1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.608 2007/09/03 15:19:35 drh Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 #include "sqliteLimit.h" 19 20 /* 21 ** For testing purposes, the various size limit constants are really 22 ** variables that we can modify in the testfixture. 23 */ 24 #ifdef SQLITE_TEST 25 #undef SQLITE_MAX_LENGTH 26 #undef SQLITE_MAX_COLUMN 27 #undef SQLITE_MAX_SQL_LENGTH 28 #undef SQLITE_MAX_EXPR_DEPTH 29 #undef SQLITE_MAX_COMPOUND_SELECT 30 #undef SQLITE_MAX_VDBE_OP 31 #undef SQLITE_MAX_FUNCTION_ARG 32 #undef SQLITE_MAX_VARIABLE_NUMBER 33 #undef SQLITE_MAX_PAGE_SIZE 34 #undef SQLITE_MAX_PAGE_COUNT 35 #undef SQLITE_MAX_LIKE_PATTERN_LENGTH 36 37 #define SQLITE_MAX_LENGTH sqlite3MAX_LENGTH 38 #define SQLITE_MAX_COLUMN sqlite3MAX_COLUMN 39 #define SQLITE_MAX_SQL_LENGTH sqlite3MAX_SQL_LENGTH 40 #define SQLITE_MAX_EXPR_DEPTH sqlite3MAX_EXPR_DEPTH 41 #define SQLITE_MAX_COMPOUND_SELECT sqlite3MAX_COMPOUND_SELECT 42 #define SQLITE_MAX_VDBE_OP sqlite3MAX_VDBE_OP 43 #define SQLITE_MAX_FUNCTION_ARG sqlite3MAX_FUNCTION_ARG 44 #define SQLITE_MAX_VARIABLE_NUMBER sqlite3MAX_VARIABLE_NUMBER 45 #define SQLITE_MAX_PAGE_SIZE sqlite3MAX_PAGE_SIZE 46 #define SQLITE_MAX_PAGE_COUNT sqlite3MAX_PAGE_COUNT 47 #define SQLITE_MAX_LIKE_PATTERN_LENGTH sqlite3MAX_LIKE_PATTERN_LENGTH 48 49 extern int sqlite3MAX_LENGTH; 50 extern int sqlite3MAX_COLUMN; 51 extern int sqlite3MAX_SQL_LENGTH; 52 extern int sqlite3MAX_EXPR_DEPTH; 53 extern int sqlite3MAX_COMPOUND_SELECT; 54 extern int sqlite3MAX_VDBE_OP; 55 extern int sqlite3MAX_FUNCTION_ARG; 56 extern int sqlite3MAX_VARIABLE_NUMBER; 57 extern int sqlite3MAX_PAGE_SIZE; 58 extern int sqlite3MAX_PAGE_COUNT; 59 extern int sqlite3MAX_LIKE_PATTERN_LENGTH; 60 #endif 61 62 #define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 63 64 #if defined(SQLITE_TCL) || defined(TCLSH) 65 # include <tcl.h> 66 #endif 67 68 /* 69 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 70 ** Setting NDEBUG makes the code smaller and run faster. So the following 71 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 72 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 73 ** feature. 74 */ 75 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 76 # define NDEBUG 1 77 #endif 78 79 /* 80 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 81 ** Older versions of SQLite used an optional THREADSAFE macro. 82 ** We support that for legacy 83 */ 84 #if !defined(SQLITE_THREADSAFE) 85 #if defined(THREADSAFE) 86 # define SQLITE_THREADSAFE THREADSAFE 87 #else 88 # define SQLITE_THREADSAFE 1 89 #endif 90 #endif 91 92 /* 93 ** These #defines should enable >2GB file support on Posix if the 94 ** underlying operating system supports it. If the OS lacks 95 ** large file support, or if the OS is windows, these should be no-ops. 96 ** 97 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 98 ** on the compiler command line. This is necessary if you are compiling 99 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 100 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 101 ** without this option, LFS is enable. But LFS does not exist in the kernel 102 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 103 ** portability you should omit LFS. 104 ** 105 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 106 */ 107 #ifndef SQLITE_DISABLE_LFS 108 # define _LARGE_FILE 1 109 # ifndef _FILE_OFFSET_BITS 110 # define _FILE_OFFSET_BITS 64 111 # endif 112 # define _LARGEFILE_SOURCE 1 113 #endif 114 115 #include "sqlite3.h" 116 #include "hash.h" 117 #include "parse.h" 118 #include <stdio.h> 119 #include <stdlib.h> 120 #include <string.h> 121 #include <assert.h> 122 #include <stddef.h> 123 124 #define sqlite3_isnan(X) ((X)!=(X)) 125 126 /* 127 ** If compiling for a processor that lacks floating point support, 128 ** substitute integer for floating-point 129 */ 130 #ifdef SQLITE_OMIT_FLOATING_POINT 131 # define double sqlite_int64 132 # define LONGDOUBLE_TYPE sqlite_int64 133 # ifndef SQLITE_BIG_DBL 134 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 135 # endif 136 # define SQLITE_OMIT_DATETIME_FUNCS 1 137 # define SQLITE_OMIT_TRACE 1 138 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 139 #endif 140 #ifndef SQLITE_BIG_DBL 141 # define SQLITE_BIG_DBL (1e99) 142 #endif 143 144 /* 145 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 146 ** afterward. Having this macro allows us to cause the C compiler 147 ** to omit code used by TEMP tables without messy #ifndef statements. 148 */ 149 #ifdef SQLITE_OMIT_TEMPDB 150 #define OMIT_TEMPDB 1 151 #else 152 #define OMIT_TEMPDB 0 153 #endif 154 155 /* 156 ** If the following macro is set to 1, then NULL values are considered 157 ** distinct when determining whether or not two entries are the same 158 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 159 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 160 ** is the way things are suppose to work. 161 ** 162 ** If the following macro is set to 0, the NULLs are indistinct for 163 ** a UNIQUE index. In this mode, you can only have a single NULL entry 164 ** for a column declared UNIQUE. This is the way Informix and SQL Server 165 ** work. 166 */ 167 #define NULL_DISTINCT_FOR_UNIQUE 1 168 169 /* 170 ** The "file format" number is an integer that is incremented whenever 171 ** the VDBE-level file format changes. The following macros define the 172 ** the default file format for new databases and the maximum file format 173 ** that the library can read. 174 */ 175 #define SQLITE_MAX_FILE_FORMAT 4 176 #ifndef SQLITE_DEFAULT_FILE_FORMAT 177 # define SQLITE_DEFAULT_FILE_FORMAT 1 178 #endif 179 180 /* 181 ** Provide a default value for TEMP_STORE in case it is not specified 182 ** on the command-line 183 */ 184 #ifndef TEMP_STORE 185 # define TEMP_STORE 1 186 #endif 187 188 /* 189 ** GCC does not define the offsetof() macro so we'll have to do it 190 ** ourselves. 191 */ 192 #ifndef offsetof 193 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 194 #endif 195 196 /* 197 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 198 ** not, there are still machines out there that use EBCDIC.) 199 */ 200 #if 'A' == '\301' 201 # define SQLITE_EBCDIC 1 202 #else 203 # define SQLITE_ASCII 1 204 #endif 205 206 /* 207 ** Integers of known sizes. These typedefs might change for architectures 208 ** where the sizes very. Preprocessor macros are available so that the 209 ** types can be conveniently redefined at compile-type. Like this: 210 ** 211 ** cc '-DUINTPTR_TYPE=long long int' ... 212 */ 213 #ifndef UINT32_TYPE 214 # define UINT32_TYPE unsigned int 215 #endif 216 #ifndef UINT16_TYPE 217 # define UINT16_TYPE unsigned short int 218 #endif 219 #ifndef INT16_TYPE 220 # define INT16_TYPE short int 221 #endif 222 #ifndef UINT8_TYPE 223 # define UINT8_TYPE unsigned char 224 #endif 225 #ifndef INT8_TYPE 226 # define INT8_TYPE signed char 227 #endif 228 #ifndef LONGDOUBLE_TYPE 229 # define LONGDOUBLE_TYPE long double 230 #endif 231 typedef sqlite_int64 i64; /* 8-byte signed integer */ 232 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 233 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 234 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 235 typedef INT16_TYPE i16; /* 2-byte signed integer */ 236 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 237 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 238 239 /* 240 ** Macros to determine whether the machine is big or little endian, 241 ** evaluated at runtime. 242 */ 243 #ifdef SQLITE_AMALGAMATION 244 const int sqlite3One; 245 #else 246 extern const int sqlite3one; 247 #endif 248 #if defined(i386) || defined(__i386__) || defined(_M_IX86) 249 # define SQLITE_BIGENDIAN 0 250 # define SQLITE_LITTLEENDIAN 1 251 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 252 #else 253 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 254 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 255 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 256 #endif 257 258 /* 259 ** An instance of the following structure is used to store the busy-handler 260 ** callback for a given sqlite handle. 261 ** 262 ** The sqlite.busyHandler member of the sqlite struct contains the busy 263 ** callback for the database handle. Each pager opened via the sqlite 264 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 265 ** callback is currently invoked only from within pager.c. 266 */ 267 typedef struct BusyHandler BusyHandler; 268 struct BusyHandler { 269 int (*xFunc)(void *,int); /* The busy callback */ 270 void *pArg; /* First arg to busy callback */ 271 int nBusy; /* Incremented with each busy call */ 272 }; 273 274 /* 275 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 276 ** "BusyHandler typedefs. 277 */ 278 #include "btree.h" 279 #include "vdbe.h" 280 #include "pager.h" 281 282 283 /* 284 ** Name of the master database table. The master database table 285 ** is a special table that holds the names and attributes of all 286 ** user tables and indices. 287 */ 288 #define MASTER_NAME "sqlite_master" 289 #define TEMP_MASTER_NAME "sqlite_temp_master" 290 291 /* 292 ** The root-page of the master database table. 293 */ 294 #define MASTER_ROOT 1 295 296 /* 297 ** The name of the schema table. 298 */ 299 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 300 301 /* 302 ** A convenience macro that returns the number of elements in 303 ** an array. 304 */ 305 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 306 307 /* 308 ** Forward references to structures 309 */ 310 typedef struct AggInfo AggInfo; 311 typedef struct AuthContext AuthContext; 312 typedef struct CollSeq CollSeq; 313 typedef struct Column Column; 314 typedef struct Db Db; 315 typedef struct Schema Schema; 316 typedef struct Expr Expr; 317 typedef struct ExprList ExprList; 318 typedef struct FKey FKey; 319 typedef struct FuncDef FuncDef; 320 typedef struct IdList IdList; 321 typedef struct Index Index; 322 typedef struct KeyClass KeyClass; 323 typedef struct KeyInfo KeyInfo; 324 typedef struct Module Module; 325 typedef struct NameContext NameContext; 326 typedef struct Parse Parse; 327 typedef struct Select Select; 328 typedef struct SrcList SrcList; 329 typedef struct Table Table; 330 typedef struct TableLock TableLock; 331 typedef struct Token Token; 332 typedef struct TriggerStack TriggerStack; 333 typedef struct TriggerStep TriggerStep; 334 typedef struct Trigger Trigger; 335 typedef struct WhereInfo WhereInfo; 336 typedef struct WhereLevel WhereLevel; 337 338 #include "os.h" 339 #include "mutex.h" 340 341 /* 342 ** Each database file to be accessed by the system is an instance 343 ** of the following structure. There are normally two of these structures 344 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 345 ** aDb[1] is the database file used to hold temporary tables. Additional 346 ** databases may be attached. 347 */ 348 struct Db { 349 char *zName; /* Name of this database */ 350 Btree *pBt; /* The B*Tree structure for this database file */ 351 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 352 u8 safety_level; /* How aggressive at synching data to disk */ 353 void *pAux; /* Auxiliary data. Usually NULL */ 354 void (*xFreeAux)(void*); /* Routine to free pAux */ 355 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 356 }; 357 358 /* 359 ** An instance of the following structure stores a database schema. 360 ** 361 ** If there are no virtual tables configured in this schema, the 362 ** Schema.db variable is set to NULL. After the first virtual table 363 ** has been added, it is set to point to the database connection 364 ** used to create the connection. Once a virtual table has been 365 ** added to the Schema structure and the Schema.db variable populated, 366 ** only that database connection may use the Schema to prepare 367 ** statements. 368 */ 369 struct Schema { 370 int schema_cookie; /* Database schema version number for this file */ 371 Hash tblHash; /* All tables indexed by name */ 372 Hash idxHash; /* All (named) indices indexed by name */ 373 Hash trigHash; /* All triggers indexed by name */ 374 Hash aFKey; /* Foreign keys indexed by to-table */ 375 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 376 u8 file_format; /* Schema format version for this file */ 377 u8 enc; /* Text encoding used by this database */ 378 u16 flags; /* Flags associated with this schema */ 379 int cache_size; /* Number of pages to use in the cache */ 380 #ifndef SQLITE_OMIT_VIRTUALTABLE 381 sqlite3 *db; /* "Owner" connection. See comment above */ 382 #endif 383 }; 384 385 /* 386 ** These macros can be used to test, set, or clear bits in the 387 ** Db.flags field. 388 */ 389 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 390 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 391 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 392 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 393 394 /* 395 ** Allowed values for the DB.flags field. 396 ** 397 ** The DB_SchemaLoaded flag is set after the database schema has been 398 ** read into internal hash tables. 399 ** 400 ** DB_UnresetViews means that one or more views have column names that 401 ** have been filled out. If the schema changes, these column names might 402 ** changes and so the view will need to be reset. 403 */ 404 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 405 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 406 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 407 408 409 /* 410 ** Each database is an instance of the following structure. 411 ** 412 ** The sqlite.lastRowid records the last insert rowid generated by an 413 ** insert statement. Inserts on views do not affect its value. Each 414 ** trigger has its own context, so that lastRowid can be updated inside 415 ** triggers as usual. The previous value will be restored once the trigger 416 ** exits. Upon entering a before or instead of trigger, lastRowid is no 417 ** longer (since after version 2.8.12) reset to -1. 418 ** 419 ** The sqlite.nChange does not count changes within triggers and keeps no 420 ** context. It is reset at start of sqlite3_exec. 421 ** The sqlite.lsChange represents the number of changes made by the last 422 ** insert, update, or delete statement. It remains constant throughout the 423 ** length of a statement and is then updated by OP_SetCounts. It keeps a 424 ** context stack just like lastRowid so that the count of changes 425 ** within a trigger is not seen outside the trigger. Changes to views do not 426 ** affect the value of lsChange. 427 ** The sqlite.csChange keeps track of the number of current changes (since 428 ** the last statement) and is used to update sqlite_lsChange. 429 ** 430 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 431 ** store the most recent error code and, if applicable, string. The 432 ** internal function sqlite3Error() is used to set these variables 433 ** consistently. 434 */ 435 struct sqlite3 { 436 sqlite3_vfs *pVfs; /* OS Interface */ 437 int nDb; /* Number of backends currently in use */ 438 Db *aDb; /* All backends */ 439 int flags; /* Miscellanous flags. See below */ 440 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 441 int errCode; /* Most recent error code (SQLITE_*) */ 442 int errMask; /* & result codes with this before returning */ 443 u8 autoCommit; /* The auto-commit flag. */ 444 u8 temp_store; /* 1: file 2: memory 0: default */ 445 u8 mallocFailed; /* True if we have seen a malloc failure */ 446 int nTable; /* Number of tables in the database */ 447 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 448 i64 lastRowid; /* ROWID of most recent insert (see above) */ 449 i64 priorNewRowid; /* Last randomly generated ROWID */ 450 int magic; /* Magic number for detect library misuse */ 451 int nChange; /* Value returned by sqlite3_changes() */ 452 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 453 sqlite3_mutex *mutex; /* Connection mutex */ 454 struct sqlite3InitInfo { /* Information used during initialization */ 455 int iDb; /* When back is being initialized */ 456 int newTnum; /* Rootpage of table being initialized */ 457 u8 busy; /* TRUE if currently initializing */ 458 } init; 459 int nExtension; /* Number of loaded extensions */ 460 void **aExtension; /* Array of shared libraray handles */ 461 struct Vdbe *pVdbe; /* List of active virtual machines */ 462 int activeVdbeCnt; /* Number of vdbes currently executing */ 463 void (*xTrace)(void*,const char*); /* Trace function */ 464 void *pTraceArg; /* Argument to the trace function */ 465 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 466 void *pProfileArg; /* Argument to profile function */ 467 void *pCommitArg; /* Argument to xCommitCallback() */ 468 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 469 void *pRollbackArg; /* Argument to xRollbackCallback() */ 470 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 471 void *pUpdateArg; 472 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 473 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 474 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 475 void *pCollNeededArg; 476 sqlite3_value *pErr; /* Most recent error message */ 477 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 478 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 479 union { 480 int isInterrupted; /* True if sqlite3_interrupt has been called */ 481 double notUsed1; /* Spacer */ 482 } u1; 483 #ifndef SQLITE_OMIT_AUTHORIZATION 484 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 485 /* Access authorization function */ 486 void *pAuthArg; /* 1st argument to the access auth function */ 487 #endif 488 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 489 int (*xProgress)(void *); /* The progress callback */ 490 void *pProgressArg; /* Argument to the progress callback */ 491 int nProgressOps; /* Number of opcodes for progress callback */ 492 #endif 493 #ifndef SQLITE_OMIT_VIRTUALTABLE 494 Hash aModule; /* populated by sqlite3_create_module() */ 495 Table *pVTab; /* vtab with active Connect/Create method */ 496 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 497 int nVTrans; /* Allocated size of aVTrans */ 498 #endif 499 Hash aFunc; /* All functions that can be in SQL exprs */ 500 Hash aCollSeq; /* All collating sequences */ 501 BusyHandler busyHandler; /* Busy callback */ 502 int busyTimeout; /* Busy handler timeout, in msec */ 503 Db aDbStatic[2]; /* Static space for the 2 default backends */ 504 #ifdef SQLITE_SSE 505 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 506 #endif 507 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 508 }; 509 510 /* 511 ** A macro to discover the encoding of a database. 512 */ 513 #define ENC(db) ((db)->aDb[0].pSchema->enc) 514 515 /* 516 ** Possible values for the sqlite.flags and or Db.flags fields. 517 ** 518 ** On sqlite.flags, the SQLITE_InTrans value means that we have 519 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 520 ** transaction is active on that particular database file. 521 */ 522 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 523 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 524 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 525 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 526 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 527 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 528 /* DELETE, or UPDATE and return */ 529 /* the count using a callback. */ 530 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 531 /* result set is empty */ 532 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 533 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 534 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 535 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 536 ** accessing read-only databases */ 537 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 538 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 539 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 540 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 541 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 542 543 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 544 #define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */ 545 #define SQLITE_Vtab 0x00100000 /* There exists a virtual table */ 546 547 /* 548 ** Possible values for the sqlite.magic field. 549 ** The numbers are obtained at random and have no special meaning, other 550 ** than being distinct from one another. 551 */ 552 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 553 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 554 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 555 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 556 557 /* 558 ** Each SQL function is defined by an instance of the following 559 ** structure. A pointer to this structure is stored in the sqlite.aFunc 560 ** hash table. When multiple functions have the same name, the hash table 561 ** points to a linked list of these structures. 562 */ 563 struct FuncDef { 564 i16 nArg; /* Number of arguments. -1 means unlimited */ 565 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 566 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 567 u8 flags; /* Some combination of SQLITE_FUNC_* */ 568 void *pUserData; /* User data parameter */ 569 FuncDef *pNext; /* Next function with same name */ 570 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 571 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 572 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 573 char zName[1]; /* SQL name of the function. MUST BE LAST */ 574 }; 575 576 /* 577 ** Each SQLite module (virtual table definition) is defined by an 578 ** instance of the following structure, stored in the sqlite3.aModule 579 ** hash table. 580 */ 581 struct Module { 582 const sqlite3_module *pModule; /* Callback pointers */ 583 const char *zName; /* Name passed to create_module() */ 584 void *pAux; /* pAux passed to create_module() */ 585 void (*xDestroy)(void *); /* Module destructor function */ 586 }; 587 588 /* 589 ** Possible values for FuncDef.flags 590 */ 591 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 592 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 593 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ 594 595 /* 596 ** information about each column of an SQL table is held in an instance 597 ** of this structure. 598 */ 599 struct Column { 600 char *zName; /* Name of this column */ 601 Expr *pDflt; /* Default value of this column */ 602 char *zType; /* Data type for this column */ 603 char *zColl; /* Collating sequence. If NULL, use the default */ 604 u8 notNull; /* True if there is a NOT NULL constraint */ 605 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 606 char affinity; /* One of the SQLITE_AFF_... values */ 607 #ifndef SQLITE_OMIT_VIRTUALTABLE 608 u8 isHidden; /* True if this column is 'hidden' */ 609 #endif 610 }; 611 612 /* 613 ** A "Collating Sequence" is defined by an instance of the following 614 ** structure. Conceptually, a collating sequence consists of a name and 615 ** a comparison routine that defines the order of that sequence. 616 ** 617 ** There may two seperate implementations of the collation function, one 618 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 619 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 620 ** native byte order. When a collation sequence is invoked, SQLite selects 621 ** the version that will require the least expensive encoding 622 ** translations, if any. 623 ** 624 ** The CollSeq.pUser member variable is an extra parameter that passed in 625 ** as the first argument to the UTF-8 comparison function, xCmp. 626 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 627 ** xCmp16. 628 ** 629 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 630 ** collating sequence is undefined. Indices built on an undefined 631 ** collating sequence may not be read or written. 632 */ 633 struct CollSeq { 634 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 635 u8 enc; /* Text encoding handled by xCmp() */ 636 u8 type; /* One of the SQLITE_COLL_... values below */ 637 void *pUser; /* First argument to xCmp() */ 638 int (*xCmp)(void*,int, const void*, int, const void*); 639 void (*xDel)(void*); /* Destructor for pUser */ 640 }; 641 642 /* 643 ** Allowed values of CollSeq flags: 644 */ 645 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 646 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 647 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 648 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 649 650 /* 651 ** A sort order can be either ASC or DESC. 652 */ 653 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 654 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 655 656 /* 657 ** Column affinity types. 658 ** 659 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 660 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 661 ** the speed a little by number the values consecutively. 662 ** 663 ** But rather than start with 0 or 1, we begin with 'a'. That way, 664 ** when multiple affinity types are concatenated into a string and 665 ** used as the P3 operand, they will be more readable. 666 ** 667 ** Note also that the numeric types are grouped together so that testing 668 ** for a numeric type is a single comparison. 669 */ 670 #define SQLITE_AFF_TEXT 'a' 671 #define SQLITE_AFF_NONE 'b' 672 #define SQLITE_AFF_NUMERIC 'c' 673 #define SQLITE_AFF_INTEGER 'd' 674 #define SQLITE_AFF_REAL 'e' 675 676 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 677 678 /* 679 ** Each SQL table is represented in memory by an instance of the 680 ** following structure. 681 ** 682 ** Table.zName is the name of the table. The case of the original 683 ** CREATE TABLE statement is stored, but case is not significant for 684 ** comparisons. 685 ** 686 ** Table.nCol is the number of columns in this table. Table.aCol is a 687 ** pointer to an array of Column structures, one for each column. 688 ** 689 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 690 ** the column that is that key. Otherwise Table.iPKey is negative. Note 691 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 692 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 693 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 694 ** is generated for each row of the table. Table.hasPrimKey is true if 695 ** the table has any PRIMARY KEY, INTEGER or otherwise. 696 ** 697 ** Table.tnum is the page number for the root BTree page of the table in the 698 ** database file. If Table.iDb is the index of the database table backend 699 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 700 ** holds temporary tables and indices. If Table.isEphem 701 ** is true, then the table is stored in a file that is automatically deleted 702 ** when the VDBE cursor to the table is closed. In this case Table.tnum 703 ** refers VDBE cursor number that holds the table open, not to the root 704 ** page number. Transient tables are used to hold the results of a 705 ** sub-query that appears instead of a real table name in the FROM clause 706 ** of a SELECT statement. 707 */ 708 struct Table { 709 char *zName; /* Name of the table */ 710 int nCol; /* Number of columns in this table */ 711 Column *aCol; /* Information about each column */ 712 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 713 Index *pIndex; /* List of SQL indexes on this table. */ 714 int tnum; /* Root BTree node for this table (see note above) */ 715 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 716 int nRef; /* Number of pointers to this Table */ 717 Trigger *pTrigger; /* List of SQL triggers on this table */ 718 FKey *pFKey; /* Linked list of all foreign keys in this table */ 719 char *zColAff; /* String defining the affinity of each column */ 720 #ifndef SQLITE_OMIT_CHECK 721 Expr *pCheck; /* The AND of all CHECK constraints */ 722 #endif 723 #ifndef SQLITE_OMIT_ALTERTABLE 724 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 725 #endif 726 u8 readOnly; /* True if this table should not be written by the user */ 727 u8 isEphem; /* True if created using OP_OpenEphermeral */ 728 u8 hasPrimKey; /* True if there exists a primary key */ 729 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 730 u8 autoInc; /* True if the integer primary key is autoincrement */ 731 #ifndef SQLITE_OMIT_VIRTUALTABLE 732 u8 isVirtual; /* True if this is a virtual table */ 733 u8 isCommit; /* True once the CREATE TABLE has been committed */ 734 Module *pMod; /* Pointer to the implementation of the module */ 735 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 736 int nModuleArg; /* Number of arguments to the module */ 737 char **azModuleArg; /* Text of all module args. [0] is module name */ 738 #endif 739 Schema *pSchema; 740 }; 741 742 /* 743 ** Test to see whether or not a table is a virtual table. This is 744 ** done as a macro so that it will be optimized out when virtual 745 ** table support is omitted from the build. 746 */ 747 #ifndef SQLITE_OMIT_VIRTUALTABLE 748 # define IsVirtual(X) ((X)->isVirtual) 749 # define IsHiddenColumn(X) ((X)->isHidden) 750 #else 751 # define IsVirtual(X) 0 752 # define IsHiddenColumn(X) 0 753 #endif 754 755 /* 756 ** Each foreign key constraint is an instance of the following structure. 757 ** 758 ** A foreign key is associated with two tables. The "from" table is 759 ** the table that contains the REFERENCES clause that creates the foreign 760 ** key. The "to" table is the table that is named in the REFERENCES clause. 761 ** Consider this example: 762 ** 763 ** CREATE TABLE ex1( 764 ** a INTEGER PRIMARY KEY, 765 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 766 ** ); 767 ** 768 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 769 ** 770 ** Each REFERENCES clause generates an instance of the following structure 771 ** which is attached to the from-table. The to-table need not exist when 772 ** the from-table is created. The existance of the to-table is not checked 773 ** until an attempt is made to insert data into the from-table. 774 ** 775 ** The sqlite.aFKey hash table stores pointers to this structure 776 ** given the name of a to-table. For each to-table, all foreign keys 777 ** associated with that table are on a linked list using the FKey.pNextTo 778 ** field. 779 */ 780 struct FKey { 781 Table *pFrom; /* The table that constains the REFERENCES clause */ 782 FKey *pNextFrom; /* Next foreign key in pFrom */ 783 char *zTo; /* Name of table that the key points to */ 784 FKey *pNextTo; /* Next foreign key that points to zTo */ 785 int nCol; /* Number of columns in this key */ 786 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 787 int iFrom; /* Index of column in pFrom */ 788 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 789 } *aCol; /* One entry for each of nCol column s */ 790 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 791 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 792 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 793 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 794 }; 795 796 /* 797 ** SQLite supports many different ways to resolve a contraint 798 ** error. ROLLBACK processing means that a constraint violation 799 ** causes the operation in process to fail and for the current transaction 800 ** to be rolled back. ABORT processing means the operation in process 801 ** fails and any prior changes from that one operation are backed out, 802 ** but the transaction is not rolled back. FAIL processing means that 803 ** the operation in progress stops and returns an error code. But prior 804 ** changes due to the same operation are not backed out and no rollback 805 ** occurs. IGNORE means that the particular row that caused the constraint 806 ** error is not inserted or updated. Processing continues and no error 807 ** is returned. REPLACE means that preexisting database rows that caused 808 ** a UNIQUE constraint violation are removed so that the new insert or 809 ** update can proceed. Processing continues and no error is reported. 810 ** 811 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 812 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 813 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 814 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 815 ** referenced table row is propagated into the row that holds the 816 ** foreign key. 817 ** 818 ** The following symbolic values are used to record which type 819 ** of action to take. 820 */ 821 #define OE_None 0 /* There is no constraint to check */ 822 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 823 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 824 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 825 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 826 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 827 828 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 829 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 830 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 831 #define OE_Cascade 9 /* Cascade the changes */ 832 833 #define OE_Default 99 /* Do whatever the default action is */ 834 835 836 /* 837 ** An instance of the following structure is passed as the first 838 ** argument to sqlite3VdbeKeyCompare and is used to control the 839 ** comparison of the two index keys. 840 ** 841 ** If the KeyInfo.incrKey value is true and the comparison would 842 ** otherwise be equal, then return a result as if the second key 843 ** were larger. 844 */ 845 struct KeyInfo { 846 sqlite3 *db; /* The database connection */ 847 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 848 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 849 int nField; /* Number of entries in aColl[] */ 850 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 851 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 852 }; 853 854 /* 855 ** Each SQL index is represented in memory by an 856 ** instance of the following structure. 857 ** 858 ** The columns of the table that are to be indexed are described 859 ** by the aiColumn[] field of this structure. For example, suppose 860 ** we have the following table and index: 861 ** 862 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 863 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 864 ** 865 ** In the Table structure describing Ex1, nCol==3 because there are 866 ** three columns in the table. In the Index structure describing 867 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 868 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 869 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 870 ** The second column to be indexed (c1) has an index of 0 in 871 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 872 ** 873 ** The Index.onError field determines whether or not the indexed columns 874 ** must be unique and what to do if they are not. When Index.onError=OE_None, 875 ** it means this is not a unique index. Otherwise it is a unique index 876 ** and the value of Index.onError indicate the which conflict resolution 877 ** algorithm to employ whenever an attempt is made to insert a non-unique 878 ** element. 879 */ 880 struct Index { 881 char *zName; /* Name of this index */ 882 int nColumn; /* Number of columns in the table used by this index */ 883 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 884 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 885 Table *pTable; /* The SQL table being indexed */ 886 int tnum; /* Page containing root of this index in database file */ 887 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 888 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 889 char *zColAff; /* String defining the affinity of each column */ 890 Index *pNext; /* The next index associated with the same table */ 891 Schema *pSchema; /* Schema containing this index */ 892 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 893 char **azColl; /* Array of collation sequence names for index */ 894 }; 895 896 /* 897 ** Each token coming out of the lexer is an instance of 898 ** this structure. Tokens are also used as part of an expression. 899 ** 900 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 901 ** may contain random values. Do not make any assuptions about Token.dyn 902 ** and Token.n when Token.z==0. 903 */ 904 struct Token { 905 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 906 unsigned dyn : 1; /* True for malloced memory, false for static */ 907 unsigned n : 31; /* Number of characters in this token */ 908 }; 909 910 /* 911 ** An instance of this structure contains information needed to generate 912 ** code for a SELECT that contains aggregate functions. 913 ** 914 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 915 ** pointer to this structure. The Expr.iColumn field is the index in 916 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 917 ** code for that node. 918 ** 919 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 920 ** original Select structure that describes the SELECT statement. These 921 ** fields do not need to be freed when deallocating the AggInfo structure. 922 */ 923 struct AggInfo { 924 u8 directMode; /* Direct rendering mode means take data directly 925 ** from source tables rather than from accumulators */ 926 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 927 ** than the source table */ 928 int sortingIdx; /* Cursor number of the sorting index */ 929 ExprList *pGroupBy; /* The group by clause */ 930 int nSortingColumn; /* Number of columns in the sorting index */ 931 struct AggInfo_col { /* For each column used in source tables */ 932 Table *pTab; /* Source table */ 933 int iTable; /* Cursor number of the source table */ 934 int iColumn; /* Column number within the source table */ 935 int iSorterColumn; /* Column number in the sorting index */ 936 int iMem; /* Memory location that acts as accumulator */ 937 Expr *pExpr; /* The original expression */ 938 } *aCol; 939 int nColumn; /* Number of used entries in aCol[] */ 940 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 941 int nAccumulator; /* Number of columns that show through to the output. 942 ** Additional columns are used only as parameters to 943 ** aggregate functions */ 944 struct AggInfo_func { /* For each aggregate function */ 945 Expr *pExpr; /* Expression encoding the function */ 946 FuncDef *pFunc; /* The aggregate function implementation */ 947 int iMem; /* Memory location that acts as accumulator */ 948 int iDistinct; /* Ephermeral table used to enforce DISTINCT */ 949 } *aFunc; 950 int nFunc; /* Number of entries in aFunc[] */ 951 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 952 }; 953 954 /* 955 ** Each node of an expression in the parse tree is an instance 956 ** of this structure. 957 ** 958 ** Expr.op is the opcode. The integer parser token codes are reused 959 ** as opcodes here. For example, the parser defines TK_GE to be an integer 960 ** code representing the ">=" operator. This same integer code is reused 961 ** to represent the greater-than-or-equal-to operator in the expression 962 ** tree. 963 ** 964 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 965 ** of argument if the expression is a function. 966 ** 967 ** Expr.token is the operator token for this node. For some expressions 968 ** that have subexpressions, Expr.token can be the complete text that gave 969 ** rise to the Expr. In the latter case, the token is marked as being 970 ** a compound token. 971 ** 972 ** An expression of the form ID or ID.ID refers to a column in a table. 973 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 974 ** the integer cursor number of a VDBE cursor pointing to that table and 975 ** Expr.iColumn is the column number for the specific column. If the 976 ** expression is used as a result in an aggregate SELECT, then the 977 ** value is also stored in the Expr.iAgg column in the aggregate so that 978 ** it can be accessed after all aggregates are computed. 979 ** 980 ** If the expression is a function, the Expr.iTable is an integer code 981 ** representing which function. If the expression is an unbound variable 982 ** marker (a question mark character '?' in the original SQL) then the 983 ** Expr.iTable holds the index number for that variable. 984 ** 985 ** If the expression is a subquery then Expr.iColumn holds an integer 986 ** register number containing the result of the subquery. If the 987 ** subquery gives a constant result, then iTable is -1. If the subquery 988 ** gives a different answer at different times during statement processing 989 ** then iTable is the address of a subroutine that computes the subquery. 990 ** 991 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 992 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 993 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 994 ** operand. 995 ** 996 ** If the Expr is of type OP_Column, and the table it is selecting from 997 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 998 ** corresponding table definition. 999 */ 1000 struct Expr { 1001 u8 op; /* Operation performed by this node */ 1002 char affinity; /* The affinity of the column or 0 if not a column */ 1003 u16 flags; /* Various flags. See below */ 1004 CollSeq *pColl; /* The collation type of the column or 0 */ 1005 Expr *pLeft, *pRight; /* Left and right subnodes */ 1006 ExprList *pList; /* A list of expressions used as function arguments 1007 ** or in "<expr> IN (<expr-list)" */ 1008 Token token; /* An operand token */ 1009 Token span; /* Complete text of the expression */ 1010 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 1011 ** iColumn-th field of the iTable-th table. */ 1012 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1013 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1014 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1015 Select *pSelect; /* When the expression is a sub-select. Also the 1016 ** right side of "<expr> IN (<select>)" */ 1017 Table *pTab; /* Table for OP_Column expressions. */ 1018 Schema *pSchema; 1019 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1020 int nHeight; /* Height of the tree headed by this node */ 1021 #endif 1022 }; 1023 1024 /* 1025 ** The following are the meanings of bits in the Expr.flags field. 1026 */ 1027 #define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */ 1028 #define EP_Agg 0x02 /* Contains one or more aggregate functions */ 1029 #define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */ 1030 #define EP_Error 0x08 /* Expression contains one or more errors */ 1031 #define EP_Distinct 0x10 /* Aggregate function with DISTINCT keyword */ 1032 #define EP_VarSelect 0x20 /* pSelect is correlated, not constant */ 1033 #define EP_Dequoted 0x40 /* True if the string has been dequoted */ 1034 #define EP_InfixFunc 0x80 /* True for an infix function: LIKE, GLOB, etc */ 1035 #define EP_ExpCollate 0x100 /* Collating sequence specified explicitly */ 1036 1037 /* 1038 ** These macros can be used to test, set, or clear bits in the 1039 ** Expr.flags field. 1040 */ 1041 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1042 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1043 #define ExprSetProperty(E,P) (E)->flags|=(P) 1044 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1045 1046 /* 1047 ** A list of expressions. Each expression may optionally have a 1048 ** name. An expr/name combination can be used in several ways, such 1049 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1050 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1051 ** also be used as the argument to a function, in which case the a.zName 1052 ** field is not used. 1053 */ 1054 struct ExprList { 1055 int nExpr; /* Number of expressions on the list */ 1056 int nAlloc; /* Number of entries allocated below */ 1057 int iECursor; /* VDBE Cursor associated with this ExprList */ 1058 struct ExprList_item { 1059 Expr *pExpr; /* The list of expressions */ 1060 char *zName; /* Token associated with this expression */ 1061 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1062 u8 isAgg; /* True if this is an aggregate like count(*) */ 1063 u8 done; /* A flag to indicate when processing is finished */ 1064 } *a; /* One entry for each expression */ 1065 }; 1066 1067 /* 1068 ** An instance of this structure can hold a simple list of identifiers, 1069 ** such as the list "a,b,c" in the following statements: 1070 ** 1071 ** INSERT INTO t(a,b,c) VALUES ...; 1072 ** CREATE INDEX idx ON t(a,b,c); 1073 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1074 ** 1075 ** The IdList.a.idx field is used when the IdList represents the list of 1076 ** column names after a table name in an INSERT statement. In the statement 1077 ** 1078 ** INSERT INTO t(a,b,c) ... 1079 ** 1080 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1081 */ 1082 struct IdList { 1083 struct IdList_item { 1084 char *zName; /* Name of the identifier */ 1085 int idx; /* Index in some Table.aCol[] of a column named zName */ 1086 } *a; 1087 int nId; /* Number of identifiers on the list */ 1088 int nAlloc; /* Number of entries allocated for a[] below */ 1089 }; 1090 1091 /* 1092 ** The bitmask datatype defined below is used for various optimizations. 1093 ** 1094 ** Changing this from a 64-bit to a 32-bit type limits the number of 1095 ** tables in a join to 32 instead of 64. But it also reduces the size 1096 ** of the library by 738 bytes on ix86. 1097 */ 1098 typedef u64 Bitmask; 1099 1100 /* 1101 ** The following structure describes the FROM clause of a SELECT statement. 1102 ** Each table or subquery in the FROM clause is a separate element of 1103 ** the SrcList.a[] array. 1104 ** 1105 ** With the addition of multiple database support, the following structure 1106 ** can also be used to describe a particular table such as the table that 1107 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1108 ** such a table must be a simple name: ID. But in SQLite, the table can 1109 ** now be identified by a database name, a dot, then the table name: ID.ID. 1110 ** 1111 ** The jointype starts out showing the join type between the current table 1112 ** and the next table on the list. The parser builds the list this way. 1113 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1114 ** jointype expresses the join between the table and the previous table. 1115 */ 1116 struct SrcList { 1117 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1118 i16 nAlloc; /* Number of entries allocated in a[] below */ 1119 struct SrcList_item { 1120 char *zDatabase; /* Name of database holding this table */ 1121 char *zName; /* Name of the table */ 1122 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1123 Table *pTab; /* An SQL table corresponding to zName */ 1124 Select *pSelect; /* A SELECT statement used in place of a table name */ 1125 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1126 u8 jointype; /* Type of join between this able and the previous */ 1127 int iCursor; /* The VDBE cursor number used to access this table */ 1128 Expr *pOn; /* The ON clause of a join */ 1129 IdList *pUsing; /* The USING clause of a join */ 1130 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1131 } a[1]; /* One entry for each identifier on the list */ 1132 }; 1133 1134 /* 1135 ** Permitted values of the SrcList.a.jointype field 1136 */ 1137 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1138 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1139 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1140 #define JT_LEFT 0x0008 /* Left outer join */ 1141 #define JT_RIGHT 0x0010 /* Right outer join */ 1142 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1143 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1144 1145 /* 1146 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1147 ** structure contains a single instance of this structure. This structure 1148 ** is intended to be private the the where.c module and should not be 1149 ** access or modified by other modules. 1150 ** 1151 ** The pIdxInfo and pBestIdx fields are used to help pick the best 1152 ** index on a virtual table. The pIdxInfo pointer contains indexing 1153 ** information for the i-th table in the FROM clause before reordering. 1154 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1155 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after 1156 ** FROM clause ordering. This is a little confusing so I will repeat 1157 ** it in different words. WhereInfo.a[i].pIdxInfo is index information 1158 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the 1159 ** index information for the i-th loop of the join. pBestInfo is always 1160 ** either NULL or a copy of some pIdxInfo. So for cleanup it is 1161 ** sufficient to free all of the pIdxInfo pointers. 1162 ** 1163 */ 1164 struct WhereLevel { 1165 int iFrom; /* Which entry in the FROM clause */ 1166 int flags; /* Flags associated with this level */ 1167 int iMem; /* First memory cell used by this level */ 1168 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1169 Index *pIdx; /* Index used. NULL if no index */ 1170 int iTabCur; /* The VDBE cursor used to access the table */ 1171 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 1172 int brk; /* Jump here to break out of the loop */ 1173 int nxt; /* Jump here to start the next IN combination */ 1174 int cont; /* Jump here to continue with the next loop cycle */ 1175 int top; /* First instruction of interior of the loop */ 1176 int op, p1, p2; /* Opcode used to terminate the loop */ 1177 int nEq; /* Number of == or IN constraints on this loop */ 1178 int nIn; /* Number of IN operators constraining this loop */ 1179 struct InLoop { 1180 int iCur; /* The VDBE cursor used by this IN operator */ 1181 int topAddr; /* Top of the IN loop */ 1182 } *aInLoop; /* Information about each nested IN operator */ 1183 sqlite3_index_info *pBestIdx; /* Index information for this level */ 1184 1185 /* The following field is really not part of the current level. But 1186 ** we need a place to cache index information for each table in the 1187 ** FROM clause and the WhereLevel structure is a convenient place. 1188 */ 1189 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1190 }; 1191 1192 /* 1193 ** The WHERE clause processing routine has two halves. The 1194 ** first part does the start of the WHERE loop and the second 1195 ** half does the tail of the WHERE loop. An instance of 1196 ** this structure is returned by the first half and passed 1197 ** into the second half to give some continuity. 1198 */ 1199 struct WhereInfo { 1200 Parse *pParse; 1201 SrcList *pTabList; /* List of tables in the join */ 1202 int iTop; /* The very beginning of the WHERE loop */ 1203 int iContinue; /* Jump here to continue with next record */ 1204 int iBreak; /* Jump here to break out of the loop */ 1205 int nLevel; /* Number of nested loop */ 1206 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ 1207 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 1208 }; 1209 1210 /* 1211 ** A NameContext defines a context in which to resolve table and column 1212 ** names. The context consists of a list of tables (the pSrcList) field and 1213 ** a list of named expression (pEList). The named expression list may 1214 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1215 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1216 ** pEList corresponds to the result set of a SELECT and is NULL for 1217 ** other statements. 1218 ** 1219 ** NameContexts can be nested. When resolving names, the inner-most 1220 ** context is searched first. If no match is found, the next outer 1221 ** context is checked. If there is still no match, the next context 1222 ** is checked. This process continues until either a match is found 1223 ** or all contexts are check. When a match is found, the nRef member of 1224 ** the context containing the match is incremented. 1225 ** 1226 ** Each subquery gets a new NameContext. The pNext field points to the 1227 ** NameContext in the parent query. Thus the process of scanning the 1228 ** NameContext list corresponds to searching through successively outer 1229 ** subqueries looking for a match. 1230 */ 1231 struct NameContext { 1232 Parse *pParse; /* The parser */ 1233 SrcList *pSrcList; /* One or more tables used to resolve names */ 1234 ExprList *pEList; /* Optional list of named expressions */ 1235 int nRef; /* Number of names resolved by this context */ 1236 int nErr; /* Number of errors encountered while resolving names */ 1237 u8 allowAgg; /* Aggregate functions allowed here */ 1238 u8 hasAgg; /* True if aggregates are seen */ 1239 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1240 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1241 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1242 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1243 }; 1244 1245 /* 1246 ** An instance of the following structure contains all information 1247 ** needed to generate code for a single SELECT statement. 1248 ** 1249 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1250 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1251 ** limit and nOffset to the value of the offset (or 0 if there is not 1252 ** offset). But later on, nLimit and nOffset become the memory locations 1253 ** in the VDBE that record the limit and offset counters. 1254 ** 1255 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1256 ** These addresses must be stored so that we can go back and fill in 1257 ** the P3_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1258 ** the number of columns in P2 can be computed at the same time 1259 ** as the OP_OpenEphm instruction is coded because not 1260 ** enough information about the compound query is known at that point. 1261 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1262 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1263 ** sequences for the ORDER BY clause. 1264 */ 1265 struct Select { 1266 ExprList *pEList; /* The fields of the result */ 1267 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1268 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1269 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1270 u8 isAgg; /* True if this is an aggregate query */ 1271 u8 usesEphm; /* True if uses an OpenEphemeral opcode */ 1272 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ 1273 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1274 SrcList *pSrc; /* The FROM clause */ 1275 Expr *pWhere; /* The WHERE clause */ 1276 ExprList *pGroupBy; /* The GROUP BY clause */ 1277 Expr *pHaving; /* The HAVING clause */ 1278 ExprList *pOrderBy; /* The ORDER BY clause */ 1279 Select *pPrior; /* Prior select in a compound select statement */ 1280 Select *pRightmost; /* Right-most select in a compound select statement */ 1281 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1282 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1283 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1284 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1285 }; 1286 1287 /* 1288 ** The results of a select can be distributed in several ways. 1289 */ 1290 #define SRT_Union 1 /* Store result as keys in an index */ 1291 #define SRT_Except 2 /* Remove result from a UNION index */ 1292 #define SRT_Discard 3 /* Do not save the results anywhere */ 1293 1294 /* The ORDER BY clause is ignored for all of the above */ 1295 #define IgnorableOrderby(X) (X<=SRT_Discard) 1296 1297 #define SRT_Callback 4 /* Invoke a callback with each row of result */ 1298 #define SRT_Mem 5 /* Store result in a memory cell */ 1299 #define SRT_Set 6 /* Store non-null results as keys in an index */ 1300 #define SRT_Table 7 /* Store result as data with an automatic rowid */ 1301 #define SRT_EphemTab 8 /* Create transient tab and store like SRT_Table */ 1302 #define SRT_Subroutine 9 /* Call a subroutine to handle results */ 1303 #define SRT_Exists 10 /* Store 1 if the result is not empty */ 1304 1305 /* 1306 ** An SQL parser context. A copy of this structure is passed through 1307 ** the parser and down into all the parser action routine in order to 1308 ** carry around information that is global to the entire parse. 1309 ** 1310 ** The structure is divided into two parts. When the parser and code 1311 ** generate call themselves recursively, the first part of the structure 1312 ** is constant but the second part is reset at the beginning and end of 1313 ** each recursion. 1314 ** 1315 ** The nTableLock and aTableLock variables are only used if the shared-cache 1316 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 1317 ** used to store the set of table-locks required by the statement being 1318 ** compiled. Function sqlite3TableLock() is used to add entries to the 1319 ** list. 1320 */ 1321 struct Parse { 1322 sqlite3 *db; /* The main database structure */ 1323 int rc; /* Return code from execution */ 1324 char *zErrMsg; /* An error message */ 1325 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1326 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1327 u8 nameClash; /* A permanent table name clashes with temp table name */ 1328 u8 checkSchema; /* Causes schema cookie check after an error */ 1329 u8 nested; /* Number of nested calls to the parser/code generator */ 1330 u8 parseError; /* True after a parsing error. Ticket #1794 */ 1331 int nErr; /* Number of errors seen */ 1332 int nTab; /* Number of previously allocated VDBE cursors */ 1333 int nMem; /* Number of memory cells used so far */ 1334 int nSet; /* Number of sets used so far */ 1335 int ckOffset; /* Stack offset to data used by CHECK constraints */ 1336 u32 writeMask; /* Start a write transaction on these databases */ 1337 u32 cookieMask; /* Bitmask of schema verified databases */ 1338 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1339 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 1340 #ifndef SQLITE_OMIT_SHARED_CACHE 1341 int nTableLock; /* Number of locks in aTableLock */ 1342 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 1343 #endif 1344 1345 /* Above is constant between recursions. Below is reset before and after 1346 ** each recursion */ 1347 1348 int nVar; /* Number of '?' variables seen in the SQL so far */ 1349 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1350 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1351 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1352 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1353 Token sErrToken; /* The token at which the error occurred */ 1354 Token sNameToken; /* Token with unqualified schema object name */ 1355 Token sLastToken; /* The last token parsed */ 1356 const char *zSql; /* All SQL text */ 1357 const char *zTail; /* All SQL text past the last semicolon parsed */ 1358 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1359 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1360 TriggerStack *trigStack; /* Trigger actions being coded */ 1361 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1362 #ifndef SQLITE_OMIT_VIRTUALTABLE 1363 Token sArg; /* Complete text of a module argument */ 1364 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 1365 Table *pVirtualLock; /* Require virtual table lock on this table */ 1366 #endif 1367 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1368 int nHeight; /* Expression tree height of current sub-select */ 1369 #endif 1370 }; 1371 1372 #ifdef SQLITE_OMIT_VIRTUALTABLE 1373 #define IN_DECLARE_VTAB 0 1374 #else 1375 #define IN_DECLARE_VTAB (pParse->declareVtab) 1376 #endif 1377 1378 /* 1379 ** An instance of the following structure can be declared on a stack and used 1380 ** to save the Parse.zAuthContext value so that it can be restored later. 1381 */ 1382 struct AuthContext { 1383 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1384 Parse *pParse; /* The Parse structure */ 1385 }; 1386 1387 /* 1388 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1389 */ 1390 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1391 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1392 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 1393 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 1394 1395 /* 1396 * Each trigger present in the database schema is stored as an instance of 1397 * struct Trigger. 1398 * 1399 * Pointers to instances of struct Trigger are stored in two ways. 1400 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1401 * database). This allows Trigger structures to be retrieved by name. 1402 * 2. All triggers associated with a single table form a linked list, using the 1403 * pNext member of struct Trigger. A pointer to the first element of the 1404 * linked list is stored as the "pTrigger" member of the associated 1405 * struct Table. 1406 * 1407 * The "step_list" member points to the first element of a linked list 1408 * containing the SQL statements specified as the trigger program. 1409 */ 1410 struct Trigger { 1411 char *name; /* The name of the trigger */ 1412 char *table; /* The table or view to which the trigger applies */ 1413 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1414 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1415 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1416 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1417 the <column-list> is stored here */ 1418 Token nameToken; /* Token containing zName. Use during parsing only */ 1419 Schema *pSchema; /* Schema containing the trigger */ 1420 Schema *pTabSchema; /* Schema containing the table */ 1421 TriggerStep *step_list; /* Link list of trigger program steps */ 1422 Trigger *pNext; /* Next trigger associated with the table */ 1423 }; 1424 1425 /* 1426 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1427 ** determine which. 1428 ** 1429 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1430 ** In that cases, the constants below can be ORed together. 1431 */ 1432 #define TRIGGER_BEFORE 1 1433 #define TRIGGER_AFTER 2 1434 1435 /* 1436 * An instance of struct TriggerStep is used to store a single SQL statement 1437 * that is a part of a trigger-program. 1438 * 1439 * Instances of struct TriggerStep are stored in a singly linked list (linked 1440 * using the "pNext" member) referenced by the "step_list" member of the 1441 * associated struct Trigger instance. The first element of the linked list is 1442 * the first step of the trigger-program. 1443 * 1444 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1445 * "SELECT" statement. The meanings of the other members is determined by the 1446 * value of "op" as follows: 1447 * 1448 * (op == TK_INSERT) 1449 * orconf -> stores the ON CONFLICT algorithm 1450 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1451 * this stores a pointer to the SELECT statement. Otherwise NULL. 1452 * target -> A token holding the name of the table to insert into. 1453 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1454 * this stores values to be inserted. Otherwise NULL. 1455 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1456 * statement, then this stores the column-names to be 1457 * inserted into. 1458 * 1459 * (op == TK_DELETE) 1460 * target -> A token holding the name of the table to delete from. 1461 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1462 * Otherwise NULL. 1463 * 1464 * (op == TK_UPDATE) 1465 * target -> A token holding the name of the table to update rows of. 1466 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1467 * Otherwise NULL. 1468 * pExprList -> A list of the columns to update and the expressions to update 1469 * them to. See sqlite3Update() documentation of "pChanges" 1470 * argument. 1471 * 1472 */ 1473 struct TriggerStep { 1474 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1475 int orconf; /* OE_Rollback etc. */ 1476 Trigger *pTrig; /* The trigger that this step is a part of */ 1477 1478 Select *pSelect; /* Valid for SELECT and sometimes 1479 INSERT steps (when pExprList == 0) */ 1480 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1481 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1482 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1483 INSERT steps (when pSelect == 0) */ 1484 IdList *pIdList; /* Valid for INSERT statements only */ 1485 TriggerStep *pNext; /* Next in the link-list */ 1486 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 1487 }; 1488 1489 /* 1490 * An instance of struct TriggerStack stores information required during code 1491 * generation of a single trigger program. While the trigger program is being 1492 * coded, its associated TriggerStack instance is pointed to by the 1493 * "pTriggerStack" member of the Parse structure. 1494 * 1495 * The pTab member points to the table that triggers are being coded on. The 1496 * newIdx member contains the index of the vdbe cursor that points at the temp 1497 * table that stores the new.* references. If new.* references are not valid 1498 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1499 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1500 * 1501 * The ON CONFLICT policy to be used for the trigger program steps is stored 1502 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1503 * specified for individual triggers steps is used. 1504 * 1505 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1506 * constructed. When coding nested triggers (triggers fired by other triggers) 1507 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1508 * pointer. Once the nested trigger has been coded, the pNext value is restored 1509 * to the pTriggerStack member of the Parse stucture and coding of the parent 1510 * trigger continues. 1511 * 1512 * Before a nested trigger is coded, the linked list pointed to by the 1513 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1514 * recursively. If this condition is detected, the nested trigger is not coded. 1515 */ 1516 struct TriggerStack { 1517 Table *pTab; /* Table that triggers are currently being coded on */ 1518 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1519 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1520 int orconf; /* Current orconf policy */ 1521 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1522 Trigger *pTrigger; /* The trigger currently being coded */ 1523 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1524 }; 1525 1526 /* 1527 ** The following structure contains information used by the sqliteFix... 1528 ** routines as they walk the parse tree to make database references 1529 ** explicit. 1530 */ 1531 typedef struct DbFixer DbFixer; 1532 struct DbFixer { 1533 Parse *pParse; /* The parsing context. Error messages written here */ 1534 const char *zDb; /* Make sure all objects are contained in this database */ 1535 const char *zType; /* Type of the container - used for error messages */ 1536 const Token *pName; /* Name of the container - used for error messages */ 1537 }; 1538 1539 /* 1540 ** A pointer to this structure is used to communicate information 1541 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1542 */ 1543 typedef struct { 1544 sqlite3 *db; /* The database being initialized */ 1545 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 1546 char **pzErrMsg; /* Error message stored here */ 1547 int rc; /* Result code stored here */ 1548 } InitData; 1549 1550 /* 1551 ** Assuming zIn points to the first byte of a UTF-8 character, 1552 ** advance zIn to point to the first byte of the next UTF-8 character. 1553 */ 1554 #define SQLITE_SKIP_UTF8(zIn) { \ 1555 if( (*(zIn++))>=0xc0 ){ \ 1556 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 1557 } \ 1558 } 1559 1560 /* 1561 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 1562 ** builds) or a function call (for debugging). If it is a function call, 1563 ** it allows the operator to set a breakpoint at the spot where database 1564 ** corruption is first detected. 1565 */ 1566 #ifdef SQLITE_DEBUG 1567 int sqlite3Corrupt(void); 1568 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 1569 #else 1570 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 1571 #endif 1572 1573 /* 1574 ** Internal function prototypes 1575 */ 1576 int sqlite3StrICmp(const char *, const char *); 1577 int sqlite3StrNICmp(const char *, const char *, int); 1578 int sqlite3IsNumber(const char*, int*, u8); 1579 1580 void *sqlite3MallocZero(unsigned); 1581 void *sqlite3DbMallocZero(sqlite3*, unsigned); 1582 void *sqlite3DbMallocRaw(sqlite3*, unsigned); 1583 char *sqlite3StrDup(const char*); 1584 char *sqlite3StrNDup(const char*, int); 1585 char *sqlite3DbStrDup(sqlite3*,const char*); 1586 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 1587 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 1588 void *sqlite3DbRealloc(sqlite3 *, void *, int); 1589 1590 char *sqlite3MPrintf(sqlite3*,const char*, ...); 1591 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 1592 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 1593 void sqlite3DebugPrintf(const char*, ...); 1594 void *sqlite3TextToPtr(const char*); 1595 #endif 1596 void sqlite3SetString(char **, ...); 1597 void sqlite3ErrorMsg(Parse*, const char*, ...); 1598 void sqlite3ErrorClear(Parse*); 1599 void sqlite3Dequote(char*); 1600 void sqlite3DequoteExpr(sqlite3*, Expr*); 1601 int sqlite3KeywordCode(const unsigned char*, int); 1602 int sqlite3RunParser(Parse*, const char*, char **); 1603 void sqlite3FinishCoding(Parse*); 1604 Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*); 1605 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 1606 Expr *sqlite3RegisterExpr(Parse*,Token*); 1607 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 1608 void sqlite3ExprSpan(Expr*,Token*,Token*); 1609 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 1610 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1611 void sqlite3ExprDelete(Expr*); 1612 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*); 1613 void sqlite3ExprListDelete(ExprList*); 1614 int sqlite3Init(sqlite3*, char**); 1615 int sqlite3InitCallback(void*, int, char**, char**); 1616 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1617 void sqlite3ResetInternalSchema(sqlite3*, int); 1618 void sqlite3BeginParse(Parse*,int); 1619 void sqlite3CommitInternalChanges(sqlite3*); 1620 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1621 void sqlite3OpenMasterTable(Parse *, int); 1622 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 1623 void sqlite3AddColumn(Parse*,Token*); 1624 void sqlite3AddNotNull(Parse*, int); 1625 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 1626 void sqlite3AddCheckConstraint(Parse*, Expr*); 1627 void sqlite3AddColumnType(Parse*,Token*); 1628 void sqlite3AddDefaultValue(Parse*,Expr*); 1629 void sqlite3AddCollateType(Parse*, const char*, int); 1630 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1631 1632 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 1633 1634 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1635 int sqlite3ViewGetColumnNames(Parse*,Table*); 1636 #else 1637 # define sqlite3ViewGetColumnNames(A,B) 0 1638 #endif 1639 1640 void sqlite3DropTable(Parse*, SrcList*, int, int); 1641 void sqlite3DeleteTable(Table*); 1642 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1643 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 1644 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 1645 int sqlite3IdListIndex(IdList*,const char*); 1646 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 1647 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*, 1648 Select*, Expr*, IdList*); 1649 void sqlite3SrcListShiftJoinType(SrcList*); 1650 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1651 void sqlite3IdListDelete(IdList*); 1652 void sqlite3SrcListDelete(SrcList*); 1653 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1654 Token*, int, int); 1655 void sqlite3DropIndex(Parse*, SrcList*, int); 1656 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); 1657 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 1658 Expr*,ExprList*,int,Expr*,Expr*); 1659 void sqlite3SelectDelete(Select*); 1660 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1661 int sqlite3IsReadOnly(Parse*, Table*, int); 1662 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 1663 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1664 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1665 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**); 1666 void sqlite3WhereEnd(WhereInfo*); 1667 void sqlite3ExprCodeGetColumn(Vdbe*, Table*, int, int); 1668 void sqlite3ExprCode(Parse*, Expr*); 1669 void sqlite3ExprCodeAndCache(Parse*, Expr*); 1670 int sqlite3ExprCodeExprList(Parse*, ExprList*); 1671 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 1672 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 1673 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 1674 Table *sqlite3LocateTable(Parse*,const char*, const char*); 1675 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 1676 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 1677 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 1678 void sqlite3Vacuum(Parse*); 1679 int sqlite3RunVacuum(char**, sqlite3*); 1680 char *sqlite3NameFromToken(sqlite3*, Token*); 1681 int sqlite3ExprCompare(Expr*, Expr*); 1682 int sqlite3ExprResolveNames(NameContext *, Expr *); 1683 int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 1684 int sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 1685 Vdbe *sqlite3GetVdbe(Parse*); 1686 Expr *sqlite3CreateIdExpr(Parse *, const char*); 1687 void sqlite3Randomness(int, void*); 1688 void sqlite3RollbackAll(sqlite3*); 1689 void sqlite3CodeVerifySchema(Parse*, int); 1690 void sqlite3BeginTransaction(Parse*, int); 1691 void sqlite3CommitTransaction(Parse*); 1692 void sqlite3RollbackTransaction(Parse*); 1693 int sqlite3ExprIsConstant(Expr*); 1694 int sqlite3ExprIsConstantNotJoin(Expr*); 1695 int sqlite3ExprIsConstantOrFunction(Expr*); 1696 int sqlite3ExprIsInteger(Expr*, int*); 1697 int sqlite3IsRowid(const char*); 1698 void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int); 1699 void sqlite3GenerateRowIndexDelete(Vdbe*, Table*, int, char*); 1700 void sqlite3GenerateIndexKey(Vdbe*, Index*, int); 1701 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1702 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int, int); 1703 void sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 1704 void sqlite3BeginWriteOperation(Parse*, int, int); 1705 Expr *sqlite3ExprDup(sqlite3*,Expr*); 1706 void sqlite3TokenCopy(sqlite3*,Token*, Token*); 1707 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*); 1708 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*); 1709 IdList *sqlite3IdListDup(sqlite3*,IdList*); 1710 Select *sqlite3SelectDup(sqlite3*,Select*); 1711 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 1712 void sqlite3RegisterBuiltinFunctions(sqlite3*); 1713 void sqlite3RegisterDateTimeFunctions(sqlite3*); 1714 int sqlite3SafetyOn(sqlite3*); 1715 int sqlite3SafetyOff(sqlite3*); 1716 int sqlite3SafetyCheck(sqlite3*); 1717 void sqlite3ChangeCookie(sqlite3*, Vdbe*, int); 1718 1719 #ifndef SQLITE_OMIT_TRIGGER 1720 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 1721 Expr*,int, int); 1722 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 1723 void sqlite3DropTrigger(Parse*, SrcList*, int); 1724 void sqlite3DropTriggerPtr(Parse*, Trigger*); 1725 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 1726 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1727 int, int); 1728 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1729 void sqlite3DeleteTriggerStep(TriggerStep*); 1730 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 1731 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 1732 ExprList*,Select*,int); 1733 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int); 1734 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 1735 void sqlite3DeleteTrigger(Trigger*); 1736 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 1737 #else 1738 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 1739 # define sqlite3DeleteTrigger(A) 1740 # define sqlite3DropTriggerPtr(A,B) 1741 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 1742 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0 1743 #endif 1744 1745 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 1746 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 1747 void sqlite3DeferForeignKey(Parse*, int); 1748 #ifndef SQLITE_OMIT_AUTHORIZATION 1749 void sqlite3AuthRead(Parse*,Expr*,SrcList*); 1750 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 1751 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 1752 void sqlite3AuthContextPop(AuthContext*); 1753 #else 1754 # define sqlite3AuthRead(a,b,c) 1755 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 1756 # define sqlite3AuthContextPush(a,b,c) 1757 # define sqlite3AuthContextPop(a) ((void)(a)) 1758 #endif 1759 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 1760 void sqlite3Detach(Parse*, Expr*); 1761 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 1762 int omitJournal, int nCache, int flags, Btree **ppBtree); 1763 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 1764 int sqlite3FixSrcList(DbFixer*, SrcList*); 1765 int sqlite3FixSelect(DbFixer*, Select*); 1766 int sqlite3FixExpr(DbFixer*, Expr*); 1767 int sqlite3FixExprList(DbFixer*, ExprList*); 1768 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 1769 int sqlite3AtoF(const char *z, double*); 1770 char *sqlite3_snprintf(int,char*,const char*,...); 1771 int sqlite3GetInt32(const char *, int*); 1772 int sqlite3FitsIn64Bits(const char *); 1773 int sqlite3Utf16ByteLen(const void *pData, int nChar); 1774 int sqlite3Utf8CharLen(const char *pData, int nByte); 1775 int sqlite3Utf8Read(const u8*, const u8*, const u8**); 1776 int sqlite3PutVarint(unsigned char *, u64); 1777 int sqlite3GetVarint(const unsigned char *, u64 *); 1778 int sqlite3GetVarint32(const unsigned char *, u32 *); 1779 int sqlite3VarintLen(u64 v); 1780 void sqlite3IndexAffinityStr(Vdbe *, Index *); 1781 void sqlite3TableAffinityStr(Vdbe *, Table *); 1782 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 1783 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 1784 char sqlite3ExprAffinity(Expr *pExpr); 1785 int sqlite3Atoi64(const char*, i64*); 1786 void sqlite3Error(sqlite3*, int, const char*,...); 1787 void *sqlite3HexToBlob(sqlite3*, const char *z); 1788 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 1789 const char *sqlite3ErrStr(int); 1790 int sqlite3ReadSchema(Parse *pParse); 1791 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 1792 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 1793 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 1794 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 1795 int sqlite3CheckCollSeq(Parse *, CollSeq *); 1796 int sqlite3CheckObjectName(Parse *, const char *); 1797 void sqlite3VdbeSetChanges(sqlite3 *, int); 1798 1799 const void *sqlite3ValueText(sqlite3_value*, u8); 1800 int sqlite3ValueBytes(sqlite3_value*, u8); 1801 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 1802 void(*)(void*)); 1803 void sqlite3ValueFree(sqlite3_value*); 1804 sqlite3_value *sqlite3ValueNew(sqlite3 *); 1805 char *sqlite3Utf16to8(sqlite3 *, const void*, int); 1806 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 1807 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 1808 #ifndef SQLITE_AMALGAMATION 1809 extern const unsigned char sqlite3UpperToLower[]; 1810 #endif 1811 void sqlite3RootPageMoved(Db*, int, int); 1812 void sqlite3Reindex(Parse*, Token*, Token*); 1813 void sqlite3AlterFunctions(sqlite3*); 1814 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 1815 int sqlite3GetToken(const unsigned char *, int *); 1816 void sqlite3NestedParse(Parse*, const char*, ...); 1817 void sqlite3ExpirePreparedStatements(sqlite3*); 1818 void sqlite3CodeSubselect(Parse *, Expr *); 1819 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 1820 void sqlite3ColumnDefault(Vdbe *, Table *, int); 1821 void sqlite3AlterFinishAddColumn(Parse *, Token *); 1822 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 1823 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 1824 char sqlite3AffinityType(const Token*); 1825 void sqlite3Analyze(Parse*, Token*, Token*); 1826 int sqlite3InvokeBusyHandler(BusyHandler*); 1827 int sqlite3FindDb(sqlite3*, Token*); 1828 int sqlite3AnalysisLoad(sqlite3*,int iDB); 1829 void sqlite3DefaultRowEst(Index*); 1830 void sqlite3RegisterLikeFunctions(sqlite3*, int); 1831 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 1832 void sqlite3AttachFunctions(sqlite3 *); 1833 void sqlite3MinimumFileFormat(Parse*, int, int); 1834 void sqlite3SchemaFree(void *); 1835 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 1836 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 1837 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 1838 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 1839 void (*)(sqlite3_context*,int,sqlite3_value **), 1840 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 1841 int sqlite3ApiExit(sqlite3 *db, int); 1842 void sqlite3AbortOtherActiveVdbes(sqlite3 *, Vdbe *); 1843 int sqlite3OpenTempDatabase(Parse *); 1844 1845 1846 /* 1847 ** The interface to the LEMON-generated parser 1848 */ 1849 void *sqlite3ParserAlloc(void*(*)(size_t)); 1850 void sqlite3ParserFree(void*, void(*)(void*)); 1851 void sqlite3Parser(void*, int, Token, Parse*); 1852 1853 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1854 void sqlite3CloseExtensions(sqlite3*); 1855 int sqlite3AutoLoadExtensions(sqlite3*); 1856 #else 1857 # define sqlite3CloseExtensions(X) 1858 # define sqlite3AutoLoadExtensions(X) SQLITE_OK 1859 #endif 1860 1861 #ifndef SQLITE_OMIT_SHARED_CACHE 1862 void sqlite3TableLock(Parse *, int, int, u8, const char *); 1863 #else 1864 #define sqlite3TableLock(v,w,x,y,z) 1865 #endif 1866 1867 #ifdef SQLITE_TEST 1868 int sqlite3Utf8To8(unsigned char*); 1869 #endif 1870 1871 /* 1872 ** The MallocDisallow() and MallocAllow() routines are like asserts. 1873 ** Call them around a section of code that you do not expect to do 1874 ** any memory allocation. 1875 */ 1876 #ifdef SQLITE_MEMDEBUG 1877 void sqlite3MallocDisallow(void); 1878 void sqlite3MallocAllow(void); 1879 void sqlite3MallocBenignFailure(int); 1880 #else 1881 # define sqlite3MallocDisallow() 1882 # define sqlite3MallocAllow() 1883 # define sqlite3MallocBenignFailure(x) 1884 #endif 1885 1886 1887 #ifdef SQLITE_OMIT_VIRTUALTABLE 1888 # define sqlite3VtabClear(X) 1889 # define sqlite3VtabSync(X,Y) (Y) 1890 # define sqlite3VtabRollback(X) 1891 # define sqlite3VtabCommit(X) 1892 #else 1893 void sqlite3VtabClear(Table*); 1894 int sqlite3VtabSync(sqlite3 *db, int rc); 1895 int sqlite3VtabRollback(sqlite3 *db); 1896 int sqlite3VtabCommit(sqlite3 *db); 1897 #endif 1898 void sqlite3VtabLock(sqlite3_vtab*); 1899 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*); 1900 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 1901 void sqlite3VtabFinishParse(Parse*, Token*); 1902 void sqlite3VtabArgInit(Parse*); 1903 void sqlite3VtabArgExtend(Parse*, Token*); 1904 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 1905 int sqlite3VtabCallConnect(Parse*, Table*); 1906 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 1907 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 1908 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 1909 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 1910 int sqlite3Reprepare(Vdbe*); 1911 void sqlite3ExprListCheckLength(Parse*, ExprList*, int, const char*); 1912 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 1913 1914 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 1915 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 1916 int sqlite3JournalSize(sqlite3_vfs *); 1917 int sqlite3JournalCreate(sqlite3_file *); 1918 #else 1919 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 1920 #endif 1921 1922 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1923 void sqlite3ExprSetHeight(Expr *); 1924 int sqlite3SelectExprHeight(Select *); 1925 #else 1926 #define sqlite3ExprSetHeight(x) 1927 #endif 1928 1929 u32 sqlite3Get4byte(const u8*); 1930 void sqlite3Put4byte(u8*, u32); 1931 1932 #ifdef SQLITE_SSE 1933 #include "sseInt.h" 1934 #endif 1935 1936 #ifdef SQLITE_DEBUG 1937 void sqlite3ParserTrace(FILE*, char *); 1938 #endif 1939 1940 /* 1941 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 1942 ** sqlite3_io_trace is a pointer to a printf-like routine used to 1943 ** print I/O tracing messages. 1944 */ 1945 #ifdef SQLITE_ENABLE_IOTRACE 1946 # define IOTRACE(A) if( sqlite3_io_trace ){ sqlite3_io_trace A; } 1947 void sqlite3VdbeIOTraceSql(Vdbe*); 1948 #else 1949 # define IOTRACE(A) 1950 # define sqlite3VdbeIOTraceSql(X) 1951 #endif 1952 SQLITE_EXTERN void (*sqlite3_io_trace)(const char*,...); 1953 1954 #endif 1955