1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #include "sqlite3.h" 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 19 /* 20 ** These #defines should enable >2GB file support on POSIX if the 21 ** underlying operating system supports it. If the OS lacks 22 ** large file support, or if the OS is windows, these should be no-ops. 23 ** 24 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 25 ** system #includes. Hence, this block of code must be the very first 26 ** code in all source files. 27 ** 28 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 29 ** on the compiler command line. This is necessary if you are compiling 30 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 31 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 32 ** without this option, LFS is enable. But LFS does not exist in the kernel 33 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 34 ** portability you should omit LFS. 35 ** 36 ** The previous paragraph was written in 2005. (This paragraph is written 37 ** on 2008-11-28.) These days, all Linux kernels support large files, so 38 ** you should probably leave LFS enabled. But some embedded platforms might 39 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 40 ** 41 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 42 */ 43 #ifndef SQLITE_DISABLE_LFS 44 # define _LARGE_FILE 1 45 # ifndef _FILE_OFFSET_BITS 46 # define _FILE_OFFSET_BITS 64 47 # endif 48 # define _LARGEFILE_SOURCE 1 49 #endif 50 51 /* 52 ** Include the configuration header output by 'configure' if we're using the 53 ** autoconf-based build 54 */ 55 #ifdef _HAVE_SQLITE_CONFIG_H 56 #include "config.h" 57 #endif 58 59 #include "sqliteLimit.h" 60 61 /* Disable nuisance warnings on Borland compilers */ 62 #if defined(__BORLANDC__) 63 #pragma warn -rch /* unreachable code */ 64 #pragma warn -ccc /* Condition is always true or false */ 65 #pragma warn -aus /* Assigned value is never used */ 66 #pragma warn -csu /* Comparing signed and unsigned */ 67 #pragma warn -spa /* Suspicious pointer arithmetic */ 68 #endif 69 70 /* Needed for various definitions... */ 71 #ifndef _GNU_SOURCE 72 # define _GNU_SOURCE 73 #endif 74 75 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 76 # define _BSD_SOURCE 77 #endif 78 79 /* 80 ** Include standard header files as necessary 81 */ 82 #ifdef HAVE_STDINT_H 83 #include <stdint.h> 84 #endif 85 #ifdef HAVE_INTTYPES_H 86 #include <inttypes.h> 87 #endif 88 89 /* 90 ** The following macros are used to cast pointers to integers and 91 ** integers to pointers. The way you do this varies from one compiler 92 ** to the next, so we have developed the following set of #if statements 93 ** to generate appropriate macros for a wide range of compilers. 94 ** 95 ** The correct "ANSI" way to do this is to use the intptr_t type. 96 ** Unfortunately, that typedef is not available on all compilers, or 97 ** if it is available, it requires an #include of specific headers 98 ** that vary from one machine to the next. 99 ** 100 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 101 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 102 ** So we have to define the macros in different ways depending on the 103 ** compiler. 104 */ 105 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 106 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 107 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 108 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 109 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 110 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 111 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 112 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 113 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 114 #else /* Generates a warning - but it always works */ 115 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 116 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 117 #endif 118 119 /* 120 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 121 ** 0 means mutexes are permanently disable and the library is never 122 ** threadsafe. 1 means the library is serialized which is the highest 123 ** level of threadsafety. 2 means the library is multithreaded - multiple 124 ** threads can use SQLite as long as no two threads try to use the same 125 ** database connection at the same time. 126 ** 127 ** Older versions of SQLite used an optional THREADSAFE macro. 128 ** We support that for legacy. 129 */ 130 #if !defined(SQLITE_THREADSAFE) 131 # if defined(THREADSAFE) 132 # define SQLITE_THREADSAFE THREADSAFE 133 # else 134 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 135 # endif 136 #endif 137 138 /* 139 ** Powersafe overwrite is on by default. But can be turned off using 140 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 141 */ 142 #ifndef SQLITE_POWERSAFE_OVERWRITE 143 # define SQLITE_POWERSAFE_OVERWRITE 1 144 #endif 145 146 /* 147 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 148 ** It determines whether or not the features related to 149 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 150 ** be overridden at runtime using the sqlite3_config() API. 151 */ 152 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 153 # define SQLITE_DEFAULT_MEMSTATUS 1 154 #endif 155 156 /* 157 ** Exactly one of the following macros must be defined in order to 158 ** specify which memory allocation subsystem to use. 159 ** 160 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 161 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 162 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 163 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 164 ** 165 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 166 ** assert() macro is enabled, each call into the Win32 native heap subsystem 167 ** will cause HeapValidate to be called. If heap validation should fail, an 168 ** assertion will be triggered. 169 ** 170 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 171 ** the default. 172 */ 173 #if defined(SQLITE_SYSTEM_MALLOC) \ 174 + defined(SQLITE_WIN32_MALLOC) \ 175 + defined(SQLITE_ZERO_MALLOC) \ 176 + defined(SQLITE_MEMDEBUG)>1 177 # error "Two or more of the following compile-time configuration options\ 178 are defined but at most one is allowed:\ 179 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 180 SQLITE_ZERO_MALLOC" 181 #endif 182 #if defined(SQLITE_SYSTEM_MALLOC) \ 183 + defined(SQLITE_WIN32_MALLOC) \ 184 + defined(SQLITE_ZERO_MALLOC) \ 185 + defined(SQLITE_MEMDEBUG)==0 186 # define SQLITE_SYSTEM_MALLOC 1 187 #endif 188 189 /* 190 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 191 ** sizes of memory allocations below this value where possible. 192 */ 193 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 194 # define SQLITE_MALLOC_SOFT_LIMIT 1024 195 #endif 196 197 /* 198 ** We need to define _XOPEN_SOURCE as follows in order to enable 199 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 200 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 201 ** it. 202 */ 203 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 204 # define _XOPEN_SOURCE 600 205 #endif 206 207 /* 208 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 209 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 210 ** make it true by defining or undefining NDEBUG. 211 ** 212 ** Setting NDEBUG makes the code smaller and faster by disabling the 213 ** assert() statements in the code. So we want the default action 214 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 215 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 216 ** feature. 217 */ 218 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 219 # define NDEBUG 1 220 #endif 221 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 222 # undef NDEBUG 223 #endif 224 225 /* 226 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 227 */ 228 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 229 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 230 #endif 231 232 /* 233 ** The testcase() macro is used to aid in coverage testing. When 234 ** doing coverage testing, the condition inside the argument to 235 ** testcase() must be evaluated both true and false in order to 236 ** get full branch coverage. The testcase() macro is inserted 237 ** to help ensure adequate test coverage in places where simple 238 ** condition/decision coverage is inadequate. For example, testcase() 239 ** can be used to make sure boundary values are tested. For 240 ** bitmask tests, testcase() can be used to make sure each bit 241 ** is significant and used at least once. On switch statements 242 ** where multiple cases go to the same block of code, testcase() 243 ** can insure that all cases are evaluated. 244 ** 245 */ 246 #ifdef SQLITE_COVERAGE_TEST 247 void sqlite3Coverage(int); 248 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 249 #else 250 # define testcase(X) 251 #endif 252 253 /* 254 ** The TESTONLY macro is used to enclose variable declarations or 255 ** other bits of code that are needed to support the arguments 256 ** within testcase() and assert() macros. 257 */ 258 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 259 # define TESTONLY(X) X 260 #else 261 # define TESTONLY(X) 262 #endif 263 264 /* 265 ** Sometimes we need a small amount of code such as a variable initialization 266 ** to setup for a later assert() statement. We do not want this code to 267 ** appear when assert() is disabled. The following macro is therefore 268 ** used to contain that setup code. The "VVA" acronym stands for 269 ** "Verification, Validation, and Accreditation". In other words, the 270 ** code within VVA_ONLY() will only run during verification processes. 271 */ 272 #ifndef NDEBUG 273 # define VVA_ONLY(X) X 274 #else 275 # define VVA_ONLY(X) 276 #endif 277 278 /* 279 ** The ALWAYS and NEVER macros surround boolean expressions which 280 ** are intended to always be true or false, respectively. Such 281 ** expressions could be omitted from the code completely. But they 282 ** are included in a few cases in order to enhance the resilience 283 ** of SQLite to unexpected behavior - to make the code "self-healing" 284 ** or "ductile" rather than being "brittle" and crashing at the first 285 ** hint of unplanned behavior. 286 ** 287 ** In other words, ALWAYS and NEVER are added for defensive code. 288 ** 289 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 290 ** be true and false so that the unreachable code they specify will 291 ** not be counted as untested code. 292 */ 293 #if defined(SQLITE_COVERAGE_TEST) 294 # define ALWAYS(X) (1) 295 # define NEVER(X) (0) 296 #elif !defined(NDEBUG) 297 # define ALWAYS(X) ((X)?1:(assert(0),0)) 298 # define NEVER(X) ((X)?(assert(0),1):0) 299 #else 300 # define ALWAYS(X) (X) 301 # define NEVER(X) (X) 302 #endif 303 304 /* 305 ** Return true (non-zero) if the input is a integer that is too large 306 ** to fit in 32-bits. This macro is used inside of various testcase() 307 ** macros to verify that we have tested SQLite for large-file support. 308 */ 309 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 310 311 /* 312 ** The macro unlikely() is a hint that surrounds a boolean 313 ** expression that is usually false. Macro likely() surrounds 314 ** a boolean expression that is usually true. These hints could, 315 ** in theory, be used by the compiler to generate better code, but 316 ** currently they are just comments for human readers. 317 */ 318 #define likely(X) (X) 319 #define unlikely(X) (X) 320 321 #include "hash.h" 322 #include "parse.h" 323 #include <stdio.h> 324 #include <stdlib.h> 325 #include <string.h> 326 #include <assert.h> 327 #include <stddef.h> 328 329 /* 330 ** If compiling for a processor that lacks floating point support, 331 ** substitute integer for floating-point 332 */ 333 #ifdef SQLITE_OMIT_FLOATING_POINT 334 # define double sqlite_int64 335 # define float sqlite_int64 336 # define LONGDOUBLE_TYPE sqlite_int64 337 # ifndef SQLITE_BIG_DBL 338 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 339 # endif 340 # define SQLITE_OMIT_DATETIME_FUNCS 1 341 # define SQLITE_OMIT_TRACE 1 342 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 343 # undef SQLITE_HAVE_ISNAN 344 #endif 345 #ifndef SQLITE_BIG_DBL 346 # define SQLITE_BIG_DBL (1e99) 347 #endif 348 349 /* 350 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 351 ** afterward. Having this macro allows us to cause the C compiler 352 ** to omit code used by TEMP tables without messy #ifndef statements. 353 */ 354 #ifdef SQLITE_OMIT_TEMPDB 355 #define OMIT_TEMPDB 1 356 #else 357 #define OMIT_TEMPDB 0 358 #endif 359 360 /* 361 ** The "file format" number is an integer that is incremented whenever 362 ** the VDBE-level file format changes. The following macros define the 363 ** the default file format for new databases and the maximum file format 364 ** that the library can read. 365 */ 366 #define SQLITE_MAX_FILE_FORMAT 4 367 #ifndef SQLITE_DEFAULT_FILE_FORMAT 368 # define SQLITE_DEFAULT_FILE_FORMAT 4 369 #endif 370 371 /* 372 ** Determine whether triggers are recursive by default. This can be 373 ** changed at run-time using a pragma. 374 */ 375 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 376 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 377 #endif 378 379 /* 380 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 381 ** on the command-line 382 */ 383 #ifndef SQLITE_TEMP_STORE 384 # define SQLITE_TEMP_STORE 1 385 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 386 #endif 387 388 /* 389 ** GCC does not define the offsetof() macro so we'll have to do it 390 ** ourselves. 391 */ 392 #ifndef offsetof 393 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 394 #endif 395 396 /* 397 ** Macros to compute minimum and maximum of two numbers. 398 */ 399 #define MIN(A,B) ((A)<(B)?(A):(B)) 400 #define MAX(A,B) ((A)>(B)?(A):(B)) 401 402 /* 403 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 404 ** not, there are still machines out there that use EBCDIC.) 405 */ 406 #if 'A' == '\301' 407 # define SQLITE_EBCDIC 1 408 #else 409 # define SQLITE_ASCII 1 410 #endif 411 412 /* 413 ** Integers of known sizes. These typedefs might change for architectures 414 ** where the sizes very. Preprocessor macros are available so that the 415 ** types can be conveniently redefined at compile-type. Like this: 416 ** 417 ** cc '-DUINTPTR_TYPE=long long int' ... 418 */ 419 #ifndef UINT32_TYPE 420 # ifdef HAVE_UINT32_T 421 # define UINT32_TYPE uint32_t 422 # else 423 # define UINT32_TYPE unsigned int 424 # endif 425 #endif 426 #ifndef UINT16_TYPE 427 # ifdef HAVE_UINT16_T 428 # define UINT16_TYPE uint16_t 429 # else 430 # define UINT16_TYPE unsigned short int 431 # endif 432 #endif 433 #ifndef INT16_TYPE 434 # ifdef HAVE_INT16_T 435 # define INT16_TYPE int16_t 436 # else 437 # define INT16_TYPE short int 438 # endif 439 #endif 440 #ifndef UINT8_TYPE 441 # ifdef HAVE_UINT8_T 442 # define UINT8_TYPE uint8_t 443 # else 444 # define UINT8_TYPE unsigned char 445 # endif 446 #endif 447 #ifndef INT8_TYPE 448 # ifdef HAVE_INT8_T 449 # define INT8_TYPE int8_t 450 # else 451 # define INT8_TYPE signed char 452 # endif 453 #endif 454 #ifndef LONGDOUBLE_TYPE 455 # define LONGDOUBLE_TYPE long double 456 #endif 457 typedef sqlite_int64 i64; /* 8-byte signed integer */ 458 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 459 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 460 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 461 typedef INT16_TYPE i16; /* 2-byte signed integer */ 462 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 463 typedef INT8_TYPE i8; /* 1-byte signed integer */ 464 465 /* 466 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 467 ** that can be stored in a u32 without loss of data. The value 468 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 469 ** have to specify the value in the less intuitive manner shown: 470 */ 471 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 472 473 /* 474 ** The datatype used to store estimates of the number of rows in a 475 ** table or index. This is an unsigned integer type. For 99.9% of 476 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 477 ** can be used at compile-time if desired. 478 */ 479 #ifdef SQLITE_64BIT_STATS 480 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 481 #else 482 typedef u32 tRowcnt; /* 32-bit is the default */ 483 #endif 484 485 /* 486 ** Estimated quantities used for query planning are stored as 16-bit 487 ** logarithms. For quantity X, the value stored is 10*log2(X). This 488 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 489 ** But the allowed values are "grainy". Not every value is representable. 490 ** For example, quantities 16 and 17 are both represented by a LogEst 491 ** of 40. However, since LogEst quantatites are suppose to be estimates, 492 ** not exact values, this imprecision is not a problem. 493 ** 494 ** "LogEst" is short for "Logarithimic Estimate". 495 ** 496 ** Examples: 497 ** 1 -> 0 20 -> 43 10000 -> 132 498 ** 2 -> 10 25 -> 46 25000 -> 146 499 ** 3 -> 16 100 -> 66 1000000 -> 199 500 ** 4 -> 20 1000 -> 99 1048576 -> 200 501 ** 10 -> 33 1024 -> 100 4294967296 -> 320 502 ** 503 ** The LogEst can be negative to indicate fractional values. 504 ** Examples: 505 ** 506 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 507 */ 508 typedef INT16_TYPE LogEst; 509 510 /* 511 ** Macros to determine whether the machine is big or little endian, 512 ** evaluated at runtime. 513 */ 514 #ifdef SQLITE_AMALGAMATION 515 const int sqlite3one = 1; 516 #else 517 extern const int sqlite3one; 518 #endif 519 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 520 || defined(__x86_64) || defined(__x86_64__) 521 # define SQLITE_BIGENDIAN 0 522 # define SQLITE_LITTLEENDIAN 1 523 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 524 #else 525 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 526 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 527 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 528 #endif 529 530 /* 531 ** Constants for the largest and smallest possible 64-bit signed integers. 532 ** These macros are designed to work correctly on both 32-bit and 64-bit 533 ** compilers. 534 */ 535 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 536 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 537 538 /* 539 ** Round up a number to the next larger multiple of 8. This is used 540 ** to force 8-byte alignment on 64-bit architectures. 541 */ 542 #define ROUND8(x) (((x)+7)&~7) 543 544 /* 545 ** Round down to the nearest multiple of 8 546 */ 547 #define ROUNDDOWN8(x) ((x)&~7) 548 549 /* 550 ** Assert that the pointer X is aligned to an 8-byte boundary. This 551 ** macro is used only within assert() to verify that the code gets 552 ** all alignment restrictions correct. 553 ** 554 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 555 ** underlying malloc() implemention might return us 4-byte aligned 556 ** pointers. In that case, only verify 4-byte alignment. 557 */ 558 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 559 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 560 #else 561 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 562 #endif 563 564 /* 565 ** Disable MMAP on platforms where it is known to not work 566 */ 567 #if defined(__OpenBSD__) || defined(__QNXNTO__) 568 # undef SQLITE_MAX_MMAP_SIZE 569 # define SQLITE_MAX_MMAP_SIZE 0 570 #endif 571 572 /* 573 ** Default maximum size of memory used by memory-mapped I/O in the VFS 574 */ 575 #ifdef __APPLE__ 576 # include <TargetConditionals.h> 577 # if TARGET_OS_IPHONE 578 # undef SQLITE_MAX_MMAP_SIZE 579 # define SQLITE_MAX_MMAP_SIZE 0 580 # endif 581 #endif 582 #ifndef SQLITE_MAX_MMAP_SIZE 583 # if defined(__linux__) \ 584 || defined(_WIN32) \ 585 || (defined(__APPLE__) && defined(__MACH__)) \ 586 || defined(__sun) 587 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 588 # else 589 # define SQLITE_MAX_MMAP_SIZE 0 590 # endif 591 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 592 #endif 593 594 /* 595 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 596 ** default MMAP_SIZE is specified at compile-time, make sure that it does 597 ** not exceed the maximum mmap size. 598 */ 599 #ifndef SQLITE_DEFAULT_MMAP_SIZE 600 # define SQLITE_DEFAULT_MMAP_SIZE 0 601 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 602 #endif 603 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 604 # undef SQLITE_DEFAULT_MMAP_SIZE 605 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 606 #endif 607 608 /* 609 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 610 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 611 ** define SQLITE_ENABLE_STAT3_OR_STAT4 612 */ 613 #ifdef SQLITE_ENABLE_STAT4 614 # undef SQLITE_ENABLE_STAT3 615 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 616 #elif SQLITE_ENABLE_STAT3 617 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 618 #elif SQLITE_ENABLE_STAT3_OR_STAT4 619 # undef SQLITE_ENABLE_STAT3_OR_STAT4 620 #endif 621 622 /* 623 ** An instance of the following structure is used to store the busy-handler 624 ** callback for a given sqlite handle. 625 ** 626 ** The sqlite.busyHandler member of the sqlite struct contains the busy 627 ** callback for the database handle. Each pager opened via the sqlite 628 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 629 ** callback is currently invoked only from within pager.c. 630 */ 631 typedef struct BusyHandler BusyHandler; 632 struct BusyHandler { 633 int (*xFunc)(void *,int); /* The busy callback */ 634 void *pArg; /* First arg to busy callback */ 635 int nBusy; /* Incremented with each busy call */ 636 }; 637 638 /* 639 ** Name of the master database table. The master database table 640 ** is a special table that holds the names and attributes of all 641 ** user tables and indices. 642 */ 643 #define MASTER_NAME "sqlite_master" 644 #define TEMP_MASTER_NAME "sqlite_temp_master" 645 646 /* 647 ** The root-page of the master database table. 648 */ 649 #define MASTER_ROOT 1 650 651 /* 652 ** The name of the schema table. 653 */ 654 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 655 656 /* 657 ** A convenience macro that returns the number of elements in 658 ** an array. 659 */ 660 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 661 662 /* 663 ** Determine if the argument is a power of two 664 */ 665 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 666 667 /* 668 ** The following value as a destructor means to use sqlite3DbFree(). 669 ** The sqlite3DbFree() routine requires two parameters instead of the 670 ** one parameter that destructors normally want. So we have to introduce 671 ** this magic value that the code knows to handle differently. Any 672 ** pointer will work here as long as it is distinct from SQLITE_STATIC 673 ** and SQLITE_TRANSIENT. 674 */ 675 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 676 677 /* 678 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 679 ** not support Writable Static Data (WSD) such as global and static variables. 680 ** All variables must either be on the stack or dynamically allocated from 681 ** the heap. When WSD is unsupported, the variable declarations scattered 682 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 683 ** macro is used for this purpose. And instead of referencing the variable 684 ** directly, we use its constant as a key to lookup the run-time allocated 685 ** buffer that holds real variable. The constant is also the initializer 686 ** for the run-time allocated buffer. 687 ** 688 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 689 ** macros become no-ops and have zero performance impact. 690 */ 691 #ifdef SQLITE_OMIT_WSD 692 #define SQLITE_WSD const 693 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 694 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 695 int sqlite3_wsd_init(int N, int J); 696 void *sqlite3_wsd_find(void *K, int L); 697 #else 698 #define SQLITE_WSD 699 #define GLOBAL(t,v) v 700 #define sqlite3GlobalConfig sqlite3Config 701 #endif 702 703 /* 704 ** The following macros are used to suppress compiler warnings and to 705 ** make it clear to human readers when a function parameter is deliberately 706 ** left unused within the body of a function. This usually happens when 707 ** a function is called via a function pointer. For example the 708 ** implementation of an SQL aggregate step callback may not use the 709 ** parameter indicating the number of arguments passed to the aggregate, 710 ** if it knows that this is enforced elsewhere. 711 ** 712 ** When a function parameter is not used at all within the body of a function, 713 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 714 ** However, these macros may also be used to suppress warnings related to 715 ** parameters that may or may not be used depending on compilation options. 716 ** For example those parameters only used in assert() statements. In these 717 ** cases the parameters are named as per the usual conventions. 718 */ 719 #define UNUSED_PARAMETER(x) (void)(x) 720 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 721 722 /* 723 ** Forward references to structures 724 */ 725 typedef struct AggInfo AggInfo; 726 typedef struct AuthContext AuthContext; 727 typedef struct AutoincInfo AutoincInfo; 728 typedef struct Bitvec Bitvec; 729 typedef struct CollSeq CollSeq; 730 typedef struct Column Column; 731 typedef struct Db Db; 732 typedef struct Schema Schema; 733 typedef struct Expr Expr; 734 typedef struct ExprList ExprList; 735 typedef struct ExprSpan ExprSpan; 736 typedef struct FKey FKey; 737 typedef struct FuncDestructor FuncDestructor; 738 typedef struct FuncDef FuncDef; 739 typedef struct FuncDefHash FuncDefHash; 740 typedef struct IdList IdList; 741 typedef struct Index Index; 742 typedef struct IndexSample IndexSample; 743 typedef struct KeyClass KeyClass; 744 typedef struct KeyInfo KeyInfo; 745 typedef struct Lookaside Lookaside; 746 typedef struct LookasideSlot LookasideSlot; 747 typedef struct Module Module; 748 typedef struct NameContext NameContext; 749 typedef struct Parse Parse; 750 typedef struct PrintfArguments PrintfArguments; 751 typedef struct RowSet RowSet; 752 typedef struct Savepoint Savepoint; 753 typedef struct Select Select; 754 typedef struct SelectDest SelectDest; 755 typedef struct SrcList SrcList; 756 typedef struct StrAccum StrAccum; 757 typedef struct Table Table; 758 typedef struct TableLock TableLock; 759 typedef struct Token Token; 760 typedef struct Trigger Trigger; 761 typedef struct TriggerPrg TriggerPrg; 762 typedef struct TriggerStep TriggerStep; 763 typedef struct UnpackedRecord UnpackedRecord; 764 typedef struct VTable VTable; 765 typedef struct VtabCtx VtabCtx; 766 typedef struct Walker Walker; 767 typedef struct WhereInfo WhereInfo; 768 typedef struct With With; 769 770 /* 771 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 772 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 773 ** pointer types (i.e. FuncDef) defined above. 774 */ 775 #include "btree.h" 776 #include "vdbe.h" 777 #include "pager.h" 778 #include "pcache.h" 779 780 #include "os.h" 781 #include "mutex.h" 782 783 784 /* 785 ** Each database file to be accessed by the system is an instance 786 ** of the following structure. There are normally two of these structures 787 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 788 ** aDb[1] is the database file used to hold temporary tables. Additional 789 ** databases may be attached. 790 */ 791 struct Db { 792 char *zName; /* Name of this database */ 793 Btree *pBt; /* The B*Tree structure for this database file */ 794 u8 safety_level; /* How aggressive at syncing data to disk */ 795 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 796 }; 797 798 /* 799 ** An instance of the following structure stores a database schema. 800 ** 801 ** Most Schema objects are associated with a Btree. The exception is 802 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 803 ** In shared cache mode, a single Schema object can be shared by multiple 804 ** Btrees that refer to the same underlying BtShared object. 805 ** 806 ** Schema objects are automatically deallocated when the last Btree that 807 ** references them is destroyed. The TEMP Schema is manually freed by 808 ** sqlite3_close(). 809 * 810 ** A thread must be holding a mutex on the corresponding Btree in order 811 ** to access Schema content. This implies that the thread must also be 812 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 813 ** For a TEMP Schema, only the connection mutex is required. 814 */ 815 struct Schema { 816 int schema_cookie; /* Database schema version number for this file */ 817 int iGeneration; /* Generation counter. Incremented with each change */ 818 Hash tblHash; /* All tables indexed by name */ 819 Hash idxHash; /* All (named) indices indexed by name */ 820 Hash trigHash; /* All triggers indexed by name */ 821 Hash fkeyHash; /* All foreign keys by referenced table name */ 822 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 823 u8 file_format; /* Schema format version for this file */ 824 u8 enc; /* Text encoding used by this database */ 825 u16 flags; /* Flags associated with this schema */ 826 int cache_size; /* Number of pages to use in the cache */ 827 }; 828 829 /* 830 ** These macros can be used to test, set, or clear bits in the 831 ** Db.pSchema->flags field. 832 */ 833 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 834 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 835 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 836 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 837 838 /* 839 ** Allowed values for the DB.pSchema->flags field. 840 ** 841 ** The DB_SchemaLoaded flag is set after the database schema has been 842 ** read into internal hash tables. 843 ** 844 ** DB_UnresetViews means that one or more views have column names that 845 ** have been filled out. If the schema changes, these column names might 846 ** changes and so the view will need to be reset. 847 */ 848 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 849 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 850 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 851 852 /* 853 ** The number of different kinds of things that can be limited 854 ** using the sqlite3_limit() interface. 855 */ 856 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 857 858 /* 859 ** Lookaside malloc is a set of fixed-size buffers that can be used 860 ** to satisfy small transient memory allocation requests for objects 861 ** associated with a particular database connection. The use of 862 ** lookaside malloc provides a significant performance enhancement 863 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 864 ** SQL statements. 865 ** 866 ** The Lookaside structure holds configuration information about the 867 ** lookaside malloc subsystem. Each available memory allocation in 868 ** the lookaside subsystem is stored on a linked list of LookasideSlot 869 ** objects. 870 ** 871 ** Lookaside allocations are only allowed for objects that are associated 872 ** with a particular database connection. Hence, schema information cannot 873 ** be stored in lookaside because in shared cache mode the schema information 874 ** is shared by multiple database connections. Therefore, while parsing 875 ** schema information, the Lookaside.bEnabled flag is cleared so that 876 ** lookaside allocations are not used to construct the schema objects. 877 */ 878 struct Lookaside { 879 u16 sz; /* Size of each buffer in bytes */ 880 u8 bEnabled; /* False to disable new lookaside allocations */ 881 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 882 int nOut; /* Number of buffers currently checked out */ 883 int mxOut; /* Highwater mark for nOut */ 884 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 885 LookasideSlot *pFree; /* List of available buffers */ 886 void *pStart; /* First byte of available memory space */ 887 void *pEnd; /* First byte past end of available space */ 888 }; 889 struct LookasideSlot { 890 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 891 }; 892 893 /* 894 ** A hash table for function definitions. 895 ** 896 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 897 ** Collisions are on the FuncDef.pHash chain. 898 */ 899 struct FuncDefHash { 900 FuncDef *a[23]; /* Hash table for functions */ 901 }; 902 903 /* 904 ** Each database connection is an instance of the following structure. 905 */ 906 struct sqlite3 { 907 sqlite3_vfs *pVfs; /* OS Interface */ 908 struct Vdbe *pVdbe; /* List of active virtual machines */ 909 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 910 sqlite3_mutex *mutex; /* Connection mutex */ 911 Db *aDb; /* All backends */ 912 int nDb; /* Number of backends currently in use */ 913 int flags; /* Miscellaneous flags. See below */ 914 i64 lastRowid; /* ROWID of most recent insert (see above) */ 915 i64 szMmap; /* Default mmap_size setting */ 916 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 917 int errCode; /* Most recent error code (SQLITE_*) */ 918 int errMask; /* & result codes with this before returning */ 919 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 920 u8 autoCommit; /* The auto-commit flag. */ 921 u8 temp_store; /* 1: file 2: memory 0: default */ 922 u8 mallocFailed; /* True if we have seen a malloc failure */ 923 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 924 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 925 u8 suppressErr; /* Do not issue error messages if true */ 926 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 927 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 928 int nextPagesize; /* Pagesize after VACUUM if >0 */ 929 u32 magic; /* Magic number for detect library misuse */ 930 int nChange; /* Value returned by sqlite3_changes() */ 931 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 932 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 933 struct sqlite3InitInfo { /* Information used during initialization */ 934 int newTnum; /* Rootpage of table being initialized */ 935 u8 iDb; /* Which db file is being initialized */ 936 u8 busy; /* TRUE if currently initializing */ 937 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 938 } init; 939 int nVdbeActive; /* Number of VDBEs currently running */ 940 int nVdbeRead; /* Number of active VDBEs that read or write */ 941 int nVdbeWrite; /* Number of active VDBEs that read and write */ 942 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 943 int nExtension; /* Number of loaded extensions */ 944 void **aExtension; /* Array of shared library handles */ 945 void (*xTrace)(void*,const char*); /* Trace function */ 946 void *pTraceArg; /* Argument to the trace function */ 947 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 948 void *pProfileArg; /* Argument to profile function */ 949 void *pCommitArg; /* Argument to xCommitCallback() */ 950 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 951 void *pRollbackArg; /* Argument to xRollbackCallback() */ 952 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 953 void *pUpdateArg; 954 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 955 #ifndef SQLITE_OMIT_WAL 956 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 957 void *pWalArg; 958 #endif 959 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 960 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 961 void *pCollNeededArg; 962 sqlite3_value *pErr; /* Most recent error message */ 963 union { 964 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 965 double notUsed1; /* Spacer */ 966 } u1; 967 Lookaside lookaside; /* Lookaside malloc configuration */ 968 #ifndef SQLITE_OMIT_AUTHORIZATION 969 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 970 /* Access authorization function */ 971 void *pAuthArg; /* 1st argument to the access auth function */ 972 #endif 973 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 974 int (*xProgress)(void *); /* The progress callback */ 975 void *pProgressArg; /* Argument to the progress callback */ 976 unsigned nProgressOps; /* Number of opcodes for progress callback */ 977 #endif 978 #ifndef SQLITE_OMIT_VIRTUALTABLE 979 int nVTrans; /* Allocated size of aVTrans */ 980 Hash aModule; /* populated by sqlite3_create_module() */ 981 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 982 VTable **aVTrans; /* Virtual tables with open transactions */ 983 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 984 #endif 985 FuncDefHash aFunc; /* Hash table of connection functions */ 986 Hash aCollSeq; /* All collating sequences */ 987 BusyHandler busyHandler; /* Busy callback */ 988 Db aDbStatic[2]; /* Static space for the 2 default backends */ 989 Savepoint *pSavepoint; /* List of active savepoints */ 990 int busyTimeout; /* Busy handler timeout, in msec */ 991 int nSavepoint; /* Number of non-transaction savepoints */ 992 int nStatement; /* Number of nested statement-transactions */ 993 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 994 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 995 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 996 997 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 998 /* The following variables are all protected by the STATIC_MASTER 999 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1000 ** 1001 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1002 ** unlock so that it can proceed. 1003 ** 1004 ** When X.pBlockingConnection==Y, that means that something that X tried 1005 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1006 ** held by Y. 1007 */ 1008 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1009 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1010 void *pUnlockArg; /* Argument to xUnlockNotify */ 1011 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1012 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1013 #endif 1014 }; 1015 1016 /* 1017 ** A macro to discover the encoding of a database. 1018 */ 1019 #define ENC(db) ((db)->aDb[0].pSchema->enc) 1020 1021 /* 1022 ** Possible values for the sqlite3.flags. 1023 */ 1024 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1025 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1026 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1027 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1028 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1029 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1030 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1031 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1032 /* DELETE, or UPDATE and return */ 1033 /* the count using a callback. */ 1034 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1035 /* result set is empty */ 1036 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1037 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1038 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1039 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1040 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1041 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1042 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1043 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1044 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1045 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1046 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1047 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1048 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1049 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1050 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1051 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1052 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1053 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1054 1055 1056 /* 1057 ** Bits of the sqlite3.dbOptFlags field that are used by the 1058 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1059 ** selectively disable various optimizations. 1060 */ 1061 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1062 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1063 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1064 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1065 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1066 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1067 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1068 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1069 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1070 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1071 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1072 #define SQLITE_Stat3 0x0800 /* Use the SQLITE_STAT3 table */ 1073 #define SQLITE_AdjustOutEst 0x1000 /* Adjust output estimates using WHERE */ 1074 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1075 1076 /* 1077 ** Macros for testing whether or not optimizations are enabled or disabled. 1078 */ 1079 #ifndef SQLITE_OMIT_BUILTIN_TEST 1080 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1081 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1082 #else 1083 #define OptimizationDisabled(db, mask) 0 1084 #define OptimizationEnabled(db, mask) 1 1085 #endif 1086 1087 /* 1088 ** Return true if it OK to factor constant expressions into the initialization 1089 ** code. The argument is a Parse object for the code generator. 1090 */ 1091 #define ConstFactorOk(P) ((P)->okConstFactor) 1092 1093 /* 1094 ** Possible values for the sqlite.magic field. 1095 ** The numbers are obtained at random and have no special meaning, other 1096 ** than being distinct from one another. 1097 */ 1098 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1099 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1100 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1101 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1102 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1103 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1104 1105 /* 1106 ** Each SQL function is defined by an instance of the following 1107 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1108 ** hash table. When multiple functions have the same name, the hash table 1109 ** points to a linked list of these structures. 1110 */ 1111 struct FuncDef { 1112 i16 nArg; /* Number of arguments. -1 means unlimited */ 1113 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1114 void *pUserData; /* User data parameter */ 1115 FuncDef *pNext; /* Next function with same name */ 1116 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1117 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1118 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1119 char *zName; /* SQL name of the function. */ 1120 FuncDef *pHash; /* Next with a different name but the same hash */ 1121 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1122 }; 1123 1124 /* 1125 ** This structure encapsulates a user-function destructor callback (as 1126 ** configured using create_function_v2()) and a reference counter. When 1127 ** create_function_v2() is called to create a function with a destructor, 1128 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1129 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1130 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1131 ** member of each of the new FuncDef objects is set to point to the allocated 1132 ** FuncDestructor. 1133 ** 1134 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1135 ** count on this object is decremented. When it reaches 0, the destructor 1136 ** is invoked and the FuncDestructor structure freed. 1137 */ 1138 struct FuncDestructor { 1139 int nRef; 1140 void (*xDestroy)(void *); 1141 void *pUserData; 1142 }; 1143 1144 /* 1145 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1146 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1147 ** are assert() statements in the code to verify this. 1148 */ 1149 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1150 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1151 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1152 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1153 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1154 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1155 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1156 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1157 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1158 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1159 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1160 1161 /* 1162 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1163 ** used to create the initializers for the FuncDef structures. 1164 ** 1165 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1166 ** Used to create a scalar function definition of a function zName 1167 ** implemented by C function xFunc that accepts nArg arguments. The 1168 ** value passed as iArg is cast to a (void*) and made available 1169 ** as the user-data (sqlite3_user_data()) for the function. If 1170 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1171 ** 1172 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1173 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1174 ** 1175 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1176 ** Used to create an aggregate function definition implemented by 1177 ** the C functions xStep and xFinal. The first four parameters 1178 ** are interpreted in the same way as the first 4 parameters to 1179 ** FUNCTION(). 1180 ** 1181 ** LIKEFUNC(zName, nArg, pArg, flags) 1182 ** Used to create a scalar function definition of a function zName 1183 ** that accepts nArg arguments and is implemented by a call to C 1184 ** function likeFunc. Argument pArg is cast to a (void *) and made 1185 ** available as the function user-data (sqlite3_user_data()). The 1186 ** FuncDef.flags variable is set to the value passed as the flags 1187 ** parameter. 1188 */ 1189 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1190 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1191 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1192 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1193 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1194 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1195 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1196 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1197 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1198 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1199 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1200 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1201 #define LIKEFUNC(zName, nArg, arg, flags) \ 1202 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1203 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1204 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1205 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1206 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1207 1208 /* 1209 ** All current savepoints are stored in a linked list starting at 1210 ** sqlite3.pSavepoint. The first element in the list is the most recently 1211 ** opened savepoint. Savepoints are added to the list by the vdbe 1212 ** OP_Savepoint instruction. 1213 */ 1214 struct Savepoint { 1215 char *zName; /* Savepoint name (nul-terminated) */ 1216 i64 nDeferredCons; /* Number of deferred fk violations */ 1217 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1218 Savepoint *pNext; /* Parent savepoint (if any) */ 1219 }; 1220 1221 /* 1222 ** The following are used as the second parameter to sqlite3Savepoint(), 1223 ** and as the P1 argument to the OP_Savepoint instruction. 1224 */ 1225 #define SAVEPOINT_BEGIN 0 1226 #define SAVEPOINT_RELEASE 1 1227 #define SAVEPOINT_ROLLBACK 2 1228 1229 1230 /* 1231 ** Each SQLite module (virtual table definition) is defined by an 1232 ** instance of the following structure, stored in the sqlite3.aModule 1233 ** hash table. 1234 */ 1235 struct Module { 1236 const sqlite3_module *pModule; /* Callback pointers */ 1237 const char *zName; /* Name passed to create_module() */ 1238 void *pAux; /* pAux passed to create_module() */ 1239 void (*xDestroy)(void *); /* Module destructor function */ 1240 }; 1241 1242 /* 1243 ** information about each column of an SQL table is held in an instance 1244 ** of this structure. 1245 */ 1246 struct Column { 1247 char *zName; /* Name of this column */ 1248 Expr *pDflt; /* Default value of this column */ 1249 char *zDflt; /* Original text of the default value */ 1250 char *zType; /* Data type for this column */ 1251 char *zColl; /* Collating sequence. If NULL, use the default */ 1252 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1253 char affinity; /* One of the SQLITE_AFF_... values */ 1254 u8 szEst; /* Estimated size of this column. INT==1 */ 1255 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1256 }; 1257 1258 /* Allowed values for Column.colFlags: 1259 */ 1260 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1261 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1262 1263 /* 1264 ** A "Collating Sequence" is defined by an instance of the following 1265 ** structure. Conceptually, a collating sequence consists of a name and 1266 ** a comparison routine that defines the order of that sequence. 1267 ** 1268 ** If CollSeq.xCmp is NULL, it means that the 1269 ** collating sequence is undefined. Indices built on an undefined 1270 ** collating sequence may not be read or written. 1271 */ 1272 struct CollSeq { 1273 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1274 u8 enc; /* Text encoding handled by xCmp() */ 1275 void *pUser; /* First argument to xCmp() */ 1276 int (*xCmp)(void*,int, const void*, int, const void*); 1277 void (*xDel)(void*); /* Destructor for pUser */ 1278 }; 1279 1280 /* 1281 ** A sort order can be either ASC or DESC. 1282 */ 1283 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1284 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1285 1286 /* 1287 ** Column affinity types. 1288 ** 1289 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1290 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1291 ** the speed a little by numbering the values consecutively. 1292 ** 1293 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1294 ** when multiple affinity types are concatenated into a string and 1295 ** used as the P4 operand, they will be more readable. 1296 ** 1297 ** Note also that the numeric types are grouped together so that testing 1298 ** for a numeric type is a single comparison. 1299 */ 1300 #define SQLITE_AFF_TEXT 'a' 1301 #define SQLITE_AFF_NONE 'b' 1302 #define SQLITE_AFF_NUMERIC 'c' 1303 #define SQLITE_AFF_INTEGER 'd' 1304 #define SQLITE_AFF_REAL 'e' 1305 1306 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1307 1308 /* 1309 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1310 ** affinity value. 1311 */ 1312 #define SQLITE_AFF_MASK 0x67 1313 1314 /* 1315 ** Additional bit values that can be ORed with an affinity without 1316 ** changing the affinity. 1317 */ 1318 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1319 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1320 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1321 1322 /* 1323 ** An object of this type is created for each virtual table present in 1324 ** the database schema. 1325 ** 1326 ** If the database schema is shared, then there is one instance of this 1327 ** structure for each database connection (sqlite3*) that uses the shared 1328 ** schema. This is because each database connection requires its own unique 1329 ** instance of the sqlite3_vtab* handle used to access the virtual table 1330 ** implementation. sqlite3_vtab* handles can not be shared between 1331 ** database connections, even when the rest of the in-memory database 1332 ** schema is shared, as the implementation often stores the database 1333 ** connection handle passed to it via the xConnect() or xCreate() method 1334 ** during initialization internally. This database connection handle may 1335 ** then be used by the virtual table implementation to access real tables 1336 ** within the database. So that they appear as part of the callers 1337 ** transaction, these accesses need to be made via the same database 1338 ** connection as that used to execute SQL operations on the virtual table. 1339 ** 1340 ** All VTable objects that correspond to a single table in a shared 1341 ** database schema are initially stored in a linked-list pointed to by 1342 ** the Table.pVTable member variable of the corresponding Table object. 1343 ** When an sqlite3_prepare() operation is required to access the virtual 1344 ** table, it searches the list for the VTable that corresponds to the 1345 ** database connection doing the preparing so as to use the correct 1346 ** sqlite3_vtab* handle in the compiled query. 1347 ** 1348 ** When an in-memory Table object is deleted (for example when the 1349 ** schema is being reloaded for some reason), the VTable objects are not 1350 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1351 ** immediately. Instead, they are moved from the Table.pVTable list to 1352 ** another linked list headed by the sqlite3.pDisconnect member of the 1353 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1354 ** next time a statement is prepared using said sqlite3*. This is done 1355 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1356 ** Refer to comments above function sqlite3VtabUnlockList() for an 1357 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1358 ** list without holding the corresponding sqlite3.mutex mutex. 1359 ** 1360 ** The memory for objects of this type is always allocated by 1361 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1362 ** the first argument. 1363 */ 1364 struct VTable { 1365 sqlite3 *db; /* Database connection associated with this table */ 1366 Module *pMod; /* Pointer to module implementation */ 1367 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1368 int nRef; /* Number of pointers to this structure */ 1369 u8 bConstraint; /* True if constraints are supported */ 1370 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1371 VTable *pNext; /* Next in linked list (see above) */ 1372 }; 1373 1374 /* 1375 ** Each SQL table is represented in memory by an instance of the 1376 ** following structure. 1377 ** 1378 ** Table.zName is the name of the table. The case of the original 1379 ** CREATE TABLE statement is stored, but case is not significant for 1380 ** comparisons. 1381 ** 1382 ** Table.nCol is the number of columns in this table. Table.aCol is a 1383 ** pointer to an array of Column structures, one for each column. 1384 ** 1385 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1386 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1387 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1388 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1389 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1390 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1391 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1392 ** 1393 ** Table.tnum is the page number for the root BTree page of the table in the 1394 ** database file. If Table.iDb is the index of the database table backend 1395 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1396 ** holds temporary tables and indices. If TF_Ephemeral is set 1397 ** then the table is stored in a file that is automatically deleted 1398 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1399 ** refers VDBE cursor number that holds the table open, not to the root 1400 ** page number. Transient tables are used to hold the results of a 1401 ** sub-query that appears instead of a real table name in the FROM clause 1402 ** of a SELECT statement. 1403 */ 1404 struct Table { 1405 char *zName; /* Name of the table or view */ 1406 Column *aCol; /* Information about each column */ 1407 Index *pIndex; /* List of SQL indexes on this table. */ 1408 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1409 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1410 char *zColAff; /* String defining the affinity of each column */ 1411 #ifndef SQLITE_OMIT_CHECK 1412 ExprList *pCheck; /* All CHECK constraints */ 1413 #endif 1414 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1415 int tnum; /* Root BTree node for this table (see note above) */ 1416 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1417 i16 nCol; /* Number of columns in this table */ 1418 u16 nRef; /* Number of pointers to this Table */ 1419 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1420 u8 tabFlags; /* Mask of TF_* values */ 1421 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1422 #ifndef SQLITE_OMIT_ALTERTABLE 1423 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1424 #endif 1425 #ifndef SQLITE_OMIT_VIRTUALTABLE 1426 int nModuleArg; /* Number of arguments to the module */ 1427 char **azModuleArg; /* Text of all module args. [0] is module name */ 1428 VTable *pVTable; /* List of VTable objects. */ 1429 #endif 1430 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1431 Schema *pSchema; /* Schema that contains this table */ 1432 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1433 }; 1434 1435 /* 1436 ** Allowed values for Table.tabFlags. 1437 */ 1438 #define TF_Readonly 0x01 /* Read-only system table */ 1439 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1440 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1441 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1442 #define TF_Virtual 0x10 /* Is a virtual table */ 1443 #define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */ 1444 1445 1446 /* 1447 ** Test to see whether or not a table is a virtual table. This is 1448 ** done as a macro so that it will be optimized out when virtual 1449 ** table support is omitted from the build. 1450 */ 1451 #ifndef SQLITE_OMIT_VIRTUALTABLE 1452 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1453 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1454 #else 1455 # define IsVirtual(X) 0 1456 # define IsHiddenColumn(X) 0 1457 #endif 1458 1459 /* Does the table have a rowid */ 1460 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1461 1462 /* 1463 ** Each foreign key constraint is an instance of the following structure. 1464 ** 1465 ** A foreign key is associated with two tables. The "from" table is 1466 ** the table that contains the REFERENCES clause that creates the foreign 1467 ** key. The "to" table is the table that is named in the REFERENCES clause. 1468 ** Consider this example: 1469 ** 1470 ** CREATE TABLE ex1( 1471 ** a INTEGER PRIMARY KEY, 1472 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1473 ** ); 1474 ** 1475 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1476 ** Equivalent names: 1477 ** 1478 ** from-table == child-table 1479 ** to-table == parent-table 1480 ** 1481 ** Each REFERENCES clause generates an instance of the following structure 1482 ** which is attached to the from-table. The to-table need not exist when 1483 ** the from-table is created. The existence of the to-table is not checked. 1484 ** 1485 ** The list of all parents for child Table X is held at X.pFKey. 1486 ** 1487 ** A list of all children for a table named Z (which might not even exist) 1488 ** is held in Schema.fkeyHash with a hash key of Z. 1489 */ 1490 struct FKey { 1491 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1492 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1493 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1494 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1495 FKey *pPrevTo; /* Previous with the same zTo */ 1496 int nCol; /* Number of columns in this key */ 1497 /* EV: R-30323-21917 */ 1498 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1499 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1500 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1501 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1502 int iFrom; /* Index of column in pFrom */ 1503 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1504 } aCol[1]; /* One entry for each of nCol columns */ 1505 }; 1506 1507 /* 1508 ** SQLite supports many different ways to resolve a constraint 1509 ** error. ROLLBACK processing means that a constraint violation 1510 ** causes the operation in process to fail and for the current transaction 1511 ** to be rolled back. ABORT processing means the operation in process 1512 ** fails and any prior changes from that one operation are backed out, 1513 ** but the transaction is not rolled back. FAIL processing means that 1514 ** the operation in progress stops and returns an error code. But prior 1515 ** changes due to the same operation are not backed out and no rollback 1516 ** occurs. IGNORE means that the particular row that caused the constraint 1517 ** error is not inserted or updated. Processing continues and no error 1518 ** is returned. REPLACE means that preexisting database rows that caused 1519 ** a UNIQUE constraint violation are removed so that the new insert or 1520 ** update can proceed. Processing continues and no error is reported. 1521 ** 1522 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1523 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1524 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1525 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1526 ** referenced table row is propagated into the row that holds the 1527 ** foreign key. 1528 ** 1529 ** The following symbolic values are used to record which type 1530 ** of action to take. 1531 */ 1532 #define OE_None 0 /* There is no constraint to check */ 1533 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1534 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1535 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1536 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1537 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1538 1539 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1540 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1541 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1542 #define OE_Cascade 9 /* Cascade the changes */ 1543 1544 #define OE_Default 10 /* Do whatever the default action is */ 1545 1546 1547 /* 1548 ** An instance of the following structure is passed as the first 1549 ** argument to sqlite3VdbeKeyCompare and is used to control the 1550 ** comparison of the two index keys. 1551 ** 1552 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1553 ** are nField slots for the columns of an index then one extra slot 1554 ** for the rowid at the end. 1555 */ 1556 struct KeyInfo { 1557 u32 nRef; /* Number of references to this KeyInfo object */ 1558 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1559 u16 nField; /* Number of key columns in the index */ 1560 u16 nXField; /* Number of columns beyond the key columns */ 1561 sqlite3 *db; /* The database connection */ 1562 u8 *aSortOrder; /* Sort order for each column. */ 1563 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1564 }; 1565 1566 /* 1567 ** An instance of the following structure holds information about a 1568 ** single index record that has already been parsed out into individual 1569 ** values. 1570 ** 1571 ** A record is an object that contains one or more fields of data. 1572 ** Records are used to store the content of a table row and to store 1573 ** the key of an index. A blob encoding of a record is created by 1574 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1575 ** OP_Column opcode. 1576 ** 1577 ** This structure holds a record that has already been disassembled 1578 ** into its constituent fields. 1579 */ 1580 struct UnpackedRecord { 1581 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1582 u16 nField; /* Number of entries in apMem[] */ 1583 u8 flags; /* Boolean settings. UNPACKED_... below */ 1584 Mem *aMem; /* Values */ 1585 }; 1586 1587 /* 1588 ** Allowed values of UnpackedRecord.flags 1589 */ 1590 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1591 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1592 1593 /* 1594 ** Each SQL index is represented in memory by an 1595 ** instance of the following structure. 1596 ** 1597 ** The columns of the table that are to be indexed are described 1598 ** by the aiColumn[] field of this structure. For example, suppose 1599 ** we have the following table and index: 1600 ** 1601 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1602 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1603 ** 1604 ** In the Table structure describing Ex1, nCol==3 because there are 1605 ** three columns in the table. In the Index structure describing 1606 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1607 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1608 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1609 ** The second column to be indexed (c1) has an index of 0 in 1610 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1611 ** 1612 ** The Index.onError field determines whether or not the indexed columns 1613 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1614 ** it means this is not a unique index. Otherwise it is a unique index 1615 ** and the value of Index.onError indicate the which conflict resolution 1616 ** algorithm to employ whenever an attempt is made to insert a non-unique 1617 ** element. 1618 */ 1619 struct Index { 1620 char *zName; /* Name of this index */ 1621 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1622 tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ 1623 Table *pTable; /* The SQL table being indexed */ 1624 char *zColAff; /* String defining the affinity of each column */ 1625 Index *pNext; /* The next index associated with the same table */ 1626 Schema *pSchema; /* Schema containing this index */ 1627 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1628 char **azColl; /* Array of collation sequence names for index */ 1629 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1630 KeyInfo *pKeyInfo; /* A KeyInfo object suitable for this index */ 1631 int tnum; /* DB Page containing root of this index */ 1632 LogEst szIdxRow; /* Estimated average row size in bytes */ 1633 u16 nKeyCol; /* Number of columns forming the key */ 1634 u16 nColumn; /* Number of columns stored in the index */ 1635 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1636 unsigned autoIndex:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1637 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1638 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1639 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1640 unsigned isCovering:1; /* True if this is a covering index */ 1641 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1642 int nSample; /* Number of elements in aSample[] */ 1643 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1644 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1645 IndexSample *aSample; /* Samples of the left-most key */ 1646 #endif 1647 }; 1648 1649 /* 1650 ** Each sample stored in the sqlite_stat3 table is represented in memory 1651 ** using a structure of this type. See documentation at the top of the 1652 ** analyze.c source file for additional information. 1653 */ 1654 struct IndexSample { 1655 void *p; /* Pointer to sampled record */ 1656 int n; /* Size of record in bytes */ 1657 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1658 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1659 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1660 }; 1661 1662 /* 1663 ** Each token coming out of the lexer is an instance of 1664 ** this structure. Tokens are also used as part of an expression. 1665 ** 1666 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1667 ** may contain random values. Do not make any assumptions about Token.dyn 1668 ** and Token.n when Token.z==0. 1669 */ 1670 struct Token { 1671 const char *z; /* Text of the token. Not NULL-terminated! */ 1672 unsigned int n; /* Number of characters in this token */ 1673 }; 1674 1675 /* 1676 ** An instance of this structure contains information needed to generate 1677 ** code for a SELECT that contains aggregate functions. 1678 ** 1679 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1680 ** pointer to this structure. The Expr.iColumn field is the index in 1681 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1682 ** code for that node. 1683 ** 1684 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1685 ** original Select structure that describes the SELECT statement. These 1686 ** fields do not need to be freed when deallocating the AggInfo structure. 1687 */ 1688 struct AggInfo { 1689 u8 directMode; /* Direct rendering mode means take data directly 1690 ** from source tables rather than from accumulators */ 1691 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1692 ** than the source table */ 1693 int sortingIdx; /* Cursor number of the sorting index */ 1694 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1695 int nSortingColumn; /* Number of columns in the sorting index */ 1696 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1697 ExprList *pGroupBy; /* The group by clause */ 1698 struct AggInfo_col { /* For each column used in source tables */ 1699 Table *pTab; /* Source table */ 1700 int iTable; /* Cursor number of the source table */ 1701 int iColumn; /* Column number within the source table */ 1702 int iSorterColumn; /* Column number in the sorting index */ 1703 int iMem; /* Memory location that acts as accumulator */ 1704 Expr *pExpr; /* The original expression */ 1705 } *aCol; 1706 int nColumn; /* Number of used entries in aCol[] */ 1707 int nAccumulator; /* Number of columns that show through to the output. 1708 ** Additional columns are used only as parameters to 1709 ** aggregate functions */ 1710 struct AggInfo_func { /* For each aggregate function */ 1711 Expr *pExpr; /* Expression encoding the function */ 1712 FuncDef *pFunc; /* The aggregate function implementation */ 1713 int iMem; /* Memory location that acts as accumulator */ 1714 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1715 } *aFunc; 1716 int nFunc; /* Number of entries in aFunc[] */ 1717 }; 1718 1719 /* 1720 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1721 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1722 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1723 ** it uses less memory in the Expr object, which is a big memory user 1724 ** in systems with lots of prepared statements. And few applications 1725 ** need more than about 10 or 20 variables. But some extreme users want 1726 ** to have prepared statements with over 32767 variables, and for them 1727 ** the option is available (at compile-time). 1728 */ 1729 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1730 typedef i16 ynVar; 1731 #else 1732 typedef int ynVar; 1733 #endif 1734 1735 /* 1736 ** Each node of an expression in the parse tree is an instance 1737 ** of this structure. 1738 ** 1739 ** Expr.op is the opcode. The integer parser token codes are reused 1740 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1741 ** code representing the ">=" operator. This same integer code is reused 1742 ** to represent the greater-than-or-equal-to operator in the expression 1743 ** tree. 1744 ** 1745 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1746 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1747 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1748 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1749 ** then Expr.token contains the name of the function. 1750 ** 1751 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1752 ** binary operator. Either or both may be NULL. 1753 ** 1754 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1755 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1756 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1757 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1758 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1759 ** valid. 1760 ** 1761 ** An expression of the form ID or ID.ID refers to a column in a table. 1762 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1763 ** the integer cursor number of a VDBE cursor pointing to that table and 1764 ** Expr.iColumn is the column number for the specific column. If the 1765 ** expression is used as a result in an aggregate SELECT, then the 1766 ** value is also stored in the Expr.iAgg column in the aggregate so that 1767 ** it can be accessed after all aggregates are computed. 1768 ** 1769 ** If the expression is an unbound variable marker (a question mark 1770 ** character '?' in the original SQL) then the Expr.iTable holds the index 1771 ** number for that variable. 1772 ** 1773 ** If the expression is a subquery then Expr.iColumn holds an integer 1774 ** register number containing the result of the subquery. If the 1775 ** subquery gives a constant result, then iTable is -1. If the subquery 1776 ** gives a different answer at different times during statement processing 1777 ** then iTable is the address of a subroutine that computes the subquery. 1778 ** 1779 ** If the Expr is of type OP_Column, and the table it is selecting from 1780 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1781 ** corresponding table definition. 1782 ** 1783 ** ALLOCATION NOTES: 1784 ** 1785 ** Expr objects can use a lot of memory space in database schema. To 1786 ** help reduce memory requirements, sometimes an Expr object will be 1787 ** truncated. And to reduce the number of memory allocations, sometimes 1788 ** two or more Expr objects will be stored in a single memory allocation, 1789 ** together with Expr.zToken strings. 1790 ** 1791 ** If the EP_Reduced and EP_TokenOnly flags are set when 1792 ** an Expr object is truncated. When EP_Reduced is set, then all 1793 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1794 ** are contained within the same memory allocation. Note, however, that 1795 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1796 ** allocated, regardless of whether or not EP_Reduced is set. 1797 */ 1798 struct Expr { 1799 u8 op; /* Operation performed by this node */ 1800 char affinity; /* The affinity of the column or 0 if not a column */ 1801 u32 flags; /* Various flags. EP_* See below */ 1802 union { 1803 char *zToken; /* Token value. Zero terminated and dequoted */ 1804 int iValue; /* Non-negative integer value if EP_IntValue */ 1805 } u; 1806 1807 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1808 ** space is allocated for the fields below this point. An attempt to 1809 ** access them will result in a segfault or malfunction. 1810 *********************************************************************/ 1811 1812 Expr *pLeft; /* Left subnode */ 1813 Expr *pRight; /* Right subnode */ 1814 union { 1815 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 1816 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 1817 } x; 1818 1819 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1820 ** space is allocated for the fields below this point. An attempt to 1821 ** access them will result in a segfault or malfunction. 1822 *********************************************************************/ 1823 1824 #if SQLITE_MAX_EXPR_DEPTH>0 1825 int nHeight; /* Height of the tree headed by this node */ 1826 #endif 1827 int iTable; /* TK_COLUMN: cursor number of table holding column 1828 ** TK_REGISTER: register number 1829 ** TK_TRIGGER: 1 -> new, 0 -> old 1830 ** EP_Unlikely: 1000 times likelihood */ 1831 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1832 ** TK_VARIABLE: variable number (always >= 1). */ 1833 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1834 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1835 u8 op2; /* TK_REGISTER: original value of Expr.op 1836 ** TK_COLUMN: the value of p5 for OP_Column 1837 ** TK_AGG_FUNCTION: nesting depth */ 1838 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1839 Table *pTab; /* Table for TK_COLUMN expressions. */ 1840 }; 1841 1842 /* 1843 ** The following are the meanings of bits in the Expr.flags field. 1844 */ 1845 #define EP_FromJoin 0x000001 /* Originated in ON or USING clause of a join */ 1846 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 1847 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 1848 #define EP_Error 0x000008 /* Expression contains one or more errors */ 1849 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 1850 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 1851 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 1852 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 1853 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE opeartor */ 1854 /* unused 0x000200 */ 1855 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 1856 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 1857 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 1858 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 1859 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 1860 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 1861 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 1862 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 1863 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 1864 #define EP_Constant 0x080000 /* Node is a constant */ 1865 1866 /* 1867 ** These macros can be used to test, set, or clear bits in the 1868 ** Expr.flags field. 1869 */ 1870 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 1871 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 1872 #define ExprSetProperty(E,P) (E)->flags|=(P) 1873 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1874 1875 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 1876 ** and Accreditation only. It works like ExprSetProperty() during VVA 1877 ** processes but is a no-op for delivery. 1878 */ 1879 #ifdef SQLITE_DEBUG 1880 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 1881 #else 1882 # define ExprSetVVAProperty(E,P) 1883 #endif 1884 1885 /* 1886 ** Macros to determine the number of bytes required by a normal Expr 1887 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1888 ** and an Expr struct with the EP_TokenOnly flag set. 1889 */ 1890 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1891 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1892 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1893 1894 /* 1895 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1896 ** above sqlite3ExprDup() for details. 1897 */ 1898 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1899 1900 /* 1901 ** A list of expressions. Each expression may optionally have a 1902 ** name. An expr/name combination can be used in several ways, such 1903 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1904 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1905 ** also be used as the argument to a function, in which case the a.zName 1906 ** field is not used. 1907 ** 1908 ** By default the Expr.zSpan field holds a human-readable description of 1909 ** the expression that is used in the generation of error messages and 1910 ** column labels. In this case, Expr.zSpan is typically the text of a 1911 ** column expression as it exists in a SELECT statement. However, if 1912 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 1913 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 1914 ** form is used for name resolution with nested FROM clauses. 1915 */ 1916 struct ExprList { 1917 int nExpr; /* Number of expressions on the list */ 1918 int iECursor; /* VDBE Cursor associated with this ExprList */ 1919 struct ExprList_item { /* For each expression in the list */ 1920 Expr *pExpr; /* The list of expressions */ 1921 char *zName; /* Token associated with this expression */ 1922 char *zSpan; /* Original text of the expression */ 1923 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1924 unsigned done :1; /* A flag to indicate when processing is finished */ 1925 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 1926 unsigned reusable :1; /* Constant expression is reusable */ 1927 union { 1928 struct { 1929 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1930 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1931 } x; 1932 int iConstExprReg; /* Register in which Expr value is cached */ 1933 } u; 1934 } *a; /* Alloc a power of two greater or equal to nExpr */ 1935 }; 1936 1937 /* 1938 ** An instance of this structure is used by the parser to record both 1939 ** the parse tree for an expression and the span of input text for an 1940 ** expression. 1941 */ 1942 struct ExprSpan { 1943 Expr *pExpr; /* The expression parse tree */ 1944 const char *zStart; /* First character of input text */ 1945 const char *zEnd; /* One character past the end of input text */ 1946 }; 1947 1948 /* 1949 ** An instance of this structure can hold a simple list of identifiers, 1950 ** such as the list "a,b,c" in the following statements: 1951 ** 1952 ** INSERT INTO t(a,b,c) VALUES ...; 1953 ** CREATE INDEX idx ON t(a,b,c); 1954 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1955 ** 1956 ** The IdList.a.idx field is used when the IdList represents the list of 1957 ** column names after a table name in an INSERT statement. In the statement 1958 ** 1959 ** INSERT INTO t(a,b,c) ... 1960 ** 1961 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1962 */ 1963 struct IdList { 1964 struct IdList_item { 1965 char *zName; /* Name of the identifier */ 1966 int idx; /* Index in some Table.aCol[] of a column named zName */ 1967 } *a; 1968 int nId; /* Number of identifiers on the list */ 1969 }; 1970 1971 /* 1972 ** The bitmask datatype defined below is used for various optimizations. 1973 ** 1974 ** Changing this from a 64-bit to a 32-bit type limits the number of 1975 ** tables in a join to 32 instead of 64. But it also reduces the size 1976 ** of the library by 738 bytes on ix86. 1977 */ 1978 typedef u64 Bitmask; 1979 1980 /* 1981 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1982 */ 1983 #define BMS ((int)(sizeof(Bitmask)*8)) 1984 1985 /* 1986 ** A bit in a Bitmask 1987 */ 1988 #define MASKBIT(n) (((Bitmask)1)<<(n)) 1989 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 1990 1991 /* 1992 ** The following structure describes the FROM clause of a SELECT statement. 1993 ** Each table or subquery in the FROM clause is a separate element of 1994 ** the SrcList.a[] array. 1995 ** 1996 ** With the addition of multiple database support, the following structure 1997 ** can also be used to describe a particular table such as the table that 1998 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1999 ** such a table must be a simple name: ID. But in SQLite, the table can 2000 ** now be identified by a database name, a dot, then the table name: ID.ID. 2001 ** 2002 ** The jointype starts out showing the join type between the current table 2003 ** and the next table on the list. The parser builds the list this way. 2004 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2005 ** jointype expresses the join between the table and the previous table. 2006 ** 2007 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2008 ** contains more than 63 columns and the 64-th or later column is used. 2009 */ 2010 struct SrcList { 2011 u8 nSrc; /* Number of tables or subqueries in the FROM clause */ 2012 u8 nAlloc; /* Number of entries allocated in a[] below */ 2013 struct SrcList_item { 2014 Schema *pSchema; /* Schema to which this item is fixed */ 2015 char *zDatabase; /* Name of database holding this table */ 2016 char *zName; /* Name of the table */ 2017 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2018 Table *pTab; /* An SQL table corresponding to zName */ 2019 Select *pSelect; /* A SELECT statement used in place of a table name */ 2020 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2021 int regReturn; /* Register holding return address of addrFillSub */ 2022 int regResult; /* Registers holding results of a co-routine */ 2023 u8 jointype; /* Type of join between this able and the previous */ 2024 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2025 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2026 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2027 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2028 #ifndef SQLITE_OMIT_EXPLAIN 2029 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2030 #endif 2031 int iCursor; /* The VDBE cursor number used to access this table */ 2032 Expr *pOn; /* The ON clause of a join */ 2033 IdList *pUsing; /* The USING clause of a join */ 2034 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2035 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 2036 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2037 } a[1]; /* One entry for each identifier on the list */ 2038 }; 2039 2040 /* 2041 ** Permitted values of the SrcList.a.jointype field 2042 */ 2043 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2044 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2045 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2046 #define JT_LEFT 0x0008 /* Left outer join */ 2047 #define JT_RIGHT 0x0010 /* Right outer join */ 2048 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2049 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2050 2051 2052 /* 2053 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2054 ** and the WhereInfo.wctrlFlags member. 2055 */ 2056 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2057 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2058 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2059 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2060 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2061 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2062 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2063 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2064 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 2065 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2066 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2067 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2068 2069 /* Allowed return values from sqlite3WhereIsDistinct() 2070 */ 2071 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2072 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2073 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2074 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2075 2076 /* 2077 ** A NameContext defines a context in which to resolve table and column 2078 ** names. The context consists of a list of tables (the pSrcList) field and 2079 ** a list of named expression (pEList). The named expression list may 2080 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2081 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2082 ** pEList corresponds to the result set of a SELECT and is NULL for 2083 ** other statements. 2084 ** 2085 ** NameContexts can be nested. When resolving names, the inner-most 2086 ** context is searched first. If no match is found, the next outer 2087 ** context is checked. If there is still no match, the next context 2088 ** is checked. This process continues until either a match is found 2089 ** or all contexts are check. When a match is found, the nRef member of 2090 ** the context containing the match is incremented. 2091 ** 2092 ** Each subquery gets a new NameContext. The pNext field points to the 2093 ** NameContext in the parent query. Thus the process of scanning the 2094 ** NameContext list corresponds to searching through successively outer 2095 ** subqueries looking for a match. 2096 */ 2097 struct NameContext { 2098 Parse *pParse; /* The parser */ 2099 SrcList *pSrcList; /* One or more tables used to resolve names */ 2100 ExprList *pEList; /* Optional list of result-set columns */ 2101 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2102 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2103 int nRef; /* Number of names resolved by this context */ 2104 int nErr; /* Number of errors encountered while resolving names */ 2105 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2106 }; 2107 2108 /* 2109 ** Allowed values for the NameContext, ncFlags field. 2110 */ 2111 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2112 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2113 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2114 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2115 #define NC_PartIdx 0x10 /* True if resolving a partial index WHERE */ 2116 2117 /* 2118 ** An instance of the following structure contains all information 2119 ** needed to generate code for a single SELECT statement. 2120 ** 2121 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2122 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2123 ** limit and nOffset to the value of the offset (or 0 if there is not 2124 ** offset). But later on, nLimit and nOffset become the memory locations 2125 ** in the VDBE that record the limit and offset counters. 2126 ** 2127 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2128 ** These addresses must be stored so that we can go back and fill in 2129 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2130 ** the number of columns in P2 can be computed at the same time 2131 ** as the OP_OpenEphm instruction is coded because not 2132 ** enough information about the compound query is known at that point. 2133 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2134 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2135 ** sequences for the ORDER BY clause. 2136 */ 2137 struct Select { 2138 ExprList *pEList; /* The fields of the result */ 2139 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2140 u16 selFlags; /* Various SF_* values */ 2141 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2142 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2143 u64 nSelectRow; /* Estimated number of result rows */ 2144 SrcList *pSrc; /* The FROM clause */ 2145 Expr *pWhere; /* The WHERE clause */ 2146 ExprList *pGroupBy; /* The GROUP BY clause */ 2147 Expr *pHaving; /* The HAVING clause */ 2148 ExprList *pOrderBy; /* The ORDER BY clause */ 2149 Select *pPrior; /* Prior select in a compound select statement */ 2150 Select *pNext; /* Next select to the left in a compound */ 2151 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2152 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2153 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2154 }; 2155 2156 /* 2157 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2158 ** "Select Flag". 2159 */ 2160 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2161 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2162 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2163 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2164 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2165 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2166 #define SF_UseSorter 0x0040 /* Sort using a sorter */ 2167 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2168 #define SF_Materialize 0x0100 /* NOT USED */ 2169 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2170 #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ 2171 #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ 2172 #define SF_Compound 0x1000 /* Part of a compound query */ 2173 2174 2175 /* 2176 ** The results of a SELECT can be distributed in several ways, as defined 2177 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2178 ** Type". 2179 ** 2180 ** SRT_Union Store results as a key in a temporary index 2181 ** identified by pDest->iSDParm. 2182 ** 2183 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2184 ** 2185 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2186 ** set is not empty. 2187 ** 2188 ** SRT_Discard Throw the results away. This is used by SELECT 2189 ** statements within triggers whose only purpose is 2190 ** the side-effects of functions. 2191 ** 2192 ** All of the above are free to ignore their ORDER BY clause. Those that 2193 ** follow must honor the ORDER BY clause. 2194 ** 2195 ** SRT_Output Generate a row of output (using the OP_ResultRow 2196 ** opcode) for each row in the result set. 2197 ** 2198 ** SRT_Mem Only valid if the result is a single column. 2199 ** Store the first column of the first result row 2200 ** in register pDest->iSDParm then abandon the rest 2201 ** of the query. This destination implies "LIMIT 1". 2202 ** 2203 ** SRT_Set The result must be a single column. Store each 2204 ** row of result as the key in table pDest->iSDParm. 2205 ** Apply the affinity pDest->affSdst before storing 2206 ** results. Used to implement "IN (SELECT ...)". 2207 ** 2208 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2209 ** the result there. The cursor is left open after 2210 ** returning. This is like SRT_Table except that 2211 ** this destination uses OP_OpenEphemeral to create 2212 ** the table first. 2213 ** 2214 ** SRT_Coroutine Generate a co-routine that returns a new row of 2215 ** results each time it is invoked. The entry point 2216 ** of the co-routine is stored in register pDest->iSDParm 2217 ** and the result row is stored in pDest->nDest registers 2218 ** starting with pDest->iSdst. 2219 ** 2220 ** SRT_Table Store results in temporary table pDest->iSDParm. 2221 ** This is like SRT_EphemTab except that the table 2222 ** is assumed to already be open. 2223 ** 2224 ** SRT_DistTable Store results in a temporary table pDest->iSDParm. 2225 ** But also use temporary table pDest->iSDParm+1 as 2226 ** a record of all prior results and ignore any duplicate 2227 ** rows. Name means: "Distinct Table". 2228 ** 2229 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2230 ** an index). Append a sequence number so that all entries 2231 ** are distinct. 2232 ** 2233 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2234 ** the same record has never been stored before. The 2235 ** index at pDest->iSDParm+1 hold all prior stores. 2236 */ 2237 #define SRT_Union 1 /* Store result as keys in an index */ 2238 #define SRT_Except 2 /* Remove result from a UNION index */ 2239 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2240 #define SRT_Discard 4 /* Do not save the results anywhere */ 2241 2242 /* The ORDER BY clause is ignored for all of the above */ 2243 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2244 2245 #define SRT_Output 5 /* Output each row of result */ 2246 #define SRT_Mem 6 /* Store result in a memory cell */ 2247 #define SRT_Set 7 /* Store results as keys in an index */ 2248 #define SRT_EphemTab 8 /* Create transient tab and store like SRT_Table */ 2249 #define SRT_Coroutine 9 /* Generate a single row of result */ 2250 #define SRT_Table 10 /* Store result as data with an automatic rowid */ 2251 #define SRT_DistTable 11 /* Like SRT_Table, but unique results only */ 2252 #define SRT_Queue 12 /* Store result in an queue */ 2253 #define SRT_DistQueue 13 /* Like SRT_Queue, but unique results only */ 2254 2255 /* 2256 ** An instance of this object describes where to put of the results of 2257 ** a SELECT statement. 2258 */ 2259 struct SelectDest { 2260 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2261 char affSdst; /* Affinity used when eDest==SRT_Set */ 2262 int iSDParm; /* A parameter used by the eDest disposal method */ 2263 int iSdst; /* Base register where results are written */ 2264 int nSdst; /* Number of registers allocated */ 2265 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2266 }; 2267 2268 /* 2269 ** During code generation of statements that do inserts into AUTOINCREMENT 2270 ** tables, the following information is attached to the Table.u.autoInc.p 2271 ** pointer of each autoincrement table to record some side information that 2272 ** the code generator needs. We have to keep per-table autoincrement 2273 ** information in case inserts are down within triggers. Triggers do not 2274 ** normally coordinate their activities, but we do need to coordinate the 2275 ** loading and saving of autoincrement information. 2276 */ 2277 struct AutoincInfo { 2278 AutoincInfo *pNext; /* Next info block in a list of them all */ 2279 Table *pTab; /* Table this info block refers to */ 2280 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2281 int regCtr; /* Memory register holding the rowid counter */ 2282 }; 2283 2284 /* 2285 ** Size of the column cache 2286 */ 2287 #ifndef SQLITE_N_COLCACHE 2288 # define SQLITE_N_COLCACHE 10 2289 #endif 2290 2291 /* 2292 ** At least one instance of the following structure is created for each 2293 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2294 ** statement. All such objects are stored in the linked list headed at 2295 ** Parse.pTriggerPrg and deleted once statement compilation has been 2296 ** completed. 2297 ** 2298 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2299 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2300 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2301 ** The Parse.pTriggerPrg list never contains two entries with the same 2302 ** values for both pTrigger and orconf. 2303 ** 2304 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2305 ** accessed (or set to 0 for triggers fired as a result of INSERT 2306 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2307 ** a mask of new.* columns used by the program. 2308 */ 2309 struct TriggerPrg { 2310 Trigger *pTrigger; /* Trigger this program was coded from */ 2311 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2312 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2313 int orconf; /* Default ON CONFLICT policy */ 2314 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2315 }; 2316 2317 /* 2318 ** The yDbMask datatype for the bitmask of all attached databases. 2319 */ 2320 #if SQLITE_MAX_ATTACHED>30 2321 typedef sqlite3_uint64 yDbMask; 2322 #else 2323 typedef unsigned int yDbMask; 2324 #endif 2325 2326 /* 2327 ** An SQL parser context. A copy of this structure is passed through 2328 ** the parser and down into all the parser action routine in order to 2329 ** carry around information that is global to the entire parse. 2330 ** 2331 ** The structure is divided into two parts. When the parser and code 2332 ** generate call themselves recursively, the first part of the structure 2333 ** is constant but the second part is reset at the beginning and end of 2334 ** each recursion. 2335 ** 2336 ** The nTableLock and aTableLock variables are only used if the shared-cache 2337 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2338 ** used to store the set of table-locks required by the statement being 2339 ** compiled. Function sqlite3TableLock() is used to add entries to the 2340 ** list. 2341 */ 2342 struct Parse { 2343 sqlite3 *db; /* The main database structure */ 2344 char *zErrMsg; /* An error message */ 2345 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2346 int rc; /* Return code from execution */ 2347 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2348 u8 checkSchema; /* Causes schema cookie check after an error */ 2349 u8 nested; /* Number of nested calls to the parser/code generator */ 2350 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2351 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2352 u8 nColCache; /* Number of entries in aColCache[] */ 2353 u8 iColCache; /* Next entry in aColCache[] to replace */ 2354 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2355 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2356 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2357 u8 okConstFactor; /* OK to factor out constants */ 2358 int aTempReg[8]; /* Holding area for temporary registers */ 2359 int nRangeReg; /* Size of the temporary register block */ 2360 int iRangeReg; /* First register in temporary register block */ 2361 int nErr; /* Number of errors seen */ 2362 int nTab; /* Number of previously allocated VDBE cursors */ 2363 int nMem; /* Number of memory cells used so far */ 2364 int nSet; /* Number of sets used so far */ 2365 int nOnce; /* Number of OP_Once instructions so far */ 2366 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2367 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2368 int ckBase; /* Base register of data during check constraints */ 2369 int iPartIdxTab; /* Table corresponding to a partial index */ 2370 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2371 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2372 int nLabel; /* Number of labels used */ 2373 int *aLabel; /* Space to hold the labels */ 2374 struct yColCache { 2375 int iTable; /* Table cursor number */ 2376 i16 iColumn; /* Table column number */ 2377 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2378 int iLevel; /* Nesting level */ 2379 int iReg; /* Reg with value of this column. 0 means none. */ 2380 int lru; /* Least recently used entry has the smallest value */ 2381 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2382 ExprList *pConstExpr;/* Constant expressions */ 2383 Token constraintName;/* Name of the constraint currently being parsed */ 2384 yDbMask writeMask; /* Start a write transaction on these databases */ 2385 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2386 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2387 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2388 int regRoot; /* Register holding root page number for new objects */ 2389 int nMaxArg; /* Max args passed to user function by sub-program */ 2390 #ifndef SQLITE_OMIT_SHARED_CACHE 2391 int nTableLock; /* Number of locks in aTableLock */ 2392 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2393 #endif 2394 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2395 2396 /* Information used while coding trigger programs. */ 2397 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2398 Table *pTriggerTab; /* Table triggers are being coded for */ 2399 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2400 int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */ 2401 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2402 u32 oldmask; /* Mask of old.* columns referenced */ 2403 u32 newmask; /* Mask of new.* columns referenced */ 2404 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2405 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2406 u8 disableTriggers; /* True to disable triggers */ 2407 2408 /************************************************************************ 2409 ** Above is constant between recursions. Below is reset before and after 2410 ** each recursion. The boundary between these two regions is determined 2411 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2412 ** in the recursive region. 2413 ************************************************************************/ 2414 2415 int nVar; /* Number of '?' variables seen in the SQL so far */ 2416 int nzVar; /* Number of available slots in azVar[] */ 2417 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2418 u8 bFreeWith; /* True if pWith should be freed with parser */ 2419 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2420 #ifndef SQLITE_OMIT_VIRTUALTABLE 2421 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2422 int nVtabLock; /* Number of virtual tables to lock */ 2423 #endif 2424 int nAlias; /* Number of aliased result set columns */ 2425 int nHeight; /* Expression tree height of current sub-select */ 2426 #ifndef SQLITE_OMIT_EXPLAIN 2427 int iSelectId; /* ID of current select for EXPLAIN output */ 2428 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2429 #endif 2430 char **azVar; /* Pointers to names of parameters */ 2431 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2432 const char *zTail; /* All SQL text past the last semicolon parsed */ 2433 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2434 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2435 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2436 Token sNameToken; /* Token with unqualified schema object name */ 2437 Token sLastToken; /* The last token parsed */ 2438 #ifndef SQLITE_OMIT_VIRTUALTABLE 2439 Token sArg; /* Complete text of a module argument */ 2440 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2441 #endif 2442 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2443 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2444 With *pWith; /* Current WITH clause, or NULL */ 2445 }; 2446 2447 /* 2448 ** Return true if currently inside an sqlite3_declare_vtab() call. 2449 */ 2450 #ifdef SQLITE_OMIT_VIRTUALTABLE 2451 #define IN_DECLARE_VTAB 0 2452 #else 2453 #define IN_DECLARE_VTAB (pParse->declareVtab) 2454 #endif 2455 2456 /* 2457 ** An instance of the following structure can be declared on a stack and used 2458 ** to save the Parse.zAuthContext value so that it can be restored later. 2459 */ 2460 struct AuthContext { 2461 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2462 Parse *pParse; /* The Parse structure */ 2463 }; 2464 2465 /* 2466 ** Bitfield flags for P5 value in various opcodes. 2467 */ 2468 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2469 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2470 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2471 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2472 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2473 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2474 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2475 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2476 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2477 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2478 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2479 2480 /* 2481 * Each trigger present in the database schema is stored as an instance of 2482 * struct Trigger. 2483 * 2484 * Pointers to instances of struct Trigger are stored in two ways. 2485 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2486 * database). This allows Trigger structures to be retrieved by name. 2487 * 2. All triggers associated with a single table form a linked list, using the 2488 * pNext member of struct Trigger. A pointer to the first element of the 2489 * linked list is stored as the "pTrigger" member of the associated 2490 * struct Table. 2491 * 2492 * The "step_list" member points to the first element of a linked list 2493 * containing the SQL statements specified as the trigger program. 2494 */ 2495 struct Trigger { 2496 char *zName; /* The name of the trigger */ 2497 char *table; /* The table or view to which the trigger applies */ 2498 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2499 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2500 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2501 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2502 the <column-list> is stored here */ 2503 Schema *pSchema; /* Schema containing the trigger */ 2504 Schema *pTabSchema; /* Schema containing the table */ 2505 TriggerStep *step_list; /* Link list of trigger program steps */ 2506 Trigger *pNext; /* Next trigger associated with the table */ 2507 }; 2508 2509 /* 2510 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2511 ** determine which. 2512 ** 2513 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2514 ** In that cases, the constants below can be ORed together. 2515 */ 2516 #define TRIGGER_BEFORE 1 2517 #define TRIGGER_AFTER 2 2518 2519 /* 2520 * An instance of struct TriggerStep is used to store a single SQL statement 2521 * that is a part of a trigger-program. 2522 * 2523 * Instances of struct TriggerStep are stored in a singly linked list (linked 2524 * using the "pNext" member) referenced by the "step_list" member of the 2525 * associated struct Trigger instance. The first element of the linked list is 2526 * the first step of the trigger-program. 2527 * 2528 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2529 * "SELECT" statement. The meanings of the other members is determined by the 2530 * value of "op" as follows: 2531 * 2532 * (op == TK_INSERT) 2533 * orconf -> stores the ON CONFLICT algorithm 2534 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2535 * this stores a pointer to the SELECT statement. Otherwise NULL. 2536 * target -> A token holding the quoted name of the table to insert into. 2537 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2538 * this stores values to be inserted. Otherwise NULL. 2539 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2540 * statement, then this stores the column-names to be 2541 * inserted into. 2542 * 2543 * (op == TK_DELETE) 2544 * target -> A token holding the quoted name of the table to delete from. 2545 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2546 * Otherwise NULL. 2547 * 2548 * (op == TK_UPDATE) 2549 * target -> A token holding the quoted name of the table to update rows of. 2550 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2551 * Otherwise NULL. 2552 * pExprList -> A list of the columns to update and the expressions to update 2553 * them to. See sqlite3Update() documentation of "pChanges" 2554 * argument. 2555 * 2556 */ 2557 struct TriggerStep { 2558 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2559 u8 orconf; /* OE_Rollback etc. */ 2560 Trigger *pTrig; /* The trigger that this step is a part of */ 2561 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2562 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2563 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2564 ExprList *pExprList; /* SET clause for UPDATE. */ 2565 IdList *pIdList; /* Column names for INSERT */ 2566 TriggerStep *pNext; /* Next in the link-list */ 2567 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2568 }; 2569 2570 /* 2571 ** The following structure contains information used by the sqliteFix... 2572 ** routines as they walk the parse tree to make database references 2573 ** explicit. 2574 */ 2575 typedef struct DbFixer DbFixer; 2576 struct DbFixer { 2577 Parse *pParse; /* The parsing context. Error messages written here */ 2578 Schema *pSchema; /* Fix items to this schema */ 2579 int bVarOnly; /* Check for variable references only */ 2580 const char *zDb; /* Make sure all objects are contained in this database */ 2581 const char *zType; /* Type of the container - used for error messages */ 2582 const Token *pName; /* Name of the container - used for error messages */ 2583 }; 2584 2585 /* 2586 ** An objected used to accumulate the text of a string where we 2587 ** do not necessarily know how big the string will be in the end. 2588 */ 2589 struct StrAccum { 2590 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2591 char *zBase; /* A base allocation. Not from malloc. */ 2592 char *zText; /* The string collected so far */ 2593 int nChar; /* Length of the string so far */ 2594 int nAlloc; /* Amount of space allocated in zText */ 2595 int mxAlloc; /* Maximum allowed string length */ 2596 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2597 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2598 }; 2599 #define STRACCUM_NOMEM 1 2600 #define STRACCUM_TOOBIG 2 2601 2602 /* 2603 ** A pointer to this structure is used to communicate information 2604 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2605 */ 2606 typedef struct { 2607 sqlite3 *db; /* The database being initialized */ 2608 char **pzErrMsg; /* Error message stored here */ 2609 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2610 int rc; /* Result code stored here */ 2611 } InitData; 2612 2613 /* 2614 ** Structure containing global configuration data for the SQLite library. 2615 ** 2616 ** This structure also contains some state information. 2617 */ 2618 struct Sqlite3Config { 2619 int bMemstat; /* True to enable memory status */ 2620 int bCoreMutex; /* True to enable core mutexing */ 2621 int bFullMutex; /* True to enable full mutexing */ 2622 int bOpenUri; /* True to interpret filenames as URIs */ 2623 int bUseCis; /* Use covering indices for full-scans */ 2624 int mxStrlen; /* Maximum string length */ 2625 int neverCorrupt; /* Database is always well-formed */ 2626 int szLookaside; /* Default lookaside buffer size */ 2627 int nLookaside; /* Default lookaside buffer count */ 2628 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2629 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2630 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2631 void *pHeap; /* Heap storage space */ 2632 int nHeap; /* Size of pHeap[] */ 2633 int mnReq, mxReq; /* Min and max heap requests sizes */ 2634 sqlite3_int64 szMmap; /* mmap() space per open file */ 2635 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2636 void *pScratch; /* Scratch memory */ 2637 int szScratch; /* Size of each scratch buffer */ 2638 int nScratch; /* Number of scratch buffers */ 2639 void *pPage; /* Page cache memory */ 2640 int szPage; /* Size of each page in pPage[] */ 2641 int nPage; /* Number of pages in pPage[] */ 2642 int mxParserStack; /* maximum depth of the parser stack */ 2643 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2644 /* The above might be initialized to non-zero. The following need to always 2645 ** initially be zero, however. */ 2646 int isInit; /* True after initialization has finished */ 2647 int inProgress; /* True while initialization in progress */ 2648 int isMutexInit; /* True after mutexes are initialized */ 2649 int isMallocInit; /* True after malloc is initialized */ 2650 int isPCacheInit; /* True after malloc is initialized */ 2651 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2652 int nRefInitMutex; /* Number of users of pInitMutex */ 2653 void (*xLog)(void*,int,const char*); /* Function for logging */ 2654 void *pLogArg; /* First argument to xLog() */ 2655 int bLocaltimeFault; /* True to fail localtime() calls */ 2656 #ifdef SQLITE_ENABLE_SQLLOG 2657 void(*xSqllog)(void*,sqlite3*,const char*, int); 2658 void *pSqllogArg; 2659 #endif 2660 }; 2661 2662 /* 2663 ** This macro is used inside of assert() statements to indicate that 2664 ** the assert is only valid on a well-formed database. Instead of: 2665 ** 2666 ** assert( X ); 2667 ** 2668 ** One writes: 2669 ** 2670 ** assert( X || CORRUPT_DB ); 2671 ** 2672 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2673 ** that the database is definitely corrupt, only that it might be corrupt. 2674 ** For most test cases, CORRUPT_DB is set to false using a special 2675 ** sqlite3_test_control(). This enables assert() statements to prove 2676 ** things that are always true for well-formed databases. 2677 */ 2678 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2679 2680 /* 2681 ** Context pointer passed down through the tree-walk. 2682 */ 2683 struct Walker { 2684 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2685 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2686 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2687 Parse *pParse; /* Parser context. */ 2688 int walkerDepth; /* Number of subqueries */ 2689 union { /* Extra data for callback */ 2690 NameContext *pNC; /* Naming context */ 2691 int i; /* Integer value */ 2692 SrcList *pSrcList; /* FROM clause */ 2693 struct SrcCount *pSrcCount; /* Counting column references */ 2694 } u; 2695 }; 2696 2697 /* Forward declarations */ 2698 int sqlite3WalkExpr(Walker*, Expr*); 2699 int sqlite3WalkExprList(Walker*, ExprList*); 2700 int sqlite3WalkSelect(Walker*, Select*); 2701 int sqlite3WalkSelectExpr(Walker*, Select*); 2702 int sqlite3WalkSelectFrom(Walker*, Select*); 2703 2704 /* 2705 ** Return code from the parse-tree walking primitives and their 2706 ** callbacks. 2707 */ 2708 #define WRC_Continue 0 /* Continue down into children */ 2709 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2710 #define WRC_Abort 2 /* Abandon the tree walk */ 2711 2712 /* 2713 ** An instance of this structure represents a set of one or more CTEs 2714 ** (common table expressions) created by a single WITH clause. 2715 */ 2716 struct With { 2717 int nCte; /* Number of CTEs in the WITH clause */ 2718 With *pOuter; /* Containing WITH clause, or NULL */ 2719 struct Cte { /* For each CTE in the WITH clause.... */ 2720 char *zName; /* Name of this CTE */ 2721 ExprList *pCols; /* List of explicit column names, or NULL */ 2722 Select *pSelect; /* The definition of this CTE */ 2723 const char *zErr; /* Error message for circular references */ 2724 } a[1]; 2725 }; 2726 2727 /* 2728 ** Assuming zIn points to the first byte of a UTF-8 character, 2729 ** advance zIn to point to the first byte of the next UTF-8 character. 2730 */ 2731 #define SQLITE_SKIP_UTF8(zIn) { \ 2732 if( (*(zIn++))>=0xc0 ){ \ 2733 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2734 } \ 2735 } 2736 2737 /* 2738 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2739 ** the same name but without the _BKPT suffix. These macros invoke 2740 ** routines that report the line-number on which the error originated 2741 ** using sqlite3_log(). The routines also provide a convenient place 2742 ** to set a debugger breakpoint. 2743 */ 2744 int sqlite3CorruptError(int); 2745 int sqlite3MisuseError(int); 2746 int sqlite3CantopenError(int); 2747 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2748 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2749 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2750 2751 2752 /* 2753 ** FTS4 is really an extension for FTS3. It is enabled using the 2754 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2755 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2756 */ 2757 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2758 # define SQLITE_ENABLE_FTS3 2759 #endif 2760 2761 /* 2762 ** The ctype.h header is needed for non-ASCII systems. It is also 2763 ** needed by FTS3 when FTS3 is included in the amalgamation. 2764 */ 2765 #if !defined(SQLITE_ASCII) || \ 2766 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2767 # include <ctype.h> 2768 #endif 2769 2770 /* 2771 ** The following macros mimic the standard library functions toupper(), 2772 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2773 ** sqlite versions only work for ASCII characters, regardless of locale. 2774 */ 2775 #ifdef SQLITE_ASCII 2776 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2777 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2778 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2779 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2780 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2781 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2782 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2783 #else 2784 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2785 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2786 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2787 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2788 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2789 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2790 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2791 #endif 2792 2793 /* 2794 ** Internal function prototypes 2795 */ 2796 #define sqlite3StrICmp sqlite3_stricmp 2797 int sqlite3Strlen30(const char*); 2798 #define sqlite3StrNICmp sqlite3_strnicmp 2799 2800 int sqlite3MallocInit(void); 2801 void sqlite3MallocEnd(void); 2802 void *sqlite3Malloc(int); 2803 void *sqlite3MallocZero(int); 2804 void *sqlite3DbMallocZero(sqlite3*, int); 2805 void *sqlite3DbMallocRaw(sqlite3*, int); 2806 char *sqlite3DbStrDup(sqlite3*,const char*); 2807 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2808 void *sqlite3Realloc(void*, int); 2809 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2810 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2811 void sqlite3DbFree(sqlite3*, void*); 2812 int sqlite3MallocSize(void*); 2813 int sqlite3DbMallocSize(sqlite3*, void*); 2814 void *sqlite3ScratchMalloc(int); 2815 void sqlite3ScratchFree(void*); 2816 void *sqlite3PageMalloc(int); 2817 void sqlite3PageFree(void*); 2818 void sqlite3MemSetDefault(void); 2819 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2820 int sqlite3HeapNearlyFull(void); 2821 2822 /* 2823 ** On systems with ample stack space and that support alloca(), make 2824 ** use of alloca() to obtain space for large automatic objects. By default, 2825 ** obtain space from malloc(). 2826 ** 2827 ** The alloca() routine never returns NULL. This will cause code paths 2828 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2829 */ 2830 #ifdef SQLITE_USE_ALLOCA 2831 # define sqlite3StackAllocRaw(D,N) alloca(N) 2832 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2833 # define sqlite3StackFree(D,P) 2834 #else 2835 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2836 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2837 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2838 #endif 2839 2840 #ifdef SQLITE_ENABLE_MEMSYS3 2841 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2842 #endif 2843 #ifdef SQLITE_ENABLE_MEMSYS5 2844 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2845 #endif 2846 2847 2848 #ifndef SQLITE_MUTEX_OMIT 2849 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2850 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2851 sqlite3_mutex *sqlite3MutexAlloc(int); 2852 int sqlite3MutexInit(void); 2853 int sqlite3MutexEnd(void); 2854 #endif 2855 2856 int sqlite3StatusValue(int); 2857 void sqlite3StatusAdd(int, int); 2858 void sqlite3StatusSet(int, int); 2859 2860 #ifndef SQLITE_OMIT_FLOATING_POINT 2861 int sqlite3IsNaN(double); 2862 #else 2863 # define sqlite3IsNaN(X) 0 2864 #endif 2865 2866 /* 2867 ** An instance of the following structure holds information about SQL 2868 ** functions arguments that are the parameters to the printf() function. 2869 */ 2870 struct PrintfArguments { 2871 int nArg; /* Total number of arguments */ 2872 int nUsed; /* Number of arguments used so far */ 2873 sqlite3_value **apArg; /* The argument values */ 2874 }; 2875 2876 #define SQLITE_PRINTF_INTERNAL 0x01 2877 #define SQLITE_PRINTF_SQLFUNC 0x02 2878 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 2879 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 2880 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2881 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2882 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2883 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2884 void sqlite3DebugPrintf(const char*, ...); 2885 #endif 2886 #if defined(SQLITE_TEST) 2887 void *sqlite3TestTextToPtr(const char*); 2888 #endif 2889 2890 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2891 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2892 void sqlite3ExplainBegin(Vdbe*); 2893 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2894 void sqlite3ExplainNL(Vdbe*); 2895 void sqlite3ExplainPush(Vdbe*); 2896 void sqlite3ExplainPop(Vdbe*); 2897 void sqlite3ExplainFinish(Vdbe*); 2898 void sqlite3ExplainSelect(Vdbe*, Select*); 2899 void sqlite3ExplainExpr(Vdbe*, Expr*); 2900 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2901 const char *sqlite3VdbeExplanation(Vdbe*); 2902 #else 2903 # define sqlite3ExplainBegin(X) 2904 # define sqlite3ExplainSelect(A,B) 2905 # define sqlite3ExplainExpr(A,B) 2906 # define sqlite3ExplainExprList(A,B) 2907 # define sqlite3ExplainFinish(X) 2908 # define sqlite3VdbeExplanation(X) 0 2909 #endif 2910 2911 2912 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2913 void sqlite3ErrorMsg(Parse*, const char*, ...); 2914 int sqlite3Dequote(char*); 2915 int sqlite3KeywordCode(const unsigned char*, int); 2916 int sqlite3RunParser(Parse*, const char*, char **); 2917 void sqlite3FinishCoding(Parse*); 2918 int sqlite3GetTempReg(Parse*); 2919 void sqlite3ReleaseTempReg(Parse*,int); 2920 int sqlite3GetTempRange(Parse*,int); 2921 void sqlite3ReleaseTempRange(Parse*,int,int); 2922 void sqlite3ClearTempRegCache(Parse*); 2923 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2924 Expr *sqlite3Expr(sqlite3*,int,const char*); 2925 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2926 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2927 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2928 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2929 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2930 void sqlite3ExprDelete(sqlite3*, Expr*); 2931 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2932 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2933 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2934 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2935 int sqlite3Init(sqlite3*, char**); 2936 int sqlite3InitCallback(void*, int, char**, char**); 2937 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2938 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 2939 void sqlite3ResetOneSchema(sqlite3*,int); 2940 void sqlite3CollapseDatabaseArray(sqlite3*); 2941 void sqlite3BeginParse(Parse*,int); 2942 void sqlite3CommitInternalChanges(sqlite3*); 2943 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2944 void sqlite3OpenMasterTable(Parse *, int); 2945 Index *sqlite3PrimaryKeyIndex(Table*); 2946 i16 sqlite3ColumnOfIndex(Index*, i16); 2947 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2948 void sqlite3AddColumn(Parse*,Token*); 2949 void sqlite3AddNotNull(Parse*, int); 2950 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2951 void sqlite3AddCheckConstraint(Parse*, Expr*); 2952 void sqlite3AddColumnType(Parse*,Token*); 2953 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2954 void sqlite3AddCollateType(Parse*, Token*); 2955 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 2956 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2957 sqlite3_vfs**,char**,char **); 2958 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 2959 int sqlite3CodeOnce(Parse *); 2960 2961 Bitvec *sqlite3BitvecCreate(u32); 2962 int sqlite3BitvecTest(Bitvec*, u32); 2963 int sqlite3BitvecSet(Bitvec*, u32); 2964 void sqlite3BitvecClear(Bitvec*, u32, void*); 2965 void sqlite3BitvecDestroy(Bitvec*); 2966 u32 sqlite3BitvecSize(Bitvec*); 2967 int sqlite3BitvecBuiltinTest(int,int*); 2968 2969 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2970 void sqlite3RowSetClear(RowSet*); 2971 void sqlite3RowSetInsert(RowSet*, i64); 2972 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2973 int sqlite3RowSetNext(RowSet*, i64*); 2974 2975 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2976 2977 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2978 int sqlite3ViewGetColumnNames(Parse*,Table*); 2979 #else 2980 # define sqlite3ViewGetColumnNames(A,B) 0 2981 #endif 2982 2983 void sqlite3DropTable(Parse*, SrcList*, int, int); 2984 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2985 void sqlite3DeleteTable(sqlite3*, Table*); 2986 #ifndef SQLITE_OMIT_AUTOINCREMENT 2987 void sqlite3AutoincrementBegin(Parse *pParse); 2988 void sqlite3AutoincrementEnd(Parse *pParse); 2989 #else 2990 # define sqlite3AutoincrementBegin(X) 2991 # define sqlite3AutoincrementEnd(X) 2992 #endif 2993 int sqlite3CodeCoroutine(Parse*, Select*, SelectDest*); 2994 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 2995 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 2996 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2997 int sqlite3IdListIndex(IdList*,const char*); 2998 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2999 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3000 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3001 Token*, Select*, Expr*, IdList*); 3002 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3003 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3004 void sqlite3SrcListShiftJoinType(SrcList*); 3005 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3006 void sqlite3IdListDelete(sqlite3*, IdList*); 3007 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3008 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3009 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3010 Expr*, int, int); 3011 void sqlite3DropIndex(Parse*, SrcList*, int); 3012 int sqlite3Select(Parse*, Select*, SelectDest*); 3013 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3014 Expr*,ExprList*,u16,Expr*,Expr*); 3015 void sqlite3SelectDelete(sqlite3*, Select*); 3016 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3017 int sqlite3IsReadOnly(Parse*, Table*, int); 3018 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3019 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3020 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3021 #endif 3022 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3023 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3024 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3025 void sqlite3WhereEnd(WhereInfo*); 3026 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3027 int sqlite3WhereIsDistinct(WhereInfo*); 3028 int sqlite3WhereIsOrdered(WhereInfo*); 3029 int sqlite3WhereContinueLabel(WhereInfo*); 3030 int sqlite3WhereBreakLabel(WhereInfo*); 3031 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3032 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3033 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3034 void sqlite3ExprCodeMove(Parse*, int, int, int); 3035 void sqlite3ExprCacheStore(Parse*, int, int, int); 3036 void sqlite3ExprCachePush(Parse*); 3037 void sqlite3ExprCachePop(Parse*, int); 3038 void sqlite3ExprCacheRemove(Parse*, int, int); 3039 void sqlite3ExprCacheClear(Parse*); 3040 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3041 int sqlite3ExprCode(Parse*, Expr*, int); 3042 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3043 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3044 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3045 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3046 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3047 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3048 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3049 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3050 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3051 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3052 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3053 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3054 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3055 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3056 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3057 void sqlite3Vacuum(Parse*); 3058 int sqlite3RunVacuum(char**, sqlite3*); 3059 char *sqlite3NameFromToken(sqlite3*, Token*); 3060 int sqlite3ExprCompare(Expr*, Expr*, int); 3061 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3062 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3063 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3064 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3065 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3066 Vdbe *sqlite3GetVdbe(Parse*); 3067 void sqlite3PrngSaveState(void); 3068 void sqlite3PrngRestoreState(void); 3069 void sqlite3RollbackAll(sqlite3*,int); 3070 void sqlite3CodeVerifySchema(Parse*, int); 3071 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3072 void sqlite3BeginTransaction(Parse*, int); 3073 void sqlite3CommitTransaction(Parse*); 3074 void sqlite3RollbackTransaction(Parse*); 3075 void sqlite3Savepoint(Parse*, int, Token*); 3076 void sqlite3CloseSavepoints(sqlite3 *); 3077 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3078 int sqlite3ExprIsConstant(Expr*); 3079 int sqlite3ExprIsConstantNotJoin(Expr*); 3080 int sqlite3ExprIsConstantOrFunction(Expr*); 3081 int sqlite3ExprIsInteger(Expr*, int*); 3082 int sqlite3ExprCanBeNull(const Expr*); 3083 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 3084 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3085 int sqlite3IsRowid(const char*); 3086 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3087 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3088 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3089 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3090 u8,u8,int,int*); 3091 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3092 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3093 void sqlite3BeginWriteOperation(Parse*, int, int); 3094 void sqlite3MultiWrite(Parse*); 3095 void sqlite3MayAbort(Parse*); 3096 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3097 void sqlite3UniqueConstraint(Parse*, int, Index*); 3098 void sqlite3RowidConstraint(Parse*, int, Table*); 3099 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3100 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3101 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3102 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3103 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3104 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3105 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3106 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3107 void sqlite3RegisterDateTimeFunctions(void); 3108 void sqlite3RegisterGlobalFunctions(void); 3109 int sqlite3SafetyCheckOk(sqlite3*); 3110 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3111 void sqlite3ChangeCookie(Parse*, int); 3112 3113 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3114 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3115 #endif 3116 3117 #ifndef SQLITE_OMIT_TRIGGER 3118 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3119 Expr*,int, int); 3120 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3121 void sqlite3DropTrigger(Parse*, SrcList*, int); 3122 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3123 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3124 Trigger *sqlite3TriggerList(Parse *, Table *); 3125 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3126 int, int, int); 3127 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3128 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3129 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3130 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3131 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3132 Select*,u8); 3133 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3134 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3135 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3136 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3137 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3138 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3139 #else 3140 # define sqlite3TriggersExist(B,C,D,E,F) 0 3141 # define sqlite3DeleteTrigger(A,B) 3142 # define sqlite3DropTriggerPtr(A,B) 3143 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3144 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3145 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3146 # define sqlite3TriggerList(X, Y) 0 3147 # define sqlite3ParseToplevel(p) p 3148 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3149 #endif 3150 3151 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3152 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3153 void sqlite3DeferForeignKey(Parse*, int); 3154 #ifndef SQLITE_OMIT_AUTHORIZATION 3155 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3156 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3157 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3158 void sqlite3AuthContextPop(AuthContext*); 3159 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3160 #else 3161 # define sqlite3AuthRead(a,b,c,d) 3162 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3163 # define sqlite3AuthContextPush(a,b,c) 3164 # define sqlite3AuthContextPop(a) ((void)(a)) 3165 #endif 3166 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3167 void sqlite3Detach(Parse*, Expr*); 3168 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3169 int sqlite3FixSrcList(DbFixer*, SrcList*); 3170 int sqlite3FixSelect(DbFixer*, Select*); 3171 int sqlite3FixExpr(DbFixer*, Expr*); 3172 int sqlite3FixExprList(DbFixer*, ExprList*); 3173 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3174 int sqlite3AtoF(const char *z, double*, int, u8); 3175 int sqlite3GetInt32(const char *, int*); 3176 int sqlite3Atoi(const char*); 3177 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3178 int sqlite3Utf8CharLen(const char *pData, int nByte); 3179 u32 sqlite3Utf8Read(const u8**); 3180 LogEst sqlite3LogEst(u64); 3181 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3182 #ifndef SQLITE_OMIT_VIRTUALTABLE 3183 LogEst sqlite3LogEstFromDouble(double); 3184 #endif 3185 u64 sqlite3LogEstToInt(LogEst); 3186 3187 /* 3188 ** Routines to read and write variable-length integers. These used to 3189 ** be defined locally, but now we use the varint routines in the util.c 3190 ** file. Code should use the MACRO forms below, as the Varint32 versions 3191 ** are coded to assume the single byte case is already handled (which 3192 ** the MACRO form does). 3193 */ 3194 int sqlite3PutVarint(unsigned char*, u64); 3195 int sqlite3PutVarint32(unsigned char*, u32); 3196 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3197 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3198 int sqlite3VarintLen(u64 v); 3199 3200 /* 3201 ** The header of a record consists of a sequence variable-length integers. 3202 ** These integers are almost always small and are encoded as a single byte. 3203 ** The following macros take advantage this fact to provide a fast encode 3204 ** and decode of the integers in a record header. It is faster for the common 3205 ** case where the integer is a single byte. It is a little slower when the 3206 ** integer is two or more bytes. But overall it is faster. 3207 ** 3208 ** The following expressions are equivalent: 3209 ** 3210 ** x = sqlite3GetVarint32( A, &B ); 3211 ** x = sqlite3PutVarint32( A, B ); 3212 ** 3213 ** x = getVarint32( A, B ); 3214 ** x = putVarint32( A, B ); 3215 ** 3216 */ 3217 #define getVarint32(A,B) \ 3218 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3219 #define putVarint32(A,B) \ 3220 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3221 sqlite3PutVarint32((A),(B))) 3222 #define getVarint sqlite3GetVarint 3223 #define putVarint sqlite3PutVarint 3224 3225 3226 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3227 void sqlite3TableAffinityStr(Vdbe *, Table *); 3228 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3229 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3230 char sqlite3ExprAffinity(Expr *pExpr); 3231 int sqlite3Atoi64(const char*, i64*, int, u8); 3232 void sqlite3Error(sqlite3*, int, const char*,...); 3233 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3234 u8 sqlite3HexToInt(int h); 3235 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3236 3237 #if defined(SQLITE_TEST) 3238 const char *sqlite3ErrName(int); 3239 #endif 3240 3241 const char *sqlite3ErrStr(int); 3242 int sqlite3ReadSchema(Parse *pParse); 3243 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3244 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3245 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3246 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*); 3247 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3248 Expr *sqlite3ExprSkipCollate(Expr*); 3249 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3250 int sqlite3CheckObjectName(Parse *, const char *); 3251 void sqlite3VdbeSetChanges(sqlite3 *, int); 3252 int sqlite3AddInt64(i64*,i64); 3253 int sqlite3SubInt64(i64*,i64); 3254 int sqlite3MulInt64(i64*,i64); 3255 int sqlite3AbsInt32(int); 3256 #ifdef SQLITE_ENABLE_8_3_NAMES 3257 void sqlite3FileSuffix3(const char*, char*); 3258 #else 3259 # define sqlite3FileSuffix3(X,Y) 3260 #endif 3261 u8 sqlite3GetBoolean(const char *z,int); 3262 3263 const void *sqlite3ValueText(sqlite3_value*, u8); 3264 int sqlite3ValueBytes(sqlite3_value*, u8); 3265 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3266 void(*)(void*)); 3267 void sqlite3ValueSetNull(sqlite3_value*); 3268 void sqlite3ValueFree(sqlite3_value*); 3269 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3270 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3271 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3272 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3273 #ifndef SQLITE_AMALGAMATION 3274 extern const unsigned char sqlite3OpcodeProperty[]; 3275 extern const unsigned char sqlite3UpperToLower[]; 3276 extern const unsigned char sqlite3CtypeMap[]; 3277 extern const Token sqlite3IntTokens[]; 3278 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3279 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3280 #ifndef SQLITE_OMIT_WSD 3281 extern int sqlite3PendingByte; 3282 #endif 3283 #endif 3284 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3285 void sqlite3Reindex(Parse*, Token*, Token*); 3286 void sqlite3AlterFunctions(void); 3287 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3288 int sqlite3GetToken(const unsigned char *, int *); 3289 void sqlite3NestedParse(Parse*, const char*, ...); 3290 void sqlite3ExpirePreparedStatements(sqlite3*); 3291 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3292 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3293 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3294 int sqlite3ResolveExprNames(NameContext*, Expr*); 3295 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3296 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3297 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3298 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3299 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3300 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3301 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3302 char sqlite3AffinityType(const char*, u8*); 3303 void sqlite3Analyze(Parse*, Token*, Token*); 3304 int sqlite3InvokeBusyHandler(BusyHandler*); 3305 int sqlite3FindDb(sqlite3*, Token*); 3306 int sqlite3FindDbName(sqlite3 *, const char *); 3307 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3308 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3309 void sqlite3DefaultRowEst(Index*); 3310 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3311 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3312 void sqlite3MinimumFileFormat(Parse*, int, int); 3313 void sqlite3SchemaClear(void *); 3314 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3315 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3316 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3317 void sqlite3KeyInfoUnref(KeyInfo*); 3318 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3319 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3320 #ifdef SQLITE_DEBUG 3321 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3322 #endif 3323 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3324 void (*)(sqlite3_context*,int,sqlite3_value **), 3325 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3326 FuncDestructor *pDestructor 3327 ); 3328 int sqlite3ApiExit(sqlite3 *db, int); 3329 int sqlite3OpenTempDatabase(Parse *); 3330 3331 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3332 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3333 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3334 void sqlite3AppendSpace(StrAccum*,int); 3335 char *sqlite3StrAccumFinish(StrAccum*); 3336 void sqlite3StrAccumReset(StrAccum*); 3337 void sqlite3SelectDestInit(SelectDest*,int,int); 3338 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3339 3340 void sqlite3BackupRestart(sqlite3_backup *); 3341 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3342 3343 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3344 void sqlite3AnalyzeFunctions(void); 3345 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3346 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3347 #endif 3348 3349 /* 3350 ** The interface to the LEMON-generated parser 3351 */ 3352 void *sqlite3ParserAlloc(void*(*)(size_t)); 3353 void sqlite3ParserFree(void*, void(*)(void*)); 3354 void sqlite3Parser(void*, int, Token, Parse*); 3355 #ifdef YYTRACKMAXSTACKDEPTH 3356 int sqlite3ParserStackPeak(void*); 3357 #endif 3358 3359 void sqlite3AutoLoadExtensions(sqlite3*); 3360 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3361 void sqlite3CloseExtensions(sqlite3*); 3362 #else 3363 # define sqlite3CloseExtensions(X) 3364 #endif 3365 3366 #ifndef SQLITE_OMIT_SHARED_CACHE 3367 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3368 #else 3369 #define sqlite3TableLock(v,w,x,y,z) 3370 #endif 3371 3372 #ifdef SQLITE_TEST 3373 int sqlite3Utf8To8(unsigned char*); 3374 #endif 3375 3376 #ifdef SQLITE_OMIT_VIRTUALTABLE 3377 # define sqlite3VtabClear(Y) 3378 # define sqlite3VtabSync(X,Y) SQLITE_OK 3379 # define sqlite3VtabRollback(X) 3380 # define sqlite3VtabCommit(X) 3381 # define sqlite3VtabInSync(db) 0 3382 # define sqlite3VtabLock(X) 3383 # define sqlite3VtabUnlock(X) 3384 # define sqlite3VtabUnlockList(X) 3385 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3386 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3387 #else 3388 void sqlite3VtabClear(sqlite3 *db, Table*); 3389 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3390 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3391 int sqlite3VtabRollback(sqlite3 *db); 3392 int sqlite3VtabCommit(sqlite3 *db); 3393 void sqlite3VtabLock(VTable *); 3394 void sqlite3VtabUnlock(VTable *); 3395 void sqlite3VtabUnlockList(sqlite3*); 3396 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3397 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3398 VTable *sqlite3GetVTable(sqlite3*, Table*); 3399 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3400 #endif 3401 void sqlite3VtabMakeWritable(Parse*,Table*); 3402 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3403 void sqlite3VtabFinishParse(Parse*, Token*); 3404 void sqlite3VtabArgInit(Parse*); 3405 void sqlite3VtabArgExtend(Parse*, Token*); 3406 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3407 int sqlite3VtabCallConnect(Parse*, Table*); 3408 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3409 int sqlite3VtabBegin(sqlite3 *, VTable *); 3410 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3411 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3412 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3413 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3414 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3415 void sqlite3ParserReset(Parse*); 3416 int sqlite3Reprepare(Vdbe*); 3417 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3418 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3419 int sqlite3TempInMemory(const sqlite3*); 3420 const char *sqlite3JournalModename(int); 3421 #ifndef SQLITE_OMIT_WAL 3422 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3423 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3424 #endif 3425 #ifndef SQLITE_OMIT_CTE 3426 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3427 void sqlite3WithDelete(sqlite3*,With*); 3428 void sqlite3WithPush(Parse*, With*, u8); 3429 #else 3430 #define sqlite3WithPush(x,y,z) 3431 #define sqlite3WithDelete(x,y) 3432 #endif 3433 3434 /* Declarations for functions in fkey.c. All of these are replaced by 3435 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3436 ** key functionality is available. If OMIT_TRIGGER is defined but 3437 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3438 ** this case foreign keys are parsed, but no other functionality is 3439 ** provided (enforcement of FK constraints requires the triggers sub-system). 3440 */ 3441 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3442 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3443 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3444 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3445 int sqlite3FkRequired(Parse*, Table*, int*, int); 3446 u32 sqlite3FkOldmask(Parse*, Table*); 3447 FKey *sqlite3FkReferences(Table *); 3448 #else 3449 #define sqlite3FkActions(a,b,c,d,e,f) 3450 #define sqlite3FkCheck(a,b,c,d,e,f) 3451 #define sqlite3FkDropTable(a,b,c) 3452 #define sqlite3FkOldmask(a,b) 0 3453 #define sqlite3FkRequired(a,b,c,d) 0 3454 #endif 3455 #ifndef SQLITE_OMIT_FOREIGN_KEY 3456 void sqlite3FkDelete(sqlite3 *, Table*); 3457 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3458 #else 3459 #define sqlite3FkDelete(a,b) 3460 #define sqlite3FkLocateIndex(a,b,c,d,e) 3461 #endif 3462 3463 3464 /* 3465 ** Available fault injectors. Should be numbered beginning with 0. 3466 */ 3467 #define SQLITE_FAULTINJECTOR_MALLOC 0 3468 #define SQLITE_FAULTINJECTOR_COUNT 1 3469 3470 /* 3471 ** The interface to the code in fault.c used for identifying "benign" 3472 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3473 ** is not defined. 3474 */ 3475 #ifndef SQLITE_OMIT_BUILTIN_TEST 3476 void sqlite3BeginBenignMalloc(void); 3477 void sqlite3EndBenignMalloc(void); 3478 #else 3479 #define sqlite3BeginBenignMalloc() 3480 #define sqlite3EndBenignMalloc() 3481 #endif 3482 3483 #define IN_INDEX_ROWID 1 3484 #define IN_INDEX_EPH 2 3485 #define IN_INDEX_INDEX_ASC 3 3486 #define IN_INDEX_INDEX_DESC 4 3487 int sqlite3FindInIndex(Parse *, Expr *, int*); 3488 3489 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3490 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3491 int sqlite3JournalSize(sqlite3_vfs *); 3492 int sqlite3JournalCreate(sqlite3_file *); 3493 int sqlite3JournalExists(sqlite3_file *p); 3494 #else 3495 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3496 #define sqlite3JournalExists(p) 1 3497 #endif 3498 3499 void sqlite3MemJournalOpen(sqlite3_file *); 3500 int sqlite3MemJournalSize(void); 3501 int sqlite3IsMemJournal(sqlite3_file *); 3502 3503 #if SQLITE_MAX_EXPR_DEPTH>0 3504 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3505 int sqlite3SelectExprHeight(Select *); 3506 int sqlite3ExprCheckHeight(Parse*, int); 3507 #else 3508 #define sqlite3ExprSetHeight(x,y) 3509 #define sqlite3SelectExprHeight(x) 0 3510 #define sqlite3ExprCheckHeight(x,y) 3511 #endif 3512 3513 u32 sqlite3Get4byte(const u8*); 3514 void sqlite3Put4byte(u8*, u32); 3515 3516 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3517 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3518 void sqlite3ConnectionUnlocked(sqlite3 *db); 3519 void sqlite3ConnectionClosed(sqlite3 *db); 3520 #else 3521 #define sqlite3ConnectionBlocked(x,y) 3522 #define sqlite3ConnectionUnlocked(x) 3523 #define sqlite3ConnectionClosed(x) 3524 #endif 3525 3526 #ifdef SQLITE_DEBUG 3527 void sqlite3ParserTrace(FILE*, char *); 3528 #endif 3529 3530 /* 3531 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3532 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3533 ** print I/O tracing messages. 3534 */ 3535 #ifdef SQLITE_ENABLE_IOTRACE 3536 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3537 void sqlite3VdbeIOTraceSql(Vdbe*); 3538 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3539 #else 3540 # define IOTRACE(A) 3541 # define sqlite3VdbeIOTraceSql(X) 3542 #endif 3543 3544 /* 3545 ** These routines are available for the mem2.c debugging memory allocator 3546 ** only. They are used to verify that different "types" of memory 3547 ** allocations are properly tracked by the system. 3548 ** 3549 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3550 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3551 ** a single bit set. 3552 ** 3553 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3554 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3555 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3556 ** 3557 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3558 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3559 ** 3560 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3561 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3562 ** it might have been allocated by lookaside, except the allocation was 3563 ** too large or lookaside was already full. It is important to verify 3564 ** that allocations that might have been satisfied by lookaside are not 3565 ** passed back to non-lookaside free() routines. Asserts such as the 3566 ** example above are placed on the non-lookaside free() routines to verify 3567 ** this constraint. 3568 ** 3569 ** All of this is no-op for a production build. It only comes into 3570 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3571 */ 3572 #ifdef SQLITE_MEMDEBUG 3573 void sqlite3MemdebugSetType(void*,u8); 3574 int sqlite3MemdebugHasType(void*,u8); 3575 int sqlite3MemdebugNoType(void*,u8); 3576 #else 3577 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3578 # define sqlite3MemdebugHasType(X,Y) 1 3579 # define sqlite3MemdebugNoType(X,Y) 1 3580 #endif 3581 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3582 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3583 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3584 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3585 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3586 3587 #endif /* _SQLITEINT_H_ */ 3588