262 /* 2263 ** An SQL parser context. A copy of this structure is passed through 2264 ** the parser and down into all the parser action routine in order to 2265 ** carry around information that is global to the entire parse. 2266 ** 2267 ** The structure is divided into two parts. When the parser and code 2268 ** generate call themselves recursively, the first part of the structure 2269 ** is constant but the second part is reset at the beginning and end of 2270 ** each recursion. 2271 ** 2272 ** The nTableLock and aTableLock variables are only used if the shared-cache 2273 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2274 ** used to store the set of table-locks required by the statement being 2275 ** compiled. Function sqlite3TableLock() is used to add entries to the 2276 ** list. 2277 */ 2278 struct Parse { 2279 sqlite3 *db; /* The main database structure */ 2280 char *zErrMsg; /* An error message */ 2281 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2282 int rc; /* Return code from execution */ 2283 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2284 u8 checkSchema; /* Causes schema cookie check after an error */ 2285 u8 nested; /* Number of nested calls to the parser/code generator */ 2286 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2287 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2288 u8 nColCache; /* Number of entries in aColCache[] */ 2289 u8 iColCache; /* Next entry in aColCache[] to replace */ 2290 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2291 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2292 int aTempReg[8]; /* Holding area for temporary registers */ 2293 int nRangeReg; /* Size of the temporary register block */ 2294 int iRangeReg; /* First register in temporary register block */ 2295 int nErr; /* Number of errors seen */ 2296 int nTab; /* Number of previously allocated VDBE cursors */ 2297 int nMem; /* Number of memory cells used so far */ 2298 int nSet; /* Number of sets used so far */ 2299 int nOnce; /* Number of OP_Once instructions so far */ 2300 int ckBase; /* Base register of data during check constraints */ 2301 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2302 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2303 struct yColCache { 2304 int iTable; /* Table cursor number */ 2305 int iColumn; /* Table column number */ 2306 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2307 int iLevel; /* Nesting level */ 2308 int iReg; /* Reg with value of this column. 0 means none. */ 2309 int lru; /* Least recently used entry has the smallest value */ 2310 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2311 yDbMask writeMask; /* Start a write transaction on these databases */ 2312 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2313 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2314 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2315 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2316 int regRoot; /* Register holding root page number for new objects */ 2317 int nMaxArg; /* Max args passed to user function by sub-program */ 2318 Token constraintName;/* Name of the constraint currently being parsed */ 2319 #ifndef SQLITE_OMIT_SHARED_CACHE 2320 int nTableLock; /* Number of locks in aTableLock */ 2321 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2322 #endif 2323 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2324 2325 /* Information used while coding trigger programs. */ 2326 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2327 Table *pTriggerTab; /* Table triggers are being coded for */ 2328 double nQueryLoop; /* Estimated number of iterations of a query */ 2329 u32 oldmask; /* Mask of old.* columns referenced */ 2330 u32 newmask; /* Mask of new.* columns referenced */ 2331 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2332 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2333 u8 disableTriggers; /* True to disable triggers */ 2334 2335 /* Above is constant between recursions. Below is reset before and after 2336 ** each recursion */ 2337 2338 int nVar; /* Number of '?' variables seen in the SQL so far */ 2339 int nzVar; /* Number of available slots in azVar[] */ 2340 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2341 #ifndef SQLITE_OMIT_VIRTUALTABLE 2342 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2343 int nVtabLock; /* Number of virtual tables to lock */ 2344 #endif 2345 int nAlias; /* Number of aliased result set columns */ 2346 int nHeight; /* Expression tree height of current sub-select */ 2347 #ifndef SQLITE_OMIT_EXPLAIN 2348 int iSelectId; /* ID of current select for EXPLAIN output */ 2349 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2350 #endif 2351 char **azVar; /* Pointers to names of parameters */ 2352 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2353 int *aAlias; /* Register used to hold aliased result */ 2354 const char *zTail; /* All SQL text past the last semicolon parsed */ 2355 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2356 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2357 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2358 Token sNameToken; /* Token with unqualified schema object name */ 2359 Token sLastToken; /* The last token parsed */ 2360 #ifndef SQLITE_OMIT_VIRTUALTABLE 2361 Token sArg; /* Complete text of a module argument */ 2362 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2363 #endif 2364 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2365 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2366 }; 2367 2368 /* 2369 ** Return true if currently inside an sqlite3_declare_vtab() call. 2370 */ 2371 #ifdef SQLITE_OMIT_VIRTUALTABLE 2372 #define IN_DECLARE_VTAB 0 2373 #else 2374 #define IN_DECLARE_VTAB (pParse->declareVtab) 2375 #endif 2376 2377 /* 2378 ** An instance of the following structure can be declared on a stack and used 2379 ** to save the Parse.zAuthContext value so that it can be restored later. 2380 */ 2381 struct AuthContext { 2382 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2383 Parse *pParse; /* The Parse structure */ 2384 }; 2385 2386 /* 2387 ** Bitfield flags for P5 value in various opcodes. 2388 */ 2389 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2390 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2391 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2392 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2393 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2394 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2395 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2396 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2397 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2398 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2399 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2400 2401 /* 2402 * Each trigger present in the database schema is stored as an instance of 2403 * struct Trigger. 2404 * 2405 * Pointers to instances of struct Trigger are stored in two ways. 2406 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2407 * database). This allows Trigger structures to be retrieved by name. 2408 * 2. All triggers associated with a single table form a linked list, using the 2409 * pNext member of struct Trigger. A pointer to the first element of the 2410 * linked list is stored as the "pTrigger" member of the associated 2411 * struct Table. 2412 * 2413 * The "step_list" member points to the first element of a linked list 2414 * containing the SQL statements specified as the trigger program. 2415 */ 2416 struct Trigger { 2417 char *zName; /* The name of the trigger */ 2418 char *table; /* The table or view to which the trigger applies */ 2419 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2420 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2421 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2422 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2423 the <column-list> is stored here */ 2424 Schema *pSchema; /* Schema containing the trigger */ 2425 Schema *pTabSchema; /* Schema containing the table */ 2426 TriggerStep *step_list; /* Link list of trigger program steps */ 2427 Trigger *pNext; /* Next trigger associated with the table */ 2428 }; 2429 2430 /* 2431 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2432 ** determine which. 2433 ** 2434 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2435 ** In that cases, the constants below can be ORed together. 2436 */ 2437 #define TRIGGER_BEFORE 1 2438 #define TRIGGER_AFTER 2 2439 2440 /* 2441 * An instance of struct TriggerStep is used to store a single SQL statement 2442 * that is a part of a trigger-program. 2443 * 2444 * Instances of struct TriggerStep are stored in a singly linked list (linked 2445 * using the "pNext" member) referenced by the "step_list" member of the 2446 * associated struct Trigger instance. The first element of the linked list is 2447 * the first step of the trigger-program. 2448 * 2449 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2450 * "SELECT" statement. The meanings of the other members is determined by the 2451 * value of "op" as follows: 2452 * 2453 * (op == TK_INSERT) 2454 * orconf -> stores the ON CONFLICT algorithm 2455 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2456 * this stores a pointer to the SELECT statement. Otherwise NULL. 2457 * target -> A token holding the quoted name of the table to insert into. 2458 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2459 * this stores values to be inserted. Otherwise NULL. 2460 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2461 * statement, then this stores the column-names to be 2462 * inserted into. 2463 * 2464 * (op == TK_DELETE) 2465 * target -> A token holding the quoted name of the table to delete from. 2466 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2467 * Otherwise NULL. 2468 * 2469 * (op == TK_UPDATE) 2470 * target -> A token holding the quoted name of the table to update rows of. 2471 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2472 * Otherwise NULL. 2473 * pExprList -> A list of the columns to update and the expressions to update 2474 * them to. See sqlite3Update() documentation of "pChanges" 2475 * argument. 2476 * 2477 */ 2478 struct TriggerStep { 2479 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2480 u8 orconf; /* OE_Rollback etc. */ 2481 Trigger *pTrig; /* The trigger that this step is a part of */ 2482 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2483 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2484 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2485 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2486 IdList *pIdList; /* Column names for INSERT */ 2487 TriggerStep *pNext; /* Next in the link-list */ 2488 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2489 }; 2490 2491 /* 2492 ** The following structure contains information used by the sqliteFix... 2493 ** routines as they walk the parse tree to make database references 2494 ** explicit. 2495 */ 2496 typedef struct DbFixer DbFixer; 2497 struct DbFixer { 2498 Parse *pParse; /* The parsing context. Error messages written here */ 2499 Schema *pSchema; /* Fix items to this schema */ 2500 const char *zDb; /* Make sure all objects are contained in this database */ 2501 const char *zType; /* Type of the container - used for error messages */ 2502 const Token *pName; /* Name of the container - used for error messages */ 2503 }; 2504 2505 /* 2506 ** An objected used to accumulate the text of a string where we 2507 ** do not necessarily know how big the string will be in the end. 2508 */ 2509 struct StrAccum { 2510 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2511 char *zBase; /* A base allocation. Not from malloc. */ 2512 char *zText; /* The string collected so far */ 2513 int nChar; /* Length of the string so far */ 2514 int nAlloc; /* Amount of space allocated in zText */ 2515 int mxAlloc; /* Maximum allowed string length */ 2516 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2517 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2518 u8 tooBig; /* Becomes true if string size exceeds limits */ 2519 }; 2520 2521 /* 2522 ** A pointer to this structure is used to communicate information 2523 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2524 */ 2525 typedef struct { 2526 sqlite3 *db; /* The database being initialized */ 2527 char **pzErrMsg; /* Error message stored here */ 2528 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2529 int rc; /* Result code stored here */ 2530 } InitData; 2531 2532 /* 2533 ** Structure containing global configuration data for the SQLite library. 2534 ** 2535 ** This structure also contains some state information. 2536 */ 2537 struct Sqlite3Config { 2538 int bMemstat; /* True to enable memory status */ 2539 int bCoreMutex; /* True to enable core mutexing */ 2540 int bFullMutex; /* True to enable full mutexing */ 2541 int bOpenUri; /* True to interpret filenames as URIs */ 2542 int bUseCis; /* Use covering indices for full-scans */ 2543 int mxStrlen; /* Maximum string length */ 2544 int szLookaside; /* Default lookaside buffer size */ 2545 int nLookaside; /* Default lookaside buffer count */ 2546 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2547 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2548 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2549 void *pHeap; /* Heap storage space */ 2550 int nHeap; /* Size of pHeap[] */ 2551 int mnReq, mxReq; /* Min and max heap requests sizes */ 2552 sqlite3_int64 szMmap; /* mmap() space per open file */ 2553 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2554 void *pScratch; /* Scratch memory */ 2555 int szScratch; /* Size of each scratch buffer */ 2556 int nScratch; /* Number of scratch buffers */ 2557 void *pPage; /* Page cache memory */ 2558 int szPage; /* Size of each page in pPage[] */ 2559 int nPage; /* Number of pages in pPage[] */ 2560 int mxParserStack; /* maximum depth of the parser stack */ 2561 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2562 /* The above might be initialized to non-zero. The following need to always 2563 ** initially be zero, however. */ 2564 int isInit; /* True after initialization has finished */ 2565 int inProgress; /* True while initialization in progress */ 2566 int isMutexInit; /* True after mutexes are initialized */ 2567 int isMallocInit; /* True after malloc is initialized */ 2568 int isPCacheInit; /* True after malloc is initialized */ 2569 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2570 int nRefInitMutex; /* Number of users of pInitMutex */ 2571 void (*xLog)(void*,int,const char*); /* Function for logging */ 2572 void *pLogArg; /* First argument to xLog() */ 2573 int bLocaltimeFault; /* True to fail localtime() calls */ 2574 #ifdef SQLITE_ENABLE_SQLLOG 2575 void(*xSqllog)(void*,sqlite3*,const char*, int); 2576 void *pSqllogArg; 2577 #endif 2578 }; 2579 2580 /* 2581 ** Context pointer passed down through the tree-walk. 2582 */ 2583 struct Walker { 2584 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2585 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2586 Parse *pParse; /* Parser context. */ 2587 int walkerDepth; /* Number of subqueries */ 2588 union { /* Extra data for callback */ 2589 NameContext *pNC; /* Naming context */ 2590 int i; /* Integer value */ 2591 SrcList *pSrcList; /* FROM clause */ 2592 struct SrcCount *pSrcCount; /* Counting column references */ 2593 } u; 2594 }; 2595 2596 /* Forward declarations */ 2597 int sqlite3WalkExpr(Walker*, Expr*); 2598 int sqlite3WalkExprList(Walker*, ExprList*); 2599 int sqlite3WalkSelect(Walker*, Select*); 2600 int sqlite3WalkSelectExpr(Walker*, Select*); 2601 int sqlite3WalkSelectFrom(Walker*, Select*); 2602 2603 /* 2604 ** Return code from the parse-tree walking primitives and their 2605 ** callbacks. 2606 */ 2607 #define WRC_Continue 0 /* Continue down into children */ 2608 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2609 #define WRC_Abort 2 /* Abandon the tree walk */ 2610 2611 /* 2612 ** Assuming zIn points to the first byte of a UTF-8 character, 2613 ** advance zIn to point to the first byte of the next UTF-8 character. 2614 */ 2615 #define SQLITE_SKIP_UTF8(zIn) { \ 2616 if( (*(zIn++))>=0xc0 ){ \ 2617 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2618 } \ 2619 } 2620 2621 /* 2622 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2623 ** the same name but without the _BKPT suffix. These macros invoke 2624 ** routines that report the line-number on which the error originated 2625 ** using sqlite3_log(). The routines also provide a convenient place 2626 ** to set a debugger breakpoint. 2627 */ 2628 int sqlite3CorruptError(int); 2629 int sqlite3MisuseError(int); 2630 int sqlite3CantopenError(int); 2631 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2632 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2633 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2634 2635 2636 /* 2637 ** FTS4 is really an extension for FTS3. It is enabled using the 2638 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2639 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2640 */ 2641 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2642 # define SQLITE_ENABLE_FTS3 2643 #endif 2644 2645 /* 2646 ** The ctype.h header is needed for non-ASCII systems. It is also 2647 ** needed by FTS3 when FTS3 is included in the amalgamation. 2648 */ 2649 #if !defined(SQLITE_ASCII) || \ 2650 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2651 # include <ctype.h> 2652 #endif 2653 2654 /* 2655 ** The following macros mimic the standard library functions toupper(), 2656 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2657 ** sqlite versions only work for ASCII characters, regardless of locale. 2658 */ 2659 #ifdef SQLITE_ASCII 2660 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2661 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2662 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2663 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2664 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2665 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2666 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2667 #else 2668 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2669 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2670 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2671 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2672 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2673 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2674 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2675 #endif 2676 2677 /* 2678 ** Internal function prototypes 2679 */ 2680 #define sqlite3StrICmp sqlite3_stricmp 2681 int sqlite3Strlen30(const char*); 2682 #define sqlite3StrNICmp sqlite3_strnicmp 2683 2684 int sqlite3MallocInit(void); 2685 void sqlite3MallocEnd(void); 2686 void *sqlite3Malloc(int); 2687 void *sqlite3MallocZero(int); 2688 void *sqlite3DbMallocZero(sqlite3*, int); 2689 void *sqlite3DbMallocRaw(sqlite3*, int); 2690 char *sqlite3DbStrDup(sqlite3*,const char*); 2691 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2692 void *sqlite3Realloc(void*, int); 2693 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2694 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2695 void sqlite3DbFree(sqlite3*, void*); 2696 int sqlite3MallocSize(void*); 2697 int sqlite3DbMallocSize(sqlite3*, void*); 2698 void *sqlite3ScratchMalloc(int); 2699 void sqlite3ScratchFree(void*); 2700 void *sqlite3PageMalloc(int); 2701 void sqlite3PageFree(void*); 2702 void sqlite3MemSetDefault(void); 2703 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2704 int sqlite3HeapNearlyFull(void); 2705 2706 /* 2707 ** On systems with ample stack space and that support alloca(), make 2708 ** use of alloca() to obtain space for large automatic objects. By default, 2709 ** obtain space from malloc(). 2710 ** 2711 ** The alloca() routine never returns NULL. This will cause code paths 2712 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2713 */ 2714 #ifdef SQLITE_USE_ALLOCA 2715 # define sqlite3StackAllocRaw(D,N) alloca(N) 2716 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2717 # define sqlite3StackFree(D,P) 2718 #else 2719 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2720 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2721 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2722 #endif 2723 2724 #ifdef SQLITE_ENABLE_MEMSYS3 2725 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2726 #endif 2727 #ifdef SQLITE_ENABLE_MEMSYS5 2728 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2729 #endif 2730 2731 2732 #ifndef SQLITE_MUTEX_OMIT 2733 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2734 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2735 sqlite3_mutex *sqlite3MutexAlloc(int); 2736 int sqlite3MutexInit(void); 2737 int sqlite3MutexEnd(void); 2738 #endif 2739 2740 int sqlite3StatusValue(int); 2741 void sqlite3StatusAdd(int, int); 2742 void sqlite3StatusSet(int, int); 2743 2744 #ifndef SQLITE_OMIT_FLOATING_POINT 2745 int sqlite3IsNaN(double); 2746 #else 2747 # define sqlite3IsNaN(X) 0 2748 #endif 2749 2750 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2751 #ifndef SQLITE_OMIT_TRACE 2752 void sqlite3XPrintf(StrAccum*, const char*, ...); 2753 #endif 2754 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2755 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2756 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2757 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2758 void sqlite3DebugPrintf(const char*, ...); 2759 #endif 2760 #if defined(SQLITE_TEST) 2761 void *sqlite3TestTextToPtr(const char*); 2762 #endif 2763 2764 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2765 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2766 void sqlite3ExplainBegin(Vdbe*); 2767 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2768 void sqlite3ExplainNL(Vdbe*); 2769 void sqlite3ExplainPush(Vdbe*); 2770 void sqlite3ExplainPop(Vdbe*); 2771 void sqlite3ExplainFinish(Vdbe*); 2772 void sqlite3ExplainSelect(Vdbe*, Select*); 2773 void sqlite3ExplainExpr(Vdbe*, Expr*); 2774 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2775 const char *sqlite3VdbeExplanation(Vdbe*); 2776 #else 2777 # define sqlite3ExplainBegin(X) 2778 # define sqlite3ExplainSelect(A,B) 2779 # define sqlite3ExplainExpr(A,B) 2780 # define sqlite3ExplainExprList(A,B) 2781 # define sqlite3ExplainFinish(X) 2782 # define sqlite3VdbeExplanation(X) 0 2783 #endif 2784 2785 2786 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2787 void sqlite3ErrorMsg(Parse*, const char*, ...); 2788 int sqlite3Dequote(char*); 2789 int sqlite3KeywordCode(const unsigned char*, int); 2790 int sqlite3RunParser(Parse*, const char*, char **); 2791 void sqlite3FinishCoding(Parse*); 2792 int sqlite3GetTempReg(Parse*); 2793 void sqlite3ReleaseTempReg(Parse*,int); 2794 int sqlite3GetTempRange(Parse*,int); 2795 void sqlite3ReleaseTempRange(Parse*,int,int); 2796 void sqlite3ClearTempRegCache(Parse*); 2797 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2798 Expr *sqlite3Expr(sqlite3*,int,const char*); 2799 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2800 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2801 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2802 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2803 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2804 void sqlite3ExprDelete(sqlite3*, Expr*); 2805 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2806 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2807 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2808 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2809 int sqlite3Init(sqlite3*, char**); 2810 int sqlite3InitCallback(void*, int, char**, char**); 2811 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2812 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 2813 void sqlite3ResetOneSchema(sqlite3*,int); 2814 void sqlite3CollapseDatabaseArray(sqlite3*); 2815 void sqlite3BeginParse(Parse*,int); 2816 void sqlite3CommitInternalChanges(sqlite3*); 2817 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2818 void sqlite3OpenMasterTable(Parse *, int); 2819 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2820 void sqlite3AddColumn(Parse*,Token*); 2821 void sqlite3AddNotNull(Parse*, int); 2822 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2823 void sqlite3AddCheckConstraint(Parse*, Expr*); 2824 void sqlite3AddColumnType(Parse*,Token*); 2825 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2826 void sqlite3AddCollateType(Parse*, Token*); 2827 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2828 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2829 sqlite3_vfs**,char**,char **); 2830 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 2831 int sqlite3CodeOnce(Parse *); 2832 2833 Bitvec *sqlite3BitvecCreate(u32); 2834 int sqlite3BitvecTest(Bitvec*, u32); 2835 int sqlite3BitvecSet(Bitvec*, u32); 2836 void sqlite3BitvecClear(Bitvec*, u32, void*); 2837 void sqlite3BitvecDestroy(Bitvec*); 2838 u32 sqlite3BitvecSize(Bitvec*); 2839 int sqlite3BitvecBuiltinTest(int,int*); 2840 2841 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2842 void sqlite3RowSetClear(RowSet*); 2843 void sqlite3RowSetInsert(RowSet*, i64); 2844 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2845 int sqlite3RowSetNext(RowSet*, i64*); 2846 2847 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2848 2849 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2850 int sqlite3ViewGetColumnNames(Parse*,Table*); 2851 #else 2852 # define sqlite3ViewGetColumnNames(A,B) 0 2853 #endif 2854 2855 void sqlite3DropTable(Parse*, SrcList*, int, int); 2856 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2857 void sqlite3DeleteTable(sqlite3*, Table*); 2858 #ifndef SQLITE_OMIT_AUTOINCREMENT 2859 void sqlite3AutoincrementBegin(Parse *pParse); 2860 void sqlite3AutoincrementEnd(Parse *pParse); 2861 #else 2862 # define sqlite3AutoincrementBegin(X) 2863 # define sqlite3AutoincrementEnd(X) 2864 #endif 2865 int sqlite3CodeCoroutine(Parse*, Select*, SelectDest*); 2866 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2867 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 2868 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2869 int sqlite3IdListIndex(IdList*,const char*); 2870 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2871 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2872 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2873 Token*, Select*, Expr*, IdList*); 2874 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2875 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2876 void sqlite3SrcListShiftJoinType(SrcList*); 2877 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2878 void sqlite3IdListDelete(sqlite3*, IdList*); 2879 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2880 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2881 Token*, int, int); 2882 void sqlite3DropIndex(Parse*, SrcList*, int); 2883 int sqlite3Select(Parse*, Select*, SelectDest*); 2884 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2885 Expr*,ExprList*,u16,Expr*,Expr*); 2886 void sqlite3SelectDelete(sqlite3*, Select*); 2887 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2888 int sqlite3IsReadOnly(Parse*, Table*, int); 2889 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2890 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2891 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 2892 #endif 2893 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2894 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2895 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 2896 void sqlite3WhereEnd(WhereInfo*); 2897 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 2898 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2899 void sqlite3ExprCodeMove(Parse*, int, int, int); 2900 void sqlite3ExprCacheStore(Parse*, int, int, int); 2901 void sqlite3ExprCachePush(Parse*); 2902 void sqlite3ExprCachePop(Parse*, int); 2903 void sqlite3ExprCacheRemove(Parse*, int, int); 2904 void sqlite3ExprCacheClear(Parse*); 2905 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2906 int sqlite3ExprCode(Parse*, Expr*, int); 2907 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2908 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2909 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2910 void sqlite3ExprCodeConstants(Parse*, Expr*); 2911 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2912 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2913 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2914 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2915 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2916 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 2917 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2918 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2919 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2920 void sqlite3Vacuum(Parse*); 2921 int sqlite3RunVacuum(char**, sqlite3*); 2922 char *sqlite3NameFromToken(sqlite3*, Token*); 2923 int sqlite3ExprCompare(Expr*, Expr*); 2924 int sqlite3ExprListCompare(ExprList*, ExprList*); 2925 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2926 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2927 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 2928 Vdbe *sqlite3GetVdbe(Parse*); 2929 void sqlite3PrngSaveState(void); 2930 void sqlite3PrngRestoreState(void); 2931 void sqlite3PrngResetState(void); 2932 void sqlite3RollbackAll(sqlite3*,int); 2933 void sqlite3CodeVerifySchema(Parse*, int); 2934 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 2935 void sqlite3BeginTransaction(Parse*, int); 2936 void sqlite3CommitTransaction(Parse*); 2937 void sqlite3RollbackTransaction(Parse*); 2938 void sqlite3Savepoint(Parse*, int, Token*); 2939 void sqlite3CloseSavepoints(sqlite3 *); 2940 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 2941 int sqlite3ExprIsConstant(Expr*); 2942 int sqlite3ExprIsConstantNotJoin(Expr*); 2943 int sqlite3ExprIsConstantOrFunction(Expr*); 2944 int sqlite3ExprIsInteger(Expr*, int*); 2945 int sqlite3ExprCanBeNull(const Expr*); 2946 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2947 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2948 int sqlite3IsRowid(const char*); 2949 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2950 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2951 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2952 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2953 int*,int,int,int,int,int*); 2954 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2955 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2956 void sqlite3BeginWriteOperation(Parse*, int, int); 2957 void sqlite3MultiWrite(Parse*); 2958 void sqlite3MayAbort(Parse*); 2959 void sqlite3HaltConstraint(Parse*, int, int, char*, int); 2960 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2961 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2962 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2963 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2964 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2965 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2966 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 2967 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2968 void sqlite3RegisterDateTimeFunctions(void); 2969 void sqlite3RegisterGlobalFunctions(void); 2970 int sqlite3SafetyCheckOk(sqlite3*); 2971 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2972 void sqlite3ChangeCookie(Parse*, int); 2973 2974 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2975 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2976 #endif 2977 2978 #ifndef SQLITE_OMIT_TRIGGER 2979 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2980 Expr*,int, int); 2981 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2982 void sqlite3DropTrigger(Parse*, SrcList*, int); 2983 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2984 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2985 Trigger *sqlite3TriggerList(Parse *, Table *); 2986 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2987 int, int, int); 2988 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2989 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2990 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2991 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2992 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2993 ExprList*,Select*,u8); 2994 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2995 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2996 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2997 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2998 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2999 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3000 #else 3001 # define sqlite3TriggersExist(B,C,D,E,F) 0 3002 # define sqlite3DeleteTrigger(A,B) 3003 # define sqlite3DropTriggerPtr(A,B) 3004 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3005 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3006 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3007 # define sqlite3TriggerList(X, Y) 0 3008 # define sqlite3ParseToplevel(p) p 3009 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3010 #endif 3011 3012 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3013 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3014 void sqlite3DeferForeignKey(Parse*, int); 3015 #ifndef SQLITE_OMIT_AUTHORIZATION 3016 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3017 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3018 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3019 void sqlite3AuthContextPop(AuthContext*); 3020 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3021 #else 3022 # define sqlite3AuthRead(a,b,c,d) 3023 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3024 # define sqlite3AuthContextPush(a,b,c) 3025 # define sqlite3AuthContextPop(a) ((void)(a)) 3026 #endif 3027 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3028 void sqlite3Detach(Parse*, Expr*); 3029 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3030 int sqlite3FixSrcList(DbFixer*, SrcList*); 3031 int sqlite3FixSelect(DbFixer*, Select*); 3032 int sqlite3FixExpr(DbFixer*, Expr*); 3033 int sqlite3FixExprList(DbFixer*, ExprList*); 3034 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3035 int sqlite3AtoF(const char *z, double*, int, u8); 3036 int sqlite3GetInt32(const char *, int*); 3037 int sqlite3Atoi(const char*); 3038 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3039 int sqlite3Utf8CharLen(const char *pData, int nByte); 3040 u32 sqlite3Utf8Read(const u8**); 3041 3042 /* 3043 ** Routines to read and write variable-length integers. These used to 3044 ** be defined locally, but now we use the varint routines in the util.c 3045 ** file. Code should use the MACRO forms below, as the Varint32 versions 3046 ** are coded to assume the single byte case is already handled (which 3047 ** the MACRO form does). 3048 */ 3049 int sqlite3PutVarint(unsigned char*, u64); 3050 int sqlite3PutVarint32(unsigned char*, u32); 3051 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3052 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3053 int sqlite3VarintLen(u64 v); 3054 3055 /* 3056 ** The header of a record consists of a sequence variable-length integers. 3057 ** These integers are almost always small and are encoded as a single byte. 3058 ** The following macros take advantage this fact to provide a fast encode 3059 ** and decode of the integers in a record header. It is faster for the common 3060 ** case where the integer is a single byte. It is a little slower when the 3061 ** integer is two or more bytes. But overall it is faster. 3062 ** 3063 ** The following expressions are equivalent: 3064 ** 3065 ** x = sqlite3GetVarint32( A, &B ); 3066 ** x = sqlite3PutVarint32( A, B ); 3067 ** 3068 ** x = getVarint32( A, B ); 3069 ** x = putVarint32( A, B ); 3070 ** 3071 */ 3072 #define getVarint32(A,B) \ 3073 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3074 #define putVarint32(A,B) \ 3075 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3076 sqlite3PutVarint32((A),(B))) 3077 #define getVarint sqlite3GetVarint 3078 #define putVarint sqlite3PutVarint 3079 3080 3081 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3082 void sqlite3TableAffinityStr(Vdbe *, Table *); 3083 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3084 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3085 char sqlite3ExprAffinity(Expr *pExpr); 3086 int sqlite3Atoi64(const char*, i64*, int, u8); 3087 void sqlite3Error(sqlite3*, int, const char*,...); 3088 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3089 u8 sqlite3HexToInt(int h); 3090 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3091 const char *sqlite3ErrStr(int); 3092 int sqlite3ReadSchema(Parse *pParse); 3093 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3094 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3095 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3096 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*); 3097 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3098 Expr *sqlite3ExprSkipCollate(Expr*); 3099 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3100 int sqlite3CheckObjectName(Parse *, const char *); 3101 void sqlite3VdbeSetChanges(sqlite3 *, int); 3102 int sqlite3AddInt64(i64*,i64); 3103 int sqlite3SubInt64(i64*,i64); 3104 int sqlite3MulInt64(i64*,i64); 3105 int sqlite3AbsInt32(int); 3106 #ifdef SQLITE_ENABLE_8_3_NAMES 3107 void sqlite3FileSuffix3(const char*, char*); 3108 #else 3109 # define sqlite3FileSuffix3(X,Y) 3110 #endif 3111 u8 sqlite3GetBoolean(const char *z,int); 3112 3113 const void *sqlite3ValueText(sqlite3_value*, u8); 3114 int sqlite3ValueBytes(sqlite3_value*, u8); 3115 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3116 void(*)(void*)); 3117 void sqlite3ValueFree(sqlite3_value*); 3118 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3119 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3120 #ifdef SQLITE_ENABLE_STAT3 3121 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 3122 #endif 3123 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3124 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3125 #ifndef SQLITE_AMALGAMATION 3126 extern const unsigned char sqlite3OpcodeProperty[]; 3127 extern const unsigned char sqlite3UpperToLower[]; 3128 extern const unsigned char sqlite3CtypeMap[]; 3129 extern const Token sqlite3IntTokens[]; 3130 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3131 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3132 #ifndef SQLITE_OMIT_WSD 3133 extern int sqlite3PendingByte; 3134 #endif 3135 #endif 3136 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3137 void sqlite3Reindex(Parse*, Token*, Token*); 3138 void sqlite3AlterFunctions(void); 3139 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3140 int sqlite3GetToken(const unsigned char *, int *); 3141 void sqlite3NestedParse(Parse*, const char*, ...); 3142 void sqlite3ExpirePreparedStatements(sqlite3*); 3143 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3144 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3145 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3146 int sqlite3ResolveExprNames(NameContext*, Expr*); 3147 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3148 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3149 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3150 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3151 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3152 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3153 char sqlite3AffinityType(const char*); 3154 void sqlite3Analyze(Parse*, Token*, Token*); 3155 int sqlite3InvokeBusyHandler(BusyHandler*); 3156 int sqlite3FindDb(sqlite3*, Token*); 3157 int sqlite3FindDbName(sqlite3 *, const char *); 3158 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3159 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3160 void sqlite3DefaultRowEst(Index*); 3161 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3162 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3163 void sqlite3MinimumFileFormat(Parse*, int, int); 3164 void sqlite3SchemaClear(void *); 3165 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3166 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3167 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 3168 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3169 void (*)(sqlite3_context*,int,sqlite3_value **), 3170 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3171 FuncDestructor *pDestructor 3172 ); 3173 int sqlite3ApiExit(sqlite3 *db, int); 3174 int sqlite3OpenTempDatabase(Parse *); 3175 3176 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3177 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3178 void sqlite3AppendSpace(StrAccum*,int); 3179 char *sqlite3StrAccumFinish(StrAccum*); 3180 void sqlite3StrAccumReset(StrAccum*); 3181 void sqlite3SelectDestInit(SelectDest*,int,int); 3182 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3183 3184 void sqlite3BackupRestart(sqlite3_backup *); 3185 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3186 3187 /* 3188 ** The interface to the LEMON-generated parser 3189 */ 3190 void *sqlite3ParserAlloc(void*(*)(size_t)); 3191 void sqlite3ParserFree(void*, void(*)(void*)); 3192 void sqlite3Parser(void*, int, Token, Parse*); 3193 #ifdef YYTRACKMAXSTACKDEPTH 3194 int sqlite3ParserStackPeak(void*); 3195 #endif 3196 3197 void sqlite3AutoLoadExtensions(sqlite3*); 3198 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3199 void sqlite3CloseExtensions(sqlite3*); 3200 #else 3201 # define sqlite3CloseExtensions(X) 3202 #endif 3203 3204 #ifndef SQLITE_OMIT_SHARED_CACHE 3205 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3206 #else 3207 #define sqlite3TableLock(v,w,x,y,z) 3208 #endif 3209 3210 #ifdef SQLITE_TEST 3211 int sqlite3Utf8To8(unsigned char*); 3212 #endif 3213 3214 #ifdef SQLITE_OMIT_VIRTUALTABLE 3215 # define sqlite3VtabClear(Y) 3216 # define sqlite3VtabSync(X,Y) SQLITE_OK 3217 # define sqlite3VtabRollback(X) 3218 # define sqlite3VtabCommit(X) 3219 # define sqlite3VtabInSync(db) 0 3220 # define sqlite3VtabLock(X) 3221 # define sqlite3VtabUnlock(X) 3222 # define sqlite3VtabUnlockList(X) 3223 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3224 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3225 #else 3226 void sqlite3VtabClear(sqlite3 *db, Table*); 3227 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3228 int sqlite3VtabSync(sqlite3 *db, char **); 3229 int sqlite3VtabRollback(sqlite3 *db); 3230 int sqlite3VtabCommit(sqlite3 *db); 3231 void sqlite3VtabLock(VTable *); 3232 void sqlite3VtabUnlock(VTable *); 3233 void sqlite3VtabUnlockList(sqlite3*); 3234 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3235 VTable *sqlite3GetVTable(sqlite3*, Table*); 3236 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3237 #endif 3238 void sqlite3VtabMakeWritable(Parse*,Table*); 3239 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3240 void sqlite3VtabFinishParse(Parse*, Token*); 3241 void sqlite3VtabArgInit(Parse*); 3242 void sqlite3VtabArgExtend(Parse*, Token*); 3243 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3244 int sqlite3VtabCallConnect(Parse*, Table*); 3245 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3246 int sqlite3VtabBegin(sqlite3 *, VTable *); 3247 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3248 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3249 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3250 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3251 int sqlite3Reprepare(Vdbe*); 3252 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3253 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3254 int sqlite3TempInMemory(const sqlite3*); 3255 const char *sqlite3JournalModename(int); 3256 #ifndef SQLITE_OMIT_WAL 3257 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3258 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3259 #endif 3260 3261 /* Declarations for functions in fkey.c. All of these are replaced by 3262 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3263 ** key functionality is available. If OMIT_TRIGGER is defined but 3264 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3265 ** this case foreign keys are parsed, but no other functionality is 3266 ** provided (enforcement of FK constraints requires the triggers sub-system). 3267 */ 3268 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3269 void sqlite3FkCheck(Parse*, Table*, int, int); 3270 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3271 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3272 int sqlite3FkRequired(Parse*, Table*, int*, int); 3273 u32 sqlite3FkOldmask(Parse*, Table*); 3274 FKey *sqlite3FkReferences(Table *); 3275 #else 3276 #define sqlite3FkActions(a,b,c,d) 3277 #define sqlite3FkCheck(a,b,c,d) 3278 #define sqlite3FkDropTable(a,b,c) 3279 #define sqlite3FkOldmask(a,b) 0 3280 #define sqlite3FkRequired(a,b,c,d) 0 3281 #endif 3282 #ifndef SQLITE_OMIT_FOREIGN_KEY 3283 void sqlite3FkDelete(sqlite3 *, Table*); 3284 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3285 #else 3286 #define sqlite3FkDelete(a,b) 3287 #define sqlite3FkLocateIndex(a,b,c,d,e) 3288 #endif 3289 3290 3291 /* 3292 ** Available fault injectors. Should be numbered beginning with 0. 3293 */ 3294 #define SQLITE_FAULTINJECTOR_MALLOC 0 3295 #define SQLITE_FAULTINJECTOR_COUNT 1 3296 3297 /* 3298 ** The interface to the code in fault.c used for identifying "benign" 3299 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3300 ** is not defined. 3301 */ 3302 #ifndef SQLITE_OMIT_BUILTIN_TEST 3303 void sqlite3BeginBenignMalloc(void); 3304 void sqlite3EndBenignMalloc(void); 3305 #else 3306 #define sqlite3BeginBenignMalloc() 3307 #define sqlite3EndBenignMalloc() 3308 #endif 3309 3310 #define IN_INDEX_ROWID 1 3311 #define IN_INDEX_EPH 2 3312 #define IN_INDEX_INDEX_ASC 3 3313 #define IN_INDEX_INDEX_DESC 4 3314 int sqlite3FindInIndex(Parse *, Expr *, int*); 3315 3316 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3317 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3318 int sqlite3JournalSize(sqlite3_vfs *); 3319 int sqlite3JournalCreate(sqlite3_file *); 3320 int sqlite3JournalExists(sqlite3_file *p); 3321 #else 3322 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3323 #define sqlite3JournalExists(p) 1 3324 #endif 3325 3326 void sqlite3MemJournalOpen(sqlite3_file *); 3327 int sqlite3MemJournalSize(void); 3328 int sqlite3IsMemJournal(sqlite3_file *); 3329 3330 #if SQLITE_MAX_EXPR_DEPTH>0 3331 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3332 int sqlite3SelectExprHeight(Select *); 3333 int sqlite3ExprCheckHeight(Parse*, int); 3334 #else 3335 #define sqlite3ExprSetHeight(x,y) 3336 #define sqlite3SelectExprHeight(x) 0 3337 #define sqlite3ExprCheckHeight(x,y) 3338 #endif 3339 3340 u32 sqlite3Get4byte(const u8*); 3341 void sqlite3Put4byte(u8*, u32); 3342 3343 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3344 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3345 void sqlite3ConnectionUnlocked(sqlite3 *db); 3346 void sqlite3ConnectionClosed(sqlite3 *db); 3347 #else 3348 #define sqlite3ConnectionBlocked(x,y) 3349 #define sqlite3ConnectionUnlocked(x) 3350 #define sqlite3ConnectionClosed(x) 3351 #endif 3352 3353 #ifdef SQLITE_DEBUG 3354 void sqlite3ParserTrace(FILE*, char *); 3355 #endif 3356 3357 /* 3358 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3359 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3360 ** print I/O tracing messages. 3361 */ 3362 #ifdef SQLITE_ENABLE_IOTRACE 3363 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3364 void sqlite3VdbeIOTraceSql(Vdbe*); 3365 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3366 #else 3367 # define IOTRACE(A) 3368 # define sqlite3VdbeIOTraceSql(X) 3369 #endif 3370 3371 /* 3372 ** These routines are available for the mem2.c debugging memory allocator 3373 ** only. They are used to verify that different "types" of memory 3374 ** allocations are properly tracked by the system. 3375 ** 3376 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3377 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3378 ** a single bit set. 3379 ** 3380 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3381 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3382 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3383 ** 3384 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3385 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3386 ** 3387 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3388 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3389 ** it might have been allocated by lookaside, except the allocation was 3390 ** too large or lookaside was already full. It is important to verify 3391 ** that allocations that might have been satisfied by lookaside are not 3392 ** passed back to non-lookaside free() routines. Asserts such as the 3393 ** example above are placed on the non-lookaside free() routines to verify 3394 ** this constraint. 3395 ** 3396 ** All of this is no-op for a production build. It only comes into 3397 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3398 */ 3399 #ifdef SQLITE_MEMDEBUG 3400 void sqlite3MemdebugSetType(void*,u8); 3401 int sqlite3MemdebugHasType(void*,u8); 3402 int sqlite3MemdebugNoType(void*,u8); 3403 #else 3404 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3405 # define sqlite3MemdebugHasType(X,Y) 1 3406 # define sqlite3MemdebugNoType(X,Y) 1 3407 #endif 3408 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3409 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3410 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3411 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3412 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3413 3414 #endif /* _SQLITEINT_H_ */ 3415