1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.606 2007/08/30 14:10:30 drh Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 #include "sqliteLimit.h" 19 20 #define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 21 22 #if defined(SQLITE_TCL) || defined(TCLSH) 23 # include <tcl.h> 24 #endif 25 26 /* 27 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 28 ** Setting NDEBUG makes the code smaller and run faster. So the following 29 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 30 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 31 ** feature. 32 */ 33 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 34 # define NDEBUG 1 35 #endif 36 37 /* 38 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 39 ** Older versions of SQLite used an optional THREADSAFE macro. 40 ** We support that for legacy 41 */ 42 #if !defined(SQLITE_THREADSAFE) 43 #if defined(THREADSAFE) 44 # define SQLITE_THREADSAFE THREADSAFE 45 #else 46 # define SQLITE_THREADSAFE 1 47 #endif 48 #endif 49 50 /* 51 ** These #defines should enable >2GB file support on Posix if the 52 ** underlying operating system supports it. If the OS lacks 53 ** large file support, or if the OS is windows, these should be no-ops. 54 ** 55 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 56 ** on the compiler command line. This is necessary if you are compiling 57 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 58 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 59 ** without this option, LFS is enable. But LFS does not exist in the kernel 60 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 61 ** portability you should omit LFS. 62 ** 63 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 64 */ 65 #ifndef SQLITE_DISABLE_LFS 66 # define _LARGE_FILE 1 67 # ifndef _FILE_OFFSET_BITS 68 # define _FILE_OFFSET_BITS 64 69 # endif 70 # define _LARGEFILE_SOURCE 1 71 #endif 72 73 #include "sqlite3.h" 74 #include "hash.h" 75 #include "parse.h" 76 #include <stdio.h> 77 #include <stdlib.h> 78 #include <string.h> 79 #include <assert.h> 80 #include <stddef.h> 81 82 #define sqlite3_isnan(X) ((X)!=(X)) 83 84 /* 85 ** If compiling for a processor that lacks floating point support, 86 ** substitute integer for floating-point 87 */ 88 #ifdef SQLITE_OMIT_FLOATING_POINT 89 # define double sqlite_int64 90 # define LONGDOUBLE_TYPE sqlite_int64 91 # ifndef SQLITE_BIG_DBL 92 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 93 # endif 94 # define SQLITE_OMIT_DATETIME_FUNCS 1 95 # define SQLITE_OMIT_TRACE 1 96 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 97 #endif 98 #ifndef SQLITE_BIG_DBL 99 # define SQLITE_BIG_DBL (1e99) 100 #endif 101 102 /* 103 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 104 ** afterward. Having this macro allows us to cause the C compiler 105 ** to omit code used by TEMP tables without messy #ifndef statements. 106 */ 107 #ifdef SQLITE_OMIT_TEMPDB 108 #define OMIT_TEMPDB 1 109 #else 110 #define OMIT_TEMPDB 0 111 #endif 112 113 /* 114 ** If the following macro is set to 1, then NULL values are considered 115 ** distinct when determining whether or not two entries are the same 116 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 117 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 118 ** is the way things are suppose to work. 119 ** 120 ** If the following macro is set to 0, the NULLs are indistinct for 121 ** a UNIQUE index. In this mode, you can only have a single NULL entry 122 ** for a column declared UNIQUE. This is the way Informix and SQL Server 123 ** work. 124 */ 125 #define NULL_DISTINCT_FOR_UNIQUE 1 126 127 /* 128 ** The "file format" number is an integer that is incremented whenever 129 ** the VDBE-level file format changes. The following macros define the 130 ** the default file format for new databases and the maximum file format 131 ** that the library can read. 132 */ 133 #define SQLITE_MAX_FILE_FORMAT 4 134 #ifndef SQLITE_DEFAULT_FILE_FORMAT 135 # define SQLITE_DEFAULT_FILE_FORMAT 1 136 #endif 137 138 /* 139 ** Provide a default value for TEMP_STORE in case it is not specified 140 ** on the command-line 141 */ 142 #ifndef TEMP_STORE 143 # define TEMP_STORE 1 144 #endif 145 146 /* 147 ** GCC does not define the offsetof() macro so we'll have to do it 148 ** ourselves. 149 */ 150 #ifndef offsetof 151 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 152 #endif 153 154 /* 155 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 156 ** not, there are still machines out there that use EBCDIC.) 157 */ 158 #if 'A' == '\301' 159 # define SQLITE_EBCDIC 1 160 #else 161 # define SQLITE_ASCII 1 162 #endif 163 164 /* 165 ** Integers of known sizes. These typedefs might change for architectures 166 ** where the sizes very. Preprocessor macros are available so that the 167 ** types can be conveniently redefined at compile-type. Like this: 168 ** 169 ** cc '-DUINTPTR_TYPE=long long int' ... 170 */ 171 #ifndef UINT32_TYPE 172 # define UINT32_TYPE unsigned int 173 #endif 174 #ifndef UINT16_TYPE 175 # define UINT16_TYPE unsigned short int 176 #endif 177 #ifndef INT16_TYPE 178 # define INT16_TYPE short int 179 #endif 180 #ifndef UINT8_TYPE 181 # define UINT8_TYPE unsigned char 182 #endif 183 #ifndef INT8_TYPE 184 # define INT8_TYPE signed char 185 #endif 186 #ifndef LONGDOUBLE_TYPE 187 # define LONGDOUBLE_TYPE long double 188 #endif 189 typedef sqlite_int64 i64; /* 8-byte signed integer */ 190 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 191 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 192 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 193 typedef INT16_TYPE i16; /* 2-byte signed integer */ 194 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 195 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 196 197 /* 198 ** Macros to determine whether the machine is big or little endian, 199 ** evaluated at runtime. 200 */ 201 #ifdef SQLITE_AMALGAMATION 202 const int sqlite3One; 203 #else 204 extern const int sqlite3one; 205 #endif 206 #if defined(i386) || defined(__i386__) || defined(_M_IX86) 207 # define SQLITE_BIGENDIAN 0 208 # define SQLITE_LITTLEENDIAN 1 209 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 210 #else 211 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 212 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 213 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 214 #endif 215 216 /* 217 ** An instance of the following structure is used to store the busy-handler 218 ** callback for a given sqlite handle. 219 ** 220 ** The sqlite.busyHandler member of the sqlite struct contains the busy 221 ** callback for the database handle. Each pager opened via the sqlite 222 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 223 ** callback is currently invoked only from within pager.c. 224 */ 225 typedef struct BusyHandler BusyHandler; 226 struct BusyHandler { 227 int (*xFunc)(void *,int); /* The busy callback */ 228 void *pArg; /* First arg to busy callback */ 229 int nBusy; /* Incremented with each busy call */ 230 }; 231 232 /* 233 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 234 ** "BusyHandler typedefs. 235 */ 236 #include "btree.h" 237 #include "vdbe.h" 238 #include "pager.h" 239 240 241 /* 242 ** Name of the master database table. The master database table 243 ** is a special table that holds the names and attributes of all 244 ** user tables and indices. 245 */ 246 #define MASTER_NAME "sqlite_master" 247 #define TEMP_MASTER_NAME "sqlite_temp_master" 248 249 /* 250 ** The root-page of the master database table. 251 */ 252 #define MASTER_ROOT 1 253 254 /* 255 ** The name of the schema table. 256 */ 257 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 258 259 /* 260 ** A convenience macro that returns the number of elements in 261 ** an array. 262 */ 263 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 264 265 /* 266 ** Forward references to structures 267 */ 268 typedef struct AggInfo AggInfo; 269 typedef struct AuthContext AuthContext; 270 typedef struct CollSeq CollSeq; 271 typedef struct Column Column; 272 typedef struct Db Db; 273 typedef struct Schema Schema; 274 typedef struct Expr Expr; 275 typedef struct ExprList ExprList; 276 typedef struct FKey FKey; 277 typedef struct FuncDef FuncDef; 278 typedef struct IdList IdList; 279 typedef struct Index Index; 280 typedef struct KeyClass KeyClass; 281 typedef struct KeyInfo KeyInfo; 282 typedef struct Module Module; 283 typedef struct NameContext NameContext; 284 typedef struct Parse Parse; 285 typedef struct Select Select; 286 typedef struct SrcList SrcList; 287 typedef struct Table Table; 288 typedef struct TableLock TableLock; 289 typedef struct Token Token; 290 typedef struct TriggerStack TriggerStack; 291 typedef struct TriggerStep TriggerStep; 292 typedef struct Trigger Trigger; 293 typedef struct WhereInfo WhereInfo; 294 typedef struct WhereLevel WhereLevel; 295 296 #include "os.h" 297 #include "mutex.h" 298 299 /* 300 ** Each database file to be accessed by the system is an instance 301 ** of the following structure. There are normally two of these structures 302 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 303 ** aDb[1] is the database file used to hold temporary tables. Additional 304 ** databases may be attached. 305 */ 306 struct Db { 307 char *zName; /* Name of this database */ 308 Btree *pBt; /* The B*Tree structure for this database file */ 309 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 310 u8 safety_level; /* How aggressive at synching data to disk */ 311 void *pAux; /* Auxiliary data. Usually NULL */ 312 void (*xFreeAux)(void*); /* Routine to free pAux */ 313 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 314 }; 315 316 /* 317 ** An instance of the following structure stores a database schema. 318 ** 319 ** If there are no virtual tables configured in this schema, the 320 ** Schema.db variable is set to NULL. After the first virtual table 321 ** has been added, it is set to point to the database connection 322 ** used to create the connection. Once a virtual table has been 323 ** added to the Schema structure and the Schema.db variable populated, 324 ** only that database connection may use the Schema to prepare 325 ** statements. 326 */ 327 struct Schema { 328 int schema_cookie; /* Database schema version number for this file */ 329 Hash tblHash; /* All tables indexed by name */ 330 Hash idxHash; /* All (named) indices indexed by name */ 331 Hash trigHash; /* All triggers indexed by name */ 332 Hash aFKey; /* Foreign keys indexed by to-table */ 333 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 334 u8 file_format; /* Schema format version for this file */ 335 u8 enc; /* Text encoding used by this database */ 336 u16 flags; /* Flags associated with this schema */ 337 int cache_size; /* Number of pages to use in the cache */ 338 #ifndef SQLITE_OMIT_VIRTUALTABLE 339 sqlite3 *db; /* "Owner" connection. See comment above */ 340 #endif 341 }; 342 343 /* 344 ** These macros can be used to test, set, or clear bits in the 345 ** Db.flags field. 346 */ 347 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 348 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 349 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 350 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 351 352 /* 353 ** Allowed values for the DB.flags field. 354 ** 355 ** The DB_SchemaLoaded flag is set after the database schema has been 356 ** read into internal hash tables. 357 ** 358 ** DB_UnresetViews means that one or more views have column names that 359 ** have been filled out. If the schema changes, these column names might 360 ** changes and so the view will need to be reset. 361 */ 362 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 363 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 364 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 365 366 367 /* 368 ** Each database is an instance of the following structure. 369 ** 370 ** The sqlite.lastRowid records the last insert rowid generated by an 371 ** insert statement. Inserts on views do not affect its value. Each 372 ** trigger has its own context, so that lastRowid can be updated inside 373 ** triggers as usual. The previous value will be restored once the trigger 374 ** exits. Upon entering a before or instead of trigger, lastRowid is no 375 ** longer (since after version 2.8.12) reset to -1. 376 ** 377 ** The sqlite.nChange does not count changes within triggers and keeps no 378 ** context. It is reset at start of sqlite3_exec. 379 ** The sqlite.lsChange represents the number of changes made by the last 380 ** insert, update, or delete statement. It remains constant throughout the 381 ** length of a statement and is then updated by OP_SetCounts. It keeps a 382 ** context stack just like lastRowid so that the count of changes 383 ** within a trigger is not seen outside the trigger. Changes to views do not 384 ** affect the value of lsChange. 385 ** The sqlite.csChange keeps track of the number of current changes (since 386 ** the last statement) and is used to update sqlite_lsChange. 387 ** 388 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 389 ** store the most recent error code and, if applicable, string. The 390 ** internal function sqlite3Error() is used to set these variables 391 ** consistently. 392 */ 393 struct sqlite3 { 394 sqlite3_vfs *pVfs; /* OS Interface */ 395 int nDb; /* Number of backends currently in use */ 396 Db *aDb; /* All backends */ 397 int flags; /* Miscellanous flags. See below */ 398 int errCode; /* Most recent error code (SQLITE_*) */ 399 int errMask; /* & result codes with this before returning */ 400 u8 autoCommit; /* The auto-commit flag. */ 401 u8 temp_store; /* 1: file 2: memory 0: default */ 402 u8 mallocFailed; /* True if we have seen a malloc failure */ 403 int nTable; /* Number of tables in the database */ 404 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 405 i64 lastRowid; /* ROWID of most recent insert (see above) */ 406 i64 priorNewRowid; /* Last randomly generated ROWID */ 407 int magic; /* Magic number for detect library misuse */ 408 int nChange; /* Value returned by sqlite3_changes() */ 409 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 410 sqlite3_mutex *mutex; /* Connection mutex */ 411 struct sqlite3InitInfo { /* Information used during initialization */ 412 int iDb; /* When back is being initialized */ 413 int newTnum; /* Rootpage of table being initialized */ 414 u8 busy; /* TRUE if currently initializing */ 415 } init; 416 int nExtension; /* Number of loaded extensions */ 417 void **aExtension; /* Array of shared libraray handles */ 418 struct Vdbe *pVdbe; /* List of active virtual machines */ 419 int activeVdbeCnt; /* Number of vdbes currently executing */ 420 void (*xTrace)(void*,const char*); /* Trace function */ 421 void *pTraceArg; /* Argument to the trace function */ 422 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 423 void *pProfileArg; /* Argument to profile function */ 424 void *pCommitArg; /* Argument to xCommitCallback() */ 425 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 426 void *pRollbackArg; /* Argument to xRollbackCallback() */ 427 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 428 void *pUpdateArg; 429 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 430 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 431 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 432 void *pCollNeededArg; 433 sqlite3_value *pErr; /* Most recent error message */ 434 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 435 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 436 union { 437 int isInterrupted; /* True if sqlite3_interrupt has been called */ 438 double notUsed1; /* Spacer */ 439 } u1; 440 #ifndef SQLITE_OMIT_AUTHORIZATION 441 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 442 /* Access authorization function */ 443 void *pAuthArg; /* 1st argument to the access auth function */ 444 #endif 445 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 446 int (*xProgress)(void *); /* The progress callback */ 447 void *pProgressArg; /* Argument to the progress callback */ 448 int nProgressOps; /* Number of opcodes for progress callback */ 449 #endif 450 #ifndef SQLITE_OMIT_VIRTUALTABLE 451 Hash aModule; /* populated by sqlite3_create_module() */ 452 Table *pVTab; /* vtab with active Connect/Create method */ 453 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 454 int nVTrans; /* Allocated size of aVTrans */ 455 #endif 456 Hash aFunc; /* All functions that can be in SQL exprs */ 457 Hash aCollSeq; /* All collating sequences */ 458 BusyHandler busyHandler; /* Busy callback */ 459 int busyTimeout; /* Busy handler timeout, in msec */ 460 Db aDbStatic[2]; /* Static space for the 2 default backends */ 461 #ifdef SQLITE_SSE 462 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 463 #endif 464 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 465 }; 466 467 /* 468 ** A macro to discover the encoding of a database. 469 */ 470 #define ENC(db) ((db)->aDb[0].pSchema->enc) 471 472 /* 473 ** Possible values for the sqlite.flags and or Db.flags fields. 474 ** 475 ** On sqlite.flags, the SQLITE_InTrans value means that we have 476 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 477 ** transaction is active on that particular database file. 478 */ 479 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 480 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 481 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 482 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 483 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 484 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 485 /* DELETE, or UPDATE and return */ 486 /* the count using a callback. */ 487 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 488 /* result set is empty */ 489 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 490 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 491 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 492 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 493 ** accessing read-only databases */ 494 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 495 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 496 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 497 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 498 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 499 500 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 501 #define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */ 502 #define SQLITE_Vtab 0x00100000 /* There exists a virtual table */ 503 504 /* 505 ** Possible values for the sqlite.magic field. 506 ** The numbers are obtained at random and have no special meaning, other 507 ** than being distinct from one another. 508 */ 509 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 510 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 511 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 512 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 513 514 /* 515 ** Each SQL function is defined by an instance of the following 516 ** structure. A pointer to this structure is stored in the sqlite.aFunc 517 ** hash table. When multiple functions have the same name, the hash table 518 ** points to a linked list of these structures. 519 */ 520 struct FuncDef { 521 i16 nArg; /* Number of arguments. -1 means unlimited */ 522 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 523 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 524 u8 flags; /* Some combination of SQLITE_FUNC_* */ 525 void *pUserData; /* User data parameter */ 526 FuncDef *pNext; /* Next function with same name */ 527 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 528 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 529 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 530 char zName[1]; /* SQL name of the function. MUST BE LAST */ 531 }; 532 533 /* 534 ** Each SQLite module (virtual table definition) is defined by an 535 ** instance of the following structure, stored in the sqlite3.aModule 536 ** hash table. 537 */ 538 struct Module { 539 const sqlite3_module *pModule; /* Callback pointers */ 540 const char *zName; /* Name passed to create_module() */ 541 void *pAux; /* pAux passed to create_module() */ 542 void (*xDestroy)(void *); /* Module destructor function */ 543 }; 544 545 /* 546 ** Possible values for FuncDef.flags 547 */ 548 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 549 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 550 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ 551 552 /* 553 ** information about each column of an SQL table is held in an instance 554 ** of this structure. 555 */ 556 struct Column { 557 char *zName; /* Name of this column */ 558 Expr *pDflt; /* Default value of this column */ 559 char *zType; /* Data type for this column */ 560 char *zColl; /* Collating sequence. If NULL, use the default */ 561 u8 notNull; /* True if there is a NOT NULL constraint */ 562 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 563 char affinity; /* One of the SQLITE_AFF_... values */ 564 #ifndef SQLITE_OMIT_VIRTUALTABLE 565 u8 isHidden; /* True if this column is 'hidden' */ 566 #endif 567 }; 568 569 /* 570 ** A "Collating Sequence" is defined by an instance of the following 571 ** structure. Conceptually, a collating sequence consists of a name and 572 ** a comparison routine that defines the order of that sequence. 573 ** 574 ** There may two seperate implementations of the collation function, one 575 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 576 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 577 ** native byte order. When a collation sequence is invoked, SQLite selects 578 ** the version that will require the least expensive encoding 579 ** translations, if any. 580 ** 581 ** The CollSeq.pUser member variable is an extra parameter that passed in 582 ** as the first argument to the UTF-8 comparison function, xCmp. 583 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 584 ** xCmp16. 585 ** 586 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 587 ** collating sequence is undefined. Indices built on an undefined 588 ** collating sequence may not be read or written. 589 */ 590 struct CollSeq { 591 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 592 u8 enc; /* Text encoding handled by xCmp() */ 593 u8 type; /* One of the SQLITE_COLL_... values below */ 594 void *pUser; /* First argument to xCmp() */ 595 int (*xCmp)(void*,int, const void*, int, const void*); 596 void (*xDel)(void*); /* Destructor for pUser */ 597 }; 598 599 /* 600 ** Allowed values of CollSeq flags: 601 */ 602 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 603 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 604 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 605 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 606 607 /* 608 ** A sort order can be either ASC or DESC. 609 */ 610 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 611 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 612 613 /* 614 ** Column affinity types. 615 ** 616 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 617 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 618 ** the speed a little by number the values consecutively. 619 ** 620 ** But rather than start with 0 or 1, we begin with 'a'. That way, 621 ** when multiple affinity types are concatenated into a string and 622 ** used as the P3 operand, they will be more readable. 623 ** 624 ** Note also that the numeric types are grouped together so that testing 625 ** for a numeric type is a single comparison. 626 */ 627 #define SQLITE_AFF_TEXT 'a' 628 #define SQLITE_AFF_NONE 'b' 629 #define SQLITE_AFF_NUMERIC 'c' 630 #define SQLITE_AFF_INTEGER 'd' 631 #define SQLITE_AFF_REAL 'e' 632 633 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 634 635 /* 636 ** Each SQL table is represented in memory by an instance of the 637 ** following structure. 638 ** 639 ** Table.zName is the name of the table. The case of the original 640 ** CREATE TABLE statement is stored, but case is not significant for 641 ** comparisons. 642 ** 643 ** Table.nCol is the number of columns in this table. Table.aCol is a 644 ** pointer to an array of Column structures, one for each column. 645 ** 646 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 647 ** the column that is that key. Otherwise Table.iPKey is negative. Note 648 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 649 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 650 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 651 ** is generated for each row of the table. Table.hasPrimKey is true if 652 ** the table has any PRIMARY KEY, INTEGER or otherwise. 653 ** 654 ** Table.tnum is the page number for the root BTree page of the table in the 655 ** database file. If Table.iDb is the index of the database table backend 656 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 657 ** holds temporary tables and indices. If Table.isEphem 658 ** is true, then the table is stored in a file that is automatically deleted 659 ** when the VDBE cursor to the table is closed. In this case Table.tnum 660 ** refers VDBE cursor number that holds the table open, not to the root 661 ** page number. Transient tables are used to hold the results of a 662 ** sub-query that appears instead of a real table name in the FROM clause 663 ** of a SELECT statement. 664 */ 665 struct Table { 666 char *zName; /* Name of the table */ 667 int nCol; /* Number of columns in this table */ 668 Column *aCol; /* Information about each column */ 669 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 670 Index *pIndex; /* List of SQL indexes on this table. */ 671 int tnum; /* Root BTree node for this table (see note above) */ 672 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 673 int nRef; /* Number of pointers to this Table */ 674 Trigger *pTrigger; /* List of SQL triggers on this table */ 675 FKey *pFKey; /* Linked list of all foreign keys in this table */ 676 char *zColAff; /* String defining the affinity of each column */ 677 #ifndef SQLITE_OMIT_CHECK 678 Expr *pCheck; /* The AND of all CHECK constraints */ 679 #endif 680 #ifndef SQLITE_OMIT_ALTERTABLE 681 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 682 #endif 683 u8 readOnly; /* True if this table should not be written by the user */ 684 u8 isEphem; /* True if created using OP_OpenEphermeral */ 685 u8 hasPrimKey; /* True if there exists a primary key */ 686 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 687 u8 autoInc; /* True if the integer primary key is autoincrement */ 688 #ifndef SQLITE_OMIT_VIRTUALTABLE 689 u8 isVirtual; /* True if this is a virtual table */ 690 u8 isCommit; /* True once the CREATE TABLE has been committed */ 691 Module *pMod; /* Pointer to the implementation of the module */ 692 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 693 int nModuleArg; /* Number of arguments to the module */ 694 char **azModuleArg; /* Text of all module args. [0] is module name */ 695 #endif 696 Schema *pSchema; 697 }; 698 699 /* 700 ** Test to see whether or not a table is a virtual table. This is 701 ** done as a macro so that it will be optimized out when virtual 702 ** table support is omitted from the build. 703 */ 704 #ifndef SQLITE_OMIT_VIRTUALTABLE 705 # define IsVirtual(X) ((X)->isVirtual) 706 # define IsHiddenColumn(X) ((X)->isHidden) 707 #else 708 # define IsVirtual(X) 0 709 # define IsHiddenColumn(X) 0 710 #endif 711 712 /* 713 ** Each foreign key constraint is an instance of the following structure. 714 ** 715 ** A foreign key is associated with two tables. The "from" table is 716 ** the table that contains the REFERENCES clause that creates the foreign 717 ** key. The "to" table is the table that is named in the REFERENCES clause. 718 ** Consider this example: 719 ** 720 ** CREATE TABLE ex1( 721 ** a INTEGER PRIMARY KEY, 722 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 723 ** ); 724 ** 725 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 726 ** 727 ** Each REFERENCES clause generates an instance of the following structure 728 ** which is attached to the from-table. The to-table need not exist when 729 ** the from-table is created. The existance of the to-table is not checked 730 ** until an attempt is made to insert data into the from-table. 731 ** 732 ** The sqlite.aFKey hash table stores pointers to this structure 733 ** given the name of a to-table. For each to-table, all foreign keys 734 ** associated with that table are on a linked list using the FKey.pNextTo 735 ** field. 736 */ 737 struct FKey { 738 Table *pFrom; /* The table that constains the REFERENCES clause */ 739 FKey *pNextFrom; /* Next foreign key in pFrom */ 740 char *zTo; /* Name of table that the key points to */ 741 FKey *pNextTo; /* Next foreign key that points to zTo */ 742 int nCol; /* Number of columns in this key */ 743 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 744 int iFrom; /* Index of column in pFrom */ 745 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 746 } *aCol; /* One entry for each of nCol column s */ 747 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 748 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 749 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 750 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 751 }; 752 753 /* 754 ** SQLite supports many different ways to resolve a contraint 755 ** error. ROLLBACK processing means that a constraint violation 756 ** causes the operation in process to fail and for the current transaction 757 ** to be rolled back. ABORT processing means the operation in process 758 ** fails and any prior changes from that one operation are backed out, 759 ** but the transaction is not rolled back. FAIL processing means that 760 ** the operation in progress stops and returns an error code. But prior 761 ** changes due to the same operation are not backed out and no rollback 762 ** occurs. IGNORE means that the particular row that caused the constraint 763 ** error is not inserted or updated. Processing continues and no error 764 ** is returned. REPLACE means that preexisting database rows that caused 765 ** a UNIQUE constraint violation are removed so that the new insert or 766 ** update can proceed. Processing continues and no error is reported. 767 ** 768 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 769 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 770 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 771 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 772 ** referenced table row is propagated into the row that holds the 773 ** foreign key. 774 ** 775 ** The following symbolic values are used to record which type 776 ** of action to take. 777 */ 778 #define OE_None 0 /* There is no constraint to check */ 779 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 780 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 781 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 782 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 783 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 784 785 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 786 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 787 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 788 #define OE_Cascade 9 /* Cascade the changes */ 789 790 #define OE_Default 99 /* Do whatever the default action is */ 791 792 793 /* 794 ** An instance of the following structure is passed as the first 795 ** argument to sqlite3VdbeKeyCompare and is used to control the 796 ** comparison of the two index keys. 797 ** 798 ** If the KeyInfo.incrKey value is true and the comparison would 799 ** otherwise be equal, then return a result as if the second key 800 ** were larger. 801 */ 802 struct KeyInfo { 803 sqlite3 *db; /* The database connection */ 804 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 805 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 806 int nField; /* Number of entries in aColl[] */ 807 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 808 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 809 }; 810 811 /* 812 ** Each SQL index is represented in memory by an 813 ** instance of the following structure. 814 ** 815 ** The columns of the table that are to be indexed are described 816 ** by the aiColumn[] field of this structure. For example, suppose 817 ** we have the following table and index: 818 ** 819 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 820 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 821 ** 822 ** In the Table structure describing Ex1, nCol==3 because there are 823 ** three columns in the table. In the Index structure describing 824 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 825 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 826 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 827 ** The second column to be indexed (c1) has an index of 0 in 828 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 829 ** 830 ** The Index.onError field determines whether or not the indexed columns 831 ** must be unique and what to do if they are not. When Index.onError=OE_None, 832 ** it means this is not a unique index. Otherwise it is a unique index 833 ** and the value of Index.onError indicate the which conflict resolution 834 ** algorithm to employ whenever an attempt is made to insert a non-unique 835 ** element. 836 */ 837 struct Index { 838 char *zName; /* Name of this index */ 839 int nColumn; /* Number of columns in the table used by this index */ 840 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 841 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 842 Table *pTable; /* The SQL table being indexed */ 843 int tnum; /* Page containing root of this index in database file */ 844 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 845 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 846 char *zColAff; /* String defining the affinity of each column */ 847 Index *pNext; /* The next index associated with the same table */ 848 Schema *pSchema; /* Schema containing this index */ 849 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 850 char **azColl; /* Array of collation sequence names for index */ 851 }; 852 853 /* 854 ** Each token coming out of the lexer is an instance of 855 ** this structure. Tokens are also used as part of an expression. 856 ** 857 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 858 ** may contain random values. Do not make any assuptions about Token.dyn 859 ** and Token.n when Token.z==0. 860 */ 861 struct Token { 862 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 863 unsigned dyn : 1; /* True for malloced memory, false for static */ 864 unsigned n : 31; /* Number of characters in this token */ 865 }; 866 867 /* 868 ** An instance of this structure contains information needed to generate 869 ** code for a SELECT that contains aggregate functions. 870 ** 871 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 872 ** pointer to this structure. The Expr.iColumn field is the index in 873 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 874 ** code for that node. 875 ** 876 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 877 ** original Select structure that describes the SELECT statement. These 878 ** fields do not need to be freed when deallocating the AggInfo structure. 879 */ 880 struct AggInfo { 881 u8 directMode; /* Direct rendering mode means take data directly 882 ** from source tables rather than from accumulators */ 883 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 884 ** than the source table */ 885 int sortingIdx; /* Cursor number of the sorting index */ 886 ExprList *pGroupBy; /* The group by clause */ 887 int nSortingColumn; /* Number of columns in the sorting index */ 888 struct AggInfo_col { /* For each column used in source tables */ 889 Table *pTab; /* Source table */ 890 int iTable; /* Cursor number of the source table */ 891 int iColumn; /* Column number within the source table */ 892 int iSorterColumn; /* Column number in the sorting index */ 893 int iMem; /* Memory location that acts as accumulator */ 894 Expr *pExpr; /* The original expression */ 895 } *aCol; 896 int nColumn; /* Number of used entries in aCol[] */ 897 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 898 int nAccumulator; /* Number of columns that show through to the output. 899 ** Additional columns are used only as parameters to 900 ** aggregate functions */ 901 struct AggInfo_func { /* For each aggregate function */ 902 Expr *pExpr; /* Expression encoding the function */ 903 FuncDef *pFunc; /* The aggregate function implementation */ 904 int iMem; /* Memory location that acts as accumulator */ 905 int iDistinct; /* Ephermeral table used to enforce DISTINCT */ 906 } *aFunc; 907 int nFunc; /* Number of entries in aFunc[] */ 908 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 909 }; 910 911 /* 912 ** Each node of an expression in the parse tree is an instance 913 ** of this structure. 914 ** 915 ** Expr.op is the opcode. The integer parser token codes are reused 916 ** as opcodes here. For example, the parser defines TK_GE to be an integer 917 ** code representing the ">=" operator. This same integer code is reused 918 ** to represent the greater-than-or-equal-to operator in the expression 919 ** tree. 920 ** 921 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 922 ** of argument if the expression is a function. 923 ** 924 ** Expr.token is the operator token for this node. For some expressions 925 ** that have subexpressions, Expr.token can be the complete text that gave 926 ** rise to the Expr. In the latter case, the token is marked as being 927 ** a compound token. 928 ** 929 ** An expression of the form ID or ID.ID refers to a column in a table. 930 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 931 ** the integer cursor number of a VDBE cursor pointing to that table and 932 ** Expr.iColumn is the column number for the specific column. If the 933 ** expression is used as a result in an aggregate SELECT, then the 934 ** value is also stored in the Expr.iAgg column in the aggregate so that 935 ** it can be accessed after all aggregates are computed. 936 ** 937 ** If the expression is a function, the Expr.iTable is an integer code 938 ** representing which function. If the expression is an unbound variable 939 ** marker (a question mark character '?' in the original SQL) then the 940 ** Expr.iTable holds the index number for that variable. 941 ** 942 ** If the expression is a subquery then Expr.iColumn holds an integer 943 ** register number containing the result of the subquery. If the 944 ** subquery gives a constant result, then iTable is -1. If the subquery 945 ** gives a different answer at different times during statement processing 946 ** then iTable is the address of a subroutine that computes the subquery. 947 ** 948 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 949 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 950 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 951 ** operand. 952 ** 953 ** If the Expr is of type OP_Column, and the table it is selecting from 954 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 955 ** corresponding table definition. 956 */ 957 struct Expr { 958 u8 op; /* Operation performed by this node */ 959 char affinity; /* The affinity of the column or 0 if not a column */ 960 u16 flags; /* Various flags. See below */ 961 CollSeq *pColl; /* The collation type of the column or 0 */ 962 Expr *pLeft, *pRight; /* Left and right subnodes */ 963 ExprList *pList; /* A list of expressions used as function arguments 964 ** or in "<expr> IN (<expr-list)" */ 965 Token token; /* An operand token */ 966 Token span; /* Complete text of the expression */ 967 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 968 ** iColumn-th field of the iTable-th table. */ 969 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 970 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 971 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 972 Select *pSelect; /* When the expression is a sub-select. Also the 973 ** right side of "<expr> IN (<select>)" */ 974 Table *pTab; /* Table for OP_Column expressions. */ 975 Schema *pSchema; 976 #if SQLITE_MAX_EXPR_DEPTH>0 977 int nHeight; /* Height of the tree headed by this node */ 978 #endif 979 }; 980 981 /* 982 ** The following are the meanings of bits in the Expr.flags field. 983 */ 984 #define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */ 985 #define EP_Agg 0x02 /* Contains one or more aggregate functions */ 986 #define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */ 987 #define EP_Error 0x08 /* Expression contains one or more errors */ 988 #define EP_Distinct 0x10 /* Aggregate function with DISTINCT keyword */ 989 #define EP_VarSelect 0x20 /* pSelect is correlated, not constant */ 990 #define EP_Dequoted 0x40 /* True if the string has been dequoted */ 991 #define EP_InfixFunc 0x80 /* True for an infix function: LIKE, GLOB, etc */ 992 #define EP_ExpCollate 0x100 /* Collating sequence specified explicitly */ 993 994 /* 995 ** These macros can be used to test, set, or clear bits in the 996 ** Expr.flags field. 997 */ 998 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 999 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1000 #define ExprSetProperty(E,P) (E)->flags|=(P) 1001 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1002 1003 /* 1004 ** A list of expressions. Each expression may optionally have a 1005 ** name. An expr/name combination can be used in several ways, such 1006 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1007 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1008 ** also be used as the argument to a function, in which case the a.zName 1009 ** field is not used. 1010 */ 1011 struct ExprList { 1012 int nExpr; /* Number of expressions on the list */ 1013 int nAlloc; /* Number of entries allocated below */ 1014 int iECursor; /* VDBE Cursor associated with this ExprList */ 1015 struct ExprList_item { 1016 Expr *pExpr; /* The list of expressions */ 1017 char *zName; /* Token associated with this expression */ 1018 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1019 u8 isAgg; /* True if this is an aggregate like count(*) */ 1020 u8 done; /* A flag to indicate when processing is finished */ 1021 } *a; /* One entry for each expression */ 1022 }; 1023 1024 /* 1025 ** An instance of this structure can hold a simple list of identifiers, 1026 ** such as the list "a,b,c" in the following statements: 1027 ** 1028 ** INSERT INTO t(a,b,c) VALUES ...; 1029 ** CREATE INDEX idx ON t(a,b,c); 1030 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1031 ** 1032 ** The IdList.a.idx field is used when the IdList represents the list of 1033 ** column names after a table name in an INSERT statement. In the statement 1034 ** 1035 ** INSERT INTO t(a,b,c) ... 1036 ** 1037 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1038 */ 1039 struct IdList { 1040 struct IdList_item { 1041 char *zName; /* Name of the identifier */ 1042 int idx; /* Index in some Table.aCol[] of a column named zName */ 1043 } *a; 1044 int nId; /* Number of identifiers on the list */ 1045 int nAlloc; /* Number of entries allocated for a[] below */ 1046 }; 1047 1048 /* 1049 ** The bitmask datatype defined below is used for various optimizations. 1050 ** 1051 ** Changing this from a 64-bit to a 32-bit type limits the number of 1052 ** tables in a join to 32 instead of 64. But it also reduces the size 1053 ** of the library by 738 bytes on ix86. 1054 */ 1055 typedef u64 Bitmask; 1056 1057 /* 1058 ** The following structure describes the FROM clause of a SELECT statement. 1059 ** Each table or subquery in the FROM clause is a separate element of 1060 ** the SrcList.a[] array. 1061 ** 1062 ** With the addition of multiple database support, the following structure 1063 ** can also be used to describe a particular table such as the table that 1064 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1065 ** such a table must be a simple name: ID. But in SQLite, the table can 1066 ** now be identified by a database name, a dot, then the table name: ID.ID. 1067 ** 1068 ** The jointype starts out showing the join type between the current table 1069 ** and the next table on the list. The parser builds the list this way. 1070 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1071 ** jointype expresses the join between the table and the previous table. 1072 */ 1073 struct SrcList { 1074 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1075 i16 nAlloc; /* Number of entries allocated in a[] below */ 1076 struct SrcList_item { 1077 char *zDatabase; /* Name of database holding this table */ 1078 char *zName; /* Name of the table */ 1079 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1080 Table *pTab; /* An SQL table corresponding to zName */ 1081 Select *pSelect; /* A SELECT statement used in place of a table name */ 1082 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1083 u8 jointype; /* Type of join between this able and the previous */ 1084 int iCursor; /* The VDBE cursor number used to access this table */ 1085 Expr *pOn; /* The ON clause of a join */ 1086 IdList *pUsing; /* The USING clause of a join */ 1087 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1088 } a[1]; /* One entry for each identifier on the list */ 1089 }; 1090 1091 /* 1092 ** Permitted values of the SrcList.a.jointype field 1093 */ 1094 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1095 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1096 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1097 #define JT_LEFT 0x0008 /* Left outer join */ 1098 #define JT_RIGHT 0x0010 /* Right outer join */ 1099 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1100 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1101 1102 /* 1103 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1104 ** structure contains a single instance of this structure. This structure 1105 ** is intended to be private the the where.c module and should not be 1106 ** access or modified by other modules. 1107 ** 1108 ** The pIdxInfo and pBestIdx fields are used to help pick the best 1109 ** index on a virtual table. The pIdxInfo pointer contains indexing 1110 ** information for the i-th table in the FROM clause before reordering. 1111 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1112 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after 1113 ** FROM clause ordering. This is a little confusing so I will repeat 1114 ** it in different words. WhereInfo.a[i].pIdxInfo is index information 1115 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the 1116 ** index information for the i-th loop of the join. pBestInfo is always 1117 ** either NULL or a copy of some pIdxInfo. So for cleanup it is 1118 ** sufficient to free all of the pIdxInfo pointers. 1119 ** 1120 */ 1121 struct WhereLevel { 1122 int iFrom; /* Which entry in the FROM clause */ 1123 int flags; /* Flags associated with this level */ 1124 int iMem; /* First memory cell used by this level */ 1125 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1126 Index *pIdx; /* Index used. NULL if no index */ 1127 int iTabCur; /* The VDBE cursor used to access the table */ 1128 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 1129 int brk; /* Jump here to break out of the loop */ 1130 int nxt; /* Jump here to start the next IN combination */ 1131 int cont; /* Jump here to continue with the next loop cycle */ 1132 int top; /* First instruction of interior of the loop */ 1133 int op, p1, p2; /* Opcode used to terminate the loop */ 1134 int nEq; /* Number of == or IN constraints on this loop */ 1135 int nIn; /* Number of IN operators constraining this loop */ 1136 struct InLoop { 1137 int iCur; /* The VDBE cursor used by this IN operator */ 1138 int topAddr; /* Top of the IN loop */ 1139 } *aInLoop; /* Information about each nested IN operator */ 1140 sqlite3_index_info *pBestIdx; /* Index information for this level */ 1141 1142 /* The following field is really not part of the current level. But 1143 ** we need a place to cache index information for each table in the 1144 ** FROM clause and the WhereLevel structure is a convenient place. 1145 */ 1146 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1147 }; 1148 1149 /* 1150 ** The WHERE clause processing routine has two halves. The 1151 ** first part does the start of the WHERE loop and the second 1152 ** half does the tail of the WHERE loop. An instance of 1153 ** this structure is returned by the first half and passed 1154 ** into the second half to give some continuity. 1155 */ 1156 struct WhereInfo { 1157 Parse *pParse; 1158 SrcList *pTabList; /* List of tables in the join */ 1159 int iTop; /* The very beginning of the WHERE loop */ 1160 int iContinue; /* Jump here to continue with next record */ 1161 int iBreak; /* Jump here to break out of the loop */ 1162 int nLevel; /* Number of nested loop */ 1163 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ 1164 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 1165 }; 1166 1167 /* 1168 ** A NameContext defines a context in which to resolve table and column 1169 ** names. The context consists of a list of tables (the pSrcList) field and 1170 ** a list of named expression (pEList). The named expression list may 1171 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1172 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1173 ** pEList corresponds to the result set of a SELECT and is NULL for 1174 ** other statements. 1175 ** 1176 ** NameContexts can be nested. When resolving names, the inner-most 1177 ** context is searched first. If no match is found, the next outer 1178 ** context is checked. If there is still no match, the next context 1179 ** is checked. This process continues until either a match is found 1180 ** or all contexts are check. When a match is found, the nRef member of 1181 ** the context containing the match is incremented. 1182 ** 1183 ** Each subquery gets a new NameContext. The pNext field points to the 1184 ** NameContext in the parent query. Thus the process of scanning the 1185 ** NameContext list corresponds to searching through successively outer 1186 ** subqueries looking for a match. 1187 */ 1188 struct NameContext { 1189 Parse *pParse; /* The parser */ 1190 SrcList *pSrcList; /* One or more tables used to resolve names */ 1191 ExprList *pEList; /* Optional list of named expressions */ 1192 int nRef; /* Number of names resolved by this context */ 1193 int nErr; /* Number of errors encountered while resolving names */ 1194 u8 allowAgg; /* Aggregate functions allowed here */ 1195 u8 hasAgg; /* True if aggregates are seen */ 1196 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1197 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1198 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1199 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1200 }; 1201 1202 /* 1203 ** An instance of the following structure contains all information 1204 ** needed to generate code for a single SELECT statement. 1205 ** 1206 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1207 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1208 ** limit and nOffset to the value of the offset (or 0 if there is not 1209 ** offset). But later on, nLimit and nOffset become the memory locations 1210 ** in the VDBE that record the limit and offset counters. 1211 ** 1212 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1213 ** These addresses must be stored so that we can go back and fill in 1214 ** the P3_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1215 ** the number of columns in P2 can be computed at the same time 1216 ** as the OP_OpenEphm instruction is coded because not 1217 ** enough information about the compound query is known at that point. 1218 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1219 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1220 ** sequences for the ORDER BY clause. 1221 */ 1222 struct Select { 1223 ExprList *pEList; /* The fields of the result */ 1224 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1225 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1226 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1227 u8 isAgg; /* True if this is an aggregate query */ 1228 u8 usesEphm; /* True if uses an OpenEphemeral opcode */ 1229 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ 1230 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1231 SrcList *pSrc; /* The FROM clause */ 1232 Expr *pWhere; /* The WHERE clause */ 1233 ExprList *pGroupBy; /* The GROUP BY clause */ 1234 Expr *pHaving; /* The HAVING clause */ 1235 ExprList *pOrderBy; /* The ORDER BY clause */ 1236 Select *pPrior; /* Prior select in a compound select statement */ 1237 Select *pRightmost; /* Right-most select in a compound select statement */ 1238 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1239 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1240 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1241 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1242 }; 1243 1244 /* 1245 ** The results of a select can be distributed in several ways. 1246 */ 1247 #define SRT_Union 1 /* Store result as keys in an index */ 1248 #define SRT_Except 2 /* Remove result from a UNION index */ 1249 #define SRT_Discard 3 /* Do not save the results anywhere */ 1250 1251 /* The ORDER BY clause is ignored for all of the above */ 1252 #define IgnorableOrderby(X) (X<=SRT_Discard) 1253 1254 #define SRT_Callback 4 /* Invoke a callback with each row of result */ 1255 #define SRT_Mem 5 /* Store result in a memory cell */ 1256 #define SRT_Set 6 /* Store non-null results as keys in an index */ 1257 #define SRT_Table 7 /* Store result as data with an automatic rowid */ 1258 #define SRT_EphemTab 8 /* Create transient tab and store like SRT_Table */ 1259 #define SRT_Subroutine 9 /* Call a subroutine to handle results */ 1260 #define SRT_Exists 10 /* Store 1 if the result is not empty */ 1261 1262 /* 1263 ** An SQL parser context. A copy of this structure is passed through 1264 ** the parser and down into all the parser action routine in order to 1265 ** carry around information that is global to the entire parse. 1266 ** 1267 ** The structure is divided into two parts. When the parser and code 1268 ** generate call themselves recursively, the first part of the structure 1269 ** is constant but the second part is reset at the beginning and end of 1270 ** each recursion. 1271 ** 1272 ** The nTableLock and aTableLock variables are only used if the shared-cache 1273 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 1274 ** used to store the set of table-locks required by the statement being 1275 ** compiled. Function sqlite3TableLock() is used to add entries to the 1276 ** list. 1277 */ 1278 struct Parse { 1279 sqlite3 *db; /* The main database structure */ 1280 int rc; /* Return code from execution */ 1281 char *zErrMsg; /* An error message */ 1282 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1283 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1284 u8 nameClash; /* A permanent table name clashes with temp table name */ 1285 u8 checkSchema; /* Causes schema cookie check after an error */ 1286 u8 nested; /* Number of nested calls to the parser/code generator */ 1287 u8 parseError; /* True after a parsing error. Ticket #1794 */ 1288 int nErr; /* Number of errors seen */ 1289 int nTab; /* Number of previously allocated VDBE cursors */ 1290 int nMem; /* Number of memory cells used so far */ 1291 int nSet; /* Number of sets used so far */ 1292 int ckOffset; /* Stack offset to data used by CHECK constraints */ 1293 u32 writeMask; /* Start a write transaction on these databases */ 1294 u32 cookieMask; /* Bitmask of schema verified databases */ 1295 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1296 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 1297 #ifndef SQLITE_OMIT_SHARED_CACHE 1298 int nTableLock; /* Number of locks in aTableLock */ 1299 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 1300 #endif 1301 1302 /* Above is constant between recursions. Below is reset before and after 1303 ** each recursion */ 1304 1305 int nVar; /* Number of '?' variables seen in the SQL so far */ 1306 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1307 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1308 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1309 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1310 Token sErrToken; /* The token at which the error occurred */ 1311 Token sNameToken; /* Token with unqualified schema object name */ 1312 Token sLastToken; /* The last token parsed */ 1313 const char *zSql; /* All SQL text */ 1314 const char *zTail; /* All SQL text past the last semicolon parsed */ 1315 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1316 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1317 TriggerStack *trigStack; /* Trigger actions being coded */ 1318 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1319 #ifndef SQLITE_OMIT_VIRTUALTABLE 1320 Token sArg; /* Complete text of a module argument */ 1321 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 1322 Table *pVirtualLock; /* Require virtual table lock on this table */ 1323 #endif 1324 #if SQLITE_MAX_EXPR_DEPTH>0 1325 int nHeight; /* Expression tree height of current sub-select */ 1326 #endif 1327 }; 1328 1329 #ifdef SQLITE_OMIT_VIRTUALTABLE 1330 #define IN_DECLARE_VTAB 0 1331 #else 1332 #define IN_DECLARE_VTAB (pParse->declareVtab) 1333 #endif 1334 1335 /* 1336 ** An instance of the following structure can be declared on a stack and used 1337 ** to save the Parse.zAuthContext value so that it can be restored later. 1338 */ 1339 struct AuthContext { 1340 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1341 Parse *pParse; /* The Parse structure */ 1342 }; 1343 1344 /* 1345 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1346 */ 1347 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1348 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1349 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 1350 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 1351 1352 /* 1353 * Each trigger present in the database schema is stored as an instance of 1354 * struct Trigger. 1355 * 1356 * Pointers to instances of struct Trigger are stored in two ways. 1357 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1358 * database). This allows Trigger structures to be retrieved by name. 1359 * 2. All triggers associated with a single table form a linked list, using the 1360 * pNext member of struct Trigger. A pointer to the first element of the 1361 * linked list is stored as the "pTrigger" member of the associated 1362 * struct Table. 1363 * 1364 * The "step_list" member points to the first element of a linked list 1365 * containing the SQL statements specified as the trigger program. 1366 */ 1367 struct Trigger { 1368 char *name; /* The name of the trigger */ 1369 char *table; /* The table or view to which the trigger applies */ 1370 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1371 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1372 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1373 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1374 the <column-list> is stored here */ 1375 Token nameToken; /* Token containing zName. Use during parsing only */ 1376 Schema *pSchema; /* Schema containing the trigger */ 1377 Schema *pTabSchema; /* Schema containing the table */ 1378 TriggerStep *step_list; /* Link list of trigger program steps */ 1379 Trigger *pNext; /* Next trigger associated with the table */ 1380 }; 1381 1382 /* 1383 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1384 ** determine which. 1385 ** 1386 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1387 ** In that cases, the constants below can be ORed together. 1388 */ 1389 #define TRIGGER_BEFORE 1 1390 #define TRIGGER_AFTER 2 1391 1392 /* 1393 * An instance of struct TriggerStep is used to store a single SQL statement 1394 * that is a part of a trigger-program. 1395 * 1396 * Instances of struct TriggerStep are stored in a singly linked list (linked 1397 * using the "pNext" member) referenced by the "step_list" member of the 1398 * associated struct Trigger instance. The first element of the linked list is 1399 * the first step of the trigger-program. 1400 * 1401 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1402 * "SELECT" statement. The meanings of the other members is determined by the 1403 * value of "op" as follows: 1404 * 1405 * (op == TK_INSERT) 1406 * orconf -> stores the ON CONFLICT algorithm 1407 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1408 * this stores a pointer to the SELECT statement. Otherwise NULL. 1409 * target -> A token holding the name of the table to insert into. 1410 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1411 * this stores values to be inserted. Otherwise NULL. 1412 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1413 * statement, then this stores the column-names to be 1414 * inserted into. 1415 * 1416 * (op == TK_DELETE) 1417 * target -> A token holding the name of the table to delete from. 1418 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1419 * Otherwise NULL. 1420 * 1421 * (op == TK_UPDATE) 1422 * target -> A token holding the name of the table to update rows of. 1423 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1424 * Otherwise NULL. 1425 * pExprList -> A list of the columns to update and the expressions to update 1426 * them to. See sqlite3Update() documentation of "pChanges" 1427 * argument. 1428 * 1429 */ 1430 struct TriggerStep { 1431 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1432 int orconf; /* OE_Rollback etc. */ 1433 Trigger *pTrig; /* The trigger that this step is a part of */ 1434 1435 Select *pSelect; /* Valid for SELECT and sometimes 1436 INSERT steps (when pExprList == 0) */ 1437 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1438 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1439 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1440 INSERT steps (when pSelect == 0) */ 1441 IdList *pIdList; /* Valid for INSERT statements only */ 1442 TriggerStep *pNext; /* Next in the link-list */ 1443 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 1444 }; 1445 1446 /* 1447 * An instance of struct TriggerStack stores information required during code 1448 * generation of a single trigger program. While the trigger program is being 1449 * coded, its associated TriggerStack instance is pointed to by the 1450 * "pTriggerStack" member of the Parse structure. 1451 * 1452 * The pTab member points to the table that triggers are being coded on. The 1453 * newIdx member contains the index of the vdbe cursor that points at the temp 1454 * table that stores the new.* references. If new.* references are not valid 1455 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1456 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1457 * 1458 * The ON CONFLICT policy to be used for the trigger program steps is stored 1459 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1460 * specified for individual triggers steps is used. 1461 * 1462 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1463 * constructed. When coding nested triggers (triggers fired by other triggers) 1464 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1465 * pointer. Once the nested trigger has been coded, the pNext value is restored 1466 * to the pTriggerStack member of the Parse stucture and coding of the parent 1467 * trigger continues. 1468 * 1469 * Before a nested trigger is coded, the linked list pointed to by the 1470 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1471 * recursively. If this condition is detected, the nested trigger is not coded. 1472 */ 1473 struct TriggerStack { 1474 Table *pTab; /* Table that triggers are currently being coded on */ 1475 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1476 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1477 int orconf; /* Current orconf policy */ 1478 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1479 Trigger *pTrigger; /* The trigger currently being coded */ 1480 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1481 }; 1482 1483 /* 1484 ** The following structure contains information used by the sqliteFix... 1485 ** routines as they walk the parse tree to make database references 1486 ** explicit. 1487 */ 1488 typedef struct DbFixer DbFixer; 1489 struct DbFixer { 1490 Parse *pParse; /* The parsing context. Error messages written here */ 1491 const char *zDb; /* Make sure all objects are contained in this database */ 1492 const char *zType; /* Type of the container - used for error messages */ 1493 const Token *pName; /* Name of the container - used for error messages */ 1494 }; 1495 1496 /* 1497 ** A pointer to this structure is used to communicate information 1498 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1499 */ 1500 typedef struct { 1501 sqlite3 *db; /* The database being initialized */ 1502 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 1503 char **pzErrMsg; /* Error message stored here */ 1504 int rc; /* Result code stored here */ 1505 } InitData; 1506 1507 /* 1508 ** Assuming zIn points to the first byte of a UTF-8 character, 1509 ** advance zIn to point to the first byte of the next UTF-8 character. 1510 */ 1511 #define SQLITE_SKIP_UTF8(zIn) { \ 1512 if( (*(zIn++))>=0xc0 ){ \ 1513 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 1514 } \ 1515 } 1516 1517 /* 1518 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 1519 ** builds) or a function call (for debugging). If it is a function call, 1520 ** it allows the operator to set a breakpoint at the spot where database 1521 ** corruption is first detected. 1522 */ 1523 #ifdef SQLITE_DEBUG 1524 int sqlite3Corrupt(void); 1525 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 1526 #else 1527 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 1528 #endif 1529 1530 /* 1531 ** Internal function prototypes 1532 */ 1533 int sqlite3StrICmp(const char *, const char *); 1534 int sqlite3StrNICmp(const char *, const char *, int); 1535 int sqlite3IsNumber(const char*, int*, u8); 1536 1537 void *sqlite3MallocZero(unsigned); 1538 void *sqlite3DbMallocZero(sqlite3*, unsigned); 1539 void *sqlite3DbMallocRaw(sqlite3*, unsigned); 1540 char *sqlite3StrDup(const char*); 1541 char *sqlite3StrNDup(const char*, int); 1542 char *sqlite3DbStrDup(sqlite3*,const char*); 1543 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 1544 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 1545 void *sqlite3DbRealloc(sqlite3 *, void *, int); 1546 1547 char *sqlite3MPrintf(sqlite3*,const char*, ...); 1548 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 1549 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 1550 void sqlite3DebugPrintf(const char*, ...); 1551 void *sqlite3TextToPtr(const char*); 1552 #endif 1553 void sqlite3SetString(char **, ...); 1554 void sqlite3ErrorMsg(Parse*, const char*, ...); 1555 void sqlite3ErrorClear(Parse*); 1556 void sqlite3Dequote(char*); 1557 void sqlite3DequoteExpr(sqlite3*, Expr*); 1558 int sqlite3KeywordCode(const unsigned char*, int); 1559 int sqlite3RunParser(Parse*, const char*, char **); 1560 void sqlite3FinishCoding(Parse*); 1561 Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*); 1562 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 1563 Expr *sqlite3RegisterExpr(Parse*,Token*); 1564 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 1565 void sqlite3ExprSpan(Expr*,Token*,Token*); 1566 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 1567 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1568 void sqlite3ExprDelete(Expr*); 1569 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*); 1570 void sqlite3ExprListDelete(ExprList*); 1571 int sqlite3Init(sqlite3*, char**); 1572 int sqlite3InitCallback(void*, int, char**, char**); 1573 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1574 void sqlite3ResetInternalSchema(sqlite3*, int); 1575 void sqlite3BeginParse(Parse*,int); 1576 void sqlite3CommitInternalChanges(sqlite3*); 1577 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1578 void sqlite3OpenMasterTable(Parse *, int); 1579 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 1580 void sqlite3AddColumn(Parse*,Token*); 1581 void sqlite3AddNotNull(Parse*, int); 1582 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 1583 void sqlite3AddCheckConstraint(Parse*, Expr*); 1584 void sqlite3AddColumnType(Parse*,Token*); 1585 void sqlite3AddDefaultValue(Parse*,Expr*); 1586 void sqlite3AddCollateType(Parse*, const char*, int); 1587 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1588 1589 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 1590 1591 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1592 int sqlite3ViewGetColumnNames(Parse*,Table*); 1593 #else 1594 # define sqlite3ViewGetColumnNames(A,B) 0 1595 #endif 1596 1597 void sqlite3DropTable(Parse*, SrcList*, int, int); 1598 void sqlite3DeleteTable(Table*); 1599 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1600 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 1601 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 1602 int sqlite3IdListIndex(IdList*,const char*); 1603 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 1604 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*, 1605 Select*, Expr*, IdList*); 1606 void sqlite3SrcListShiftJoinType(SrcList*); 1607 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1608 void sqlite3IdListDelete(IdList*); 1609 void sqlite3SrcListDelete(SrcList*); 1610 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1611 Token*, int, int); 1612 void sqlite3DropIndex(Parse*, SrcList*, int); 1613 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); 1614 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 1615 Expr*,ExprList*,int,Expr*,Expr*); 1616 void sqlite3SelectDelete(Select*); 1617 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1618 int sqlite3IsReadOnly(Parse*, Table*, int); 1619 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 1620 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1621 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1622 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**); 1623 void sqlite3WhereEnd(WhereInfo*); 1624 void sqlite3ExprCodeGetColumn(Vdbe*, Table*, int, int); 1625 void sqlite3ExprCode(Parse*, Expr*); 1626 void sqlite3ExprCodeAndCache(Parse*, Expr*); 1627 int sqlite3ExprCodeExprList(Parse*, ExprList*); 1628 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 1629 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 1630 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 1631 Table *sqlite3LocateTable(Parse*,const char*, const char*); 1632 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 1633 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 1634 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 1635 void sqlite3Vacuum(Parse*); 1636 int sqlite3RunVacuum(char**, sqlite3*); 1637 char *sqlite3NameFromToken(sqlite3*, Token*); 1638 int sqlite3ExprCompare(Expr*, Expr*); 1639 int sqlite3ExprResolveNames(NameContext *, Expr *); 1640 int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 1641 int sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 1642 Vdbe *sqlite3GetVdbe(Parse*); 1643 Expr *sqlite3CreateIdExpr(Parse *, const char*); 1644 void sqlite3Randomness(int, void*); 1645 void sqlite3RollbackAll(sqlite3*); 1646 void sqlite3CodeVerifySchema(Parse*, int); 1647 void sqlite3BeginTransaction(Parse*, int); 1648 void sqlite3CommitTransaction(Parse*); 1649 void sqlite3RollbackTransaction(Parse*); 1650 int sqlite3ExprIsConstant(Expr*); 1651 int sqlite3ExprIsConstantNotJoin(Expr*); 1652 int sqlite3ExprIsConstantOrFunction(Expr*); 1653 int sqlite3ExprIsInteger(Expr*, int*); 1654 int sqlite3IsRowid(const char*); 1655 void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int); 1656 void sqlite3GenerateRowIndexDelete(Vdbe*, Table*, int, char*); 1657 void sqlite3GenerateIndexKey(Vdbe*, Index*, int); 1658 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1659 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int, int); 1660 void sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 1661 void sqlite3BeginWriteOperation(Parse*, int, int); 1662 Expr *sqlite3ExprDup(sqlite3*,Expr*); 1663 void sqlite3TokenCopy(sqlite3*,Token*, Token*); 1664 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*); 1665 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*); 1666 IdList *sqlite3IdListDup(sqlite3*,IdList*); 1667 Select *sqlite3SelectDup(sqlite3*,Select*); 1668 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 1669 void sqlite3RegisterBuiltinFunctions(sqlite3*); 1670 void sqlite3RegisterDateTimeFunctions(sqlite3*); 1671 int sqlite3SafetyOn(sqlite3*); 1672 int sqlite3SafetyOff(sqlite3*); 1673 int sqlite3SafetyCheck(sqlite3*); 1674 void sqlite3ChangeCookie(sqlite3*, Vdbe*, int); 1675 1676 #ifndef SQLITE_OMIT_TRIGGER 1677 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 1678 Expr*,int, int); 1679 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 1680 void sqlite3DropTrigger(Parse*, SrcList*, int); 1681 void sqlite3DropTriggerPtr(Parse*, Trigger*); 1682 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 1683 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1684 int, int); 1685 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1686 void sqlite3DeleteTriggerStep(TriggerStep*); 1687 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 1688 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 1689 ExprList*,Select*,int); 1690 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int); 1691 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 1692 void sqlite3DeleteTrigger(Trigger*); 1693 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 1694 #else 1695 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 1696 # define sqlite3DeleteTrigger(A) 1697 # define sqlite3DropTriggerPtr(A,B) 1698 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 1699 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0 1700 #endif 1701 1702 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 1703 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 1704 void sqlite3DeferForeignKey(Parse*, int); 1705 #ifndef SQLITE_OMIT_AUTHORIZATION 1706 void sqlite3AuthRead(Parse*,Expr*,SrcList*); 1707 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 1708 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 1709 void sqlite3AuthContextPop(AuthContext*); 1710 #else 1711 # define sqlite3AuthRead(a,b,c) 1712 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 1713 # define sqlite3AuthContextPush(a,b,c) 1714 # define sqlite3AuthContextPop(a) ((void)(a)) 1715 #endif 1716 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 1717 void sqlite3Detach(Parse*, Expr*); 1718 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 1719 int omitJournal, int nCache, Btree **ppBtree); 1720 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 1721 int sqlite3FixSrcList(DbFixer*, SrcList*); 1722 int sqlite3FixSelect(DbFixer*, Select*); 1723 int sqlite3FixExpr(DbFixer*, Expr*); 1724 int sqlite3FixExprList(DbFixer*, ExprList*); 1725 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 1726 int sqlite3AtoF(const char *z, double*); 1727 char *sqlite3_snprintf(int,char*,const char*,...); 1728 int sqlite3GetInt32(const char *, int*); 1729 int sqlite3FitsIn64Bits(const char *); 1730 int sqlite3Utf16ByteLen(const void *pData, int nChar); 1731 int sqlite3Utf8CharLen(const char *pData, int nByte); 1732 int sqlite3Utf8Read(const u8*, const u8*, const u8**); 1733 int sqlite3PutVarint(unsigned char *, u64); 1734 int sqlite3GetVarint(const unsigned char *, u64 *); 1735 int sqlite3GetVarint32(const unsigned char *, u32 *); 1736 int sqlite3VarintLen(u64 v); 1737 void sqlite3IndexAffinityStr(Vdbe *, Index *); 1738 void sqlite3TableAffinityStr(Vdbe *, Table *); 1739 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 1740 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 1741 char sqlite3ExprAffinity(Expr *pExpr); 1742 int sqlite3Atoi64(const char*, i64*); 1743 void sqlite3Error(sqlite3*, int, const char*,...); 1744 void *sqlite3HexToBlob(sqlite3*, const char *z); 1745 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 1746 const char *sqlite3ErrStr(int); 1747 int sqlite3ReadSchema(Parse *pParse); 1748 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 1749 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 1750 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 1751 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 1752 int sqlite3CheckCollSeq(Parse *, CollSeq *); 1753 int sqlite3CheckObjectName(Parse *, const char *); 1754 void sqlite3VdbeSetChanges(sqlite3 *, int); 1755 1756 const void *sqlite3ValueText(sqlite3_value*, u8); 1757 int sqlite3ValueBytes(sqlite3_value*, u8); 1758 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 1759 void(*)(void*)); 1760 void sqlite3ValueFree(sqlite3_value*); 1761 sqlite3_value *sqlite3ValueNew(sqlite3 *); 1762 char *sqlite3Utf16to8(sqlite3 *, const void*, int); 1763 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 1764 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 1765 #ifndef SQLITE_AMALGAMATION 1766 extern const unsigned char sqlite3UpperToLower[]; 1767 #endif 1768 void sqlite3RootPageMoved(Db*, int, int); 1769 void sqlite3Reindex(Parse*, Token*, Token*); 1770 void sqlite3AlterFunctions(sqlite3*); 1771 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 1772 int sqlite3GetToken(const unsigned char *, int *); 1773 void sqlite3NestedParse(Parse*, const char*, ...); 1774 void sqlite3ExpirePreparedStatements(sqlite3*); 1775 void sqlite3CodeSubselect(Parse *, Expr *); 1776 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 1777 void sqlite3ColumnDefault(Vdbe *, Table *, int); 1778 void sqlite3AlterFinishAddColumn(Parse *, Token *); 1779 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 1780 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 1781 char sqlite3AffinityType(const Token*); 1782 void sqlite3Analyze(Parse*, Token*, Token*); 1783 int sqlite3InvokeBusyHandler(BusyHandler*); 1784 int sqlite3FindDb(sqlite3*, Token*); 1785 int sqlite3AnalysisLoad(sqlite3*,int iDB); 1786 void sqlite3DefaultRowEst(Index*); 1787 void sqlite3RegisterLikeFunctions(sqlite3*, int); 1788 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 1789 void sqlite3AttachFunctions(sqlite3 *); 1790 void sqlite3MinimumFileFormat(Parse*, int, int); 1791 void sqlite3SchemaFree(void *); 1792 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 1793 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 1794 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 1795 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 1796 void (*)(sqlite3_context*,int,sqlite3_value **), 1797 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 1798 int sqlite3ApiExit(sqlite3 *db, int); 1799 void sqlite3AbortOtherActiveVdbes(sqlite3 *, Vdbe *); 1800 int sqlite3OpenTempDatabase(Parse *); 1801 1802 1803 /* 1804 ** The interface to the LEMON-generated parser 1805 */ 1806 void *sqlite3ParserAlloc(void*(*)(size_t)); 1807 void sqlite3ParserFree(void*, void(*)(void*)); 1808 void sqlite3Parser(void*, int, Token, Parse*); 1809 1810 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1811 void sqlite3CloseExtensions(sqlite3*); 1812 int sqlite3AutoLoadExtensions(sqlite3*); 1813 #else 1814 # define sqlite3CloseExtensions(X) 1815 # define sqlite3AutoLoadExtensions(X) SQLITE_OK 1816 #endif 1817 1818 #ifndef SQLITE_OMIT_SHARED_CACHE 1819 void sqlite3TableLock(Parse *, int, int, u8, const char *); 1820 #else 1821 #define sqlite3TableLock(v,w,x,y,z) 1822 #endif 1823 1824 #ifdef SQLITE_TEST 1825 int sqlite3Utf8To8(unsigned char*); 1826 #endif 1827 1828 /* 1829 ** The MallocDisallow() and MallocAllow() routines are like asserts. 1830 ** Call them around a section of code that you do not expect to do 1831 ** any memory allocation. 1832 */ 1833 #ifdef SQLITE_MEMDEBUG 1834 void sqlite3MallocDisallow(void); 1835 void sqlite3MallocAllow(void); 1836 void sqlite3MallocBenignFailure(int); 1837 #else 1838 # define sqlite3MallocDisallow() 1839 # define sqlite3MallocAllow() 1840 # define sqlite3MallocBenignFailure(x) 1841 #endif 1842 1843 1844 #ifdef SQLITE_OMIT_VIRTUALTABLE 1845 # define sqlite3VtabClear(X) 1846 # define sqlite3VtabSync(X,Y) (Y) 1847 # define sqlite3VtabRollback(X) 1848 # define sqlite3VtabCommit(X) 1849 #else 1850 void sqlite3VtabClear(Table*); 1851 int sqlite3VtabSync(sqlite3 *db, int rc); 1852 int sqlite3VtabRollback(sqlite3 *db); 1853 int sqlite3VtabCommit(sqlite3 *db); 1854 #endif 1855 void sqlite3VtabLock(sqlite3_vtab*); 1856 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*); 1857 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 1858 void sqlite3VtabFinishParse(Parse*, Token*); 1859 void sqlite3VtabArgInit(Parse*); 1860 void sqlite3VtabArgExtend(Parse*, Token*); 1861 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 1862 int sqlite3VtabCallConnect(Parse*, Table*); 1863 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 1864 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 1865 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 1866 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 1867 int sqlite3Reprepare(Vdbe*); 1868 void sqlite3ExprListCheckLength(Parse*, ExprList*, int, const char*); 1869 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 1870 1871 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 1872 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 1873 int sqlite3JournalSize(sqlite3_vfs *); 1874 int sqlite3JournalCreate(sqlite3_file *); 1875 #else 1876 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 1877 #endif 1878 1879 #if SQLITE_MAX_EXPR_DEPTH>0 1880 void sqlite3ExprSetHeight(Expr *); 1881 int sqlite3SelectExprHeight(Select *); 1882 #else 1883 #define sqlite3ExprSetHeight(x) 1884 #endif 1885 1886 u32 sqlite3Get4byte(const u8*); 1887 void sqlite3Put4byte(u8*, u32); 1888 1889 #ifdef SQLITE_SSE 1890 #include "sseInt.h" 1891 #endif 1892 1893 #ifdef SQLITE_DEBUG 1894 void sqlite3ParserTrace(FILE*, char *); 1895 #endif 1896 1897 /* 1898 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 1899 ** sqlite3_io_trace is a pointer to a printf-like routine used to 1900 ** print I/O tracing messages. 1901 */ 1902 #ifdef SQLITE_ENABLE_IOTRACE 1903 # define IOTRACE(A) if( sqlite3_io_trace ){ sqlite3_io_trace A; } 1904 void sqlite3VdbeIOTraceSql(Vdbe*); 1905 #else 1906 # define IOTRACE(A) 1907 # define sqlite3VdbeIOTraceSql(X) 1908 #endif 1909 SQLITE_EXTERN void (*sqlite3_io_trace)(const char*,...); 1910 1911 #endif 1912