1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.626 2007/12/13 03:45:08 drh Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 19 /* 20 ** The macro unlikely() is a hint that surrounds a boolean 21 ** expression that is usually false. Macro likely() surrounds 22 ** a boolean expression that is usually true. GCC is able to 23 ** use these hints to generate better code, sometimes. 24 */ 25 #if defined(__GNUC__) 26 # define likely(X) __builtin_expect((X),1) 27 # define unlikely(X) __builtin_expect((X),0) 28 #else 29 # define likely(X) !!(X) 30 # define unlikely(X) !!(X) 31 #endif 32 33 34 /* 35 ** These #defines should enable >2GB file support on Posix if the 36 ** underlying operating system supports it. If the OS lacks 37 ** large file support, or if the OS is windows, these should be no-ops. 38 ** 39 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 40 ** system #includes. Hence, this block of code must be the very first 41 ** code in all source files. 42 ** 43 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 44 ** on the compiler command line. This is necessary if you are compiling 45 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 46 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 47 ** without this option, LFS is enable. But LFS does not exist in the kernel 48 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 49 ** portability you should omit LFS. 50 ** 51 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 52 */ 53 #ifndef SQLITE_DISABLE_LFS 54 # define _LARGE_FILE 1 55 # ifndef _FILE_OFFSET_BITS 56 # define _FILE_OFFSET_BITS 64 57 # endif 58 # define _LARGEFILE_SOURCE 1 59 #endif 60 61 62 #include "sqliteLimit.h" 63 64 /* 65 ** For testing purposes, the various size limit constants are really 66 ** variables that we can modify in the testfixture. 67 */ 68 #ifdef SQLITE_TEST 69 #undef SQLITE_MAX_LENGTH 70 #undef SQLITE_MAX_COLUMN 71 #undef SQLITE_MAX_SQL_LENGTH 72 #undef SQLITE_MAX_EXPR_DEPTH 73 #undef SQLITE_MAX_COMPOUND_SELECT 74 #undef SQLITE_MAX_VDBE_OP 75 #undef SQLITE_MAX_FUNCTION_ARG 76 #undef SQLITE_MAX_VARIABLE_NUMBER 77 #undef SQLITE_MAX_PAGE_SIZE 78 #undef SQLITE_MAX_PAGE_COUNT 79 #undef SQLITE_MAX_LIKE_PATTERN_LENGTH 80 81 #define SQLITE_MAX_LENGTH sqlite3MAX_LENGTH 82 #define SQLITE_MAX_COLUMN sqlite3MAX_COLUMN 83 #define SQLITE_MAX_SQL_LENGTH sqlite3MAX_SQL_LENGTH 84 #define SQLITE_MAX_EXPR_DEPTH sqlite3MAX_EXPR_DEPTH 85 #define SQLITE_MAX_COMPOUND_SELECT sqlite3MAX_COMPOUND_SELECT 86 #define SQLITE_MAX_VDBE_OP sqlite3MAX_VDBE_OP 87 #define SQLITE_MAX_FUNCTION_ARG sqlite3MAX_FUNCTION_ARG 88 #define SQLITE_MAX_VARIABLE_NUMBER sqlite3MAX_VARIABLE_NUMBER 89 #define SQLITE_MAX_PAGE_SIZE sqlite3MAX_PAGE_SIZE 90 #define SQLITE_MAX_PAGE_COUNT sqlite3MAX_PAGE_COUNT 91 #define SQLITE_MAX_LIKE_PATTERN_LENGTH sqlite3MAX_LIKE_PATTERN_LENGTH 92 93 extern int sqlite3MAX_LENGTH; 94 extern int sqlite3MAX_COLUMN; 95 extern int sqlite3MAX_SQL_LENGTH; 96 extern int sqlite3MAX_EXPR_DEPTH; 97 extern int sqlite3MAX_COMPOUND_SELECT; 98 extern int sqlite3MAX_VDBE_OP; 99 extern int sqlite3MAX_FUNCTION_ARG; 100 extern int sqlite3MAX_VARIABLE_NUMBER; 101 extern int sqlite3MAX_PAGE_SIZE; 102 extern int sqlite3MAX_PAGE_COUNT; 103 extern int sqlite3MAX_LIKE_PATTERN_LENGTH; 104 #endif 105 106 107 /* 108 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 109 ** Older versions of SQLite used an optional THREADSAFE macro. 110 ** We support that for legacy 111 */ 112 #if !defined(SQLITE_THREADSAFE) 113 #if defined(THREADSAFE) 114 # define SQLITE_THREADSAFE THREADSAFE 115 #else 116 # define SQLITE_THREADSAFE 1 117 #endif 118 #endif 119 120 /* 121 ** We need to define _XOPEN_SOURCE as follows in order to enable 122 ** recursive mutexes on most unix systems. But Mac OS X is different. 123 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 124 ** so it is omitted there. See ticket #2673. 125 ** 126 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 127 ** implemented on some systems. So we avoid defining it at all 128 ** if it is already defined or if it is unneeded because we are 129 ** not doing a threadsafe build. Ticket #2681. 130 ** 131 ** See also ticket #2741. 132 */ 133 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && SQLITE_THREADSAFE 134 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 135 #endif 136 137 #if defined(SQLITE_TCL) || defined(TCLSH) 138 # include <tcl.h> 139 #endif 140 141 /* 142 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 143 ** Setting NDEBUG makes the code smaller and run faster. So the following 144 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 145 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 146 ** feature. 147 */ 148 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 149 # define NDEBUG 1 150 #endif 151 152 #include "sqlite3.h" 153 #include "hash.h" 154 #include "parse.h" 155 #include <stdio.h> 156 #include <stdlib.h> 157 #include <string.h> 158 #include <assert.h> 159 #include <stddef.h> 160 161 #define sqlite3_isnan(X) ((X)!=(X)) 162 163 /* 164 ** If compiling for a processor that lacks floating point support, 165 ** substitute integer for floating-point 166 */ 167 #ifdef SQLITE_OMIT_FLOATING_POINT 168 # define double sqlite_int64 169 # define LONGDOUBLE_TYPE sqlite_int64 170 # ifndef SQLITE_BIG_DBL 171 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 172 # endif 173 # define SQLITE_OMIT_DATETIME_FUNCS 1 174 # define SQLITE_OMIT_TRACE 1 175 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 176 #endif 177 #ifndef SQLITE_BIG_DBL 178 # define SQLITE_BIG_DBL (1e99) 179 #endif 180 181 /* 182 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 183 ** afterward. Having this macro allows us to cause the C compiler 184 ** to omit code used by TEMP tables without messy #ifndef statements. 185 */ 186 #ifdef SQLITE_OMIT_TEMPDB 187 #define OMIT_TEMPDB 1 188 #else 189 #define OMIT_TEMPDB 0 190 #endif 191 192 /* 193 ** If the following macro is set to 1, then NULL values are considered 194 ** distinct when determining whether or not two entries are the same 195 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 196 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 197 ** is the way things are suppose to work. 198 ** 199 ** If the following macro is set to 0, the NULLs are indistinct for 200 ** a UNIQUE index. In this mode, you can only have a single NULL entry 201 ** for a column declared UNIQUE. This is the way Informix and SQL Server 202 ** work. 203 */ 204 #define NULL_DISTINCT_FOR_UNIQUE 1 205 206 /* 207 ** The "file format" number is an integer that is incremented whenever 208 ** the VDBE-level file format changes. The following macros define the 209 ** the default file format for new databases and the maximum file format 210 ** that the library can read. 211 */ 212 #define SQLITE_MAX_FILE_FORMAT 4 213 #ifndef SQLITE_DEFAULT_FILE_FORMAT 214 # define SQLITE_DEFAULT_FILE_FORMAT 1 215 #endif 216 217 /* 218 ** Provide a default value for TEMP_STORE in case it is not specified 219 ** on the command-line 220 */ 221 #ifndef TEMP_STORE 222 # define TEMP_STORE 1 223 #endif 224 225 /* 226 ** GCC does not define the offsetof() macro so we'll have to do it 227 ** ourselves. 228 */ 229 #ifndef offsetof 230 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 231 #endif 232 233 /* 234 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 235 ** not, there are still machines out there that use EBCDIC.) 236 */ 237 #if 'A' == '\301' 238 # define SQLITE_EBCDIC 1 239 #else 240 # define SQLITE_ASCII 1 241 #endif 242 243 /* 244 ** Integers of known sizes. These typedefs might change for architectures 245 ** where the sizes very. Preprocessor macros are available so that the 246 ** types can be conveniently redefined at compile-type. Like this: 247 ** 248 ** cc '-DUINTPTR_TYPE=long long int' ... 249 */ 250 #ifndef UINT32_TYPE 251 # define UINT32_TYPE unsigned int 252 #endif 253 #ifndef UINT16_TYPE 254 # define UINT16_TYPE unsigned short int 255 #endif 256 #ifndef INT16_TYPE 257 # define INT16_TYPE short int 258 #endif 259 #ifndef UINT8_TYPE 260 # define UINT8_TYPE unsigned char 261 #endif 262 #ifndef INT8_TYPE 263 # define INT8_TYPE signed char 264 #endif 265 #ifndef LONGDOUBLE_TYPE 266 # define LONGDOUBLE_TYPE long double 267 #endif 268 typedef sqlite_int64 i64; /* 8-byte signed integer */ 269 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 270 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 271 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 272 typedef INT16_TYPE i16; /* 2-byte signed integer */ 273 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 274 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 275 276 /* 277 ** Macros to determine whether the machine is big or little endian, 278 ** evaluated at runtime. 279 */ 280 #ifdef SQLITE_AMALGAMATION 281 const int sqlite3One; 282 #else 283 extern const int sqlite3one; 284 #endif 285 #if defined(i386) || defined(__i386__) || defined(_M_IX86) 286 # define SQLITE_BIGENDIAN 0 287 # define SQLITE_LITTLEENDIAN 1 288 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 289 #else 290 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 291 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 292 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 293 #endif 294 295 /* 296 ** An instance of the following structure is used to store the busy-handler 297 ** callback for a given sqlite handle. 298 ** 299 ** The sqlite.busyHandler member of the sqlite struct contains the busy 300 ** callback for the database handle. Each pager opened via the sqlite 301 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 302 ** callback is currently invoked only from within pager.c. 303 */ 304 typedef struct BusyHandler BusyHandler; 305 struct BusyHandler { 306 int (*xFunc)(void *,int); /* The busy callback */ 307 void *pArg; /* First arg to busy callback */ 308 int nBusy; /* Incremented with each busy call */ 309 }; 310 311 /* 312 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 313 ** "BusyHandler typedefs. 314 */ 315 #include "btree.h" 316 #include "vdbe.h" 317 #include "pager.h" 318 319 320 /* 321 ** Name of the master database table. The master database table 322 ** is a special table that holds the names and attributes of all 323 ** user tables and indices. 324 */ 325 #define MASTER_NAME "sqlite_master" 326 #define TEMP_MASTER_NAME "sqlite_temp_master" 327 328 /* 329 ** The root-page of the master database table. 330 */ 331 #define MASTER_ROOT 1 332 333 /* 334 ** The name of the schema table. 335 */ 336 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 337 338 /* 339 ** A convenience macro that returns the number of elements in 340 ** an array. 341 */ 342 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 343 344 /* 345 ** Forward references to structures 346 */ 347 typedef struct AggInfo AggInfo; 348 typedef struct AuthContext AuthContext; 349 typedef struct CollSeq CollSeq; 350 typedef struct Column Column; 351 typedef struct Db Db; 352 typedef struct Schema Schema; 353 typedef struct Expr Expr; 354 typedef struct ExprList ExprList; 355 typedef struct FKey FKey; 356 typedef struct FuncDef FuncDef; 357 typedef struct IdList IdList; 358 typedef struct Index Index; 359 typedef struct KeyClass KeyClass; 360 typedef struct KeyInfo KeyInfo; 361 typedef struct Module Module; 362 typedef struct NameContext NameContext; 363 typedef struct Parse Parse; 364 typedef struct Select Select; 365 typedef struct SrcList SrcList; 366 typedef struct StrAccum StrAccum; 367 typedef struct Table Table; 368 typedef struct TableLock TableLock; 369 typedef struct Token Token; 370 typedef struct TriggerStack TriggerStack; 371 typedef struct TriggerStep TriggerStep; 372 typedef struct Trigger Trigger; 373 typedef struct WhereInfo WhereInfo; 374 typedef struct WhereLevel WhereLevel; 375 376 #include "os.h" 377 #include "mutex.h" 378 379 /* 380 ** Each database file to be accessed by the system is an instance 381 ** of the following structure. There are normally two of these structures 382 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 383 ** aDb[1] is the database file used to hold temporary tables. Additional 384 ** databases may be attached. 385 */ 386 struct Db { 387 char *zName; /* Name of this database */ 388 Btree *pBt; /* The B*Tree structure for this database file */ 389 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 390 u8 safety_level; /* How aggressive at synching data to disk */ 391 void *pAux; /* Auxiliary data. Usually NULL */ 392 void (*xFreeAux)(void*); /* Routine to free pAux */ 393 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 394 }; 395 396 /* 397 ** An instance of the following structure stores a database schema. 398 ** 399 ** If there are no virtual tables configured in this schema, the 400 ** Schema.db variable is set to NULL. After the first virtual table 401 ** has been added, it is set to point to the database connection 402 ** used to create the connection. Once a virtual table has been 403 ** added to the Schema structure and the Schema.db variable populated, 404 ** only that database connection may use the Schema to prepare 405 ** statements. 406 */ 407 struct Schema { 408 int schema_cookie; /* Database schema version number for this file */ 409 Hash tblHash; /* All tables indexed by name */ 410 Hash idxHash; /* All (named) indices indexed by name */ 411 Hash trigHash; /* All triggers indexed by name */ 412 Hash aFKey; /* Foreign keys indexed by to-table */ 413 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 414 u8 file_format; /* Schema format version for this file */ 415 u8 enc; /* Text encoding used by this database */ 416 u16 flags; /* Flags associated with this schema */ 417 int cache_size; /* Number of pages to use in the cache */ 418 #ifndef SQLITE_OMIT_VIRTUALTABLE 419 sqlite3 *db; /* "Owner" connection. See comment above */ 420 #endif 421 }; 422 423 /* 424 ** These macros can be used to test, set, or clear bits in the 425 ** Db.flags field. 426 */ 427 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 428 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 429 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 430 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 431 432 /* 433 ** Allowed values for the DB.flags field. 434 ** 435 ** The DB_SchemaLoaded flag is set after the database schema has been 436 ** read into internal hash tables. 437 ** 438 ** DB_UnresetViews means that one or more views have column names that 439 ** have been filled out. If the schema changes, these column names might 440 ** changes and so the view will need to be reset. 441 */ 442 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 443 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 444 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 445 446 447 /* 448 ** Each database is an instance of the following structure. 449 ** 450 ** The sqlite.lastRowid records the last insert rowid generated by an 451 ** insert statement. Inserts on views do not affect its value. Each 452 ** trigger has its own context, so that lastRowid can be updated inside 453 ** triggers as usual. The previous value will be restored once the trigger 454 ** exits. Upon entering a before or instead of trigger, lastRowid is no 455 ** longer (since after version 2.8.12) reset to -1. 456 ** 457 ** The sqlite.nChange does not count changes within triggers and keeps no 458 ** context. It is reset at start of sqlite3_exec. 459 ** The sqlite.lsChange represents the number of changes made by the last 460 ** insert, update, or delete statement. It remains constant throughout the 461 ** length of a statement and is then updated by OP_SetCounts. It keeps a 462 ** context stack just like lastRowid so that the count of changes 463 ** within a trigger is not seen outside the trigger. Changes to views do not 464 ** affect the value of lsChange. 465 ** The sqlite.csChange keeps track of the number of current changes (since 466 ** the last statement) and is used to update sqlite_lsChange. 467 ** 468 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 469 ** store the most recent error code and, if applicable, string. The 470 ** internal function sqlite3Error() is used to set these variables 471 ** consistently. 472 */ 473 struct sqlite3 { 474 sqlite3_vfs *pVfs; /* OS Interface */ 475 int nDb; /* Number of backends currently in use */ 476 Db *aDb; /* All backends */ 477 int flags; /* Miscellanous flags. See below */ 478 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 479 int errCode; /* Most recent error code (SQLITE_*) */ 480 int errMask; /* & result codes with this before returning */ 481 u8 autoCommit; /* The auto-commit flag. */ 482 u8 temp_store; /* 1: file 2: memory 0: default */ 483 u8 mallocFailed; /* True if we have seen a malloc failure */ 484 char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 485 int nTable; /* Number of tables in the database */ 486 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 487 i64 lastRowid; /* ROWID of most recent insert (see above) */ 488 i64 priorNewRowid; /* Last randomly generated ROWID */ 489 int magic; /* Magic number for detect library misuse */ 490 int nChange; /* Value returned by sqlite3_changes() */ 491 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 492 sqlite3_mutex *mutex; /* Connection mutex */ 493 struct sqlite3InitInfo { /* Information used during initialization */ 494 int iDb; /* When back is being initialized */ 495 int newTnum; /* Rootpage of table being initialized */ 496 u8 busy; /* TRUE if currently initializing */ 497 } init; 498 int nExtension; /* Number of loaded extensions */ 499 void **aExtension; /* Array of shared libraray handles */ 500 struct Vdbe *pVdbe; /* List of active virtual machines */ 501 int activeVdbeCnt; /* Number of vdbes currently executing */ 502 void (*xTrace)(void*,const char*); /* Trace function */ 503 void *pTraceArg; /* Argument to the trace function */ 504 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 505 void *pProfileArg; /* Argument to profile function */ 506 void *pCommitArg; /* Argument to xCommitCallback() */ 507 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 508 void *pRollbackArg; /* Argument to xRollbackCallback() */ 509 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 510 void *pUpdateArg; 511 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 512 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 513 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 514 void *pCollNeededArg; 515 sqlite3_value *pErr; /* Most recent error message */ 516 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 517 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 518 union { 519 int isInterrupted; /* True if sqlite3_interrupt has been called */ 520 double notUsed1; /* Spacer */ 521 } u1; 522 #ifndef SQLITE_OMIT_AUTHORIZATION 523 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 524 /* Access authorization function */ 525 void *pAuthArg; /* 1st argument to the access auth function */ 526 #endif 527 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 528 int (*xProgress)(void *); /* The progress callback */ 529 void *pProgressArg; /* Argument to the progress callback */ 530 int nProgressOps; /* Number of opcodes for progress callback */ 531 #endif 532 #ifndef SQLITE_OMIT_VIRTUALTABLE 533 Hash aModule; /* populated by sqlite3_create_module() */ 534 Table *pVTab; /* vtab with active Connect/Create method */ 535 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 536 int nVTrans; /* Allocated size of aVTrans */ 537 #endif 538 Hash aFunc; /* All functions that can be in SQL exprs */ 539 Hash aCollSeq; /* All collating sequences */ 540 BusyHandler busyHandler; /* Busy callback */ 541 int busyTimeout; /* Busy handler timeout, in msec */ 542 Db aDbStatic[2]; /* Static space for the 2 default backends */ 543 #ifdef SQLITE_SSE 544 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 545 #endif 546 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 547 }; 548 549 /* 550 ** A macro to discover the encoding of a database. 551 */ 552 #define ENC(db) ((db)->aDb[0].pSchema->enc) 553 554 /* 555 ** Possible values for the sqlite.flags and or Db.flags fields. 556 ** 557 ** On sqlite.flags, the SQLITE_InTrans value means that we have 558 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 559 ** transaction is active on that particular database file. 560 */ 561 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 562 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 563 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 564 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 565 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 566 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 567 /* DELETE, or UPDATE and return */ 568 /* the count using a callback. */ 569 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 570 /* result set is empty */ 571 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 572 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 573 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 574 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 575 ** accessing read-only databases */ 576 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 577 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 578 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 579 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 580 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 581 582 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 583 #define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */ 584 #define SQLITE_Vtab 0x00100000 /* There exists a virtual table */ 585 586 /* 587 ** Possible values for the sqlite.magic field. 588 ** The numbers are obtained at random and have no special meaning, other 589 ** than being distinct from one another. 590 */ 591 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 592 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 593 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 594 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 595 596 /* 597 ** Each SQL function is defined by an instance of the following 598 ** structure. A pointer to this structure is stored in the sqlite.aFunc 599 ** hash table. When multiple functions have the same name, the hash table 600 ** points to a linked list of these structures. 601 */ 602 struct FuncDef { 603 i16 nArg; /* Number of arguments. -1 means unlimited */ 604 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 605 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 606 u8 flags; /* Some combination of SQLITE_FUNC_* */ 607 void *pUserData; /* User data parameter */ 608 FuncDef *pNext; /* Next function with same name */ 609 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 610 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 611 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 612 char zName[1]; /* SQL name of the function. MUST BE LAST */ 613 }; 614 615 /* 616 ** Each SQLite module (virtual table definition) is defined by an 617 ** instance of the following structure, stored in the sqlite3.aModule 618 ** hash table. 619 */ 620 struct Module { 621 const sqlite3_module *pModule; /* Callback pointers */ 622 const char *zName; /* Name passed to create_module() */ 623 void *pAux; /* pAux passed to create_module() */ 624 void (*xDestroy)(void *); /* Module destructor function */ 625 }; 626 627 /* 628 ** Possible values for FuncDef.flags 629 */ 630 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 631 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 632 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ 633 634 /* 635 ** information about each column of an SQL table is held in an instance 636 ** of this structure. 637 */ 638 struct Column { 639 char *zName; /* Name of this column */ 640 Expr *pDflt; /* Default value of this column */ 641 char *zType; /* Data type for this column */ 642 char *zColl; /* Collating sequence. If NULL, use the default */ 643 u8 notNull; /* True if there is a NOT NULL constraint */ 644 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 645 char affinity; /* One of the SQLITE_AFF_... values */ 646 #ifndef SQLITE_OMIT_VIRTUALTABLE 647 u8 isHidden; /* True if this column is 'hidden' */ 648 #endif 649 }; 650 651 /* 652 ** A "Collating Sequence" is defined by an instance of the following 653 ** structure. Conceptually, a collating sequence consists of a name and 654 ** a comparison routine that defines the order of that sequence. 655 ** 656 ** There may two seperate implementations of the collation function, one 657 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 658 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 659 ** native byte order. When a collation sequence is invoked, SQLite selects 660 ** the version that will require the least expensive encoding 661 ** translations, if any. 662 ** 663 ** The CollSeq.pUser member variable is an extra parameter that passed in 664 ** as the first argument to the UTF-8 comparison function, xCmp. 665 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 666 ** xCmp16. 667 ** 668 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 669 ** collating sequence is undefined. Indices built on an undefined 670 ** collating sequence may not be read or written. 671 */ 672 struct CollSeq { 673 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 674 u8 enc; /* Text encoding handled by xCmp() */ 675 u8 type; /* One of the SQLITE_COLL_... values below */ 676 void *pUser; /* First argument to xCmp() */ 677 int (*xCmp)(void*,int, const void*, int, const void*); 678 void (*xDel)(void*); /* Destructor for pUser */ 679 }; 680 681 /* 682 ** Allowed values of CollSeq flags: 683 */ 684 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 685 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 686 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 687 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 688 689 /* 690 ** A sort order can be either ASC or DESC. 691 */ 692 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 693 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 694 695 /* 696 ** Column affinity types. 697 ** 698 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 699 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 700 ** the speed a little by number the values consecutively. 701 ** 702 ** But rather than start with 0 or 1, we begin with 'a'. That way, 703 ** when multiple affinity types are concatenated into a string and 704 ** used as the P3 operand, they will be more readable. 705 ** 706 ** Note also that the numeric types are grouped together so that testing 707 ** for a numeric type is a single comparison. 708 */ 709 #define SQLITE_AFF_TEXT 'a' 710 #define SQLITE_AFF_NONE 'b' 711 #define SQLITE_AFF_NUMERIC 'c' 712 #define SQLITE_AFF_INTEGER 'd' 713 #define SQLITE_AFF_REAL 'e' 714 715 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 716 717 /* 718 ** Each SQL table is represented in memory by an instance of the 719 ** following structure. 720 ** 721 ** Table.zName is the name of the table. The case of the original 722 ** CREATE TABLE statement is stored, but case is not significant for 723 ** comparisons. 724 ** 725 ** Table.nCol is the number of columns in this table. Table.aCol is a 726 ** pointer to an array of Column structures, one for each column. 727 ** 728 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 729 ** the column that is that key. Otherwise Table.iPKey is negative. Note 730 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 731 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 732 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 733 ** is generated for each row of the table. Table.hasPrimKey is true if 734 ** the table has any PRIMARY KEY, INTEGER or otherwise. 735 ** 736 ** Table.tnum is the page number for the root BTree page of the table in the 737 ** database file. If Table.iDb is the index of the database table backend 738 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 739 ** holds temporary tables and indices. If Table.isEphem 740 ** is true, then the table is stored in a file that is automatically deleted 741 ** when the VDBE cursor to the table is closed. In this case Table.tnum 742 ** refers VDBE cursor number that holds the table open, not to the root 743 ** page number. Transient tables are used to hold the results of a 744 ** sub-query that appears instead of a real table name in the FROM clause 745 ** of a SELECT statement. 746 */ 747 struct Table { 748 char *zName; /* Name of the table */ 749 int nCol; /* Number of columns in this table */ 750 Column *aCol; /* Information about each column */ 751 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 752 Index *pIndex; /* List of SQL indexes on this table. */ 753 int tnum; /* Root BTree node for this table (see note above) */ 754 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 755 int nRef; /* Number of pointers to this Table */ 756 Trigger *pTrigger; /* List of SQL triggers on this table */ 757 FKey *pFKey; /* Linked list of all foreign keys in this table */ 758 char *zColAff; /* String defining the affinity of each column */ 759 #ifndef SQLITE_OMIT_CHECK 760 Expr *pCheck; /* The AND of all CHECK constraints */ 761 #endif 762 #ifndef SQLITE_OMIT_ALTERTABLE 763 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 764 #endif 765 u8 readOnly; /* True if this table should not be written by the user */ 766 u8 isEphem; /* True if created using OP_OpenEphermeral */ 767 u8 hasPrimKey; /* True if there exists a primary key */ 768 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 769 u8 autoInc; /* True if the integer primary key is autoincrement */ 770 #ifndef SQLITE_OMIT_VIRTUALTABLE 771 u8 isVirtual; /* True if this is a virtual table */ 772 u8 isCommit; /* True once the CREATE TABLE has been committed */ 773 Module *pMod; /* Pointer to the implementation of the module */ 774 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 775 int nModuleArg; /* Number of arguments to the module */ 776 char **azModuleArg; /* Text of all module args. [0] is module name */ 777 #endif 778 Schema *pSchema; /* Schema that contains this table */ 779 }; 780 781 /* 782 ** Test to see whether or not a table is a virtual table. This is 783 ** done as a macro so that it will be optimized out when virtual 784 ** table support is omitted from the build. 785 */ 786 #ifndef SQLITE_OMIT_VIRTUALTABLE 787 # define IsVirtual(X) ((X)->isVirtual) 788 # define IsHiddenColumn(X) ((X)->isHidden) 789 #else 790 # define IsVirtual(X) 0 791 # define IsHiddenColumn(X) 0 792 #endif 793 794 /* 795 ** Each foreign key constraint is an instance of the following structure. 796 ** 797 ** A foreign key is associated with two tables. The "from" table is 798 ** the table that contains the REFERENCES clause that creates the foreign 799 ** key. The "to" table is the table that is named in the REFERENCES clause. 800 ** Consider this example: 801 ** 802 ** CREATE TABLE ex1( 803 ** a INTEGER PRIMARY KEY, 804 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 805 ** ); 806 ** 807 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 808 ** 809 ** Each REFERENCES clause generates an instance of the following structure 810 ** which is attached to the from-table. The to-table need not exist when 811 ** the from-table is created. The existance of the to-table is not checked 812 ** until an attempt is made to insert data into the from-table. 813 ** 814 ** The sqlite.aFKey hash table stores pointers to this structure 815 ** given the name of a to-table. For each to-table, all foreign keys 816 ** associated with that table are on a linked list using the FKey.pNextTo 817 ** field. 818 */ 819 struct FKey { 820 Table *pFrom; /* The table that constains the REFERENCES clause */ 821 FKey *pNextFrom; /* Next foreign key in pFrom */ 822 char *zTo; /* Name of table that the key points to */ 823 FKey *pNextTo; /* Next foreign key that points to zTo */ 824 int nCol; /* Number of columns in this key */ 825 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 826 int iFrom; /* Index of column in pFrom */ 827 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 828 } *aCol; /* One entry for each of nCol column s */ 829 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 830 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 831 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 832 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 833 }; 834 835 /* 836 ** SQLite supports many different ways to resolve a constraint 837 ** error. ROLLBACK processing means that a constraint violation 838 ** causes the operation in process to fail and for the current transaction 839 ** to be rolled back. ABORT processing means the operation in process 840 ** fails and any prior changes from that one operation are backed out, 841 ** but the transaction is not rolled back. FAIL processing means that 842 ** the operation in progress stops and returns an error code. But prior 843 ** changes due to the same operation are not backed out and no rollback 844 ** occurs. IGNORE means that the particular row that caused the constraint 845 ** error is not inserted or updated. Processing continues and no error 846 ** is returned. REPLACE means that preexisting database rows that caused 847 ** a UNIQUE constraint violation are removed so that the new insert or 848 ** update can proceed. Processing continues and no error is reported. 849 ** 850 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 851 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 852 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 853 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 854 ** referenced table row is propagated into the row that holds the 855 ** foreign key. 856 ** 857 ** The following symbolic values are used to record which type 858 ** of action to take. 859 */ 860 #define OE_None 0 /* There is no constraint to check */ 861 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 862 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 863 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 864 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 865 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 866 867 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 868 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 869 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 870 #define OE_Cascade 9 /* Cascade the changes */ 871 872 #define OE_Default 99 /* Do whatever the default action is */ 873 874 875 /* 876 ** An instance of the following structure is passed as the first 877 ** argument to sqlite3VdbeKeyCompare and is used to control the 878 ** comparison of the two index keys. 879 ** 880 ** If the KeyInfo.incrKey value is true and the comparison would 881 ** otherwise be equal, then return a result as if the second key 882 ** were larger. 883 */ 884 struct KeyInfo { 885 sqlite3 *db; /* The database connection */ 886 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 887 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 888 u8 prefixIsEqual; /* Treat a prefix as equal */ 889 int nField; /* Number of entries in aColl[] */ 890 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 891 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 892 }; 893 894 /* 895 ** Each SQL index is represented in memory by an 896 ** instance of the following structure. 897 ** 898 ** The columns of the table that are to be indexed are described 899 ** by the aiColumn[] field of this structure. For example, suppose 900 ** we have the following table and index: 901 ** 902 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 903 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 904 ** 905 ** In the Table structure describing Ex1, nCol==3 because there are 906 ** three columns in the table. In the Index structure describing 907 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 908 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 909 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 910 ** The second column to be indexed (c1) has an index of 0 in 911 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 912 ** 913 ** The Index.onError field determines whether or not the indexed columns 914 ** must be unique and what to do if they are not. When Index.onError=OE_None, 915 ** it means this is not a unique index. Otherwise it is a unique index 916 ** and the value of Index.onError indicate the which conflict resolution 917 ** algorithm to employ whenever an attempt is made to insert a non-unique 918 ** element. 919 */ 920 struct Index { 921 char *zName; /* Name of this index */ 922 int nColumn; /* Number of columns in the table used by this index */ 923 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 924 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 925 Table *pTable; /* The SQL table being indexed */ 926 int tnum; /* Page containing root of this index in database file */ 927 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 928 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 929 char *zColAff; /* String defining the affinity of each column */ 930 Index *pNext; /* The next index associated with the same table */ 931 Schema *pSchema; /* Schema containing this index */ 932 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 933 char **azColl; /* Array of collation sequence names for index */ 934 }; 935 936 /* 937 ** Each token coming out of the lexer is an instance of 938 ** this structure. Tokens are also used as part of an expression. 939 ** 940 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 941 ** may contain random values. Do not make any assuptions about Token.dyn 942 ** and Token.n when Token.z==0. 943 */ 944 struct Token { 945 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 946 unsigned dyn : 1; /* True for malloced memory, false for static */ 947 unsigned n : 31; /* Number of characters in this token */ 948 }; 949 950 /* 951 ** An instance of this structure contains information needed to generate 952 ** code for a SELECT that contains aggregate functions. 953 ** 954 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 955 ** pointer to this structure. The Expr.iColumn field is the index in 956 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 957 ** code for that node. 958 ** 959 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 960 ** original Select structure that describes the SELECT statement. These 961 ** fields do not need to be freed when deallocating the AggInfo structure. 962 */ 963 struct AggInfo { 964 u8 directMode; /* Direct rendering mode means take data directly 965 ** from source tables rather than from accumulators */ 966 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 967 ** than the source table */ 968 int sortingIdx; /* Cursor number of the sorting index */ 969 ExprList *pGroupBy; /* The group by clause */ 970 int nSortingColumn; /* Number of columns in the sorting index */ 971 struct AggInfo_col { /* For each column used in source tables */ 972 Table *pTab; /* Source table */ 973 int iTable; /* Cursor number of the source table */ 974 int iColumn; /* Column number within the source table */ 975 int iSorterColumn; /* Column number in the sorting index */ 976 int iMem; /* Memory location that acts as accumulator */ 977 Expr *pExpr; /* The original expression */ 978 } *aCol; 979 int nColumn; /* Number of used entries in aCol[] */ 980 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 981 int nAccumulator; /* Number of columns that show through to the output. 982 ** Additional columns are used only as parameters to 983 ** aggregate functions */ 984 struct AggInfo_func { /* For each aggregate function */ 985 Expr *pExpr; /* Expression encoding the function */ 986 FuncDef *pFunc; /* The aggregate function implementation */ 987 int iMem; /* Memory location that acts as accumulator */ 988 int iDistinct; /* Ephermeral table used to enforce DISTINCT */ 989 } *aFunc; 990 int nFunc; /* Number of entries in aFunc[] */ 991 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 992 }; 993 994 /* 995 ** Each node of an expression in the parse tree is an instance 996 ** of this structure. 997 ** 998 ** Expr.op is the opcode. The integer parser token codes are reused 999 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1000 ** code representing the ">=" operator. This same integer code is reused 1001 ** to represent the greater-than-or-equal-to operator in the expression 1002 ** tree. 1003 ** 1004 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 1005 ** of argument if the expression is a function. 1006 ** 1007 ** Expr.token is the operator token for this node. For some expressions 1008 ** that have subexpressions, Expr.token can be the complete text that gave 1009 ** rise to the Expr. In the latter case, the token is marked as being 1010 ** a compound token. 1011 ** 1012 ** An expression of the form ID or ID.ID refers to a column in a table. 1013 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1014 ** the integer cursor number of a VDBE cursor pointing to that table and 1015 ** Expr.iColumn is the column number for the specific column. If the 1016 ** expression is used as a result in an aggregate SELECT, then the 1017 ** value is also stored in the Expr.iAgg column in the aggregate so that 1018 ** it can be accessed after all aggregates are computed. 1019 ** 1020 ** If the expression is a function, the Expr.iTable is an integer code 1021 ** representing which function. If the expression is an unbound variable 1022 ** marker (a question mark character '?' in the original SQL) then the 1023 ** Expr.iTable holds the index number for that variable. 1024 ** 1025 ** If the expression is a subquery then Expr.iColumn holds an integer 1026 ** register number containing the result of the subquery. If the 1027 ** subquery gives a constant result, then iTable is -1. If the subquery 1028 ** gives a different answer at different times during statement processing 1029 ** then iTable is the address of a subroutine that computes the subquery. 1030 ** 1031 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 1032 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 1033 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 1034 ** operand. 1035 ** 1036 ** If the Expr is of type OP_Column, and the table it is selecting from 1037 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1038 ** corresponding table definition. 1039 */ 1040 struct Expr { 1041 u8 op; /* Operation performed by this node */ 1042 char affinity; /* The affinity of the column or 0 if not a column */ 1043 u16 flags; /* Various flags. See below */ 1044 CollSeq *pColl; /* The collation type of the column or 0 */ 1045 Expr *pLeft, *pRight; /* Left and right subnodes */ 1046 ExprList *pList; /* A list of expressions used as function arguments 1047 ** or in "<expr> IN (<expr-list)" */ 1048 Token token; /* An operand token */ 1049 Token span; /* Complete text of the expression */ 1050 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 1051 ** iColumn-th field of the iTable-th table. */ 1052 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1053 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1054 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1055 Select *pSelect; /* When the expression is a sub-select. Also the 1056 ** right side of "<expr> IN (<select>)" */ 1057 Table *pTab; /* Table for OP_Column expressions. */ 1058 /* Schema *pSchema; */ 1059 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1060 int nHeight; /* Height of the tree headed by this node */ 1061 #endif 1062 }; 1063 1064 /* 1065 ** The following are the meanings of bits in the Expr.flags field. 1066 */ 1067 #define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */ 1068 #define EP_Agg 0x02 /* Contains one or more aggregate functions */ 1069 #define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */ 1070 #define EP_Error 0x08 /* Expression contains one or more errors */ 1071 #define EP_Distinct 0x10 /* Aggregate function with DISTINCT keyword */ 1072 #define EP_VarSelect 0x20 /* pSelect is correlated, not constant */ 1073 #define EP_Dequoted 0x40 /* True if the string has been dequoted */ 1074 #define EP_InfixFunc 0x80 /* True for an infix function: LIKE, GLOB, etc */ 1075 #define EP_ExpCollate 0x100 /* Collating sequence specified explicitly */ 1076 1077 /* 1078 ** These macros can be used to test, set, or clear bits in the 1079 ** Expr.flags field. 1080 */ 1081 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1082 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1083 #define ExprSetProperty(E,P) (E)->flags|=(P) 1084 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1085 1086 /* 1087 ** A list of expressions. Each expression may optionally have a 1088 ** name. An expr/name combination can be used in several ways, such 1089 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1090 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1091 ** also be used as the argument to a function, in which case the a.zName 1092 ** field is not used. 1093 */ 1094 struct ExprList { 1095 int nExpr; /* Number of expressions on the list */ 1096 int nAlloc; /* Number of entries allocated below */ 1097 int iECursor; /* VDBE Cursor associated with this ExprList */ 1098 struct ExprList_item { 1099 Expr *pExpr; /* The list of expressions */ 1100 char *zName; /* Token associated with this expression */ 1101 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1102 u8 isAgg; /* True if this is an aggregate like count(*) */ 1103 u8 done; /* A flag to indicate when processing is finished */ 1104 } *a; /* One entry for each expression */ 1105 }; 1106 1107 /* 1108 ** An instance of this structure can hold a simple list of identifiers, 1109 ** such as the list "a,b,c" in the following statements: 1110 ** 1111 ** INSERT INTO t(a,b,c) VALUES ...; 1112 ** CREATE INDEX idx ON t(a,b,c); 1113 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1114 ** 1115 ** The IdList.a.idx field is used when the IdList represents the list of 1116 ** column names after a table name in an INSERT statement. In the statement 1117 ** 1118 ** INSERT INTO t(a,b,c) ... 1119 ** 1120 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1121 */ 1122 struct IdList { 1123 struct IdList_item { 1124 char *zName; /* Name of the identifier */ 1125 int idx; /* Index in some Table.aCol[] of a column named zName */ 1126 } *a; 1127 int nId; /* Number of identifiers on the list */ 1128 int nAlloc; /* Number of entries allocated for a[] below */ 1129 }; 1130 1131 /* 1132 ** The bitmask datatype defined below is used for various optimizations. 1133 ** 1134 ** Changing this from a 64-bit to a 32-bit type limits the number of 1135 ** tables in a join to 32 instead of 64. But it also reduces the size 1136 ** of the library by 738 bytes on ix86. 1137 */ 1138 typedef u64 Bitmask; 1139 1140 /* 1141 ** The following structure describes the FROM clause of a SELECT statement. 1142 ** Each table or subquery in the FROM clause is a separate element of 1143 ** the SrcList.a[] array. 1144 ** 1145 ** With the addition of multiple database support, the following structure 1146 ** can also be used to describe a particular table such as the table that 1147 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1148 ** such a table must be a simple name: ID. But in SQLite, the table can 1149 ** now be identified by a database name, a dot, then the table name: ID.ID. 1150 ** 1151 ** The jointype starts out showing the join type between the current table 1152 ** and the next table on the list. The parser builds the list this way. 1153 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1154 ** jointype expresses the join between the table and the previous table. 1155 */ 1156 struct SrcList { 1157 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1158 i16 nAlloc; /* Number of entries allocated in a[] below */ 1159 struct SrcList_item { 1160 char *zDatabase; /* Name of database holding this table */ 1161 char *zName; /* Name of the table */ 1162 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1163 Table *pTab; /* An SQL table corresponding to zName */ 1164 Select *pSelect; /* A SELECT statement used in place of a table name */ 1165 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1166 u8 jointype; /* Type of join between this able and the previous */ 1167 int iCursor; /* The VDBE cursor number used to access this table */ 1168 Expr *pOn; /* The ON clause of a join */ 1169 IdList *pUsing; /* The USING clause of a join */ 1170 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1171 } a[1]; /* One entry for each identifier on the list */ 1172 }; 1173 1174 /* 1175 ** Permitted values of the SrcList.a.jointype field 1176 */ 1177 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1178 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1179 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1180 #define JT_LEFT 0x0008 /* Left outer join */ 1181 #define JT_RIGHT 0x0010 /* Right outer join */ 1182 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1183 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1184 1185 /* 1186 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1187 ** structure contains a single instance of this structure. This structure 1188 ** is intended to be private the the where.c module and should not be 1189 ** access or modified by other modules. 1190 ** 1191 ** The pIdxInfo and pBestIdx fields are used to help pick the best 1192 ** index on a virtual table. The pIdxInfo pointer contains indexing 1193 ** information for the i-th table in the FROM clause before reordering. 1194 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1195 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after 1196 ** FROM clause ordering. This is a little confusing so I will repeat 1197 ** it in different words. WhereInfo.a[i].pIdxInfo is index information 1198 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the 1199 ** index information for the i-th loop of the join. pBestInfo is always 1200 ** either NULL or a copy of some pIdxInfo. So for cleanup it is 1201 ** sufficient to free all of the pIdxInfo pointers. 1202 ** 1203 */ 1204 struct WhereLevel { 1205 int iFrom; /* Which entry in the FROM clause */ 1206 int flags; /* Flags associated with this level */ 1207 int iMem; /* First memory cell used by this level */ 1208 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1209 Index *pIdx; /* Index used. NULL if no index */ 1210 int iTabCur; /* The VDBE cursor used to access the table */ 1211 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 1212 int brk; /* Jump here to break out of the loop */ 1213 int nxt; /* Jump here to start the next IN combination */ 1214 int cont; /* Jump here to continue with the next loop cycle */ 1215 int top; /* First instruction of interior of the loop */ 1216 int op, p1, p2; /* Opcode used to terminate the loop */ 1217 int nEq; /* Number of == or IN constraints on this loop */ 1218 int nIn; /* Number of IN operators constraining this loop */ 1219 struct InLoop { 1220 int iCur; /* The VDBE cursor used by this IN operator */ 1221 int topAddr; /* Top of the IN loop */ 1222 } *aInLoop; /* Information about each nested IN operator */ 1223 sqlite3_index_info *pBestIdx; /* Index information for this level */ 1224 1225 /* The following field is really not part of the current level. But 1226 ** we need a place to cache index information for each table in the 1227 ** FROM clause and the WhereLevel structure is a convenient place. 1228 */ 1229 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1230 }; 1231 1232 /* 1233 ** The WHERE clause processing routine has two halves. The 1234 ** first part does the start of the WHERE loop and the second 1235 ** half does the tail of the WHERE loop. An instance of 1236 ** this structure is returned by the first half and passed 1237 ** into the second half to give some continuity. 1238 */ 1239 struct WhereInfo { 1240 Parse *pParse; 1241 SrcList *pTabList; /* List of tables in the join */ 1242 int iTop; /* The very beginning of the WHERE loop */ 1243 int iContinue; /* Jump here to continue with next record */ 1244 int iBreak; /* Jump here to break out of the loop */ 1245 int nLevel; /* Number of nested loop */ 1246 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ 1247 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 1248 }; 1249 1250 /* 1251 ** A NameContext defines a context in which to resolve table and column 1252 ** names. The context consists of a list of tables (the pSrcList) field and 1253 ** a list of named expression (pEList). The named expression list may 1254 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1255 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1256 ** pEList corresponds to the result set of a SELECT and is NULL for 1257 ** other statements. 1258 ** 1259 ** NameContexts can be nested. When resolving names, the inner-most 1260 ** context is searched first. If no match is found, the next outer 1261 ** context is checked. If there is still no match, the next context 1262 ** is checked. This process continues until either a match is found 1263 ** or all contexts are check. When a match is found, the nRef member of 1264 ** the context containing the match is incremented. 1265 ** 1266 ** Each subquery gets a new NameContext. The pNext field points to the 1267 ** NameContext in the parent query. Thus the process of scanning the 1268 ** NameContext list corresponds to searching through successively outer 1269 ** subqueries looking for a match. 1270 */ 1271 struct NameContext { 1272 Parse *pParse; /* The parser */ 1273 SrcList *pSrcList; /* One or more tables used to resolve names */ 1274 ExprList *pEList; /* Optional list of named expressions */ 1275 int nRef; /* Number of names resolved by this context */ 1276 int nErr; /* Number of errors encountered while resolving names */ 1277 u8 allowAgg; /* Aggregate functions allowed here */ 1278 u8 hasAgg; /* True if aggregates are seen */ 1279 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1280 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1281 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1282 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1283 }; 1284 1285 /* 1286 ** An instance of the following structure contains all information 1287 ** needed to generate code for a single SELECT statement. 1288 ** 1289 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1290 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1291 ** limit and nOffset to the value of the offset (or 0 if there is not 1292 ** offset). But later on, nLimit and nOffset become the memory locations 1293 ** in the VDBE that record the limit and offset counters. 1294 ** 1295 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1296 ** These addresses must be stored so that we can go back and fill in 1297 ** the P3_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1298 ** the number of columns in P2 can be computed at the same time 1299 ** as the OP_OpenEphm instruction is coded because not 1300 ** enough information about the compound query is known at that point. 1301 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1302 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1303 ** sequences for the ORDER BY clause. 1304 */ 1305 struct Select { 1306 ExprList *pEList; /* The fields of the result */ 1307 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1308 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1309 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1310 u8 isAgg; /* True if this is an aggregate query */ 1311 u8 usesEphm; /* True if uses an OpenEphemeral opcode */ 1312 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ 1313 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1314 SrcList *pSrc; /* The FROM clause */ 1315 Expr *pWhere; /* The WHERE clause */ 1316 ExprList *pGroupBy; /* The GROUP BY clause */ 1317 Expr *pHaving; /* The HAVING clause */ 1318 ExprList *pOrderBy; /* The ORDER BY clause */ 1319 Select *pPrior; /* Prior select in a compound select statement */ 1320 Select *pNext; /* Next select to the left in a compound */ 1321 Select *pRightmost; /* Right-most select in a compound select statement */ 1322 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1323 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1324 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1325 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1326 }; 1327 1328 /* 1329 ** The results of a select can be distributed in several ways. 1330 */ 1331 #define SRT_Union 1 /* Store result as keys in an index */ 1332 #define SRT_Except 2 /* Remove result from a UNION index */ 1333 #define SRT_Discard 3 /* Do not save the results anywhere */ 1334 1335 /* The ORDER BY clause is ignored for all of the above */ 1336 #define IgnorableOrderby(X) (X<=SRT_Discard) 1337 1338 #define SRT_Callback 4 /* Invoke a callback with each row of result */ 1339 #define SRT_Mem 5 /* Store result in a memory cell */ 1340 #define SRT_Set 6 /* Store non-null results as keys in an index */ 1341 #define SRT_Table 7 /* Store result as data with an automatic rowid */ 1342 #define SRT_EphemTab 8 /* Create transient tab and store like SRT_Table */ 1343 #define SRT_Subroutine 9 /* Call a subroutine to handle results */ 1344 #define SRT_Exists 10 /* Store 1 if the result is not empty */ 1345 1346 /* 1347 ** An SQL parser context. A copy of this structure is passed through 1348 ** the parser and down into all the parser action routine in order to 1349 ** carry around information that is global to the entire parse. 1350 ** 1351 ** The structure is divided into two parts. When the parser and code 1352 ** generate call themselves recursively, the first part of the structure 1353 ** is constant but the second part is reset at the beginning and end of 1354 ** each recursion. 1355 ** 1356 ** The nTableLock and aTableLock variables are only used if the shared-cache 1357 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 1358 ** used to store the set of table-locks required by the statement being 1359 ** compiled. Function sqlite3TableLock() is used to add entries to the 1360 ** list. 1361 */ 1362 struct Parse { 1363 sqlite3 *db; /* The main database structure */ 1364 int rc; /* Return code from execution */ 1365 char *zErrMsg; /* An error message */ 1366 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1367 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1368 u8 nameClash; /* A permanent table name clashes with temp table name */ 1369 u8 checkSchema; /* Causes schema cookie check after an error */ 1370 u8 nested; /* Number of nested calls to the parser/code generator */ 1371 u8 parseError; /* True after a parsing error. Ticket #1794 */ 1372 int nErr; /* Number of errors seen */ 1373 int nTab; /* Number of previously allocated VDBE cursors */ 1374 int nMem; /* Number of memory cells used so far */ 1375 int nSet; /* Number of sets used so far */ 1376 int ckOffset; /* Stack offset to data used by CHECK constraints */ 1377 u32 writeMask; /* Start a write transaction on these databases */ 1378 u32 cookieMask; /* Bitmask of schema verified databases */ 1379 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1380 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 1381 #ifndef SQLITE_OMIT_SHARED_CACHE 1382 int nTableLock; /* Number of locks in aTableLock */ 1383 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 1384 #endif 1385 1386 /* Above is constant between recursions. Below is reset before and after 1387 ** each recursion */ 1388 1389 int nVar; /* Number of '?' variables seen in the SQL so far */ 1390 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1391 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1392 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1393 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1394 Token sErrToken; /* The token at which the error occurred */ 1395 Token sNameToken; /* Token with unqualified schema object name */ 1396 Token sLastToken; /* The last token parsed */ 1397 const char *zSql; /* All SQL text */ 1398 const char *zTail; /* All SQL text past the last semicolon parsed */ 1399 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1400 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1401 TriggerStack *trigStack; /* Trigger actions being coded */ 1402 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1403 #ifndef SQLITE_OMIT_VIRTUALTABLE 1404 Token sArg; /* Complete text of a module argument */ 1405 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 1406 Table *pVirtualLock; /* Require virtual table lock on this table */ 1407 #endif 1408 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1409 int nHeight; /* Expression tree height of current sub-select */ 1410 #endif 1411 }; 1412 1413 #ifdef SQLITE_OMIT_VIRTUALTABLE 1414 #define IN_DECLARE_VTAB 0 1415 #else 1416 #define IN_DECLARE_VTAB (pParse->declareVtab) 1417 #endif 1418 1419 /* 1420 ** An instance of the following structure can be declared on a stack and used 1421 ** to save the Parse.zAuthContext value so that it can be restored later. 1422 */ 1423 struct AuthContext { 1424 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1425 Parse *pParse; /* The Parse structure */ 1426 }; 1427 1428 /* 1429 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1430 */ 1431 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1432 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1433 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 1434 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 1435 1436 /* 1437 * Each trigger present in the database schema is stored as an instance of 1438 * struct Trigger. 1439 * 1440 * Pointers to instances of struct Trigger are stored in two ways. 1441 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1442 * database). This allows Trigger structures to be retrieved by name. 1443 * 2. All triggers associated with a single table form a linked list, using the 1444 * pNext member of struct Trigger. A pointer to the first element of the 1445 * linked list is stored as the "pTrigger" member of the associated 1446 * struct Table. 1447 * 1448 * The "step_list" member points to the first element of a linked list 1449 * containing the SQL statements specified as the trigger program. 1450 */ 1451 struct Trigger { 1452 char *name; /* The name of the trigger */ 1453 char *table; /* The table or view to which the trigger applies */ 1454 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1455 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1456 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1457 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1458 the <column-list> is stored here */ 1459 Token nameToken; /* Token containing zName. Use during parsing only */ 1460 Schema *pSchema; /* Schema containing the trigger */ 1461 Schema *pTabSchema; /* Schema containing the table */ 1462 TriggerStep *step_list; /* Link list of trigger program steps */ 1463 Trigger *pNext; /* Next trigger associated with the table */ 1464 }; 1465 1466 /* 1467 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1468 ** determine which. 1469 ** 1470 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1471 ** In that cases, the constants below can be ORed together. 1472 */ 1473 #define TRIGGER_BEFORE 1 1474 #define TRIGGER_AFTER 2 1475 1476 /* 1477 * An instance of struct TriggerStep is used to store a single SQL statement 1478 * that is a part of a trigger-program. 1479 * 1480 * Instances of struct TriggerStep are stored in a singly linked list (linked 1481 * using the "pNext" member) referenced by the "step_list" member of the 1482 * associated struct Trigger instance. The first element of the linked list is 1483 * the first step of the trigger-program. 1484 * 1485 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1486 * "SELECT" statement. The meanings of the other members is determined by the 1487 * value of "op" as follows: 1488 * 1489 * (op == TK_INSERT) 1490 * orconf -> stores the ON CONFLICT algorithm 1491 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1492 * this stores a pointer to the SELECT statement. Otherwise NULL. 1493 * target -> A token holding the name of the table to insert into. 1494 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1495 * this stores values to be inserted. Otherwise NULL. 1496 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1497 * statement, then this stores the column-names to be 1498 * inserted into. 1499 * 1500 * (op == TK_DELETE) 1501 * target -> A token holding the name of the table to delete from. 1502 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1503 * Otherwise NULL. 1504 * 1505 * (op == TK_UPDATE) 1506 * target -> A token holding the name of the table to update rows of. 1507 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1508 * Otherwise NULL. 1509 * pExprList -> A list of the columns to update and the expressions to update 1510 * them to. See sqlite3Update() documentation of "pChanges" 1511 * argument. 1512 * 1513 */ 1514 struct TriggerStep { 1515 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1516 int orconf; /* OE_Rollback etc. */ 1517 Trigger *pTrig; /* The trigger that this step is a part of */ 1518 1519 Select *pSelect; /* Valid for SELECT and sometimes 1520 INSERT steps (when pExprList == 0) */ 1521 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1522 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1523 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1524 INSERT steps (when pSelect == 0) */ 1525 IdList *pIdList; /* Valid for INSERT statements only */ 1526 TriggerStep *pNext; /* Next in the link-list */ 1527 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 1528 }; 1529 1530 /* 1531 * An instance of struct TriggerStack stores information required during code 1532 * generation of a single trigger program. While the trigger program is being 1533 * coded, its associated TriggerStack instance is pointed to by the 1534 * "pTriggerStack" member of the Parse structure. 1535 * 1536 * The pTab member points to the table that triggers are being coded on. The 1537 * newIdx member contains the index of the vdbe cursor that points at the temp 1538 * table that stores the new.* references. If new.* references are not valid 1539 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1540 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1541 * 1542 * The ON CONFLICT policy to be used for the trigger program steps is stored 1543 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1544 * specified for individual triggers steps is used. 1545 * 1546 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1547 * constructed. When coding nested triggers (triggers fired by other triggers) 1548 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1549 * pointer. Once the nested trigger has been coded, the pNext value is restored 1550 * to the pTriggerStack member of the Parse stucture and coding of the parent 1551 * trigger continues. 1552 * 1553 * Before a nested trigger is coded, the linked list pointed to by the 1554 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1555 * recursively. If this condition is detected, the nested trigger is not coded. 1556 */ 1557 struct TriggerStack { 1558 Table *pTab; /* Table that triggers are currently being coded on */ 1559 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1560 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1561 int orconf; /* Current orconf policy */ 1562 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1563 Trigger *pTrigger; /* The trigger currently being coded */ 1564 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1565 }; 1566 1567 /* 1568 ** The following structure contains information used by the sqliteFix... 1569 ** routines as they walk the parse tree to make database references 1570 ** explicit. 1571 */ 1572 typedef struct DbFixer DbFixer; 1573 struct DbFixer { 1574 Parse *pParse; /* The parsing context. Error messages written here */ 1575 const char *zDb; /* Make sure all objects are contained in this database */ 1576 const char *zType; /* Type of the container - used for error messages */ 1577 const Token *pName; /* Name of the container - used for error messages */ 1578 }; 1579 1580 /* 1581 ** An objected used to accumulate the text of a string where we 1582 ** do not necessarily know how big the string will be in the end. 1583 */ 1584 struct StrAccum { 1585 char *zBase; /* A base allocation. Not from malloc. */ 1586 char *zText; /* The string collected so far */ 1587 int nChar; /* Length of the string so far */ 1588 int nAlloc; /* Amount of space allocated in zText */ 1589 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 1590 u8 useMalloc; /* True if zText is enlargable using realloc */ 1591 u8 tooBig; /* Becomes true if string size exceeds limits */ 1592 }; 1593 1594 /* 1595 ** A pointer to this structure is used to communicate information 1596 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1597 */ 1598 typedef struct { 1599 sqlite3 *db; /* The database being initialized */ 1600 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 1601 char **pzErrMsg; /* Error message stored here */ 1602 int rc; /* Result code stored here */ 1603 } InitData; 1604 1605 /* 1606 ** Assuming zIn points to the first byte of a UTF-8 character, 1607 ** advance zIn to point to the first byte of the next UTF-8 character. 1608 */ 1609 #define SQLITE_SKIP_UTF8(zIn) { \ 1610 if( (*(zIn++))>=0xc0 ){ \ 1611 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 1612 } \ 1613 } 1614 1615 /* 1616 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 1617 ** builds) or a function call (for debugging). If it is a function call, 1618 ** it allows the operator to set a breakpoint at the spot where database 1619 ** corruption is first detected. 1620 */ 1621 #ifdef SQLITE_DEBUG 1622 int sqlite3Corrupt(void); 1623 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 1624 # define DEBUGONLY(X) X 1625 #else 1626 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 1627 # define DEBUGONLY(X) 1628 #endif 1629 1630 /* 1631 ** Internal function prototypes 1632 */ 1633 int sqlite3StrICmp(const char *, const char *); 1634 int sqlite3StrNICmp(const char *, const char *, int); 1635 int sqlite3IsNumber(const char*, int*, u8); 1636 1637 void *sqlite3MallocZero(unsigned); 1638 void *sqlite3DbMallocZero(sqlite3*, unsigned); 1639 void *sqlite3DbMallocRaw(sqlite3*, unsigned); 1640 char *sqlite3StrDup(const char*); 1641 char *sqlite3StrNDup(const char*, int); 1642 char *sqlite3DbStrDup(sqlite3*,const char*); 1643 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 1644 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 1645 void *sqlite3DbRealloc(sqlite3 *, void *, int); 1646 1647 char *sqlite3MPrintf(sqlite3*,const char*, ...); 1648 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 1649 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 1650 void sqlite3DebugPrintf(const char*, ...); 1651 #endif 1652 #if defined(SQLITE_TEST) 1653 void *sqlite3TextToPtr(const char*); 1654 #endif 1655 void sqlite3SetString(char **, ...); 1656 void sqlite3ErrorMsg(Parse*, const char*, ...); 1657 void sqlite3ErrorClear(Parse*); 1658 void sqlite3Dequote(char*); 1659 void sqlite3DequoteExpr(sqlite3*, Expr*); 1660 int sqlite3KeywordCode(const unsigned char*, int); 1661 int sqlite3RunParser(Parse*, const char*, char **); 1662 void sqlite3FinishCoding(Parse*); 1663 Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*); 1664 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 1665 Expr *sqlite3RegisterExpr(Parse*,Token*); 1666 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 1667 void sqlite3ExprSpan(Expr*,Token*,Token*); 1668 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 1669 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1670 void sqlite3ExprDelete(Expr*); 1671 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*); 1672 void sqlite3ExprListDelete(ExprList*); 1673 int sqlite3Init(sqlite3*, char**); 1674 int sqlite3InitCallback(void*, int, char**, char**); 1675 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1676 void sqlite3ResetInternalSchema(sqlite3*, int); 1677 void sqlite3BeginParse(Parse*,int); 1678 void sqlite3CommitInternalChanges(sqlite3*); 1679 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1680 void sqlite3OpenMasterTable(Parse *, int); 1681 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 1682 void sqlite3AddColumn(Parse*,Token*); 1683 void sqlite3AddNotNull(Parse*, int); 1684 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 1685 void sqlite3AddCheckConstraint(Parse*, Expr*); 1686 void sqlite3AddColumnType(Parse*,Token*); 1687 void sqlite3AddDefaultValue(Parse*,Expr*); 1688 void sqlite3AddCollateType(Parse*, Token*); 1689 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1690 1691 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 1692 1693 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1694 int sqlite3ViewGetColumnNames(Parse*,Table*); 1695 #else 1696 # define sqlite3ViewGetColumnNames(A,B) 0 1697 #endif 1698 1699 void sqlite3DropTable(Parse*, SrcList*, int, int); 1700 void sqlite3DeleteTable(Table*); 1701 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1702 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 1703 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 1704 int sqlite3IdListIndex(IdList*,const char*); 1705 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 1706 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*, 1707 Select*, Expr*, IdList*); 1708 void sqlite3SrcListShiftJoinType(SrcList*); 1709 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1710 void sqlite3IdListDelete(IdList*); 1711 void sqlite3SrcListDelete(SrcList*); 1712 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1713 Token*, int, int); 1714 void sqlite3DropIndex(Parse*, SrcList*, int); 1715 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); 1716 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 1717 Expr*,ExprList*,int,Expr*,Expr*); 1718 void sqlite3SelectDelete(Select*); 1719 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1720 int sqlite3IsReadOnly(Parse*, Table*, int); 1721 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 1722 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1723 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1724 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**); 1725 void sqlite3WhereEnd(WhereInfo*); 1726 void sqlite3ExprCodeGetColumn(Vdbe*, Table*, int, int); 1727 void sqlite3ExprCode(Parse*, Expr*); 1728 void sqlite3ExprCodeAndCache(Parse*, Expr*); 1729 int sqlite3ExprCodeExprList(Parse*, ExprList*); 1730 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 1731 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 1732 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 1733 Table *sqlite3LocateTable(Parse*,const char*, const char*); 1734 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 1735 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 1736 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 1737 void sqlite3Vacuum(Parse*); 1738 int sqlite3RunVacuum(char**, sqlite3*); 1739 char *sqlite3NameFromToken(sqlite3*, Token*); 1740 int sqlite3ExprCompare(Expr*, Expr*); 1741 int sqlite3ExprResolveNames(NameContext *, Expr *); 1742 int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 1743 int sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 1744 Vdbe *sqlite3GetVdbe(Parse*); 1745 Expr *sqlite3CreateIdExpr(Parse *, const char*); 1746 void sqlite3Randomness(int, void*); 1747 void sqlite3RollbackAll(sqlite3*); 1748 void sqlite3CodeVerifySchema(Parse*, int); 1749 void sqlite3BeginTransaction(Parse*, int); 1750 void sqlite3CommitTransaction(Parse*); 1751 void sqlite3RollbackTransaction(Parse*); 1752 int sqlite3ExprIsConstant(Expr*); 1753 int sqlite3ExprIsConstantNotJoin(Expr*); 1754 int sqlite3ExprIsConstantOrFunction(Expr*); 1755 int sqlite3ExprIsInteger(Expr*, int*); 1756 int sqlite3IsRowid(const char*); 1757 void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int); 1758 void sqlite3GenerateRowIndexDelete(Vdbe*, Table*, int, char*); 1759 void sqlite3GenerateIndexKey(Vdbe*, Index*, int); 1760 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1761 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int, int); 1762 void sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 1763 void sqlite3BeginWriteOperation(Parse*, int, int); 1764 Expr *sqlite3ExprDup(sqlite3*,Expr*); 1765 void sqlite3TokenCopy(sqlite3*,Token*, Token*); 1766 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*); 1767 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*); 1768 IdList *sqlite3IdListDup(sqlite3*,IdList*); 1769 Select *sqlite3SelectDup(sqlite3*,Select*); 1770 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 1771 void sqlite3RegisterBuiltinFunctions(sqlite3*); 1772 void sqlite3RegisterDateTimeFunctions(sqlite3*); 1773 int sqlite3SafetyOn(sqlite3*); 1774 int sqlite3SafetyOff(sqlite3*); 1775 int sqlite3SafetyCheck(sqlite3*); 1776 void sqlite3ChangeCookie(sqlite3*, Vdbe*, int); 1777 1778 #ifndef SQLITE_OMIT_TRIGGER 1779 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 1780 Expr*,int, int); 1781 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 1782 void sqlite3DropTrigger(Parse*, SrcList*, int); 1783 void sqlite3DropTriggerPtr(Parse*, Trigger*); 1784 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 1785 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1786 int, int); 1787 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1788 void sqlite3DeleteTriggerStep(TriggerStep*); 1789 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 1790 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 1791 ExprList*,Select*,int); 1792 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int); 1793 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 1794 void sqlite3DeleteTrigger(Trigger*); 1795 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 1796 #else 1797 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 1798 # define sqlite3DeleteTrigger(A) 1799 # define sqlite3DropTriggerPtr(A,B) 1800 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 1801 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0 1802 #endif 1803 1804 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 1805 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 1806 void sqlite3DeferForeignKey(Parse*, int); 1807 #ifndef SQLITE_OMIT_AUTHORIZATION 1808 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 1809 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 1810 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 1811 void sqlite3AuthContextPop(AuthContext*); 1812 #else 1813 # define sqlite3AuthRead(a,b,c,d) 1814 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 1815 # define sqlite3AuthContextPush(a,b,c) 1816 # define sqlite3AuthContextPop(a) ((void)(a)) 1817 #endif 1818 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 1819 void sqlite3Detach(Parse*, Expr*); 1820 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 1821 int omitJournal, int nCache, int flags, Btree **ppBtree); 1822 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 1823 int sqlite3FixSrcList(DbFixer*, SrcList*); 1824 int sqlite3FixSelect(DbFixer*, Select*); 1825 int sqlite3FixExpr(DbFixer*, Expr*); 1826 int sqlite3FixExprList(DbFixer*, ExprList*); 1827 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 1828 int sqlite3AtoF(const char *z, double*); 1829 char *sqlite3_snprintf(int,char*,const char*,...); 1830 int sqlite3GetInt32(const char *, int*); 1831 int sqlite3FitsIn64Bits(const char *, int); 1832 int sqlite3Utf16ByteLen(const void *pData, int nChar); 1833 int sqlite3Utf8CharLen(const char *pData, int nByte); 1834 int sqlite3Utf8Read(const u8*, const u8*, const u8**); 1835 int sqlite3PutVarint(unsigned char *, u64); 1836 int sqlite3GetVarint(const unsigned char *, u64 *); 1837 int sqlite3GetVarint32(const unsigned char *, u32 *); 1838 int sqlite3VarintLen(u64 v); 1839 void sqlite3IndexAffinityStr(Vdbe *, Index *); 1840 void sqlite3TableAffinityStr(Vdbe *, Table *); 1841 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 1842 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 1843 char sqlite3ExprAffinity(Expr *pExpr); 1844 int sqlite3Atoi64(const char*, i64*); 1845 void sqlite3Error(sqlite3*, int, const char*,...); 1846 void *sqlite3HexToBlob(sqlite3*, const char *z); 1847 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 1848 const char *sqlite3ErrStr(int); 1849 int sqlite3ReadSchema(Parse *pParse); 1850 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 1851 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 1852 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 1853 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 1854 int sqlite3CheckCollSeq(Parse *, CollSeq *); 1855 int sqlite3CheckObjectName(Parse *, const char *); 1856 void sqlite3VdbeSetChanges(sqlite3 *, int); 1857 1858 const void *sqlite3ValueText(sqlite3_value*, u8); 1859 int sqlite3ValueBytes(sqlite3_value*, u8); 1860 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 1861 void(*)(void*)); 1862 void sqlite3ValueFree(sqlite3_value*); 1863 sqlite3_value *sqlite3ValueNew(sqlite3 *); 1864 char *sqlite3Utf16to8(sqlite3 *, const void*, int); 1865 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 1866 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 1867 #ifndef SQLITE_AMALGAMATION 1868 extern const unsigned char sqlite3UpperToLower[]; 1869 #endif 1870 void sqlite3RootPageMoved(Db*, int, int); 1871 void sqlite3Reindex(Parse*, Token*, Token*); 1872 void sqlite3AlterFunctions(sqlite3*); 1873 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 1874 int sqlite3GetToken(const unsigned char *, int *); 1875 void sqlite3NestedParse(Parse*, const char*, ...); 1876 void sqlite3ExpirePreparedStatements(sqlite3*); 1877 void sqlite3CodeSubselect(Parse *, Expr *); 1878 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 1879 void sqlite3ColumnDefault(Vdbe *, Table *, int); 1880 void sqlite3AlterFinishAddColumn(Parse *, Token *); 1881 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 1882 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 1883 char sqlite3AffinityType(const Token*); 1884 void sqlite3Analyze(Parse*, Token*, Token*); 1885 int sqlite3InvokeBusyHandler(BusyHandler*); 1886 int sqlite3FindDb(sqlite3*, Token*); 1887 int sqlite3AnalysisLoad(sqlite3*,int iDB); 1888 void sqlite3DefaultRowEst(Index*); 1889 void sqlite3RegisterLikeFunctions(sqlite3*, int); 1890 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 1891 void sqlite3AttachFunctions(sqlite3 *); 1892 void sqlite3MinimumFileFormat(Parse*, int, int); 1893 void sqlite3SchemaFree(void *); 1894 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 1895 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 1896 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 1897 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 1898 void (*)(sqlite3_context*,int,sqlite3_value **), 1899 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 1900 int sqlite3ApiExit(sqlite3 *db, int); 1901 int sqlite3OpenTempDatabase(Parse *); 1902 1903 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 1904 char *sqlite3StrAccumFinish(StrAccum*); 1905 void sqlite3StrAccumReset(StrAccum*); 1906 1907 1908 /* 1909 ** The interface to the LEMON-generated parser 1910 */ 1911 void *sqlite3ParserAlloc(void*(*)(size_t)); 1912 void sqlite3ParserFree(void*, void(*)(void*)); 1913 void sqlite3Parser(void*, int, Token, Parse*); 1914 1915 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1916 void sqlite3CloseExtensions(sqlite3*); 1917 int sqlite3AutoLoadExtensions(sqlite3*); 1918 #else 1919 # define sqlite3CloseExtensions(X) 1920 # define sqlite3AutoLoadExtensions(X) SQLITE_OK 1921 #endif 1922 1923 #ifndef SQLITE_OMIT_SHARED_CACHE 1924 void sqlite3TableLock(Parse *, int, int, u8, const char *); 1925 #else 1926 #define sqlite3TableLock(v,w,x,y,z) 1927 #endif 1928 1929 #ifdef SQLITE_TEST 1930 int sqlite3Utf8To8(unsigned char*); 1931 #endif 1932 1933 /* 1934 ** The MallocDisallow() and MallocAllow() routines are like asserts. 1935 ** Call them around a section of code that you do not expect to do 1936 ** any memory allocation. 1937 */ 1938 #ifdef SQLITE_MEMDEBUG 1939 void sqlite3MallocDisallow(void); 1940 void sqlite3MallocAllow(void); 1941 void sqlite3MallocBenignFailure(int); 1942 void sqlite3MallocEnterBenignBlock(int isBenign); 1943 void sqlite3MallocLeaveBenignBlock(); 1944 #else 1945 # define sqlite3MallocDisallow() 1946 # define sqlite3MallocAllow() 1947 # define sqlite3MallocBenignFailure(x) 1948 # define sqlite3MallocEnterBenignBlock(x); 1949 # define sqlite3MallocLeaveBenignBlock(); 1950 #endif 1951 1952 1953 #ifdef SQLITE_OMIT_VIRTUALTABLE 1954 # define sqlite3VtabClear(X) 1955 # define sqlite3VtabSync(X,Y) (Y) 1956 # define sqlite3VtabRollback(X) 1957 # define sqlite3VtabCommit(X) 1958 #else 1959 void sqlite3VtabClear(Table*); 1960 int sqlite3VtabSync(sqlite3 *db, int rc); 1961 int sqlite3VtabRollback(sqlite3 *db); 1962 int sqlite3VtabCommit(sqlite3 *db); 1963 #endif 1964 void sqlite3VtabLock(sqlite3_vtab*); 1965 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*); 1966 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 1967 void sqlite3VtabFinishParse(Parse*, Token*); 1968 void sqlite3VtabArgInit(Parse*); 1969 void sqlite3VtabArgExtend(Parse*, Token*); 1970 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 1971 int sqlite3VtabCallConnect(Parse*, Table*); 1972 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 1973 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 1974 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 1975 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 1976 int sqlite3Reprepare(Vdbe*); 1977 void sqlite3ExprListCheckLength(Parse*, ExprList*, int, const char*); 1978 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 1979 1980 #define IN_INDEX_ROWID 1 1981 #define IN_INDEX_EPH 2 1982 #define IN_INDEX_INDEX 3 1983 int sqlite3FindInIndex(Parse *, Expr *, int); 1984 1985 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 1986 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 1987 int sqlite3JournalSize(sqlite3_vfs *); 1988 int sqlite3JournalCreate(sqlite3_file *); 1989 #else 1990 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 1991 #endif 1992 1993 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1994 void sqlite3ExprSetHeight(Expr *); 1995 int sqlite3SelectExprHeight(Select *); 1996 #else 1997 #define sqlite3ExprSetHeight(x) 1998 #endif 1999 2000 u32 sqlite3Get4byte(const u8*); 2001 void sqlite3Put4byte(u8*, u32); 2002 2003 #ifdef SQLITE_SSE 2004 #include "sseInt.h" 2005 #endif 2006 2007 #ifdef SQLITE_DEBUG 2008 void sqlite3ParserTrace(FILE*, char *); 2009 #endif 2010 2011 /* 2012 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 2013 ** sqlite3_io_trace is a pointer to a printf-like routine used to 2014 ** print I/O tracing messages. 2015 */ 2016 #ifdef SQLITE_ENABLE_IOTRACE 2017 # define IOTRACE(A) if( sqlite3_io_trace ){ sqlite3_io_trace A; } 2018 void sqlite3VdbeIOTraceSql(Vdbe*); 2019 #else 2020 # define IOTRACE(A) 2021 # define sqlite3VdbeIOTraceSql(X) 2022 #endif 2023 SQLITE_EXTERN void (*sqlite3_io_trace)(const char*,...); 2024 2025 #endif 2026