1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Include the header file used to customize the compiler options for MSVC. 20 ** This should be done first so that it can successfully prevent spurious 21 ** compiler warnings due to subsequent content in this file and other files 22 ** that are included by this file. 23 */ 24 #include "msvc.h" 25 26 /* 27 ** Special setup for VxWorks 28 */ 29 #include "vxworks.h" 30 31 /* 32 ** These #defines should enable >2GB file support on POSIX if the 33 ** underlying operating system supports it. If the OS lacks 34 ** large file support, or if the OS is windows, these should be no-ops. 35 ** 36 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 37 ** system #includes. Hence, this block of code must be the very first 38 ** code in all source files. 39 ** 40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 41 ** on the compiler command line. This is necessary if you are compiling 42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 43 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 44 ** without this option, LFS is enable. But LFS does not exist in the kernel 45 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 46 ** portability you should omit LFS. 47 ** 48 ** The previous paragraph was written in 2005. (This paragraph is written 49 ** on 2008-11-28.) These days, all Linux kernels support large files, so 50 ** you should probably leave LFS enabled. But some embedded platforms might 51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 52 ** 53 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 54 */ 55 #ifndef SQLITE_DISABLE_LFS 56 # define _LARGE_FILE 1 57 # ifndef _FILE_OFFSET_BITS 58 # define _FILE_OFFSET_BITS 64 59 # endif 60 # define _LARGEFILE_SOURCE 1 61 #endif 62 63 /* What version of GCC is being used. 0 means GCC is not being used */ 64 #ifdef __GNUC__ 65 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 66 #else 67 # define GCC_VERSION 0 68 #endif 69 70 /* Needed for various definitions... */ 71 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 72 # define _GNU_SOURCE 73 #endif 74 75 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 76 # define _BSD_SOURCE 77 #endif 78 79 /* 80 ** For MinGW, check to see if we can include the header file containing its 81 ** version information, among other things. Normally, this internal MinGW 82 ** header file would [only] be included automatically by other MinGW header 83 ** files; however, the contained version information is now required by this 84 ** header file to work around binary compatibility issues (see below) and 85 ** this is the only known way to reliably obtain it. This entire #if block 86 ** would be completely unnecessary if there was any other way of detecting 87 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 88 ** some MinGW-specific macros). When compiling for MinGW, either the 89 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 90 ** defined; otherwise, detection of conditions specific to MinGW will be 91 ** disabled. 92 */ 93 #if defined(_HAVE_MINGW_H) 94 # include "mingw.h" 95 #elif defined(_HAVE__MINGW_H) 96 # include "_mingw.h" 97 #endif 98 99 /* 100 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 101 ** define is required to maintain binary compatibility with the MSVC runtime 102 ** library in use (e.g. for Windows XP). 103 */ 104 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 105 defined(_WIN32) && !defined(_WIN64) && \ 106 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 107 defined(__MSVCRT__) 108 # define _USE_32BIT_TIME_T 109 #endif 110 111 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 112 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 113 ** MinGW. 114 */ 115 #include "sqlite3.h" 116 117 /* 118 ** Include the configuration header output by 'configure' if we're using the 119 ** autoconf-based build 120 */ 121 #ifdef _HAVE_SQLITE_CONFIG_H 122 #include "config.h" 123 #endif 124 125 #include "sqliteLimit.h" 126 127 /* Disable nuisance warnings on Borland compilers */ 128 #if defined(__BORLANDC__) 129 #pragma warn -rch /* unreachable code */ 130 #pragma warn -ccc /* Condition is always true or false */ 131 #pragma warn -aus /* Assigned value is never used */ 132 #pragma warn -csu /* Comparing signed and unsigned */ 133 #pragma warn -spa /* Suspicious pointer arithmetic */ 134 #endif 135 136 /* 137 ** Include standard header files as necessary 138 */ 139 #ifdef HAVE_STDINT_H 140 #include <stdint.h> 141 #endif 142 #ifdef HAVE_INTTYPES_H 143 #include <inttypes.h> 144 #endif 145 146 /* 147 ** The following macros are used to cast pointers to integers and 148 ** integers to pointers. The way you do this varies from one compiler 149 ** to the next, so we have developed the following set of #if statements 150 ** to generate appropriate macros for a wide range of compilers. 151 ** 152 ** The correct "ANSI" way to do this is to use the intptr_t type. 153 ** Unfortunately, that typedef is not available on all compilers, or 154 ** if it is available, it requires an #include of specific headers 155 ** that vary from one machine to the next. 156 ** 157 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 158 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 159 ** So we have to define the macros in different ways depending on the 160 ** compiler. 161 */ 162 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 163 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 164 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 165 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 166 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 167 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 168 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 169 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 170 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 171 #else /* Generates a warning - but it always works */ 172 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 173 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 174 #endif 175 176 /* 177 ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to 178 ** something between S (inclusive) and E (exclusive). 179 ** 180 ** In other words, S is a buffer and E is a pointer to the first byte after 181 ** the end of buffer S. This macro returns true if P points to something 182 ** contained within the buffer S. 183 */ 184 #if defined(HAVE_STDINT_H) 185 # define SQLITE_WITHIN(P,S,E) \ 186 ((uintptr_t)(P)>=(uintptr_t)(S) && (uintptr_t)(P)<(uintptr_t)(E)) 187 #else 188 # define SQLITE_WITHIN(P,S,E) ((P)>=(S) && (P)<(E)) 189 #endif 190 191 /* 192 ** A macro to hint to the compiler that a function should not be 193 ** inlined. 194 */ 195 #if defined(__GNUC__) 196 # define SQLITE_NOINLINE __attribute__((noinline)) 197 #elif defined(_MSC_VER) && _MSC_VER>=1310 198 # define SQLITE_NOINLINE __declspec(noinline) 199 #else 200 # define SQLITE_NOINLINE 201 #endif 202 203 /* 204 ** Make sure that the compiler intrinsics we desire are enabled when 205 ** compiling with an appropriate version of MSVC unless prevented by 206 ** the SQLITE_DISABLE_INTRINSIC define. 207 */ 208 #if !defined(SQLITE_DISABLE_INTRINSIC) 209 # if defined(_MSC_VER) && _MSC_VER>=1300 210 # if !defined(_WIN32_WCE) 211 # include <intrin.h> 212 # pragma intrinsic(_byteswap_ushort) 213 # pragma intrinsic(_byteswap_ulong) 214 # pragma intrinsic(_ReadWriteBarrier) 215 # else 216 # include <cmnintrin.h> 217 # endif 218 # endif 219 #endif 220 221 /* 222 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 223 ** 0 means mutexes are permanently disable and the library is never 224 ** threadsafe. 1 means the library is serialized which is the highest 225 ** level of threadsafety. 2 means the library is multithreaded - multiple 226 ** threads can use SQLite as long as no two threads try to use the same 227 ** database connection at the same time. 228 ** 229 ** Older versions of SQLite used an optional THREADSAFE macro. 230 ** We support that for legacy. 231 */ 232 #if !defined(SQLITE_THREADSAFE) 233 # if defined(THREADSAFE) 234 # define SQLITE_THREADSAFE THREADSAFE 235 # else 236 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 237 # endif 238 #endif 239 240 /* 241 ** Powersafe overwrite is on by default. But can be turned off using 242 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 243 */ 244 #ifndef SQLITE_POWERSAFE_OVERWRITE 245 # define SQLITE_POWERSAFE_OVERWRITE 1 246 #endif 247 248 /* 249 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 250 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 251 ** which case memory allocation statistics are disabled by default. 252 */ 253 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 254 # define SQLITE_DEFAULT_MEMSTATUS 1 255 #endif 256 257 /* 258 ** Exactly one of the following macros must be defined in order to 259 ** specify which memory allocation subsystem to use. 260 ** 261 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 262 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 263 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 264 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 265 ** 266 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 267 ** assert() macro is enabled, each call into the Win32 native heap subsystem 268 ** will cause HeapValidate to be called. If heap validation should fail, an 269 ** assertion will be triggered. 270 ** 271 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 272 ** the default. 273 */ 274 #if defined(SQLITE_SYSTEM_MALLOC) \ 275 + defined(SQLITE_WIN32_MALLOC) \ 276 + defined(SQLITE_ZERO_MALLOC) \ 277 + defined(SQLITE_MEMDEBUG)>1 278 # error "Two or more of the following compile-time configuration options\ 279 are defined but at most one is allowed:\ 280 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 281 SQLITE_ZERO_MALLOC" 282 #endif 283 #if defined(SQLITE_SYSTEM_MALLOC) \ 284 + defined(SQLITE_WIN32_MALLOC) \ 285 + defined(SQLITE_ZERO_MALLOC) \ 286 + defined(SQLITE_MEMDEBUG)==0 287 # define SQLITE_SYSTEM_MALLOC 1 288 #endif 289 290 /* 291 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 292 ** sizes of memory allocations below this value where possible. 293 */ 294 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 295 # define SQLITE_MALLOC_SOFT_LIMIT 1024 296 #endif 297 298 /* 299 ** We need to define _XOPEN_SOURCE as follows in order to enable 300 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 301 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 302 ** it. 303 */ 304 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 305 # define _XOPEN_SOURCE 600 306 #endif 307 308 /* 309 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 310 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 311 ** make it true by defining or undefining NDEBUG. 312 ** 313 ** Setting NDEBUG makes the code smaller and faster by disabling the 314 ** assert() statements in the code. So we want the default action 315 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 316 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 317 ** feature. 318 */ 319 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 320 # define NDEBUG 1 321 #endif 322 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 323 # undef NDEBUG 324 #endif 325 326 /* 327 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 328 */ 329 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 330 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 331 #endif 332 333 /* 334 ** The testcase() macro is used to aid in coverage testing. When 335 ** doing coverage testing, the condition inside the argument to 336 ** testcase() must be evaluated both true and false in order to 337 ** get full branch coverage. The testcase() macro is inserted 338 ** to help ensure adequate test coverage in places where simple 339 ** condition/decision coverage is inadequate. For example, testcase() 340 ** can be used to make sure boundary values are tested. For 341 ** bitmask tests, testcase() can be used to make sure each bit 342 ** is significant and used at least once. On switch statements 343 ** where multiple cases go to the same block of code, testcase() 344 ** can insure that all cases are evaluated. 345 ** 346 */ 347 #ifdef SQLITE_COVERAGE_TEST 348 void sqlite3Coverage(int); 349 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 350 #else 351 # define testcase(X) 352 #endif 353 354 /* 355 ** The TESTONLY macro is used to enclose variable declarations or 356 ** other bits of code that are needed to support the arguments 357 ** within testcase() and assert() macros. 358 */ 359 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 360 # define TESTONLY(X) X 361 #else 362 # define TESTONLY(X) 363 #endif 364 365 /* 366 ** Sometimes we need a small amount of code such as a variable initialization 367 ** to setup for a later assert() statement. We do not want this code to 368 ** appear when assert() is disabled. The following macro is therefore 369 ** used to contain that setup code. The "VVA" acronym stands for 370 ** "Verification, Validation, and Accreditation". In other words, the 371 ** code within VVA_ONLY() will only run during verification processes. 372 */ 373 #ifndef NDEBUG 374 # define VVA_ONLY(X) X 375 #else 376 # define VVA_ONLY(X) 377 #endif 378 379 /* 380 ** The ALWAYS and NEVER macros surround boolean expressions which 381 ** are intended to always be true or false, respectively. Such 382 ** expressions could be omitted from the code completely. But they 383 ** are included in a few cases in order to enhance the resilience 384 ** of SQLite to unexpected behavior - to make the code "self-healing" 385 ** or "ductile" rather than being "brittle" and crashing at the first 386 ** hint of unplanned behavior. 387 ** 388 ** In other words, ALWAYS and NEVER are added for defensive code. 389 ** 390 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 391 ** be true and false so that the unreachable code they specify will 392 ** not be counted as untested code. 393 */ 394 #if defined(SQLITE_COVERAGE_TEST) 395 # define ALWAYS(X) (1) 396 # define NEVER(X) (0) 397 #elif !defined(NDEBUG) 398 # define ALWAYS(X) ((X)?1:(assert(0),0)) 399 # define NEVER(X) ((X)?(assert(0),1):0) 400 #else 401 # define ALWAYS(X) (X) 402 # define NEVER(X) (X) 403 #endif 404 405 /* 406 ** Declarations used for tracing the operating system interfaces. 407 */ 408 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 409 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 410 extern int sqlite3OSTrace; 411 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 412 # define SQLITE_HAVE_OS_TRACE 413 #else 414 # define OSTRACE(X) 415 # undef SQLITE_HAVE_OS_TRACE 416 #endif 417 418 /* 419 ** Is the sqlite3ErrName() function needed in the build? Currently, 420 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 421 ** OSTRACE is enabled), and by several "test*.c" files (which are 422 ** compiled using SQLITE_TEST). 423 */ 424 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 425 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 426 # define SQLITE_NEED_ERR_NAME 427 #else 428 # undef SQLITE_NEED_ERR_NAME 429 #endif 430 431 /* 432 ** Return true (non-zero) if the input is an integer that is too large 433 ** to fit in 32-bits. This macro is used inside of various testcase() 434 ** macros to verify that we have tested SQLite for large-file support. 435 */ 436 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 437 438 /* 439 ** The macro unlikely() is a hint that surrounds a boolean 440 ** expression that is usually false. Macro likely() surrounds 441 ** a boolean expression that is usually true. These hints could, 442 ** in theory, be used by the compiler to generate better code, but 443 ** currently they are just comments for human readers. 444 */ 445 #define likely(X) (X) 446 #define unlikely(X) (X) 447 448 #include "hash.h" 449 #include "parse.h" 450 #include <stdio.h> 451 #include <stdlib.h> 452 #include <string.h> 453 #include <assert.h> 454 #include <stddef.h> 455 456 /* 457 ** If compiling for a processor that lacks floating point support, 458 ** substitute integer for floating-point 459 */ 460 #ifdef SQLITE_OMIT_FLOATING_POINT 461 # define double sqlite_int64 462 # define float sqlite_int64 463 # define LONGDOUBLE_TYPE sqlite_int64 464 # ifndef SQLITE_BIG_DBL 465 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 466 # endif 467 # define SQLITE_OMIT_DATETIME_FUNCS 1 468 # define SQLITE_OMIT_TRACE 1 469 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 470 # undef SQLITE_HAVE_ISNAN 471 #endif 472 #ifndef SQLITE_BIG_DBL 473 # define SQLITE_BIG_DBL (1e99) 474 #endif 475 476 /* 477 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 478 ** afterward. Having this macro allows us to cause the C compiler 479 ** to omit code used by TEMP tables without messy #ifndef statements. 480 */ 481 #ifdef SQLITE_OMIT_TEMPDB 482 #define OMIT_TEMPDB 1 483 #else 484 #define OMIT_TEMPDB 0 485 #endif 486 487 /* 488 ** The "file format" number is an integer that is incremented whenever 489 ** the VDBE-level file format changes. The following macros define the 490 ** the default file format for new databases and the maximum file format 491 ** that the library can read. 492 */ 493 #define SQLITE_MAX_FILE_FORMAT 4 494 #ifndef SQLITE_DEFAULT_FILE_FORMAT 495 # define SQLITE_DEFAULT_FILE_FORMAT 4 496 #endif 497 498 /* 499 ** Determine whether triggers are recursive by default. This can be 500 ** changed at run-time using a pragma. 501 */ 502 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 503 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 504 #endif 505 506 /* 507 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 508 ** on the command-line 509 */ 510 #ifndef SQLITE_TEMP_STORE 511 # define SQLITE_TEMP_STORE 1 512 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 513 #endif 514 515 /* 516 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 517 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 518 ** to zero. 519 */ 520 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 521 # undef SQLITE_MAX_WORKER_THREADS 522 # define SQLITE_MAX_WORKER_THREADS 0 523 #endif 524 #ifndef SQLITE_MAX_WORKER_THREADS 525 # define SQLITE_MAX_WORKER_THREADS 8 526 #endif 527 #ifndef SQLITE_DEFAULT_WORKER_THREADS 528 # define SQLITE_DEFAULT_WORKER_THREADS 0 529 #endif 530 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 531 # undef SQLITE_MAX_WORKER_THREADS 532 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 533 #endif 534 535 /* 536 ** The default initial allocation for the pagecache when using separate 537 ** pagecaches for each database connection. A positive number is the 538 ** number of pages. A negative number N translations means that a buffer 539 ** of -1024*N bytes is allocated and used for as many pages as it will hold. 540 */ 541 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ 542 # define SQLITE_DEFAULT_PCACHE_INITSZ 100 543 #endif 544 545 /* 546 ** GCC does not define the offsetof() macro so we'll have to do it 547 ** ourselves. 548 */ 549 #ifndef offsetof 550 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 551 #endif 552 553 /* 554 ** Macros to compute minimum and maximum of two numbers. 555 */ 556 #define MIN(A,B) ((A)<(B)?(A):(B)) 557 #define MAX(A,B) ((A)>(B)?(A):(B)) 558 559 /* 560 ** Swap two objects of type TYPE. 561 */ 562 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 563 564 /* 565 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 566 ** not, there are still machines out there that use EBCDIC.) 567 */ 568 #if 'A' == '\301' 569 # define SQLITE_EBCDIC 1 570 #else 571 # define SQLITE_ASCII 1 572 #endif 573 574 /* 575 ** Integers of known sizes. These typedefs might change for architectures 576 ** where the sizes very. Preprocessor macros are available so that the 577 ** types can be conveniently redefined at compile-type. Like this: 578 ** 579 ** cc '-DUINTPTR_TYPE=long long int' ... 580 */ 581 #ifndef UINT32_TYPE 582 # ifdef HAVE_UINT32_T 583 # define UINT32_TYPE uint32_t 584 # else 585 # define UINT32_TYPE unsigned int 586 # endif 587 #endif 588 #ifndef UINT16_TYPE 589 # ifdef HAVE_UINT16_T 590 # define UINT16_TYPE uint16_t 591 # else 592 # define UINT16_TYPE unsigned short int 593 # endif 594 #endif 595 #ifndef INT16_TYPE 596 # ifdef HAVE_INT16_T 597 # define INT16_TYPE int16_t 598 # else 599 # define INT16_TYPE short int 600 # endif 601 #endif 602 #ifndef UINT8_TYPE 603 # ifdef HAVE_UINT8_T 604 # define UINT8_TYPE uint8_t 605 # else 606 # define UINT8_TYPE unsigned char 607 # endif 608 #endif 609 #ifndef INT8_TYPE 610 # ifdef HAVE_INT8_T 611 # define INT8_TYPE int8_t 612 # else 613 # define INT8_TYPE signed char 614 # endif 615 #endif 616 #ifndef LONGDOUBLE_TYPE 617 # define LONGDOUBLE_TYPE long double 618 #endif 619 typedef sqlite_int64 i64; /* 8-byte signed integer */ 620 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 621 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 622 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 623 typedef INT16_TYPE i16; /* 2-byte signed integer */ 624 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 625 typedef INT8_TYPE i8; /* 1-byte signed integer */ 626 627 /* 628 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 629 ** that can be stored in a u32 without loss of data. The value 630 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 631 ** have to specify the value in the less intuitive manner shown: 632 */ 633 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 634 635 /* 636 ** The datatype used to store estimates of the number of rows in a 637 ** table or index. This is an unsigned integer type. For 99.9% of 638 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 639 ** can be used at compile-time if desired. 640 */ 641 #ifdef SQLITE_64BIT_STATS 642 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 643 #else 644 typedef u32 tRowcnt; /* 32-bit is the default */ 645 #endif 646 647 /* 648 ** Estimated quantities used for query planning are stored as 16-bit 649 ** logarithms. For quantity X, the value stored is 10*log2(X). This 650 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 651 ** But the allowed values are "grainy". Not every value is representable. 652 ** For example, quantities 16 and 17 are both represented by a LogEst 653 ** of 40. However, since LogEst quantities are suppose to be estimates, 654 ** not exact values, this imprecision is not a problem. 655 ** 656 ** "LogEst" is short for "Logarithmic Estimate". 657 ** 658 ** Examples: 659 ** 1 -> 0 20 -> 43 10000 -> 132 660 ** 2 -> 10 25 -> 46 25000 -> 146 661 ** 3 -> 16 100 -> 66 1000000 -> 199 662 ** 4 -> 20 1000 -> 99 1048576 -> 200 663 ** 10 -> 33 1024 -> 100 4294967296 -> 320 664 ** 665 ** The LogEst can be negative to indicate fractional values. 666 ** Examples: 667 ** 668 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 669 */ 670 typedef INT16_TYPE LogEst; 671 672 /* 673 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 674 */ 675 #ifndef SQLITE_PTRSIZE 676 # if defined(__SIZEOF_POINTER__) 677 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 678 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 679 defined(_M_ARM) || defined(__arm__) || defined(__x86) 680 # define SQLITE_PTRSIZE 4 681 # else 682 # define SQLITE_PTRSIZE 8 683 # endif 684 #endif 685 686 /* 687 ** Macros to determine whether the machine is big or little endian, 688 ** and whether or not that determination is run-time or compile-time. 689 ** 690 ** For best performance, an attempt is made to guess at the byte-order 691 ** using C-preprocessor macros. If that is unsuccessful, or if 692 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 693 ** at run-time. 694 */ 695 #ifdef SQLITE_AMALGAMATION 696 const int sqlite3one = 1; 697 #else 698 extern const int sqlite3one; 699 #endif 700 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 701 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 702 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 703 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 704 # define SQLITE_BYTEORDER 1234 705 # define SQLITE_BIGENDIAN 0 706 # define SQLITE_LITTLEENDIAN 1 707 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 708 #endif 709 #if (defined(sparc) || defined(__ppc__)) \ 710 && !defined(SQLITE_RUNTIME_BYTEORDER) 711 # define SQLITE_BYTEORDER 4321 712 # define SQLITE_BIGENDIAN 1 713 # define SQLITE_LITTLEENDIAN 0 714 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 715 #endif 716 #if !defined(SQLITE_BYTEORDER) 717 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 718 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 719 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 720 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 721 #endif 722 723 /* 724 ** Constants for the largest and smallest possible 64-bit signed integers. 725 ** These macros are designed to work correctly on both 32-bit and 64-bit 726 ** compilers. 727 */ 728 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 729 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 730 731 /* 732 ** Round up a number to the next larger multiple of 8. This is used 733 ** to force 8-byte alignment on 64-bit architectures. 734 */ 735 #define ROUND8(x) (((x)+7)&~7) 736 737 /* 738 ** Round down to the nearest multiple of 8 739 */ 740 #define ROUNDDOWN8(x) ((x)&~7) 741 742 /* 743 ** Assert that the pointer X is aligned to an 8-byte boundary. This 744 ** macro is used only within assert() to verify that the code gets 745 ** all alignment restrictions correct. 746 ** 747 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 748 ** underlying malloc() implementation might return us 4-byte aligned 749 ** pointers. In that case, only verify 4-byte alignment. 750 */ 751 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 752 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 753 #else 754 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 755 #endif 756 757 /* 758 ** Disable MMAP on platforms where it is known to not work 759 */ 760 #if defined(__OpenBSD__) || defined(__QNXNTO__) 761 # undef SQLITE_MAX_MMAP_SIZE 762 # define SQLITE_MAX_MMAP_SIZE 0 763 #endif 764 765 /* 766 ** Default maximum size of memory used by memory-mapped I/O in the VFS 767 */ 768 #ifdef __APPLE__ 769 # include <TargetConditionals.h> 770 # if TARGET_OS_IPHONE 771 # undef SQLITE_MAX_MMAP_SIZE 772 # define SQLITE_MAX_MMAP_SIZE 0 773 # endif 774 #endif 775 #ifndef SQLITE_MAX_MMAP_SIZE 776 # if defined(__linux__) \ 777 || defined(_WIN32) \ 778 || (defined(__APPLE__) && defined(__MACH__)) \ 779 || defined(__sun) \ 780 || defined(__FreeBSD__) \ 781 || defined(__DragonFly__) 782 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 783 # else 784 # define SQLITE_MAX_MMAP_SIZE 0 785 # endif 786 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 787 #endif 788 789 /* 790 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 791 ** default MMAP_SIZE is specified at compile-time, make sure that it does 792 ** not exceed the maximum mmap size. 793 */ 794 #ifndef SQLITE_DEFAULT_MMAP_SIZE 795 # define SQLITE_DEFAULT_MMAP_SIZE 0 796 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 797 #endif 798 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 799 # undef SQLITE_DEFAULT_MMAP_SIZE 800 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 801 #endif 802 803 /* 804 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 805 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 806 ** define SQLITE_ENABLE_STAT3_OR_STAT4 807 */ 808 #ifdef SQLITE_ENABLE_STAT4 809 # undef SQLITE_ENABLE_STAT3 810 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 811 #elif SQLITE_ENABLE_STAT3 812 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 813 #elif SQLITE_ENABLE_STAT3_OR_STAT4 814 # undef SQLITE_ENABLE_STAT3_OR_STAT4 815 #endif 816 817 /* 818 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 819 ** the Select query generator tracing logic is turned on. 820 */ 821 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 822 # define SELECTTRACE_ENABLED 1 823 #else 824 # define SELECTTRACE_ENABLED 0 825 #endif 826 827 /* 828 ** An instance of the following structure is used to store the busy-handler 829 ** callback for a given sqlite handle. 830 ** 831 ** The sqlite.busyHandler member of the sqlite struct contains the busy 832 ** callback for the database handle. Each pager opened via the sqlite 833 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 834 ** callback is currently invoked only from within pager.c. 835 */ 836 typedef struct BusyHandler BusyHandler; 837 struct BusyHandler { 838 int (*xFunc)(void *,int); /* The busy callback */ 839 void *pArg; /* First arg to busy callback */ 840 int nBusy; /* Incremented with each busy call */ 841 }; 842 843 /* 844 ** Name of the master database table. The master database table 845 ** is a special table that holds the names and attributes of all 846 ** user tables and indices. 847 */ 848 #define MASTER_NAME "sqlite_master" 849 #define TEMP_MASTER_NAME "sqlite_temp_master" 850 851 /* 852 ** The root-page of the master database table. 853 */ 854 #define MASTER_ROOT 1 855 856 /* 857 ** The name of the schema table. 858 */ 859 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 860 861 /* 862 ** A convenience macro that returns the number of elements in 863 ** an array. 864 */ 865 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 866 867 /* 868 ** Determine if the argument is a power of two 869 */ 870 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 871 872 /* 873 ** The following value as a destructor means to use sqlite3DbFree(). 874 ** The sqlite3DbFree() routine requires two parameters instead of the 875 ** one parameter that destructors normally want. So we have to introduce 876 ** this magic value that the code knows to handle differently. Any 877 ** pointer will work here as long as it is distinct from SQLITE_STATIC 878 ** and SQLITE_TRANSIENT. 879 */ 880 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 881 882 /* 883 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 884 ** not support Writable Static Data (WSD) such as global and static variables. 885 ** All variables must either be on the stack or dynamically allocated from 886 ** the heap. When WSD is unsupported, the variable declarations scattered 887 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 888 ** macro is used for this purpose. And instead of referencing the variable 889 ** directly, we use its constant as a key to lookup the run-time allocated 890 ** buffer that holds real variable. The constant is also the initializer 891 ** for the run-time allocated buffer. 892 ** 893 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 894 ** macros become no-ops and have zero performance impact. 895 */ 896 #ifdef SQLITE_OMIT_WSD 897 #define SQLITE_WSD const 898 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 899 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 900 int sqlite3_wsd_init(int N, int J); 901 void *sqlite3_wsd_find(void *K, int L); 902 #else 903 #define SQLITE_WSD 904 #define GLOBAL(t,v) v 905 #define sqlite3GlobalConfig sqlite3Config 906 #endif 907 908 /* 909 ** The following macros are used to suppress compiler warnings and to 910 ** make it clear to human readers when a function parameter is deliberately 911 ** left unused within the body of a function. This usually happens when 912 ** a function is called via a function pointer. For example the 913 ** implementation of an SQL aggregate step callback may not use the 914 ** parameter indicating the number of arguments passed to the aggregate, 915 ** if it knows that this is enforced elsewhere. 916 ** 917 ** When a function parameter is not used at all within the body of a function, 918 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 919 ** However, these macros may also be used to suppress warnings related to 920 ** parameters that may or may not be used depending on compilation options. 921 ** For example those parameters only used in assert() statements. In these 922 ** cases the parameters are named as per the usual conventions. 923 */ 924 #define UNUSED_PARAMETER(x) (void)(x) 925 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 926 927 /* 928 ** Forward references to structures 929 */ 930 typedef struct AggInfo AggInfo; 931 typedef struct AuthContext AuthContext; 932 typedef struct AutoincInfo AutoincInfo; 933 typedef struct Bitvec Bitvec; 934 typedef struct CollSeq CollSeq; 935 typedef struct Column Column; 936 typedef struct Db Db; 937 typedef struct Schema Schema; 938 typedef struct Expr Expr; 939 typedef struct ExprList ExprList; 940 typedef struct ExprSpan ExprSpan; 941 typedef struct FKey FKey; 942 typedef struct FuncDestructor FuncDestructor; 943 typedef struct FuncDef FuncDef; 944 typedef struct FuncDefHash FuncDefHash; 945 typedef struct IdList IdList; 946 typedef struct Index Index; 947 typedef struct IndexSample IndexSample; 948 typedef struct KeyClass KeyClass; 949 typedef struct KeyInfo KeyInfo; 950 typedef struct Lookaside Lookaside; 951 typedef struct LookasideSlot LookasideSlot; 952 typedef struct Module Module; 953 typedef struct NameContext NameContext; 954 typedef struct Parse Parse; 955 typedef struct PrintfArguments PrintfArguments; 956 typedef struct RowSet RowSet; 957 typedef struct Savepoint Savepoint; 958 typedef struct Select Select; 959 typedef struct SQLiteThread SQLiteThread; 960 typedef struct SelectDest SelectDest; 961 typedef struct SrcList SrcList; 962 typedef struct StrAccum StrAccum; 963 typedef struct Table Table; 964 typedef struct TableLock TableLock; 965 typedef struct Token Token; 966 typedef struct TreeView TreeView; 967 typedef struct Trigger Trigger; 968 typedef struct TriggerPrg TriggerPrg; 969 typedef struct TriggerStep TriggerStep; 970 typedef struct UnpackedRecord UnpackedRecord; 971 typedef struct VTable VTable; 972 typedef struct VtabCtx VtabCtx; 973 typedef struct Walker Walker; 974 typedef struct WhereInfo WhereInfo; 975 typedef struct With With; 976 977 /* 978 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 979 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 980 ** pointer types (i.e. FuncDef) defined above. 981 */ 982 #include "btree.h" 983 #include "vdbe.h" 984 #include "pager.h" 985 #include "pcache.h" 986 987 #include "os.h" 988 #include "mutex.h" 989 990 991 /* 992 ** Each database file to be accessed by the system is an instance 993 ** of the following structure. There are normally two of these structures 994 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 995 ** aDb[1] is the database file used to hold temporary tables. Additional 996 ** databases may be attached. 997 */ 998 struct Db { 999 char *zName; /* Name of this database */ 1000 Btree *pBt; /* The B*Tree structure for this database file */ 1001 u8 safety_level; /* How aggressive at syncing data to disk */ 1002 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 1003 }; 1004 1005 /* 1006 ** An instance of the following structure stores a database schema. 1007 ** 1008 ** Most Schema objects are associated with a Btree. The exception is 1009 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 1010 ** In shared cache mode, a single Schema object can be shared by multiple 1011 ** Btrees that refer to the same underlying BtShared object. 1012 ** 1013 ** Schema objects are automatically deallocated when the last Btree that 1014 ** references them is destroyed. The TEMP Schema is manually freed by 1015 ** sqlite3_close(). 1016 * 1017 ** A thread must be holding a mutex on the corresponding Btree in order 1018 ** to access Schema content. This implies that the thread must also be 1019 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 1020 ** For a TEMP Schema, only the connection mutex is required. 1021 */ 1022 struct Schema { 1023 int schema_cookie; /* Database schema version number for this file */ 1024 int iGeneration; /* Generation counter. Incremented with each change */ 1025 Hash tblHash; /* All tables indexed by name */ 1026 Hash idxHash; /* All (named) indices indexed by name */ 1027 Hash trigHash; /* All triggers indexed by name */ 1028 Hash fkeyHash; /* All foreign keys by referenced table name */ 1029 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 1030 u8 file_format; /* Schema format version for this file */ 1031 u8 enc; /* Text encoding used by this database */ 1032 u16 schemaFlags; /* Flags associated with this schema */ 1033 int cache_size; /* Number of pages to use in the cache */ 1034 }; 1035 1036 /* 1037 ** These macros can be used to test, set, or clear bits in the 1038 ** Db.pSchema->flags field. 1039 */ 1040 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 1041 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 1042 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 1043 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 1044 1045 /* 1046 ** Allowed values for the DB.pSchema->flags field. 1047 ** 1048 ** The DB_SchemaLoaded flag is set after the database schema has been 1049 ** read into internal hash tables. 1050 ** 1051 ** DB_UnresetViews means that one or more views have column names that 1052 ** have been filled out. If the schema changes, these column names might 1053 ** changes and so the view will need to be reset. 1054 */ 1055 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1056 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1057 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1058 1059 /* 1060 ** The number of different kinds of things that can be limited 1061 ** using the sqlite3_limit() interface. 1062 */ 1063 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1064 1065 /* 1066 ** Lookaside malloc is a set of fixed-size buffers that can be used 1067 ** to satisfy small transient memory allocation requests for objects 1068 ** associated with a particular database connection. The use of 1069 ** lookaside malloc provides a significant performance enhancement 1070 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1071 ** SQL statements. 1072 ** 1073 ** The Lookaside structure holds configuration information about the 1074 ** lookaside malloc subsystem. Each available memory allocation in 1075 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1076 ** objects. 1077 ** 1078 ** Lookaside allocations are only allowed for objects that are associated 1079 ** with a particular database connection. Hence, schema information cannot 1080 ** be stored in lookaside because in shared cache mode the schema information 1081 ** is shared by multiple database connections. Therefore, while parsing 1082 ** schema information, the Lookaside.bEnabled flag is cleared so that 1083 ** lookaside allocations are not used to construct the schema objects. 1084 */ 1085 struct Lookaside { 1086 u16 sz; /* Size of each buffer in bytes */ 1087 u8 bEnabled; /* False to disable new lookaside allocations */ 1088 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1089 int nOut; /* Number of buffers currently checked out */ 1090 int mxOut; /* Highwater mark for nOut */ 1091 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1092 LookasideSlot *pFree; /* List of available buffers */ 1093 void *pStart; /* First byte of available memory space */ 1094 void *pEnd; /* First byte past end of available space */ 1095 }; 1096 struct LookasideSlot { 1097 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1098 }; 1099 1100 /* 1101 ** A hash table for function definitions. 1102 ** 1103 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1104 ** Collisions are on the FuncDef.pHash chain. 1105 */ 1106 struct FuncDefHash { 1107 FuncDef *a[23]; /* Hash table for functions */ 1108 }; 1109 1110 #ifdef SQLITE_USER_AUTHENTICATION 1111 /* 1112 ** Information held in the "sqlite3" database connection object and used 1113 ** to manage user authentication. 1114 */ 1115 typedef struct sqlite3_userauth sqlite3_userauth; 1116 struct sqlite3_userauth { 1117 u8 authLevel; /* Current authentication level */ 1118 int nAuthPW; /* Size of the zAuthPW in bytes */ 1119 char *zAuthPW; /* Password used to authenticate */ 1120 char *zAuthUser; /* User name used to authenticate */ 1121 }; 1122 1123 /* Allowed values for sqlite3_userauth.authLevel */ 1124 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1125 #define UAUTH_Fail 1 /* User authentication failed */ 1126 #define UAUTH_User 2 /* Authenticated as a normal user */ 1127 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1128 1129 /* Functions used only by user authorization logic */ 1130 int sqlite3UserAuthTable(const char*); 1131 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1132 void sqlite3UserAuthInit(sqlite3*); 1133 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1134 1135 #endif /* SQLITE_USER_AUTHENTICATION */ 1136 1137 /* 1138 ** typedef for the authorization callback function. 1139 */ 1140 #ifdef SQLITE_USER_AUTHENTICATION 1141 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1142 const char*, const char*); 1143 #else 1144 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1145 const char*); 1146 #endif 1147 1148 1149 /* 1150 ** Each database connection is an instance of the following structure. 1151 */ 1152 struct sqlite3 { 1153 sqlite3_vfs *pVfs; /* OS Interface */ 1154 struct Vdbe *pVdbe; /* List of active virtual machines */ 1155 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1156 sqlite3_mutex *mutex; /* Connection mutex */ 1157 Db *aDb; /* All backends */ 1158 int nDb; /* Number of backends currently in use */ 1159 int flags; /* Miscellaneous flags. See below */ 1160 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1161 i64 szMmap; /* Default mmap_size setting */ 1162 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1163 int errCode; /* Most recent error code (SQLITE_*) */ 1164 int errMask; /* & result codes with this before returning */ 1165 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1166 u8 enc; /* Text encoding */ 1167 u8 autoCommit; /* The auto-commit flag. */ 1168 u8 temp_store; /* 1: file 2: memory 0: default */ 1169 u8 mallocFailed; /* True if we have seen a malloc failure */ 1170 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1171 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1172 u8 suppressErr; /* Do not issue error messages if true */ 1173 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1174 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1175 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1176 u32 magic; /* Magic number for detect library misuse */ 1177 int nChange; /* Value returned by sqlite3_changes() */ 1178 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1179 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1180 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1181 struct sqlite3InitInfo { /* Information used during initialization */ 1182 int newTnum; /* Rootpage of table being initialized */ 1183 u8 iDb; /* Which db file is being initialized */ 1184 u8 busy; /* TRUE if currently initializing */ 1185 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1186 u8 imposterTable; /* Building an imposter table */ 1187 } init; 1188 int nVdbeActive; /* Number of VDBEs currently running */ 1189 int nVdbeRead; /* Number of active VDBEs that read or write */ 1190 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1191 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1192 int nVDestroy; /* Number of active OP_VDestroy operations */ 1193 int nExtension; /* Number of loaded extensions */ 1194 void **aExtension; /* Array of shared library handles */ 1195 void (*xTrace)(void*,const char*); /* Trace function */ 1196 void *pTraceArg; /* Argument to the trace function */ 1197 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1198 void *pProfileArg; /* Argument to profile function */ 1199 void *pCommitArg; /* Argument to xCommitCallback() */ 1200 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1201 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1202 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1203 void *pUpdateArg; 1204 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1205 #ifndef SQLITE_OMIT_WAL 1206 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1207 void *pWalArg; 1208 #endif 1209 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1210 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1211 void *pCollNeededArg; 1212 sqlite3_value *pErr; /* Most recent error message */ 1213 union { 1214 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1215 double notUsed1; /* Spacer */ 1216 } u1; 1217 Lookaside lookaside; /* Lookaside malloc configuration */ 1218 #ifndef SQLITE_OMIT_AUTHORIZATION 1219 sqlite3_xauth xAuth; /* Access authorization function */ 1220 void *pAuthArg; /* 1st argument to the access auth function */ 1221 #endif 1222 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1223 int (*xProgress)(void *); /* The progress callback */ 1224 void *pProgressArg; /* Argument to the progress callback */ 1225 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1226 #endif 1227 #ifndef SQLITE_OMIT_VIRTUALTABLE 1228 int nVTrans; /* Allocated size of aVTrans */ 1229 Hash aModule; /* populated by sqlite3_create_module() */ 1230 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1231 VTable **aVTrans; /* Virtual tables with open transactions */ 1232 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1233 #endif 1234 FuncDefHash aFunc; /* Hash table of connection functions */ 1235 Hash aCollSeq; /* All collating sequences */ 1236 BusyHandler busyHandler; /* Busy callback */ 1237 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1238 Savepoint *pSavepoint; /* List of active savepoints */ 1239 int busyTimeout; /* Busy handler timeout, in msec */ 1240 int nSavepoint; /* Number of non-transaction savepoints */ 1241 int nStatement; /* Number of nested statement-transactions */ 1242 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1243 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1244 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1245 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1246 /* The following variables are all protected by the STATIC_MASTER 1247 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1248 ** 1249 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1250 ** unlock so that it can proceed. 1251 ** 1252 ** When X.pBlockingConnection==Y, that means that something that X tried 1253 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1254 ** held by Y. 1255 */ 1256 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1257 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1258 void *pUnlockArg; /* Argument to xUnlockNotify */ 1259 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1260 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1261 #endif 1262 #ifdef SQLITE_USER_AUTHENTICATION 1263 sqlite3_userauth auth; /* User authentication information */ 1264 #endif 1265 }; 1266 1267 /* 1268 ** A macro to discover the encoding of a database. 1269 */ 1270 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1271 #define ENC(db) ((db)->enc) 1272 1273 /* 1274 ** Possible values for the sqlite3.flags. 1275 */ 1276 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1277 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1278 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1279 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1280 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1281 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1282 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1283 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1284 /* DELETE, or UPDATE and return */ 1285 /* the count using a callback. */ 1286 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1287 /* result set is empty */ 1288 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1289 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1290 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1291 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1292 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1293 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1294 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1295 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1296 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1297 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1298 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1299 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1300 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1301 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1302 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1303 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1304 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1305 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1306 #define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */ 1307 #define SQLITE_CellSizeCk 0x10000000 /* Check btree cell sizes on load */ 1308 1309 1310 /* 1311 ** Bits of the sqlite3.dbOptFlags field that are used by the 1312 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1313 ** selectively disable various optimizations. 1314 */ 1315 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1316 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1317 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1318 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1319 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1320 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1321 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1322 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1323 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1324 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1325 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1326 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1327 #define SQLITE_CursorHints 0x2000 /* Add OP_CursorHint opcodes */ 1328 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1329 1330 /* 1331 ** Macros for testing whether or not optimizations are enabled or disabled. 1332 */ 1333 #ifndef SQLITE_OMIT_BUILTIN_TEST 1334 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1335 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1336 #else 1337 #define OptimizationDisabled(db, mask) 0 1338 #define OptimizationEnabled(db, mask) 1 1339 #endif 1340 1341 /* 1342 ** Return true if it OK to factor constant expressions into the initialization 1343 ** code. The argument is a Parse object for the code generator. 1344 */ 1345 #define ConstFactorOk(P) ((P)->okConstFactor) 1346 1347 /* 1348 ** Possible values for the sqlite.magic field. 1349 ** The numbers are obtained at random and have no special meaning, other 1350 ** than being distinct from one another. 1351 */ 1352 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1353 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1354 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1355 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1356 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1357 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1358 1359 /* 1360 ** Each SQL function is defined by an instance of the following 1361 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1362 ** hash table. When multiple functions have the same name, the hash table 1363 ** points to a linked list of these structures. 1364 */ 1365 struct FuncDef { 1366 i16 nArg; /* Number of arguments. -1 means unlimited */ 1367 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1368 void *pUserData; /* User data parameter */ 1369 FuncDef *pNext; /* Next function with same name */ 1370 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1371 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1372 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1373 char *zName; /* SQL name of the function. */ 1374 FuncDef *pHash; /* Next with a different name but the same hash */ 1375 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1376 }; 1377 1378 /* 1379 ** This structure encapsulates a user-function destructor callback (as 1380 ** configured using create_function_v2()) and a reference counter. When 1381 ** create_function_v2() is called to create a function with a destructor, 1382 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1383 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1384 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1385 ** member of each of the new FuncDef objects is set to point to the allocated 1386 ** FuncDestructor. 1387 ** 1388 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1389 ** count on this object is decremented. When it reaches 0, the destructor 1390 ** is invoked and the FuncDestructor structure freed. 1391 */ 1392 struct FuncDestructor { 1393 int nRef; 1394 void (*xDestroy)(void *); 1395 void *pUserData; 1396 }; 1397 1398 /* 1399 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1400 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And 1401 ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There 1402 ** are assert() statements in the code to verify this. 1403 */ 1404 #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1405 #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ 1406 #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ 1407 #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ 1408 #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ 1409 #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ 1410 #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ 1411 #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ 1412 #define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */ 1413 #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ 1414 #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ 1415 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1416 #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a 1417 ** single query - might change over time */ 1418 1419 /* 1420 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1421 ** used to create the initializers for the FuncDef structures. 1422 ** 1423 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1424 ** Used to create a scalar function definition of a function zName 1425 ** implemented by C function xFunc that accepts nArg arguments. The 1426 ** value passed as iArg is cast to a (void*) and made available 1427 ** as the user-data (sqlite3_user_data()) for the function. If 1428 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1429 ** 1430 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1431 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1432 ** 1433 ** DFUNCTION(zName, nArg, iArg, bNC, xFunc) 1434 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and 1435 ** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions 1436 ** and functions like sqlite_version() that can change, but not during 1437 ** a single query. 1438 ** 1439 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1440 ** Used to create an aggregate function definition implemented by 1441 ** the C functions xStep and xFinal. The first four parameters 1442 ** are interpreted in the same way as the first 4 parameters to 1443 ** FUNCTION(). 1444 ** 1445 ** LIKEFUNC(zName, nArg, pArg, flags) 1446 ** Used to create a scalar function definition of a function zName 1447 ** that accepts nArg arguments and is implemented by a call to C 1448 ** function likeFunc. Argument pArg is cast to a (void *) and made 1449 ** available as the function user-data (sqlite3_user_data()). The 1450 ** FuncDef.flags variable is set to the value passed as the flags 1451 ** parameter. 1452 */ 1453 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1454 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1455 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1456 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1457 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1458 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1459 #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1460 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1461 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1462 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1463 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1464 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1465 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1466 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1467 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1468 #define LIKEFUNC(zName, nArg, arg, flags) \ 1469 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1470 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1471 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1472 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1473 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1474 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1475 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1476 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1477 1478 /* 1479 ** All current savepoints are stored in a linked list starting at 1480 ** sqlite3.pSavepoint. The first element in the list is the most recently 1481 ** opened savepoint. Savepoints are added to the list by the vdbe 1482 ** OP_Savepoint instruction. 1483 */ 1484 struct Savepoint { 1485 char *zName; /* Savepoint name (nul-terminated) */ 1486 i64 nDeferredCons; /* Number of deferred fk violations */ 1487 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1488 Savepoint *pNext; /* Parent savepoint (if any) */ 1489 }; 1490 1491 /* 1492 ** The following are used as the second parameter to sqlite3Savepoint(), 1493 ** and as the P1 argument to the OP_Savepoint instruction. 1494 */ 1495 #define SAVEPOINT_BEGIN 0 1496 #define SAVEPOINT_RELEASE 1 1497 #define SAVEPOINT_ROLLBACK 2 1498 1499 1500 /* 1501 ** Each SQLite module (virtual table definition) is defined by an 1502 ** instance of the following structure, stored in the sqlite3.aModule 1503 ** hash table. 1504 */ 1505 struct Module { 1506 const sqlite3_module *pModule; /* Callback pointers */ 1507 const char *zName; /* Name passed to create_module() */ 1508 void *pAux; /* pAux passed to create_module() */ 1509 void (*xDestroy)(void *); /* Module destructor function */ 1510 Table *pEpoTab; /* Eponymous table for this module */ 1511 }; 1512 1513 /* 1514 ** information about each column of an SQL table is held in an instance 1515 ** of this structure. 1516 */ 1517 struct Column { 1518 char *zName; /* Name of this column */ 1519 Expr *pDflt; /* Default value of this column */ 1520 char *zDflt; /* Original text of the default value */ 1521 char *zType; /* Data type for this column */ 1522 char *zColl; /* Collating sequence. If NULL, use the default */ 1523 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1524 char affinity; /* One of the SQLITE_AFF_... values */ 1525 u8 szEst; /* Estimated size of this column. INT==1 */ 1526 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1527 }; 1528 1529 /* Allowed values for Column.colFlags: 1530 */ 1531 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1532 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1533 1534 /* 1535 ** A "Collating Sequence" is defined by an instance of the following 1536 ** structure. Conceptually, a collating sequence consists of a name and 1537 ** a comparison routine that defines the order of that sequence. 1538 ** 1539 ** If CollSeq.xCmp is NULL, it means that the 1540 ** collating sequence is undefined. Indices built on an undefined 1541 ** collating sequence may not be read or written. 1542 */ 1543 struct CollSeq { 1544 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1545 u8 enc; /* Text encoding handled by xCmp() */ 1546 void *pUser; /* First argument to xCmp() */ 1547 int (*xCmp)(void*,int, const void*, int, const void*); 1548 void (*xDel)(void*); /* Destructor for pUser */ 1549 }; 1550 1551 /* 1552 ** A sort order can be either ASC or DESC. 1553 */ 1554 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1555 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1556 #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */ 1557 1558 /* 1559 ** Column affinity types. 1560 ** 1561 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1562 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1563 ** the speed a little by numbering the values consecutively. 1564 ** 1565 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1566 ** when multiple affinity types are concatenated into a string and 1567 ** used as the P4 operand, they will be more readable. 1568 ** 1569 ** Note also that the numeric types are grouped together so that testing 1570 ** for a numeric type is a single comparison. And the BLOB type is first. 1571 */ 1572 #define SQLITE_AFF_BLOB 'A' 1573 #define SQLITE_AFF_TEXT 'B' 1574 #define SQLITE_AFF_NUMERIC 'C' 1575 #define SQLITE_AFF_INTEGER 'D' 1576 #define SQLITE_AFF_REAL 'E' 1577 1578 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1579 1580 /* 1581 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1582 ** affinity value. 1583 */ 1584 #define SQLITE_AFF_MASK 0x47 1585 1586 /* 1587 ** Additional bit values that can be ORed with an affinity without 1588 ** changing the affinity. 1589 ** 1590 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1591 ** It causes an assert() to fire if either operand to a comparison 1592 ** operator is NULL. It is added to certain comparison operators to 1593 ** prove that the operands are always NOT NULL. 1594 */ 1595 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1596 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1597 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1598 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1599 1600 /* 1601 ** An object of this type is created for each virtual table present in 1602 ** the database schema. 1603 ** 1604 ** If the database schema is shared, then there is one instance of this 1605 ** structure for each database connection (sqlite3*) that uses the shared 1606 ** schema. This is because each database connection requires its own unique 1607 ** instance of the sqlite3_vtab* handle used to access the virtual table 1608 ** implementation. sqlite3_vtab* handles can not be shared between 1609 ** database connections, even when the rest of the in-memory database 1610 ** schema is shared, as the implementation often stores the database 1611 ** connection handle passed to it via the xConnect() or xCreate() method 1612 ** during initialization internally. This database connection handle may 1613 ** then be used by the virtual table implementation to access real tables 1614 ** within the database. So that they appear as part of the callers 1615 ** transaction, these accesses need to be made via the same database 1616 ** connection as that used to execute SQL operations on the virtual table. 1617 ** 1618 ** All VTable objects that correspond to a single table in a shared 1619 ** database schema are initially stored in a linked-list pointed to by 1620 ** the Table.pVTable member variable of the corresponding Table object. 1621 ** When an sqlite3_prepare() operation is required to access the virtual 1622 ** table, it searches the list for the VTable that corresponds to the 1623 ** database connection doing the preparing so as to use the correct 1624 ** sqlite3_vtab* handle in the compiled query. 1625 ** 1626 ** When an in-memory Table object is deleted (for example when the 1627 ** schema is being reloaded for some reason), the VTable objects are not 1628 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1629 ** immediately. Instead, they are moved from the Table.pVTable list to 1630 ** another linked list headed by the sqlite3.pDisconnect member of the 1631 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1632 ** next time a statement is prepared using said sqlite3*. This is done 1633 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1634 ** Refer to comments above function sqlite3VtabUnlockList() for an 1635 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1636 ** list without holding the corresponding sqlite3.mutex mutex. 1637 ** 1638 ** The memory for objects of this type is always allocated by 1639 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1640 ** the first argument. 1641 */ 1642 struct VTable { 1643 sqlite3 *db; /* Database connection associated with this table */ 1644 Module *pMod; /* Pointer to module implementation */ 1645 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1646 int nRef; /* Number of pointers to this structure */ 1647 u8 bConstraint; /* True if constraints are supported */ 1648 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1649 VTable *pNext; /* Next in linked list (see above) */ 1650 }; 1651 1652 /* 1653 ** The schema for each SQL table and view is represented in memory 1654 ** by an instance of the following structure. 1655 */ 1656 struct Table { 1657 char *zName; /* Name of the table or view */ 1658 Column *aCol; /* Information about each column */ 1659 Index *pIndex; /* List of SQL indexes on this table. */ 1660 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1661 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1662 char *zColAff; /* String defining the affinity of each column */ 1663 ExprList *pCheck; /* All CHECK constraints */ 1664 /* ... also used as column name list in a VIEW */ 1665 int tnum; /* Root BTree page for this table */ 1666 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1667 i16 nCol; /* Number of columns in this table */ 1668 u16 nRef; /* Number of pointers to this Table */ 1669 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1670 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1671 #ifdef SQLITE_ENABLE_COSTMULT 1672 LogEst costMult; /* Cost multiplier for using this table */ 1673 #endif 1674 u8 tabFlags; /* Mask of TF_* values */ 1675 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1676 #ifndef SQLITE_OMIT_ALTERTABLE 1677 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1678 #endif 1679 #ifndef SQLITE_OMIT_VIRTUALTABLE 1680 int nModuleArg; /* Number of arguments to the module */ 1681 char **azModuleArg; /* 0: module 1: schema 2: vtab name 3...: args */ 1682 VTable *pVTable; /* List of VTable objects. */ 1683 #endif 1684 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1685 Schema *pSchema; /* Schema that contains this table */ 1686 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1687 }; 1688 1689 /* 1690 ** Allowed values for Table.tabFlags. 1691 ** 1692 ** TF_OOOHidden applies to tables or view that have hidden columns that are 1693 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1694 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1695 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1696 ** special handling during INSERT processing. 1697 */ 1698 #define TF_Readonly 0x01 /* Read-only system table */ 1699 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1700 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1701 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1702 #define TF_Virtual 0x10 /* Is a virtual table */ 1703 #define TF_WithoutRowid 0x20 /* No rowid. PRIMARY KEY is the key */ 1704 #define TF_NoVisibleRowid 0x40 /* No user-visible "rowid" column */ 1705 #define TF_OOOHidden 0x80 /* Out-of-Order hidden columns */ 1706 1707 1708 /* 1709 ** Test to see whether or not a table is a virtual table. This is 1710 ** done as a macro so that it will be optimized out when virtual 1711 ** table support is omitted from the build. 1712 */ 1713 #ifndef SQLITE_OMIT_VIRTUALTABLE 1714 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1715 #else 1716 # define IsVirtual(X) 0 1717 #endif 1718 1719 /* 1720 ** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn() 1721 ** only works for non-virtual tables (ordinary tables and views) and is 1722 ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The 1723 ** IsHiddenColumn() macro is general purpose. 1724 */ 1725 #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS) 1726 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1727 # define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1728 #elif !defined(SQLITE_OMIT_VIRTUALTABLE) 1729 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1730 # define IsOrdinaryHiddenColumn(X) 0 1731 #else 1732 # define IsHiddenColumn(X) 0 1733 # define IsOrdinaryHiddenColumn(X) 0 1734 #endif 1735 1736 1737 /* Does the table have a rowid */ 1738 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1739 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 1740 1741 /* 1742 ** Each foreign key constraint is an instance of the following structure. 1743 ** 1744 ** A foreign key is associated with two tables. The "from" table is 1745 ** the table that contains the REFERENCES clause that creates the foreign 1746 ** key. The "to" table is the table that is named in the REFERENCES clause. 1747 ** Consider this example: 1748 ** 1749 ** CREATE TABLE ex1( 1750 ** a INTEGER PRIMARY KEY, 1751 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1752 ** ); 1753 ** 1754 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1755 ** Equivalent names: 1756 ** 1757 ** from-table == child-table 1758 ** to-table == parent-table 1759 ** 1760 ** Each REFERENCES clause generates an instance of the following structure 1761 ** which is attached to the from-table. The to-table need not exist when 1762 ** the from-table is created. The existence of the to-table is not checked. 1763 ** 1764 ** The list of all parents for child Table X is held at X.pFKey. 1765 ** 1766 ** A list of all children for a table named Z (which might not even exist) 1767 ** is held in Schema.fkeyHash with a hash key of Z. 1768 */ 1769 struct FKey { 1770 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1771 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1772 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1773 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1774 FKey *pPrevTo; /* Previous with the same zTo */ 1775 int nCol; /* Number of columns in this key */ 1776 /* EV: R-30323-21917 */ 1777 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1778 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1779 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1780 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1781 int iFrom; /* Index of column in pFrom */ 1782 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1783 } aCol[1]; /* One entry for each of nCol columns */ 1784 }; 1785 1786 /* 1787 ** SQLite supports many different ways to resolve a constraint 1788 ** error. ROLLBACK processing means that a constraint violation 1789 ** causes the operation in process to fail and for the current transaction 1790 ** to be rolled back. ABORT processing means the operation in process 1791 ** fails and any prior changes from that one operation are backed out, 1792 ** but the transaction is not rolled back. FAIL processing means that 1793 ** the operation in progress stops and returns an error code. But prior 1794 ** changes due to the same operation are not backed out and no rollback 1795 ** occurs. IGNORE means that the particular row that caused the constraint 1796 ** error is not inserted or updated. Processing continues and no error 1797 ** is returned. REPLACE means that preexisting database rows that caused 1798 ** a UNIQUE constraint violation are removed so that the new insert or 1799 ** update can proceed. Processing continues and no error is reported. 1800 ** 1801 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1802 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1803 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1804 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1805 ** referenced table row is propagated into the row that holds the 1806 ** foreign key. 1807 ** 1808 ** The following symbolic values are used to record which type 1809 ** of action to take. 1810 */ 1811 #define OE_None 0 /* There is no constraint to check */ 1812 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1813 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1814 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1815 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1816 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1817 1818 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1819 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1820 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1821 #define OE_Cascade 9 /* Cascade the changes */ 1822 1823 #define OE_Default 10 /* Do whatever the default action is */ 1824 1825 1826 /* 1827 ** An instance of the following structure is passed as the first 1828 ** argument to sqlite3VdbeKeyCompare and is used to control the 1829 ** comparison of the two index keys. 1830 ** 1831 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1832 ** are nField slots for the columns of an index then one extra slot 1833 ** for the rowid at the end. 1834 */ 1835 struct KeyInfo { 1836 u32 nRef; /* Number of references to this KeyInfo object */ 1837 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1838 u16 nField; /* Number of key columns in the index */ 1839 u16 nXField; /* Number of columns beyond the key columns */ 1840 sqlite3 *db; /* The database connection */ 1841 u8 *aSortOrder; /* Sort order for each column. */ 1842 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1843 }; 1844 1845 /* 1846 ** This object holds a record which has been parsed out into individual 1847 ** fields, for the purposes of doing a comparison. 1848 ** 1849 ** A record is an object that contains one or more fields of data. 1850 ** Records are used to store the content of a table row and to store 1851 ** the key of an index. A blob encoding of a record is created by 1852 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1853 ** OP_Column opcode. 1854 ** 1855 ** An instance of this object serves as a "key" for doing a search on 1856 ** an index b+tree. The goal of the search is to find the entry that 1857 ** is closed to the key described by this object. This object might hold 1858 ** just a prefix of the key. The number of fields is given by 1859 ** pKeyInfo->nField. 1860 ** 1861 ** The r1 and r2 fields are the values to return if this key is less than 1862 ** or greater than a key in the btree, respectively. These are normally 1863 ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree 1864 ** is in DESC order. 1865 ** 1866 ** The key comparison functions actually return default_rc when they find 1867 ** an equals comparison. default_rc can be -1, 0, or +1. If there are 1868 ** multiple entries in the b-tree with the same key (when only looking 1869 ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to 1870 ** cause the search to find the last match, or +1 to cause the search to 1871 ** find the first match. 1872 ** 1873 ** The key comparison functions will set eqSeen to true if they ever 1874 ** get and equal results when comparing this structure to a b-tree record. 1875 ** When default_rc!=0, the search might end up on the record immediately 1876 ** before the first match or immediately after the last match. The 1877 ** eqSeen field will indicate whether or not an exact match exists in the 1878 ** b-tree. 1879 */ 1880 struct UnpackedRecord { 1881 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1882 Mem *aMem; /* Values */ 1883 u16 nField; /* Number of entries in apMem[] */ 1884 i8 default_rc; /* Comparison result if keys are equal */ 1885 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1886 i8 r1; /* Value to return if (lhs > rhs) */ 1887 i8 r2; /* Value to return if (rhs < lhs) */ 1888 u8 eqSeen; /* True if an equality comparison has been seen */ 1889 }; 1890 1891 1892 /* 1893 ** Each SQL index is represented in memory by an 1894 ** instance of the following structure. 1895 ** 1896 ** The columns of the table that are to be indexed are described 1897 ** by the aiColumn[] field of this structure. For example, suppose 1898 ** we have the following table and index: 1899 ** 1900 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1901 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1902 ** 1903 ** In the Table structure describing Ex1, nCol==3 because there are 1904 ** three columns in the table. In the Index structure describing 1905 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1906 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1907 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1908 ** The second column to be indexed (c1) has an index of 0 in 1909 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1910 ** 1911 ** The Index.onError field determines whether or not the indexed columns 1912 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1913 ** it means this is not a unique index. Otherwise it is a unique index 1914 ** and the value of Index.onError indicate the which conflict resolution 1915 ** algorithm to employ whenever an attempt is made to insert a non-unique 1916 ** element. 1917 ** 1918 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 1919 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 1920 ** table as part of parsing an existing database schema), transient instances 1921 ** of this structure may be created. In this case the Index.tnum variable is 1922 ** used to store the address of a VDBE instruction, not a database page 1923 ** number (it cannot - the database page is not allocated until the VDBE 1924 ** program is executed). See convertToWithoutRowidTable() for details. 1925 */ 1926 struct Index { 1927 char *zName; /* Name of this index */ 1928 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1929 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1930 Table *pTable; /* The SQL table being indexed */ 1931 char *zColAff; /* String defining the affinity of each column */ 1932 Index *pNext; /* The next index associated with the same table */ 1933 Schema *pSchema; /* Schema containing this index */ 1934 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1935 char **azColl; /* Array of collation sequence names for index */ 1936 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1937 ExprList *aColExpr; /* Column expressions */ 1938 int tnum; /* DB Page containing root of this index */ 1939 LogEst szIdxRow; /* Estimated average row size in bytes */ 1940 u16 nKeyCol; /* Number of columns forming the key */ 1941 u16 nColumn; /* Number of columns stored in the index */ 1942 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1943 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1944 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1945 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1946 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1947 unsigned isCovering:1; /* True if this is a covering index */ 1948 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1949 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1950 int nSample; /* Number of elements in aSample[] */ 1951 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1952 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1953 IndexSample *aSample; /* Samples of the left-most key */ 1954 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1955 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1956 #endif 1957 }; 1958 1959 /* 1960 ** Allowed values for Index.idxType 1961 */ 1962 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1963 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1964 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1965 1966 /* Return true if index X is a PRIMARY KEY index */ 1967 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1968 1969 /* Return true if index X is a UNIQUE index */ 1970 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1971 1972 /* The Index.aiColumn[] values are normally positive integer. But 1973 ** there are some negative values that have special meaning: 1974 */ 1975 #define XN_ROWID (-1) /* Indexed column is the rowid */ 1976 #define XN_EXPR (-2) /* Indexed column is an expression */ 1977 1978 /* 1979 ** Each sample stored in the sqlite_stat3 table is represented in memory 1980 ** using a structure of this type. See documentation at the top of the 1981 ** analyze.c source file for additional information. 1982 */ 1983 struct IndexSample { 1984 void *p; /* Pointer to sampled record */ 1985 int n; /* Size of record in bytes */ 1986 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1987 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1988 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1989 }; 1990 1991 /* 1992 ** Each token coming out of the lexer is an instance of 1993 ** this structure. Tokens are also used as part of an expression. 1994 ** 1995 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1996 ** may contain random values. Do not make any assumptions about Token.dyn 1997 ** and Token.n when Token.z==0. 1998 */ 1999 struct Token { 2000 const char *z; /* Text of the token. Not NULL-terminated! */ 2001 unsigned int n; /* Number of characters in this token */ 2002 }; 2003 2004 /* 2005 ** An instance of this structure contains information needed to generate 2006 ** code for a SELECT that contains aggregate functions. 2007 ** 2008 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 2009 ** pointer to this structure. The Expr.iColumn field is the index in 2010 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 2011 ** code for that node. 2012 ** 2013 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 2014 ** original Select structure that describes the SELECT statement. These 2015 ** fields do not need to be freed when deallocating the AggInfo structure. 2016 */ 2017 struct AggInfo { 2018 u8 directMode; /* Direct rendering mode means take data directly 2019 ** from source tables rather than from accumulators */ 2020 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 2021 ** than the source table */ 2022 int sortingIdx; /* Cursor number of the sorting index */ 2023 int sortingIdxPTab; /* Cursor number of pseudo-table */ 2024 int nSortingColumn; /* Number of columns in the sorting index */ 2025 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 2026 ExprList *pGroupBy; /* The group by clause */ 2027 struct AggInfo_col { /* For each column used in source tables */ 2028 Table *pTab; /* Source table */ 2029 int iTable; /* Cursor number of the source table */ 2030 int iColumn; /* Column number within the source table */ 2031 int iSorterColumn; /* Column number in the sorting index */ 2032 int iMem; /* Memory location that acts as accumulator */ 2033 Expr *pExpr; /* The original expression */ 2034 } *aCol; 2035 int nColumn; /* Number of used entries in aCol[] */ 2036 int nAccumulator; /* Number of columns that show through to the output. 2037 ** Additional columns are used only as parameters to 2038 ** aggregate functions */ 2039 struct AggInfo_func { /* For each aggregate function */ 2040 Expr *pExpr; /* Expression encoding the function */ 2041 FuncDef *pFunc; /* The aggregate function implementation */ 2042 int iMem; /* Memory location that acts as accumulator */ 2043 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 2044 } *aFunc; 2045 int nFunc; /* Number of entries in aFunc[] */ 2046 }; 2047 2048 /* 2049 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 2050 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 2051 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 2052 ** it uses less memory in the Expr object, which is a big memory user 2053 ** in systems with lots of prepared statements. And few applications 2054 ** need more than about 10 or 20 variables. But some extreme users want 2055 ** to have prepared statements with over 32767 variables, and for them 2056 ** the option is available (at compile-time). 2057 */ 2058 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 2059 typedef i16 ynVar; 2060 #else 2061 typedef int ynVar; 2062 #endif 2063 2064 /* 2065 ** Each node of an expression in the parse tree is an instance 2066 ** of this structure. 2067 ** 2068 ** Expr.op is the opcode. The integer parser token codes are reused 2069 ** as opcodes here. For example, the parser defines TK_GE to be an integer 2070 ** code representing the ">=" operator. This same integer code is reused 2071 ** to represent the greater-than-or-equal-to operator in the expression 2072 ** tree. 2073 ** 2074 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 2075 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 2076 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 2077 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 2078 ** then Expr.token contains the name of the function. 2079 ** 2080 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 2081 ** binary operator. Either or both may be NULL. 2082 ** 2083 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 2084 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 2085 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 2086 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 2087 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 2088 ** valid. 2089 ** 2090 ** An expression of the form ID or ID.ID refers to a column in a table. 2091 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 2092 ** the integer cursor number of a VDBE cursor pointing to that table and 2093 ** Expr.iColumn is the column number for the specific column. If the 2094 ** expression is used as a result in an aggregate SELECT, then the 2095 ** value is also stored in the Expr.iAgg column in the aggregate so that 2096 ** it can be accessed after all aggregates are computed. 2097 ** 2098 ** If the expression is an unbound variable marker (a question mark 2099 ** character '?' in the original SQL) then the Expr.iTable holds the index 2100 ** number for that variable. 2101 ** 2102 ** If the expression is a subquery then Expr.iColumn holds an integer 2103 ** register number containing the result of the subquery. If the 2104 ** subquery gives a constant result, then iTable is -1. If the subquery 2105 ** gives a different answer at different times during statement processing 2106 ** then iTable is the address of a subroutine that computes the subquery. 2107 ** 2108 ** If the Expr is of type OP_Column, and the table it is selecting from 2109 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 2110 ** corresponding table definition. 2111 ** 2112 ** ALLOCATION NOTES: 2113 ** 2114 ** Expr objects can use a lot of memory space in database schema. To 2115 ** help reduce memory requirements, sometimes an Expr object will be 2116 ** truncated. And to reduce the number of memory allocations, sometimes 2117 ** two or more Expr objects will be stored in a single memory allocation, 2118 ** together with Expr.zToken strings. 2119 ** 2120 ** If the EP_Reduced and EP_TokenOnly flags are set when 2121 ** an Expr object is truncated. When EP_Reduced is set, then all 2122 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2123 ** are contained within the same memory allocation. Note, however, that 2124 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2125 ** allocated, regardless of whether or not EP_Reduced is set. 2126 */ 2127 struct Expr { 2128 u8 op; /* Operation performed by this node */ 2129 char affinity; /* The affinity of the column or 0 if not a column */ 2130 u32 flags; /* Various flags. EP_* See below */ 2131 union { 2132 char *zToken; /* Token value. Zero terminated and dequoted */ 2133 int iValue; /* Non-negative integer value if EP_IntValue */ 2134 } u; 2135 2136 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2137 ** space is allocated for the fields below this point. An attempt to 2138 ** access them will result in a segfault or malfunction. 2139 *********************************************************************/ 2140 2141 Expr *pLeft; /* Left subnode */ 2142 Expr *pRight; /* Right subnode */ 2143 union { 2144 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2145 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2146 } x; 2147 2148 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2149 ** space is allocated for the fields below this point. An attempt to 2150 ** access them will result in a segfault or malfunction. 2151 *********************************************************************/ 2152 2153 #if SQLITE_MAX_EXPR_DEPTH>0 2154 int nHeight; /* Height of the tree headed by this node */ 2155 #endif 2156 int iTable; /* TK_COLUMN: cursor number of table holding column 2157 ** TK_REGISTER: register number 2158 ** TK_TRIGGER: 1 -> new, 0 -> old 2159 ** EP_Unlikely: 134217728 times likelihood */ 2160 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2161 ** TK_VARIABLE: variable number (always >= 1). */ 2162 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2163 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2164 u8 op2; /* TK_REGISTER: original value of Expr.op 2165 ** TK_COLUMN: the value of p5 for OP_Column 2166 ** TK_AGG_FUNCTION: nesting depth */ 2167 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2168 Table *pTab; /* Table for TK_COLUMN expressions. */ 2169 }; 2170 2171 /* 2172 ** The following are the meanings of bits in the Expr.flags field. 2173 */ 2174 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2175 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2176 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2177 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2178 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2179 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2180 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2181 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2182 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2183 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2184 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2185 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2186 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2187 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2188 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2189 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2190 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2191 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2192 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2193 #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ 2194 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2195 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2196 #define EP_Alias 0x400000 /* Is an alias for a result set column */ 2197 2198 /* 2199 ** Combinations of two or more EP_* flags 2200 */ 2201 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2202 2203 /* 2204 ** These macros can be used to test, set, or clear bits in the 2205 ** Expr.flags field. 2206 */ 2207 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2208 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2209 #define ExprSetProperty(E,P) (E)->flags|=(P) 2210 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2211 2212 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2213 ** and Accreditation only. It works like ExprSetProperty() during VVA 2214 ** processes but is a no-op for delivery. 2215 */ 2216 #ifdef SQLITE_DEBUG 2217 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2218 #else 2219 # define ExprSetVVAProperty(E,P) 2220 #endif 2221 2222 /* 2223 ** Macros to determine the number of bytes required by a normal Expr 2224 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2225 ** and an Expr struct with the EP_TokenOnly flag set. 2226 */ 2227 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2228 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2229 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2230 2231 /* 2232 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2233 ** above sqlite3ExprDup() for details. 2234 */ 2235 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2236 2237 /* 2238 ** A list of expressions. Each expression may optionally have a 2239 ** name. An expr/name combination can be used in several ways, such 2240 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2241 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2242 ** also be used as the argument to a function, in which case the a.zName 2243 ** field is not used. 2244 ** 2245 ** By default the Expr.zSpan field holds a human-readable description of 2246 ** the expression that is used in the generation of error messages and 2247 ** column labels. In this case, Expr.zSpan is typically the text of a 2248 ** column expression as it exists in a SELECT statement. However, if 2249 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2250 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2251 ** form is used for name resolution with nested FROM clauses. 2252 */ 2253 struct ExprList { 2254 int nExpr; /* Number of expressions on the list */ 2255 struct ExprList_item { /* For each expression in the list */ 2256 Expr *pExpr; /* The list of expressions */ 2257 char *zName; /* Token associated with this expression */ 2258 char *zSpan; /* Original text of the expression */ 2259 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2260 unsigned done :1; /* A flag to indicate when processing is finished */ 2261 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2262 unsigned reusable :1; /* Constant expression is reusable */ 2263 union { 2264 struct { 2265 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2266 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2267 } x; 2268 int iConstExprReg; /* Register in which Expr value is cached */ 2269 } u; 2270 } *a; /* Alloc a power of two greater or equal to nExpr */ 2271 }; 2272 2273 /* 2274 ** An instance of this structure is used by the parser to record both 2275 ** the parse tree for an expression and the span of input text for an 2276 ** expression. 2277 */ 2278 struct ExprSpan { 2279 Expr *pExpr; /* The expression parse tree */ 2280 const char *zStart; /* First character of input text */ 2281 const char *zEnd; /* One character past the end of input text */ 2282 }; 2283 2284 /* 2285 ** An instance of this structure can hold a simple list of identifiers, 2286 ** such as the list "a,b,c" in the following statements: 2287 ** 2288 ** INSERT INTO t(a,b,c) VALUES ...; 2289 ** CREATE INDEX idx ON t(a,b,c); 2290 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2291 ** 2292 ** The IdList.a.idx field is used when the IdList represents the list of 2293 ** column names after a table name in an INSERT statement. In the statement 2294 ** 2295 ** INSERT INTO t(a,b,c) ... 2296 ** 2297 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2298 */ 2299 struct IdList { 2300 struct IdList_item { 2301 char *zName; /* Name of the identifier */ 2302 int idx; /* Index in some Table.aCol[] of a column named zName */ 2303 } *a; 2304 int nId; /* Number of identifiers on the list */ 2305 }; 2306 2307 /* 2308 ** The bitmask datatype defined below is used for various optimizations. 2309 ** 2310 ** Changing this from a 64-bit to a 32-bit type limits the number of 2311 ** tables in a join to 32 instead of 64. But it also reduces the size 2312 ** of the library by 738 bytes on ix86. 2313 */ 2314 typedef u64 Bitmask; 2315 2316 /* 2317 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2318 */ 2319 #define BMS ((int)(sizeof(Bitmask)*8)) 2320 2321 /* 2322 ** A bit in a Bitmask 2323 */ 2324 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2325 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2326 2327 /* 2328 ** The following structure describes the FROM clause of a SELECT statement. 2329 ** Each table or subquery in the FROM clause is a separate element of 2330 ** the SrcList.a[] array. 2331 ** 2332 ** With the addition of multiple database support, the following structure 2333 ** can also be used to describe a particular table such as the table that 2334 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2335 ** such a table must be a simple name: ID. But in SQLite, the table can 2336 ** now be identified by a database name, a dot, then the table name: ID.ID. 2337 ** 2338 ** The jointype starts out showing the join type between the current table 2339 ** and the next table on the list. The parser builds the list this way. 2340 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2341 ** jointype expresses the join between the table and the previous table. 2342 ** 2343 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2344 ** contains more than 63 columns and the 64-th or later column is used. 2345 */ 2346 struct SrcList { 2347 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2348 u32 nAlloc; /* Number of entries allocated in a[] below */ 2349 struct SrcList_item { 2350 Schema *pSchema; /* Schema to which this item is fixed */ 2351 char *zDatabase; /* Name of database holding this table */ 2352 char *zName; /* Name of the table */ 2353 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2354 Table *pTab; /* An SQL table corresponding to zName */ 2355 Select *pSelect; /* A SELECT statement used in place of a table name */ 2356 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2357 int regReturn; /* Register holding return address of addrFillSub */ 2358 int regResult; /* Registers holding results of a co-routine */ 2359 struct { 2360 u8 jointype; /* Type of join between this able and the previous */ 2361 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2362 unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ 2363 unsigned isTabFunc :1; /* True if table-valued-function syntax */ 2364 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2365 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2366 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2367 } fg; 2368 #ifndef SQLITE_OMIT_EXPLAIN 2369 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2370 #endif 2371 int iCursor; /* The VDBE cursor number used to access this table */ 2372 Expr *pOn; /* The ON clause of a join */ 2373 IdList *pUsing; /* The USING clause of a join */ 2374 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2375 union { 2376 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 2377 ExprList *pFuncArg; /* Arguments to table-valued-function */ 2378 } u1; 2379 Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */ 2380 } a[1]; /* One entry for each identifier on the list */ 2381 }; 2382 2383 /* 2384 ** Permitted values of the SrcList.a.jointype field 2385 */ 2386 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2387 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2388 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2389 #define JT_LEFT 0x0008 /* Left outer join */ 2390 #define JT_RIGHT 0x0010 /* Right outer join */ 2391 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2392 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2393 2394 2395 /* 2396 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2397 ** and the WhereInfo.wctrlFlags member. 2398 */ 2399 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2400 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2401 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2402 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2403 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2404 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2405 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2406 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2407 #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ 2408 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2409 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2410 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2411 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2412 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2413 #define WHERE_ONEPASS_MULTIROW 0x2000 /* ONEPASS is ok with multiple rows */ 2414 2415 /* Allowed return values from sqlite3WhereIsDistinct() 2416 */ 2417 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2418 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2419 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2420 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2421 2422 /* 2423 ** A NameContext defines a context in which to resolve table and column 2424 ** names. The context consists of a list of tables (the pSrcList) field and 2425 ** a list of named expression (pEList). The named expression list may 2426 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2427 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2428 ** pEList corresponds to the result set of a SELECT and is NULL for 2429 ** other statements. 2430 ** 2431 ** NameContexts can be nested. When resolving names, the inner-most 2432 ** context is searched first. If no match is found, the next outer 2433 ** context is checked. If there is still no match, the next context 2434 ** is checked. This process continues until either a match is found 2435 ** or all contexts are check. When a match is found, the nRef member of 2436 ** the context containing the match is incremented. 2437 ** 2438 ** Each subquery gets a new NameContext. The pNext field points to the 2439 ** NameContext in the parent query. Thus the process of scanning the 2440 ** NameContext list corresponds to searching through successively outer 2441 ** subqueries looking for a match. 2442 */ 2443 struct NameContext { 2444 Parse *pParse; /* The parser */ 2445 SrcList *pSrcList; /* One or more tables used to resolve names */ 2446 ExprList *pEList; /* Optional list of result-set columns */ 2447 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2448 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2449 int nRef; /* Number of names resolved by this context */ 2450 int nErr; /* Number of errors encountered while resolving names */ 2451 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2452 }; 2453 2454 /* 2455 ** Allowed values for the NameContext, ncFlags field. 2456 ** 2457 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2458 ** SQLITE_FUNC_MINMAX. 2459 ** 2460 */ 2461 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2462 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2463 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2464 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2465 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2466 #define NC_IdxExpr 0x0020 /* True if resolving columns of CREATE INDEX */ 2467 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2468 2469 /* 2470 ** An instance of the following structure contains all information 2471 ** needed to generate code for a single SELECT statement. 2472 ** 2473 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2474 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2475 ** limit and nOffset to the value of the offset (or 0 if there is not 2476 ** offset). But later on, nLimit and nOffset become the memory locations 2477 ** in the VDBE that record the limit and offset counters. 2478 ** 2479 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2480 ** These addresses must be stored so that we can go back and fill in 2481 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2482 ** the number of columns in P2 can be computed at the same time 2483 ** as the OP_OpenEphm instruction is coded because not 2484 ** enough information about the compound query is known at that point. 2485 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2486 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2487 ** sequences for the ORDER BY clause. 2488 */ 2489 struct Select { 2490 ExprList *pEList; /* The fields of the result */ 2491 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2492 u16 selFlags; /* Various SF_* values */ 2493 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2494 #if SELECTTRACE_ENABLED 2495 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2496 #endif 2497 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2498 u64 nSelectRow; /* Estimated number of result rows */ 2499 SrcList *pSrc; /* The FROM clause */ 2500 Expr *pWhere; /* The WHERE clause */ 2501 ExprList *pGroupBy; /* The GROUP BY clause */ 2502 Expr *pHaving; /* The HAVING clause */ 2503 ExprList *pOrderBy; /* The ORDER BY clause */ 2504 Select *pPrior; /* Prior select in a compound select statement */ 2505 Select *pNext; /* Next select to the left in a compound */ 2506 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2507 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2508 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2509 }; 2510 2511 /* 2512 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2513 ** "Select Flag". 2514 */ 2515 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2516 #define SF_All 0x0002 /* Includes the ALL keyword */ 2517 #define SF_Resolved 0x0004 /* Identifiers have been resolved */ 2518 #define SF_Aggregate 0x0008 /* Contains aggregate functions */ 2519 #define SF_UsesEphemeral 0x0010 /* Uses the OpenEphemeral opcode */ 2520 #define SF_Expanded 0x0020 /* sqlite3SelectExpand() called on this */ 2521 #define SF_HasTypeInfo 0x0040 /* FROM subqueries have Table metadata */ 2522 #define SF_Compound 0x0080 /* Part of a compound query */ 2523 #define SF_Values 0x0100 /* Synthesized from VALUES clause */ 2524 #define SF_MultiValue 0x0200 /* Single VALUES term with multiple rows */ 2525 #define SF_NestedFrom 0x0400 /* Part of a parenthesized FROM clause */ 2526 #define SF_MaybeConvert 0x0800 /* Need convertCompoundSelectToSubquery() */ 2527 #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ 2528 #define SF_Recursive 0x2000 /* The recursive part of a recursive CTE */ 2529 #define SF_Converted 0x4000 /* By convertCompoundSelectToSubquery() */ 2530 #define SF_IncludeHidden 0x8000 /* Include hidden columns in output */ 2531 2532 2533 /* 2534 ** The results of a SELECT can be distributed in several ways, as defined 2535 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2536 ** Type". 2537 ** 2538 ** SRT_Union Store results as a key in a temporary index 2539 ** identified by pDest->iSDParm. 2540 ** 2541 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2542 ** 2543 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2544 ** set is not empty. 2545 ** 2546 ** SRT_Discard Throw the results away. This is used by SELECT 2547 ** statements within triggers whose only purpose is 2548 ** the side-effects of functions. 2549 ** 2550 ** All of the above are free to ignore their ORDER BY clause. Those that 2551 ** follow must honor the ORDER BY clause. 2552 ** 2553 ** SRT_Output Generate a row of output (using the OP_ResultRow 2554 ** opcode) for each row in the result set. 2555 ** 2556 ** SRT_Mem Only valid if the result is a single column. 2557 ** Store the first column of the first result row 2558 ** in register pDest->iSDParm then abandon the rest 2559 ** of the query. This destination implies "LIMIT 1". 2560 ** 2561 ** SRT_Set The result must be a single column. Store each 2562 ** row of result as the key in table pDest->iSDParm. 2563 ** Apply the affinity pDest->affSdst before storing 2564 ** results. Used to implement "IN (SELECT ...)". 2565 ** 2566 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2567 ** the result there. The cursor is left open after 2568 ** returning. This is like SRT_Table except that 2569 ** this destination uses OP_OpenEphemeral to create 2570 ** the table first. 2571 ** 2572 ** SRT_Coroutine Generate a co-routine that returns a new row of 2573 ** results each time it is invoked. The entry point 2574 ** of the co-routine is stored in register pDest->iSDParm 2575 ** and the result row is stored in pDest->nDest registers 2576 ** starting with pDest->iSdst. 2577 ** 2578 ** SRT_Table Store results in temporary table pDest->iSDParm. 2579 ** SRT_Fifo This is like SRT_EphemTab except that the table 2580 ** is assumed to already be open. SRT_Fifo has 2581 ** the additional property of being able to ignore 2582 ** the ORDER BY clause. 2583 ** 2584 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2585 ** But also use temporary table pDest->iSDParm+1 as 2586 ** a record of all prior results and ignore any duplicate 2587 ** rows. Name means: "Distinct Fifo". 2588 ** 2589 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2590 ** an index). Append a sequence number so that all entries 2591 ** are distinct. 2592 ** 2593 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2594 ** the same record has never been stored before. The 2595 ** index at pDest->iSDParm+1 hold all prior stores. 2596 */ 2597 #define SRT_Union 1 /* Store result as keys in an index */ 2598 #define SRT_Except 2 /* Remove result from a UNION index */ 2599 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2600 #define SRT_Discard 4 /* Do not save the results anywhere */ 2601 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2602 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2603 #define SRT_Queue 7 /* Store result in an queue */ 2604 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2605 2606 /* The ORDER BY clause is ignored for all of the above */ 2607 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2608 2609 #define SRT_Output 9 /* Output each row of result */ 2610 #define SRT_Mem 10 /* Store result in a memory cell */ 2611 #define SRT_Set 11 /* Store results as keys in an index */ 2612 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2613 #define SRT_Coroutine 13 /* Generate a single row of result */ 2614 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2615 2616 /* 2617 ** An instance of this object describes where to put of the results of 2618 ** a SELECT statement. 2619 */ 2620 struct SelectDest { 2621 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2622 char affSdst; /* Affinity used when eDest==SRT_Set */ 2623 int iSDParm; /* A parameter used by the eDest disposal method */ 2624 int iSdst; /* Base register where results are written */ 2625 int nSdst; /* Number of registers allocated */ 2626 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2627 }; 2628 2629 /* 2630 ** During code generation of statements that do inserts into AUTOINCREMENT 2631 ** tables, the following information is attached to the Table.u.autoInc.p 2632 ** pointer of each autoincrement table to record some side information that 2633 ** the code generator needs. We have to keep per-table autoincrement 2634 ** information in case inserts are down within triggers. Triggers do not 2635 ** normally coordinate their activities, but we do need to coordinate the 2636 ** loading and saving of autoincrement information. 2637 */ 2638 struct AutoincInfo { 2639 AutoincInfo *pNext; /* Next info block in a list of them all */ 2640 Table *pTab; /* Table this info block refers to */ 2641 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2642 int regCtr; /* Memory register holding the rowid counter */ 2643 }; 2644 2645 /* 2646 ** Size of the column cache 2647 */ 2648 #ifndef SQLITE_N_COLCACHE 2649 # define SQLITE_N_COLCACHE 10 2650 #endif 2651 2652 /* 2653 ** At least one instance of the following structure is created for each 2654 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2655 ** statement. All such objects are stored in the linked list headed at 2656 ** Parse.pTriggerPrg and deleted once statement compilation has been 2657 ** completed. 2658 ** 2659 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2660 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2661 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2662 ** The Parse.pTriggerPrg list never contains two entries with the same 2663 ** values for both pTrigger and orconf. 2664 ** 2665 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2666 ** accessed (or set to 0 for triggers fired as a result of INSERT 2667 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2668 ** a mask of new.* columns used by the program. 2669 */ 2670 struct TriggerPrg { 2671 Trigger *pTrigger; /* Trigger this program was coded from */ 2672 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2673 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2674 int orconf; /* Default ON CONFLICT policy */ 2675 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2676 }; 2677 2678 /* 2679 ** The yDbMask datatype for the bitmask of all attached databases. 2680 */ 2681 #if SQLITE_MAX_ATTACHED>30 2682 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2683 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2684 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2685 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2686 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2687 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2688 #else 2689 typedef unsigned int yDbMask; 2690 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2691 # define DbMaskZero(M) (M)=0 2692 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2693 # define DbMaskAllZero(M) (M)==0 2694 # define DbMaskNonZero(M) (M)!=0 2695 #endif 2696 2697 /* 2698 ** An SQL parser context. A copy of this structure is passed through 2699 ** the parser and down into all the parser action routine in order to 2700 ** carry around information that is global to the entire parse. 2701 ** 2702 ** The structure is divided into two parts. When the parser and code 2703 ** generate call themselves recursively, the first part of the structure 2704 ** is constant but the second part is reset at the beginning and end of 2705 ** each recursion. 2706 ** 2707 ** The nTableLock and aTableLock variables are only used if the shared-cache 2708 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2709 ** used to store the set of table-locks required by the statement being 2710 ** compiled. Function sqlite3TableLock() is used to add entries to the 2711 ** list. 2712 */ 2713 struct Parse { 2714 sqlite3 *db; /* The main database structure */ 2715 char *zErrMsg; /* An error message */ 2716 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2717 int rc; /* Return code from execution */ 2718 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2719 u8 checkSchema; /* Causes schema cookie check after an error */ 2720 u8 nested; /* Number of nested calls to the parser/code generator */ 2721 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2722 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2723 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2724 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2725 u8 okConstFactor; /* OK to factor out constants */ 2726 int aTempReg[8]; /* Holding area for temporary registers */ 2727 int nRangeReg; /* Size of the temporary register block */ 2728 int iRangeReg; /* First register in temporary register block */ 2729 int nErr; /* Number of errors seen */ 2730 int nTab; /* Number of previously allocated VDBE cursors */ 2731 int nMem; /* Number of memory cells used so far */ 2732 int nSet; /* Number of sets used so far */ 2733 int nOnce; /* Number of OP_Once instructions so far */ 2734 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2735 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2736 int ckBase; /* Base register of data during check constraints */ 2737 int iSelfTab; /* Table of an index whose exprs are being coded */ 2738 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2739 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2740 int nLabel; /* Number of labels used */ 2741 int *aLabel; /* Space to hold the labels */ 2742 struct yColCache { 2743 int iTable; /* Table cursor number */ 2744 i16 iColumn; /* Table column number */ 2745 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2746 int iLevel; /* Nesting level */ 2747 int iReg; /* Reg with value of this column. 0 means none. */ 2748 int lru; /* Least recently used entry has the smallest value */ 2749 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2750 ExprList *pConstExpr;/* Constant expressions */ 2751 Token constraintName;/* Name of the constraint currently being parsed */ 2752 yDbMask writeMask; /* Start a write transaction on these databases */ 2753 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2754 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2755 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2756 int regRoot; /* Register holding root page number for new objects */ 2757 int nMaxArg; /* Max args passed to user function by sub-program */ 2758 #if SELECTTRACE_ENABLED 2759 int nSelect; /* Number of SELECT statements seen */ 2760 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2761 #endif 2762 #ifndef SQLITE_OMIT_SHARED_CACHE 2763 int nTableLock; /* Number of locks in aTableLock */ 2764 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2765 #endif 2766 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2767 2768 /* Information used while coding trigger programs. */ 2769 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2770 Table *pTriggerTab; /* Table triggers are being coded for */ 2771 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2772 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2773 u32 oldmask; /* Mask of old.* columns referenced */ 2774 u32 newmask; /* Mask of new.* columns referenced */ 2775 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2776 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2777 u8 disableTriggers; /* True to disable triggers */ 2778 2779 /************************************************************************ 2780 ** Above is constant between recursions. Below is reset before and after 2781 ** each recursion. The boundary between these two regions is determined 2782 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2783 ** in the recursive region. 2784 ************************************************************************/ 2785 2786 int nVar; /* Number of '?' variables seen in the SQL so far */ 2787 int nzVar; /* Number of available slots in azVar[] */ 2788 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2789 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2790 #ifndef SQLITE_OMIT_VIRTUALTABLE 2791 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2792 int nVtabLock; /* Number of virtual tables to lock */ 2793 #endif 2794 int nAlias; /* Number of aliased result set columns */ 2795 int nHeight; /* Expression tree height of current sub-select */ 2796 #ifndef SQLITE_OMIT_EXPLAIN 2797 int iSelectId; /* ID of current select for EXPLAIN output */ 2798 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2799 #endif 2800 char **azVar; /* Pointers to names of parameters */ 2801 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2802 const char *zTail; /* All SQL text past the last semicolon parsed */ 2803 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2804 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2805 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2806 Token sNameToken; /* Token with unqualified schema object name */ 2807 Token sLastToken; /* The last token parsed */ 2808 #ifndef SQLITE_OMIT_VIRTUALTABLE 2809 Token sArg; /* Complete text of a module argument */ 2810 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2811 #endif 2812 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2813 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2814 With *pWith; /* Current WITH clause, or NULL */ 2815 With *pWithToFree; /* Free this WITH object at the end of the parse */ 2816 }; 2817 2818 /* 2819 ** Return true if currently inside an sqlite3_declare_vtab() call. 2820 */ 2821 #ifdef SQLITE_OMIT_VIRTUALTABLE 2822 #define IN_DECLARE_VTAB 0 2823 #else 2824 #define IN_DECLARE_VTAB (pParse->declareVtab) 2825 #endif 2826 2827 /* 2828 ** An instance of the following structure can be declared on a stack and used 2829 ** to save the Parse.zAuthContext value so that it can be restored later. 2830 */ 2831 struct AuthContext { 2832 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2833 Parse *pParse; /* The Parse structure */ 2834 }; 2835 2836 /* 2837 ** Bitfield flags for P5 value in various opcodes. 2838 */ 2839 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2840 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2841 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2842 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2843 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2844 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2845 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2846 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2847 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2848 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 2849 #define OPFLAG_FORDELETE 0x08 /* OP_Open is opening for-delete csr */ 2850 #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ 2851 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2852 2853 /* 2854 * Each trigger present in the database schema is stored as an instance of 2855 * struct Trigger. 2856 * 2857 * Pointers to instances of struct Trigger are stored in two ways. 2858 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2859 * database). This allows Trigger structures to be retrieved by name. 2860 * 2. All triggers associated with a single table form a linked list, using the 2861 * pNext member of struct Trigger. A pointer to the first element of the 2862 * linked list is stored as the "pTrigger" member of the associated 2863 * struct Table. 2864 * 2865 * The "step_list" member points to the first element of a linked list 2866 * containing the SQL statements specified as the trigger program. 2867 */ 2868 struct Trigger { 2869 char *zName; /* The name of the trigger */ 2870 char *table; /* The table or view to which the trigger applies */ 2871 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2872 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2873 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2874 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2875 the <column-list> is stored here */ 2876 Schema *pSchema; /* Schema containing the trigger */ 2877 Schema *pTabSchema; /* Schema containing the table */ 2878 TriggerStep *step_list; /* Link list of trigger program steps */ 2879 Trigger *pNext; /* Next trigger associated with the table */ 2880 }; 2881 2882 /* 2883 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2884 ** determine which. 2885 ** 2886 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2887 ** In that cases, the constants below can be ORed together. 2888 */ 2889 #define TRIGGER_BEFORE 1 2890 #define TRIGGER_AFTER 2 2891 2892 /* 2893 * An instance of struct TriggerStep is used to store a single SQL statement 2894 * that is a part of a trigger-program. 2895 * 2896 * Instances of struct TriggerStep are stored in a singly linked list (linked 2897 * using the "pNext" member) referenced by the "step_list" member of the 2898 * associated struct Trigger instance. The first element of the linked list is 2899 * the first step of the trigger-program. 2900 * 2901 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2902 * "SELECT" statement. The meanings of the other members is determined by the 2903 * value of "op" as follows: 2904 * 2905 * (op == TK_INSERT) 2906 * orconf -> stores the ON CONFLICT algorithm 2907 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2908 * this stores a pointer to the SELECT statement. Otherwise NULL. 2909 * zTarget -> Dequoted name of the table to insert into. 2910 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2911 * this stores values to be inserted. Otherwise NULL. 2912 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2913 * statement, then this stores the column-names to be 2914 * inserted into. 2915 * 2916 * (op == TK_DELETE) 2917 * zTarget -> Dequoted name of the table to delete from. 2918 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2919 * Otherwise NULL. 2920 * 2921 * (op == TK_UPDATE) 2922 * zTarget -> Dequoted name of the table to update. 2923 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2924 * Otherwise NULL. 2925 * pExprList -> A list of the columns to update and the expressions to update 2926 * them to. See sqlite3Update() documentation of "pChanges" 2927 * argument. 2928 * 2929 */ 2930 struct TriggerStep { 2931 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2932 u8 orconf; /* OE_Rollback etc. */ 2933 Trigger *pTrig; /* The trigger that this step is a part of */ 2934 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 2935 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 2936 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2937 ExprList *pExprList; /* SET clause for UPDATE. */ 2938 IdList *pIdList; /* Column names for INSERT */ 2939 TriggerStep *pNext; /* Next in the link-list */ 2940 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2941 }; 2942 2943 /* 2944 ** The following structure contains information used by the sqliteFix... 2945 ** routines as they walk the parse tree to make database references 2946 ** explicit. 2947 */ 2948 typedef struct DbFixer DbFixer; 2949 struct DbFixer { 2950 Parse *pParse; /* The parsing context. Error messages written here */ 2951 Schema *pSchema; /* Fix items to this schema */ 2952 int bVarOnly; /* Check for variable references only */ 2953 const char *zDb; /* Make sure all objects are contained in this database */ 2954 const char *zType; /* Type of the container - used for error messages */ 2955 const Token *pName; /* Name of the container - used for error messages */ 2956 }; 2957 2958 /* 2959 ** An objected used to accumulate the text of a string where we 2960 ** do not necessarily know how big the string will be in the end. 2961 */ 2962 struct StrAccum { 2963 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2964 char *zBase; /* A base allocation. Not from malloc. */ 2965 char *zText; /* The string collected so far */ 2966 int nChar; /* Length of the string so far */ 2967 int nAlloc; /* Amount of space allocated in zText */ 2968 int mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 2969 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2970 u8 bMalloced; /* zText points to allocated space */ 2971 }; 2972 #define STRACCUM_NOMEM 1 2973 #define STRACCUM_TOOBIG 2 2974 2975 /* 2976 ** A pointer to this structure is used to communicate information 2977 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2978 */ 2979 typedef struct { 2980 sqlite3 *db; /* The database being initialized */ 2981 char **pzErrMsg; /* Error message stored here */ 2982 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2983 int rc; /* Result code stored here */ 2984 } InitData; 2985 2986 /* 2987 ** Structure containing global configuration data for the SQLite library. 2988 ** 2989 ** This structure also contains some state information. 2990 */ 2991 struct Sqlite3Config { 2992 int bMemstat; /* True to enable memory status */ 2993 int bCoreMutex; /* True to enable core mutexing */ 2994 int bFullMutex; /* True to enable full mutexing */ 2995 int bOpenUri; /* True to interpret filenames as URIs */ 2996 int bUseCis; /* Use covering indices for full-scans */ 2997 int mxStrlen; /* Maximum string length */ 2998 int neverCorrupt; /* Database is always well-formed */ 2999 int szLookaside; /* Default lookaside buffer size */ 3000 int nLookaside; /* Default lookaside buffer count */ 3001 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 3002 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 3003 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 3004 void *pHeap; /* Heap storage space */ 3005 int nHeap; /* Size of pHeap[] */ 3006 int mnReq, mxReq; /* Min and max heap requests sizes */ 3007 sqlite3_int64 szMmap; /* mmap() space per open file */ 3008 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 3009 void *pScratch; /* Scratch memory */ 3010 int szScratch; /* Size of each scratch buffer */ 3011 int nScratch; /* Number of scratch buffers */ 3012 void *pPage; /* Page cache memory */ 3013 int szPage; /* Size of each page in pPage[] */ 3014 int nPage; /* Number of pages in pPage[] */ 3015 int mxParserStack; /* maximum depth of the parser stack */ 3016 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 3017 u32 szPma; /* Maximum Sorter PMA size */ 3018 /* The above might be initialized to non-zero. The following need to always 3019 ** initially be zero, however. */ 3020 int isInit; /* True after initialization has finished */ 3021 int inProgress; /* True while initialization in progress */ 3022 int isMutexInit; /* True after mutexes are initialized */ 3023 int isMallocInit; /* True after malloc is initialized */ 3024 int isPCacheInit; /* True after malloc is initialized */ 3025 int nRefInitMutex; /* Number of users of pInitMutex */ 3026 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 3027 void (*xLog)(void*,int,const char*); /* Function for logging */ 3028 void *pLogArg; /* First argument to xLog() */ 3029 #ifdef SQLITE_ENABLE_SQLLOG 3030 void(*xSqllog)(void*,sqlite3*,const char*, int); 3031 void *pSqllogArg; 3032 #endif 3033 #ifdef SQLITE_VDBE_COVERAGE 3034 /* The following callback (if not NULL) is invoked on every VDBE branch 3035 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 3036 */ 3037 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 3038 void *pVdbeBranchArg; /* 1st argument */ 3039 #endif 3040 #ifndef SQLITE_OMIT_BUILTIN_TEST 3041 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 3042 #endif 3043 int bLocaltimeFault; /* True to fail localtime() calls */ 3044 }; 3045 3046 /* 3047 ** This macro is used inside of assert() statements to indicate that 3048 ** the assert is only valid on a well-formed database. Instead of: 3049 ** 3050 ** assert( X ); 3051 ** 3052 ** One writes: 3053 ** 3054 ** assert( X || CORRUPT_DB ); 3055 ** 3056 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 3057 ** that the database is definitely corrupt, only that it might be corrupt. 3058 ** For most test cases, CORRUPT_DB is set to false using a special 3059 ** sqlite3_test_control(). This enables assert() statements to prove 3060 ** things that are always true for well-formed databases. 3061 */ 3062 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 3063 3064 /* 3065 ** Context pointer passed down through the tree-walk. 3066 */ 3067 struct Walker { 3068 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 3069 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 3070 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 3071 Parse *pParse; /* Parser context. */ 3072 int walkerDepth; /* Number of subqueries */ 3073 u8 eCode; /* A small processing code */ 3074 union { /* Extra data for callback */ 3075 NameContext *pNC; /* Naming context */ 3076 int n; /* A counter */ 3077 int iCur; /* A cursor number */ 3078 SrcList *pSrcList; /* FROM clause */ 3079 struct SrcCount *pSrcCount; /* Counting column references */ 3080 struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ 3081 } u; 3082 }; 3083 3084 /* Forward declarations */ 3085 int sqlite3WalkExpr(Walker*, Expr*); 3086 int sqlite3WalkExprList(Walker*, ExprList*); 3087 int sqlite3WalkSelect(Walker*, Select*); 3088 int sqlite3WalkSelectExpr(Walker*, Select*); 3089 int sqlite3WalkSelectFrom(Walker*, Select*); 3090 int sqlite3ExprWalkNoop(Walker*, Expr*); 3091 3092 /* 3093 ** Return code from the parse-tree walking primitives and their 3094 ** callbacks. 3095 */ 3096 #define WRC_Continue 0 /* Continue down into children */ 3097 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 3098 #define WRC_Abort 2 /* Abandon the tree walk */ 3099 3100 /* 3101 ** An instance of this structure represents a set of one or more CTEs 3102 ** (common table expressions) created by a single WITH clause. 3103 */ 3104 struct With { 3105 int nCte; /* Number of CTEs in the WITH clause */ 3106 With *pOuter; /* Containing WITH clause, or NULL */ 3107 struct Cte { /* For each CTE in the WITH clause.... */ 3108 char *zName; /* Name of this CTE */ 3109 ExprList *pCols; /* List of explicit column names, or NULL */ 3110 Select *pSelect; /* The definition of this CTE */ 3111 const char *zCteErr; /* Error message for circular references */ 3112 } a[1]; 3113 }; 3114 3115 #ifdef SQLITE_DEBUG 3116 /* 3117 ** An instance of the TreeView object is used for printing the content of 3118 ** data structures on sqlite3DebugPrintf() using a tree-like view. 3119 */ 3120 struct TreeView { 3121 int iLevel; /* Which level of the tree we are on */ 3122 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 3123 }; 3124 #endif /* SQLITE_DEBUG */ 3125 3126 /* 3127 ** Assuming zIn points to the first byte of a UTF-8 character, 3128 ** advance zIn to point to the first byte of the next UTF-8 character. 3129 */ 3130 #define SQLITE_SKIP_UTF8(zIn) { \ 3131 if( (*(zIn++))>=0xc0 ){ \ 3132 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3133 } \ 3134 } 3135 3136 /* 3137 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3138 ** the same name but without the _BKPT suffix. These macros invoke 3139 ** routines that report the line-number on which the error originated 3140 ** using sqlite3_log(). The routines also provide a convenient place 3141 ** to set a debugger breakpoint. 3142 */ 3143 int sqlite3CorruptError(int); 3144 int sqlite3MisuseError(int); 3145 int sqlite3CantopenError(int); 3146 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3147 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3148 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3149 3150 3151 /* 3152 ** FTS4 is really an extension for FTS3. It is enabled using the 3153 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3154 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3155 */ 3156 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3157 # define SQLITE_ENABLE_FTS3 1 3158 #endif 3159 3160 /* 3161 ** The ctype.h header is needed for non-ASCII systems. It is also 3162 ** needed by FTS3 when FTS3 is included in the amalgamation. 3163 */ 3164 #if !defined(SQLITE_ASCII) || \ 3165 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3166 # include <ctype.h> 3167 #endif 3168 3169 /* 3170 ** The following macros mimic the standard library functions toupper(), 3171 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3172 ** sqlite versions only work for ASCII characters, regardless of locale. 3173 */ 3174 #ifdef SQLITE_ASCII 3175 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3176 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3177 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3178 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3179 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3180 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3181 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3182 #else 3183 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3184 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3185 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3186 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3187 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3188 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3189 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3190 #endif 3191 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 3192 int sqlite3IsIdChar(u8); 3193 #endif 3194 3195 /* 3196 ** Internal function prototypes 3197 */ 3198 #define sqlite3StrICmp sqlite3_stricmp 3199 int sqlite3Strlen30(const char*); 3200 #define sqlite3StrNICmp sqlite3_strnicmp 3201 3202 int sqlite3MallocInit(void); 3203 void sqlite3MallocEnd(void); 3204 void *sqlite3Malloc(u64); 3205 void *sqlite3MallocZero(u64); 3206 void *sqlite3DbMallocZero(sqlite3*, u64); 3207 void *sqlite3DbMallocRaw(sqlite3*, u64); 3208 char *sqlite3DbStrDup(sqlite3*,const char*); 3209 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3210 void *sqlite3Realloc(void*, u64); 3211 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3212 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3213 void sqlite3DbFree(sqlite3*, void*); 3214 int sqlite3MallocSize(void*); 3215 int sqlite3DbMallocSize(sqlite3*, void*); 3216 void *sqlite3ScratchMalloc(int); 3217 void sqlite3ScratchFree(void*); 3218 void *sqlite3PageMalloc(int); 3219 void sqlite3PageFree(void*); 3220 void sqlite3MemSetDefault(void); 3221 #ifndef SQLITE_OMIT_BUILTIN_TEST 3222 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3223 #endif 3224 int sqlite3HeapNearlyFull(void); 3225 3226 /* 3227 ** On systems with ample stack space and that support alloca(), make 3228 ** use of alloca() to obtain space for large automatic objects. By default, 3229 ** obtain space from malloc(). 3230 ** 3231 ** The alloca() routine never returns NULL. This will cause code paths 3232 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3233 */ 3234 #ifdef SQLITE_USE_ALLOCA 3235 # define sqlite3StackAllocRaw(D,N) alloca(N) 3236 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3237 # define sqlite3StackFree(D,P) 3238 #else 3239 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3240 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3241 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3242 #endif 3243 3244 #ifdef SQLITE_ENABLE_MEMSYS3 3245 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3246 #endif 3247 #ifdef SQLITE_ENABLE_MEMSYS5 3248 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3249 #endif 3250 3251 3252 #ifndef SQLITE_MUTEX_OMIT 3253 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3254 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3255 sqlite3_mutex *sqlite3MutexAlloc(int); 3256 int sqlite3MutexInit(void); 3257 int sqlite3MutexEnd(void); 3258 #endif 3259 #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP) 3260 void sqlite3MemoryBarrier(void); 3261 #else 3262 # define sqlite3MemoryBarrier() 3263 #endif 3264 3265 sqlite3_int64 sqlite3StatusValue(int); 3266 void sqlite3StatusUp(int, int); 3267 void sqlite3StatusDown(int, int); 3268 void sqlite3StatusHighwater(int, int); 3269 3270 /* Access to mutexes used by sqlite3_status() */ 3271 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3272 sqlite3_mutex *sqlite3MallocMutex(void); 3273 3274 #ifndef SQLITE_OMIT_FLOATING_POINT 3275 int sqlite3IsNaN(double); 3276 #else 3277 # define sqlite3IsNaN(X) 0 3278 #endif 3279 3280 /* 3281 ** An instance of the following structure holds information about SQL 3282 ** functions arguments that are the parameters to the printf() function. 3283 */ 3284 struct PrintfArguments { 3285 int nArg; /* Total number of arguments */ 3286 int nUsed; /* Number of arguments used so far */ 3287 sqlite3_value **apArg; /* The argument values */ 3288 }; 3289 3290 #define SQLITE_PRINTF_INTERNAL 0x01 3291 #define SQLITE_PRINTF_SQLFUNC 0x02 3292 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3293 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3294 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3295 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3296 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3297 void sqlite3DebugPrintf(const char*, ...); 3298 #endif 3299 #if defined(SQLITE_TEST) 3300 void *sqlite3TestTextToPtr(const char*); 3301 #endif 3302 3303 #if defined(SQLITE_DEBUG) 3304 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3305 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3306 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3307 void sqlite3TreeViewWith(TreeView*, const With*, u8); 3308 #endif 3309 3310 3311 void sqlite3SetString(char **, sqlite3*, const char*); 3312 void sqlite3ErrorMsg(Parse*, const char*, ...); 3313 int sqlite3Dequote(char*); 3314 int sqlite3KeywordCode(const unsigned char*, int); 3315 int sqlite3RunParser(Parse*, const char*, char **); 3316 void sqlite3FinishCoding(Parse*); 3317 int sqlite3GetTempReg(Parse*); 3318 void sqlite3ReleaseTempReg(Parse*,int); 3319 int sqlite3GetTempRange(Parse*,int); 3320 void sqlite3ReleaseTempRange(Parse*,int,int); 3321 void sqlite3ClearTempRegCache(Parse*); 3322 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3323 Expr *sqlite3Expr(sqlite3*,int,const char*); 3324 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3325 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3326 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3327 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3328 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3329 void sqlite3ExprDelete(sqlite3*, Expr*); 3330 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3331 void sqlite3ExprListSetSortOrder(ExprList*,int); 3332 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3333 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3334 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3335 u32 sqlite3ExprListFlags(const ExprList*); 3336 int sqlite3Init(sqlite3*, char**); 3337 int sqlite3InitCallback(void*, int, char**, char**); 3338 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3339 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3340 void sqlite3ResetOneSchema(sqlite3*,int); 3341 void sqlite3CollapseDatabaseArray(sqlite3*); 3342 void sqlite3BeginParse(Parse*,int); 3343 void sqlite3CommitInternalChanges(sqlite3*); 3344 void sqlite3DeleteColumnNames(sqlite3*,Table*); 3345 int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**); 3346 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3347 void sqlite3OpenMasterTable(Parse *, int); 3348 Index *sqlite3PrimaryKeyIndex(Table*); 3349 i16 sqlite3ColumnOfIndex(Index*, i16); 3350 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3351 void sqlite3ColumnPropertiesFromName(Table*, Column*); 3352 void sqlite3AddColumn(Parse*,Token*); 3353 void sqlite3AddNotNull(Parse*, int); 3354 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3355 void sqlite3AddCheckConstraint(Parse*, Expr*); 3356 void sqlite3AddColumnType(Parse*,Token*); 3357 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3358 void sqlite3AddCollateType(Parse*, Token*); 3359 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3360 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3361 sqlite3_vfs**,char**,char **); 3362 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3363 int sqlite3CodeOnce(Parse *); 3364 3365 #ifdef SQLITE_OMIT_BUILTIN_TEST 3366 # define sqlite3FaultSim(X) SQLITE_OK 3367 #else 3368 int sqlite3FaultSim(int); 3369 #endif 3370 3371 Bitvec *sqlite3BitvecCreate(u32); 3372 int sqlite3BitvecTest(Bitvec*, u32); 3373 int sqlite3BitvecTestNotNull(Bitvec*, u32); 3374 int sqlite3BitvecSet(Bitvec*, u32); 3375 void sqlite3BitvecClear(Bitvec*, u32, void*); 3376 void sqlite3BitvecDestroy(Bitvec*); 3377 u32 sqlite3BitvecSize(Bitvec*); 3378 #ifndef SQLITE_OMIT_BUILTIN_TEST 3379 int sqlite3BitvecBuiltinTest(int,int*); 3380 #endif 3381 3382 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3383 void sqlite3RowSetClear(RowSet*); 3384 void sqlite3RowSetInsert(RowSet*, i64); 3385 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3386 int sqlite3RowSetNext(RowSet*, i64*); 3387 3388 void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int); 3389 3390 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3391 int sqlite3ViewGetColumnNames(Parse*,Table*); 3392 #else 3393 # define sqlite3ViewGetColumnNames(A,B) 0 3394 #endif 3395 3396 #if SQLITE_MAX_ATTACHED>30 3397 int sqlite3DbMaskAllZero(yDbMask); 3398 #endif 3399 void sqlite3DropTable(Parse*, SrcList*, int, int); 3400 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3401 void sqlite3DeleteTable(sqlite3*, Table*); 3402 #ifndef SQLITE_OMIT_AUTOINCREMENT 3403 void sqlite3AutoincrementBegin(Parse *pParse); 3404 void sqlite3AutoincrementEnd(Parse *pParse); 3405 #else 3406 # define sqlite3AutoincrementBegin(X) 3407 # define sqlite3AutoincrementEnd(X) 3408 #endif 3409 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3410 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3411 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3412 int sqlite3IdListIndex(IdList*,const char*); 3413 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3414 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3415 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3416 Token*, Select*, Expr*, IdList*); 3417 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3418 void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*); 3419 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3420 void sqlite3SrcListShiftJoinType(SrcList*); 3421 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3422 void sqlite3IdListDelete(sqlite3*, IdList*); 3423 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3424 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3425 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3426 Expr*, int, int); 3427 void sqlite3DropIndex(Parse*, SrcList*, int); 3428 int sqlite3Select(Parse*, Select*, SelectDest*); 3429 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3430 Expr*,ExprList*,u16,Expr*,Expr*); 3431 void sqlite3SelectDelete(sqlite3*, Select*); 3432 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3433 int sqlite3IsReadOnly(Parse*, Table*, int); 3434 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3435 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3436 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3437 #endif 3438 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3439 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3440 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3441 void sqlite3WhereEnd(WhereInfo*); 3442 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3443 int sqlite3WhereIsDistinct(WhereInfo*); 3444 int sqlite3WhereIsOrdered(WhereInfo*); 3445 int sqlite3WhereIsSorted(WhereInfo*); 3446 int sqlite3WhereContinueLabel(WhereInfo*); 3447 int sqlite3WhereBreakLabel(WhereInfo*); 3448 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3449 #define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */ 3450 #define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */ 3451 #define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */ 3452 void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int); 3453 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3454 void sqlite3ExprCodeGetColumnToReg(Parse*, Table*, int, int, int); 3455 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3456 void sqlite3ExprCodeMove(Parse*, int, int, int); 3457 void sqlite3ExprCacheStore(Parse*, int, int, int); 3458 void sqlite3ExprCachePush(Parse*); 3459 void sqlite3ExprCachePop(Parse*); 3460 void sqlite3ExprCacheRemove(Parse*, int, int); 3461 void sqlite3ExprCacheClear(Parse*); 3462 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3463 void sqlite3ExprCode(Parse*, Expr*, int); 3464 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3465 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3466 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3467 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3468 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3469 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8); 3470 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3471 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3472 #define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */ 3473 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3474 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3475 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 3476 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3477 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3478 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3479 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3480 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3481 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3482 void sqlite3Vacuum(Parse*); 3483 int sqlite3RunVacuum(char**, sqlite3*); 3484 char *sqlite3NameFromToken(sqlite3*, Token*); 3485 int sqlite3ExprCompare(Expr*, Expr*, int); 3486 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3487 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3488 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3489 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3490 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3491 Vdbe *sqlite3GetVdbe(Parse*); 3492 #ifndef SQLITE_OMIT_BUILTIN_TEST 3493 void sqlite3PrngSaveState(void); 3494 void sqlite3PrngRestoreState(void); 3495 #endif 3496 void sqlite3RollbackAll(sqlite3*,int); 3497 void sqlite3CodeVerifySchema(Parse*, int); 3498 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3499 void sqlite3BeginTransaction(Parse*, int); 3500 void sqlite3CommitTransaction(Parse*); 3501 void sqlite3RollbackTransaction(Parse*); 3502 void sqlite3Savepoint(Parse*, int, Token*); 3503 void sqlite3CloseSavepoints(sqlite3 *); 3504 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3505 int sqlite3ExprIsConstant(Expr*); 3506 int sqlite3ExprIsConstantNotJoin(Expr*); 3507 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3508 int sqlite3ExprIsTableConstant(Expr*,int); 3509 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3510 int sqlite3ExprContainsSubquery(Expr*); 3511 #endif 3512 int sqlite3ExprIsInteger(Expr*, int*); 3513 int sqlite3ExprCanBeNull(const Expr*); 3514 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3515 int sqlite3IsRowid(const char*); 3516 void sqlite3GenerateRowDelete( 3517 Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); 3518 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); 3519 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3520 void sqlite3ResolvePartIdxLabel(Parse*,int); 3521 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3522 u8,u8,int,int*); 3523 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3524 int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); 3525 void sqlite3BeginWriteOperation(Parse*, int, int); 3526 void sqlite3MultiWrite(Parse*); 3527 void sqlite3MayAbort(Parse*); 3528 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3529 void sqlite3UniqueConstraint(Parse*, int, Index*); 3530 void sqlite3RowidConstraint(Parse*, int, Table*); 3531 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3532 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3533 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3534 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3535 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3536 #if SELECTTRACE_ENABLED 3537 void sqlite3SelectSetName(Select*,const char*); 3538 #else 3539 # define sqlite3SelectSetName(A,B) 3540 #endif 3541 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3542 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3543 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3544 void sqlite3RegisterDateTimeFunctions(void); 3545 void sqlite3RegisterGlobalFunctions(void); 3546 int sqlite3SafetyCheckOk(sqlite3*); 3547 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3548 void sqlite3ChangeCookie(Parse*, int); 3549 3550 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3551 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3552 #endif 3553 3554 #ifndef SQLITE_OMIT_TRIGGER 3555 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3556 Expr*,int, int); 3557 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3558 void sqlite3DropTrigger(Parse*, SrcList*, int); 3559 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3560 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3561 Trigger *sqlite3TriggerList(Parse *, Table *); 3562 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3563 int, int, int); 3564 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3565 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3566 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3567 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3568 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3569 Select*,u8); 3570 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3571 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3572 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3573 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3574 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3575 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3576 # define sqlite3IsToplevel(p) ((p)->pToplevel==0) 3577 #else 3578 # define sqlite3TriggersExist(B,C,D,E,F) 0 3579 # define sqlite3DeleteTrigger(A,B) 3580 # define sqlite3DropTriggerPtr(A,B) 3581 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3582 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3583 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3584 # define sqlite3TriggerList(X, Y) 0 3585 # define sqlite3ParseToplevel(p) p 3586 # define sqlite3IsToplevel(p) 1 3587 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3588 #endif 3589 3590 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3591 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3592 void sqlite3DeferForeignKey(Parse*, int); 3593 #ifndef SQLITE_OMIT_AUTHORIZATION 3594 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3595 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3596 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3597 void sqlite3AuthContextPop(AuthContext*); 3598 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3599 #else 3600 # define sqlite3AuthRead(a,b,c,d) 3601 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3602 # define sqlite3AuthContextPush(a,b,c) 3603 # define sqlite3AuthContextPop(a) ((void)(a)) 3604 #endif 3605 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3606 void sqlite3Detach(Parse*, Expr*); 3607 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3608 int sqlite3FixSrcList(DbFixer*, SrcList*); 3609 int sqlite3FixSelect(DbFixer*, Select*); 3610 int sqlite3FixExpr(DbFixer*, Expr*); 3611 int sqlite3FixExprList(DbFixer*, ExprList*); 3612 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3613 int sqlite3AtoF(const char *z, double*, int, u8); 3614 int sqlite3GetInt32(const char *, int*); 3615 int sqlite3Atoi(const char*); 3616 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3617 int sqlite3Utf8CharLen(const char *pData, int nByte); 3618 u32 sqlite3Utf8Read(const u8**); 3619 LogEst sqlite3LogEst(u64); 3620 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3621 #ifndef SQLITE_OMIT_VIRTUALTABLE 3622 LogEst sqlite3LogEstFromDouble(double); 3623 #endif 3624 u64 sqlite3LogEstToInt(LogEst); 3625 3626 /* 3627 ** Routines to read and write variable-length integers. These used to 3628 ** be defined locally, but now we use the varint routines in the util.c 3629 ** file. 3630 */ 3631 int sqlite3PutVarint(unsigned char*, u64); 3632 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3633 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3634 int sqlite3VarintLen(u64 v); 3635 3636 /* 3637 ** The common case is for a varint to be a single byte. They following 3638 ** macros handle the common case without a procedure call, but then call 3639 ** the procedure for larger varints. 3640 */ 3641 #define getVarint32(A,B) \ 3642 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3643 #define putVarint32(A,B) \ 3644 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3645 sqlite3PutVarint((A),(B))) 3646 #define getVarint sqlite3GetVarint 3647 #define putVarint sqlite3PutVarint 3648 3649 3650 const char *sqlite3IndexAffinityStr(sqlite3*, Index*); 3651 void sqlite3TableAffinity(Vdbe*, Table*, int); 3652 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3653 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3654 char sqlite3ExprAffinity(Expr *pExpr); 3655 int sqlite3Atoi64(const char*, i64*, int, u8); 3656 int sqlite3DecOrHexToI64(const char*, i64*); 3657 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3658 void sqlite3Error(sqlite3*,int); 3659 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3660 u8 sqlite3HexToInt(int h); 3661 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3662 3663 #if defined(SQLITE_NEED_ERR_NAME) 3664 const char *sqlite3ErrName(int); 3665 #endif 3666 3667 const char *sqlite3ErrStr(int); 3668 int sqlite3ReadSchema(Parse *pParse); 3669 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3670 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3671 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3672 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3673 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3674 Expr *sqlite3ExprSkipCollate(Expr*); 3675 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3676 int sqlite3CheckObjectName(Parse *, const char *); 3677 void sqlite3VdbeSetChanges(sqlite3 *, int); 3678 int sqlite3AddInt64(i64*,i64); 3679 int sqlite3SubInt64(i64*,i64); 3680 int sqlite3MulInt64(i64*,i64); 3681 int sqlite3AbsInt32(int); 3682 #ifdef SQLITE_ENABLE_8_3_NAMES 3683 void sqlite3FileSuffix3(const char*, char*); 3684 #else 3685 # define sqlite3FileSuffix3(X,Y) 3686 #endif 3687 u8 sqlite3GetBoolean(const char *z,u8); 3688 3689 const void *sqlite3ValueText(sqlite3_value*, u8); 3690 int sqlite3ValueBytes(sqlite3_value*, u8); 3691 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3692 void(*)(void*)); 3693 void sqlite3ValueSetNull(sqlite3_value*); 3694 void sqlite3ValueFree(sqlite3_value*); 3695 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3696 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3697 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3698 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3699 #ifndef SQLITE_AMALGAMATION 3700 extern const unsigned char sqlite3OpcodeProperty[]; 3701 extern const unsigned char sqlite3UpperToLower[]; 3702 extern const unsigned char sqlite3CtypeMap[]; 3703 extern const Token sqlite3IntTokens[]; 3704 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3705 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3706 #ifndef SQLITE_OMIT_WSD 3707 extern int sqlite3PendingByte; 3708 #endif 3709 #endif 3710 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3711 void sqlite3Reindex(Parse*, Token*, Token*); 3712 void sqlite3AlterFunctions(void); 3713 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3714 int sqlite3GetToken(const unsigned char *, int *); 3715 void sqlite3NestedParse(Parse*, const char*, ...); 3716 void sqlite3ExpirePreparedStatements(sqlite3*); 3717 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3718 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3719 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 3720 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3721 int sqlite3ResolveExprNames(NameContext*, Expr*); 3722 int sqlite3ResolveExprListNames(NameContext*, ExprList*); 3723 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3724 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3725 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3726 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3727 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3728 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3729 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3730 char sqlite3AffinityType(const char*, u8*); 3731 void sqlite3Analyze(Parse*, Token*, Token*); 3732 int sqlite3InvokeBusyHandler(BusyHandler*); 3733 int sqlite3FindDb(sqlite3*, Token*); 3734 int sqlite3FindDbName(sqlite3 *, const char *); 3735 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3736 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3737 void sqlite3DefaultRowEst(Index*); 3738 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3739 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3740 void sqlite3MinimumFileFormat(Parse*, int, int); 3741 void sqlite3SchemaClear(void *); 3742 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3743 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3744 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3745 void sqlite3KeyInfoUnref(KeyInfo*); 3746 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3747 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3748 #ifdef SQLITE_DEBUG 3749 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3750 #endif 3751 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3752 void (*)(sqlite3_context*,int,sqlite3_value **), 3753 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3754 FuncDestructor *pDestructor 3755 ); 3756 int sqlite3ApiExit(sqlite3 *db, int); 3757 int sqlite3OpenTempDatabase(Parse *); 3758 3759 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 3760 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3761 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3762 void sqlite3AppendChar(StrAccum*,int,char); 3763 char *sqlite3StrAccumFinish(StrAccum*); 3764 void sqlite3StrAccumReset(StrAccum*); 3765 void sqlite3SelectDestInit(SelectDest*,int,int); 3766 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3767 3768 void sqlite3BackupRestart(sqlite3_backup *); 3769 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3770 3771 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3772 void sqlite3AnalyzeFunctions(void); 3773 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3774 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3775 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3776 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3777 #endif 3778 3779 /* 3780 ** The interface to the LEMON-generated parser 3781 */ 3782 void *sqlite3ParserAlloc(void*(*)(u64)); 3783 void sqlite3ParserFree(void*, void(*)(void*)); 3784 void sqlite3Parser(void*, int, Token, Parse*); 3785 #ifdef YYTRACKMAXSTACKDEPTH 3786 int sqlite3ParserStackPeak(void*); 3787 #endif 3788 3789 void sqlite3AutoLoadExtensions(sqlite3*); 3790 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3791 void sqlite3CloseExtensions(sqlite3*); 3792 #else 3793 # define sqlite3CloseExtensions(X) 3794 #endif 3795 3796 #ifndef SQLITE_OMIT_SHARED_CACHE 3797 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3798 #else 3799 #define sqlite3TableLock(v,w,x,y,z) 3800 #endif 3801 3802 #ifdef SQLITE_TEST 3803 int sqlite3Utf8To8(unsigned char*); 3804 #endif 3805 3806 #ifdef SQLITE_OMIT_VIRTUALTABLE 3807 # define sqlite3VtabClear(Y) 3808 # define sqlite3VtabSync(X,Y) SQLITE_OK 3809 # define sqlite3VtabRollback(X) 3810 # define sqlite3VtabCommit(X) 3811 # define sqlite3VtabInSync(db) 0 3812 # define sqlite3VtabLock(X) 3813 # define sqlite3VtabUnlock(X) 3814 # define sqlite3VtabUnlockList(X) 3815 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3816 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3817 #else 3818 void sqlite3VtabClear(sqlite3 *db, Table*); 3819 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3820 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3821 int sqlite3VtabRollback(sqlite3 *db); 3822 int sqlite3VtabCommit(sqlite3 *db); 3823 void sqlite3VtabLock(VTable *); 3824 void sqlite3VtabUnlock(VTable *); 3825 void sqlite3VtabUnlockList(sqlite3*); 3826 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3827 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3828 VTable *sqlite3GetVTable(sqlite3*, Table*); 3829 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3830 #endif 3831 int sqlite3VtabEponymousTableInit(Parse*,Module*); 3832 void sqlite3VtabEponymousTableClear(sqlite3*,Module*); 3833 void sqlite3VtabMakeWritable(Parse*,Table*); 3834 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3835 void sqlite3VtabFinishParse(Parse*, Token*); 3836 void sqlite3VtabArgInit(Parse*); 3837 void sqlite3VtabArgExtend(Parse*, Token*); 3838 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3839 int sqlite3VtabCallConnect(Parse*, Table*); 3840 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3841 int sqlite3VtabBegin(sqlite3 *, VTable *); 3842 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3843 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3844 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3845 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3846 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3847 void sqlite3ParserReset(Parse*); 3848 int sqlite3Reprepare(Vdbe*); 3849 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3850 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3851 int sqlite3TempInMemory(const sqlite3*); 3852 const char *sqlite3JournalModename(int); 3853 #ifndef SQLITE_OMIT_WAL 3854 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3855 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3856 #endif 3857 #ifndef SQLITE_OMIT_CTE 3858 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3859 void sqlite3WithDelete(sqlite3*,With*); 3860 void sqlite3WithPush(Parse*, With*, u8); 3861 #else 3862 #define sqlite3WithPush(x,y,z) 3863 #define sqlite3WithDelete(x,y) 3864 #endif 3865 3866 /* Declarations for functions in fkey.c. All of these are replaced by 3867 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3868 ** key functionality is available. If OMIT_TRIGGER is defined but 3869 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3870 ** this case foreign keys are parsed, but no other functionality is 3871 ** provided (enforcement of FK constraints requires the triggers sub-system). 3872 */ 3873 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3874 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3875 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3876 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3877 int sqlite3FkRequired(Parse*, Table*, int*, int); 3878 u32 sqlite3FkOldmask(Parse*, Table*); 3879 FKey *sqlite3FkReferences(Table *); 3880 #else 3881 #define sqlite3FkActions(a,b,c,d,e,f) 3882 #define sqlite3FkCheck(a,b,c,d,e,f) 3883 #define sqlite3FkDropTable(a,b,c) 3884 #define sqlite3FkOldmask(a,b) 0 3885 #define sqlite3FkRequired(a,b,c,d) 0 3886 #endif 3887 #ifndef SQLITE_OMIT_FOREIGN_KEY 3888 void sqlite3FkDelete(sqlite3 *, Table*); 3889 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3890 #else 3891 #define sqlite3FkDelete(a,b) 3892 #define sqlite3FkLocateIndex(a,b,c,d,e) 3893 #endif 3894 3895 3896 /* 3897 ** Available fault injectors. Should be numbered beginning with 0. 3898 */ 3899 #define SQLITE_FAULTINJECTOR_MALLOC 0 3900 #define SQLITE_FAULTINJECTOR_COUNT 1 3901 3902 /* 3903 ** The interface to the code in fault.c used for identifying "benign" 3904 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3905 ** is not defined. 3906 */ 3907 #ifndef SQLITE_OMIT_BUILTIN_TEST 3908 void sqlite3BeginBenignMalloc(void); 3909 void sqlite3EndBenignMalloc(void); 3910 #else 3911 #define sqlite3BeginBenignMalloc() 3912 #define sqlite3EndBenignMalloc() 3913 #endif 3914 3915 /* 3916 ** Allowed return values from sqlite3FindInIndex() 3917 */ 3918 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3919 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3920 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3921 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3922 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3923 /* 3924 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3925 */ 3926 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3927 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3928 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3929 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3930 3931 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3932 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3933 int sqlite3JournalSize(sqlite3_vfs *); 3934 int sqlite3JournalCreate(sqlite3_file *); 3935 int sqlite3JournalExists(sqlite3_file *p); 3936 #else 3937 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3938 #define sqlite3JournalExists(p) 1 3939 #endif 3940 3941 void sqlite3MemJournalOpen(sqlite3_file *); 3942 int sqlite3MemJournalSize(void); 3943 int sqlite3IsMemJournal(sqlite3_file *); 3944 3945 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 3946 #if SQLITE_MAX_EXPR_DEPTH>0 3947 int sqlite3SelectExprHeight(Select *); 3948 int sqlite3ExprCheckHeight(Parse*, int); 3949 #else 3950 #define sqlite3SelectExprHeight(x) 0 3951 #define sqlite3ExprCheckHeight(x,y) 3952 #endif 3953 3954 u32 sqlite3Get4byte(const u8*); 3955 void sqlite3Put4byte(u8*, u32); 3956 3957 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3958 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3959 void sqlite3ConnectionUnlocked(sqlite3 *db); 3960 void sqlite3ConnectionClosed(sqlite3 *db); 3961 #else 3962 #define sqlite3ConnectionBlocked(x,y) 3963 #define sqlite3ConnectionUnlocked(x) 3964 #define sqlite3ConnectionClosed(x) 3965 #endif 3966 3967 #ifdef SQLITE_DEBUG 3968 void sqlite3ParserTrace(FILE*, char *); 3969 #endif 3970 3971 /* 3972 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3973 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3974 ** print I/O tracing messages. 3975 */ 3976 #ifdef SQLITE_ENABLE_IOTRACE 3977 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3978 void sqlite3VdbeIOTraceSql(Vdbe*); 3979 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 3980 #else 3981 # define IOTRACE(A) 3982 # define sqlite3VdbeIOTraceSql(X) 3983 #endif 3984 3985 /* 3986 ** These routines are available for the mem2.c debugging memory allocator 3987 ** only. They are used to verify that different "types" of memory 3988 ** allocations are properly tracked by the system. 3989 ** 3990 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3991 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3992 ** a single bit set. 3993 ** 3994 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3995 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3996 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3997 ** 3998 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3999 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4000 ** 4001 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 4002 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 4003 ** it might have been allocated by lookaside, except the allocation was 4004 ** too large or lookaside was already full. It is important to verify 4005 ** that allocations that might have been satisfied by lookaside are not 4006 ** passed back to non-lookaside free() routines. Asserts such as the 4007 ** example above are placed on the non-lookaside free() routines to verify 4008 ** this constraint. 4009 ** 4010 ** All of this is no-op for a production build. It only comes into 4011 ** play when the SQLITE_MEMDEBUG compile-time option is used. 4012 */ 4013 #ifdef SQLITE_MEMDEBUG 4014 void sqlite3MemdebugSetType(void*,u8); 4015 int sqlite3MemdebugHasType(void*,u8); 4016 int sqlite3MemdebugNoType(void*,u8); 4017 #else 4018 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 4019 # define sqlite3MemdebugHasType(X,Y) 1 4020 # define sqlite3MemdebugNoType(X,Y) 1 4021 #endif 4022 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 4023 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 4024 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 4025 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 4026 4027 /* 4028 ** Threading interface 4029 */ 4030 #if SQLITE_MAX_WORKER_THREADS>0 4031 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 4032 int sqlite3ThreadJoin(SQLiteThread*, void**); 4033 #endif 4034 4035 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 4036 int sqlite3DbstatRegister(sqlite3*); 4037 #endif 4038 4039 #endif /* _SQLITEINT_H_ */ 4040